Caroline Ørnfjord Nome

"Jeg vil at du skal finne det ut, jeg vil at du skal forsker":

En kvalitativ casestudie om en lærers tilrettelegging av undersøkende matematikkundervisning

Trondheim, mai 2014

Høgskolen i Sør-Trøndelag
Avdeling for lærer- og tolkeutdanning
"Jeg vil at du skal finne det ut, jeg vil at du skal forske":
En kvalitativ casestudie om en lærers tilrettelegging av undersøkende matematikkundervisning

"I want you to figure it out, I want you to investigate":
A qualitative casestudy on one teacher’s facilitation of inquiry based learning in the mathematics classroom

Masteroppgave, Master i matematikkdidaktikk
Trondheim, mai 2014

Veileder: Svein Arne Sikko

Høgskolen i Sør-Trøndelag
Avdeling for lærer- og tolkeutdanning

Høgskolen har intet ansvar for synspunkter eller innhold i oppgaven.
Framstillingen står uteukkende for studentens regning og ansvar.
Forord

Spennende, slitsomme, utfordrende og ikke minst lærerike år er snart over. Jeg avslutter min femårige lærerutdanning ved Høgskolen i Sør-Trøndelag med denne masteroppgaven. Om kort tid skal jeg ut å undervise mine egne elever i matematikk, på en skole som ønsker elevaktiv undervisning. Da er jeg ekstra takknemlig for de verdifulle innsiktene arbeidet med denne oppgaven har gitt meg, i rollen til en matematikklærer som involverer elevene i undersøkende tilnærninger til faget. Dette arbeidet hadde heller ikke vært mulig uten en rekke gode hjelpere.

Jeg vil takke familie og venner, for deres støtte. Takk til Catharina, Ane og Emilie for at dere har gitt av deres tid til å komme med nyttige innspill, og ikke minst for troen dere alltid har på meg. Tusen takk Alfonso, for din oppmuntring og forståelse for det året jeg har vært igjennom.

Oslo, mai 2015.

Caroline Ørnfjord Nome
Innhold

KAPITTEL 1: INNLEDNING ... 1
 1.1 Bakgrunn for oppgaven ... 1
 1.2 Presentasjon av masteroppgaven og forskningsspørsmål ... 2
 1.3 Begrepsavklaring .. 4
 1.4 Oppgavens oppbygging ... 4

KAPITTEL 2: TEORETISK RAMMEVERK .. 5
 2.1 Sosiokulturelt perspektiv på læring ... 5
 2.1.1 Praksisfelleskap og undersøkende praksisfelleskap .. 6
 2.2 Inquiry og IBL .. 7
 2.2.1 Dewey og reflective inquiry ... 8
 2.2.2 Inquiry som en prosess, en tilnærningsmåte og en holdning ... 10
 2.2.3 Inquiry-basert matematikkundervisning ... 11
 2.3 Undersøkelseslandskap og åpne oppgaver ... 12
 2.3.1 Å undersøke figurmonster ... 13
 2.4 Lærerens rolle som veileder ... 14
 2.4.1 Å styre helklassediskusjoner ... 16
 2.4.2 Interaksjon og kommunikasjon mellom lærer og elever ... 17

KAPITTEL 3: METODE ... 20
 3.1 Forskningsdesign ... 20
 3.1.1 Valg av case og forskningsetiske overveielser .. 21
 3.1.2 Beskrivelse av case og kontekst .. 23
 3.2 Datainnsamlingsstrategier ... 25
 3.2.1 Observasjon ... 26
 3.2.2 Intervju ... 28
 3.3 Analysemetode .. 30
 3.4 Kvalitet i studien .. 33

KAPITTEL 4: PRESENTASJON AV FUNN FRA UNDERSØKELSEN .. 36
 4.1 Læreren om inquiry based learning .. 36
Liste over figurer

FIGUR 1: The Inquiry Co-operation Model (ICM) ...19
FIGUR 2: Kvadratet med ruter på 10*10 ..44
FIGUR 3: Rektangeltall ..44
FIGUR 4: Trekanttall ..44
FIGUR 5: Tabell, elevløsning ...56
FIGUR 6: Kryss, elevløsning ...56
FIGUR 7: The Border Problem, løsninger på tavla ..57
FIGUR 8: Sammenhengen mellom mengdene i figuren ...58
Kapittel 1: Innledning

I dette masterprosjektet vil jeg undersøke en lærers bruk av inquiry based learning (IBL) i matematikkundervisningen. Undersøkelsen har foregått på en ungdomsskole i Midt-Norge, sammen med en lærer og hennes to grupper i matematikk. Jeg ønsker med denne oppgaven å si noe om hvordan en lærer kan legge til rette for mer undersøkende matematikkundervisning for sine elever.

1.1 Bakgrunn for oppgaven

Skolen har en viktig oppgave i å forberede sine elever til å møte en ukjent fremtid. Elevene skal utrustes med den nødvendige kompetansen og kunnskapen til å mestre livets oppgaver, og opplæringen skal kvalifisere elevene for produktiv innsats i arbeidslivet (Udir, 2011). Matematikk er et fag som gir elevene en åpen måte for å forstå, deltakelse i og evne til å påvirke prosesser i samfunnet (Udir, 2013). I dag er det blant annet behov for at elevene lærer seg hvordan de kan få tak i kunnskap, og at de utvikler kompetanse i kreativ problemløsning og kritisk tenkning (Maass & Doorman, 2013).

I en rapport fra OECD meldes det at mange av dagens klasserom er preget av overføringsbaserte praksiser (Maass & Artigue, 2013), også kalt lærersentert undervisning. Innenfor matematikkopplæringen blir dette ofte referert til som tradisjonell matematikkundervisning, når læreren presenterer og forklarer formlene og algoritmene som trengs for å løse rutineoppgavene elevene blir satt til å jobbe med. Ofte er også læreboka styrende i det tradisjonelle matematikklassenrommet (Alrø & Skovsmose, 2002; Nosrati & Wæge, 2014). En slik undervisningsform kan gi elevene et inntrykk av matematikk som et statisk fag som består av 'rules without reason', der den viktigste kompetansen er å huske og gjengi informasjon. Dette går dårlig overens med samfunnets behov og formålene med matematikkopplæringen som sier at elevene må lære å tenke og argumentere på en selvstendig og selvbevisst måte, og kunne bruke matematikk som et verktøy for å løse problemer (Fuglestad, 2009, s.70; Nosrati & Wæge, 2014, s.1).

Den europeiske rapporten av Rocard, Csermely, Jorde, Lenzen, Walberg-Henriksson & Hemmo (2007) ser med bekymring på utviklingen i interessen for realfag i dag, og mener

1.2 Presentasjon av masteroppgaven og forskningsspørsmål

Formålet med denne oppgaven er å undersøke og få innsikt i undersøkende læring og se på hvordan det kan legges til rette for i matematikkundervisningen. Dersom IBL skal bli en del av den daglige matematikkundervisningen er det klart at dette avhenger av læreren. Det er læreren som er ansvarlig for å planlegge og gjennomføre elevenes undervisning, og undervisningen elevene får har mye å si for deres læringsutbytte. Når det kommer til utviklingen av god matematikkundervisning så har læreren en nøkkelrolle (Carlsen & Fuglestad, 2010, s.40). Hvilke arbeidsmåter læreren velger og holdningene læreren har, påvirker elevenes læring og deres forestilling av hva matematikk er og hva det vil si å gjøre
matematikk (Sikko, Lyngved & Pepin, 2012). Derfor ønsker jeg i denne oppgaven å rette spesielt blikk mot læreren og lærerens arbeid med IBL.

Flere lærere i Norge er generelt positive til bruken av undersøkende undervisningsstrategier i matematikkopplæringen, men de ser også en del utfordringer når det kommer til mangel på tid til både innføring og planlegging av IBL-økter, samt mangel på relevant undervisningsmateriell (Sikko, Lyngved og Pepin, 2012). Mange matematikklærere har i dag også erfart en overføringsbasert praksis da de gikk på skolen, og intuitivt fører de slik undervisning videre til sine elever (Fuglestad, 2009). Som elev har jeg selv erfart mer tradisjonell matematikkundervisning, og jeg ser derfor et behov for dypere innsikt i emnet, inquiry based learning. For å vite hvordan det er mulig for læreren å planlegge og gjennomføre undersøkende matematikkundervisning, og med et ønske om å finne ut mer om lærerens rolle i et undersøkende klasserom har jeg valgt følgende problemstilling:

_Hvordan kan en lærer legge til rette for inquiry based learning (undersøkende læring) i matematikkundervisningen?

Undervisning er en sammensatt aktivitet. For å forstå valgene en lærer tar i planleggingen og gjennomføringen av en undersøkende matematikk-økt, ser jeg det som nødvendig å se dette i sammenheng med lærerens intensjon og mål for timen. Samtidig er IBL et vidt begrep som det ikke nødvendigvis finnes én definisjon på, noe jeg vil se nærmere på senere i oppgaven. Derfor er innblikk i lærerens oppfatninger om begrepet like viktig for å forstå hvordan læreren planlegger og gjennomfører en IBL-økt. Med utgangspunkt i dette har jeg valgt å stille følgende tre forskningsspørsmål:

- Hvilke oppfatninger har en lærer om IBL?
- Hvordan planlegger en lærer undersøkende undervisning?
- Hvordan gjennomfører en lærer undersøkende undervisning?

For å finne svar på forskningsspørsmålene har jeg gjennomført en kvalitativ studie. Jeg har besøkt en lærer som har kjennskap til inquiry based learning og hennes to klasser i matematikk på 8.trinn. Jeg har gjennomført intervjuer med læreren og observert til sammen fire undervisningsøkter der læreren hadde fokus på IBL. Funnene fra undersøkelsen blir analysert med utgangspunkt i det teoretiske rammeverket jeg presenterer først i oppgaven. Dette gjør jeg i samme tredeling som forskningsspørsmålene, før jeg avslutter med å se på hvordan funnene kan bidra til å svare på problemstillingen.
1.3 Begrepsavklaring

1.4 Oppgavens oppbygging

Kapittel 2: Teoretisk rammeverk

2.1 Sosiokulturelt perspektiv på læring

I undersøkende undervisning så legges det til rette for at læring skal skje i samarbeid med andre, i tillegg til at aktiviteten elevene engasjeres i har betydning for elevenes læringsutbytte. Dette kan knyttes til et sosiokulturelt syn på læring, som først og fremst ser det å lære som en sosial prosess. Videre betraktes de sosiale og kulturelle fellesskapene den enkelte er en del av som selve utgangspunktet for læring. Dette innebærer at de fellesskapene vi er forankret i påvirker måten vi handler og tenker på. Samtidig får vi innsikt i hva kulturen dreeier seg om, og hva som er interessant og verdifullt i kulturen gjennom samhandling og interaksjon med de andre i fellesskapet (Dysthe, 2001; Säljö, 2010). Matematikklassen en lærer og elever er en del av kan ses på som et slikt fellesskap.

For å forstå og handle i den kulturen man er en del av så er språket et viktig redskap. Det er også et helt sentralt virkemiddel i undersøkende matematikkundervisning. Det gjør det mulig å planlegge og utføre oppgaver, men det gir også anledning til å komme i kontakt og

2.1.1 Praksisfellesskap og undersøkende praksisfellesskap

Etableringen av praksisfellesskap forutsetter gjensidig engasjement, som vil si at man tar utgangspunkt i at både elever og lærer har noe å bidra med (Fuglestad, 2009). Wells (1999, s.112) legger til at å stole på elevenes evne til å ta en aktiv rolle i deres egen læring er forutsetning for et samarbeid mellom lærer og elev. Dysthe (2001) beskriver interaksjonen mellom lærer og elev med begrepet aktiv kunnskapskonstruksjon. Eleven må selv engasjere seg for å skape sin egen utvikling, samtidig innebærer dette for eleven og læreren en gjensidig tilegning av hverandres handlinger og mål. De to må handle og tenke sammen (Goos, 2004; Säljö, 2010). Dette samarbeidet må også resultere i fremgang, slik at interaksjonen mellom deltakerne fører til utviklingen av praksisfellesskapet så vel som individuell utvikling. Det vil si at elevenes og lærerens progressive deltagelse i praksisfellesskapet også fører til en utvikling av normene for praksisen og måtene å være i fellesskapet (Carlsen & Fuglestad, 2010).

Goos (2004) ser på etableringen av praksisfellesskap i matematikkundervisningen som et mulig utgangspunkt for undersøkende læring og undervisning, men det er behov for et litt

2.2 Inquiry og IBL

opplæring. Inquiry som et pedagogisk begrep kan kobles tilbake til noen komplekse ideer, og når komplekse ideer skal implementeres hender det at de blir redusert og forenklet for å gjøre forståelsen lettere. For ikke å risikere å forenkle begrepet vil jeg i det følgende redgjøre for inquiry og IBL. Jeg vil først se på utviklingen av det som et pedagogisk begrep fra Deweys arbeid, etterfulgt av begrepets betydning som en prosess, en tilnærningsmåte og en holdning, og til slutt vise hvordan IBL plasserer seg i matematikkfaget.

2.2.1 Dewey og reflective inquiry

 Dewey så på inquiry som grunnlaget for både oppdagelse och læring (Artigue & Blomhøj, 2013). Inquiry var i følge han en prosess, som progressivt utviklet seg mellom det kjente og det ukjente. Selve prosessen begynner når et individ eller en gruppe indivder møter en ukjent eller ubestemmelig situasjon, som for dem oppleveres som et problem og noe som krever undersøkelse for å gjøres kjent. ”A problem represents the partial transformation by inquiry of a problematic situation into a determinate situation” (Dewey, 1938, s.108). Problemet er ikke slik Dewey så det, en oppgave som skal løses, men det er en viktig del av og et utgangspunkt for undersøkelsesprosessen. Han så også på det å stille spørsmål som helt sentralt for
undersøkelsesprosessen. Til en viss grad mente Dewey at inquiry og å stille spørsmål var synonymer: ”We inquire when we question; and we inquire when we seek for whatever will provide an answer to a question asked. Thus it is of the very nature of the indeterminate situation which evokes inquiry to be questionable (…)” (Dewey, 1938, s.105).

2.2.2 Inquiry som en prosess, en tilnærningsmåte og en holdning

Inquiry i opplæringen blir beskrevet både som en prosess bestående av sammensatte aktiviteter, det blir beskrevet som en tilnærningsmåte til fagkunskapen og det blir beskrevet som en holdning. Wells (1999) poengterer at inquiry ikke er en metode eller en samling standardiserte prosedyrer for å utføre aktiviteter. Inquiry, er i følge han, ”a willingness to wonder, to ask questions, and to seek to understand by collaborating with others in the attempt to make answers to them” (s.121). Han mener at inquiry er betydningsfullt fordi det skaper et klasseromsfellesskap som aktiviserer elevene sine. Wells legger til at målet med inquiry ikke er kunnskapen alene, men evnen til å bruke det man har tilegnet seg for å handle informert og ansvarlig i situasjoner man kan møte på nå og i fremtiden.

Jaworski (2009) utvikler begrepet videre og sier at det i tillegg til å være en holdning og et verktøy for å være og handle i en praksis, bør det også betraktes som et verktøy for å utvikle praksisen man er en del av. Jaworski ønsker å utvikle praksisfellesskap i matematikkopplæringen, som sikrer læring gjennom deltaking. For å få til dette ser hun på undrende og undersøkende deltakere som tar del i et undersøkende praksisfellesskap, som lorenningen.

2.2.3 Inquiry-basert matematikkundervisning

IBL er ikke den eneste tilnærmingen til læring og undervisning av matematikk som bringer med seg induktive elementer og som tar sikte på å gi elevene meningsfulle erfaringer med faget. Det finnes allerede tilnærminger som kan ses på som nært forbundet med IBL, blant annet problemløsning, modellering og RME (Realistic Mathematics Education), og fokus på
relasjonell og konseptuell forståelse (Artigue & Blomhøj, 2013; Sikko, 2015). Grunnen til at jeg har valgt å se på akkurat IBL henger sammen med at det er en tilnærming til matematikkfaget som har fått stadig økt oppmerksomhet i løpet av de siste tiårene. Dette gjennom offentlige dokumenter, i utdanningsforskning og i ulike prosjekter.

2.3 Undersøkelseslandskap og åpne oppgaver

De mener at matematikkundervisningen i dag foregår i for stor grad innenfor det Skovsmose (1998) kaller for oppgaveparadigmet. En typisk oppbygging av en slik matematikktid begynner med læreren som presenterer og gjennomgår noen matematiske ideer og teknikker, som gir mening til de utvalgte oppgavene elevene deretter blir satt til å jobbe med. Oppgaven elevene skal løse har som regel et rett svar, og utfordringen er knyttet til hvor vidt de klarer eller ikke klarer å anvende den gitte algoritmen for å komme frem til svaret. Slik undervisning gjør elevene til passive mottakere av regler og metoder, og Fuglestad (2009) sier at det legger opp til spørsmålet av typen "Hva skal jeg gjøre?" (s.69).

Alrø og Skovsmose (2002) refererer til tre ulike typer undersøkelseslandskap som matematikkundervisningen kan foregå innenfor dersom lærer og elever tar en undersøkende tilnærming til faget. Det kan være undersøkelseslandskap som har referanser til "ren" matematikk (pure mathematics); til et matematisk domene, matematiske ideer og/eller strukturer. Det kan være undersøkelseslandskap som har referanser til en "konstruert" virkelighet (semi-reality); det vil si at det finnes referanser til kjente enheter fra virkeligheten, men samtidig er det noe kunstig ved det som ikke har relevans for virkeligheten. Den tredje typen av undersøkelseslandskap har referanser til den virkelige "verden" (real references), og tar utgangspunkt i en reell situasjon eller et problem.

Skovsmose (1998) sier at et undersøkelseslandskap ikke har en absolutt karakteristikk, og at det ikke nødvendigvis finnes bestemte temaer som er undersøkelseslandskap. Det sentrale er

Skovsmose (1998) introduserer undersøkelseslandskapet som et alternativ til undervisning som foregår innenfor oppgaveparadigmet. Han legger til at det ikke nødvendigvis er en god idé å konsentrere matematikkundervisningen utelukkende innenfor et av de tre undersøkelseslandskapene. Heller ikke å fokusere på undersøkelseslandskap generelt som det eneste læringsmiljøet i matematikkundervisningen. Kvalitet i matematikkundervisningen bunter i læreren og elevenes bevegelse mellom de ulike læringsmiljøene. Så er det opp til ”den enkelte klasse og lærer [å] finde en fælles rytme og sammen bevæge sig rundt mellem forskjellige typer læringsmiljøer” (Skovsmose, 1998, s.33)

2.3.1 Å undersøke figurmønster

Figurmønster er geometriske representasjoner av tallrekkers om forandrer seg etter et bestemt mønster (Karlsen, 2014). Å utforske figurmønster innebærer å lete etter mønster og strukturer, og se det generelle i hvordan mengdene i mønsteret varierer i forhold til hverandre ved hjelp

Elevene kan se på både rekursive og eksplisitte sammenhenger i figurmønsteret. Den rekursive sammenhengen ser på forholdet mellom de påfølgende figurene i mønsteret. Man kan bruke denne sammenhengen til å finne antall komponenter i den neste figuren, dersom man kjenner antall komponenter i den foregående figuren. Den eksplisitte sammenhengen ser på forholdet mellom antall komponenter i figuren og plasseringen, **figurnummeret**, figuren har i figurfølgen. Denne sammenhengen kan brukes til å finne en hvilken som helst figur i rekka, dersom man kjenner til figurnummeret (Lannin et al., 2006).

2.4 Lærerens rolle som veileder

Å gå fra mer tradisjonelle tilnærmeringer til undervisning til matematikkundervisning med vekt på inquiry-baserte metoder krever at læreren endrer praksis, og det krever at læreren endrer rolle. Læreren må gå fra å være instruktør og kunnskapsbesitter til å bli en veileder og tilrettelegger. En tilrettelegger for læringssmiljø der elevene konstruerer sin egen forståelse av
den matematiske kunnskapen (Maass & Artigue, 2013; Stein, Engle, Smith & Hughes, 2008). Fuglestad (2009) beskriver denne overgangen som risikofylt for mange lærere, men at utfallet likevel kan være til fordel for alle i klasserommet:

Noen lærere opplever det som en risiko å ta opp spørsmål de selv ikke vet svaret på eller å forandre måten å undervise på. Å undre seg sammen og foreslå alternative angrepsmåter for spørsmål eller oppgaver kan gi rom for større kreativitet og flere innfallsvinkler slik at elevene tar større ansvar for å løse problemet og stille autentiske spørsmål, slike spørsmål som virkelig angår dem (s.73).

I følge Maass og Artigue (2013) innebærer lærerens rolle å orientere elevene i retning av interessante spørsmål og problemer som innehar et potensiale for læring. Rollen innebærer å sørge for nødvendig støtte og veiledning til elevenes selvstendige arbeid, og den innebærer konstruktiv bruk av elevenes tidligere kunnskap. Læreren må lede gruppe- og helklassediskusjoner og oppmuntre diskusjon av alternative synsvinkler. Til slutt, en sentral del av lærerrollen er å hjelpe elevene til å se forbindelser mellom ideer og metoder utviklet av elevene og de matematiske ideene, begrepene og metodene som er fundamentale for faget.

2.4.1 Å styre helklassediskusjoner

Elevenes ideer blir sett på som viktige bidrag i det inquiry-baserte matematikklasserommet og utviklingen og presentasjonen av dem skjer ofte i tre faser: I lanseringsfasen blir problemet eller oppgaven elevene skal jobbe med presentert for dem, samt tilgjengelige ressurser og det forventede utfallet. Oppgaven innehar viktige matematiske ideer og kan løses på flere måter. Utforskingsfasen består av elevenes arbeid med problemet, gjerne gjennom diskusjon i grupper. Diskusjons- og oppsummeringsfasen er den siste fasen og består gjerne av en helklassediskusjon med presentasjon og diskusjon av elevenes ulike tilnæringer til oppgaven (Stein et al., 2008).

1. Å anta (anticipating) sannsynlige elevsvar til den åpne oppgaven.
2. Å overvåke (monitoring) elevenes arbeid med oppgavene i løpet av utforskinsfasen.
3. Å velge ut (selecting) elever til å presentere løsningsstrategier og svar i løpet av diskusjons- og sammendragsfasen. Læreren kan kombinere elevpresentasjonene både ved å velge ut elever og ved å la frivillige få presentere sin metode. Det sentrale er at elevsvarene som blir presentert kan bidra til en forståelse av den matematikken som er i fokus for den timen eller perioden. Derfor kan det være lurt å trekke frem typiske misforståelser blant elevene, i tillegg til de løsningene som er riktige.
4. Å planlegge en hensiktsmessig rekkefølge (sequencing) av elevsvarene.
5. Å hjelpe hele klassen til å se forbindelser (connecting) mellom elevenes ulike tilnærminger og ideer og mellom elevenes løsningsstrategier og de sentrale matematiske ideene og metodene.

2.4.2 Interaksjon og kommunikasjon mellom lærer og elever

Samtalen og interaksjonen mellom lærer og elever i et klasserom med fokus på IBL skiller seg fra samtalen i det tradisjonelle matematikklasserommet. Flere forskere har karakterisert ulike kommunikasjonsmønstre og nivåer av kommunikasjon i matematikkundervisningen. Drageset (2014) refererer blant annet til Brendefyr og Fykholms (2000) fire nivåer av kommunikasjon. Enveiskommunikasjon (uni-directional) og medvirkende kommunikasjon (contributive) beskriver to nivåer for kommunikasjon der læreren er den absolutte autoriteten, som dominerer samtalet i kasserommet. Innenfor medvirkende kommunikasjon er det i

Refleksjon er som vi har sett tidligere et viktig element i en læringsprosess som vektlegger inquiry. Alrø og Skovsmoses (2002) syn på læring i matematikkundervisning med undersøkende tilnærmeringer støtter også Brendefyr og Fykholms (2000) øverste nivå for kommunikasjon som legger samarbeid til grunn i interaksjonen mellom lærer og elev. I følge Alrø og Skovsmose (2002) bør læring ses på som handling (action), fremfor tvungen aktivitet (forced activity), som de mener karakteriserer læring innenfor oppgaveparadigmet. ”The students do not first have an intention to learn before they let themselves be involved in learning” (s.44). Elevenes vilje til å engasjere seg i en prosess av å ’finne ut’ innebærer et samarbeid mellom lærer og elev som blir støttet eller hindret av kommunikasjonen dem i mellom. Elevene må inviteres til å ta del i en undersøkelsesprosess, og de må gis rom til å bli eiere av sin egen læringsprosess. Først når elevene aksepterer invitasjonen kan utforskingen sies å være i gang.

Gjennomgangen av begrepet inquiry og IBL, undersøkelseslandskap og lærerens rolle som veileder og tilrettelegger utgjør grunnlaget for analysen av datamaterialet i denne oppgaven og forståelsen av det. Før jeg presenterer og drøfter funn fra undersøkelsen i kapittel 4, skal jeg utdype hvilke metoder jeg har brukt til innsamling og analyse av data.
Kapittel 3: Metode

'Et veivalg som føre til målet' er den opprinnelige greske betydningen av ordet metode (Kvale, 1997, s.20). Metode er således en fremgangsmåte man velger for å svare på ulike problemstillingar. Den viser til måter å innhente data på, og måter å analysere dataene på. I dette forskningsprosjektet har jeg valgt en kvalitativ tilnærming for å finne svar på min problemstilling; " Hvordan kan en lærer legge til rette for inquiry based learning (undersøkende læring) i matematikkundervisningen?".

Postholm (2005, s.18) sier at det å utforske sosiale prosesser i sin naturlige kontekst er det kvalitativ forskning innebærer, med fokus på å forstå deltakernes perspektiv. I dette prosjektet ønsker jeg å få innsikt i kompleksiteten i en undervisningssituasjon sett fra en lærers ståsted. Jeg er opptatt av å forstå "den andre" (s.26), og vil trekke frem lærerens perspektiv i planleggingen og gjennomførelsen av matematikkundervisning preget av inquiry based learning. Jeg har ikke til hensikt å lage statistikk eller tallfeste et problem, men søker forståelse og mening bak lærerens handle og tanker om IBL. Derfor har jeg valgt å se bort i fra en kvantitativ tilnærming, da forståelse er mer interessant enn tall med tanke på problemstillingen i min oppgave. Kvalitativ forskning gir dybdegående beretninger og en detaljert forståelse av handle og tanker, ved å utforske situasjoner gjennom øynene til forskningsdeltakerne (Cohen, Manion & Morrison, 2011). I det følgende vil jeg redegjøre for valg av forskningsdesign og forskningsdeltakere, og valg av observasjon og intervju som datainnsamlingsstrategier.

3.1 Forskningsdesign

Jeg har valgt å gjennomføre en instrumentell casestudie for å belyse problemstillingen min. For å utvikle en forståelse for hvordan en lærer kan legge til rette for IBL i matematikkundervisningen så jeg det som nødvendig å gå i dybden av et relativt begrenset område. Jeg har valgt å ta utgangspunkt i en lærer som kjenner til begrepet IBL, og som ønsket å gjennomføre undersøkende matematikkundervisning med sine to grupper i matematikk. På den måten fikk jeg som forsker muligheten til å være tilstede i undersøkende matematikkundervisning slik den naturlig vil foregå, og jeg fikk muligheten til å gå i dybden av de ulike aspektene ved lærerens undervisning og undersøke hva de betyr for læreren.
I en casestudie så retter man fokuset mot flere eller alle faktorer i den enheten som blir studert, fremfor noen utvalgte variabler. Ved å studere en case forsøker man å avdekke de faktorene som er av betydning for enheten, og man undersøker sammenhengen mellom de ulike faktorene. For å gjøre dette er det vanlig å studere casen i sine naturlige omgivelser (Postholm, 2005). Å studere lærerens matematikkundervisning når hun bruker ideer fra IBL gjør det mulig å trekke frem det karakteristiske for dette tilfellet, og samtidig se det i sammenheng med settingen det er en del av. Dette bidrar til å skape et helhetlig bilde av hvordan en lærer kan bruke ideer fra IBL i matematikkundervisningen.

Tilfellet i en casestudie kan defineres som et "bundet system" (Postholm, 2005, s.50; Stake, 1995). Det er bundet i både sted og tid, som vil si at casen studeres i en bestemt setting (Johannessen, Tuft & Christoffersen, 2010). Læreren som er i fokus i denne studien er bundet til skolen hun jobber på og de to klassene hun underviser i matematikk. Samtidig er dette en studie av læreren når hun gjennomfører matematikkundervisning med fokus på IBL, som i løpet av de to ukene jeg var tilstede på skolen gjaldt i fire av ti matematikktimer. Læreren i denne studien brukes som et redskap for å illustrere og bedre forstå noen generelle forhold som kan gjøres gjeldende utover det spesifikke tilfellet. Dette gjør denne studien til en instrumentell casestudie. Jeg søker en generell forståelse av hvordan en lærer kan legge til rette for undersøkende matematikkundervisning, og studerer et spesielt tilfelle for å få denne innsikten (Postholm, 2005; Stake, 1995). Den valgte casen er et unikt tilfelle, men selv om kunnskapen som produseres i dette tilfellet er situert kan den også komme til nytte i andre, lignende situasjoner.

3.1.1 Valg av case og forskningsetiske overveielser

Stake (1995) poengterer at man ikke bare studerer et tilfelle for å studere det, men det må være spesielle egenskaper ved tilfellet som er av spesiell interesse. Han mener det kan være
nyttig å velge case som er typiske eller som kan være representative for andre tilfeller. I dette prosjektet er fokuset rettet mot inquiry based learning i matematikkundervisningen sett fra lærerens ståsted. Det var derfor av spesiell interesse å studere en matematikklærer som allerede hadde en form for tilknytning til IBL. For å kunne svare på problemstillingen min foretok jeg en kriteriebasert utvelgelse (Johannessen, Tufte & Christoffersen, 2010, s.109). Målet med den type utvelgelse er å sørge for at forskningsdeltakernes deltakelse bidrar til relevant informasjon som kan belyse forskningsspørsmålet (Tjora, 2012). Jeg stilte følgende to kriterier til en aktuell deltaker i prosjektet:

- det måtte være en matematikklærer med kjennskap til IBL.
- læreren hadde enten erfaring med IBL fra før eller et ønske om å bruke ideer fra IBL i egen matematikkundervisning.

Med en gang en av lærerne, som oppfylte de to kriteriene, meldte sin interesse ble det opprettet kontakt via mail. Det ble avtalt et møte for å snakke mer om det praktiske ved undersøkelsen og for å avtale en passende tidsperiode for gjennomførelsen av datainnsamlingen. Møtet var også en anledning for å presentere meg selv for læreren, og vise min interesse for hennes bidrag til prosjektet. Jeg har valgt å kalle læreren i denne studien for ”Anne”, både for å anonymisere læreren og for å skille mellom den generelle bruken av ordet lærer.

Grunnen til at jeg valgte å fokusere på én lærer fremfor flere var av praktiske hensyn. Jeg bor ikke lenger i Midt-Norge, så det å gjøre datainnsamlinger i en annen del av landet krever nøye planlegging. Et alternativ kunne vært å lete etter lærere som oppfyller kriteriene i nærmiljøet, men jeg visste på forhånd at Primas og Mascil var tilknyttet en høgskole i Midt-Norge og at jeg på den måten kunne få hjelp til å komme i kontakt med en aktuell kandidat der. En annen mulighet hadde vært å se på to lærere fra den samme skolen, men det var bare en som meldte
seg og som hadde tid til å delta. Å inkludere flere lærere i studien kunne vært en styrke for funnene fra undersøkelsen fordi flere kilder kan bidra til å understøtte og bekrefte hverandre, eller avkreftte hverandre. Dette handler om studiens validitet, noe jeg vil komme tilbake til i avsnitt 3.4.

I forskningsprosessen har jeg tatt hensyn til de forskningsetiske retningslinjene som er utformet av Den nasjonale forskningskomité for samfunnsfag, jus og humanoria (NESH). Annes frivillige deltakelse var et sentralt startpunkt for undersøkelsen. For å bygge tillitt var det å gi informasjon om prosjektet og om hva selve deltakelsen innebar vel så viktig. Annes rett til selvbestemmelse ble vektlagt når det kom til å avtale en passende periode for gjennomføringen av undersøkelsen og når det gjaldt selve gjennomføringen av intervju og observasjon (Johannessen, Tufte & Christoffersen, 2010).

I denne undersøkelsen er Anne, hennes handlinger og perspektiv det mest sentrale for studien, men undersøkelsen involverer også hennes to elevgrupper på 8.trinn. Derfor var det også nødvendig med underskrift og godkjenning fra elevenes foreldre før jeg kunne sette i gang med datainnsamlingen. Gjennom et samtykkeerklæringsskjema (se vedlegg 1) fikk foreldrene informasjon om min tilstedeværelse i undervisningen, hva de innsamlede dataene skulle brukes til og at de ville behandles konfidensielt. Foreldrene ble også informert om at min tilstedeværelse ville bli lagt til rette slik at den minst mulig forstyrret elevenes læring. I materialet er alle navn og steder anonymisert, og pseudonymer er anvendt.

3.1.2 Beskrivelse av case og kontekst

Anne, læreren i denne studien, er en ung kvinne, og relativt nyutdannet allmennlærer med fordypning i matematikk og naturfag, og en master i spesialpedagogikk. Før hun begynte på lærerskolen tok hun et år med økonomi- og handelsfag. Da undersøkelsen foregikk var hun på sitt andre år som ferdigutdannet lærer, i samme skole. Hennes første år i skolen var hun ansatt
i en vikarstilling, og jobbet som faglærer på 10.trinn. Da underviste hun i matematikk og naturfag. Nå, i sitt andre år som lærer, er hun fast ansatt og jobber som faglærer på 8.trinn med to grupper i matematikk, tre grupper i naturfag og en gruppe i valgfaget ‘Teknologi i praksis’. I tillegg er hun ansatt som skolens spesialpedagogiske koordinator, og har det overordnete ansvaret for elever med spesialpedagogiske behov.

Skolen hun jobber på er en ungdomsskole i byen, i Midt-Norge, med ca 300 elever. Et av skolens satsningsområder er realfag, og som en del av denne satsningen er skolen involvert i ulike prosjekt. Et av prosjektene skolen har deltatt i er Primas-prosjektet, og nå er to av lærerne, en av dem er Anne, med på oppfølgingsprosjektet Mascil. Med de enkelte lærernes deltakelse i de to prosjektene følger en involvering av alle realfagslærerne på skolen, og en intensjon om et økt fokus på IBL i realfagsundervisningen i årene som kommer.

På skolen er det to prosjektlærere, som er tilstede som en ekstra ressurs i realfagsundervisningen til de “vanlige” faglærerne. Vanligvis er en av dem tilstede i Annes matematikkundervisning to timer i uka. Disse lærerne er også med på planleggingen av undervisningen, og de kan ha hovedansvaret for enkelte økter. Skolen har også et eget matematikkrom som kan benyttes. Det er et vanlig klasserom, men her har skolen samlet diverse utstyr og ulike konkrete relevant for matematikkundervisning. I tillegg er pultene stort sett alltid organisert slik at elevene kan sitte gruppevis. Anne bruker selv matematikkrommet ved flere anledninger. Ofte blir det brukt som et rom for utforsking og lek knyttet til matematiske emner.

Da jeg først kom i kontakt med Anne var begrepet inquiry based learning relativt nytt for henne. Skolens involvering i Primas-prosjektet foregikk før hun hadde begynt å jobbe der, så hennes involvering i Mascil-prosjektet ble hennes første møte med selve begrepet. Annes deltakelse i Mascil begynte det halvåret jeg foretok mine undersøkelser på skolen. Før vi møttes hadde hun deltatt på to samlinger med Mascil-prosjektet, og sammen med de andre deltagende lærerne hadde hun vært med på å utarbeide et matematikkopplegg med preg av IBL. Matematikkundervisningen jeg observerte som en del av denne studien var første gang læreren bevisst tok utgangspunkt i IBL i planleggingen og gjennomføringen av undervisningen. Selv om hun i ettertid har oppdaget at noen elementer i undervisningen har bäret preg av en undersøkende tilnærmning, så er dette første gang hun bevisst planlegger en IBL-økt..

I løpet av de to ukene undersøkelsen fant sted var jeg tilstede i all matematikkundervisningen Anne har med sine to grupper, utenom to timer i den ene klassen. På 8.trinn har alle klassene
to og en halv time (klokketimer) matematikkundervisning i uka. For å anonymisere klassene og for å lettere skille mellom dem har jeg valgt å kalle den ene klassen for den blå klassen og den andre klassen for den røde klassen. Anne planlegger stort sett identiske økter til begge gruppene, og tilpasser heller enkelte elementer i gjennomføringen etter gruppenes behov.

Temaet for matematikkundervisningen i løpet av perioden var naturlige og hele tall og de fire regneartene. Anne planla en økt per uke i hver av de to klassene, med ideer fra IBL som utgangspunkt for gjennomføringen av timene. Det er disse, til sammen fire øktene, som er utgangspunktet for mine observasjoner. Grunnen til at jeg gjorde et slikt utvalg er fordi det er Annes bevisste bruk av ideer fra IBL som er relevant for oppgavens forskningssporrmål, ikke alt det hun gjør som ikke er preget av inquiry-baserte metoder. Tilstedeværelsen i de andre matematikktime bidro til å gi et helhetlig bilde av lærerens undervisningshverdag. I disse timene var det en time der elevene jobbet med oppgaver i dataprogrammet Geogebra, og de andre timene bestod hovedsakelig i at læreren gjennomgikk noe på tavla etterfulgt av at elevene jobbet med oppgaver fra læreboka.

Bortsett fra økta med Geogebra, som fant sted på skolens datarom, så foregikk de ”vanlige” timene i det faste klasserommet til hver av gruppene. I Geogebra-økta og i disse timene satt elevene hver for seg. I IBL-øktene satt elevene gruppevis i grupper på 4-5 elever, på skolens matterom. Anne hadde delt elevene inn i grupper på forhånd, basert på kjennskapen hun hadde til de sosiale strukturene i klassen så langt. Det vil si hvilke elever som kommer overens sosialt og hvilke elever som kan arbeide godt sammen.

3.2 Datainnsamlingsstrategier

Casestudien inviterer til bruken av ulike typer datainnsamlingsstrategier. Postholm (2005, s.53) sier at datainnsamlingen er eklektisk. Det vil si at innsamlingsstrategiene blir valgt ut og brukt fordi de er praktiske og egnet til å gi ønsket tilgang til den empirien forskningen er ute etter. I dette prosjektet har det vært relevant å ta i bruk observasjon og intervju. Observasjonen ble brukt for å få tilgang til selve undervisningsøktene og hva Anne gjorde undervis i dem. Intervjuet ble brukt for å få tilgang til det observasjonen utelukker, som intensjonen bak og forståelsen av de observe handlingene, og Annes oppfatninger om IBL.
3.2.1 Observasjon

Observasjonen var likevel ikke helt åpen. Før jeg gikk ut i feltet hadde jeg satt meg inn i relevant teori som ga meg en pekepinne på kjennetegn ved lærerens rolle i et klasserom som vektlegger inquiry-baserte metoder. Dette innblikket var med på å farge det jeg kom til å se etter i observasjonen, samtidig som det ga meg noen briller å se igjennom. Jeg hadde planlagt å se helt generelt på det som foregikk i undervisningen, men med et konkret fokus på lærerrollen og hva læreren gjorde som tilrettelegger og veileder for elevenes undersøkelser. Aktuelle momenter ble lærerens kommunikasjon med elevene, hvordan læreren engasjerte
elevene underveis, hvordan læreren fikk frem elevenes resonnement og lærerens fokus på elevenes strategier.

I tillegg til observasjonsskjema tok jeg bilder av det som ble skrevet opp på tavla og smartboard. Jeg tok lydopptak i øktene og jeg skrev feltnotater i løpet av de dagene jeg var tilstede på skolen. Jeg valgte å ta bilder for å spare tid, og for å få en ”ekte” gjengivelse av det som faktisk ble notert på tavla. Jeg tok lydopptak for å registrere det som ble sagt av Anne og mellom Anne og elevene. Å notere alt som blir sagt eller å huske det er så og så umulig. For å få rikere og mer pålitelige data valgte jeg å ta bilder for å spare tid, og for å få en ”ekte” gjengivelse av det som faktisk ble notert på tavla. Jeg tok lydopptak for å registrere det som ble sagt av Anne og mellom Anne og elevene. Å notere alt som blir sagt eller å huske det er så og så umulig. For å få rikere og mer pålitelige data valgte jeg å ta bilder for å spare tid, og for å få en ”ekte” gjengivelse av det som faktisk ble notert på tavla. Jeg tok lydopptak for å registrere det som ble sagt av Anne og mellom Anne og elevene. Å notere alt som blir sagt eller å huske det er så og så umulig. For å få rikere og mer pålitelige data valgte jeg å ta bilder for å spare tid, og for å få en ”ekte” gjengivelse av det som faktisk ble notert på tavla. Jeg tok lydopptak for å registrere det som ble sagt av Anne og mellom Anne og elevene. Å notere alt som blir sagt eller å huske det er så og så umulig. For å få rikere og mer pålitelige data valgte jeg å ta bilder for å spare tid, og for å få en ”ekte” gjengivelse av det som faktisk ble notert på tavla. Jeg tok lydopptak for å registrere det som ble sagt av Anne og mellom Anne og elevene. Å notere alt som blir sagt eller å huske det er så og så umulig. For å få rikere og mer pålitelige data valg...
forsker hadde om emnet. Jeg sa til elevene at jeg var tilstede i mattetimene for å se på undervisningen og hvordan Anne gjennomførte øktene. Jeg sa også at jeg kom til å ta notater og bilder undertv, men at jeg ikke var der for å vurdere dem eller for å forstyrre dem i læringen. Likevel var jeg en del av skolehverdagen til både Anne og elevene, jeg var tilstede i alle mattetimene og jeg snakket med Anne både før og etter observasjonen av øktene. Avhengig av hvor jeg var tilstede så kunne jeg anvende ulike former for interaksjon. I de fire IBL-øktene var det mye av arbeidet i timen som foregikk gruppevis, derfor valgte jeg å ta observasjonsskjemaet med meg og bevege meg rundt i klasserommet for å få innblikk i arbeidet på gruppene slik Anne så det. Samtidig holdt jeg litt avstand til Anne for å være minst mulig forstyrrende og ikke påvirke hennes valg underveis. Tjora (2012, s.55) kaller en slik form for observasjon, der ulike former for involvering kan oppstå, for interaktiv observasjon.

3.2.2 Intervju

Det er vanlig å bruke en intervjuguide som hjelpemiddel for å få svar på spørsmålene man ønsker å kaste lyst over. I et halvstrukturert forskningsintervju inneholder intervjuguiden ofte en grov skisse over de aktuelle emnene for samtalen, samt forslag til spørsmål (Kvale, 1997), noe jeg har benyttet meg av. Jeg har formulert spørsmålene med tanke på at de skal innhente kunnskap om Annes oppfatninger om IBL, hennes tanker om og intensjon med bruken av IBL, og hennes erfaring med bruken av inquiry-baserte metoder. Dette har jeg gjort basert på relevant teori og tidligere forskning knyttet til IBL. Samtidig har jeg hatt fokus på å formulere spørsmål som kan bidra til å skape en positiv intervjusituasjon som holder samtalen i gang og som oppmuntrer forskningsdeltakeren til å dele egne synspunkter og erfaringer. I følge Kvale (1997) er det en fordel å ta i betraktning spørsmålenes dobbeltsidige oppgave. Jeg har også vært bevisst på at spørsmålene i intervjuguiden kun fungerte som huskeliste for de sentrale temaene i intervjuet, og at rekkefølgen på dem ikke måtte være fast. Dette var viktig for at Anne skulle stå friere til å utdype sine egne tanker og forståelse rundt temaet, på sin egen måte (se vedlegg 2 for Intervjuguide).

Kvale (1997) påpeker at forskningsintervjuet ikke er ”en gjensidig form for interaksjon mellom to likeverdige” (s.74) deltakere. Som forsker bestemmer jeg den tematiske rammen, og definere og kontrollerer situasjonen, for å sørge for at intervjuet gir innsikt i det som er fokuset for forskningen. For å ta hensyn til det asymmetriske maktforholdet som oppstår mellom meg som forsker og Anne var det viktig at jeg hadde formålet med studien helt klart for meg. Jeg intervjuet Anne for å undersøke hvordan hun oppfatter og forstår IBL, det var derimot ikke for å argumentere for mine synspunkter om fenomenet. I tillegg var jeg åpen ovenfor Anne om hva undersøkelsen skulle brukes til og hensikten med intervjuene. Ved å være ærlig og åpen kan forskeren danne grunnlaget for ett tillitsforhold mellom seg selv og den intervjuede, slik at forskningsdeltakeren ønsker å gå inn i en samtale og dele av sine tanker (Kvale, 1997). Denne formen for datainnsamling er også fleksibel i den forstand at man kan gå tilbake til intervjusubjektet for å innhente mer informasjon eller for å få klarhet i noe av det man diskuterte tidligere.

Jeg valgte også å ta lydopptak av intervjuene. Dette gjorde jeg for å kunne fokusere på tilstedeværelse i samtalen framfor å konsentrere meg om å nedtegne alt som ble sagt. Jeg mener min tilstedeværelse var viktig for å skape flyt i intervjusituasjonen og for å vise min oppriktige interesse for å lytte til det Anne hadde å si. I det neste avsnittet (3.3 Analysemetode) vil jeg se nærmere på behandlingen av det innsamlede materialet fra observasjonen og intervjuene.
Til sammen gjennomførte jeg seks intervjuer med Anne. Det første intervjuet foregikk før jeg begynte observasjonen av IBL-øktene, og formålet med det var å få innsikt i hennes oppfatninger om IBL. Jeg hadde også en kort samtale med Anne like før den første IBL-økta hvor hun fortalte om det hun hadde planlagt for den kommende økta. Jeg hadde også lagt opp til en lignende samtale før den andre IBL-økta. Etter de to øktene fortalte Anne om sin opplevelse av gjennomføringen og det ble tatt tak i konkrete eksempler fra øktene som hun fikk mulighet til å kommentere. For å begrense antall intervju valgte jeg å gjennomføre kun et før- og etter-intervju til hver av de to øktene. Selv om Anne gjennomførte fire økter med preg av IBL, var det to like opplegg gjennomført to ganger, en gang i hver klasse. Etter å ha observert de fire øktene gjennomførte jeg et avsluttende intervju med Anne for å oppsummer og trekke tråder mellom det hun tidligere hadde snakket om og hennes erfaringer med gjennomføringen av øktene. Det siste intervjuet la også opp til en dypere innsikt i Annes tanker om IBL, nå som det fantes konkrete situasjoner å vise til.

3.3 Analysemetode

I følge Stake (1995) begynner tolkningen av casestudier allerede når forskeren tar del i feltet. Målet med gjennomføringen av en casestudie er å få en grundigere forståelse av fenomenet

Jeg valgte å transkribere all lyd fra både intervjuene og undervisningsøktene, med en så nøyaktig og mulig gjengivelse av det som ble sagt. Det kunne likevel være en utfordring å tyde enkelte utsagn, fordi noe av lyden var utydelig eller at elevene og Anne i undervisningsøktene snakket i munnen på hverandre. Mitt valg om å omsette all tale til tekst handler om å forenkle møtet med materialet, da det er lettere og mer oversiktlig og forholde seg til en skreven tekst fremfor å gå frem og tilbake i et lydopptak. I tillegg handler det om min mulighet som forsker til å sette meg inn i materialet på et tidlig tidspunkt i forskningen, og allerede i transkripsjonsprosessen kunne trekke ut sentrale aspekter ved casen og få noen ideer til koding. Jeg har nummerert hvert utsagn i hvert lydopptak, noe som kommer til synge i kapittel 4 når jeg presenterer utdrag fra transkripsjonene (se også vedlegg 3 for transkripsjonsnøkkel).

Neste steg i analyseprosessen gikk ut på å bearbeide det skriftlige materialet ytterligere for å få mening ut av dataene. I og med at jeg hadde materiale fra to ulike settinger, intervjuene med Anne og undervisningsøktene, valgte jeg å gjøre dette arbeidet på to litt forskjellige måter. Begge prosessene har vært preget av en induktiv-deduktiv tilnærmning, der jeg i første

I arbeidet med intervjuene begynte jeg først å sortere Annes uttalelser etter emnene og spørsmålene i intervjuguiden. Jeg skilte mellom Annes uttalelser om begrepet IBL, om bruken av IBL, om begrunner for bruken av IBL, om elevenes utbytte og om lærerens rolle. I tillegg sorterte jeg Annes uttalelser om de fire IBL-øktene, og jeg skilte mellom beskrivelser av timene, mål for øktene og hennes uttalelser om kjennetegn på IBL i øktene. Etter at dette var gjort satt jeg igjen med et mer oversiktlig materiale og med uttalelser som var relevante for problemstillingen. For å trekke ut essensen i Annes uttalelser om de ulike emnene begynte jeg med å kode utsagnene med tekstnære koder (Tjora, 2012). Deretter kategoriserte jeg kodene ved å samle de kodene som er dekkende for det samme fenomenet. Denne grupperingen gjorde også sammenhengene mellom Annes beskrivelser av IBL og begrunner for bruken av IBL tydeligere. Dermed kunne jeg bruke meningene jeg fikk ut fra kodingsprosessen til å sammenfatte materialet fra de seks intervjuene i nye beskrivelser, slik at jeg endte opp med en meningsfortetting av Annes uttalelser (Johannessen, Tufte & Christoffersen, 2010; Kvale, 1997).

Koding og kategorisering består av flere trinn og er en frem-og-tilbake prosess mellom materialet, kodene og etter hvert teori (Nilssen, 2012; Tjora, 2012). I kapittel 4 presenterer jeg resultatene fra analysearbeidet, og jeg vil drøfte funnene i lys av det teoretiske rammeverket
presentert i kapittel 1. For å kontrollere kodene og kategoriene har det også vært en sentral del av analysearbeidet å ikke bare arbeide fra data til teori, men også gå motsatt vei for å sjekke de utviklete begrepene opp mot empirien. Tjora (2012) beskriver dette som en nedadgående prosess, en deduktiv tilnærming, som gir meg som forsker anledning til å hele tiden kontrollere mitt eget arbeid.

3.4 Kvalitet i studien

Reliabilitet er det samme som pålitelighet, og handler om å synliggjøre forskerens teoretiske ståsted og forskningsmessige posisjon, og å gi en detaljert fremstilling av hele forskningsprosessen (Johannessen, Tufte & Christoffersen, 2010; Postholm, 2005; Tjora, 2012). I følge Postholm (2005, s.127) er forskeren det viktigste instrumentet i kvalitativ forskning, og ethvert instrument må beskrives. Forskerens erfaringsbakgrunn er unik, og ingen andre kan tolke på akkurat samme måte (Johannessen, Tufte & Christoffersen, 2010, s.229). Teoriene jeg har presentert ovenfor og metodene jeg presenterer i dette kapittelet utgjør en del av min bakgrunnskunnskap, og de gir retning til analysen og funnene i denne studien. For å styrke studiens pålitelighet har jeg i dette kapittelet gjort rede for mitt forhold til og valg av forskningsdeltaker og gitt en beskrivelse av konteksten. Jeg har også tydeliggjort hvordan dataene er samlet inn, hvilke data som brukes og hvordan de bearbeides. Bruk av lydopptak er også med på å styrke påliteligheten i forskningsarbeidet, fordi det gir

Validitet, eller gyldighet handler om at svarene jeg finner i forskningen er svar på spørsmålene jeg stiller (Johannessen, Tuft & Christoffersen, 2010; Tjora, 2012). For å sikre at mine fremgangsmåter og funn reflekterer formålet med denne studien er det nødvendig å redegjøre for de valgene jeg har tatt underveis som har formet forskningsprosessen. I dette kapittelet har jeg tatt for meg valg av forskningsdesign og datainsamlingsmetoder med bakgrunn i oppgavens problemstilling. Teorien jeg har presentert viser hvilke briller jeg har sett igjennom ute i forskningsfeltet, men den viser også hva som har vært mitt utgangspunkt for utvikling av hovedtemaer og kategorier i analysen. Triangulering er en annen teknikk som kan brukes for å øke sannsynligheten for valide resultater. Jeg valgte å bruke to datainsamlingsstrategier, intervju og observasjon, for på den måten kunne de to kildene opp mot hverandre, og avgjøre om de støtter opp om hverandre (Postholm, 2005; Stake 1995). Hva sier læreren om bruken av IBL, og gjør hun det hun sier? Dette ble nyttige spørsmål for å vurdere samsvaret mellom innsamlingsstrategiene og for å klargjøre historiene beskrevet.

Transparens eller gjennomsiktighet er et kjennetegn på kvalitet i oppgaven som har vært viktig for å sikre både forskningsprosjektets reliabilitet og validitet. Ved å synliggjøre alle valgene som er tatt underveis ønsker jeg å gjøre det mulig for leseren å følge arbeidet i forskningen min, slik at leseren selv kan ta stilling til kvaliteten i forskningsarbeidet (Tjora, 2012).

Kapittel 4: Presentasjon av funn fra undersøkelsen

4.1 Læreren om inquiry based learning

Anne sier at IBL handler om å utforske. Utgangspunktet for selve utforskingen er en oppgave eller et problem som er åpent, i den forstand at det ikke forteller elevene hvordan de skal gå frem for å løse det. Elevenes oppgave blir altså å finne egne måter å tilnærme seg problemet på, uten at læreren forteller dem hvordan de skal gjøre det. Anne sier at oppgavene i undersøkende matematikkundervisning bør bidra til å vekke elevenes nysgjerrighet. Elever som er nysgjerrige på en oppgave, blir også interessert i å svare på den. Anne hadde tidligere trodd at IBL bare handlet om å arbeide med helt åpne oppgaver med minimal lærerstyring, men hun oppdaget i løpet av de første Mascil-samlingene at det er mulig for læreren å legge noen føringer på en time som har fokus på elevenes utforskning av en oppgave eller et problem. Denne åpenbaringen fikk henne til å tenke over at noe av undervisningen hennes allerede innehar enkelte elementer av IBL, men hun påpeker at for å kunne få bedre utbytte av ideene bak IBL så er en bevisstgjøring av hva det er og hvordan man kan bruke det viktig.

Når elevene tar en utforskende tilnærming til en oppgave, og må finne egne metoder for å løse problemet, så ser Anne at det krever noe av elevenes måte å jobbe på. Netttopp fordi det ikke
finnes en oppskrift for hvordan elevene skal gå frem så krever det av elevene at de prøver seg frem og tester ut ulike muligheter. Anne ser på prøving og feiling som sentrale deler av arbeidet med å angripe oppgaver når man ikke har blitt gitt en fremgangsmåte på forhånd. Hun ønsker også at elevene skal ta med seg denne måten å jobbe på videre i matematikkopplæringen. Anne sier at ”det er jo et mål for meg og, det at noen elever prøver i stedet for å gi opp før dem har prøvd. (…). I stedet for at, nei det her gider jeg ikke for det får jeg aldri til uansett”. Anne ønsker at elevene skal lære seg å fortsette arbeidet selv om de møter på utfordringer, blant annet fordi hun mener det kan hjelpe elevene i fremtidige prøvesituasjoner når elevene ikke kan spørre læreren eller andre elever om hjelp. I tillegg kommer elevene til å møte på situasjoner senere i livet, særlig i arbeidslivet, der det ikke nødvendigvis ligger en metode klar for dem for hvordan oppgaver på arbeidsplassen skal løses. Da er utforskende oppgaver en mulighet til å gi elevene trenning i å fortsette arbeidet ved å utforske, prøve og teste ulike muligheter, og bli vant til å feile litt før man gir opp.

Anne ser også på elevenes evne til å prøve seg frem som viktig for elevenes arbeid, ikke bare for å finne en fremgangsmåte for oppgaven, men også for å vurdere fremgangsmåten de har valgt. Hun så etter hvert som elevene fant sine egne løsningsstrategier, at de i tillegg til å fortelle om dem også måtte kunne reflektere over metoden de har valgt. Dette sier hun henger sammen med at elevene produserer noe, og når man produserer noe så må man også vurdere det. Elevene må kunne spørre seg selv om det var en god metode og hvor godt den egnet seg til å løse akkurat den oppgaven, i tillegg til å vurdere om metoden i det hele tatt fungerer. Elevene må kunne teste resultatene av eget arbeid, og lære seg å ikke stole blindt på egne svar. Anne mener også at vurdering av eget arbeid kan lære elevene å utfordre seg selv, og få elevene til å spørre seg selv om de kunne gjort det enda bedre eller på en annen og mer effektiv måte.

Bruk av utforskende oppgaver og metoder i matematikkundervisningen åpner opp for at elevene tar i bruk prosedyrer og begreper fra flere områder av matematikken samtidig. Anne forteller at undervisningen som regel følger kapitlene i læreboka, noe som fører til at mange av elevene ser faget som oppstykket og delt fordi de jobber med et og et tema som isoleres fra hverandre med kapittelinnvelingen. I de to IBL-øktene læreren hadde med de to klassene var det flere temaer som preget arbeidet til elevene, blant annet geometriske figurer, areal, tallmønster og algebraisk språk, selv om temaet for den perioden de var inne i bare var hele og naturlige tall. Anne ser at å arbeide på den måten gir elevene muligheten til å se at de ulike
temaene i mattefaget henger sammen og at det går an å jobbe med forskjellige temaer samtidig.

Anne har inntrykk av at mange elever syns det er veldig greit å lære regler og algoritmer i matematikk først og deretter bruke dem i oppgaver, men hun ser også at å lære matematikk på den måten hele tiden kan gjøre det vanskelig for mange elever. Elevene har alltid blitt fortalt i hvilken sammenheng algoritmen skal anvendes så når elevene møter på en oppgave i en prøvesituasjon for eksempel, og koblingen til et konkret tema ikke er like tydelig som når elevene har jobbet med algoritmen i timen, så kan det hende at elevene sliter med å forstå hva de skal gjøre. "Så jeg tenker kanskje at sånn jobb kanskje gjør oss, eller elevene mer flinke til å gripe tak og være litt uredd på å gripe tak i sårne oppgaver når det kommer på eksamen og tentamener". I og med at utforsknende oppgaver ikke forteller elevene hvordan de skal gå fram, så må elevene bruke den kunnskapen de har fra før til å løse den. Dette mener Anne kan styrke elevenes tro på sin egen kompetanse og gjøre dem i stand til å prøve seg frem først, før de mener det er noe de ikke kan eller mangler for å løse oppgaven.

Samtidig som Anne mener at det i en IBL-økt kreves av elevene at de tør å stole på seg selv og sine egne bidrag i gruppearbeidet og delingen i klassen, så sier hun også at matematikkundervisningen med fokus på undersøkende læring kan bidra til nettopp dette. Utfordringer tilnærningsmåter til en oppgave mener Anne kan hjelpe elevene til å bli mer uredd for å gå løs på oppgaver på egenhånd. Da tenker hun på oppgaver generelt, som for
eksempel en oppgave fra boka i en vanlig matematikktime eller en oppgave i en prøvesituasjon. Hun tror at når elevene får mulighet til å prøve seg frem med sine egne metoder så ser de at det er greit å gjøre ting på sin egen måte og at det finnes mange måter å gjøre matematikk på, man må ikke alltid følge en standardisert formel. Samtidig som det kan gi elevene en opplevelse av å få til noe i matematikk, det gir elvene mestriingsfølelse. Hun-legger også til at mange elever kan oppleve matematikken som mindre skummel hvis de får utforske et problem eller et emne i matematikk på egenhånd før de blir presentert for de formelle prosedyrene og begrepene.

(...) når vi har gjort det her igjennom og utforska selv, og kanskje dem har kommet med det, så er det ikke så skummelt å møte det lenger. For å bare se at noen ganger, bak en bokstav så er det et tall som gjemmer seg eller at det kan være flere tall.

Anne nevner her elevenes møte med bokstaver, algebraisk symbolspråk, som et eksempel. Hvis elevene selv kommer med bokstavene og lager et uttrykk med dem for å løse en oppgave, så blir de kanskje ikke så skumle lenger.

Anne sier at hennes oppgave i et undersøkende klasserom er å være en veileder. Hun sier: ”Jeg skal ikke si hva dem skal gjøre, men jeg må få dem til å tenke selv”. Dette henger sammen med Annes ønske om å gjøre elevene vant til å prøve seg frem før de gir opp. Hun vil få elevene til å jobbe litt mer for kunnskapen ved å veilede arbeidet deres på en slik måte at elevene selv tenker over hva de kan gjøre eller hvordan de kan gå frem. For å få elevene til å ”tenke videre” sier hun at hun blant annet vil stille elevene spørsmål. Hvis elevene ber om bekreftelse på om de gjør rett eller galt vil hun prøve å unngå å svare dem direkte på det, men heller henvise dem til metoder som gjør at de må finne ut av det på egenhånd. Hun sier at mange elever opplever matematikk som et rett og galt fag, noe som gjør mange usikre fordi de er redde for å si feil. Hun sier det handler om å gjøre elevene mer selvstendige. Det kan også knyttes til det Anne sier om å trygge elevene slik at de tør å delta.

Anne poengterer at det er viktig å heller ikke veilede for mye, for da blir elevene satt inn på hennes spor og det gjør at fremsgangsmåten ikke lenger blir deres. Hun mener læreren bør forberede seg før en IBL-økt ved å gå igjennom opplegget hun selv skal gjennomføre med elevene. På den måten kan hun gjøre seg kjent med mulige tilnærningsmåter elevene kan komme til å ta, noe som gjør henne mer forberedt når elevene deler sine løsningsstrategier og tilnærningsmåter fordi hun også kan planlegge responsen hun vil gi til elevenes arbeid. Likevel vil det være en utfordring å håndtere og forstå hvordan alle elevene tenker hele tiden, og hun legger til at det er vanskelig å ha alt klart før en IBL-økt. Man bør i hvert fall ha
reflektert over noen aktuelle spørsmål til veiledning før man setter i gang, også handler det om som lærer å tørre og slippe kontrollen. Anne sier også at det er viktig å kjenne elevene for å kunne planlegge veiledningen hun ønsker å gi, fordi noen trenger mer føringer enn andre. I tillegg til å gjøre seg kjent med mulige tilnærmningsmåter på forhånd, så må læreren også få innblikk i elevenes arbeid og tankegang underveis i undervisningsøkta. Dette er viktig for at læreren skal kunne engasjere seg i elevenes arbeid og hjelpe dem ved behov. Anne sa

Hun sa også at å få tak i elevenes tankegang hjelper henne som lærer til å spille videre på elevenes arbeid. Ved å stille elevens spørsmål knyttet til hva de gjør og tenker får elevene mulighet til å formulere sin egen prosess og forståelsen av den prosessen. Detaljene i deres arbeid blir også gjort synlige og tilgjengelige for læreren, en viktig forutsetning for å utvikle elevenes arbeid videre.

En annen oppgave læreren har er å utforme oppgavene eller velge det problemet elevene skal jobbe med. Dette ser hun på som en utfordring, blant annet fordi oppgavene må treffe de fleste elevene og samtidig passe inn i den aktuelle undervisningsperioden. Å gjøre elevene mer selvstendig og trygge på seg selv og lærerens arbeid med å planlegge og gjennomføre gode IBL-økter er to oppgaver som ikke løses med to økter alene. Her må også læreren prøve og feile litt, og teste ut det som kan fungere i undervisningen. Anne håper etter hvert å få utviklet en slags verktøykasse som kan gjøre det lettere å legge til rette for IBL-økter i matematikkundervisningen. Hun legger til at det er tidkrevende å utvikle opplegg helt fra bunn av, så det å kunne utveksle ideer og opplegg både med kollegaer på skolen og de andre deltakerne i Mascil-prosjektet ser hun på som en fordel.

4.1.1 Oppsummering og drøfting av lærerens oppfatninger om IBL

Anne ønsker at elevene hennes skal bli mer uredde i møte med matematikken. Hun ønsker ikke at elevene skal holde seg selv tilbake i arbeidet med matematikk fordi de føler at de ikke husker eller kan den nødvendige algoritmen for å gå løs på en oppgave. Eller fordi temaet virker skremmende og uforståelig. Matematikkundervisning som struktureres innenfor oppgaveparadigmet kan føre til at elevene ser matematikk som et fag bestående av algoritmer og regler som må pugges, fordi det er algoritmene og reglene læreren eller boka gir som
trengs for å løse oppgaver. Anne sier at mange elever liker å lære algoritmene først og deretter anvende dem. Samtidig ser hun at mange elever er usikre på når de skal bruke de gitte algoritmene, og hun opplever at det første elevene gjør når de er usikre er å rekke opp hånda og be om hjelp. Som Fuglestad (2009) nevner så stimulerer undervisning med fokus på å lære regler og algoritmer til spørsmål av typen "Hva skal jeg gjøre?'".

Å prøve og feile er nødvendig i utforskningsundervisning, og Anne ønsker også at elevene skal ta med seg denne måten å jobbe på videre i matematikkopplæringen. Hensikten med IBL er blant annet å utvikle kompetanse hos elevene som er til nytte for elevene nå og i fremtiden. Anne ser det å tilnærme seg et problem ved å prøve seg frem først som en viktig kompetanse i matematikk for å gjøre elevene bedre i stand til å takle et nytt eller ukjent problem på egenhånd, men hun ser også lengre fremover og mener at elevenes selvstendige problemløsning kan gagne dem i arbeidslivet og.

Anne nevner også hvordan den utforskningsmessige tilnærmingen kan gjøre matematiske begreper og metoder mindre skumle fordi det er elevene selv som "kommer med det". Her er hun inne på en annen viktig hensikt med IBL, som handler om å gi elevene meningsfulle erfaringer med utviklingen av matematiske kunnskaper. I stedet for å gi elevene begrepene eller algoritmen på forhånd, som ville være naturlig innenfor oppgaveparadigmet, så er hensikten at elevene skal konstruere en dypere forståelse for den matematiske kunnskapen i utforskningsmessige aktiviteter (Artigue & Blomhøj, 2013; Fuglestad, 2009; Maass & Artigue, 2013; Stein et al., 2008).

ønsker at elevene skal oppnå: for at elevene skal tørre å stole på seg selv og prøve seg frem før de ber om hjelp, så må hun heller stille spørsmål eller kommunisere med elevene på en slik måte at hun får dem til å tenke selv.

4.2 Lærerens plan for IBL-øktene

Anne planla to IBL-økter i hver av klassene, hvor hun ønsket at elevene skulle få erfaringer med å jobbe utforsknende ved å prøve og feile og finne sine egne måter å tilnærme seg oppgaven på. Hun la opp til at elevene skulle jobbe sammen i grupper, og hadde på forhånd delt klassene inn i grupper på 4-5 elever. Øktene foregikk på skolens matematikkrom, og Anne så for seg at hver oppgave skulle gjennomføres og avsluttes i løpet av en klokke time.

Temaet for matematikkundervisningen på 8.trinn i løpet av de to ukene jeg var tilstede på ungdomsskolen var naturlige tall og hele tall. Anne sier at det er mye elevene skal igjennom, med tanke på kompetansemålene og matematikkpensumet, i løpet av de tre årene på ungdomsskolen, så hun ser helst at IBL-øktene passer inn i den aktuelle undervisningsperioden. Læringsmålene for hele perioden, slik de står i 8.trinns årsplan i matematikk, er (1) å vite hva siffer, tall og tallsystem er, (2) å regne med tall, (3) å prioritere regnearter, (4) å bruke lommeregneren på de fire regnearterne, og (5) å vise andre hvordan du har tenkt. For å møte noen av disse målene og sørge for at elevenes arbeid holdt seg innenfor periodens tema valgte Anne to oppgaver som begge har med tallmønster å gjøre.

4.2.1 The Border Problem og Figurmønsteroppgaven

Oppgavene Anne plukket ut har jeg valgt å kalle for ’The Border Problem’ (BP) og ’Figurmønsteroppgaven’ basert på hva Anne kalte dem og hva oppgavene gikk ut på. Anne ble introdusert for BP på en av samlingene med Mascil-prosjektet, der de deltagende lærerne selv fikk jobbe med problemet. Figurmønsteroppgaven hentet Anne inspirasjon til fra læreboka Sirkel, for 8.trinn, som er læreverket de bruker på den skolen. Anne har også erfaring med lignende oppgaver fra lærerstudiet.
The Border Problem

- Uten å telle eller skrive skal dere på gruppa finne ut hvor mange ruter som er oransje. Figuren har ruter på 10*10.
- Hva hvis rutene blir 4*4?
- Eller 121*121?
- Kan vi lage en formel for dette?

The Border Problem var den første oppgaven Anne introduserte for elevene. Hun hadde forberedt en Power Point-presentasjon for å presentere oppgaveteksten. Anne introduserte et spørsmål om gangen for elevene. Hvert spørsmål ble etterfulgt av elevenes arbeid i gruppene og deretter en gjennomgang og presentasjon av det gruppene hadde kommet frem til. Det var kun til det første spørsmålet elevene fikk se bilde av en figur. Anne sa også at elevene skulle snakke sammen på gruppene og komme frem til en metode sammen. Da Anne spurte elevene om de kunne lage en formel for alle kvadrater for å finne antall oransje ruter introduserte hun bokstaven n, og sa at det generelle kvadratet hadde ruter på n*n.

Figurmønsteroppgaven

Rektangeltall:
- Undersøk rektangeltallene og se hvordan mønsteret vokser.
- Hvoran blir de fem neste rektangeltallene?
- Hvilket figurnummer har 156 kuler i seg?
- Kan dere lage en formel for å finne antall prikker i en figur når dere vet figurnummeret?

TREKANTMØNSTER – Rektangeltall

Figur 2: Kvadratet med ruter på 10*10

Figur 3: Rektangeltall

Trekanntall:
- Undersøk trekantallene og se hvordan mønsteret vokser.
- Hvoran blir de fem neste trekantallene?
- Hvilket figurnummer har 78 kuler i seg?
- Kan dere lage en formel for å finne antall prikker i en figur når dere vet figurnummeret?

Figur 4: Trekanntall
Figurmønsteroppgaven bestod egentlig av to figurmønster; rektangeltall og trekanttall. Anne introduserte et mønster om gangen, og i denne timen brukte hun tavla for å presentere oppgaven for elevene. Selve oppgaveteksten, hva elevene skulle gjøre, sa hun muntlig og hun brukte tavla til å tegne de tre første elementene i figurfolgen, som vist i figur 3 og 4. Før Anne ba elevene undersøke figurfolgen spurtte hun elevene hvilke geometriske figurer hun hadde tegnet. Elevene svarte rektangler og hun skrev på tavla at figurfolgen kalles for rektangeltall. Da hun introduserte trekanttall, sa hun navnet uten å spørre elevene først. Spørsmålene hun stilte til de to figurfolgene ble som i BP introdusert et om gangen, etter at elevene hadde fått tid til å jobbe med hvert spørsmål i gruppene. Det hendte at hun introduserte noen av spørsmålene til enkelte grupper før hun hadde tatt det felles i klassen. I denne økta fulgte også gjennomgang av gruppenes arbeid, men ikke nødvendigvis etter hvert spørsmål. Det ble mindre tid til arbeidet med trekanttall enn til arbeidet med rektangeltall, noe som preget gjennomgangen av de fire spørsmålene.

Anne sa i intervjuene før øktene at hun først og fremst ønsket at elevene, i de fire øktene, skulle få erfaring med å jobbe undersøkende, både fordi arbeidsmåten var ganske ny for elevene, men også for henne. Hun har inntrykk av at elevene er vant til å jobbe hver for seg, og at samarbeid og diskusjon på grupper ikke har vært en vanlig del matematikkundervisningen tidligere. Hun ønsket derfor at elevene skulle få leke seg litt og være litt kreative. Selve målet med elevenes utforsking i disse to oppgavene sa hun var å finne et mønster eller en struktur i figurene. Anne sa at hun på forhånd hadde sett litt på figurene og funnet mulige strukturer. Hun sa også at dette arbeidet er knyttet til flere områder innenfor matematikk, blant annet ønsket hun at elevene skulle se en tilknytning til areal og geometri som var temaet for det forrige kapittelet elevene hadde jobbet med. Dette var også grunnen til at hun valgte rektangel- og trekanttall, for å gi elevene noe som var kjent for dem fra før. Hun tenkte at en utforskende oppgave, som er ganske nytt for elevene, ble mindre skummelt hvis det elevene skulle utforske lignet på noe kjent. Det samme gjelder figuren i BP som er et kvadrat.

Etter hvert ønsket Anne også at elevene skulle bruke algebraisk symbolspråk og parentes i arbeidet med å uttrykke den strukturen de så. I utgangspunktet hadde hun ingen forventninger om dette, men hun så i den første økta med BP at flere av elevene gjorde selvstendig bruk av symbolspråk og parentes etter at hun hadde knyttet det til arbeidet deres. Derfor valgte hun å fortsette med dette som et mål for elevenes aktivitet. Over viser jeg hvordan Anne
introduerer symbolspråk da hun introduserte det siste spørsmålet i BP, ved si at det generelle kvadratet har ruter på n*n. Parentesbruk knyttet hun til elevenes arbeid da elevene jobbet med å representere strukturene de så, både som regnestykker med tall og som symboluttrykk. Da en av elevene i BP-økta presenterte uttrykket n – 1 * 4, sa Anne at parentesen måtte rundt n – 1 for å vise at det er denne operasjonen som skal utføres først.

I tillegg til de faglige målene med oppgavene la Anne stor vekt på at oppgavene også skulle gi elevene trening i å vise og forklare hvordan de tenker. Hun så dette som et hovedmål med de to øktene, og sa: ”Jeg håper liksom at dem har lært å tenke på andre måter og sitter igjen med å kunne forklare seg mye bedre”. Dette målet sto også i årsplanen, som et av målene (5) for perioden. Anne ser dette som en viktig trening til blant annet prover og tentamener der elevene ofte blir bedt om å vise utregning eller forklare hva de har gjort. I tillegg ser hun på det å presentere tankegangen sin for læreren og medelevene som en mulighet for elevene til å se at det finnes flere måter å løse oppgaven på; kreative måter, mer effektive måter mer egnete måter, men også måter som ikke fungerer. Dessuten ville hun at elevene skulle få en følelse av eierskap ovenfor arbeidet de gjør. Sammenlignet med når elevene blir gitt en ferdig utarbeidet oppskrift, syns hun det er viktig at elevene ser på løsningsmetodene de kommer frem til som sine egne.

4.2.2 Oppsummering og drøfting av lærerens plan for IBL-øktene

Oppgavene Anne utformet og hvordan hun la opp til at de skulle arbeides med kan plasseres innenfor Alrø og Skovsmoses (2002) undersøkelseslandskap med referanse til ”ren” matematikk. Man kan si at oppgavene gjør det mulig å organisere matematikktimene innenfor et undersøkelseslandskap fordi de først og fremst legger til rette for at elevene skal utforske. Anne planla ikke å si noe om hvordan elevene skulle tilnærme seg oppgavene, dermed blir det også opp til elevene å finne sine egne måter å angripe oppgaven på. Oppgaven har referanser til ren matematikk, som viser seg i hva det er som skal undersøkes. Å utforske de to figurmønstrene og figurene i BP innebærer å utforske matematiske strukturer, og i disse oppgavene utforsker elevene tallstrukturer som er representert geometrisk.

En viktig oppgave for læreren i undersøkende undervisning er å velge ut de spørsmålene og problemene som inneholder et potensiale for læring, slik at elevene får meningsfulle erfaringer med de matematiske ideene, begrepene og metodene (Artigue & Blomhøj, 2013; Maass & Artigue, 2013). BP og figurmønsteroppgaven Anne valgte ut handler om å utforske
figurer og figurmønster, og se etter og uttrykke strukturene man finner i dem. Dette arbeidet innebærer å utforske sammenhengen mellom de ulike mengdene i figurene og figurmønsteret, å se på funksjonsforholdet mellom størrelsesene. Målet er å se det generelle i hvordan disse mengdene varierer i forhold til hverandre. Dette arbeidet hører inn under den formen for algebraisk tenkning som Blanton og Kaput (2005) kaller funksjonstenkning. Figurene og figurmønstrene er geometriske representasjoner av tall og tallrekker. Dette åpner opp for at elevene både kan ta en figurativ tilnærming til oppgaven, at de tar utgangspunkt i figuren(e), og de kan ta en numerisk tilnærming til oppgaven, at de tar utgangspunkt i tallverdiene som er representert.

Oppgavene med rektangeltallene og trekantallene skiller seg fra oppgaven med BP fordi figurene er geometriske representasjoner av tallrekker, mens figurene i BP blir presentert en om gangen. Dette gjor at oppgavene åpner opp for at elevene kan se på ulike sammenhenger med tanke på mengdene i figurene og figurmønstrene. I BP legges det opp til at elevene skal finne og uttrykke en sammenheng mellom antall oransje ruter i figuren og sidetallet i kvadratet, dette innebærer å finne en eksplisitt relasjon mellom den uavhengige variabelen, sidetallet, og den avhengige variabelen, antall oransje ruter. I tillegg til å se på sammenhengen mellom figurnummeret og antall komponenter i figurmønsteroppgavene, så åpner de også opp for å se på sammenhengen mellom figurene i rekken. Å se på forholdet mellom de avhengige variablene innebærer å se på den rekursive relasjonen i figurmønsteret.

Selv om figurmønsteroppgaven åpner opp for at elevene kan utforske den rekursive relasjonen i mønstrene, tyder oppgaveteksten på at det bare var den eksplisitte sammenhengen Anne ønsket at elevene skulle uttrykke med symbolspråk. Dette kommer frem i det siste spørsmålet der Anne spør om elevene kan lage en formel (uttrykk) for antall prikker (komponenter) når man vet figurnummeret.

Å hjelpe elevene til å se forbindelser mellom deres ideer og metoder og de matematiske ideene og metodene er en viktig oppgave for læreren. Å prove å få elevene til å generalisere resultatene de har fått er et steg i retning av å utvikle de matematiske begrepene og strukturen (Maass & Artigue, 2013). BP og figurmønsteroppgaven legger opp til at elevene skal beskrive generalitetene de ser i figurene, og i det siste spørsmålet i oppgavene legges det opp til at elevene skal knytte sine egne generaliseringer til det algebraiske symbolspråket. Anne introduserer bokstaven n for sidetallet i kvadratet i BP, og som figurnummeret i figurmønsteroppgaven, men det er elevene som får i oppgave å knytte bokstaven til generalitetene de har funnet og lage et uttrykk ved hjelp av den. På den måten får elevene

Annes refleksjoner rundt bruken av rektangeltall og figurtall viser at hun bruker elevenes tidligere kunnskap på en konstruktiv måte, noe som er en del av lærerens rolle i undersøkende matematikkundervisning (Maass & Artigue, 2013). Anne tenker på hva hun kan gjøre for å trygge elevene i en arbeidssituasjon som er ganske ny for dem. Samtidig legger hun opp til at elevene kan bruke kunnskap de har fra før om geometriske figurer og areal for å beskrive regelmessighetene i figurmønsteroppgaven. Oppgaveteksten i BP kan også tyde på at læreren har kjennskap til elevenes kunnskap om areal når hun skriver at figurene har ruter på 10*10, 4*4 og 121*121.

Arbeidet med oppgavene skal også gi elevene trening i å vise og forklare hvordan de tenker. Dette er et viktig mål med de fire øktene. Anne legger opp til at elevene skal forklare for hverandre på gruppene og for resten av klassen i de felles gjennomgangene. Å kommunisere det man har kommet frem til er en sentral del av det undersøkende klasserommet (Alrø & Skovsmose, 2002; Maas & Artigue, 2013) Alrø og Skovsmose (2002) ser på dette som viktig for den enkelte elevs mulighet til å lære gjennom å uttrykke seg, men de legger til at å dele egen forståelse er like viktig for fellesskapet og for å etablere delt forståelse av et perspektiv. Anne ser også på presentasjonen av elevenes tankegang som positiv for hele klassen, fordi det kan gi elevene mulighet til å se at det finnes mer enn en måte å gjøre ting på i matematikk. Det åpner også opp for at elevene kan sammenligne de ulike fremgangsmåtene.

I BP og figurmønsteroppgaven så er elevenes bidrag en sentral del av aktiviteten i timen. Undervisning som bygger på elevenes ideer og tilnærminger innebærer noe uforutsigbart. Derfor kan Annes kjennskap til arbeidet med oppgavene på forhånd ha vært en trygghet for henne i gjennomføringen av timene, og en viktig del av forberedelsene til de fire øktene. Å kjenne til og anta mulige tilnærminger elever kan ta er i følge Stein et al. (2008) noe av det første en lærer bør gjøre i forkant av en undersøkende undervisningsøkt. Anne sa også i intervjuene at det å kjenne til mulige elevsvar er en viktig forberedelse for å vite hvordan man skal håndtere det elevene kommer med. Dersom undervisningen skal bygge på elevenes bidrag så er det en forutsetning at læreren forstår elevenes fremgangsmåter, og at læreren har tenkt på hvordan elevenes ideer kan bidra til læring av matematikk for hele klassen.
4.3 Lærerens gjennomføring av IBL-øktene

Frem til nå har jeg sett nærmere på Annes oppfatninger om IBL, og jeg har tatt for meg oppgavene Anne valgte ut som utgjorde rammene for de to IBL-øktene. Her vil jeg redegjøre for Annes gjennomføring av timene med vekt på fem lærerhandlingser, som er et resultat av kodings- og kategoriseringsprosessen beskrevet i avsnitt 3.3, Analysemetode.

Anne delte opp hver av timene i tre faser; lanseringsfasen, utforskningsfasen og diskusjons- og oppsummeringsfasen (Stein et al., 2008), som ble gjentatt i flere omganger. I det forrige avsnittet, 4.2, skrev jeg hvordan Anne delte opp oppgavene og lot elevene utforske en del av oppgaven om gangen. På den måten bestod timene av flere lanseringsfaser etterfulgt av hver sin utforskingsfase. I tillegg fulgte en oppsummering og presentasjon av elevenes ideer flere ganger i løpet av timene. I figurmønsterøpgaven fulgte ikke dette nødvendigvis etter hver utforskingsfase, noe som kan ha sammenheng med at de tre første oppgavene alle handlet om det samme – å utforske figurmønsteret og finne en struktur for hvordan det utviklet seg (rekursiv sammenheng) og/eller for hvordan man fant antall komponenter i hver figur (eksplisitt sammenheng).

I løpet av disse fasene så jeg på hva som var spesielt med Annes handlinger, og hva hun gjorde når elevene undersøkte figurene og presenterte fremgangsmåten og løsningene sine. Jeg kom frem til fem handlinger som beskriver mer generelt hvordan Anne gjennomfører matematikkundervisning med fokus på IBL:

- Setter seg inn i elevenes tankegang
- Ber elevene forklare og begrunne tankegangen sin
- Veileder elevenes arbeid
- Ber elevene teste og vurdere arbeidet sitt
- Legger til rette for deling av ideer

I det følgende vil jeg se nærmere på hver av de fem lærerhandlingene.

4.3.1 Setter seg inn i elevenes tankegang

Når elevene jobbet i grupper gikk Anne rundt i klasserommet, fra gruppe til gruppe. Hun observerte elevenes arbeid og lyttet til diskusjonen elevene i mellom. I tillegg henvendte hun seg direkte til hver gruppe hun observerte og stilte de spørsmål som kan tyde på at hun var
interessert i å få innblikk i gruppas tanker og arbeidsprosess. I et klasserom der elevenes egne ideer og løsningsstrategier blir gitt stor plass er det å få tak i og forstå hva elevene holder på med en viktig oppgave for læreren i løpet av undervisningsøkta, for at læreren skal kunne bruke elevenes bidrag slik at de fremmer læring i matematikk. Det er denne praksisen Stein et al. (2008) kaller å overvåke elevenes arbeid.

15. Lærer Hvordan tenker dere?
20. Lærer Enn gruppe nummer 2 da?
94. Lærer Hvilken strategi velger dere å ta?
141. Lærer Hva slags mønster har dere funnet?

Utdragene over viser ulike tilnærminger Anne tok for å få tilgang til elevenes tankegang. Den mest fremtredende tilnærmingen var å spørre gruppene hvordan de tenker (15). I løpet av den andre timen med den blå klassen, i arbeidet med figurmønsteret, hendte det at Anne bare henvendte seg til en gruppe og dermed satte elevene i gang å fortelle hva de holdt på med (20). Anne kunne også stille elevene spørsmål som refererte til hva elevene holdt på med, hva elevene så eller hva de hadde funnet (94, 141).

Det hendte også at Anne fulgte opp med flere spørsmål for å få elevene til å presisere noe med sin egen tankegang. Det kan virke som hun gjorde dette fordi det var noe ved elevenes forklaring som ikke var helt klart for henne, så hun stilte flere spørsmål for å lokalisere (Alrø & Skovsmose, 2002) elevenes idé. Dette kan også ha sammenheng med Annes mål for elevene om at de skal bli flinke til å forklare det de gjør og det de ser. I disse spørsmålene tok Anne som regel tak i noe fra elevens forklaring for å be om en presisering. Det hendte også at hun reformulerte det elevene allerede hadde sagt eller vist, og ba om en bekreftelse på om det var det eleven mente. Utdraget under viser både hvordan Anne bruker noe fra elevens forklaring for å få eleven til å presisere hva det er som øker (34.-35.), og det viser hvordan Anne reformulerer det eleven nettopp har vist og forklart på figuren (36.-37.).

33. Lærer Hvordan tenker dere?
34. Elev Det øker med en to ganger for hver gang, så det øker med en oppover og en innover.
35. Lærer Mhm. Er det bare dem to som øker, eller vil det bli mer og?
36. Elev Det vil jo bli mer på alle dem her (viser på figuren).
37. Lærer Ja, så du fyller inn dette og?
4.3.2 Ber elevene forklare og begrunne tankegangen sin

Når elevene fortalte Anne en mulig løsning så ba Anne dem forklare hvordan de hadde tenkt eller hun spurte dem hvordan de hadde kommet frem til svaret. Denne lærerhandlingen handler også om å få tak i elevenes tankegang, men ikke bare med hensyn på lærerens behov for innsikt i tankegangen. Lærerhandlingen kan ses i tilknytning til læringsmålet om at elevene skal vise hvordan de tenker. I stedet for å evaluere elevenes svar, og nøye seg med om det elevene gjorde var rett eller galt, ba hun de heller sette ord på og presisere hvordan de hadde kommet frem til svaret sitt. Utdraget under viser hvordan Anne (280) ber en gruppe forklare hvordan de har kommet frem til formelen for antall komponenter i den generelle figuren. Ved å la elevene forklare lar hun også elevene sette ord på hva de ulike leddene i formelen representerer. Elevene forklarer med et eksempel fra figurnummer 8, i tillegg til at de gjør en kobling mellom sin formel og formelen for areal (283).

279. Elev 2 Du vet det der at vi skulle sette inn tall, ikke sant? Vi kan ta tallet ganger, og så parentes tallet pluss 1.

280. Lærer Hvordan tenkte dere?

281. Elev 2 Jeg tenkte at hvis neste tall er 8, så blir det 8 ganger 8 pluss 1.

282. Lærer Som er 9 ja.

284. Lærer Kjempebra!

285. Elev 1 Det er jo bare sånn at, om du tar 9 så er det 9 ganger 10. n, så er det jo n ganger n pluss 1.

I tillegg til å be elevene forklare tankegangen sin, hendte det at Anne ba elevene begrunne det det de hadde gjort. Dette gjorde hun i økta med BP da elevene presenterte løsningene sine for de kvadratene med 4*4 og 121*121 ruter og noen av gruppene sa en annen struktur enn den de hadde sett i det første kvadratet. Svarene hun fikk var derimot korte svar, som ”fordi den var enklest”. Et spørsmål hun stilte flere av gruppene som hadde skrevet et uttrykk for den generelle figuren i figurmønsteroppgaven var hvorfor de hadde brukt parentes. Da elevene lagde uttrykk for antall oransje ruter i øktene med BP, introduserte Anne parentes og sa at elevene måtte bruke parentes rundt de regnestykkene som skulle regnes ut først. I økta med figurmønsteroppgaven var det flere grupper som tok i bruk parentesen igjen når de lagde uttrykk for den generelle figuren. Anne spurte hvorfor for å få elevene til å selv begrunne bruken.
Å få elevene til å forklare tankegangen sin ser Anne på som god trening for elevene med tanke på kommende prøvesituasjoner. Hun sa også at det handler om å bli vant til å dele arbeidet sitt med andre, gjøre tankegangen sin synlig for medelevene også, slik at elevene kan lære av hverandre. Så når elevene presenterte fremgangsmåten sine i de felles gjenomgangene fulgte Anne opp med spørsmål som ba elevene forklare tankegangen sin. I øktene med BP var det å forklare hvordan elevene hadde kommet frem til antall oransje ruter en sentral del av oppgaven, for hvis gruppa bare sa det totale antallet så kunne verken Anne eller de andre elevene vite om gruppa hadde telt antall ruter eller om de faktisk hadde funnet en struktur i figuren. Når elevene i den rød klassen presenterer hvordan de har funnet figurnummeret til figuren med 156 komponenter, så ber også Anne to av gruppene begrunne noen av valgene de har tatt. Hun spør den ene gruppa hvorfor de har tegnet en tabell, og hun spør den andre gruppa hvorfor de har tegnet akkurat 12 og 13 kryss i representasjonen sin.

4.3.3 Veileder elevenes arbeid

Anne sa i intervjuene at hennes rolle i et undersøkende klasserom er å være en veileder som får elevene til å tenke selv og finne ut hva de kan gjøre uten at hun forteller dem det. Dette kommer til syne i Annes veiledning av elevenes arbeid. Underveis i gruppearbeidet så kunne noen av gruppene be Anne om bekreftelse på om det de gjorde var riktig eller de kunne virke usikre på hva de skulle gjøre. I stedet for å evaluere elevenes arbeid prøvde hun å oppmuntre elevene til å fortsette det de holdt på med. Hun ville at de skulle teste litt og prøve seg frem, eller så prøvde hun å få dem til å gjøre noe mer med ideen sin, som for eksempel å systematisere det de hadde kommet frem til. I BP oppmuntrer hun de elevene som allerede hadde funnet en struktur i figuren til å finne flere strukturer.

98. Lærer: Dere får teste litt og se da.

99. Elev: Men vi vet jo ikke svaret på hvor mye, nei…
Lærer: Hvilket nummer i rekka det er, det er jo det jeg vil at dere skal finne ut.

Elev: Jo, det går an å ta en fjerdedel, gjør det ikke det?

Lærer: Prøv det ut da, så ser du om det stemmer.

Elev: Jammen går det da? Kan du ikke si ja eller nei?

Lærer: Jeg vil at du skal finne det ut. Jeg vil at du skal forske.

Elev: Jammen jeg forsker, spørrende.

Annes oppmuntring til elevene for å få de til å fortsette arbeidet viser seg også i utdraget under. Det viser en elev som stiller en hypotese ut i fra noe han har sett i figurmønsteret, og Anne som ber han fortsette arbeidet for å se om det gjelder for neste figur. Anne sa i intervjuet etter økta at dette var en elev som vanligvis ikke var veldig aktiv i matematikk timene. Hun var usikker på hva han egentlig fant ut, og han satt fortsatt med rektangeltallene selv om hun hadde introdusert trekanttallene for klassen. Likevel satt han fordypet i en oppgave, og for henne var det mer enn nok å se at han engasjerte seg. Eleven oppdaget etter hvert at teorien ikke fungerte. ”Men da har han sitti og forska og det er jo fantastisk. Så jeg lot, jeg stoppet ikke han og korrigerte han til å gjøre oppgaven. Så jeg bare lot han holde på”.

Elev: Det blir alltid samme tallet bakerst som det foran her.

Lærer: Blir det det? Så kult.

Elev: Ja, det blir det.

Lærer: Bakerst hvor?

Elev: Når jeg regnet ut her så var det 484, når jeg regnet ut her så ble det 676. Og når jeg regnet ut () så ble det 232.

Lærer: Oi! Se om det fungerer igjen på neste og da. Det var en litt artig observasjon.

I de tilfellene der elevene var usikre på hva de skulle gjøre prøvde Anne å få de til å fokusere på et område av oppgaven og få de til å se hvordan de kunne bruke dette videre. I en av øktene med figurmønsteroppgaven spør hun blant annet en gruppe hvordan de kan finne ut hvor mange elementer det er i en konkret figur, og så spør hun om de kan bruke det de har funnet ut til finne den figuren som har 156 elementer. Når elevene skal finne en formel for det generelle rektangeltallet så er det flere grupper som er usikre på hva de skal gjøre. Til de gruppene som har oppdaget en multiplikativ struktur i figurene prøver Anne å rette elevenes fokus mot en mulig sammenheng mellom den ene siden i figuren og figurnummeret. Utdraget under viser hvordan Anne prøver å påpeke denne sammenhengen i figurnummer 10.
I tillegg til å få elevene til å oppdage en sammenheng mellom figurnummeret og siden i figuren og få de til å bruke dette til å lage en formel, så var det flere elever som var usikre på hva hun mente med formel. Anne brukte i tillegg ordet regel og hun sa at den kan brukes til å finne "hvor mange kuler det er inni, […] når vi vet hvilket nummer det har i rekka". Både i BP og i figurmønsteroppgaven så brukte hun formelen for areal som eksempel, for å forklare at i en formel så kan du ”sette inn hvilket som helst tall, så kan du finne ut hva noe er”. Anne sa til en gruppe: ”Sånn som lengde ganger bredde er jo formelen for areal sant, (…). Og I kan jo være hvilket som helst tall og det kan jo b være og. Og det er en formel”.

4.3.4 *Ber elevene teste og vurdere arbeidet sitt*

Slik det kommer frem av det Anne sa i intervjene og gjorde i IBL-øktene så betyr det å teste å sjekke om det man har funnet ut fungerer eller stemmer, mens å vurdere vil si å avgjøre hvor godt egnet både metode og svar er med tanke på oppgaven eller problemet som skal løses. Å teste en løsning var noe Anne kom på etter hvert, i slutten av den første økta med figurmønsteroppgaven. Da elevene skulle fortelle hva de hadde kommet frem til i undersøkelsen av trekantallene, var det en av gruppene som presenterte en mulig formel for den generelle figuren. Anne så at denne formelen ikke stemte, men skrev den opp på tavla likevel. Utdraget under viser hvordan Anne bruker denne muligheten til å engasjere hele klassen til å teste gruppens forslag.

Ja (skriver opp på tavla). Delt på to? Skal vi se hvordan vi sjekker om det stemmer? Da sier vi at vi for eksempel skal finne ut hvor mange det er i nummer to, så setter jeg to ganger to delt på to. Hva blir det svaret?

2.

Stemmer det da? Da sier jeg at det er to kuler i nummer 2, er det to kuler i nummer 2? (elevene svarer nei). Da har vi faktisk testa om formelen vår fungerer. Ja?
Anne sier hvordan elevene skal gå frem for å teste formelen, ved å sette inn tall fra en spesifikk figur, og spør elevene om formelen stemmer når de har regnet det ut. En mulighet kunne være å spørre elevene hvordan de ville gått frem for å teste formelen, men så er det ikke nødvendigvis hvordan man skal teste arbeidet sitt som kommer frem som den viktigste lærdommen her. I det siste intervjuet sa Anne at det å ta tak i feil og se hvorfor det er feil er noe elevene kan lære av. I dette eksempellet får Anne gruppa til å dele det de har kommet frem til, og i stedet for å fokusere på at det er feil, får hun alle elevene til å fokusere på betydningen av å teste eget arbeid.

Det er hovdsakelig disse to tilfellene der det kommer frem av dialogen at Anne ber elevene å vurdere arbeidet sitt. Hun sa også i intervjueene at samarbeidet elevene i mellom og den felles gjennomgangen av elevenes løsningsstrategier kan bidra til at elevene vurderer sitt eget og de andre sitt arbeid. Når elevene blir presentert for andre løsningsstrategier til samme oppgave kan det hende at de sammenligner sitt eget arbeid med medelevenes. Etter at den samme gruppa nevnt over hadde presentert sin metode for klassen var det en elev som spurte "men er det ikke litt lettere hvis du plusser på en på hver på høyden og lengden?". Denne kommentaren kan tyde på at eleven ser metodene opp mot hverandre og vurderer metodene slik Anne ville at elevene skulle gjøre. Her kunne Anne fulgt opp elevens spørsmål med å
oppmuntret til en diskusjon om de ulike metodene presentert, men hun svarer heller at de etterpå skal få en oppgave der de skal teste metodene sine. I det neste avsnittet vil jeg se nærmere på de felles gjennomgangene og hvilke muligheter det ble lagt til rette for når elevene presenterte metodene sine.

4.3.5 Legger til rette for deling av ideer

I de felles gjennomgangene var fokuset på at gruppene skulle forklare hva de hadde kommet frem til. Elevenes forklaringer ble fulgt opp og støttet av Anne som stilte spørsmål for å få de til å utdype eller begrunne tankegangen sin, som forklart i avsnitt 4.3.2. Anne inntok rollen som en aktiv lytter og gjentok og reformulerte (Alrø og Skovsmose, 2002) det gruppene hadde funnet ut.

I arbeidet med figurmønsteroppgaven i den rød klassen var det flere av gruppene som kom opp på tavla for å vise fremgangsmåten sine for å finne figuren med 156 komponenter. Det ble presentert ulike og kreative metoder, som fokuset på ulike sammenhenger i figurmønsteret og som ble representert ulikt. Det begynte med en gruppe som hadde sett en sammenheng mellom figurnumeret og sidene i figuren, og de sa at ’nummeret på figuren er en av lengdene, og så den neste lengden er en mer’. Deretter fulgte en annen gruppe opp med å tegne opp en tabell (se figur 5) som viste den rekursive sammenhengen mellom hvert element i figurfølgen. De skrev figurnummeret i den første raden, antall prikker i hver figur i den andre raden og differansen mellom figurene i den tredje raden. Den tredje gruppa viser at de har funnet det samme som den første gruppa, og at de bruker denne sammenhengen til å regne ut antall komponenter i figurene. De tegner opp en figur (se figur 6) med 13 kryss horisontalt og 12 kryss vertikalt, og trekker l-formete linjer i mellom kryssene som representerer hver figur i rekka. Gruppa forklarer at de multipliserte kryssene i hver ende av den l-formete linjen, sidene i rektangelfigurene, helt til de fikk 156 til svar.
Her har Anne en mulighet til å bruke elevenes bidrag og lage forbindelser mellom dem og de matematiske ideene som ligger bak. Hun kunne engasjert elevene i en diskusjon om forskjeller og likheter mellom metodene, og fordeler og ulemper med de ulike representasjonene, noe hun ikke gjør. Dermed resulterer gjennomgangen mer i noe som likner en ’show and tell’-sekvens, der elevenes bidrag stør om ulike måter å løse oppgaven på, som alle er like gode. Etter denne gjennomgangen spør Anne hvordan man kan finne arealet for de tre figurene på tavla. Elevene svarer for hver figur og Anne skriver dette opp under figurene, henholdsvis 1*2 (figurnummer 1), 2*3 (figurnummer 2) og 3*4 (figurnummer 3). Dette gjør hun også uten å trekke linjer til elevenes bidrag, men nå trekker hun inn det matematiske begrepet areal og bruker dette i sammenheng med strukturen i figurene.

Anne la også vekt på å få frem betydningen av de ulike leddene i de algebraiske uttrykkene elevene kom frem til, i både BP og figurmønsteroppgaven. I BP skrev Anne opp de strukturene gruppene så for å beskrive antall oransje ruter i hver av kvadratene, som i figur 7 under. For hver gang elevene presenterte sammenlignet Anne metodene elevene hadde brukt med metodene i det forrige kvadratet, pilene viser denne sammenligningen. Hun synliggjorde på den måten det som gikk igjen i hvert enkelt kvadrat, nemlig siden, og elevene kunne bruke denne sammenhengen til å lage en eksplisitt formel for antall oransje ruter i det generelle kvadratet med sidekant n.

Figur 7: The Border Problem, løsninger på tavla
Da en av elevene presenterte formelen for det generelle rektangeltallet i den blå klassen skrev eleven opp følgende formel \(n^2(n+1) \) og forklarte: “at \(n \) tilsvarer nummeret, og da tenkte jeg jo at nummeret [antall komponenter] er alltid nummeret ganger en mer enn nummeret”. Anne viser denne sammenhengen på tavla ved å bruke figurnummer 3 som eksempel. Hun viser at man kan finne igjen figurnummeret i figurens høyde, og at den andre siden i figuren, som tilsvarer fire prikker er det samme som figurnummeret pluss en, altså 3+1. Figur 8 viser hvordan Anne skrev dette på tavla. Her bruker Anne elevenes bidrag og støtter opp under elevenes forklaring av hva generalitetene i det algebraiske uttrykket betyr.

I BP gikk Anne systematisk gjennom alle gruppene i klassen og spurte hva gruppene hadde tenkt eller kommet frem til. Hun skrev opp alle gruppenes strategier, som vist i figur 7 over. I figurmønsteroppgaven virket hun også opptatt av at alle gruppene skulle dele det de hadde kommet frem til, men nå skiftet hun mellom å velge ut grupper selv og å velge ut de som rakk opp hånda. Det hendte at hun fikk til svar “vi tenkte likt som elev …”, og da gikk hun videre til neste gruppe. Som vist i det forrige avsnitt 4.3.5, tok Anne også opp løsninger som ikke stemte på tavla. Et annet eksempel var en gruppe som ganske tidlig mente at de hadde kommet frem til en formel. De sa: ”Det kan jo være hvilket som helst tall da. Så vi tok \(n \) i stedet for tall, så det blir \(n + h + b + 1 \)” og Anne skrev opp følgende på tavla \(n+h+b+1 \). Selv om Anne visste at formelen ikke stemte, eller hun så at det var noe som skurret, så fulgte hun opp med spørsmålet om hva \(n \) står for. Deretter gikk hun gikk videre til neste gruppe.

4.3.6 Oppsummering og drøfting av lærerens gjennomføring av IBL-øktene

De fem lærerhandlingene til sammen kan gi et inntrykk av hvordan Anne gjennomførte de fire IBL-øktene. De sier noe om hva hun fokuserte på i interaksjonen mellom elevene, hva hun vektla i elevenes bidrag og hvordan helklassediskusjonene foregikk. I alle øktene er det fokus på elevenes aktivitet. Etter å ha introdusert oppgavene går fokuset rett over på elevenes arbeid med oppgavene og deres tilnærminger til dem. Som Fuglestad (2009) sier så handler inquiry i opplæringen først og fremst om en aktiv tilnærming til faget. Anne lar elevene jobbe sammen i
grupper for å utforske figurene. Utforske er det sentrale ved elevenes tilnærming, de skal studere og undersøke figurene for å finne svar på oppgaven.

Både når Anne oppretter den første kontakten med gruppene for å få tak i tankegangen deres og når Anne ber elevene forklare og begrunne tankegangen sin så er det flere elementer som kommer til synge i kommunikasjonen mellom Anne og gruppene. I tillegg til å komme i kontakt prøver Anne å lokalisere (locate) elevenes perspektiv, deres forståelse av oppgaven og tilnærming til den. For å gjøre dette stiller hun elevene spørsmål og er nysgjerrig på elevenes strategier. Samtidig som hun i flere tilfeller reformulerer (reformulate) det elevene sier på en undrende måte, som vist i utdraget i avsnitt 4.3.1. Ved å reformulere elevenes forklaringer får Anne både anledning til å bekrefte at hennes forståelse av elevenes tankegang stemmer overens med elevenes, og hun viser elevene at hun aktivt lytter til ideene deres. På den måten bekrefter hun ovenfor elevene den første kontakten hun opprettet med dem og viser at hun fortsatt er interessert i arbeidet deres.

Anne ønsker at elevene skal bli flinkere til å vise og forklare hva de tenker. Ved å spørre elevene hva de tenker og ber de forklare fremgangsmåten sin så kan man si at hun ber elevene om å tenke høyt (think aloud). I et undersøkende klasserom er det en forutsetning at elevenes tankegang blir offentliggjort. Elevenes tankegang forteller hva de tenker om oppgaven og
hvordan de forstår den, og ved å tenke høyt gjør elevene det mulig for medelever og for læreren å identifisere (identify) hva elevenes tankegang innebærer og eventuelt finne de matematiske ideene som skjuler seg bak tankegangen. Når Anne ber elevene dele tankegangen sin åpner det også opp for å gjøre elevenes ideer til gjenstand for undersøkelse og kritikk. I og med at dette er en studie av hvordan læreren legger til rette for undersøkende undervisning har ikke mitt fokus vært på elevenes samtale og handling i gruppene alene. Det kan godt hende at diskusjonen dem i mellom innebar prosesser av å forklare og forsvare egne perspektiver for å etablere en delt forståelse av et perspektiv. Anne la i hvert fall opp til at elevene skulle komme frem til og bli enige om én fremgangsmåte ved å si at elevene skulle jobbe sammen i gruppene og ved å henvende seg til hele grupp over for å spørre hva de hadde kommet frem til.

Annes fokus på elevenes forklaring og begrunnelse er et viktig bidrag til kommunikasjonen i de undersøkende undervisningsøktene. I stedet for at Anne fremstår som klassens autoritet som vurderer alle innspill og definerer og forklarer det elevene holder på med, så gir hun heller elevene rom til å forklare tankegangen sin selv og til å begrunne valgene sine. Dette gir elevene anledning til å lære gjennom å uttrykke seg, og de gjores til eiere av egen kunnskap når de må forklare den og forsvare hvorfor de har gjort som de har gjort. Ved å be elevene forklare og begrunne tankegangen sin så blir elevenes argumentasjon og kommunikasjon av sitt eget arbeid viktigere enn lærerens dom over det. Dette er også noe av det som kjennetegner kommunikasjonen i de to øverste kommunikasjonsmønstrene Brendefyr och Fykholm (2000) beskriver (se avsnitt 2.4.2). Det at Anne fokuserer på elevenes forklaring fremfor at hun gir fasiten kan også bidra til å gjøre elevene tryggere på seg selv i arbeidet med matematikk, noe Anne ønsker for sine elever.

Annes utfordring (challenge) til den gruppa som jobber med den rekursive relasjonen mellom figurene (se avsnitt 4.3.5) inviterer gruppa til å betrakte sin metode og eventuelt sammenligne den med medelevenes strategier for å beskrive figurene. Anne utforder elevene fordi hun ønsker å styre arbeidet deres i en ny retning, mot å se på den eksplositte sammenhengen, noe hun gjør ved å utfordre gruppa til å reflektere over egenskapene ved deres metode. Hun inviterer til det samme i den rød gruppa da hun spør hvilken av de presenterte metodene elevene tror er mest effektiv, men det utvikler seg ikke til å bli en diskusjon av det. Kanskje mangler det en forståelse av begrepet 'effektivt' sett i sammenheng med utforskingen av figurene? Dessuten har elevene funnet en løsning på det oppgaven spør om, så hvorfor skal de vurdere metodene sine når de fungerer? Dette kan ha sammenheng med et inntrykk det Anne har av elevenes tanker om matematikk som et rett og galt fag, så hvis noe er rett så er man ferdig med oppgaven. Anne kunne muligens tatt en annen tilnærming til refleksjonen rundt metodene, og invitert elevene til å diskutere forskjeller og likheter mellom strategiene i stedet for effektiviteten. Hvis hun hadde fått elevene til å betrakte metodene først, og se på sve seg ansvarlig for å finne antall komponenter eller figurnummeret til den ønskete figuren, så kunne det muligens vært lettere å snakke om effektivité etterpå.

Når Anne ber elevene forklare og begrunne eller teste og vurdere metodene sine så kan man si at det også er en del av Annes veiledning til elevenes arbeid, fordi hun får elevene til å fokusere på deler av arbeidet sitt og tenke på aspekter som hvorfor de bruker parentes eller om metoden deres er litt tungvint. En viktig del av Annes arbeid med å veilede elevene er å få de til å tenke selv, først og fremst fordi hun ønsker at de skal bli vant til å prøve seg frem før de spør henne om hjelp. Fuglestad (2009) sier at dette er en av lærerens oppgaver, å lære elevene til å utforske matematikken og få de til å stille egne spørsmål etter hvert. Anne prøver i sin veiledning til elevene å oppmuntere dem til å fortsette det de holder på med, og hun prøver å få noen av gruppengene til å tenke over hvordan de kan bruke det de allerede har funnet ut videre. Basert på det Anne sier om elevenes aktivitet og det hun gjør når hun veileder dem så kan det virke som hun ønsker å skape en praksis i matematikklassen der det å se etter løsninger og utforske muligheter er en del normen for fellesskapet.

Anne la opp til flere diskusjons- og oppsummeringsfaser i løpet av den samme økta. Jeg nevnte hvordan en av gjennomgangene bar preg av å være en 'show and tell' sekvens fordi elevenes ideer ble presentert uten at det ble gjort koblinger mellom dem eller til de matematiske ideene bak elevenes fremgangsmåter. Det kan være flere grunner til at dette skjedde. Det kan skyldes at gruppenes bidrag ble visket fra tavla for å gjøre plass til det
neste bidraget. På den måten ble det mer utfordrende å se en forbindelse mellom ideene når de ikke lenger var synlig for klassen. Anne sa i intervjuene at hun ønsket at elevene skulle se at det finnes flere måter å tilnærme seg oppgavene på, noe elevene fikk se når fremgangsmåten ble vist på tavla. Dessuten fortalte gruppene som presenterte ideene hva de innebar, slik at medelevene selv fikk muligheten til å sammenligne dem. En annen grunn kan være at Anne planla flere oppsummeringsfaser, slik at forbindelsene ville komme etter hvert. Som vi allerede har sett så ble det gjort koblinger til noen matematiske ideer i løpet av øktene, blant annet algebraisk symbolspråk, parentesbruk og areal. Det kan også hende at Anne ikke var helt bevisst på forskjellen mellom den rekursive og eksplisitte sammenhengen som lå bak elevenes ideer. For å bruke de matematiske ideene som ligger bak elevenes arbeid, så forutsetter det at læreren klarer å identifisere disse selv. I tillegg til å anta hvilke tilnærmeringene elevene kommer til å ta, så kan det også være en fordel å tenke over hvilke matematiske ideer oppgavene innebærer, hvilke matematiske ideer som kan komme til syne i elevenes arbeid og hvilke matematiske ideer læreren ønsker at elevene skal huk fokus på.

At gjennomgangene bare preg av ’show and tell’ sekvenser kan også ha sammenheng med at disse fire øktene er første gangen Anne bevisst gjennomfører undersøkende undervisning i matematikk. Stein et al. (2008) sier at alle de fem praksisene i deres modell (se avsnitt 2.4.1) ikke trenger å være tilstede de første gangene læreren gjennomfører undersøkende undervisning. De kan heller komme i etapper etter hvert som læreren ser hvilke matematiske ideer som kan knyttes til elevenes arbeid og hvordan. Anne sa i et av de siste intervjuene at hun kunne tenke seg å komme tilbake til dette med figurmønstre, for å bruke mer tid på å se **hvordan** man kan finne en sammenheng mellom figurnummer og strukturen i figuren. Dette kan tyde på at Anne har gjort noen refleksjoner underveis, som hun ikke benyttet seg av der og da, men som hun kunne tenke seg å se på sammen med elevene ved en senere anledning. Det å be elevene teste og vurdere sitt eget arbeid var også en idé som Anne kom på litt etter hvert. Dette er også med på å vise at IBL fortsatt er ganske nytt for Anne, og at hun prøver seg frem underveis. Det kan også bety at det er flere aspekter ved IBL som Anne enda ikke har oppdaget eller blitt bevisst på, men som utvikler seg etter hvert som Anne får mer erfaring med undersøkende undervisning og etter hvert som hun deler sin erfaring med de andre deltakerne fra Mascil-prosjektet og med kollegaer. Annes mål om å få elevene til å teste og vurdere eget arbeid førte også til at hun tok opp løsninger på tavla som ikke bare var rett, og hun demonstrerte for elevene at det er lurt å sjekke svarene sine. Selv om Anne viste hvordan det skulle gjøres, så ga det henne anledning til å rette fokus mot to aspekter ved
matematikkopplæringen hun ønsker at elevene skal bli vant til; en feil er ikke bare en feil, man kan også lære av feilene, samtidig er det viktig å ikke stole blindt på egne svar. Det siste aspektet er et viktig bidrag til å gjøre elevene ansvarlige for egen læring (Engeln, Euler & Maass, 2013).

Selv om Anne ikke gjorde koblinger mellom de tre gruppenes ideer nevnt over, så gjorde hun likevel forsøk på å få elevene til å sammenligne fremgangsmåtene sine. Dette gjorde hun da hun spurte elevene hvilken metode de tror er mest effektiv, og da hun utfordret fremgangsmåten til den ene gruppa som så på den rekursive relasjonen mellom figurene. Eleven som kommenterte denne gruppas fremgangsmåte (se avsnitt 4.3.5) viser også at tegn til at selv om Anne ikke satt i gang store fellesdiskusjoner om løsningsstrategiene, så var det noen elever som tenkte på forskjeller og likheter. Anne tok ikke tak i muligheten til å følge opp elevens spørsmål med en diskusjon, men hun overlot det heller til hver enkelt gruppe å se nærmere på metodene sine.

Annes hadde som mål for øktene at elevene skulle knytte fremgangsmåtene sine til algebraisk symbolspråk og eventuelt parentesbruk. Hun ønsket også at de skulle se en tilknytning til areal og geometri. Anne la til rette for at dette kunne skje og hun ga elevene anledning til å gjøre meningsfulle erfaringer med bruk av bokstaver og parentes i matematikken, samt å gjøre det mulig for elevene å benytte seg av kunnskap om egenskaper ved geometriske figurer for å beskrive strukturene de så.

elevene at deres ideer er en viktig del av timen, så kan Anne legge et trygt grunnlag for elevene som hun senere kan bygge videre på.
Kapittel 5: Avsluttende refleksjoner og konklusjoner

I det forrige kapittelet presenterte og diskuterte jeg funn fra undersøkelsen. Dette gjorde jeg i tre deler, der hver av delene tok for seg et av de tre forskningsspørsmålene. Jeg så på hvilke oppfatninger Anne har om IBL, hvordan hun planlegger undersøkende undervisning og hvordan hun gjennomfører matematikkundervisning med fokus på IBL. Dette i forsøk på å få frem hvordan en lærer kan legge til rette for inquiry based learning, undersøkende læring, i matematikkundervisningen.

Når det gjelder det andre forskningsspørsmålet, *Hvordan planlegger en lærer undersøkende undervisning*, viser funnene at Anne legger opp til at elevene skal ta en utforskende tilnærmning til matematikkoppgavene. Hun planlegger to økter der elevene skal undersøke strukturene i ulike figurmønster, og de skal finne og beskrive strukturene ved hjelp av egne fremgangsmåter. Funnene viser at Anne legger opp til å gi elevene meningsfulle erfaringer med den matematiske kunnskapen, da hun har som mål at elevene skal benytte seg av algebraisk symbolspråk og parentes i tilknytning til ideene de selv har utviklet. Samtidig gjør hun konstruktiv bruk av elevenes tidligere kunnskap, når hun velger figurer som er kjent for elevene fra før. Funnene viser også at Anne legger opp til samarbeid mellom elevene når hun deler elevene inn i grupper og sier at de skal komme frem til en løsning sammen.

Det tredje forskningsspørsmålet, *Hvordan gjennomfører en lærer undersøkende undervisning?*, tar for seg hva Anne gjør i timene når hun leder IBL-øktene. I analysearbeidet
kom jeg frem til fem lærerhandlinger; setter seg inn i elevenes tankegang, ber elevene forklare og begrunne tankegangen sin, veileder elevenes arbeid, ber elevene teste og vurdere arbeidet sitt og legger til rette for deling av ideer, som gir et samlet inntrykk av hvordan Anne gjennomfører øktene. I lærerhandlingene kommer det frem viktige aspekter ved lærerens rolle i et undersøkende klasserom. Først og fremst viser Anne hvordan hun bygger undervisningen på elevenes ideer og fremgangsmåter ved å gi elevene rom til å utvikle egne ideer, ved å vise interesse for elevenes arbeid og ved å fokusere på elevenes bidrag i oppsummerings- og diskusjonsfasene. Lærerhandlingene viser hvordan Anne opptrer som en veileder, og at hun benytter seg av ulike strategier for å få elevene til å tenke selv. Anne legger også opp til at elevene skal generalisere ideene sine, og på den måten får hun knyttet det algebraiske symbolspråket til arbeidet deres. Funnene viser at Anne gjør forsøk på å få elevene til å betrakte metodene sine, men at refleksjon rundt metodene er begrenset. Dette kan skyldes at undervisningsformen er relativt ny for både Anne og elevene.

5.1 Svar på problemstillingen

Lærerens forberedelser er en sentral del av lærerens arbeid med å legge til rette for IBL i matematikkundervisningen. Det er viktig at læreren antar sannsynlige elevsvar og mulige tilnærminger elevene kan ta til oppgavene. Dette fordi undervisningen bygger på elevenes bidrag, og for å håndtere bidragene må man også kjenne til dem (Stein et al., 2008). Anne kjenner til oppgavene fra før, dermed kan hun bruke denne erfaringen i møtet med elevenes ideer. Funnene i studien viser også hvordan Anne får tak i elevenes tankegang ved å overvåke arbeidet som foregår på gruppene (se avsnitt 4.3.1).

Jeg vil også legge til ’å identifisere de matematiske ideene involvert i oppgaven’ til lærerens forberedelser. I tillegg til å anta mulige elevsvar så bør læreren tenke over hvilke
matematiske ideer oppgavene innebærer og hvilke av disse som kan komme til syne i elevenes arbeid. Læreren har et ansvar for å hjelpe elevene til å se forbindelser mellom deres ideer og metoder og den matematiske kunnskapen som ligger bak (Maass & Artigue, 2013).

Dette for at elevenes bidrag skal fremme læring i matematikk for hele klassen (Stein et al.)

For å få til dette må læreren være bevisst på hvilke matematiske ideer det skal lages forbindelser til. I denne studien kommer det frem at Anne vil knytte det algebraiske symbolspråket og parentesbruk til elevenes arbeid, noe hun gjør. Det kommer også frem at refleksjon rundt elevenes metoder og arbeidet med å lage forbindelser mellom dem er begrenset. Noe som kan skyldes at Anne ikke er helt bevisst på de matematiske ideene bak elevenes metoder.

Elevenes aktive rolle i egen læring er en sentral del av et undersøkende klasserom. For læreren innebærer dette å ta utgangspunkt i at elevene har noe å bidra med. Funnene i denne studien viser hvordan Anne gir elevene rom til å utforske figurene, og til å finne sine egne fremgangsmåter for å beskrive strukturen de ser. I interaksjonen mellom Anne og elevene kommer det til syne flere elementer som kan kjennes igjen i Alrø og Skovsmoses (2002) ’inquiry co-operation model’ (kommer i kontakt, lokalisering, reformulering, tenker høyt og utfordrer), som kan ha betydning for elevenes vilje til å delta i den undersøkende aktiviteten.

Funnene viser at Annes kommunikasjon med elevene støtter et samarbeid mellom henne og dem, som får elevene til å utvikle og dele arbeidet sitt.

Anne har som mål at elevene skal bli flinkere til å forklare tankegangen sin. Hun legger opp til at elevene kan forklare tankegangen sin for de andre på gruppa, hun ber elevene forklare hva de tenker til henne når hun går rundt mellom gruppene, og hun legger opp til at elevene skal forklare tankegangen sin for resten av klassen. Å legge til rette for at elevene skal kommunisere ideene sine er like viktig som at elevene får utvikle egne fremgangsmåter og løsningsstrategier. Det er når elevenes tanker og ideer blir offentliggjort at læreren kan bruke ideene til å fremme læring. Funnene viser at Anne bruker elevenes bidrag på en læringsfremmende måte, når hun legger til rette for at elevene skal få meningsfulle erfaringer med algebraisk symbolspråk og bruk av parenteser i regneuttrykk. Hun bruker også elevenes bidrag til å demonstrere betydningen av å teste eget arbeid (se avsnitt 4.3.5), fremfor å fokusere på at elevgruppa har gjort feil.

Å legge til rette for undersøkende læring innebærer også å lede helklassediskusjoner (Maass & Artigue, 2013). Funnene viser hvordan Anne legger opp til flere oppsummerings- og diskusjonsfaser i løpet av samme økta. Anne leder oppsummeringene ved å velge ut gruppene
som skal fortelle om eller vise fremgangsmåten sin. I analysen kommer det frem at kommunikasjonen i gjennomgangene hovedsakelig består av gruppene som forklarer fremgangsmåtene sine og Anne som stiller spørsmål for å få de til å utdype eller presisere. Anne gjør noen forsøk på å få elevene til å betrakte metodenes effektivitet, men utenom det så foregår det lite diskusjon rundt metodene. For at elevenes metoder ikke bare skal fremstå som ulike angrepsmåter som er like gode, er det nødvendig at læreren hjelper elevene til å se forbindelser mellom de ulike metodene. Her er reflexjon et viktig redskap, da det kan få læreren og elevene til å betrakte metodene på avstand.

Grunnen til at felles diskusjoner uteble kan skyldes at IBL er en ny måte å undervise og lære på for Anne og hennes elever. Dessuten viser også denne studien betydningen tiden har når det kommer til å legge til rette for undersøkende læring i matematikkundervisningen. Anne sa selv at det hun ønsker å oppnå med bruken av IBL ikke er gjort i løpet av to undervisningsøkter. Læreren trenger tid til å venne seg til en undersøkende undervisningsform, og til å bli kjent med elevene, både faglig og sosialt. Elevene må også få tid til å venne seg til den undersøkende arbeidsmåten, og de må få muligheten til å lære seg å samarbeide. Annes fokus på deling av ideer, kan i første omgang ha vært et viktig bidrag for å gjøre elevene tryggere når det kommer til å vise arbeidet sitt for andre.

5.2 Avsluttende reflexjoner

Det er viktig å ta i betraktning at denne studien ser på en lærer som gjennomfører matematikkundervisning med bevisst fokus på IBL for første gang. Denne måten å undervise og lære på er relativt ny for både Anne og hennes elever. Dette må Anne ta hensyn til, og hun må gi elevene anledning til å bli vant til de ulike aktivitetene som kan være en del av en undersøkende undervisningsøkt. På samme tid må Anne venne seg til sin nye rolle, noe som betyr at hun muligens vil oppdage nye aspekter ved rollen etter hvert som hun får mer erfaring med den. Et eksempel på dette er læreren oppgave med å få elevene til å vurdere og teste arbeidet sitt, som Anne kom på underveis i løpet av de to ukene jeg var til stede.

Det kunne muligens vært en fordel å studere praksisen til en lærer med mer erfaring når det kommer til undersøkende matematikkundervisning, for å få innblikk i en mer etablert praksis. På samme tid mener jeg at det å se på praksisen til en lærer som er i gang med å innføre IBL kan gjøre resultatene i denne studien mer tilgjengelige og virke mer oppnåelige for andre lærere i samme situasjon. Denne studien viser blant annet at læreren kan konsentrere seg om

68
noen utvalgte elementer ved undersøkende undervisning til å begynne med. Dette er både for at læreren skal få tid til å bli kjent med elevene og erfare hvordan den matematiske kunnskapen kan kobles til elevenes arbeid, men også for å trygge elevene og gjøre de vant til å jobbe undersøkende og til å presentere ideene sin for resten av klassen.

I denne studien ser jeg kun på fire undervisningstimer over en to-ukers periode. Jeg ser på hvordan Anne bruker IBL for første gang. Det hadde vært interessant å se på Annes praksis over tid, eller kommet tilbake ved en senere anledning for å se hvordan hennes tilnærming til undersøkende matematikkundervisning utvikler seg. Anne ønsker at elevene hennes skal bli vant til å bruke utforsking som en arbeidsmåte i matematikk. Det hadde blant annet vært interessant å se hvordan hun følger opp dette med videre bruk av IBL. Samtidig som det kunne vært interessant å se på elevenes utbytte med undersøkende undervisning, i og med at denne studien begrenser seg til hva læreren gjør. Hva oppnår elevene og hvordan opplever de den undersøkende undervisningen Anne legger opp til? Som jeg nevnte innledningsvis så har læreren en nøkkelrolle i å utvikle og gjennomføre god matematikkundervisning. Jeg nevnte også at det er mange lærere som ser en del utfordringer med innføringen av IBL i undervisningen. Derfor valgte jeg i denne omgangen å se nærmere lærerens rolle og hva læreren kan gjøre for å legge til rette for utforskende matematikkundervisning.

I denne masteroppgaven har jeg forsøkt å klargjøre hvordan en lærer kan legge til rette for inquiry based learning i matematikkundervisningen. Studien foregår i to klasser på 8.trinn. Jeg håper likevel at innsiktene dette arbeidet gir kan fungere som en støtte for lærere på alle trinn i skolen. For lærere og for andre som ønsker å bruke inquiry based learning som en måte å undervise matematikk på og som en måte for elevene å tilnærme seg den matematiske kunnskapen. Jeg velger å avslutte oppgaven med et kinesisk ordtak. For meg belyser ordtaket betydningen av å involvere og aktivisere elevene i arbeidet med faget, eller som Skovsmose og Säljö (2008, s.44) sier ”å ta elevene med inn i matematikken” slik IBL tar sikte på:

"Tell me and I forget, show me and I remember, involve me and I understand"

(i Bruder & Prescott, 2013, s.811).
Litteraturliste

Vedlegg

Vedlegg 1: Informasjonsskriv og samtykkeerklæring til foreldre/foresatte

Oslo, 25.09.2014

Til foreldre/foresatte for elever på <trinn> ved <navn på skole>

Anmodning om tillatelse til lydopptak av undervisning.

Jeg er masterstudent i matematikkdidaktikk ved Høgskolen i Sør-Trøndelag, Avdeling for lærer og tolkeutdanning. Jeg skal i løpet av skoleåret 2014/2015 skrive en masteroppgave med fokus på undersøkende læring (inquiry based learning) i matematikk. Under prosessen vil jeg være opptatt av hvordan læreren kan bruke og bruker undersøkende læring i matematikkundervisningen.

For å få så godt dokumenterte data som mulig, har jeg i samråd med min veileder kommet til at det vil være ønskelig å gjøre lydopptak av undervisningssekvenser. Derfor ber jeg om tillatelse fra dere til å kunne gjøre lydopptak av elever i <klasse/trinn> ved <navn på skole>. Det er snakk om datainnsamling fra matematikkundervisningen 2-3 uker i høst.

Forutsetningen for tillatelsen er at alt innsamlet materiale blir behandlet med respekt og konfidensielt, og at prosjektet ellers følger gjeldende retningslinjer for personvern. Det er naturligvis helt frivillig å delta og man kan til enhver tid trekke seg fra deltakelse uten å måtte oppgi noen grunn til det.

Lydopptak vil være basert på normale undervisningssituasjoner i klassen, og opptakene vil bli lagt til rette slik at de i minst mulig grad skal kunne påvirke elevenes læring. Opptakene vil kun bli hørt av meg, min veileder og eventuelt av andre masterstudenter i matematikkdidaktikk ved høgskolen. I materiale som skrives eller på annen måte presenteres for andre, vil involverte personer bli anonymisert. Innsamlede data vil bli slettet etter at prosjektet er avsluttet, senest 01.07.2015.

Hvis noen vil vite mer om dette, eller hva det innsamlede materialet skal brukes til, så er det bare å ta kontakt med meg på telefon eller e-post (se øverst for detaljer).

Jeg håper dere synes dette er interessant og viktig, og at dere er villige til å la deres barn være med på det. Jeg ber foreldre/foresatte om å fylle ut svarslippen på neste side om hvorvidt dere gir eller ikke gir tillatelse til å la deres barn være med på prosjektet i klassen.
På forhånd takk!

Vennlig hilsen

Caroline Ørnfjord Nome

Samtykkeerklæring

Som del av prosjektet ber jeg om tillatelse til å gjøre lydopptak der barnet ditt/deres er med og evt. kopiere/bruke tekster skrevet av han/henne.

Sett kryss:

☐ Jeg/vi gir tillatelse. Jeg/vi har snakket med jenta/gutten vår om dette, og hun/han har også gitt sitt samtykke.

Jeg/vi er klar over at deltagelsen er frivillig, og at vi og barnet når som helst og uten grunn kan trekke oss fra prosjektet.

Dato: ……………………

Elevens fornavn og etternavn: ………………………………………… ……………………

Underskrift av foresatt(e): ………………………………………………………………..

Vennligst returner svarsippen til lærer <navn på lærer> så snart som mulig.
Vedlegg 2: Intervjuguide

Intervju 1 – om IBL

Mål: Få bedre innsikt i lærerens oppfatninger og tanker om IBL, og bruken av IBL i matematikkundervisningen.

<table>
<thead>
<tr>
<th>Innledende spørsmål</th>
<th>Tilknytning til skolen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Hvor lenge har du jobbet på skolen?</td>
</tr>
<tr>
<td></td>
<td>- Hvilke fag underviser du i?</td>
</tr>
<tr>
<td></td>
<td>- Hvilke trinn underviser du på?</td>
</tr>
</tbody>
</table>

Primas og Mascil

- Jeg har hørt at det vil være et økt fokus på IBL i realfagsundervisningen på skolen i årene fremover. Noen av kollegaene dine har deltatt i Primas-prosjektet, og nå deltar du i Mascil-prosjektet.

- Kan du begynne med å fortelle litt om skolens satsing på realfag?
- Hvordan ble erfaringene fra Primas-prosjektet delt på skolen?
- Hva var din rolle der?
- Hva fikk deg til å bli med på Mascil-prosjektet?
- Hvordan fikk du muligheten til å bli med?
- Kan du fortelle litt om Mascil, og hva dere har gjort så langt?

Om IBL

- Hvordan vil du beskrive hva IBL eller undersøkende undervisning er?
- Har du noen konkrete eksempler på en undersøkende matematikktime? Eller en time med elementer av IBL?
- Hvilket utbytte tenker du elevene får av den type undervisning?
- Hva ser du på som positivt med IBL i matematikkundervisningen?
- Hva tenker du kan være utfordrende med undersøkende undervisning?
Matematikkundervisningen og begrunnelse for bruken av IBL

- Kan du beskrive en vanlig matematikktime i ditt klasserom, fra før du ble med på Mascil-prosjektet?
- Hva styrer planleggingen av matematikkundervisningen din?
- Har du et overordnet fokus (langsiktig mål) for dine elever når du planlegger matematikkundervisningen?
- Hva slags ressurser bruker du i planleggingen og gjennomføringen av undervisning?
- Vil du si at du allerede har gjennomført undervisning med preg av IBL?
- Hvorfor ønsker du å innføre IBL i matematikkundervisningen?
- Hva tenker du er viktig å ha kjennskap til med tanke på undersøkende undervisning før man innfører det i klasserommet?

Arbeid i team
- Til slutt, kan du fortelle litt om samarbeidet dere realfagslærere imellom på skolen?

Intervju 2 – før øktene

Mål: Få innsikt i lærerens planer for den kommende økta. Hva skal skje, hvordan og hvorfor? Hvilke elementer av IBL mener læreren at økta har eller kommer til å ha?

<table>
<thead>
<tr>
<th>Før øktene</th>
<th>- Hva er planen for timen?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Hvordan skal det gjennomføres?</td>
</tr>
<tr>
<td></td>
<td>- Hvorfor har du planlagt dette?</td>
</tr>
<tr>
<td></td>
<td>- Mål for timen?</td>
</tr>
<tr>
<td></td>
<td>o Faglig?</td>
</tr>
<tr>
<td></td>
<td>o Ikke-faglig?</td>
</tr>
<tr>
<td></td>
<td>- Hvilke matematiske tema er knyttet til oppgaven?</td>
</tr>
<tr>
<td></td>
<td>- Hva har du tatt utgangspunkt i når du planla denne økta?</td>
</tr>
<tr>
<td></td>
<td>- Hva gjør denne økta til matematikkundervisning preget av IBL?</td>
</tr>
</tbody>
</table>
Intervju 3 – etter øktene

Mål: Få innsikt i lærerens tanker om hvordan økta gikk. Utfordringer og positive inntrykk.

Hvordan blir veien videre? I denne samtalen blir det relevant å vise til ting som har skjedd i den foregående økta, og få læreren i samtale om det.

<table>
<thead>
<tr>
<th>Etter øktene</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Opplevelse av økta generelt?</td>
</tr>
<tr>
<td>- Utfordringer? Muligheter?</td>
</tr>
<tr>
<td>- Hvorfor gjorde det du det du gjorde (vis til spesielle hendelser)?</td>
</tr>
<tr>
<td>- Hvordan opplevde du elevenes arbeid i økta?</td>
</tr>
</tbody>
</table>

Intervju 4 – Avsluttende intervju

Mål: Få innsikt i lærerens tanker etter å ha jobbet med IBL.

<table>
<thead>
<tr>
<th>Erfaringer</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hvilke erfaringer har du gjort deg i arbeidet med å skape en mer undersøkende matematikkundervisning?</td>
</tr>
<tr>
<td>- Hva har vært viktig å tenke på i planleggingen og gjennomføringen?</td>
</tr>
<tr>
<td>- Hva har vært viktig for deg med tanke på støtte, ressurser og hjelpemidler?</td>
</tr>
<tr>
<td>- Du sa at du vil bruke IBL i undervisningen fordi ønsker at elevene skal bli mer uredd i møte med oppgaver der metoden eller tema er ukjent. Hvordan har disse aktiviteten bidratt til det?</td>
</tr>
<tr>
<td>o Skal bli mer uredd i møte med oppgaver der metoden eller tema er ukjent. Hvordan har disse aktiviteten bidratt til det?</td>
</tr>
<tr>
<td>- Du trodde i utgangspunktet at IBL er ganske åpent, uten så mange rammer, men fant ut at læreren kan være med å styre litt, vise elevene veien, hva har den oppdagelsen hatt å si for deg?</td>
</tr>
<tr>
<td>- I utgangspunktet hadde du ingen forventning om at elevene skulle komme frem til en formel eller i det hele tatt bruke parentes, fortell litt om hva som skjedde?</td>
</tr>
<tr>
<td>Elevenes utbyte</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| | Når det gjelder elevenes utbyte så har du blant annet sagt at elevene
| | o Får trening i å teste ut og prøve seg fram
| | o Kan bli flinkere til å utforske ting på egen hånd
| | Hvordan har du opplevd det i disse timene? |
| | Hva er positivt med å la elevene finne og presentere egne løsningsmetoder? Utfordrende? |
| | Du sa på onsdag at det å teste og vurdere egne metoder også kan være et mål for elevene? Hvorfor mener du det? |
| | "Forhåpentligvis blir det mer engasjerende for dem enn å bare sitte og regne i boka", hvordan har du opplevd det? (Hva er det som er mer engasjerende?) |
| | Hva mener du elevene lærer om matematikk ved å jobbe på denne måten? |
| | Hvordan syns du denne måten å arbeide på har fungert for alle elevene i klassen? |

<table>
<thead>
<tr>
<th>IBL og veien videre</th>
<th>Hva mener du IBL bringer til matematikundervisningen? (Utfordringer, muligheter).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Du snakket om tid som en utfordring for å prøve ut nye ting, hvordan ser du for deg at tidsaspektet vil prege bruken av IBL i din matematikundervisning fremover.</td>
</tr>
</tbody>
</table>
| | På hvilken måte ser du for deg at du vil bruke IBL i fremtidig matematikundervisning? (Når, hvor ofte, hvordan, tema)
| | Veldig glad i algoritmer. Kan du utdype hva du mener med det? (Elevene og algoritmer?) |
| | Hva tenker du om andre lærere, hva skal til for at de også kan bruke IBL i matematikundervisning med sine
elever?
- Neste år skal du dele dine erfaringer og kunnskap med dine kollegaer
 - Hvordan har opplevd at responsen knyttet til din deltaking i prosjektet er blant dine kollegaer?
 - Hva vil du si til kollegaene dine at IBL er?
 - Hva vil du si til dem er det mest positive og mest utfordrende med undersøkende undervisning?
- Helt til slut, er det noe du vil fortelle eller legge til?
Vedlegg 3: Transkripsjonsnøkkel

<table>
<thead>
<tr>
<th>Begrep</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1., 2., 3. osv</td>
<td>Hvert utsagn nummereres i kronologisk rekkefølge fra 1., i hvert intervj/hver økt</td>
</tr>
<tr>
<td>(Tekst i parentes)</td>
<td>Redegjørelse for kommunikasjon eller handling som ikke er språklig</td>
</tr>
<tr>
<td>(...)</td>
<td>Unødvendig tekst fra transkripsjonen utelatt</td>
</tr>
<tr>
<td>()</td>
<td>Utydelig tale</td>
</tr>
<tr>
<td>…</td>
<td>Avbrutt eller ufullstendig setning</td>
</tr>
<tr>
<td>Elev 1, Elev 2, Elev 3 osv</td>
<td>Hvis forskjellige elever uttaler seg i en dialogsekvens markeres forskjellen med å gi elevene nummer.</td>
</tr>
</tbody>
</table>