Eksponeringskartlegging ved norske aluminiumverk

Delrapport for Sør-Norge Aluminium

Nils Petter Skaugset
Hilde Notø
Lars Jordbekken
Elianne J. Seberg
Dag Ellingsen
Yngvar Thomassen
Innhaldsliste:

1. Samandrag .. 3
2. Konklusjon .. 4
3. Bakgrunn for prosjektet ... 5
4. Mål for prosjektet ... 5
5. Definisjoner og forklaringar .. 6
 5.1. Støv og aerosolfrkjsjoner ... 6
 5.2. Helserelaterte aerosolfrkjsjoner ... 7
 5.2.1. Inhalerbar aerosol frksjon (f_{inh}) 8
 5.2.2. Torakal aerosol frksjon (f_{tor}) 8
 5.2.3. Respirabel aerosol frksjon (f_{res}) 8
 5.2.4. Trakeobronkial aerosolfrksjons 8
 5.2.5. Ekstratorakal aerosolfrksjons 9
6. Definisjoner av statistiske uttrykk: .. 10
 5.3.1. Normalfordeling ... 10
 5.3.2. Standard avvik .. 10
 5.3.3. Konfidensintervall .. 10
 5.3.4. Log-normal fordeling ... 10
 5.3.5. Geometrisk middelverdi, GM ... 10
 6. Om Sør-Norge aluminium (SØRAL) 11
7. Prøvetaking .. 12
 7.1. Prøvetakingsstrategi .. 12
 7.2. Aerosolprøvetakarar .. 12
 7.2.1. IOM ... 12
 7.2.2. Respicon™ virtuell impaktor 13
 7.2.3. Respirabel og torakal syklon .. 13
 7.2.4. Direktevisande Respicon og Split 2 13
 7.3. Gassprøvetakarar ... 14
 7.3.1. Gassensorar ... 14
 7.3.2. Gassfilter ... 14
8. Prøver samla med dei ulike prøvetakarane 16
9. Analysemetodar .. 16
 9.1. Gravimetri ... 16
 9.2. Fastsetjing av fluorid .. 17
 9.2.1. Vassløyseleg fluorid .. 17
 9.2.2. Lutløyseleg fluorid .. 17
 9.2.3. Partikulært fluorid ... 17
 9.2.4. Fluorid i gassform (HF) og SO_{2} 17
 9.2.5. Totalfluorid ... 18
10. Instrumentering ... 18
11. Kvalitetssikring ... 18
12. Resultat og diskusjon .. 18
12.1. Aerosol ... 20
12.1.1. Direktevisande utstyr for aerosolmålinger .. 26
12.2. Resultat vassløyseleg fluorid .. 29
12.3. Resultat partikulært fluorid .. 34
12.4. Gassar, HF og SO$_2$... 39
12.4.1. Tidsoppløyste SO$_2$-målingar ... 41
12.5. Totalfluorid .. 47
12.6. Personvariasjon .. 49
13. Referansar .. 51
14. Appendiks .. 53
1. Samandrag

I alle Respiconprøvene vart både vassløyseleg og partikulært fluorid fastsett.

Prosjektet nytta prøvetakingsutstyr som fylgjer dei internasjonalt aksepterte kriteria for helserelaterte aerosolfraksjonar. Totalt ved Sør-Norge Aluminium AS (SØRAL) vart det tatt eksponerringsprøver av 49 personar. I den grad det var praktisk mogeleg vart det tatt fleire eksponerringsprøver av same person. Av dette har ein 90 eksponerringsprøver tatt med IOM kassett, 100 eksponerringsprøver tatt med Respicon, 90 prøver av eksponeringa for HF og SO₂, 10 eksponerringsprøver med torakal syklon og 7 eksponerringsprøver med respirabel syklon. I tillegg vart det nytta ekstraksjonsmetodar for å kunne fastsetje fluorid med ulike kjemisk sambinding i aerosolen.

Resultata viser at der var stor spreiring i luftkonsentrasjonar over hele arbeidsskiftet for dei einskilde jobbkategoriane. Kortvarig høg eksponering er den største utfordringa for industrien. Den høgaste eksponeringa er målt for jobbkategorien anode golv, medan lågast vart målt lågast for anode køyretøy.

Resultata kan ikkje direkte samanlikna med gjeldande administrativ norm då denne baserar seg på bruk av "Totalstøv"-kassetten som aerosolprøvetakar. For gassformig fluorid (HF) kan ein samanlikne med administrativ norm då prøvetakingsmetoden er den same.

Direktevisane måleutstyr for gassar- og aerosolar har vist seg å være viktige hjelpemiddel for objektivt kunne identifisere eksponerringskjelder og forureiningsutsette arbeidsfunksjonar. Det er også eit viktig hjelpemiddel til betre å forstå eksponerringskjelder og til hjelp i å minimere framtidig personeksponering.
2. Konklusjon

Anodeskiftar køyretøy er den lågast eksponerte kategorien for alle dei målte komponentane utanom svoveldioksid (SO$_2$). Den høgast eksponerte kategorien var anodeskiftar golv.

Gjennomsnittleg er 37 % av den inhalerbare aerosolen torakal og 16 % respirabel. Av det inhalerbare vassløyselege fluoridet er 50 % torakalt og 26 % respirabelt. For partikulært fluorid er 44 % torakalt og 21 % respirabelt.

Prosentdelen vassløyseleg fluorid av partikulært fluorid varierar i gjennomsnitt frå 52 % til 63 % avhengig av partikkelstorleik.

Av alle komponentane som ein har føretatt eksponeringsmålingar på er det totalfluorid (summen av HF og partikulært fluorid) og partikulært fluorid som skil deg ut med fleire høge verdier, spesielt for jobbkategorien omnspassar.

Gjennomsnittleg eksponering for svoveldioksid (SO$_2$) var 89 µg/m3, men tidsoppløyste målingar viser at nesten all eksponering er kortvarig og i mange tilfeller høg. Spesielt for anode køyretøy verkar gjennomsnittet noko høgt og spreininga stor i forhold til dei andre jobbkategoriane.

Der er relativ stor spreining i eksponeringa innanfor ein jobbkategori, noko som kan tyde på at einskilde arbeidsoperasjonar gjev høg eksponering. Personvariasjonen viser at det kan vere stor variasjon frå deg til dag for same person, 22 % - 75 %.

Direktevisane måleutstyr har vist at store delar av eksponeringa kan skuldast kortvarige episodar knytt til konkrete arbeidsoperasjonar med høg eksponering. Ein framtidig strategi må være å reduisere talet på episodar og aerosolmengda i episodane.
3. Bakgrunn for prosjektet

Eksponersingsundersøkingane ved SØRAL er deler av et større prosjekt; HAPPA (Hall Astma i Primær Produksjon av Aluminium) som har pågått i regi av Aluminiumsindustriens Miljøsekretariat, AMS og Statens arbeidsmiljøinstitutt, STAMI.

Frå norsk aluminiumindustri blir det stadig rapportert inn til Arbeidstilsynet om tilfeller av hallastma og andre luftvegslidingar (ref: www.ams-aluminium.no/html/yrkessykdommer.html). Noko eksakt årsak til utviklinga av hallastma er til no ikkje kjent, men mange forureiningar er identifisert i arbeidsatmosfæren. I aerosolen (støvet) er det funnet m.a. flyktige polysykliske aromatiske hydrokarbonar (PAH), aluminium, aluminiumoksid, fluorid- og berylliumsambindingar, medan hydrogenfluorid og svoveldioksid er kjente gassar.

Direktoratet for arbeidstilsynet foreslo i 2003 at normlista skulle innehalde ei ny normvurdering for hydrogenfluorid og for partikulært fluorid i arbeidsatmosfære. Aluminiumindustrien i Noreg ved Aluminiumindustriens Miljøsekretariat (AMS) og Statens arbeidsmiljøinstitutt (STAMI) viste til manglande eksponeringsdata, og foreslo ei utsetjing av revisjonen for desse stoffa i 3 - 5 år. Dette forslaget vart vedteke av styret for Direktoratet for arbeidstilsynet.

Den foreslåtte revisjonen av administrative normene for HF og fluorid, den mogeleg samanhengen mellom fluorideksponering og hallastma samt at industrien mangla informasjon om fluorideksponeringa målt med prøvetakingsutstyr som fylgjer dei helselaterade aerosolfraksjonane, gjorde at dette prosjektet, kalla HAPPA-prosjektet vart starta i 2002.

4. Mål for prosjektet

Dette er målsetjingane for prosjektet tatt frå protokollen.

- Bruke nytt monitoreringsprogram på verka ved Lista, Husnes, Karmøy, Årdal, Høyanger og Mosjøen:
 - Val av prøvetakingsstrategi
 - Utarbeide monitoreringsprogram for norsk aluminiumindustri
 - Bruke moderne utstyr for å kartlegge kva for eksponeringsfaktorar som kan ha noko å seie for førekomst og utvikling av luftvegslidingar
 - Variabiliteten av aerosoleksponeringa skal undersøkast ved bruk av berbart direktevisande utstyr (Split 2 og Respicon)
 - Eksponering for støv skal undersøkjas ved bruk av utstyr for fastsetjing av respirabel, torakal og inhalerbar fraksjon
 - Eksponering for HF og SO$_2$ målast (monitorerast) parallellet med aerosoleksponering. Intensiteten av SO$_2$ vert fastsett med berbare gass-sensorar
 - Undersøkje innevernad av teknologi og driftsparameter for yrkeseksponering i elektrolysehallane
 - Fastsetjing av totalmasse, vassløyselige fluorid, partikulært fluorid og totalfluorid (gassformig og partikulært fluorid) i de ulike aerosolfraksjonane (respirabel, torakal og inhalerbar)
 - Tilbakemelding til styret i AMS og til dei deltakande verka, med utarbeiding av verksspesifikke delrapportar
- Avklare om fritt eksisterande nanopartiklar er ei aktuell problemstilling nær badsmelta i hallene
5. Definisjoner og forklaringer

5.1. Støv og aerosolfraksjoner

Det som vert kalla støv er eigentleg definert som ein aerosol av berre faste partiklar som ved mekanisk nedbrytning har fått ein partikkelstorleik frå sub-µm til 100µm (JEM, 2005,7,411-415). Partiklar i væskefase inngår ikkje i det vi vanlegvis kallar støv til forskjell frå ein aerosol som kan innehale både faste partiklar og partiklar i væskeform.

Totalstøv er eit omgrep som er innarbeida i sambande med arbeidsmiljømålingar. For mange er det noko som man måler med ein såkalla totalstøvkassett. Dette er kassetten som tradisjonelt blir brukt i dei fleste eksponeringsmålingane, også i aluminiumindustrien.

Denne kassetten har vore mye brukt og er framleis i bruk når ein skal gjere arbeidsmiljømål. Med totalstøv meiner ein ofte alt partikulært materiale som kan tenkast å haldast svevande i luft (luftborne partiklar). Mange typar prøvetakarar har vært konstruert for å samle opp totalstøv og nokre av dei er framleis i utstrakt bruk. Det har i ettertid vist seg at oppsamlingskarakteristikken til dei forskjellige prøvetakarane varierar mykje, noe som førte til ulike resultat av målingar utført i same atmosfære.

I mange land tilrår ein framleis at "totalstøv" skal fastsetjast som ein mål for eksponering. I dag er mange norske administrative normene basert på bruk av "totalstøvkassetten".

PM$_{10}$ - nyttast ofte i aerosolmålingar i det ytre miljøet og er definert som ein underfraksjon av totalaerosol. Den har ein 50 % "cut-off" ved $d_{ae}=10$ µm. Prøvetakarane nyttat til PM$_{10}$-målingar er konstruert slik at de utelå de fleste partiklar over 10 µm. Dette gjer at kurvene for PM$_{10}$ og torakal fraksjon er nesten identiske opp til 10 µm, men deretter marginaalt forskjellige (JEM), 2005,7,411-415.
Tabell 5.1: Oversikt over aerosol og helserelaterte aerosolfraksjonar

<table>
<thead>
<tr>
<th>Fysiske definisjoner</th>
<th>Væske</th>
<th>Tåke</th>
<th>Spray</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast fase</td>
<td>Røyk</td>
<td></td>
<td>Støv</td>
</tr>
</tbody>
</table>

Typisk aerosol og aerosol partiklar

<table>
<thead>
<tr>
<th></th>
<th>Oljetåke</th>
<th>Flygeoske</th>
<th>Tobakksrøyk</th>
<th>Sementstøv</th>
<th>Kolstøv</th>
<th>Atmosfærisiktig støv</th>
<th>Virus</th>
<th>Bakteriar</th>
</tr>
</thead>
</table>

Helserelaterte aerosolfraksjonar

<table>
<thead>
<tr>
<th></th>
<th>Respirable partiklar</th>
<th>Trakeobronikale partiklar</th>
<th>Torakale partiklar</th>
<th>Inhalerbare partiklar</th>
</tr>
</thead>
</table>

5.2. Helserelaterte aerosolfraksjonar

I starten av 1970 åra byrja ein å sjå på menneskehovudet som ein prøvetakar. Dette medførte endra fokus frå å sjå på alle partiklar som er i lufta til å sjå på dei partiklane som det er mogleg å puste inn (inhalere) gjennom nase og munn. Ut frå eksperimentelle forsk vart det funne at inhalasjonseffektiviteten til ein partikkel kunne forklarast ut frå den aerodynamiske diameteren (\(d_{ae}\)) til den einskilde partiklen. Desse arbeida kulminerte i midten av 1990 talet med ei internasjonal eining om eit sett harmoniserte tilrådingar som involverte International Standards Organisation (ISO), Comité Européen de Normalisation (CEN) og American Conference of Governmental Industrial Hygienists (ACGIH). Desse organisasjonane identifiserte tre kurvar som representerer helserelaterte aerosolfraksjonar; kvar av kurvene definerer kva krav som skal stillast til oppsamlingsseffektiviteten til ein luftprøvetakar som funksjon av aerodynamisk diameter for ein representativ arbeider. Desse tre fraksjonane er alle identifiserte med bakgrunn i aerosolfysikk og lungefysiologi. Fig. 5.1 viser oppsamlingsseffektiviteten i prosent for dei ulike helserelaterte aerosolfraksjonane. I fig. 5.2 er det gjeve ei skisse over kvar i luftvegane ein får avsett dei ulike aerosolfraksjonane.
5.2.1. Inhalerbar aerosol fraksjon (f_{inh})
Den fraksjonen/delen av den totale mengda partiklar i lufta (både faste og væske partiklar) som kjem inn i kroppen gjennom nase og/eller munn ved pusting. Den aerodynamiske diameteren er mindre eller lik 100 µm.
Denne fraksjonen er viktig for helseeffekter i alle stadar av respirasjonssystemet, som t.d. ved rhinitis, kreft i nase og lunge og andre luftvegslindar.

5.2.2. Torakal aerosol fraksjon (f_{tor})
Denne fraksjonen inneheld partiklar som kan avsetjast nedanfor strupehovudet (larynx) dvs. at dei trenger inn i den trakeobronkiale delen av lungene. Denne fraksjonen er viktig når det gjelde helseeffekter som astma, bronkitt og lungekreft. Partikkelstorleiken svarer til fraksjonen av den totale aerosolen som har eit 50 % "cut-off" ved ein aerodynamisk diameter på 10 µm og 1 % "cut-off" ved $d_{ae}=28$ µm.

5.2.3. Respirabel aerosol fraksjon (f_{res})
Denne fraksjonen inneheld dei partiklane som kjem inn i den alveolære delen av lungene, dvs. til bronkioler og alveolære blærer og kanalar. Fraksjonen er viktig ved t.d. utvikling av kroniske sjukdommar som emfysem og støvlungs sjukdommar. Partikkelstorleiken svarer til 50 % "cut-off" ved ein $d_{ae}=4$ µm og 1 % "cut-off" ved $d_{ae}=10$ µm for den totale aerosolen. Torakal og respirabel aerosolfraksjon er begge underfraksjoner av den inhalerbare fraksjonen.

![Figur 5.1: Kurver som viser respirabel og torakal aerosolfraksjon som funksjon av aerodynamiske diameter, og som underfraksjon av inhalerbar fraksjon, NS-EN 481.](image)

5.2.4. Trakeobronkial aerosolfraksjon
Differansen mellom torakal og respirabel aerosolfraksjon blir kalla trakeobronkial aerosolfraksjon. Filter nr. 2 i Respiconprøvetakaren samlar opp denne fraksjonen. Den består av partiklar som blir avsett nedanfor strupehovudet, men ikkje så langt ned som til den alveolære delen av lungene.
5.2.5. Ekstratorakal aerosolfraksjon

Differansen mellom inhalerbar og torakal aerosolfraksjon kallast ekstratorakal aerosol og blir samla opp av filter nr. 3 i Respiconprøvetakaren. Denne fraksjonen har den største partikkelstorleiken av den inhalerbare aerosolen og den avsettes derfor i dei øvre luftvegane (nase/munn).

![Diagram of the respiratory system showing inhalable, respirable, and thoracic fractions.](image)

Figur 5.2: Skisse over luftvegane med plassering av dei ulike helserelaterte regionane av luftvegsystemet.

Med utgangspunkt i desse kriteria tilrår Direktoratet for Arbeidstilsynet (2002) i si orientering; 450 "Kartlegging og vurdering av eksponering for kjemiske stoff og biologiske forureningar i arbeidsatmosfære" at ein må ta omsyn til desse fraksjonane med tanke på vurdering av helsefare, og velje prøvetakingsutstyr som oppfyller krava til oppsamlingseffektivitet for dei ulike fraksjonane. I HAPPA var det difor naturleg og føremålsten leg at ei grunnleggjande kartlegging av eksponeringshøva i elektrolysehallane i aluminiumindustrien fokuserte på alle desse tre helserelaterte aerosolfraksjonane.
5.3. Definisjonar av statistiske uttrykk:

Forklaringane er tatt frå Miller and Miller, 1993.

\(n = \) talet av prøver

\(AM = \) Aritmetisk middelverdi

som er summen av alle måleresultata delt på talet på prøver.

5.3.1. Normalfordeling

5.3.2. Standard avvik

Standardavviket reknast som kvadratrota av variansen og fortel noko om kor mykje resultata spreiar seg frå middelverdien.

\[
\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N - 1}}, \text{ der } \bar{x} \text{ er AM}
\]

Eit lågt standardavvik betyr at måleresultata fordeler seg etter ein høg og bratt fordelingskurve. Dersom måleresultata er normalfordelte vil 68 % av resultata ligge i intervallet \(AM \pm 1\sigma \) og 99,7 % ligge innanfor \(3\sigma \) frå middelverdien.

5.3.3. Konfidensintervall

Konfidensintervallet nytta i denne rapporten er på 95 %. Dette betyr at det er 95 % sannsynlighet for at middelverdien vil ligge innanfor dette intervallet.

5.3.4. Log-normal fordeling

Ved å ta logaritmen til måleresultata og så vil dei logaritmiserte verdiane være normalfordelte.

Dette må som regel gjerast i arbeidsmiljøundersøkingar. Resultata i denne undersøkinga er ikkje normalfordelte og statistiske berekningar er derfor gjort på log-verdier.

5.3.5. Geometrisk middelverdi, GM

GM er middelverdien i et datasett der ein brukar logaritmen til måleresultata. Tar man antilog av den logaritmiserte middelverdien får ein geometrisk middelverdi. Denne verdien er den som best representerar målingane i HAPPA fordi dei ikkje er normalfordelte.
6. Om Sør-Norge aluminium (SØRAL)

Tabell 5.1: Teknologioversikt for (SØRAL)

<table>
<thead>
<tr>
<th>Emne:</th>
<th>Teknologi:</th>
<th>Oksid:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prebake</td>
<td>Sekundær (Alu-Norte, Surinam)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primær</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Har finstoff utskilar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alt oksid går gjennom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>denne Tek ut</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ca. 60 % ÷ 45 fraksjon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ca. 70 % ÷ 21 fraksjon</td>
</tr>
</tbody>
</table>

Arbeidsoperasjonane som det vart tatt arbeidsmiljømålingar av var: Omnspassar, Tappar, Digel, Anode køyretøy og Anode golv.

Tabell 6.2: Jobbkategoriane som det vart tatt arbeidsmiljømålingar på var:

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>Arbeid utført</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digel</td>
<td>Digelrens, fresing av digler, reingjort på bend, røyrboring, kisting, reingjering</td>
</tr>
<tr>
<td>Omnspassar</td>
<td>Målerunde, måling av strømfordeling, prøvetaking av metall og bad, temperaturmåling, måling av badnivå, målt anodar, sjekking av kol, slo opp tappehull, slår matehull, støyomner, klargjøring av baddigel, badtapping, fylgt opp badomnar, passe bluss, bluss manuelt med staur, blusstaking, tilså AlF₃, støy etter anodeveksling, kontroll av oksidestrukkle,oppå noen omnar, anodemaskin tatt ut anodar, grabb, kontrollrunde reinseanlegget, kontroll startomn, strømreduksjon over ein omn, slagging av digler, kjøling av omn frå kjellaren, skjering mellom anodar før skift, varmbadknusar, vakt for B-hall, fjernet skjønt i kjeller, helt bad i omn utan bad, oksidlekkasje, tappe laud til startomn, tømme kasse med badklumpar/kaldknusar, soping, vedlikehald av kjøretøy, drivstoffylling, skifte av turbo, reingjøring av elektrobil, reingjort parkeringsplass</td>
</tr>
<tr>
<td>Anode køyretøy</td>
<td>Anodeskift køyretøy, merking av anodar, vasking av køyretøy, grabbing, støvsuging frå køyretøy, målerunde, meisling, tanking, lett køyretøy vedlikehald, noko golvarbeid, fjerning av anoderestar, skjering av anoden</td>
</tr>
<tr>
<td>Anode golv</td>
<td>Køyrt sett (ope køyretøy), reingjering, servicemann, golvarbeid, anodeskift golv</td>
</tr>
<tr>
<td>Tappar</td>
<td>Tapping, observasjon, snuing av digler, skifting av stuss/bend, skifte pakning, inn og ut av kjøretøy, raking, klargjøring av kjøretøy, dieselfylling, forbetring av kjøretøy</td>
</tr>
</tbody>
</table>
7. Prøvetaking

7.1. Prøvetakingsstrategi

Etter protokollen skulle ein ta prøver på 10 personar på kvart skift. Det skulle gjerast målingar ved formiddags- og ettermiddagsskifte i 5 påfylljande dagar for kvar type teknologi/hall. Dette gjør at ein teoretisk skulle kunne måle:

100 aerosolprøver med Respicon, der 10 er tidsoppløyste Respiconmålingar
10 inhalerbare aerosolprøver med IOM
10 respirable aerosolprøver med respirabel syklon
10 torakale aerosolprøver med torakal Syklon
100 SO₂ prøver på filter
100 HF prøver på filter
60 SO₂ prøver med tidsoppløyst signal med dataloggar
30 NO₂ prøver med tidsoppløyst signal med dataloggar

7.2. Aerosolprøvetakarar

7.2.1. IOM

IOM-prøvetakeren er utvikla ved Institute of Occupational Medicine i Edinburg og er konstruert som ein personlig prøvetakar for inhalerbar aerosol (Mark og Vincent, 1986). Den nyttar 25 mm filter og skal ha ein luftgjennomstrømmingsfart på 2 L/min. Testing i vindtunnel og i felt har vist at den fylger kurva for inhalerbar aerosol vist i figur 5.1. Ulempa med denne prøvetakaren er at den er noko utsett for sprut/punktstøving, kjensleg for vindretning og vindhastighet over et visst nivå, og at den måler berre den inhalerbare aerosolfraksjonen.

Fig. 7.1: Ein arbeidstakar med prøvetakingsutstyr
7.2.2. **Respicon™ virtuell impaktor**

Respicon er testa ut som ein stasjonær prøvetakar til å fylgje kriteria for inhalerbar aerosol (Li et al., 2000). Det er vist i t.d. nikkelindustrien på Kola (Russland) at Respicon kan nyttast som ein personleg prøvetakar dersom ein brukar ein korreksjonsfaktor for den ekstratorakale fraksjonen (Koch, et al., 2002). Ein slik korreksjonsfaktor må etablerast for kvar type industri, fordi fordelinga mellom dei ulike partikkelstørleikane kan vere forskjellig.

Prosjektet må derfor ta parallelle prøver med Respicon og IOM for å finne ein korreksjonsfaktor som kan nyttast for aluminiumindustrien.

7.2.3. **Respirabel og torakal syklon**

Syklonar er ein annen type prøvetakingsutstyr som baserer seg på å dele aerosolen i forskjellige partikkelstørleikar ved hjelp av sentrifugalkrefter. Dei fleste andre prøvetakarane nyttar gravitasjonskrafta. To typar syklonar vart nyttta. Den eine er konstruert for respirabel aerosolfrekjon (SKC, UK) med et filter på 25 mm og ein luftgjennomstrømmingsfart på 2,2 L/min. Den andre er konstruert for torakal aerosolfrekjon (BGI, USA) har et filter på 37 mm og luftgjennomstrømmingsfart på 1,6 L/min.

Syklonar har vore mykje brukt og er vel dokumentert men ulempa er at for kvar fraksjon ein ynskjer å undersøke trengs ein syklon med eige pumpe. Resultata frå syklonane skal samanliknast med tilsvarende fraksjon frå Respicon for å sjá om det er samanheng mellom prøvetakarane i denne type industri. Dette er ein type arbeid som krev mange parallele målingar. Det vil derfor ikkje bli gjort verksvis, men som ein del av totalbiletet for industrien.

7.2.4. **Direktevisande Respicon og Split 2**

Split 2 er ein direktevisande dataloggar for aerosolar med måleområde 0,01 til 200 mg/m³ for aerosol med diameter mellom 0,1 og 100 µm basert på IOM-prøvetakaren. Med dataloggaren er det mogeleg å logge opp til 21500 datapunkt før data må lastast ned på ein PC. Fastsetjingsprinsippet for aerosol er måling av lysspreiing av infraraud stråling. Strålingskjelda er retta 90 grader på ein fotodetektor, og når den infraraude strålen treff aerosolen, vil dette føre til lysspreiing. Saman med den gravimetriske analysen får ein aerosolkonsentrasjon i mg/m³. Luftstrømen gjennom prøvetakaren skal vere 2,0 L/min.
I den direktevisende responprøvetakaren er det tre fotodetektorar for fastsetjing av aerosol. Saman med gravimetriske fastsetjingar får ein gjort om detektorsignalet til partikulære konsentrasjonar i mg/m³. Måleområdet for impaktoren er opp til 200 mg/m³ for kvar fotodetektor. Saman med prøvetakaren er det ein dataloggar for lagring av data. Dataloggaren må skjerma for elektromagnetisk stråling med ein jernboks.

7.3. Gassprøvetakarar

7.3.1. Gassensorar
Direktevisande gassensorar er nyttige hjelpemiddel til å sjå på topppeksponering for SO₂. Så lenge ein brukbar direktevisande HF-sensor ikkje er utvikla, er den informasjonen ein får om fluorid i gassform basert på cumulativ eksponering, midla over prøvetakingstida. NO₂ kunne ein tenke seg blir danna ved bluss, og det vart derfor teke NO₂-prøver parallelt med SO₂.

Direktevisande gassmålingar av SO₂ og NO₂ vart utført med Dräger Pac III (Dräger Aktiengesellschaft, Lübeck, Tyskland) og Neotox-XL (Neotronics Limited, Takeley, UK) gassensorar. HF-sensoren som vart prøvd ut var ein Gasman II (Crowcon Ltd, UK). Gassdeteksjonen er basert på diffusjon av gass gjennom ein membran inn til ein elektrokjemisk sensor. Gasskonsentrasjonen vart registrert kontinuerleg som funksjon av tid og lagra ved hjelp av ein innebygd dataloggar. Lagringsintervalla var kvart 10 sekund. Oppløysinga var på 0,1 ppm og ei deteksjonsgrenser på 0,2 ppm. Sensorane vart kalibrert mellom prøvetakingane på kvart verk med kjent gasskonsentrasjon.

7.3.2. Gassfilter
HF og andre sure fluoridgassar (t.d. SiF₄) vart samla opp på impregnerte gassfilter (10 % (w/v) KOH impregnerte 25 mm støtteplater (Millipore, AP1002500)) fordi det til no ikkje har eksistert nokon god direktevisande berbar sensor for HF.
Tabell 7.1: Oversikt over prøvetakingsutstyr som vart nytta for dei ulike aerosolfraksjonane

<table>
<thead>
<tr>
<th>Tilgjengeleg prøvetakingsutstyr</th>
<th>Helserelaterte aerosolfraksjonar (jf. Fig. 5.1)/gas</th>
<th>Gassar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Respirabel</td>
<td>Trakeobronkial</td>
</tr>
<tr>
<td>IOM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Respicon®</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Syklon</td>
<td>X³</td>
<td>-</td>
</tr>
<tr>
<td>Millipore kassett med impregnerte støtteplater</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Direktevisand gass sensorar, Dräger, Neotox, Gasman II</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Vert utrekna frå dei andre fraksjonane
³ Anten respirabel eller torakal fraksjon
† Ny HF sensor vart prøvd ut

I tabell 7.1 er det gjeve ein oversikt over det utstyret som skulle nyttast, og kva komponent som skulle fastsetjast med det ulike utstyret.
8. Prøver samla med dei ulike prøvetakarane

I tabellen 8.1 er det gjeve ein oversikt over talet på prøver fordelt på jobbkategoriane som var blitt utført. Innhaldet i dei ulike jobbkategoriane er definert i tabell 6.2.

Tabell 8.1: Oversikt over prøver tatt ved SØRAL

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>Respicon syklon</th>
<th>IOM</th>
<th>Torakal syklon</th>
<th>Respirabel syklon</th>
<th>Gassar (HF/SO₂)</th>
<th>Sensor (SO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnpassar</td>
<td>37</td>
<td>34</td>
<td>3</td>
<td>2</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>Digel</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Tappar</td>
<td>19</td>
<td>17</td>
<td>1</td>
<td>3</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Anode</td>
<td>39</td>
<td>36</td>
<td>4</td>
<td>1</td>
<td>36</td>
<td>25</td>
</tr>
<tr>
<td>Totalt</td>
<td>100</td>
<td>92</td>
<td>10</td>
<td>7</td>
<td>90</td>
<td>60</td>
</tr>
</tbody>
</table>

9. Analysemetodar

9.1. Gravimetri

Fastsetjing av masser på filter vart gjort med Sartorius MC5 og Sartorius 210P vekter, ved veging av filter før og etter eksponering. Arbeidet vart utført i STAMI sitt klimatiserte vegerom (20±1 °C, 40±2 % RH). Nedre fastsetjingsgrense var 0,08-0,4 mg/filter for Respicon(PVC-filter) og 0,01-0,08 og 0,04-0,09 mg/filter for høvesvis respirabel syklon og torakal syklon. For IOM-kassett med CA-filter var nedre fastsetjingsgrense 0,2-2 mg/filter.

Resultat for Respiconprøver vart utrekna etter formlane i brukarrettleiinga (Hund, 2000) og kan sjåast i saman med Respiconprøvetakaren vist i figur 7.2:

\[
C_{\text{RESPIRABEL}} = \frac{m_1}{Q_1 \cdot t_s} \cdot 1000
\]

\[
C_{\text{TORAKAL}} = \left(\frac{m_1 + m_2}{(Q_1 + Q_2) \cdot t_s}\right) \cdot 1000
\]

\[
C_{\text{INHALERBAR}} = \left(\frac{m_1 + m_2 + m_3}{(Q_1 + Q_2 + Q_3) \cdot t_s}\right) \cdot 1000
\]

\[
m_1 = \text{masse på filter 1 (respirabel aerosol)}, \ m_2 = \text{masse på filter 2 (trakeobronkial aerosol)}, \ m_3 = \text{masse på filter 3 (ekstratorakal aerosol)}
\]

\[
Q_1 = 2,66 \text{ L/min (flow gjennom filter 1)}, \ Q_2 = 0,33 \text{ L/min (flow gjennom filter 2)}, \ Q_3 = 0,11 \text{ L/min (flow gjennom filter 3)}
\]

\[
t_s = \text{prøvetakingstid i min}
\]

\[
C_{\text{INHALERBAR}} = C_{\text{TORAKAL}} \cdot C_{\text{RESPIRABEL}}
\]

\[
C_{\text{EKSTRATORAKAL}} = C_{\text{INHALERBAR}} \cdot C_{\text{TORAKAL}}
\]
9.2. Fastsetjing av fluorid

9.2.1. Vassløyseleg fluorid

Vassløyseleg fluorid er definert som den delen av fluorid i aerosolen som løyser seg i ionebytta vatn ved henstand i 90 min. ved romtemperatur. Fluorid ekstraherast frå eksponerte aerosolfiltret ved bruk av sentrifugerøyr med volum på 50 mL (Alltech Maxi-Spin™ Filter Tube, art. nr. 100506, Deerfield, USA). Røra var av polypropylen og hadde ein filterinnsats med nylon membran (porestorleik 0,2 µm). Aerosolfiltrat i vassløyseleg fluorid vokte i ionebytta vatn ved henstand i 90 min. ved romtemperatur. Møya tilsett 150 µL bromid (Spectrascan®, 1000 mg/L, Teknolab A/S) som intern standard og 9,85 ml ionebytta vann. Alt ble godt ristet og satt til henstand i 90 min. ved 20 °C før sentrifugering i 10 min. ved 3000 omdreininger pr. minutt (RPM) fra sentrifugering. Fluorid i eluatet vart fastsett ved ionekromatografi.

Nedre fastsetjingsgrense var 5 µg/filter for Respicon og IOM, 4 µg/filter for torakal syklon og 7 µg/filter for respirabel syklon.

Utrekning av vassløyseleg fluorid i dei helserealterte aerosolfraksjonane vart utført på same måte som for massane på filtra.

9.2.2. Lutløyseleg fluorid

Etter eluering med vatn vart aerosolfiltrat overført til eit nytt sentrifugerøyr, tilsatt 5 mL 0,5 M KOH-løysning og 225 µL fosfat (PO₄³⁻), (Spectrascan®, 1000 mg/L, Teknolab A/S) som intern standard. Etter oppvarming på vassbad i mikrobølgjeomn på 75 °C i 90 min. vart røya sentrifugert og eluatet forsynt til 15 mL med ionebytta vatn (>17,8 MΩ). Fastsetjing av fluoridnivå vart gjort med ionekromatografi. Nedre fastsetjingsgrense for lutløyseleg fluorid vart 20 µg/filter.

Forsøk utført ved STAMI ved hjelp av scanningelektronmikroskop utstyrt med ein energidispersibel røntgen fluorescensdetektor har vist at etter behandlinga med 0,5 M KOH inneholdt ikkje filteret detekterbare mengder fluorid. Av dette har ein grunn til å hevde at summen av vassløyseleg fluorid og fluorid ekstrahert med 0,5 M KOH utgjer total mengde partikulært fluorid i prøvene.

9.2.3. Partikulært fluorid

Partikulært fluorid er definert som summen av vassløyseleg og lutløyseleg fluorid.

9.2.4. Fluorid i gassform (HF) og SO₂

Impregnerte gassfilter (10 % (w/v) KOH-løysning på Millipore AP1002500 støtteplater) vart overført til 15 mL polypropylen reagensrør (Sarstedt, art. nr. 62.554.001, Nümbrecht, Tyskland), tilsatt intern standard (bromid, Br⁻) og ekstrahert med 10 mL 0,5 % (v/v) hydrogenperoksidløysning (H₂O₂). Ved prøvetaking på denne typen gassfilter vil svoveldioksid kunne reagere til sulfat eller til sulfitt. Den svake hydrogenperoksidløysninga vart brukt for å omdanne eventuell sulfitt til sulfat. Etter henstand i 2 timar vart fastsetjinga utført ved bruk av ionekromatografi. Prøveresultata frå ionekromatografen vart så omrekna frå fluorid (F⁻) til hydrogenfluorid (HF) og frå sulfat (SO₄²⁻) til svoveldioksid (SO₂). Nedre fastsetjingsgrenser var 1,0 - 16 µg/filter F⁻ og 4,1 - 12 µg/filter SO₄²⁻.
9.2.5. Totalfluorid
Totalfluorid i denne rapporten er ikkje det same som og kan ikkje sananliknast med totalfluorid nytta tidlegare i aluminiumindustrien.

I denne rapporten definerast totalfluorid som summen av partikulær inhalerbar fluorid målt med Respicon og fluorid i gassfase frå HF-filter. Sidan ein målar partikulært fluorid med respiconprøvetakaren, kan ikkje resultata direkte sananliknast med den tradisjonelle metoden for å måle partikulært fluorid ("totalstøvkassett" med gassfilter). Respiconprøvetakaren har eit karakteristikum som gjer at den skal fylgje kurven for inhalerbar aerosol, medan totalstøvkassetten er uspesifikk. Ein forventar derfor noko høgare verdiar for partikulært fluorid målt med respiconprøvetakaren enn dersom ein måler med "totalstøvkassetten".

10. Instrumentering
Analysane vart utført ved ionekromatografi med utstyr samansatt av ein Dionex DX-500 ionekromatograf (Dionex, Sunnyvale, CA, USA) utstyrt med ei gradientpumpe (GP40) og ein elektrokjemisk detektor (ED 40) med konduktivitetscelle. Til instrumentet er det kopla ein prøveinjektor (Gilson® 231 XL, Villiers-le-Bel, Frankrike) med ein prøvekapasitet på 80 prøver og eit prøveinnføringsvolum på 25 µL eller 10 µl. IonPac AS14A analytisk kolonne (250 X 4 mm) med IonPac AG14A førkolonne (50 X 4 mm) ble nytta. Instrumentet er også utstyrt med ein sjølvregenererande suppressor (Dionex ASRS-II, 4 mm). Styring av instrumentet, dataregistrering og omarbeiding av rådata vart utført med dataprogrammet Chromeleon™, versjon 6.40. Eluentløysingane var 8,0 mM Na₂CO₃ / 1,0 mM NaHCO₃ med ein eluenthastighet på 1,0 mL/min. Ved tillaging vart eluentløysinga plassert på ultralydbad i 10 minutt for å fjerne oppløyst oksygen.
Kalibreringsløysingar vart laga ved å fortynne sertifiserte standardar levert av Teknolab A/S (Spectrascan®, 1000 mg/L) med ionebytta vatn.

11. Kvalitetssikring
For å kvalitetssikre analyseresultata vart eigne referanseløysingar med kjent analytverdi av fluorid og sulfat tillaga. Desse prøvene inngjekk som ukjente og analysert på tilsvarande måte som de reelle prøvene, og på den måten sikra mest mogleg korrekte analyseresultat. For blindkorrigering av resultata var kvar elleve prøve eit ueksponerte filter. Desse vart analysert for alle komponentane på tilsvarande måte som dei eksponerte filtra.

12. Resultat og diskusjon
Resultata representerer konsentrasjonar av eksponeringsmålingane utført i dei gjevne tidsromma. Det er ikkje gjort nokon korreksjon av eksponeringsdata av prosessteknisk art eller for ulike produksjonsparametar. Luftkonsentrasjonane baserer seg på faktisk prøvetakingstid, den er ikkje normalisert til 8 timar. For verdier lågare enn den nedre fastsetjingsgrensa (DL) er det nytta ½ DL.

I figurane og tabellane nedanfor vil aerosolresultata bli presentert i underkapittel etter type analyseret komponent.

I denne rapporten er det lagt vekt på verdiane frå Respiconprøvetakaren og IOM. Syklonane var fyrst og fremst med for å kunne gjere ei sananlikning av prøvetakaren. Forå
få gode og sikre data til eit slikt arbeid treng ein fleire målingar enn det ein har tatt ved eit verk. Dette vil ikkje ha konsekvensar for resultata eller for konklusjonane. Generelt er det viktig å kommentere at nokre av jobbkategoriene har arbeidsoperasjonar som medfører større eller mindre del av arbeidstida nær opne celler, eller i lukka ventilert kabin. I dei ulike situasjonane er bruk av vernemasker avgjerande for den faktiske eksponeringa. Alle prøver er tett utanfor vernemaskene og nærmest mogeleg innandingssona til arbeidstakaren. Resultata må derfor sjåast i samanheng med den generelle vernemaskebrukene innan dei målte jobbkategoriene. 29 personar nytta airstreamhjelm, 29 personar nytta 3M 9924/9926, 20 personar nytta ikkje vernemaske i løpet av skiftet, 18 personar nytta 3M 4277, 1 person nytta Dräger, medan for to 2 personar vart det ikkje notert kva type vernemaske som vart nytta.

For verdiar lågare enn den nedre fastsetjingsgrensa (DL) er det nytta \(\frac{1}{2} \) DL.

![Bilete 12.1: Tapping](image-url)
12.1. Aerosol

Figur 12.1: Inhalerbar aerosol frå IOM-prøvetakaren fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

Av figuren ser ein dei ulike jobbkategoriane har relativt lik geometrisk middelverdi. Spreinga er fyrst og fremst størst for gruppa omnspassarar medan gruppa digel har relativt lita spreing. Det høgaste gjennomsnittsverdien er det jobbkategorien anodeskift frå golv med 4,0 mg/m³ og den lågaste hadde anode køyretøy med 2,0 mg/m³.
Figur 12.2: Inhalerbar aerosol frå Respiconprøvetakaren fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

Figur 12.2 viser dei inhalerbare aerosolresultata målt med Respiconprøvetakaren. Dei fleste verdiane ligg under 5,5 mg/m3, men einskilde verdier er høgare enn dette. Det høgste gjennomsnittet har gruppa anode golv med ein gjennomsnittsverdi på 2,9 mg/m3 og lågast anode køyretøy med ein gjennomsnittsverdi på 1,1 mg/m3.
Figur 12.3: Torakal aerosolfraksjon frå Respiconprøvetakaren fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

Respiconprøvetakaren og torakale syklonar kan begge nyttast til å fastsetje aerosolmengda som kan avsetjast i luftvegane nedanfor strupehovudet (torakal aerosol). Figur 12.3 viser torakal aerosolmengde bestemt ut frå måling med Respiconprøvetakaren. Den torakale mengda aerosol er lågare enn for inhalerbar fraksjon. Alle utanom eitt resultat ligg lågare enn 3,0 mg/m\. GM verdiane er høgast for jobbkategorien anode golv, med 1,1 mg/m\(^3\), og lågast for anode køyretøy med 0,48 mg/m\(^3\).

Tabell 12.1: Prosentdel torakal aerosol av inhalerbar aerosol.

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>n</th>
<th>GM</th>
<th>Nedre</th>
<th>Øvre</th>
<th>Minimum</th>
<th>Maksimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnspassar</td>
<td>36</td>
<td>34</td>
<td>29</td>
<td>38</td>
<td>13</td>
<td>69</td>
</tr>
<tr>
<td>Digel</td>
<td>5</td>
<td>44</td>
<td>33</td>
<td>59</td>
<td>31</td>
<td>57</td>
</tr>
<tr>
<td>Tappar</td>
<td>19</td>
<td>34</td>
<td>28</td>
<td>41</td>
<td>17</td>
<td>78</td>
</tr>
<tr>
<td>Anode køyretøy</td>
<td>34</td>
<td>43</td>
<td>38</td>
<td>49</td>
<td>22</td>
<td>99</td>
</tr>
<tr>
<td>Anode golv</td>
<td>5</td>
<td>38</td>
<td>26</td>
<td>56</td>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>Alle</td>
<td>99</td>
<td>37</td>
<td>35</td>
<td>40</td>
<td>13</td>
<td>99</td>
</tr>
</tbody>
</table>
Den torakale delen utgjør 34 - 44 % av den inhalerbare aerosolen avhengig av jobbkategori (jf. tabell 12.1). Dette gjør at den største delen av aerosolen er ekstratorakal, dvs. at størstedelen av aerosoleksponering blir avsett i dei øvre luftvegane.

![Graph showing respirable aerosol distribution by job category.](image)

Figur 12.4: Respirabel aerosolfraksjon frå Respiconprøvetakaren fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

I fig. 12.4 ser ein at ein har same trend for respirabel aerosolfraksjon som for torakal fraksjon. Anode golv er den høgast eksponerte jobbkategorien (0,49 mg/m³), medan anode køyretøy var lågast (0,21 mg/m³).

Tabell 12.2: Prosentdel respirabel aerosol av inhalerbar aerosol.

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>n</th>
<th>GM</th>
<th>Nedre</th>
<th>Øvre</th>
<th>Minimum</th>
<th>Maksimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnspassar</td>
<td>36</td>
<td>14</td>
<td>12</td>
<td>18</td>
<td>3,5</td>
<td>39</td>
</tr>
<tr>
<td>Digi</td>
<td>5</td>
<td>15</td>
<td>8,6</td>
<td>26</td>
<td>9,1</td>
<td>24</td>
</tr>
<tr>
<td>Tappar</td>
<td>19</td>
<td>13</td>
<td>10</td>
<td>18</td>
<td>5,8</td>
<td>39</td>
</tr>
<tr>
<td>Anode køyretøy</td>
<td>34</td>
<td>20</td>
<td>17</td>
<td>24</td>
<td>5,4</td>
<td>39</td>
</tr>
<tr>
<td>Anode golv</td>
<td>5</td>
<td>17</td>
<td>5,6</td>
<td>52</td>
<td>5,5</td>
<td>47</td>
</tr>
<tr>
<td>Alle</td>
<td>99</td>
<td>16</td>
<td>14</td>
<td>18</td>
<td>3,5</td>
<td>47</td>
</tr>
</tbody>
</table>

Den respirable delen av inhalerbar aerosol utgjør 13 - 20 % for dei ulike jobbkategoriane. Jobbkategorien anode køyretøy hadde størst prosentdel respirabel aerosol (20 %), medan tappar har lågast (13 %).
Figur 12.5: Geometrisk middelverdi, GM med 95 % konfidensintervall for dei helserelaterte aerosolfraksjonar prøvetekne med Respicon.

I figur 12.5. er dei geometriske middelverdiane og 95 % konfidensintervall for dei helserelaterte aerosolfraksjonane fordelt på dei prøvetekne jobbkategoriane. Ved å regne statistikk på data frå figur 12.5 kan ein sjå om det er nokon forskjell mellom dei ulike jobbkategoriane. Ei oppsummering er gjeve i tabell 12.3.

Tabell 12.3: Oversikt over kva kategori der GM var signifikant* forskjellige for dei ulike komponentane.

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Kategori</th>
<th>Signifikant* forskjellig frå jobbkategori</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOM aerosol</td>
<td>Omnspassar</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>-</td>
</tr>
<tr>
<td>Respicon Inhalerbar aerosol</td>
<td>Omnspassar</td>
<td>Anode køyretøy</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>Anode køyretøy</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Anode køyretøy</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>Omnspassar, Digel, Tappar, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Anode køyretøy</td>
</tr>
<tr>
<td>Respicon Torakal aerosol</td>
<td>Omnspassar</td>
<td>Anode golv</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>Anode køyretøy</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>Digel, Anode køyretøy</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Omnspassar, Tappar, Anode køyretøy</td>
</tr>
<tr>
<td>Respicon Respirabel aerosol</td>
<td>Omnspassar</td>
<td>Anode golv</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Omnspassar, Tappar, Anode køyretøy</td>
</tr>
</tbody>
</table>

* p<0.05
For prøvene tatt med IOM-prøvetakaren fann ein ingen signifikante (p<0,05) forskjellar mellom jobbkategoriane. For prøvene tatt med Respiconprøvetakaren skil anode køyretøy seg ut som forskjellig frå dei andre jobbkategoriane for fleire aerosolfraksjonar.

Bilete 12.2: Anodeskifting

Foto: Karina Isaksen, SØRAL

Bilete 12.3: Digel

Foto: Karina Isaksen, SØRAL
12.1.1. Direktevisande utstyr for aerosolmålingar

Til dette vart det nyttå ein direktevisande Respicon (sjå 7.2.4).

Tidsoppløyste aerosolmålinger blir brukt til å skaffe verdfull informasjon om topppeksponering og identifisering av partikulære forureiningskilder samt å estimere eksponering ved spesifikk arbeidsoperasjonar. Det var derfor svært viktig å fylge opp arbeidstakarane med skjema med tidspunkt og arbeidsoppgåve. Dette var noko som viste seg å være svært vanskeleg i praksis. Det vart derfor i stor grad opp til dei
arbeidstakarane å presisere i løpet av intervjuet kva arbeidsoperasjonar som vart utført ved dei ulike tidspunktane. Eit system med tettare oppfylging hadde vore å føretrekke, men ei tettare oppfylging vart så resursskrevande at det ikkje let seg gjennomføre innafor dei økonomiske rammene og det tette prøvetakingsprogrammet i prosjektet.

Av figuran 12.6 – 12.8 ser ein at eksponeringa for både respirabel, torakal og inhalerbar aerosol var knytt til episodar med til tider høg eksponering. Den gjennomsnittlege eksponeringa treng ikkje vere spesielt høg, men eit tidsoppløyst signal viser at neste alle eksponering kjem i løpet av ein liten tidsperiode av skiftet.

12.2. Resultat vassløyseleg fluorid
Alle aerosolprøvene vart löyst i vatn og fluoridmengda i dette vassekstraktet vart fastsett; vassløyseleg fluorid.
Ein oversikt over alle enkeltresultat for IOM-prøvetakaren visast i figur 12.9.

![Diagram](image_url)

Figur 12.9: Vassløyseleg fluorid bestemt i aerosolen frå IOM-prøvetakaren fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

Frå figur 12.9 går det fram at det er jobbkategorien anode golv som gjev den høgaste geometrisk gjennomsnitt (320 µg/m³), medan tappar og anode køyretøy dei lågast eksponerte (152 µg/m³). Spreiinga innanfor dei ulike jobbkategoriane er stor, spesielt for omnospassar.
Figur 12.10: Vassløyseleg fluorid fastsett i den inhalerbare aerosolfraksjon frå Respiconprøvetakaren fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

I fig. 12.10 ser ein at det ikkje er så stor forskjell mellom jobbkategoriane; omnspassar, tappar og anode køyretøy for inhalerbart vassløyseleg fluorid. Spreiinga i resultata er stor, spesielt for jobbkategoriane omnspassar, digel og anode køyretøy. Anode golv har det høgaste gjennomsnittet med 252 µg/m³. Dette i motsetning til gruppa med anode køyretøy som har den lågaste gjennomsnittlege eksponeringa på 74 µg/m³.
Figur 12.11: Vassløyseleg fluorid fastsett i den torakale aerosolfraksjon frå Respiconprøvetakaren fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

Av fig. 12.11 ser ein at eksponeringa for torakalt vassløyseleg fluorid er størst for jobbkategoriene digel (138 µg/m³) og anode golv (125 µg/m³). Den gjennomsnittlege eksponeringa er lågast for anode køyretøy 41 µg/m³. Spreiingen er størst for gruppa omnspassar og minst for anode golv.

Tabell 12.4: Prosentdel torakalt vassløyseleg fluorid av inhalerbart vassløyseleg fluorid.

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>n</th>
<th>GM</th>
<th>Nedre</th>
<th>Øvre</th>
<th>Minimum</th>
<th>Maksimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnspassar</td>
<td>37</td>
<td>48</td>
<td>44</td>
<td>52</td>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>Digel</td>
<td>5</td>
<td>56</td>
<td>45</td>
<td>70</td>
<td>44</td>
<td>72</td>
</tr>
<tr>
<td>Tappar</td>
<td>19</td>
<td>43</td>
<td>39</td>
<td>48</td>
<td>27</td>
<td>64</td>
</tr>
<tr>
<td>Anode køyretøy</td>
<td>34</td>
<td>55</td>
<td>50</td>
<td>59</td>
<td>32</td>
<td>80</td>
</tr>
<tr>
<td>Anode golv</td>
<td>5</td>
<td>49</td>
<td>42</td>
<td>58</td>
<td>42</td>
<td>61</td>
</tr>
<tr>
<td>Alle</td>
<td>99</td>
<td>50</td>
<td>47</td>
<td>52</td>
<td>23</td>
<td>100</td>
</tr>
</tbody>
</table>
Av fig. 12.12 går det fram at det er jobbkategorien anodeskiftar golv som har den høgaste eksponeringa for vassløyseleg respirabelt fluorid (54 µg/m³), medan tappar har den lågaste (22 µg/m³). Kategorien omnspassar har den største spreininga, med den er også stor for gruppene anode køretøy og anode golv.

Tabell 12.5: Prosentdel respirabelt vassløyseleg fluorid av inhalerbart vassløyseleg aerosol.

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>n</th>
<th>GM</th>
<th>Nedre</th>
<th>Øvre</th>
<th>Minimum</th>
<th>Maksimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnspassar</td>
<td>37</td>
<td>25</td>
<td>22</td>
<td>28</td>
<td>11</td>
<td>59</td>
</tr>
<tr>
<td>Digel</td>
<td>5</td>
<td>21</td>
<td>12</td>
<td>34</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>Tappar</td>
<td>19</td>
<td>18</td>
<td>15</td>
<td>21</td>
<td>9,8</td>
<td>30</td>
</tr>
<tr>
<td>Anode køretøy</td>
<td>34</td>
<td>35</td>
<td>30</td>
<td>40</td>
<td>16</td>
<td>70</td>
</tr>
<tr>
<td>Anode golv</td>
<td>5</td>
<td>21</td>
<td>13</td>
<td>34</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>Alle</td>
<td>100</td>
<td>26</td>
<td>23</td>
<td>28</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Den respirable delen av det vassløyselege inhalerbare fluoridet utgjer 22 – 38 % for dei ulike jobbkategoriane (jf. tabell 12.5), og den torakale delen (jf. tabell 12.4) utgjer 44 – 57 % av den inhalerbare vassløyseleg fluoridet. Høgast prosentdel respirabelt vassløyseleg fluorid har anode køretøy (35 %), medan tappar har lågast (18 %).

Dette medfører at vi finn ein større del av det vassløyselege fluoridet i dei respirable
og torakale fraksjonane i forhold til fordelinga av aerosol.

Figur 12.13: Vassløyseleg fluorid, GM med 95% konfidensintervall, fastsett i dei ulike aerosolfraksjonane frå Respicon.

Tabell 12.6: Oversikt over kva jobbkategoriar der GM var signifikant forskjellige for vassløyseleg fluorid.

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Jobbkategori</th>
<th>Signifikant forskjellig frå jobbkategori</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOM vassløyseleg fluorid</td>
<td>Omnspassar</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Anodekøyretøy</td>
<td>Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Anode køyretøy</td>
</tr>
<tr>
<td>Respicon Inhalerbar vassløyseleg fluorid</td>
<td>Omnspassar</td>
<td>Digel, Anode køyretøy, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>Omnspassar, Tappar, Anode køyretøy</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Digel, Anode køyretøy, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anodekøyretøy</td>
<td>Omnspassar, Digel, Tappar, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Omnspassar, Tappar, Anode køyretøy</td>
</tr>
<tr>
<td>Respicon Torakal vassløyseleg fluorid</td>
<td>Omnspassar</td>
<td>Digel, Anode køyretøy, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>Omnspassar, Tappar, Anode køyretøy</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Digel, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anodekøyretøy</td>
<td>Omnspassar, Digel, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Omnspassar, Tappar, Anode køyretøy</td>
</tr>
<tr>
<td>Respicon Respirabel vassløyseleg fluorid</td>
<td>Omnspassar</td>
<td>Digel, Tappar, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>Omnspassar, Tappar, Anode køyretøy</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Omnspassar, Digel, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>Digel, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Omnspassar, Tappar, Anode køyretøy</td>
</tr>
</tbody>
</table>

For vassløyseleg fluorid er det signifikant forskjellar mellom dei ulike jobbkategoriene. Det betyr at for aerosoleksponeringa er det statistisk skilnadar mellom gruppene.

\[p < 0.05 \]
12.3. Resultat partikulært fluorid

![Graph showing inhalable particulate fluorid concentration by job category](image)

Figur 12.14: Partikulær fluorid fastsett i den inhalerbare aerosolfraksjon frå Respiconprøvetakaren fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

I figur 12.14 er det vist det inhalerbare partikulære fluoridet i den oppsamlta aerosolen. Dette er summen av vassløyseleg og lutløyseleg fluorid i den inhalerbare aerosolen målt med respiconprøvetakaren. Figuren viser at ein har størst spreiling og høgast geometrisk gjennomsnitt for jobbkategorien anode golv (512 µg/m³), medan anode køyretøy har lågast gjennomsnitt (145 µg/m³). Einskildverdier for dei ulike jobbkategoriene gjer at spreinga for dei ulike kategoriane blir stor.
Figur 12.15: Partikulær fluorid fastsett i den torakale aerosolfraksjon frå Respiconprøvetakaren fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

I figur 12.15 blir det vist det torakale partikulære fluoridet for dei ulike jobbkategoriane. Figuren viser lågast geometriske gjennomsnittsverdiar for anode køyretøy (72 µg/m3), medan anode golv har høgst (215 µg/m3). Igen er det spreiinga innanfor dei ulike jobbkategoriane som er dominerande. For kategorien omnspassar er det eit relativt lågt geometrisk gjennomsnitt (99 µg/m3), men stor spreining.

Tabell 12.7: Prosentdel torakalt partikulært fluorid av inhalerbart partikulært fluorid.

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>n</th>
<th>GM</th>
<th>Nedre</th>
<th>Øvre</th>
<th>Minimum</th>
<th>Maksimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>spassar</td>
<td>37</td>
<td>40</td>
<td>37</td>
<td>45</td>
<td>18</td>
<td>73</td>
</tr>
<tr>
<td>om</td>
<td>5</td>
<td>50</td>
<td>38</td>
<td>64</td>
<td>37</td>
<td>67</td>
</tr>
<tr>
<td>tappar</td>
<td>19</td>
<td>38</td>
<td>34</td>
<td>44</td>
<td>19</td>
<td>63</td>
</tr>
<tr>
<td>anode køyretøy</td>
<td>34</td>
<td>50</td>
<td>45</td>
<td>55</td>
<td>26</td>
<td>78</td>
</tr>
<tr>
<td>anode golv</td>
<td>5</td>
<td>42</td>
<td>33</td>
<td>53</td>
<td>33</td>
<td>56</td>
</tr>
<tr>
<td>alle</td>
<td>99</td>
<td>44</td>
<td>41</td>
<td>46</td>
<td>18</td>
<td>78</td>
</tr>
</tbody>
</table>

Gjennomsnittleg er 44 % av det inhalerbare partikulære fluoridet torakalt. Høgast prosentdel vart funne digel og anode køyretøy (50 %), medan prosentdelen var lågast for omnspassar.
Figur 12.16: Partikulær fluorid fastsett i den respirable aerosolfraaksjon fra Respiconprøvetakaren fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

Det respirable partikulære fluoridet er vist i figur 12.16. Også for denne komponenten er det anode golv som har det høyeste gjennomsnittet (89 µg/m³). Det lågaste gjennomsnittet vart målt for tappar (35 µg/m³). Spreiinga er stor innan alle gruppene utanom digel.

Tabell 12.8: Prosentdel respirabelt partikulært fluorid av inhalerbart partikulært fluorid.

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>n</th>
<th>GM</th>
<th>Nedre</th>
<th>Øvre</th>
<th>Minimum</th>
<th>Maksimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnpassar</td>
<td>37</td>
<td>20</td>
<td>17</td>
<td>23</td>
<td>7,5</td>
<td>56</td>
</tr>
<tr>
<td>Digel</td>
<td>5</td>
<td>17</td>
<td>9,8</td>
<td>28</td>
<td>9,3</td>
<td>28</td>
</tr>
<tr>
<td>Tappar</td>
<td>19</td>
<td>15</td>
<td>12</td>
<td>19</td>
<td>7,9</td>
<td>34</td>
</tr>
<tr>
<td>Anode køyretøy</td>
<td>34</td>
<td>30</td>
<td>25</td>
<td>36</td>
<td>11</td>
<td>62</td>
</tr>
<tr>
<td>Anode golv</td>
<td>5</td>
<td>17</td>
<td>9,7</td>
<td>31</td>
<td>11</td>
<td>37</td>
</tr>
<tr>
<td>Alle</td>
<td>99</td>
<td>21</td>
<td>19</td>
<td>24</td>
<td>7,5</td>
<td>62</td>
</tr>
</tbody>
</table>

Frå tabell 12.8 får ein at det er gjennomsnittleg 21 % respirabelt partikulært fluorid av det inhalerbare partikulære fluoridet. Anode køyretøy har den største prosentdelen (30 %), medan digel og anode golv har den minste prosentdelen (17 %).
Figur 12.17: Geometrisk middelverdi, GM med 95 % konfidensintervall for partikulært fluorid frå Respiconprøvetakaren.

I figur 12.17 er det gjeve ei samanlikning av dei geometriske gjennomsnitta (GM) for dei ulike jobbkategoriane for dei ulike helserelaterte aerosolfraksjonane.

Tabell 12.9: Oversikt over kva jobbkategoriar der GM var signifikant* forskjellige for partikulært fluorid.

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Jobbkategori</th>
<th>Signifikant* forskjellig frå jobbkategori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respicon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalerbar</td>
<td>Omnispassar</td>
<td>Anode køyrety, Anodeskifar golv</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>Anode køyrety</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Anode køyrety, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode køyrety</td>
<td>Omnispassar, Digel, Tappar, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Omnispassar, Tappar, Anode køyrety</td>
</tr>
<tr>
<td>Torakal</td>
<td>Omnispassar</td>
<td>Digel, Anode køyrety, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>Omnispassar, Tappar, Anode køyrety</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Digel, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode køyrety</td>
<td>Omnispassar, Digel, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Omnispassar, Tappar, Anode golv</td>
</tr>
<tr>
<td>Respirabel</td>
<td>Omnispassar</td>
<td>Tappar, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>Tappar</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Omnispassar, Digel, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode køyrety</td>
<td>Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Omnispassar, Tappar, Anode køyrety</td>
</tr>
</tbody>
</table>

* p<0.05
Tabell 12.10: Prosent vassløyseleg fluorid av partikulært fluorid.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Jobbkategori</th>
<th>n</th>
<th>GM</th>
<th>Nedre</th>
<th>Øvre</th>
<th>Minimum</th>
<th>Maksimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosent respirabelt vassløyseleg fluorid av respirabelt partikulært fluorid</td>
<td>Omnspassar</td>
<td>37</td>
<td>64</td>
<td>61</td>
<td>68</td>
<td>40</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>82</td>
<td>79</td>
<td>85</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>62</td>
<td>53</td>
<td>73</td>
<td>18</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>60</td>
<td>55</td>
<td>64</td>
<td>37</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>61</td>
<td>45</td>
<td>81</td>
<td>44</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Alle</td>
<td>100</td>
<td>63</td>
<td>60</td>
<td>66</td>
<td>18</td>
<td>85</td>
</tr>
<tr>
<td>Prosent torakalt vassløyseleg fluorid av torakalt partikulært fluorid</td>
<td>Omnspassar</td>
<td>37</td>
<td>60</td>
<td>57</td>
<td>64</td>
<td>35</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>75</td>
<td>69</td>
<td>81</td>
<td>71</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>59</td>
<td>51</td>
<td>70</td>
<td>18</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>56</td>
<td>52</td>
<td>60</td>
<td>33</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>58</td>
<td>48</td>
<td>70</td>
<td>47</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Alle</td>
<td>100</td>
<td>59</td>
<td>57</td>
<td>62</td>
<td>18</td>
<td>83</td>
</tr>
<tr>
<td>Prosent inhalerbart vassløyseleg fluorid av inhalerbart partikulært fluorid</td>
<td>Omnspassar</td>
<td>37</td>
<td>51</td>
<td>48</td>
<td>54</td>
<td>31</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>66</td>
<td>62</td>
<td>71</td>
<td>62</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>52</td>
<td>48</td>
<td>58</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>51</td>
<td>49</td>
<td>54</td>
<td>37</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>49</td>
<td>42</td>
<td>57</td>
<td>41</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Alle</td>
<td>100</td>
<td>52</td>
<td>50</td>
<td>54</td>
<td>30</td>
<td>71</td>
</tr>
</tbody>
</table>

Kor stor del av det partikulære fluoridet som er vassløyseleg er avhengig av kjelda til fluorideksponeringa. Til dømes vil aerosol frå badsmelta innehalde fluorid som ikkje let seg ekstrahere ut i vassfasen, med blir fastsett som lutløyseleg fluorid. I tabell 12.10 viser det at det er ulik mengde vassløyseleg fluorid avhengig av fraksjonane, 63 % for respirabel fraksjon, 59 % for torakal fraksjon og 52 % for inhalerbart fraksjon. Dette tyder på at dess finare aerosolen er, dess større del av det partikulære fluoridet er vassløyseleg.
12.4. Gassar, HF og SO$_2$

![Graph showing hydrogen fluoride (HF) levels by job category]

Figur 12.18: Gassformig fluorid frå HF fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

Generelt er eksponeringa for HF mindre enn 120 µg/m3. Jobbkategorien omnspassar har nokre einskilde verdier over dette nivået. Kategorien anode golv er den høgast eksponerte gruppa (97 µg/m3) medan digel er den lågast eksponerte gruppa (10 µg/m3).

Tabell 12.11: Oversikt over kva jobbkategoriar der GM var signifikant* forskjellige for gassformig fluorid (HF).

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Jobbkategori</th>
<th>Signifikant* forskjellig frå jobbkategori</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF (gass)</td>
<td>Omnspassar</td>
<td>Digel, Tappar, Anode køyretøy</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>Omnspassar, Tappar, Anode køyretøy, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Omnspassar, Digel, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>Omnspassar, Digel, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Digel, Tappar, Anode køyretøy</td>
</tr>
</tbody>
</table>

HF$_{(g)}$ blir danna frå prosessen. Ein kan tenkje seg at eksponeringa er avhengig av opphaldstid ved opne bad. HF$_{(g)}$ vil kunne adsorberast på aerosolen i hallatmosfæren og vil bli rapportert som partikulaet fluorid. Som ei mogleg årsak til

* *p<0.05
at jobbkategoriane anode golv og omnspassar har høgast nivå og størst spreieing er opphalstida nær opne celler. Avhengig av utført arbeid er det svært ulik opphalstid nær cellene, både mellom ulike personar og mellom dagar for same person. Spesielt jobbkategorien omnspassar har arbeidsoppgåver som er samansatt av arbeid både i og utanfor ventilerte køyretøy.

![Diagram of SO₂ concentrations for different job categories.](image)

Figur 12.19: SO₂ frå filter fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

Kjelda til SO₂-gassekspoweringa er svovelet i anoden. Svovelinnhaldet i anoden vil kunne variere med råstoffet til anoden og då truleg variere frå batch til batch. Frå figur 12.19 har ein at lågast SO₂-eksponering var målt for digel (34 µg/m³) medan anode køyretøy har høgast eksponering (194 µg/m³) og størst spreieing. Det er viktig å merke seg det relativt høge gjennomsnittsnivået og den store spreinga for jobbkategorien anode køyretøy. Anode køyretøy er den jobbkategorien med lågast bruk av vernemasker, sidan arbeidet blir utført frå ein lukka ventilert kabin.
Tabell 12.12: Oversikt over kva jobbkategoriar der GM var signifikant* forskjellige for svøveldioksid (SO₂).

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Jobbkategori</th>
<th>Signifikant* forskjellig frå jobbkategori</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>Omnspassar</td>
<td>Digel, Tappar, Anode køyretøy, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>Omnspassar, Anode køyretøy, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Omnspassar, Anode køyretøy, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>Omnspassar, Digel, Tappar</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Omnspassar, Digel, Tappar</td>
</tr>
</tbody>
</table>

Jobbkategorien anodeskiftarar (både køyretøy og golv) har signifikant høgare eksponering enn alle dei andre kategoriane. Spreiinga er størt innan desse kategoriane.

12.4.1. Tidsoppløyste SO₂-målingar

For å betre kunne forstå SO₂ eksponeringa vart det nytta direktevisande gassesensorar til kontinuerleg kunne monitorere konsentrasjonen av SO₂ over arbeidsskifta. Figurane 12.20-12.22 viser typiske variasjonsmålingar for tre ulike arbeidsoperasjonar. Eksponeringsmonstra for dei ulike arbeidssoperasjonar varierar og gassensorar er derfor eit viktig verktøy til å identifisere utsette arbeidsfunksjonar.

![Figur 12.20: Tidsoppløyst SO₂ signal for tappar 12. mars 2003.](image-url)

For å kunne vurdere dei tidsoppløyste SO$_2$-verdiane vart det nytta ein strategi ved å telje talet på episoder over ein gjeven verdi, kor lenge ein slik episode varer og dosen av SO$_2$ i kvar episode. Figur 12.23 viser talet på episoder med verdier over 2,0 ppm SO$_2$ fordelt på arbeidsopsjonane. I figur 12.24 viser talet på sekund kor eksponeringa har vore over 2,0 ppm, fordelt på dei ulike arbeidsopsjonane. I figur 12.25 er det gjeve dosen av desse episodane over 2,0 ppm fordelt på dei ulike arbeidsopsjonane.
Talet på episodar med eksponering over 2,0 ppm SO$_2$.

Figur 12.23: Boksplovt av talet på eksponeringsepisodar med eksponering over 2,0 ppm SO$_2$.

Frå figur 12.23 ser ein at det er anodeskifar golv og anodeskiftar køyretøy som har flest episodar med eksponering over 2,0 ppm SO$_2$.

Foto: Karina Isaksen, SØRAL
Figur 12.24: Boksplott av talet på sekund med eksponering over 2,0 ppm SO₂.

Bilette 12.5: Digelverkstad operatør med direktevisande Respicon

Foto: Karina Isaksen, SØRAL
Figur 12.25: Boksplott av dose (ppm *sekund) for eksponering over 2,0 ppm SO\textsubscript{2}.

Gass-sensorar med logging er nyttige hjelpemidler for identifisering av toppekstonering og variasjonen av eksponeringa gjennom eit arbeidsskit. For alle gassloggarane er det rekna tidsoppløyste konsentrasjonsfigurar, gjennomsnittleg konsentrasjon (ppm) og maksimalverdi. I tillegg vart toppane over ein gjeven verdi identifisert ved å rekne talet på toppar, kor lenge dei varer (sek) og integrert dose (ppm*s) som toppane representerer.

Tabell 12.13: Oppsummering over direktevisande SO\textsubscript{2} eksponeringsmålingar. Eksponeringsverdiar over 0,2 ppm, Aritmetisk middelverdi (AM).

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>Talet på målingar, n</th>
<th>Tal på episodar</th>
<th>Tid over, s</th>
<th>Dose, ppm*s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnspassar</td>
<td>24</td>
<td>16</td>
<td>719</td>
<td>306</td>
</tr>
<tr>
<td>Digel</td>
<td>2</td>
<td>2.5</td>
<td>50</td>
<td>6.5</td>
</tr>
<tr>
<td>Tappar</td>
<td>9</td>
<td>9.6</td>
<td>369</td>
<td>133</td>
</tr>
<tr>
<td>Anode køyretøy</td>
<td>22</td>
<td>22</td>
<td>2800</td>
<td>1139</td>
</tr>
<tr>
<td>Anode golv</td>
<td>3</td>
<td>33</td>
<td>1620</td>
<td>739</td>
</tr>
<tr>
<td>Totalt</td>
<td>60</td>
<td>18</td>
<td>1452</td>
<td>597</td>
</tr>
</tbody>
</table>

Anode golv har flest episodar med eksponering for SO\textsubscript{2} over 0,2 ppm, medan digel har færreast episodar. Anode køyretøy har lengst tid med eksponering over 0,2 ppm, og høgast dose.
Tabell 12.14: Oppsummering over direktevisande SO₂ eksponeringsmålingar. Eksponeringsverdiar over 0,5 ppm, Aritmetisk middelverdi (AM).

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>Talet på målingar, n</th>
<th>Tal på episodar</th>
<th>Tid over, s</th>
<th>Dose, ppm*s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnspassar</td>
<td>24</td>
<td>4,0</td>
<td>165</td>
<td>163</td>
</tr>
<tr>
<td>Digel</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tappar</td>
<td>9</td>
<td>2,6</td>
<td>93</td>
<td>60</td>
</tr>
<tr>
<td>Anode køyretøy</td>
<td>22</td>
<td>9,3</td>
<td>964</td>
<td>521</td>
</tr>
<tr>
<td>Anode golv</td>
<td>3</td>
<td>20</td>
<td>740</td>
<td>367</td>
</tr>
<tr>
<td>Totalt</td>
<td>60</td>
<td>6,4</td>
<td>471</td>
<td>284</td>
</tr>
</tbody>
</table>

Flest episodar med eksponering over 0,5 ppm blir vist for anode golv men anode køyretøy hadde større dose i toppane over 0,5 ppm. For digel vart det ikkje registrert toppar over 0,5 ppm for nokon av dei to målingane.

Tabell 12.15: Oppsummering over direktevisande SO₂ eksponeringsmålingar. Eksponeringsverdiar over 1,5 ppm, Aritmetisk middelverdi (AM).

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>Talet på målingar, n</th>
<th>Tal på episodar</th>
<th>Tid over, s</th>
<th>Dose, ppm*s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnspassar</td>
<td>24</td>
<td>0,8</td>
<td>41</td>
<td>79</td>
</tr>
<tr>
<td>Digel</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tappar</td>
<td>9</td>
<td>0,3</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Anode køyretøy</td>
<td>22</td>
<td>2,3</td>
<td>126</td>
<td>112</td>
</tr>
<tr>
<td>Anode golv</td>
<td>3</td>
<td>3,3</td>
<td>67</td>
<td>88</td>
</tr>
<tr>
<td>Totalt</td>
<td>60</td>
<td>1,4</td>
<td>69</td>
<td>79</td>
</tr>
</tbody>
</table>

Anode golv hadde flest episodar (3,3) med eksponering over 1,5 ppm, medan episodane registrert for anode køyretøy varte lengre (126 sek. mot 67 sek.).

Tabell 12.16: Oppsummering over direktevisande SO₂ eksponeringsmålingar. Eksponeringsverdiar over 2,0 ppm, Aritmetisk middelverdi (AM).

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>Talet på målingar, n</th>
<th>Tal på episodar</th>
<th>Tid over, s</th>
<th>Dose, ppm*s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnspassar</td>
<td>24</td>
<td>0,6</td>
<td>22</td>
<td>63</td>
</tr>
<tr>
<td>Digel</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tappar</td>
<td>9</td>
<td>0,2</td>
<td>10</td>
<td>7,7</td>
</tr>
<tr>
<td>Anode køyretøy</td>
<td>22</td>
<td>1,5</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td>Anode golv</td>
<td>3</td>
<td>2,7</td>
<td>47</td>
<td>58</td>
</tr>
<tr>
<td>Totalt</td>
<td>60</td>
<td>1,0</td>
<td>36</td>
<td>52</td>
</tr>
</tbody>
</table>

Anode golv hadde flest episodar med eksponering over 2,0 ppm, medan gjennomsnittelig tid for episodane for jobbkategorien anode køyretøy var større (64 sek mot 47 sek.).

Tabell 12.17: Oppsummering over direktevisande SO₂ eksponeringsmålingar. Eksponeringsverdiar over 5,0 ppm, Aritmetisk middelverdi (AM).

<table>
<thead>
<tr>
<th>Jobbkategori</th>
<th>Talet på målingar, n</th>
<th>Tal på episodar</th>
<th>Tid over, s</th>
<th>Dose, ppm*s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnspassar</td>
<td>24</td>
<td>0,2</td>
<td>2,9</td>
<td>22</td>
</tr>
<tr>
<td>Digel</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tappar</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anode køyretøy</td>
<td>22</td>
<td>0,2</td>
<td>5,0</td>
<td>12</td>
</tr>
<tr>
<td>Anode golv</td>
<td>3</td>
<td>0,3</td>
<td>6,7</td>
<td>20</td>
</tr>
<tr>
<td>Totalt</td>
<td>60</td>
<td>0,2</td>
<td>3,3</td>
<td>14</td>
</tr>
</tbody>
</table>

Flest episodar over 5,0 ppm eksponering hadde anode golv (0,3). Same jobbkategori hadde lengst tid i desse episodane (6,7 sek.).
12.5. Totalfluorid
Totalfluorid er summen av gassformig fluorid frå impregnerte gassprøvetakarar og inhalerbart partikulært fluorid målt med Respicon.

Figur 12.26: Totalfluorid, som er summen av inhalerbar partikulær aerosolfraksjon frå Respiconprøvetakaren og gassformig fluorid frå HF, fordelt på jobbkategori. Talet på prøver er gjeve med bokstaven n og må ikkje forvekslast med talet på personar.

Den høgste gjennomsnittlege eksponeringa er det jobbkategorien anodeskiftar golv som har \((614 \, \mu g/m^3)\), medan anode køyretøy har den lågaste eksponeringa med \(192 \, \mu g/m^3\). Spreiinga er stor, spesielt for jobbkategorien omnspassar.
Figur 12.27: Geometrisk middelverdi, GM med 95 % konfidensintervall for totalfluorid (summen av gassformig og partikulært fluorid).

Ved å sammenlikne dei geometriske gjennomsnittsverdiane statistisk får ein kva jobbkategoriar som hadde signifikant forskjellig eksponering, oppsummert i tabell 12.18.

Tabell 12.18: Oversikt over kva jobbkategori der GM var signifikant* forskjellige for totalfluorid.

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Jobbkategori</th>
<th>Signifikant* forskjellig frå jobbkategori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalfluorid</td>
<td>Omnspassar</td>
<td>Anode køyretøy</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>Anode køyretøy</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>Omnspassar, Digel, Anode golv</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>Omnspassar, Tappar, Anode køyretøy</td>
</tr>
</tbody>
</table>

Av tabell 12.18 ser ein at jobbkategorien anode køyretøy skil seg ut som signifikant* forskjellig frå alle dei andre jobbkategoriane enn tappar. I dette tilfellet er anode golv signifikant* lågare eksponert enn alle dei andre gruppene enn tappar. Anode golv skil seg også ut ved å ha signifikant* høgare eksponering enn alle dei andre gruppene utanom digel. Det er derfor klart å sjå at for dei gruppene ein berre har nokre få målingar (digel 4 målingar og anode golv 5 målingar) har kvar einskild verdi stor påverknad på spreingsmålet, jt. figur 12.27 gjeve ved 95 % konfidensintervallet.

Det vart i tillegg utprøvd ein HF sensor. Denne viste seg ikkje å ha god nok oppløysning og respons til at ein kan nytte for dei konsentrasjonområda som ein har i denne industrien.

* p<0.05
Figur 12.28 viser den at gassformig fluorid hadde størst bidrag til den totale fluorideksponeringa for gruppa omnspassarar (27 % av totalfluoridet), medan for jobbkategorien digel var det gassformige bidraget lite (3 % av totalfluoridet).

Det var ein teoretisk sjanse for å danne NO$_2$ i elektrolyseprosessen. Prosjektet nytta derfor direktevisande NO$_2$-sensorar for eventuelt å kunne måle denne eksponeringa. Vi fann ikkje verdier over den nedste fastsetjingsgrensa for utstyret. Der er såleis ingen verdiar å rapportere eller diskutere. Ein kan slå fast at NO$_2$ eksponering ikkje var mogeleg å fastsetje for dei arbeidsoperasjonane som vart undersøkt i dette prosjektet.

12.6. Personvariasjon

Fleire av resultata kommer frå målingar på same person over fleire dagar. Ein ynskte å sjå på dag til dag variasjonen for kvar person som funksjon av arbeidsoppgåver. Det vart valt ut dei personane som ein hadde 3 eller fleire målingar for. Ved å sjå på det relative standardavviket (Relativt standardavvik [RSD] = (standardavvik[s]/gjennomsnittet [AM] x 100 %)) mellom målingane for same person, kan ein estimere kor stor spreiring i resultat ein kan forvente når ein tek eksponeringsmålingar på ein tilfeldig dag. Torakal aerosol var valt ut som komponent til å illustre dette i figur 12.29. Ingen i jobbkategorien anode golv hadde denne jobbfunksjonen i tre skift i løpet av prøvetakingsperioden. Alle personvariasjonsmålingane for kategorien anode køyretøy/golv er samansatt av to målingar med som anode køyretøy og ei måling som anode golv.
Fig. 12.29: Dag til dag variasjon for same personane.

Av fig. 12.29 ser ein at det er størst dag til dag variasjon for jobbkategorien anode køyretøy/golv, med ein gjennomsnittleg (AM) verdi på om lag 75 %. Medan for anode køyretøy var den tilsvarande verdien 22 %.
13. Referanser

NS-EN 481 Arbeidsplasluft – Definisjoner av partikkelstørrelse for måling av luftbårne partikler.

14. Appendiks

<table>
<thead>
<tr>
<th>Komponent</th>
<th>Jobbkategori</th>
<th>n</th>
<th>GM</th>
<th>Nedre</th>
<th>Øvre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalerbar aerosol, IOM, mg/m³</td>
<td>Omnspassar</td>
<td>34</td>
<td>2,7</td>
<td>2,0</td>
<td>3,7</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>3,1</td>
<td>2,2</td>
<td>4,2</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>17</td>
<td>2,3</td>
<td>1,6</td>
<td>3,1</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>31</td>
<td>2,0</td>
<td>1,5</td>
<td>2,8</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>4,0</td>
<td>3,1</td>
<td>5,3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>92</td>
<td>2,4</td>
<td>2,1</td>
<td>2,9</td>
</tr>
<tr>
<td>Inhalerbar vassløyseleg fluorid, IOM, µg/m³</td>
<td>Omnspassar</td>
<td>33</td>
<td>178</td>
<td>128</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>291</td>
<td>218</td>
<td>389</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>17</td>
<td>152</td>
<td>113</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>31</td>
<td>152</td>
<td>125</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>4</td>
<td>320</td>
<td>237</td>
<td>433</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>90</td>
<td>173</td>
<td>149</td>
<td>201</td>
</tr>
<tr>
<td>Respirabel aerosol, Respicon, mg/m³</td>
<td>Omnspassar</td>
<td>37</td>
<td>0,23</td>
<td>0,20</td>
<td>0,27</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>0,30</td>
<td>0,15</td>
<td>0,61</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>0,23</td>
<td>0,18</td>
<td>0,29</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>0,21</td>
<td>0,19</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>0,49</td>
<td>0,18</td>
<td>1,4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
<td>0,24</td>
<td>0,22</td>
<td>0,26</td>
</tr>
<tr>
<td>Torakal aerosol, Respicon, mg/m³</td>
<td>Omnspassar</td>
<td>36</td>
<td>0,54</td>
<td>0,43</td>
<td>0,67</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>0,90</td>
<td>0,53</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>0,57</td>
<td>0,44</td>
<td>0,74</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>0,47</td>
<td>0,38</td>
<td>0,57</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>1,1</td>
<td>0,66</td>
<td>1,8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>99</td>
<td>0,55</td>
<td>0,49</td>
<td>0,62</td>
</tr>
<tr>
<td>Inhalerbar aerosol, Respicon, mg/m³</td>
<td>Omnspassar</td>
<td>36</td>
<td>1,6</td>
<td>1,2</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>2,0</td>
<td>1,2</td>
<td>3,3</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>1,7</td>
<td>1,3</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>1,1</td>
<td>0,87</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>2,9</td>
<td>1,9</td>
<td>4,4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>99</td>
<td>1,5</td>
<td>1,3</td>
<td>1,7</td>
</tr>
<tr>
<td>Vassløyseleg respirabelt fluorid, Respicon, µg/m³</td>
<td>Omnspassar</td>
<td>37</td>
<td>31</td>
<td>26</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>51</td>
<td>41</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>22</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>26</td>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>54</td>
<td>38</td>
<td>77</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
<td>29</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>Vassløyseleg torakalt fluorid, Respicon, µg/m³</td>
<td>Omnspassar</td>
<td>37</td>
<td>60</td>
<td>48</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>138</td>
<td>90</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>53</td>
<td>43</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>41</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>125</td>
<td>119</td>
<td>130</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
<td>55</td>
<td>49</td>
<td>63</td>
</tr>
<tr>
<td>Vassløyseleg inhalerbart fluorid, Respicon, µg/m³</td>
<td>Omnspassar</td>
<td>37</td>
<td>124</td>
<td>98</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>247</td>
<td>139</td>
<td>441</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>121</td>
<td>100</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>74</td>
<td>60</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>252</td>
<td>206</td>
<td>309</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
<td>111</td>
<td>97</td>
<td>128</td>
</tr>
<tr>
<td>Komponent</td>
<td>Jobbkategori</td>
<td>n</td>
<td>GM</td>
<td>Nedre</td>
<td>Øvre</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>---</td>
<td>----</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Partikulært respirabelt fluorid, Respicon, µg/m³</td>
<td>Omnspassar</td>
<td>37</td>
<td>48</td>
<td>40</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>62</td>
<td>51</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>35</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>43</td>
<td>36</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>89</td>
<td>59</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
<td>46</td>
<td>41</td>
<td>51</td>
</tr>
<tr>
<td>Partikulært torakalt fluorid, Respicon, µg/m³</td>
<td>Omnspassar</td>
<td>37</td>
<td>99</td>
<td>78</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>185</td>
<td>117</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>88</td>
<td>73</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>72</td>
<td>60</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>215</td>
<td>185</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
<td>93</td>
<td>83</td>
<td>106</td>
</tr>
<tr>
<td>Partikulært inhalerbart fluorid, Respicon, µg/m³</td>
<td>Omnspassar</td>
<td>37</td>
<td>245</td>
<td>187</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>5</td>
<td>372</td>
<td>205</td>
<td>677</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>19</td>
<td>230</td>
<td>191</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>34</td>
<td>145</td>
<td>116</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>512</td>
<td>402</td>
<td>651</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100</td>
<td>215</td>
<td>186</td>
<td>248</td>
</tr>
<tr>
<td>Gassformig fluorid, HF, µg/m³</td>
<td>Omnspassar</td>
<td>33</td>
<td>67</td>
<td>55</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>17</td>
<td>28</td>
<td>22</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>31</td>
<td>39</td>
<td>32</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>97</td>
<td>47</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>90</td>
<td>44</td>
<td>38</td>
<td>51</td>
</tr>
<tr>
<td>Svodeldioksid, µg/m³</td>
<td>Omnspassar</td>
<td>33</td>
<td>63</td>
<td>51</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>4</td>
<td>34</td>
<td>16</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>17</td>
<td>44</td>
<td>33</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>31</td>
<td>194</td>
<td>154</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>163</td>
<td>99</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>90</td>
<td>89</td>
<td>74</td>
<td>106</td>
</tr>
<tr>
<td>Totalfluorid, µg/m³</td>
<td>Omnspassar</td>
<td>33</td>
<td>337</td>
<td>272</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>Digel</td>
<td>4</td>
<td>383</td>
<td>162</td>
<td>906</td>
</tr>
<tr>
<td></td>
<td>Tappar</td>
<td>17</td>
<td>258</td>
<td>216</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>Anode køyretøy</td>
<td>31</td>
<td>192</td>
<td>155</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Anode golv</td>
<td>5</td>
<td>614</td>
<td>464</td>
<td>812</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>90</td>
<td>275</td>
<td>241</td>
<td>313</td>
</tr>
</tbody>
</table>