Show simple item record

dc.contributor.advisorBrattebø, Helgenb_NO
dc.contributor.authorEslami Ebrahimi, Babaknb_NO
dc.date.accessioned2014-12-19T11:53:00Z
dc.date.available2014-12-19T11:53:00Z
dc.date.created2014-10-02nb_NO
dc.date.issued2014nb_NO
dc.identifier752204nb_NO
dc.identifierntnudaim:12128nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/235785
dc.description.abstractDifferent environmental analyses are so far allocated to assess emissions corresponding to high-speed rail infrastructure in era of environmental concern for maximize mobility and accessibility. However, electrification of HSR due to various components is intricate and roughly in detail in existing inventories. Predominantly, this is due to this fact that the existing inventories associated to HSR infrastructure focus on climate gases that lead to concrete and steel as the dominant input materials.Life cycle assessment (LCA), as a useful tool in evaluation of environmental impacts related to products and/or activities, can be helpful to deliver a better understanding of a defined system and later on can assist in decision making (by comparing alternative cases with each other).In this thesis, a complete LCA of HSR electrification is performed under PCR guideline that embraces a 60-year lifetime with a functional unit of one kilometer for three life cycle phases that are: construction, maintenance & renewal, and disposal. The results from this study are shown in six-impact categories (with two additional impact categories that are not mentioned in the PCR guideline). In addition, the results from the LCA of HSR electrification are applied to 12 alignments (as a projection of environmental analysis of Norwegian HSR) to illustrate the effect of HSR electrification on corridor planning.Regardless of results for either the functional unit of one kilometer or corridor planning, the relative results show that construction and maintenance & renewal by far are the main sources of potential impacts, and disposal (due to only transport of materials for their end-of-life treatment) has a fraction of impact through the entire lifetime of HSR electrification in all the six-impact categories. The main input materials associated with high impacts in electrification of HSR infrastructure are: copper, diesel, aluminium (cable), steel (low-alloyed), and UPS (batteries) that for different impact categories and life cycle phases the effect from each input material is varying. Copper projected that it has the highest contribution in impact categories human toxicity, metal depletion, freshwater eutrophication, and terrestrial acidification in both construction and maintenance & renewal. Aluminium (cable), and steel (low-alloyed) perform their highest contributions in impact categories climate change and photochemical oxidation formation in the construction phase; however, diesel shows a high impact in the same impact categories (as they are the same for aluminium (cable) and steel (low-alloyed)) in the maintenance & renewal phase. Moreover, UPS (batteries), due to having (relatively) high amount of lead, corresponds to high impact in impact categories terrestrial acidification, climate change, and photochemical oxidation formation in the maintenance & renewal life cycle phase.The study also considers the effect of section type and design-speed for the LCA of HSR electrification. It shows that the potential impact (for the most six-impact categories) in a kilometer of tunnel section for system of design-speed Re330 (for the speed up to 330 km/h) is higher than a kilometer of open section for system of design-speed S25 (for the speed up to 250 km/h). In this study, the effect of increase in the resolution of HSR electrification with the previous study of NHSR by Asplan Viak AS in corridor planning is compared that corresponds to increase in potential impacts in all the six-impact categories, which the highest effects are related to impact categories human toxicity, freshwater eutrophication and metal depletion.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for energi- og prosessteknikknb_NO
dc.titleLife Cycle Assessment of High Speed Rail Electrification Systems and Effects on Corridor Planningnb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber200nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for energi- og prosessteknikknb_NO


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record