• English
    • norsk
  • English 
    • English
    • norsk
  • Login
View Item 
  •   All institutions
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra CRIStin
  • View Item
  •   All institutions
  • Norges miljø- og biovitenskapelige universitet
  • Publikasjoner fra CRIStin
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Commodity value-at-risk modeling: comparing RiskMetrics, historic simulation and quantile regression

Steen, Marie; Westgaard, Sjur; Gjølberg, Ole
Journal article, Peer reviewed
Published version
Thumbnail
View/Open
JRMV2015.pdf (2.000Mb)
Permanent link
http://hdl.handle.net/11250/2461017
Issue date
2015
Share
Metadata
Show full item record
Collections
  • Publikasjoner fra CRIStin [1885]
  • Journal articles (peer reviewed) [1261]
Original version
Journal of Risk Model Validation. 2015, 9 (2), 49-78.  
Abstract
Commodities constitute a nonhomogeneous asset class. Return distributions differ widely across different commodities, both in terms of tail fatness and skewness. These are features that we need to take into account when modeling risk. In this paper, we outline the return characteristics of nineteen different commodity futures during the period 1992–2013.We then evaluate the performance of two standard risk modeling approaches, ie, RiskMetrics and historical simulation, against a quantile regression (QR) approach. Our findings strongly support the conclusion that QR outperforms these standard approaches in predicting value-at-risk for most commodities.
Journal
Journal of Risk Model Validation

Contact Us

Search NORA
Powered by DSpace software

Service from BIBSYS
 

 

Browse this CollectionIssue DateAuthorsTitlesSubjectsDocument TypesJournalsBrowse all ArchivesArchives & CollectionsIssue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

Google Analytics StatisticsView Usage Statistics

Contact Us

Search NORA
Powered by DSpace software

Service from BIBSYS