

ii

Problem description
The Particle-In-Cell method is a particle simulation that includes a PDE solver,
with applications in modelling particle acceleration and plasma waves.

This project includes adapting a naive CUDA-implementation of Particle-In-
Cell codes for multiple GPUs. Previous work has shown that 3D Particle-In-Cell
codes require several orders of magnitude more particles than a 2D version, for
which the limited memory of a GPU is a bottleneck. The project includes
investigating how additional GPUs may be used to increase possible problem
size, and how this will affect performance.

iii

iv

Abstract

A Particle-In-Cell code is a common particle simulation method often used to
simulate the behaviour of plasma. In this work, a parallel PIC code is developed
in CUDA, with a focus on how to adapt the method for multiple GPUs. An
electrostatic three dimensional PIC code is developed, with an FFT-based solver
using the cuFFT library.

Several issues related to parallelizing the PIC code are discussed, along with
the performance on one and two GPUs compared to the CPU version we devel-
oped based on OpenMP and FFTW as a benchmark. For most problem sizes,
the application is found to be memory bound, with the speed of the memory
interface playing a larger role than the double precision performance. Alter-
natives to some of the naive solutions are discussed, with suggestions for how
the simulation could be implemented for a shared memory computer. Bench-
marks were performed on several GPU platforms including Nvidia Tesla K20
and GTX 980, and the challenges of getting the implementations to simulate
plasma oscillations are discussed.

ii

Sammendrag

Particle-In-Cell koder er en kjent type partikkelsimulering brukt til å simulere
plasmaer. I dette arbeidet utarbeides en parallell PIC kode i CUDA, som videre
tilpasses kjøring p̊a flere GPUer. PIC koden er tredimensjonal og elektrostatisk,
og benytter en FFT-basert løser implementert gjennom cuFFT-biblioteket.

Ytelsen p̊a en og to GPUer blir sammelignet med ytelsen til en CPU-variant
basert p̊a OpenMP og FFTW. Programmet viser seg å være bundet av minneak-
sesser, hvor hastigheten p̊a minnet dominerer double precision regnehastighet
i ytelsesp̊avirkning. Alternativer for noen av de mindre heldige løsningene blir
diskutert, og et forslag til en shared memory-implementasjon blir nevnt. Ytelses-
tester ble kjørt p̊a Nvidias Tesla K20 og GTX 980 GPU+platformer, og utfor-
dringer rundt det å f̊a implementasjonen til å simulare plasmasvingninger blir
diskutert

ii

Acknowledgements
I would like to thank my advisor Anne C. Elster for providing me with this
project, and for introducing me to the exciting field of GPGPU and HPC.

My advisor and I would like to thank NVIDIA for their support of the
IDI/NTNU HPC-Lab through their NVIDIA GPU Research and Teaching Cen-
ters at NTNU, and NTNU for the generous equipment grants to HPC-Lab.

Many thanks to Trygve R. Sørg̊ard for extremely valuable feedback, includ-
ing proofreading and providing a deeper understading of the physics involved,
and many interesting conversations.

My fellow students at the NTNU HPC-lab have provided support and new
insight, and many educating experiences. I would also like to thank the students
and teachers from NTNU in general, and Computer Science in particular for pro-
viding a stimulating environment and many memorable experiences throughout
my time at NTNU.

I would also like to thank my family and friends who have guided me down
the path that has led me here, and particularly my parents Anne Betty and
Gudmund for encouraging my studies.

My time time at NTNU would not be the same without my girlfriend
Kathrine, whom I would like to thank for always supporting me and keeping
me motivated during difficult times.

iii

iv

Contents

1 Introduction 1
1.1 Outline . 3

2 Background Theory 5
2.1 Particle-In-Cell codes . 5

2.1.1 Particles and Cells . 6
2.1.2 Charge density contribution from particles 6
2.1.3 Solving Poisson’s equation for the electric potential 7
2.1.4 Deriving the electric field from the potential 8
2.1.5 Updating particle positions and velocities 8

2.2 The Fast Fourier Transform solver 9
2.2.1 Solving PDEs with the Fourier Transform 10
2.2.2 The FFT algorithm . 11

2.3 Parallel computing and GPGPU 11
2.3.1 History and motivation for parallel computing 12
2.3.2 General Purpose computing on Graphics Processing Units 13
2.3.3 Parallel performance measures and potential speedup . . 14
2.3.4 Architectures . 15

2.4 CUDA - Compute Unified Device Architecture 17
2.4.1 The CUDA Programming Model 17
2.4.2 Performance factors . 20
2.4.3 Alternative CUDA interfaces 21

2.5 cuFFT - the NVIDIA CUDA Fast Fourier Transform library . . . 22
2.5.1 cuFFTXt - Multi-GPU support in cuFFT 22

2.6 Related work . 22

v

3 Implementation 25
3.1 Goals for the implementation . 25
3.2 Simulation overview . 27

3.2.1 Setup . 27
3.2.2 Simulation loop . 28
3.2.3 Cleanup . 31

3.3 Parallelization issues . 31
3.3.1 Atomic operations . 31
3.3.2 Overlapping memory transfers with kernels 31
3.3.3 cuFFTXt limitations . 32
3.3.4 Particle migration . 32

3.4 Particle tracing . 33
3.4.1 Tracer implementation . 33
3.4.2 Visualization script . 34

3.5 The CPU benchmark comparison 34
3.5.1 OpenMP . 34
3.5.2 FFTW . 35

4 Results and discussion 37
4.1 Hardware . 37
4.2 Goals . 38
4.3 Profiling . 38

4.3.1 Single GPU . 39
4.3.2 Two GPUs . 40
4.3.3 CPU . 42

4.4 Simulation performance . 43
4.4.1 Particle count . 43
4.4.2 Grid z dimension . 45
4.4.3 Frame count for 1000 iterations 46

4.5 Stability testing . 47
4.5.1 Plasma oscillations . 47
4.5.2 Two-stream instabilities 50

4.6 Atomic operations . 51
4.7 Particle exchange . 52
4.8 Particle partitioning and load balancing 53
4.9 Variant . 54

5 Conclusion 57
5.1 Suggestions for future work . 58

vi

Bibliography 59

A CUDA and cuFFT examples 63
A.1 CUDA example . 64
A.2 cuFFT example . 66

vii

viii

List of Figures

2.1 Trilinear interpolation . 7
2.2 Conceptual illustration of a CUDA architecture 18

3.1 Illustration of boundary storage 30

4.1 Plot of profiling results, one GPU 39
4.2 Plot of profiling results, two GPUs 41
4.3 Plot of profiling results, CPU . 42
4.4 Plot of performance results, particles 44
4.5 Plot of performance results, grid size 45
4.6 Plot of performance results, frame count 46
4.7 Illustration of plasma oscillation 47
4.8 Illustration of oscillation breakdown 48
4.9 Illustration of particle partitioning 56

ix

x

Chapter 1

Introduction

Particle-in-Cell (PIC) method is a popular method that has been in use in
plasma simulations since the mid 1950s. The names stems from modelling each
particle (or in plasma simulations letting a ”superparticle” represent a bunch
of charges) in a discrete ”cell”. Applications include charged toner particles in
a copier, charged particles in aurora borealis (assuming also an electromagnetic
field is added, and simulating beam dynamics in particle accelerators. While
the scope and size of the simulations have increased over the years, the algo-
rithm is largely the same. It is considered easy to grasp, with the electrostatic
version based around solving a single partial differential equation (PDE), and
otherwise updating particles using classical mechanics. Advances have been
made, either focusing on supporting additional physical phenomena, reducing
numerical error, or increasing performance and scope[1].

In electrostatic Particle-Mesh codes, which we will cover in this thesis, the
contribution of each of the particles’ charges in a given cell to the cell’s grid
points is calculated at a given time based on the particles’ location. The re-
sulting charge density distribution is then used to calculate the electric field
based on the PDE resulting from Maxwell’s equations. The particles are then
”pushed” by the field according to Newton’s law of motion.

Until the past few decades 3D simulations were considered restricted to
supercomputers, being too time- or storage intensive. As the algorithm lends
itself well to parallel computing, it has seen many adaptations to various parallel
architectures.

Since the early 2000s parallel processing have entered mainstream comput-
ing, with the majority of PCs using multicore processors, cell phones and tablets

1

running on multicore processors. Among the more interesting recent advances is
the use of the originally entertainment-oriented graphics processing unit (GPU)
in high performance computing, and as a component of supercomputers. While
they started out as graphics accelerators for 3D games and modelling, the tran-
sition from specialized hardware through programmable shader pipelines to gen-
eral purpose manycore processors have led to their adoption as a parallel com-
puting accelerator of sorts. At a relatively low cost GPUs provide access to a
large number of threads with a focus on high throughput.

For this project the goal is to implement a GPU-accelerated Particle-In-Cell
code, extending the algorithm and 2D codes developed by my advisor A. Elster
[2] to three dimensions. Her code was later adapted for a distributed system
using MPI, and for a combination of MPI and OpenMP [3, 4]. The same code
has served as the backbone for this project, and although written from scratch
in CUDA, the underlying algorithm is the same.

Nvidia’s CUDA platform and the CUDA C/C++ language is used for de-
velopment, and the cuFFT library, which is part of the CUDA Toolkit, is used
to implement a PDE solver. In order to achieve a stable simulation, a certain
problem size is required, with the number of particles and cells increasing by
several orders of magnitude for 3D compared to 2D. Because of the limited
memory size available to GPUs, containing the problem might be difficult, and
a secondary goal is therefore to implement support for multiple GPUs.

Part of the work done during this project is the extension from two to three
dimensions, and in line with comments made by Meyer in [3], an attempt has
been made to make the code readable and modular. It is hoped this will make
it easier for others to understand, extend and improve upon the work.

The real challenge of this work has been to adapt the code for execution
across multiple GPUs. This includes using the cuFFTXt library when multiple
GPUs are present, handling boundary conditions and particle migrations.

In order to determine bottlenecks and potential for improvements, some
profiling and performance tests have been performed for different configura-
tions. The implementation was tested on a single NVIDIA Tesla K20, an NIV-
DIA GTX 980, and a system with two NVIDIA Tesla K20s. In addition, an
OpenMP+FFTW variant was implemented for CPU as comparison. The major
bottleneck has been found to be atomic operations, with memory performance
as an important factor. Based on this, several ideas for improvement are sug-
gested, with a focus on how to handle large numbers of particles.

Several attempts have also been made to achieve a stable plasma oscillation,
with limited success. Oscillations break down after a variable number of oscilla-
tions, and further testing with parameters that satisfy constraints is encouraged.

2

Ideas for how to do this, is also included.

1.1 Outline
The contents of the rest of this thesis is outlined as follows:

Chapter two will give a brief introduction to Particle-in-Cell codes, deriving
the general algorithm from the physics equations. The FFT as a PDE solver is
given a brief treatment, and the history behind parallel computing and GPGPU
is summarized. Some parallel performance measures and parallel architecture
classifications are described. The CUDA GPGPU environment and its FFT
library cuFFT are presented, describing the programming model and some per-
formance factors. Finally some forays into parallel PIC codes are mentioned.

Chapter three details the new OpenMP +FFTW and CUDA-based GPU
implementations, describing the development goals, overview of the simulation,
and various changes made from previous work. Some development choices re-
garding parallelization issues are presented. Finally the particle tracing and
CPU comparison are described.

Chapter four presents tests and benchmarks used to evaluate the implemen-
tation, and briefly discusses the results. Potential improvements and solutions
for some issues are be presented.

Chapter six contains our conclusions, and provides several pointers for future
work.

3

4

Chapter 2

Background Theory

This chapter will provide some background information on the Particle-In-Cell
method of particle simulation, including how to derive the algorithm from the
physical equations. The Fast Fourier transform will also be given a brief intro-
duction, showing how it is used as a PDE solver.

A section is devoted to the history of parallel computing, and GPGPU in
particular, and different parallel architectures and ways to measure parallel
speedup will be described. Nvidia’s CUDA library for general purpose comput-
ing on graphics processing units (GPGPU) will be introduced, explaining the
programming model and some ways to achieve good performance. The CUDA
FFT library cuFFT will be given a brief introduction as well. Finally a brief
recap of the history of PIC codes, and some forays into parallelizing them will
be mentioned.

2.1 Particle-In-Cell codes
The name “Particle-In-Cell” is said to originate with a research group at Los
Alamos in the 1950s, from “investigations into the fluid nature of matter at high
densities and extreme temperatures”[5, p314]. Since then the term has come
to refer to particle simulations involving charged particles moving within some
discrete grid (“cells”). Typical applications for PIC codes have been the study
of plasma, originally as a way to visualize what could not be observed, and later
to predict the actual behaviour of plasma, for example in beam dynamics.

The code examined in this work is known as an electrostatic Particle-In-Cell

5

code. The general algorithm is based on Dr. Anne C. Elster’s doctoral thesis
[2], although extended to three dimensions. See section 2.6 for examples of other
works published on PIC codes.

The idea behind PIC codes is that the collection of charged particles create a
charge density distribution ρ that sets up an electric field. Charged particles in
an electric field are affected by an electric force, causing them to move around,
thereby altering the field. The PIC simulation repeats this process for some
small time step ∆t and traces the particles’ movements over time as output.
The physics and mathematics behind the steps will be explained in more detail
below, but first the particle and field models are examined.

2.1.1 Particles and Cells
The particles are represented as point charges with mass and velocity. While
some PIC codes model collisions between particles(see [6]), a common approach
is to assume particles with no volume, and the simulation concerned with the
general behaviour of the plasma constituted by the particles rather than that
of the individual particles. To achieve realistic values for the number of parti-
cles, total mass, and charge of the plasma without sacrificing performance, the
particle objects of the simulation will often be a so-called “super-particle” with
its charge and mass being some multiple of the particle type it models.

The cells in the name refers to the discretized field, represented in three
dimensions by a grid of size Nx ·Ny ·Nz. This grid samples the charge density,
electric potential and electric field at all its vertices, with greater accuracy for
increasing N .

2.1.2 Charge density contribution from particles
All particles contribute charge to their neighbouring grid vertices, in proportion
to the distance between them. For a three dimensional simulation trilinear
interpolation is used, weighting the contribution according as seen in figure 2.1.
The sum of a particle’s contributions thus equal the particle’s charge, conserving
the total charge of the system. As an example the contribution of a particle
with charge ρp to a neighbouring vertex ρi+1,j,k is shown in equation 2.1.

ρi+1,j,k = ρp
(hx − a) · b · c (2.1)

h here represents the size of the cell, with hx being its length along the x
axis, found by dividing the length by the number of grid vertices. a, b and c

6

Figure 2.1: Trilinear interpolation. A particle (light blue) positioned at (a, b,
c) within a cell. Grid vertices are indicated in grey coordinates.

describes the particle’s position within the cell. a is calculated by subtracting
the position of the cell wall from the particle’s position.

hx = Lx/Nxa = px − i · hx (2.2)

2.1.3 Solving Poisson’s equation for the electric potential
Poisson’s equation ∇2u = f and the special case of Laplace’s equation ∇2u = 0
are arguably the most important elliptic partial differential equations for prac-
tical applications [7, p910]. They appear in fluid dynamics, astronomy, elec-
tromagnetism and electrostatics, mechanical engineering, and potential fields in
general.

Equation 2.3 shows Poisson’s equation for electrostatics, and relates the
charge density ρ of the field to the electric potential Φ. For the derivation of
the equation see [2, s3.2.1].

∇2Φx,y,z = −ρx,y,z
ε0

(2.3)

To solve the equation for the potential Φ some numerical solver must be
chosen. Under the assumption of periodic boundary conditions, a spectral solver
based on the Fourier transform is chosen. The Fourier transform is known

7

to have efficient numeric implementations, and will give exact solutions for a
periodic system.

In three dimensions the spatial derivative is ∇2Φ = δ2Φ
δx2 + δ2Φ

δx2 + δ2Φ
δx2 . The

Fourier transform of a the derivative δ2Φx,y,z

δx2 is k2
x ·Φ2

kx,ky,kz
, which transforms

equation 2.3 into 2.4, a second degree polynomial equation in place of a second
order PDE.

(k2
x + k2

y + k2
z) · Φ̂kx,ky,kz

= −
ρ̂kx,ky,kz

ε0
(2.4)

Φ̂kx,ky,kz
= −

ρ̂kx,ky,kz

(k2
x + k2

y + k2
z) · ε0

(2.5)

This equation is then solved by dividing by k2 and scaling by 1
ε0

. After
performing the inverse transform and performing any necessary normalization,
the field is solved for the electric potential.

2.1.4 Deriving the electric field from the potential
The electric field is related to the potential by equation 2.6, and in the discrete
case can be derived using first order finite differences along each axis. The
electric field at a vertex Ei,j,k is then as shown in equations 2.7, 2.8, and 2.9,
represented as a three component vector.

E = −∇Φ (2.6)

Ex[i, j, k] = Φ[i− 1, j, k]− Φ[i+ 1, j, k]
2 · hx

(2.7)

Ey[i, j, k] = Φ[i, j − 1, k]− Φ[i, j + 1, k]
2 · hy

(2.8)

Ez[i, j, k] = Φ[i, j, k − 1]− Φ[i, j, k + 1]
2 · hz

(2.9)

2.1.5 Updating particle positions and velocities
When accelerating the particles only the electric forces acting on them are con-
sidered here. The gravitational forces between electrons are insignificant in

8

comparison1.
The electric force affecting a point charge q at position p in an electric field

E is FE = −q · E(p). Dividing by the particle’s mass yields the acceleration,
and the particle can then be moved using the classical mechanics equations 2.10
and 2.11:

vn = vn−1 + an ∗∆t (2.10)
pn = pn−1 + vn ∗∆t (2.11)

The argument could be made that the relativistic velocity equation should
be used instead, but for simplicity the Newtonian mechanics have been used.
The assumption is made that most velocities will be well below a significant
fraction of the speed of light.

Like [2] and many other PIC code implementations [8] a leap-frog integration
scheme is used to move the particles, with the velocity update lagging half a
time step behind the position update (see equations 2.12 and 2.13). The leap-
frog algorithm is more accurate than the simple Euler integration of equations
2.10 and 2.11, with a limited and self-cancelling error when ω ·∆t ≤ 2, where ω
is the plasma frequency (see section 4.5.1 for more) [9].

vn+ 1
2

= vn− 1
2

+ a(pn−1) ∗∆t (2.12)
pn = pn−1 + vn+ 1

2
∗∆t (2.13)

2.2 The Fast Fourier Transform solver
Under periodic boundary conditions a PDE can be solved using an FFT solver,
which is both efficient and accurate. This section will recap the mathematics
behind how the Fourier Transform can be used to solve a PDE, and give a brief
introduction to the idea behind the Fast Fourier Transform Algorithm.

The Fourier Transform is shown in equation 2.14, with the inverse transform
in 2.15. For a function of time f(t) its transform is considered to be a function of

1The gravitational force between two electrons yields values on the scale of FG = G
m2

e
r2
≈

5.538·10−71Nm2

r2 , while the electric force will be FE = ke
q2

e
r2 ≈ 2.307·10−28Nm2

r2 . This means
that the electric force between two electrons will be roughly 4.166 · 1042 times stronger than
the gravitational force regardless of the distance between them.

9

temporal frequency f̂(ω). Similarly for a function of space f(x, y) the transform
f̂(ξx, ξy) represents the spatial frequency. For this reason the space described
by the transformed variables ξx and ξy is often called the frequency domain.

F
(
f(x)

)
= 1√

2π

∫ ∞
−∞

f(x) · e−iξxdx = f̂(ξ) (2.14)

F−1(f̂(ξ)
)

= 1√
2π

∫ ∞
−∞

f̂(ξ) · eiξxdξ = f(x) (2.15)

2.2.1 Solving PDEs with the Fourier Transform
In order to find an expression for the Fourier transform of the derivative of a
function f , we can derive the inverse transform from equation 2.15:

d

dx

(
f(x)

)
= d

dx

(1√
2π

∫ ∞
−∞

f̂(ξ) · eiξxdξ
)

(2.16)

f ′(x) = 1√
2π

∫ ∞
−∞

f̂(ξ) · d
dx

(
eiξx

)
dξ (2.17)

= 1√
2π

∫ ∞
−∞

f̂(ξ) · iξeiξxdξ (2.18)

= F−1(iξf̂(ξ)
)

(2.19)

and by Fourier transforming both sides

F
(
f ′(x)

)
= iξf̂(ξ) (2.20)

The process can be repeated to show that the general rule for the transform
of n’th and second order derivatives are

F
(
f (n)(x)

)
= (iξ)n · f̂(ξ) (2.21)

F
(
f ′′(x)

)
= −ξ2 · f̂(ξ) (2.22)

For a second order PDE such as Poisson’s equation the result of Fourier
transformation is a much more easily solvable polynomial equation, shown in
equation 2.23. Solving for Φ then consists of dividing the right hand side by
−ξ2 and performing the inverse Fourier Transform.

10

F
(
∇2Φ

)
= −ξ2Φ̂ = −ρ̂

ε0
(2.23)

Equation 2.24 generalizes this to multiple dimensions, and for three dimen-
sions in particular it can be seen that a division of ρ by ε0 · (ξ2

x + ξ2
y + ξ2

z) is
necessary.

Φ = −ρ̂
ε0 ·
∑
n ξ

2
n

(2.24)

2.2.2 The FFT algorithm
The Discrete Fourier Transform is a discrete analogue of the Fourier Transform
from equation 2.14. The one dimensional version is seen in equation 2.25, where
ω is the Nth root of unity. The DFT will not be described in detail here, see
[7] for a thorough explanation. Since for every output ξk each input xn needs
to be evaluated, the DFT has a computational complexity of O(N2).

ξk =
N−1∑
n=0

xn · ωkn, k ∈ 0..N − 1 (2.25)

The Fast Fourier Transform is the name of an optimized algorithm with
a complexity of O(N logN). Different FFT algorithms have been invented for
various purposes, but they are most commonly implemented as a recursive algo-
rithm. The most common is the algorithm described by J.W.Cooley and John
Tukey in [10], known as the Cooley-Tukey FFT algorithm.

Dividing the transform into two transforms of size N/2 is called a radix-
2 FFT, while the more general case of dividing the transform by the factors
of N 6= 2n is called a mixed-radix FFT. A more detailed explanation can be
found in [10] or [7], but the general idea is to split the computation to avoid
recomputing the same values due to symmetry and periodicity. By exploiting
these properties of the transform, the complexity O(N logN) is achieved.

2.3 Parallel computing and GPGPU
Parallel computing may refer to any form of processing in which multiple op-
erations are performed concurrently. This can range from vectorizing single
instructions to running ten thousands of threads on thousands of nodes on a

11

supercomputer. In recent years, GPGPU has become a popular form of paral-
lelism.

2.3.1 History and motivation for parallel computing
When Gordon E. Moore discussed the possibility of ”Cramming More Compo-
nents onto Integrated Circuits” in 1968[11], besides reasoning why and how the
number of transistors on a chip would increase over time, the difficulties asso-
ciated with it such as power dissipation received only a small mention. Moore
expected that integrated circuits would allow for sufficient cooling, and that the
shrinking size of the components would allow the circuit to run faster under the
same power.

While this is true, and Moore’s law regarding increasing component density
on circuit boards has held true for longer than the ten year period he estimated,
the increase in processing power slowed during the late 1990s and came to a halt
in 2004. A visible sign of this was when the successor to Intel’s previous Pentium
4 processor was cancelled in favour of a transition to a dual core architecture[12].

Important reasons for this happening were the fact that memory speeds were
lagging significantly behind processor speeds already, to the point where further
increase in CPU clock frequency would result in it running idle while waiting for
data from memory, with the cache hierarchy no longer able to hide the latency
([13] provides a more detailed explanation, and considers whether the wall was
hit when expected). Memory bandwidth was increasing by at least the square
of the latency.

Memory latency had been partially hidden by increasing the instruction level
parallelism, but attempting to extract further parallelism would yield diminish-
ing returns[14].

Increasing clock frequency and transistor density both contributed to CPU
power consumption increasing rapidly, to the point where traditional cooling
techniques would suffice no longer[14]. Counteracting this power increase by
reducing voltage would no longer be an option either, due to issues such as
subthreshold leaking and electromigration becoming prominent with insufficient
voltage. More transistors could be placed on the chip than could be powered
on.

Rather than designing increasingly complex and massive single core CPUs
the trend from the early 2000s became multicore processors, with multiple in-
dependent processing cores on a single chip. By adding additional cores the
theoretical processing power of the CPU could be further increased, assuming
all cores could be kept busy.

12

Multithreading has therefore become an important aspect of modern appli-
cations programming, running independent operations in threads that execute
concurrently on multiple cores. Examples of applications that commonly are
multithreaded are operating systems, video and image processing applications,
computer games, and other applications with heavy real time data processing
requirements.

Even before consumer computers made the jump to multicore, academia
and industry have made use of parallel platforms such as computer clusters
and supercomputers. The different varieties of parallel architectures will be
described below, but for this project a particular brand of parallel computing is
of interest, GPGPU.

2.3.2 General Purpose computing on Graphics Processing
Units

General-purpose computing on graphics processing units (GPGPU) is a fairly
recent trend in high performance and parallel computing, where programs are
accelerated by running heavy computation on a graphics processing unit (GPU)
rather than the more traditional CPU. Characterized by a large number of slower
cheaper compute cores, modern graphics cards can deliver massive parallelism
at a comparatively low cost.

The graphics pipeline on early GPUs contained specialized hardware for
common graphics processing tasks. Traditionally data was passed from the
CPU to the GPU where it was processed in several steps, rendered, and output
to some display device. Over time the specialized hardware was replaced by a
more flexible programmable pipeline, with support for programmable shaders
working on common graphical primitives.

Around 2001 these programmable shaders enabled researchers to perform
the first experiments with GPU computing, by defining the data and problems
in terms of graphics primitives and shader programs. In order to alleviate
some of the inconvenience of this convoluted programming model GPU-specific
languages and libraries were written, effectively providing an abstraction over
the shader language. Examples of such languages were Sh and Cg [15]. As
mentioned by [16] implementing simulations using these shader languages placed
severe limits on what was achievable.

As the industry as a whole began shifting its focus towards multithreading
and parallel computing GPUs were also becoming more powerful and easier to
program. By the late 2000s GPUs had shifted from being graphics pipelines to

13

generic stream processors, with increasingly high parallelism and general pro-
grammability. In recent years GPGPU has been found to perform outstandingly
for certain types of problems, with potentially much higher efficiency than com-
parable CPU implementations[17]. GPGPU is still recognized as a field with
higher demands in terms of programming effort, and many problems will be
better suited to the more general domain of the CPU.

2.3.3 Parallel performance measures and potential speedup
When the performance of a program or system is measured the goal is often
to find the improvement over a previous candidate. For parallel systems in
particular, the speedup compared to the serial execution is often of interest,
or the performance relative to a different parallel configuration. For parallel
systems the speedup as a function of the number of processing cores is typically
of interest. Two different definitions of parallel execution time has led to two
well known yet different rules for parallel speedup.

In both of these the speedup of a program a with runtime Ta over a program
b is defined as Sa,b = Tb

Ta
, the number of times a can be executed while b is

running. In addition to the number of processing cores n another important
parameter is what fraction of the program is inherently serial, and which thus
yields no speedup from adding additional cores. One the best known rules in
this regard is Amdahl’s law.

Amdahl’s law defines the speedup as the serial execution time divided by
the time it would take a parallel processor with n cores to do the same work.
Assuming a serial fraction Ps and a parallel fraction Pp, with execution time for
a single core T1:

Sn,1 = T1

Tn
= T1

T1 · (Ps + Pp

n)
= 1
Ps + Pp

n

(= n

Ps · n+ Pp
) (2.26)

Letting n → ∞ it is apparent that the speedup is limited by the serial frac-
tion, with the maximal speedup proportional to 1/Ps

. See [18] for the original
argument. What is known as Gustafson’s law was proposed as an answer to
Amdahl’s law in [19].

Gustafson’s law instead defines the speedup as the time it would take a single
core to perform the work the parallel processor is capable of doing divided by
the parallel processing time. The difference here is essentially that Gustafson

14

assumes the parallel part of the program can be scaled according to the number
of processors rather than remaining fixed. By performing more work in a single
execution the overhead from the serial fraction will no longer dominate as the
number of cores increase.

Sn = T1

Tn
= Ps + Pp · n

Ps + Pp
= Ps + Pp + Pp · (n− 1)

1 = 1 + Pp · (n− 1) (2.27)

2.3.4 Architectures
There are several options for classifying parallel computer architectures, based
on programming model, hardware, communication patterns and so on. In this
section the scheme known as Flynn’s taxonomy will be introduced first, followed
by a look at some different memory architecture classes.

Flynn’s taxonomy

Since first proposed by Michael J. Flynn in 1972, the scheme known as Flynn’s
Taxonomy has been used to classify parallel architectures based on how instruc-
tions and data are shared between processors[20].

Single data Multiple data
Single instruction SISD SIMD
Multiple instruction MISD MIMD

SISD The single instruction, single data architecture represents a traditional
sequential computer, any single-core CPU.

SIMD Single instruction, multiple data-architectures contain several proces-
sors performing the same operations on different data. Array processors are
an important example here, and in particular GPUs. The same instructions
are run on several processors in parallel, with each operating on its own data
set. Typically consisting of an array of smaller processors that each operate
on a small number of elements from a larger shared array, devices with these
architectures are often called array processors.

MISD An uncommon architecture, the MISD does not utilize parallelism to
improve performance, as it has the same throughput as a single code (SIMD)

15

processor. Instead of multiple cores processing more data, this case runs dif-
ferent instruction on the same data stream in parallel. This can be useful for
systems with low fault tolerance, where processing a set of data on different
systems (with different instructions) can reveal errors.

MIMD Both multicore CPUs and most current supercomputers fit this cate-
gory, with multiple cores running instructions independently, on separate data.

Other Variant extensions have been proposed later, including the SPMD (sin-
gle program, multiple data) and MPMD (Multiple program, multiple data).
SPMD is a subcategory of MIMD where a single program is run on multiple
processors in parallel. Instances of the program on different processors are not
guaranteed to run concurrently however, and SPMD is therefore more flexible
than SIMD.

Memory architectures

Parallel systems are also often categorized based on their memory architecture.
As an example, while a multicore CPU and a supercomputer both fit the MIMD
label, they will typically have a vastly different configuration, in particular with
regard to memory spaces, and of course number of cores.

Shared memory Most multicore personal computers and workstations em-
ploy a shared memory architecture (SMA), where threads in programs share a
memory space. This means that threads within a process can read and write
the same data. Communication between threads is therefore fast.

While a shared memory may be easier to envision and program for, it be-
comes increasingly complex when more cores are added. Memory access arbi-
tration will become harder, and core will have to wait longer for their request
to return. Race conditions are more prevalent, but all data is available to each
core.

Distributed memory Supercomputers and computer clusters in general of-
ten consist of a large number of nodes. Each node may consist of several cores
and accelerators, and has a private memory. Nodes in a distributed system may
themselves be shared-memory systems.

By distributing the memory, the number of cores competing for memory
access is limited to the number of cores per node, thus improving scalability

16

drastically. Doubling the number of nodes in the system will have no effect on
the local memory latency of any core.

Memory access types Parallel architectures can also differ in how memory
accesses are performed, notably whether they have a uniform or non-uniform
memory access (NUMA) from different processors. Numerous variations exist
in regard to configuration of memory and cache handling.

2.4 CUDA - Compute Unified Device Architec-
ture

The Compute Unified Device Architecture (CUDA) is a proprietary GPGPU
framework developed by Nvidia. While CUDA is a relatively young technology,
first appearing in 2006, it has already seen widespread use in industrial and
scientific computing. This section will give an introduction to the CUDA pro-
gramming model, device architecture and mention some key factors affecting
the performance of CUDA applications.

While CUDA applications can be developed using various languages and
APIs this section will mainly concern the CUDA C/C++ language and the
CUDA Runtime API. See section 2.4.3 for other ways to accelerate applications
using the CUDA framework. The CUDA model is explained in detail in [21].

2.4.1 The CUDA Programming Model

The CUDA architecture employs SPMD parallelism, executing the same pro-
gram across multiple Streaming Multiprocessors(SMs), typically targeting differ-
ent elements of the same data stream. Compared to a typical CPU architecture
this leads to increased usage of hardware for actual computing rather than con-
trol logic and cache handling.

The multiprocessors themselves operate in a scheme called SIMT (Single
Instruction, Multiple Threads), where hundreds of threads execute the same
instruction concurrently. Threads are organized in blocks, and executed together
on a an SM. Warps of 32 threads share control logic and therefore also execute
all instructions together. See figure 2.2 for an illustration.

17

Figure 2.2: Conceptual illustration of the CUDA architecture, with a warp
size of 8 and 4 SMs for clarity. Threads (green) in a warp share control logic
(orange). All threads in a block execute on the same SM and have access to the
same shared memory. All blocks on a GPU have access to global memory.

Device code

A CUDA C/C++ application typically consists of host code serving as a master
thread which launches device code in functions called kernels. The host per-
forms any necessary set-up such as allocating memory and transferring data to
device memory, and then launches the device kernels with a specified number of
threads. The kernels then process the data in some way, typically operating on
one data element per thread, using relatively simple code with limited branching
and looping. After the kernels have executed, the host then transfers the result
back to host memory, frees resources and ends execution. See section A.1 for a
simple CUDA example.

Threads

As mentioned, the kernels are called while specifying the number of threads.
Organized as a number of threads in a block, in a grid of blocks, the thread
hierarchy in CUDA somewhat reflects the hardware implementation. A relic of
its origin in graphics programming CUDA organizes threads and blocks using
three dimensional coordinates, allowing a natural mapping from thread index

18

to coordinates.
Each thread has a private set of registers it operates on, while threads are

executed in sets of 32 called warps. Each warp executes in lock-step with all
threads in a warp executing all instructions (SIMD). It is thus of interest to
limit divergent branching within warps, as the whole warp must execute code
for all branches.

A thread block consists of up to 1024 threads, ideally a multiple of 32 since
they are executes as warps of 32. Threads in a block are executed at the same
time within a single SM, and can therefore synchronize with each other, and
have access to the same shared memory.

Blocks are organized within a grid, containing all threads belonging to the
same kernel launch. Blocks are distributed among SMs, execute in batches, and
therefore share neither on-chip resources nor any form of synchronization other
than kernel launch and end time. All blocks in a grid will execute on the same
device however, and therefore have shared access to the global memory available
on that device.

CUDA streams represent another level of hierarchy, allowing multiple kernel
executions (grids) in separate streams. While all kernels launched in a stream
are executed sequentially, kernels in separate streams may execute in any order
relative to each other, or even concurrently. When using CUDA with more than
one GPU, kernels will be issued to separate streams, as they are tied to a device.

Memory

The different levels of the memory hierarchy correspond to the thread hierarchy.
Registers are the fastest memory resource available to threads. They come in
a severely limited quantity, 255 per thread for current architectures, but have
no latency. Registers can only be read by the owner (with some exceptions, see
[22]) and share the lifetime of the thread.

Shared memory is a slower and larger memory that resides on-chip, and is
shared between all threads in a block. Access latency is on the order of 10
cycles, and size on the order of 64KB per SM. Where registers are private,
shared memory is typically used to communicate between threads in a block,
or to store data common to several threads, reducing the load on the global
memory by preventing unnecessary memory accesses. Shared memory has the
lifetime of its block, so to keep any data it must be written to global memory.

The global memory is large, typically 2 to 24 GB depending on the device,
but typically has a latency of several hundred cycles. All threads on a device
can access global memory, and it is persistent, allowing communication between

19

blocks and kernels. While the global memory in general is accessible by threads
on the device it is contained, threads from different devices may access memory
on other devices under certain conditions [21, s3.2.6.4].

Atomic operations are a common way of avoiding write conflicts when mul-
tiple threads in a shared memory context need to write to the same address.
By guaranteeing only one thread can update an address at a time, no writes are
lost to overwriting. While double precision atomic operations are limited to the
atomic compare-and-swap, others can be implemented using the atomicCAS, as
seen in the example below (based on one given in [21]).

d e v i c e double atomicAdd (double ∗addr , double va lue) {
unsigned long long i n t ∗ u l l a d d r = (unsigned long long i n t ∗) addr ;
unsigned long long i n t updated = ∗ u l l addr , compare ;

do {
compare = updated ;
updated = atomicCAS (u l l addr , compare ,

d o u b l e a s l o n g l o n g (va lue + l o n g l o n g a s d o u b l e (compare))) ;
} whi le (compare != updated) ;
r e turn l o n g l o n g a s d o u b l e (updated) ;

}

This example also demonstrates why the atomic operations are slow; the
loop runs until the value is successfully swapped. When a large number of
threads attempt to write to the same address the operation can take a long
time to complete. Because the CUDA architecture executes warps together, a
single thread stuck in the while loop will stall the entire warp.

2.4.2 Performance factors
The long latency between global memory requests and the availability of the re-
quested data is somewhat hidden by the CUDA architecture. Whenever a warp
is stalled waiting for data, the SM switches context to a warp ready to execute.
The context for all executing warps are stored throughout their lifetime, so that
this switching has a minimal performance impact, while serving to keep the SM
busy, thus hiding the memory latency.

A big factor in this is occupancy. If no other warp is available while the first
is waiting the SM will be idle until a warp is ready to continue. For this reason a
CUDA device will have better performance if the total number of warps is higher
than the number which can execute concurrently, the SMs need idle warps to
switch to in order to achieve maximum throughput. The number of threads that

20

can be stored in an SM at any time depends on the architecture, model, register
usage and thread dimensionality. While many of these vary greatly from case
to case, a rule of thumb is to have 128 to 512 threads per block (see table 5.1
of [23] for a comparison of utilization for various architectures).

Overlapping kernel execution with host-device memory transfers is another
way to prevent downtime. Assuming the data used by the kernel and memory
transfer is separate, issuing these to separate threads will allow them to execute
concurrently. For this reason many CUDA API functions, especially those deal-
ing with device memory, have synchronous and asynchronous (non-blocking)
versions. Of course, this also allows the host thread to perform other tasks
while the kernel and memory transfer are executing.

While the techniques above are useful to hide latency, accessing global mem-
ory correctly will yield even better results. The architecture is optimized for
SIMD-style computing, where access to consecutive addresses by threads in a
warp will be significantly faster than random accesses. Because memory transac-
tions are 32-, 64- and 128-byte wide segments, memory accesses that are aligned
to these sizes will yield better performance. Note that the smallest transaction
is for the equivalent of eight 32-bit integers, meaning a memory access for a
smaller size will waste throughput.

Structuring memory accesses so that consecutive threads access consecutive
addresses is called a coalesced memory access. Coalesced memory accesses yield
better performance, particularly for data that is aligned in memory[21, p. 5.3.2].

As mentioned above, shared memory is commonly used to reduce the number
of global memory accesses. An ideal example is for image processing, where by
copying the thread block’s segment of an image into shared memory, all threads
in the block has fast access to the whole segment.

2.4.3 Alternative CUDA interfaces

Support for OpenCL, an open source alternative to CUDA, is built on top of the
low-level CUDA architecture on Nvidia GPUs, providing a different interface to
much of the same functionality[21]. OpenACC is a compiler directive-based
programming standard, aiming to provide simple parallelization of accelerators,
similar to the OpenMP standard for multicore parallelization. See Nvidia’s
CUDA Language solutions2 page for more information.

2https://developer.nvidia.com/language-solutions

21

https://developer.nvidia.com/language-solutions

2.5 cuFFT - the NVIDIA CUDA Fast Fourier
Transform library

Nvidia’s Fast Fourier Transform library cuFFT is available as part of the CUDA
development kit. cuFFTW is a second library which supplies similar function-
ality, but through an interface that mimics that of the FFTW3 library to ease
conversion of code.

For input sizes consisting of powers of small primes the Cooley-Tukey al-
gorithm is used to generate efficient transforms on up to 512 million elements.
Transforms of up to three dimensions are supported, for complex and real valued
data. While the FFT exhibits a degree of parallelism by allowing sub-problems
to be computed in parallel, cuFFT’s forte is in batched transforms, where mul-
tiple data sets are transformed via a single call, minimizing overhead.

2.5.1 cuFFTXt - Multi-GPU support in cuFFT

Recent versions of the library have improved and extended the multi-GPU ca-
pabilities of the library as well. As of CUDA 7.0 the multi-GPU functionality
(referred to as cuFFTXt) supports execution across two or four GPUs, with
certain additional restrictions placed on combinations of transform and input
sizes. In particular, multidimensional transforms have a minimum size of 64
along the x and y dimensions, and only support in-place complex-to-complex
transforms.

Another major difference is that while the single-GPU transform can operate
on any array matching the transform size, for multiple GPUs a special data
structure must be allocated that contains pointers to data on the various GPUs,
array sizes and information about the library. The result of a single 2D or 3D
transform will also be divided along the y axis instead of along the x axis. See
section A.2 for examples on use.

2.6 Related work

The following are examples of PIC codes being adapted to different parallel
architectures.

3 The Fastest Fourier Transform in the West

22

Parallelization Issues and Particle-In-Cell Codes [2], Dr. Anne C. El-
ster’s Ph.d. thesis from 1994, is a detailed account of a parallel electrostatic
PIC code running on a SMP architecture. Beyond giving an elaborate intro-
duction to the physics behind the algorithm, load balancing across processors
and techniques to achieve this are discussed.

Emerging Technologies Project: Cluster Technologies PIC codes: Eu-
lerian data Partitioning [3] by Jan C. Meyer describes an attempt to adapt
the algorithm from [2] for a message-passing architecture using MPI. The per-
formance on a supercomputer and a PC cluster was compared.

Parallelizing Particle-In-Cell Codes with OpenMP and MPI [4] is Nils
Magnus Larsg̊ard’s master’s thesis from 2007, which also builds upon the same
algorithm. The topic here is parallelization using both OpenMP and MPI on
cluster computers. In particular, the goal was to find which configuration of
OpenMP and MPI lead to the best performance.

A General Concurrent Algorithm for Plasma Particle-in-Cell Simu-
lation Codes [24] is the name of a paper on a one dimensional particle in
cell code written for parallelization on a distributed memory architecture, and
accounts for the details on splitting the problem into subproblems in an efficient
manner, and the distribution of these subproblems across the processors.

Particle-in-Cell Charged-Particle Simulations, Plus Monte Carlo Col-
lisions With Neutral Atoms, PIC-MCC [6] gives a detailed review of the
history of PIC codes from ca 1950 to 1990. Attempts to add particle collisions
to the simulation are mentioned, and the combination of PIC code with Monte
Carlo collisions is the main focus.

Dynamic Load Balancing for a 2D Concurrent Plasma PIC Code [25]
extends [24] to 2D with a focus on load balancing. Load balancing was found to
be most useful when the particle update step dominated the solver step. Since
their FFT-based solver exhibited far less efficient parallelism they found that
load balancing was counter productive compared to static partitioning.

Adaptable Particle-in-Cell algorithms for graphical processing units
[26] implemented a simple 2D PIC code with the goal of running it on different
platforms.

23

Particle-in-cell plasma simulation on heterogeneous cluster systems
[1] developed a 3D PIC plasma simulation, and using OpenMP and OpenCL
supports execution on either CPUs or GPUs in a cluster.

24

Chapter 3

Implementation

The Particle-In-Cell method implementation will be described in this chapter.
We will also briefly discuss issues with dividing the implementation across mul-
tiple GPUs, and the implementation and possible alternatives for the particle
tracer. Finally a simple OpenMP/FFTW port of the implementation issues
described.

3.1 Goals for the implementation

The following is a summary of the goals and motivations behind some important
decisions taken during implementation.

Particle simulation on a graphics card

The primary goal is to implement a functioning Particle-In-Cell code in CUDA,
capable of simulating the expected behaviour of some system. The target sim-
ulation is plasma oscillation, as described by [2].

In addition, the implementation should support acceleration by more than
one GPU, to investigate what benefits this could yield. The CUDA Fast Fourier
Transform library cuFFT is used for the PDE solver, as it has support for
multiple GPUs, and should integrate better with a CUDA application than
most other libraries.

25

Problem size

An important question to be answered is whether the hardware and memory
of a GPU is sufficient to execute and contain a PIC code of sufficient size and
accuracy.

According to [1] some problems for PIC codes require a number of particles
on the order of 109 and a grid of some 108 elements. A quick calculation shows
that 109 3D particles using double precision data types require at least 44.7 GB
of storage alone. With the largest available memory of even high-end Nvidia
Tesla GPUs at around 12 or 24 GB a simulation of those sizes are still out of
reach. See section 4.5.1 for more on the scale of the simulation.

For performance reasons, particles and simulation grid are all kept in GPU
memory when possible. A larger number of particles could be supported by
keeping the majority in host memory, transferring them to the GPU and pro-
cessing them in turn. The simulation grid is still restricted to the size of the
GPU memory however, unless a more low level implementation of the solver is
used. To make use of the cuFFT libraries without too much overhead, and par-
ticularly because of the high cost assiciated with data transfers between host
and GPU memory, the problem size will be restricted to whatever can fit in
GPU memory.

To increase the available memory, and thus potentially the scale of the sim-
ulation, support for additional GPUs will be added. Whether the additional
available memory can be of use is an issue that will be investigated.

Performance

While optimal performance is not a primary goal for this implementation, de-
cent performance relative to a comparable multithreaded C++ implementation
is expected. In addition, the performance of the multi-GPU configuration com-
pared to the single-GPU one is of interest. Some overhead due to communication
between the GPUs is expected, but whether there is enough of a benefit from
splitting the FFT computation across them to outweigh this will be of interest.

Modularity and readability

Besides goals for increasing problem size and decent performance, a tertiary
goal has been to write readable and modular code, with more loosely coupled
code. Ideally this should result in a more readable code, while also being easier
to extend with further functionality, such as adding other solvers, or target
applications.

26

As mentioned by [3, s6.2] the use of explicit data structures rather than
arrays of primitives helps increase the modularity of the program. While data
structures were used to represent both particles and grid elements in [3], the
field has in this implementation been left as separate arrays for charge density
and the electric field. The advantage of this is that the electric potential can be
calculated in-place by the solver, reducing the memory footprint. In addition
the cuFFT library does not support strided transforms across multiple GPUS
as of yet.

The implementation also aims to be operating system agnostic, tested on
both Windows and Ubuntu. The cuFFT library still has some restrictions on
GPU configuration based on OS as of CUDA 7.0.

3.2 Simulation overview

The structure of the program is as follows:

1. Setup

2. Distribute charge from particles to grid

3. Solve charge distribution for electric potential

4. Calculate electric field in grid

5. Update particles based on electric forces

6. Repeat from 2 until finished

7. Cleanup

Each of these steps are covered below.

3.2.1 Setup

Setup consists of reading the simulation configuration file settings . cfg, setting up
the solver, allocating and initializing particles, and opening the trace file.

27

The configuration file uses the INI format1, and the PropertyTree class
from the Boost library2 is used to read the file. Other values that depends on
those read from the file are then computed and stored in a Cfg object.

The number of GPUs on the system is also read and stored in this object, but
can be overridden by setting the multi option in the config file to 0, overriding
the detected number of GPUs and setting it to 1. Based on this value the
appropriate solver is then set up, as cuFFTXt employs a different interface
than the standard cuFFT library, and requires different initialization. The FFT
plan is created, and both the grid and work area for cuFFT is allocated.

Particles are initialized using a function and kernel particular to the appli-
cation. For plasma oscillation the particles’ positions should be regularly spaced
in two planes. The spacing in either direction as well as the number of rows
and columns in each plane is calculated, and a kernel creates a particles at each
position, with no initial velocity. The distribution of particles along either axis
of the plane is attempted to match the grid resolution in that direction.

A particle tracer object is also created and a trace file opened, see 3.4 for
details. The tracer object uses its own set of CUDA streams to overlap its data
transfers with kernel computation.

3.2.2 Simulation loop
The simulation loop is run a number of times specified in the config file. While
previous work defined the simulation time as a parameter, the runtime is instead
controlled here, with a simulation time equal to the number of iterations times
the length of the time step.

An iteration of the simulation loop consists of the steps below; the charge
distribution kernel, the forward cuFFT call, the solver kernel, the inverse trans-
form, the electric field kernel, the particle update kernel, and depending on the
configuration and current iteration particles might be traced.

In addition, boundary exchange and particle migration is handled for a
multi-GPUs system. Because both data types and cuFFT calls are different,
two different simulation loop functions have been implemented, simplifying the
single-GPU version.

1INIfileonWikipedia.https://en.wikipedia.org/wiki/INI file
2http://www.boost.org/

28

http://www.boost.org/
INI file on Wikipedia.

Charge distribution kernel

The kernel is called for each particle and opens by finding the neighbouring grid
vertices based on current position, trilinearly interpolating as shown (2.1).

Because the equations for the weights and array offsets for each neighbour
are the same for this and the particle update kernel the code for finding these
has been separated into a helper function.

To update each neighbour while avoiding overwriting values from other parti-
cles, atomic updates of grid values are used. This severely limits the performance
of the kernel, and alternatives have been investigated.

For the multi-GPU case, particles that are positioned between vertices on
two GPUs (see figure 3.1) write their contribution to a temporary boundary
array. After the kernel has completed this boundary is then forwarded to each
appropriate device, and the values are added to the vertices they represent.

Field solver

The solver step consists of a forward FFT, a solver kernel, and an inverse trans-
form. The solver kernel divides each grid value by ε0 · (k2

x · k2
y · k2

z). In addition,
it normalizes the result by Nx · Ny · Nz as required by the transform. kx can
be calculated from the x axis coordinate i as kx = i · 2π

lx
where lx is the metric

length of the simulation space in x. Since only the coordinates varies for dif-
ferent threads, the rest is precomputed and stored in the config object for the
kernels.

Electric field

The electric field is derived according to the equations in section 2.1.4. For
each grid element the difference between neighbours’ potential divided by the
distance between them is calculated along all axes.

Boundary potential values are stored in the same boundary arrays, and
distributed to the other devices for multi-GPU configurations. Afterwards the
boundary array is populated with the electric field values along the boundary.

Updating the particles

Called per particle, the electric field values of neighbour vertices are interpolated
in the same way as for the charge distribution kernel. Scaling by ρ/m yields the
particle’s acceleration. The velocity and then position are updated accordingly.
Particles that go out of bounds are “wrapped” so they re-enter the simulation

29

Figure 3.1: Illustration of particles in a grid split between two GPUs. Column 0
and 3 are duplicated into temporary buffers, indicated by the dotted line. The
yellow particles lie on the boundaries between GPUs and need to access these
buffers to write their contributions.

space on the other side, keeping with the periodicity of the simulation. As for
charge distribution, particles in space between nodes from different GPUs read
their electric field values from a temporary buffer.

30

3.2.3 Cleanup

After the simulation is completed the final particle traces are written to file and
the trace file is closed. The FFT plan is destroyed, and other allocated memory
is freed.

3.3 Parallelization issues
This section will mention some of the important parallelization issues faced dur-
ing implementation of the algorithm. Notably, two different kinds of parallelism
occur, shared memory parallelism within a GPU, and distributed memory par-
allelism when more GPUs are involved. Each of these have their own issues.

3.3.1 Atomic operations

For simplicity and readability the implementation currently uses the slow atomic
operations. Their performance decreases with the number of conflicts, but re-
quire less overhead in design and maintenance during development. The issue
is discussed further, with suggestions for improvements, in section 4.6.

3.3.2 Overlapping memory transfers with kernels

Because of how the CUDA architecture is designed, with high throughput-high
latency memory buses, it is advantageous to overlap data transfers with kernel
execution when possible. By using the asynchronous variant of the memory
management interface, and executing kernels in a separate CUDA stream, the
host will not have to wait for either to finish before issuing new requests.

In order to benefit from this, the data dependencies within the program must
allow overlapping. The data transfers involved in the simulation loop are either
part of the particle tracer described below, or boundary distribution between
kernels. The latter typically leaves little room for overlap, since the transferred
data is written by the preceding kernel and read by the succeeding one, see table
3.1 for the lifetime of each data array.

Particle tracing however depends on data written by the particle update
kernel, and must complete before the next particle update. The data transfer
can therefore be overlapped with both the other kernels and also the writing of
previous particle traces to file.

31

functions \ arrays particle ρ, Φ E boundary
chargeDistribution read update write
boundary, rho update read
solverKernel update
boundary, phi read write
electricfield read write read
boundary, E read write
particleUpdate update read read
particleExchange update
trace particles read

Table 3.1: Illustration of the lifetime of each data array.

The best candidate for overlapping these transfers are likely the solver, done
automatically by the cuFFT library, and based on results from code profiling
(see 4.3) it appears this is well utilized.

3.3.3 cuFFTXt limitations
While there are many options with regard to particle migration and load bal-
ancing in general, the cuFFTXt library sets restrictions. In particular, the grid
is statically distributed among the GPUs involved, which limits the possibilities
for dynamic load balancing.

3.3.4 Particle migration
When particles on one GPU enter a part of the grid located on another, the
particle must migrate from the memory of the first to that of the second in order
to be able to access the correct neighbouring grid elements.

While it is easy to determine whether a migration is necessary (using a simple
check of the position coordinate against the domain of the GPUs), the actual
transfer of particle data is more complicated. First consider the case where
all particles migrate from one GPU to another. Either the correct amount of
memory must be allocated in-loop to be able to house the data, or room for
all particles must be allocated on all GPUs (more advanced schemes will be
mentioned in the following section). Assuming then that all GPUs have room
for all particles (which yields 1/nGP U

occupancy of the allocated memory), how
should the migration occur?

32

The implementation currently uses a simple brute force solution, where all
particles are copied to the host memory, sorted according to correct device, and
copied back to the appropriate device memory. This is a simple solution, but
considering that plasma oscillation along one axis, with the grid divided along
another ideally has no particles migrating, it is wasteful to transfer all particles
every iteration. Some suggestions for improving this are mentioned in section
4.7

3.4 Particle tracing
Without some sort of output, the simulation would serve no other purpose than
as a work load to benchmark a system by. Because the output can be used to
verify simulation accuracy, and because the process of writing data to file has
an impact on performance itself, some support for writing particle data to file
is needed. The simulation is built around plasma oscillation, with the particles’
positions as the main output.

3.4.1 Tracer implementation
A goal for the particle tracer was that it should not distract from the algorithm,
ideally handling the tracing process behind the scenes. To limit the impact par-
ticle tracing has on the general performance, the maximum number of particles
traced can be specified. This allows the visualization script mentioned below to
animate the movements of the particles without choking on the sheer amount
of data. For the same purpose, a frame option is also given in the configuration
settings, which limits how many times the tracer is called.

Writing data to file

Two sets of particle storage arrays plus an output array are allocated by the
tracer. By using the CUDA host memory allocation function the resulting array
is pinned in host memory, facilitating faster transfers between it and the GPU
it is associated with. Using an asynchronous transfer of data from the GPU to
one of the associated arrays, data already copied to the other can be written
to file. The idea is to overlap the transfer of frame n with the writing of frame
n − 1 to file. By handling this in a separate thread the performance could be
increased further, with the simulation running while particles are written.

An important assumption here is that the number of particles written is
limited, as pinned host memory remains in RAM at all times. Since the total

33

size of the particle array easily reach several GB in size this will be a problem.
If an application needs to output all particles in a simulation with millions of
particles, a different solution must be sought.

Output format

The output data itself has a simple structure. Position values are formatted to
a precision of 12 digits and separated by commas, particles are separated by a
semicolon, and frames separated by a newline. While this does not conform to
a typical CSV format, it makes the process of separating the data easier.

3.4.2 Visualization script
For demonstration and troubleshooting purposes a relatively simple python
script uses the numpy and matplotlib packages to animate the movements of
the particles over the course of the simulation. The animation can either be
shown directly or stored as a movie file. For performance reasons the number
of particles and frames should be limited working with this script, and to visu-
alize millions of particles over longer stretches of time a more sophisticated is
in order.

Some options that seems interesting at this point would be animating the
data in openGL or similar library, with hardware support. Performance should
be greater, but this also allows investigations into interactive visualization or
even real-time animation of particle movements.

3.5 The CPU benchmark comparison
In order to compare performance on one or more GPUs with a CPU implemen-
tation, the code was ported relatively straightforward to a OpenMP + FFTW
application. The CPU version uses the same configuration file and produces
output in the same format.

3.5.1 OpenMP
OpenMP is a multiprocessing API for a shared memory system such as a multi-
core CPU. The transition from CUDA to OpenMP was surprisingly simple. The
general idea was to replace kernel calls with simple function calls, and in the
kernels add a for loop over the relevant arrays. OpenMP then parallelizes the
loop when “#pragma omp parallel for” is placed on the line preceding it. While

34

a more sophisticated and optimized parallelizations scheme can no doubt be
found, the result serves the purpose as a CPU comparison that makes use of all
available cores to accelerate the computation.

3.5.2 FFTW
FFTW is one of the most efficient and popular FFT libraries available. As
cuFFT was designed to feel familiar to FFTW developers[27] it was less surpris-
ing that a transition the other way would also be simple. The process mostly
consisted of replacing the various cuFFT API calls with the FFTW equivalent.

35

36

Chapter 4

Results and discussion

Different tests are run in order to evaluate the implementation. For a measure
of scalability, the division of labour among kernels for increasing numbers of
particles is looked at in section 4.3, using profiling tools.

Section 4.4 provides the timing results for various problem sizes and config-
urations, as well as each configuration’s performance on a large sale simulation.

Section 4.5.1 briefly explains plasma oscillations, and the motivation behind
using it as a test for numerical stability. Some of the constraints regulating
possibly parameters will be presented, along with a brief discussion of the results
from testing. The two-stream instability test is also briefly introduced.

Some potential solutions and ideas for improvement will then be presented
in the last few sections.

4.1 Hardware
The GPU used for testing is the Tesla K20 GPU Accelerator [28]. The test
machine is equipped with two of these GPUs, an Intel i7 3770k CPU[29], and
32GB RAM from Kingston in four DIMM’s clocked at 1333MHz. Each Tesla
GPU is equipped with 5GB GDDR5 RAM, supporting PCI Express 2.

Although the CPU in question, the Intel i7 3770k, cost roughly 1/9.5 of what
the Tesla K20 did at launch[30, 29], the comparison will hopefully show the
different tendencies of GPUs and CPUs. To make up for the difference in cost,
some of the tests will be run on the more recent consumer GPU GTX980, with
a cost of around 1.6 of the CPUs cost[31].

37

This GPU has a much lower double precision performance, being aimed at
3D graphics and driving a desktop screen, and therefore targets the same market
segment as the 3770k (enthusiast desktops). With only 4GB of GDDR5 RAM
it has a lower capacity, but the memory interface is clocked higher, with roughly
double the throughput of the Tesla K20[32], and supports PCI Express 3.0. The
980 test machine equipped with an Intel i5 3470 CPU, which should perform
comparably to the 3770K in a single-threaded application.

4.2 Goals
When testing the implementation the performance of a single GPU versus mul-
tiple GPUs is a main focus. To provide some context the CPU implementation
will be run with the same parameters. The goal is to determine some qualities
of the implementations:

• performance - how fast a given simulation can be run

• scalability - how variance in the problem size affects the performance

• accuracy - whether the implementation accurately simulates expected be-
haviour for the particles

4.3 Profiling
To determine the impact each step of the algorithm has on performance for
various configurations, a profiling tool can be used to measure the execution
time spent on each function. Nvidia provides a visual profiler with its Toolkit
that also provides information on occupancy and overlapping memory transfers
[33].

For traditional CPU code a profiler tool such as gprof1, or tools in the
valgrind2 suite may be used. Due to its simplicity gprof was chosen for this
task. While it gives only an estimate of the time spent in different functions,
and has certain issues that need to be taken into consideration3, the tool is
accurate enough to provide the info sought here.

1https://sourceware.org/binutils/docs/gprof/
2http://valgrind.org/
3gprof assumes that a function’s execution time is unrelated to where it was called, and

divides its measured execution time among the callers proportionally to the number of times
it was called by each.

38

https://sourceware.org/binutils/docs/gprof/
http://valgrind.org/

Figure 4.1: Percentage of execution time per kernel for different particle counts,
on one GPU.

It is worth noting that code run with a profiler will never yield optimal
performance, as profiling code is either injected into the program, or the program
is run on emulated hardware. The timing results for profiled code will therefore
not be accurate with regard to the production code, but may still be useful in
determining bottlenecks or suboptimal code.

The simulation settings for profiling has 100 iterations of the simulation loop
with 10 frames for the particle tracer. The code will be profiled for a grid of
643, while the number of particles will be varied between tests, in order to see
the effect it has on execution time of the different kernels.

4.3.1 Single GPU
The profiling results for a single GPU are illustrated in figure 4.1. It shows that
although both charge distribution and particle updates have many uncoalesced
memory accesses in the same pattern, and the particle update kernel does more

39

computational work, the atomic operations involved with charge distribution
means it is still slower. The number of conflicting atomic operations should
increase with the number of particles per cell, as more particles will write their
contribution to the same grid vertex at any time. This could be the cause of the
charge distribution kernel ”stealing” a fraction of the time from particle updates
in the last case. While both kernels have an increased work load as a result of
the increased number of particles, the charge distribution kernel is also affected
by the resulting increase in particle density. When the number of particles is
lower, it can be seen that the particle updates consume more execution time,
as might be expected.

That the kernel deriving the electric field from the potential dominates the
solver might not be surprising given that the solver kernel operates on a single
data point, while the former reads six neighbours. However, the timing result
for the solver also includes the execution time of the cuFFT calls involved,
implying that it is very efficient. A simulation on a 643 grid would require
on the order of 2.6 · 106 particles, which would likely yield results somewhere
between those for 524288 and 8388608 particles. Even with the particle kernels
dominating the grid kernels, between 0.7% and 12.0% is still enough that an
attempt to optimize the electric field derivation using shared memory to reduce
the number of loads, especially since these loads are already coalesced, and
neighbouring values typically correspond to threads in the same block.

4.3.2 Two GPUs
The results in figure 4.2 are generally very similar to those for the single GPU
profile. The solver step appears to consistently consume more of the execution
time. Because the solver kernel does no work depending on the number of
devices involved this is likely due to cuFFT doing more overhead when working
across devices, performing more expensive peer-to-peer memory transfers.

Without looking at actual timing data, it would be hard to say whether
this decreases the performance, but the only case in which the solver’s fraction
of execution time would increase while it performs better is if all the other
functions’ performance improves even more. This is very unlikely to be the
case, and more likely the multi-GPU solver performs worse. A possible cause
for this is that the cost of peer-to-peer data transfers outweighs the benefits of
the additional compute power available for this grid size.

Based on the profiler output it was also apparent that for higher particle
counts, particle exchange appeared to consume an increasing amount of time
compared to the rest simulation loop. For the last row, the time spent on

40

Figure 4.2: Percentage of execution time per kernel for different particle counts,
on two GPUs.

41

Figure 4.3: Percentage of execution time per kernel for different particle counts,
on CPU.

particle exchange was nearing 1/3 of the simulation loop execution time. Most
of this time was shown to be the synchronous data transfers between device and
host, and by making these asynchronous, the time spent on particle exchange
was cut to less than 1/4.

4.3.3 CPU
While the steps of the algorithm handling particles still dominate for a higher
particle density, the trends shown in figure 4.3 paint a different picture than for
the GPUs. Perhaps most striking is the fact that the particle update and not
the charge distribution dominates. Because a multithreaded program running
on a multicore CPU runs significantly fewer threads at a time compared to a
GPU the effect of the atomic memory accesses could be expected to have less
of an impact, with fewer concurrent conflicts.

Another difference here is that the solver step consumes a great deal more of

42

the execution time in all cases, compared to the electric field kernel. It could be
that cuFFT is more efficient than FFTW relative to the rest of the program, or
that the electric field kernels neighbouring values are stored in cache, yielding
the performance improvement that might be offered by using shared memory in
CUDA.

4.4 Simulation performance
As a more accurate measure of actual performance than code profiling, the
different configurations will be timed during normal optimized execution. The
goal for these benchmarks is to find a valid comparison between the single-GPU,
double-GPU and CPU implementations.

A measure of scalability can be found by measuring execution time for each
hardware configuration for various problem sizes. With 1000 iterations of the
simulation loop the implementation will be timed for different numbers of par-
ticles, grid length in the z dimension, and number of particle tracing frames.
The results are shown in the tables below. Default parameters are a grid size
of 643, particle count of 32768 and 10 frames traced out of 1000.

4.4.1 Particle count

The results for variations in particle count are illustrated in figure 4.4. From
2048 to 32758 particles the GPUs show little difference in execution time, which
might be explained by the high number of threads needed for the GPUs to reach
peak utilization. For high particle counts however, the execution time increases
drastically, suggesting that both number and density of particles is affecting
performance.

The CPU execution time in comparison scales linearly, showing no signs of
congestion.

Because of its poor double precision performance, being primarily a con-
sumer product not targeted at scientific computing, the GTX 980 might have
been expected to be outperformed by the far costlier and more industrially ori-
ented Tesla card. However, as we see from figure 4.4, it performs just as well,
and even better in some cases, than either Tesla card configuration. An edu-
cated guess says this might be due to the GTX 980’s bandwidth being 224 GB/s
to the Tesla K20’s 104 GB/s, and that the implementation is memory bound
rather than waiting for computation.

43

Figure 4.4: Performance as a function of the particle count.

44

Figure 4.5: Performance as a function of grid size along the z dimension.

It is interesting that the GTX 980, which is otherwise fastest, comes in last
for the highest particle count tested. The double Tesla K20 configuration, while
otherwise slowest of the GPUs, is fastest here. It might be that the benefit of
servicing the particles through two memory interfaces (with effectively double
the memory throughput) outweighs the cost of transferring the particles to the
host for sorting, when the number of particles is so high. Why the GTX 980
performs worse than the single Tesla K20 card is more uncertain, especially since
its better memory specification might be the reason it performs well otherwise.

4.4.2 Grid z dimension
For the CPU configuration the increase in runtime is more or less linearly pro-
portional to the increase in grid size (note that the x axis in figure 4.5 uses a
logarithmic scale). For the GPU configurations however, the runtime decreases
for increasing grid size, up to a point. A good candidate for the cause of this
is that by increasing the grid size, the particle density is decreased, thereby

45

Figure 4.6: Effect of frame rate on performance.

improving the performance of the atomic operations in the charge density ker-
nel. For z = 128 the runtime again increases, as the cost of computing a larger
transform and more threads appear to outweigh the benefits of reducing the
particle density further.

Again the GTX 980 outperforms the Tesla K20 for all the lower values,
showing a halved execution time for the first three columns.

4.4.3 Frame count for 1000 iterations
The results from figure 4.6 show that for all configurations, the increase in
execution time is directly proportional to the number of frames traced. Un-
surprisingly, given that the amount of work done per trace is independent of
the number of traces, so long as the size of the trace data is small enough to
complete transferring before the next is ready.

Note that the particle tracer uses roughly the same amount of time for each
configuration (∼ 0.5ms for 1000 frames), which might mean that most of the

46

time is spent writing to file rather than transferring data.

4.5 Stability testing
In addition to any potential performance increase, the implementation should
display sufficient numerical accuracy to provide a useful result from the simu-
lation. In order to confirm numerical correctness the behaviour of the electrons
over time must be observed. Rather than evaluating the numerical values and
comparing them to some precomputed truth, the general behaviour of the par-
ticles in an application will be tested, looking at its ability to simulate physical
phenomena. The primary focus during development has been to simulate plasma
oscillations.

4.5.1 Plasma oscillations
To explain plasma oscillations, first consider two electrons in a 1D vacuum. Be-
cause they have equal charge they will repel each other, with a force inversely
proportional to the distance between them. Under our assumptions of periodic-
ity in the simulation space however, the two electrons will soon approach each
other “from the other side”, and therefore slow down and eventually reverse
their direction again. This behaviour will repeat, with both electrons oscillating
back and forth.

The PIC code implemented ought to be able to simulate this behaviour when
certain constraints on the input parameters are satisfied. Elster[2] successfully
demonstrated plasma oscillations as part of her work, with lines of particles in
a 2D space. Figure 4.7 illustrates the behaviour in 2D. For 3D there will be two
sheets of particles in a 3D space.

Figure 4.7: An illustration of how two lines of particles, red and green, will repel
each other and oscillate back and forth. The sequence illustrated will repeat
until some instability occurs.

It is important that the particles are equally spaced. Because the space is

47

periodic along all axes, a particles will see its sheet as infinite in all directions.
In a regularly spaced grid the particle will observe equal electric forces from all
directions within the plane, summing to zero. With all movement restricted to
that caused forces outside the particle plane, all particles should oscillate back
and forth as for the single electron case mentioned above.

Because even double precision floating point numbers have a limit to their
precision, the oscillation cannot continue indefinitely in practice. Even so, un-
der sufficient conditions the implementation should be able to produce several
periods of the expected behaviour. Figure 4.8 illustrates an oscillation breaking
down, where the small displacement of some particles leads to further instability
and chaos.

Figure 4.8: An illustration of oscillation breakdown.

The plasma frequency The plasma frequency ωp appears in the constraints
below. It is defined as

ωp =

√
Npq2

mε0
(4.1)

where Np is the number of particles with, mass m and charge q[34, 35].

Constraints

Dr. Anne’s thesis [2] describes plasma oscillation test for a two dimensional
system, with two infinite electron rods oscillating in place of the sheets. As part
of the testing, this 2D plasma oscillation will be attempted in the 3D code. She
used a 1024 by 1024 grid, with 400000 particles. The time step required for the
simulation to run stable is there calculated based on constraints given by [36]
for a 1D simulation:

1. H ≤ λD

2. ωp ·∆T � 2

48

3. L� λD

4. Npλd � L

The first constraint declares that the resolution of the simulation grid should
be sufficiently small, the distance between two grid vertices should be no larger
than the Debye length, the distance a particle’s influence reaches [37].

Constraint two requires the plasma frequency multiplied by the time step to
be distinctly smaller than 2[9].

The third constraint requires the length of the simulation space to be far
longer than the Debye length.

Finally, number four requires a number of particles per Debye length.
These requirements may be generalized to more dimensions by stating them

for each dimension, as done by Elster [2] for two dimensions and here for three.
However, according to Peratt [5] that when upgrading the number of dimensions
for a simulation, each additional dimension requires an increase in the number
of particles by around two orders of magnitude. Bastrakov [1] mentions that
there are problems known requiring ∼ 109 particles on a ∼ 108 cell grid, but
a configuration on that scale would require around 50GB storage for the data
alone, and is thus beyond the reach of a simulation running on GPUs with 5GB
RAM each.

Comparing the values for the 2D simulation in [2] and the 3D simulation
from [1], there are ∼ 105 particles to ∼ 106 cells in 2D, and ∼ 109 particles to
∼ 108 cells in 3D, an increase on the order of two for particles relative to cells.
If the same ratio is used to find the largest problem that fits in the memory of
a Tesla K20, the results is around ∼ 107.95 particles and ∼ 107.22 cells, such as
89458688 particles on a 1282 · 1024 or 2563 grid.

A 3D electromagnetic PIC code also implemented in CUDA by [38] mentions
that a significant restriction is the Courant restriction, c · ∆t <h /√3. This
equates to ∆t < h · 1.93 · 10−9, meaning a larger grid requires a smaller time
step to achieve numerical stability.

Results

While the simulation has been run with many different configurations, no abso-
lute success has been achieved as of yet, with the oscillation breaking down at
some point. The likelihood of a stable oscillation increases for larger numbers of
particles and grid elements, and smaller time steps. For a larger problem each
iteration takes longer to compute, and when decreasing the time step a larger
number of iterations is needed to progress the simulation. This of course means

49

that a higher resolution simulation will take longer to finish, and because its
success or failure is hard to determine while it is running, each attempt can take
more than 24 hours from start to end.

To determine success or sufficient parameters two approaches are consid-
ered. The first is to include a real time view of the result, indicating success
or failure while running. Although more useful, this still requires human in-
teraction during simulation, as automatic verification of the output seems hard
to achieve. The other option is to draw up a new set of constraints for a 3D
PIC code, based on physics rather than an interpretation and superposition of
simplified constraints for one dimension. A deeper understanding of the impli-
cations of grid resolution, particle count, time step, and simulation expanse is
recommended.

Whether the absence of a stable oscillation thus far is simply a result of
testing with insufficient parameters or a sign of the GPU’s capacity being too
small to provide a sufficient grid resolution and particle number is uncertain,
but it should be noted that the substantial runtime required to achieve each
result means a limited number of combinations have been tested so far, and
many of them with the focus of detecting more severe issues. Further tests with
increased time resolution in particular is therefore suggested, as the results have
been promising, with up to five periods of expected behaviour.

Further testing

While the 3D oscillation is of interest itself, running a 2D plasma oscillation
along each axis would be interesting as well, especially with multiple GPUs, to
see whether any axis is favoured. Performance should be best so long as the
grid is split among GPUs across the bands, and few particles move across device
boundaries, but oscillation along all axes should be stable.

Because particle number appears to severely impact execution time per iter-
ation, and cell count places restrictions on the length of the time step, running
tests with smaller problem that satisfy the constraints might be prudent.

4.5.2 Two-stream instabilities

In addition to plasma oscillation, Elster used a two-stream instability test to
verify numerical stability. The concept behind the test and suggested test con-
ditions will be outline below, although the tests were never run for the current
work.

50

The particles are uniformly distributed throughout the simulation space, or
plane in 2D, and are split in two sets with opposite initial velocity. The two
streams of moving charges will be unstable, as the charges repel each other,
and when some charge slow a bit it will amplify the effect, as the charge density
increases. As the amount of particle bunching increases, so does the effect it has
on incoming particles, eventually providing sufficient electrical force to invert
the velocity of incoming particles. When plotting velocity against coordinate of
the axis the particles move along, a characteristic ”eye” will appear 4.

The appearance of these eyes within some time would serve as a confir-
mation of numerical stability. For further confirmation, this test should be
performed with streams directed along each axis in turn. After implementing a
non-naive particle migration scheme one would expect performance to take a hit
with streams running along the x axis. By running this test one could confirm
whether the division and boundary handling affects stability or not. Even with
worse performance due to particle migration it should yield the same output as
for another axis.

4.6 Atomic operations
Based on the timing results from the previous chapter, it appears that the atomic
operations from distributing the charge to the grid vertices is a bottleneck,
at least when the particle density is high. For applications such as plasma
oscillation most particles are confined within a small area of the grid, with most
particles writing to a small subset of the grid vertices.

Nvidia’s Kepler architecture significantly improved the performance of atomic
operations on global memory[39], while Maxwell improved upon atomic shared
memory operations[40, s1.4.3.3]. Indeed, by first writing to shared memory and
then from the partially accumulated value to global memory one could improve
the performance somewhat. A prerequisite for this improving the performance
is however, that threads in a block largely access a limited number of addresses,
and that accesses to an address is limited to a low number of blocks. The re-
sult would be that most conflicting atomic operations would be to fast shared
memory, while accesses to slow global memory would succeed more often in
comparison.

By sorting the particles into some order, assumptions could be made re-
garding the number of grid vertices accessed by the threads in a block, and the

4An example of such an eye can be seen appearing in this video: https://www.youtube.
com/watch?v=__7GQS15IdE. Link confirmed to be available on 2015-07-17

51

https://www.youtube.com/watch?v=__7GQS15IdE
https://www.youtube.com/watch?v=__7GQS15IdE

probability of reducing duplicate accesses would be lower than for a block han-
dling particles at random locations. While the atomic updates to global memory
perform worse for higher particles densities, the benefit of first accessing shared
memory will be higher for increasing density, as fewer global memory accesses
are needed.

For low particle densities the number of different addresses per block would
be higher, and if all particles in a block end up writing to different elements,
they might not all fit in the shared memory of a block (depending on the block
size). In such a case there would be no or less benefit in reducing the writes
in shared memory. Some scheme will need to be developed in order to decide
which thread reads a given value into shared memory and writes it to global
memory, thread structure and particle sorting.

4.7 Particle exchange
The computational cost of the naive particle exchange is the cost of transferring
all particles from all devices to host memory, plus one host to host copy per
particle. Using synchronous data transfers, the transfer time will increase with
additional GPUs, while the host operations are unaffected. Using asynchronous
transfers, all devices can transmit particles concurrently, with an increasing
number of GPUs only reducing the average number of particles per GPU.

In order to facilitate asynchronous transfers however, the active host memory
must be pinned. Because the particle count for each device is unknown ahead of
time, and to avoid reallocating the host arrays for each exchange, two arrays of
size nparticles will remain allocated per GPU during the simulation. When the
number of particles reaches 108 this means roughly 9GB of pinned host memory
per GPU !

It is apparent that this is not a scalable solution, as for just two GPUs
the particle exchange alone will consume 18GB of host memory at all times.
Even with the availability and relatively low cost of memory seen today, a more
sophisticated solution is needed. It is important to note that the arrays in
question are only used as temporary storage for sorting the arrays according to
device. In the typical scenario, most particles will remain on the current device
at the end of each iteration, with only a few moving across the border to a
neighbour. Performing the expensive procedure above even when no particles
require transfer seems especially wasteful, and the wish is therefore to transfer
only those particles which are located on the wrong device.

By partially sorting the particles on each GPU according to which GPU

52

they should reside on, the number of transferred particles will likely be cut
drastically. The time spent in the particle exchange would then be variable
between iterations as a variable amount of particles need transfer, but even
the worst case of all particles moving should yield no worse result than the
naive variety. The latency of a peer-to-peer device is lower than using the host
as a temporary storage, but may still be significant even for a low number of
particles. The peer-to-peer transfers can be executed asynchronously without
allocating a huge pinned host array however, and the slow sorting on the host
is avoided.

The sorting algorithm should be one suited for sorting large arrays in-place,
optimized for input where only a few elements need to be swapped. For the
exchange, the only information of interest is whether a particle is on the correct
device or not, two particles position relative to each other is not of interest.

4.8 Particle partitioning and load balancing
Even with a better particle exchange scheme, the added GPU memory is poorly
utilized, as all GPUs allocate memory for all particles. The only space benefit
of adding an additional GPU is then to split the grid across them, and with the
particle count dominating the grid size, this is a poor comfort.

In order to reduce the particle storage overhead some sort of load balancing
is needed in order to partition the particles and grid among GPUs. Ideally the
device particle arrays are each allocated to fit Nparticles/NGPUs particles, al-
lowing full utilization of an additional GPUs memory. To achieve this particles
would be sorted along the axis on which the grid is divided between GPUs,
and divided into groups with the same memory footprint. This sorting would
need to sort all particles relative to each other, unlike that of the particle ex-
change scheme mentioned, but like that of the proposed improvement for atomic
operations.

Splitting the particles evenly among the GPUs is a good start, but because
the distribution of particles along the axis is possibly uneven, some particles
might not have access to write to the grid vertices they distribute charge to. As
mentioned cuFFTXt requires a certain division of the grid among GPUs, but
this can be solved by expanding the existing potential boundary and temporary
charge storages. Particles write charge to the grid when possible, and otherwise
to the boundary array, which is then transferred to the GPU containing the
corresponding grid data, and similarly for the transfer of either potential or
electric field values in return. Figure 4.9 illustrates the extended borders (dotted

53

red) when particles are become distributed.
The additional memory required for these boundary arrays factor into the

footprint of the division, since the more the particle boundaries are skewed from
the grid boundaries, the larger these boundary arrays become. The ideal division
of particles therefore depend on the actual distribution of particles along the
axis, and the calculation of such a division is left for future work.

Particle partitioning for 2D PIC codes on a multicore architecture is dis-
cussed in more detail by Elster[2]. Some of the schemes discussed, such as
fixed processor partitioning and partial sorting, are possible, and very similar
to the variant implemented or discussed above. The best solution from that
work however, a double pointer scheme, is less suited for GPUs. The currently
implemented sorting on the CPU is similar, but less elegant, and partial sorting
on the GPU making use of the GPUs’ massive parallelism seems likely to yield
better results.

4.9 Variant
A completely different approach would be to split work between the GPU and
CPU. The per-particle steps involve rather unordered memory accesses, with
conflicts between threads. Grid kernels on the other hand are regular, ordered,
and relatively independent. Recognizing this, and that particles generally have
a larger memory footprint than their grid, handling and storing the particles on
the host, and the grid on the GPUs, could potentially allow for better perfor-
mance while increasing problem size further.

The algorithm would then be to write charge densities to an array, transfer
it to device memory, solving for potential and deriving the electric field, then
transferring it back to the host and updating particles there. The performance
hit from transferring the grid to and from device memory will of course impact
performance to some degree. There is also the potential to utilize the hardware
in question better, by having the host do particle tracing while the GPU is
computing the electric field, and letting the GPU render trace data in real time,
if possible.

Such a solution could also scale well for additional CPUs, in a shared mem-
ory computer such as those produced by NUMASCALE5, one of which was
originally a target hardware for this project. Such a system consists of a large
number of cores, with a large shared memory, and possibly one or more GPUs.
While cuFFTXt supports a maximum of four GPUs as of CUDA 7.0, One could

5https://www.numascale.com/

54

perform the transform using a lower level approach, wither by combining multi-
ple cuFFT calls and distributing intermediate results manually, or implementing
a transform specific to the target application. Another alternative is to use an-
other language such as OpenCL for which there exists similar FFT libraries.

55

Figure 4.9: Illustration of particle distribution versus from grid division. Grid
vertices in column 0 are duplicated in temporary buffers on GPU 2 (green),
while vertices from both columns 3 and 4 need temporary buffers on GPU 1
(red). This is because the yellow particles, while in simulation space belonging
to GPU 2, are stored and processed on GPU 1 due to the partitioning.

56

Chapter 5

Conclusion

PIC (Particle-in-Cell) codes are often used in plasma simulations to model the
movement of charged particles over time. Although easy to grasp and based on
solving a relatively small set of equations, they are known to be very compute-
intensive. Given the recent use of GPUs as HPC accelerators, this thesis inves-
tigated how PIC codes could be ported to one or more GPUs.

In this thesis an algorithm for a 2D electrostatic PIC code was extended
to 3D and implemented on Nvidia’s CUDA platform, using their cuFFT Fast
Fourier Transform library. The implementation was then adapted to make use of
multiple GPUs, and ported to OpenMP + FFTW to serve as a benchmark. The
implementations were profiled and performance tested to determine bottlenecks
and potential for improvement.

A number of issues of varying levels of importance have been uncovered. For
the ratio of particles to grid cells described in works such as [1], a dominating
factor in determining performance is the particle density. Based on the results
gathered, and knowledge of the implementation of the atomic operations in
CUDA, it seems clear that a high density of particles leads to poor performance
as many particle-threads attempt to update the same vertex. Some candidate
solutions have been presented, though further investigation seems warranted.
Notably, the CPU implementation was less affected by this issue, having fewer
contending concurrent threads.

Specific to the multi-GPU implementation, a more sophisticated particle
exchange scheme is needed, and a combination with some sort of load balancing
seems viable. The naive variant currently in use gives a choice between a longer
runtime, or significantly higher host memory consumption. A proposed solution

57

where particles are sorted on the device, and then only those particles necessary
being transferred seems a good candidate.

Because the grid, and thereby the simulation space, is statically divided
among GPUs, it is currently possible that all particles reside on one GPU. This
leads to inefficient use of the added memory from additional GPUs(as all GPUs
must fit all particles), and might lead to poor processor utilization as well, if
only one GPU handles most particles. A load balancing scheme that divides
the simulation space between particles based on the memory footprint of each
partition is proposed. The particle sorting involved would also serve in one
proposed scheme to optimize atomic operations.

5.1 Suggestions for future work
Although the PIC code implementation has not yet been able to provide a
stable plasma oscillation, that might be a matter of experimenting further in
order to find satisfactory parameters, or there might be an undetected bug in
the implementation. In either case, the work done should provide a decent
foundation for further extension.

Suggestion for future work include working on optimizing the GPU imple-
mentation further, especially atomic operations and particle exchange are good
candidates, with the schemes proposed in the previous chapter as a good starting
point; sorting of particles using shared memory to accumulate atomic updates
within thread blocks, and exchanging only out-of-bounds particles by sorting
them on the GPU. A comparison with a cluster implementation would also be
in order, looking at performance and capacity versus cost and energy efficiency.

One of the initial goals for this project, implementation on a shared memory
cluster computer, would be interesting as well. A division of work between CPU
and GPU such as the one described in section 4.9 might be well suited.

Real time visualization of trace data could be useful to receive immediate
feedback on the success of a simulation, but would depend on what performance
could be achieved with various optimizations.

58

Bibliography

[1] S. Bastrakov et al. “Particle-in-cell plasma simulation on heterogeneous
cluster systems”. In: Journal of Computational Science 3.6 (2012). doi:
10.1016/j.jocs.2012.08.012.

[2] Anne C. Elster, my advisor. “Parallelization Issues and Particle-in-Cell
codes”. PhD thesis. USA: Cornell University, 1994. url: http://www.
idi.ntnu.no/˜elster/pubs/elster-phd.pdf.

[3] Jan C. Meyer. Emerging Technologies Project: Cluster Technologies, PIC
codes: Eulerian data partitioning. Tech. rep. Norwegian University of Sci-
ence and Technology, 2004.

[4] Nils M. Larsg̊ard. “Parallelizing Particle-in-Cell codes with OpenMP and
MPI”. Master Thesis. Norway: Norwegian University of Science and Tech-
nology, 2007.

[5] Anthony L. Peratt. Physics of the Plasma Universe. 2nd ed. New York,
USA: Springer New York, 2015. isbn: 978-1-4614-7819-5. doi: 10.1007/
978-1-4614-7819-5.

[6] C. K. Birdsall. “Particle-in-Cell Charged-Particle Simulations, Plus Monte
Carlo Collisions With Neutral Atoms, PIC-MCC”. In: IEEE Transactions
On Plasma Science 19.2 (Apr. 2, 1991).

[7] Erwin Kreyszig. Advanced Engineering Mathematics. 9th ed. Hoboken,
NJ, USA: John Wiley & Sons, Inc., 2006. isbn: 978-0-471-72897-9.

[8] Holger Fehske, Ralf Schneider, and Alexander Weisse, eds. Computational
Many-Particle Physics. Vol. 739. Lecture Notes in Physics. Springer-Verlag
Berlin Heidelberg, 2008. isbn: 978-3-540-74686-7. doi: 10.1007/978-3-
540-74686-7.

59

http://dx.doi.org/10.1016/j.jocs.2012.08.012
http://www.idi.ntnu.no/~elster/pubs/elster-phd.pdf
http://www.idi.ntnu.no/~elster/pubs/elster-phd.pdf
http://dx.doi.org/10.1007/978-1-4614-7819-5
http://dx.doi.org/10.1007/978-1-4614-7819-5
http://dx.doi.org/10.1007/978-3-540-74686-7
http://dx.doi.org/10.1007/978-3-540-74686-7

[9] Benedict J. Leimkuhler, Sebastian Reich, and Robert D. Skeel. “Integra-
tion Methods for Molecular Dynamics”. In: Mathematical Approaches to
Biomolecular Structure and Dynamic. Ed. by Jill P. Mesirov, Klaus Schul-
ten, and De Witt Sumners. .III. New York, USA: Springer New York, 1996.
isbn: 978-1-4612-4066-2. doi: 10.1007/978-1-4612-4066-2_10.

[10] James W. Cooley and John W. Tukey. “An Algorithm for the Machine
Calculation of Complex Fourier Series”. In: Mathematics of Computation
19.90 (1965), pp. 297–301. doi: 10.2307/2003354.

[11] Gordon E. Moore. “Cramming More Components onto Integrated Cir-
cuits”. In: Proceedings of the IEEE 86.1 (1998).

[12] Laurie J. Flynn. Intel Halts Development of 2 New Microprocessors. May 8,
2004. url: http://www.nytimes.com/2004/05/08/business/08chip.
html ? ex = 1399348800 & en = 98cc44ca97b1a562 & ei = 5007 (visited on
07/08/2015).

[13] Sally A. McKee. “Reflections on the Memory Wall”. In: CF’04 Proceedings
of the 1st conference on Computing frontiers. New York NY, USA: ACM,
2004. doi: 10.1145/977091.977115.

[14] Krste Asanovic et al. The Landscape of Parallel Computing Research:
A View From Berkeley. Tech. rep. UCB/EECS-2006-183. EECS Depart-
ment, University of California, Berkeley, 2006. url: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.

[15] Simon Harding and Wolfgang Banzhaf. “Fast Genetic Programming on
GPUs”. In: Genetic Programming. 10th European Conference, EuroGP
2007. (Apr. 11–13, 2007). Ed. by M. Ebner et al. Vol. 4445. Lecture Notes
in Computer Science. Valencia, Spain: Springer-Verlag Berlin Heidelberg,
2007, pp. 90–101.

[16] Øystein E. Krog and Anne C. Elster. “Fast GPU+based Fluid Simulations
Using SPH”. In: 10th International Conference, PARA 2010, Reykjav́ık,
Iceland, June 6-9, 2010, Revised Selected Papers, Part II. Vol. 7134. Lec-
ture Notes In Computer Science. Springer Berlin Heidelberg, 2012. doi:
10.1007/978-3-642-28145-7_10.

[17] Ehsan Totoni et al. “Comparing the Power and Performance of Intel’s
SCC to Stat-of-the-Art CPUs and GPUs”. In: 2012 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
New Brunswick, NJ, USA: IEEE, 2012. doi: 10.1109/ISPASS.2012.
6189208.

60

http://dx.doi.org/10.1007/978-1-4612-4066-2_10
http://dx.doi.org/10.2307/2003354
http://www.nytimes.com/2004/05/08/business/08chip.html?ex=1399348800&en=98cc44ca97b1a562&ei=5007
http://www.nytimes.com/2004/05/08/business/08chip.html?ex=1399348800&en=98cc44ca97b1a562&ei=5007
http://dx.doi.org/10.1145/977091.977115
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://dx.doi.org/10.1007/978-3-642-28145-7_10
http://dx.doi.org/10.1109/ISPASS.2012.6189208
http://dx.doi.org/10.1109/ISPASS.2012.6189208

[18] Dr. Gene M. Amdahl. “Validity of the single processor approach to achiev-
ing large scale computing capabilities”. In: AFIPS ’67 (Spring) Proceed-
ings of the April 18-20, 1967, spring joint computer conference. New York,
NY, USA: ACM, 1967.

[19] John L. Gustafson. “Reevaluating Amdahl’s law”. In: Communications of
the ACM 31.5 (1988). doi: 10.1145/42411.42415.

[20] Michael J. Flynn. “Some Computer Organizations and their Effective-
ness”. In: IEEE Transactions on Computers c-21.9 (1972).

[21] NVIDIA. CUDA C Programming Guide. url: http://docs.nvidia.
com/cuda/cuda-c-programming-guide/ (visited on 07/08/2015).

[22] Thomas L. Falch and Anne C. Elster. “Register Caching for Stencil Com-
putations on GPUs”. In: 2014 16th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing. Timisoara: IEEE, 2014.
doi: 10.1109/SYNASC.2014.70.

[23] Shane Cook. CUDA Programming: A Developer’s Guide to Parallel Com-
puting with GPUs. Morgan Kaufmann, 2013. isbn: 9780124159334.

[24] Paulett C. Liewer and Viktor K. Decyk. “A General Concurrrent Algo-
rithm for Plasma Particle-in-Cell Simulation Codes”. In: Journal of Com-
putational Physics 85.2 (1989). doi: 10.1016/0021-9991(89)90153-8.

[25] Robert D. Ferraro, Paulett C. Liewer, and Viktor K. Decyk. “Dynamic
Load Balancing for a 2D Concurrent Plasma PIC Code”. In: Journal of
Computational Physics 109.2 (1993). doi: 10.1006/jcph.1993.1221.

[26] Viktor K. Decyk and Tajendra V. Singh. “Adaptable PArticle-in-Cell al-
gorithms for graphical processing units”. In: Computer Physics Commu-
nications 182.3 (2011). doi: 10.1016/j.cpc.2010.11.009.

[27] NVIDIA. cuFFT. url: http://docs.nvidia.com/cuda/cufft/ (visited
on 07/08/2015).

[28] NVIDIA Corporation. TESLA K20 GPU ACCELERATOR. Board Spec-
ification. 2013. url: http://www.nvidia.com/content/PDF/kepler/
Tesla-K20-Passive-BD-06455-001-v07.pdf (visited on 07/08/2015).

[29] Intel Core i7-3770K Processor. url: http://ark.intel.com/products/
65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
(visited on 07/08/2015).

61

http://dx.doi.org/10.1145/42411.42415
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://dx.doi.org/10.1109/SYNASC.2014.70
http://dx.doi.org/10.1016/0021-9991(89)90153-8
http://dx.doi.org/10.1006/jcph.1993.1221
http://dx.doi.org/10.1016/j.cpc.2010.11.009
http://docs.nvidia.com/cuda/cufft/
http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v07.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v07.pdf
http://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz

[30] Ryan Smith. NVIDIA Launches Tesla K20 & K20X: GK110 Arrives At
Last. Nov. 12, 2012. url: http://www.anandtech.com/show/6446/
nvidia-launches-tesla-k20-k20x-gk110-arrives-at-last (visited
on 07/08/2015).

[31] Ryan Smith. The NVIDIA GeForce GTX 980 Review: Maxwell Mark 2.
Sept. 18, 2014. url: http://www.anandtech.com/show/8526/nvidia-
geforce-gtx-980-review (visited on 07/08/2015).

[32] NVIDIA. GeForce GTX 980 — Specification. url: http://www.geforce.
com/hardware/desktop-gpus/geforce-gtx-980/specifications (vis-
ited on 07/10/2015).

[33] NVIDIA. CUDA Toolkit Documentation v7.0. url: http://docs.nvidia.
com/cuda/ (visited on 07/08/2015).

[34] Grant R. Fowles. Introduction to Modern Optics. 2nd ed. Dover Publica-
tions, 1989.

[35] Peter W. Milonni and Joseph H. Eberly. Laser Physics. John Wiley &
Sons, Inc., 2010. isbn: 978-0-470-38771-9.

[36] R. W. Hockney and J. W. Eastwood. ”Computer Simulation Using Parti-
cles”. New York, NY, USA: Taylor & Francis Group, 1988. isbn: 9780521803892.

[37] I. H. Hutchinson. ”Principles of Plasma Diagnostics”. Cambridge, United
Kingdom: Cambridge University Press, 2002. isbn: 9780521803892.

[38] S. J. Cooke et al. “GPU-accelerated 3D Electromagnetic PIC Simula-
tions”. In: 2011 Abstracts IEEE International Conference on Plasma Sci-
ence. Chicago IL, USA: IEEE, 2011. doi: 10.1109/PLASMA.2011.5993003.

[39] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Ke-
pler GK 110/210. Tech. rep. NVIDIA. url: http://international.
download.nvidia.com/pdf/kepler/NVIDIA- Kepler- GK110- GK210-
Architecture-Whitepaper.pdf.

[40] NVIDIA. Tuning CUDA Applications for Maxwell. url: http://docs.
nvidia.com/cuda/maxwell-tuning-guide/ (visited on 07/09/2015).

62

http://www.anandtech.com/show/6446/nvidia-launches-tesla-k20-k20x-gk110-arrives-at-last
http://www.anandtech.com/show/6446/nvidia-launches-tesla-k20-k20x-gk110-arrives-at-last
http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review
http://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/specifications
http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/
http://dx.doi.org/10.1109/PLASMA.2011.5993003
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/maxwell-tuning-guide/
http://docs.nvidia.com/cuda/maxwell-tuning-guide/

Appendix A

CUDA and cuFFT
examples

The following sections will show some examples of simple CUDA and cuFFT
programs, showcasing some distinctive features.

63

A.1 CUDA example

// Kernel d e f i n i t i o n
g l o b a l void ke rne l (double ∗data){
// Determine thread index (1D)
i n t idx = threadIdx . x + blockIdx . x ∗ blockDim . x ;
double va l = data [idx] ;
data [idx] = va l ∗ va l ;

}

i n t main (){
i n t N = 1024 ;
double ∗h data , ∗d data ;

// A l l o ca t e pinned host memory
cudaMallocHost(&h data , N ∗ s i z e o f (double)) ;

// A l l o ca t e dev i c e memory
cudaMalloc(&d data , N ∗ s i z e o f (double)) ;

// Generate data on host
getData (h data , N) ;

// Blocking t r a n s f e r o f data from host to dev i ce
cudaMemcpy(d data , h data , N ∗ s i z e o f (double) ,

cudaMemcpyHostToDevice) ;

// Set up thread s t r u c t u r e
threadsPerBlock = 256 ;
blocksPerGrid = (N−1) / threadsPerBlock + 1 ;

// Cal l k e rne l
kerne l <<<threadsPerBlock , blocksPerGrid >>>(d data) ;

// Create new cuda stream
cudaStream t t rans f e rSt ream ;
cudaStreamCreate (t rans f e rSt ream) ;

//Non−b lock ing t r a n s f e r o f data from dev i ce to host ,
// p o s s i b l e because d e s t i n a t i o n i s pinned host memory .
// Asynchronous t r a n s f e r must be c a l l e d to another
//cuda stream .
cudaMemcpyAsync (h data , d data , N ∗ s i z e o f (double) ,

cudaMemcpyHostToDevice , t rans f e rSt ream) ;

// Synchronize with the cuda stream to ensure the
// t r a n s f e r i s complete .
cudaStreamSyncronize (t rans f e rSt ream) ;

64

//{ r i n t output
p r i n t (h data) ;

// Free memory
cudaFreeHost (h data) ;
cudaFree (d data) ;

}

65

A.2 cuFFT example

// Create r ea l−to−complex s i n g l e p r e c i s i o n cuFFT plan f o r
// array o f l ength N
cuf f tHand le plan ;
cu f f tP lan1d (&plan , N, CUFFT R2C) ;

f l o a t ∗ d r e a l ;
cufftComplex ∗d complex ;
cudaMalloc(& d rea l , N ∗ s i z e o f (f l o a t)) ;
cudaMalloc(&d complex , N ∗ s i z e o f (cufftComplex)) ;
. . .
// F i l l array with data
. . .
// execute trans form on array
cufftExecR2C (plan , d r ea l , d complex , CUFFT FORWARD) ;
. . .
//Use transformed data
. . .
cufftExecR2C (plan , d complex , d r ea l , CUFFT INVERSE) ;
. . .
// Free r e s o u r c e s
cu f f tDe s t r oy (plan) ;
cudaFree (d r e a l) ;
cudaFree (d complex) ;

66

	
	

	
	
	
	
	
	
	

	
	
	

	
	
	
	
	

	
	
	
	

	
	

	

	
	
	
	
	
	

	
	
	
	
	

	
	
	

	
	
	

	
	
	
	
	
	
	

	
	
	
	

	
	
	

	
	
	
	

	
	

	
	
	
	

