Ida Christine Myrvang

Hvorfor er tekstoppgaver vanskelig?

En kvalitativ studie av fem 7. klassingers møte med algebraiske tekstoppgaver

Trondheim, mai 2015

Høgskolen i Sør-Trøndelag
Avdeling for lærer- og tolkeutdanning
Hvorfor er tekstoppgaver vanskelig?
En kvalitativ studie av fem 7. klassingers møte med algebraiske tekstoppgaver

Why are story problems difficult?
A qualitative study of five 7th graders' introduction to algebraic word problems

Masteroppgave, Mastergrad i matematikkdidaktikk
Trondheim, mai 2015

Veileder: Ole Enge

Høgskolen i Sør-Trøndelag
Avdeling for lærer- og tolkeutdanning

Høgskolen har intet ansvar for synspunkter eller innhold i oppgaven. Framstillingen står utelukkende for studentens regning og ansvar.
Forord

Å produsere en masteroppgave er som mange sier, en lang prosess. Prosessen har bestått av oppturer og nedturer, både på det faglige og på det følelsesmessige planet. I starten ante jeg lite om hva jeg gikk til, og bare det å finne ut hva jeg ville skrive om var ikke lett. I løpet av de seks årene jeg har studert, har det vært mange ting som har interessert meg, mange ting jeg kunne tenke meg å finne ut mer om, deriblant algebra. Jeg har alltid likt algebra, og syntes det var spennende å lære om på skolen, men mange elever synes det er vanskelig. Erfaring fra praksis sier meg at mange elever blir skremt når bokstaver blir innført, men hva med å introdusere algebra uten bokstaver? I alle mine spørsmål jeg har hatt angående masteren, har det vært flott å ha mange fine mennesker rundt meg, som har støttet og veiledet igjennom mange spennende og vanskelige stunder.

Først og fremst vil jeg takke mine flotte medstudenter på kontoret! Vi har hatt mange gode faglige og mindre faglige diskusjoner igjennom masteråret. I prosessen med å skrive master har dere bidratt både sosialt og gitt faglig motivasjon, som jeg absolutt har satt veldig stor pris på. Mamma og Roar vil jeg også takke for god hjelp med korrekturlesing av masteren. I tillegg vil jeg takke min veileder, Ole Enge, for god veiledning. Jeg setter pris på all konstruktiv kritikk og hjelp med å skrive denne masteren. Jeg har fått hjelp til å holde riktig fokus, og fått flere gode tips og råd igjennom denne prosessen.

Sist, men ikke mist, vil jeg takke de fem flotte elevene på 7. Trinn som ville stille opp på dette prosjektet. Jeg er også takknemlig for at lærer Rita lot meg komme å gjennomføre prosjektet i sin klasse. Uten dere hadde ikke denne masteren blitt til! Jeg er evig takknemlig for at dere lot meg komme til dere, at dere åpnet dere for meg, og ville stille opp for at jeg skulle få gjennomføre masteren min.

Trondheim, mai 2015

Ida Christine Myrvang
Innholdsfortegnelse

1.0 INNLEDNING ... 1
 1.1 BAKGRUNN .. 1
 1.2 FORSKNINGSSPØRSMÅL .. 2
 1.3 TEORIGRUNNLAG ... 3
 1.4 OPPGAVENS OPPBYGGING ... 4

2.0 TEORETISK GRUNNLAG ... 5
 2.1 TEKSTOPPGAVER .. 5
 2.2 FORSKNING SOM ER GIJRT PÅ TEKSTOPPGAVER .. 5
 2.3 TEKSTOPPGAVER I ALGEBRA .. 6
 2.3.1 Algebraisk tenkning ... 8
 2.4 STRUKTUR I TEKSTOPPGAVER .. 9
 2.5 TOLKNING AV TEKSTOPPGAVER ... 11
 2.5.1 Forståelsesfasen .. 11
 2.5.2 Uformelle strategier i løsningsfasen ... 13

3.0 METODE ... 17
 3.1 KVALITATIV FORSKNINGSMETODE ... 17
 3.2 INNSAMLING AV DATAMATERIALE ... 18
 3.2.1 Valg av skole og elever.. 19
 3.2.2 Valg av oppgaver ... 19
 3.2.3 Observasjon av gruppearbeid .. 20
 3.3 ANALYSEARBEIDET .. 21
 3.3.1 Datamaterialet .. 21
 3.3.2 Analysemetode .. 21
 3.4 STUDIENS TROVERDIGHET OG PÅLITELIGHET .. 22
 3.5 ETISKE BETRAKTNINGER OG METODEKRITIKK .. 24

4.0 ANALYSE AV TEKSTOPPGAVENE ... 25
 4.1 FRIMEREKOPPGAVEN .. 25
 4.2 KORTOPPGAVEN ... 27
 4.3 IDRETTSTOPPGAVEN ... 28

5.0 ELEVENES TOLKNINGER AV TEKSTOPPGAVER .. 31
 5.1 TOLKNINGER ELEVER GJORDE I TOLKNINGSFASEN .. 31
 5.2 ELEVERS UFORMELLE STRATEGIER I LØSNINGSFASEN 37
 5.3 OPPSUMMERING OG DRØFTING AV FUNN .. 46

6.0 AVSLUTTENDE REFLEKSJONER .. 49
Figuroversikt

Figur 2.1: Struktur i aritmetisk tekstoppgave (Bednarz & Janvier, 1996, s. 124) .. 9
Figur 2.2: Struktur i algebraisk tekstoppgave (Bednarz & Janvier, 1996, s. 124) 10
Figur 2.3: Algebraisk tekstoppgave behandles som aritmetisk tekstoppgave (Bednarz &
Janvier, 1996, s. 125) .. 14
Figur 2.4: Deler og generer (Bednarz & Janvier, 1996, s. 126) .. 15
Figur 2.5: Gjett og sjekk (Bednarz & Janvier, 1996, s. 126) ... 16
Figur 4.1: Struktur i frimerkeoppgaven (Bednarz & Janvier, 1996, s. 123) .. 25
Figur 4.2: Struktur i kortoppgaven (Bednarz & Janvier, 1996, s. 121) ... 27
Figur 4.3: Struktur i idrettsoppgaven (Bednarz & Janvier, 1996, s. 120) .. 29
Figur 5.1: Usikkerhet rundt relasjoner .. 36
Figur 5.2: Gruppe 1, kortoppgaven. Utregning hvor de deler likt på tre mengder 38
Figur 5.3: Relasjoner som blir oversett når det deles likt .. 38
Figur 5.4: Gjetter to tall og sjekker om de gir riktig svar ... 40
Figur 5.5: Tabell av tall elevene gjetter og sjekker ... 42
Figur 5.6: Algebraisk struktur i tekstoppgaven blir gjort om til aritmetisk struktur 43
Figur 5.7: Besvarelse fra Marit og Hilde Marie, beskriver hvordan de kom fram til svaret 44
Figur 5.8: Framgangen i kjent verdi som utgangspunkt .. 45
1.0 Innledning

1.1 Bakgrunn

Andre offentlige forskningsrapporter, som PISA, har undersøkt 15 åringers kompetanse i problemløsning av matematiske tekstoppgaver. Norske elever ligger på et gjennomsnitt av OECD land i løsning av tekstoppgaver, noe som er positivt (Kjærnsli et al., 2014). De norske elevene er sterkest i å forstå og utforske problemsituasjoner i tekstoppgaver. Men samtidig er de svakest i å overvåke løsningsprosessen og vurdere svarene de får (Kjærnsli et al., 2014, s. 29).

Jeg lurer på hvordan elever tolker tekstoppgaver og hvilke strategier de bruker for å løse dem når de ikke har fått introdusert algebra? Fordelen uten formell algebra, er at elevene ikke trenger å bli forvirret av bokstavssymboler. Ut i fra elevenes ulike løsningsmetoder av tekstoppgavene, kan jeg se om de bruker en aritmetisk eller algebraisk tankegang.
Etter 7. trinn, innen tall og algebra, sier læreplan i matematikk fellesfag at elever skal kunne ”finne informasjon i tekster eller praktiske samanhengar, stille opp og forklare berekningar og framgangsmåtar, vurdere resultatet og presentere og diskutere løsninga” (Utdanningdirektoratet, 2013a). Læreplan sier at elever skal finne informasjon i tekster og forklare beregninger. Da kan tekstoppgaver være en fin tilnærmning til algebra allerede på barneskolen, som en pre-algebra aktivitet.

1.2 Forskningsspørsmål

Med denne studien ønsker man å forstå hvordan elever tenker som ikke har fått introdusert formell algebra på skolen, angående løsning av algebraiske tekstoppgaver. Det er interessant å vite både hvordan elever tolker oppgavetekster, men også hvilke lønsningsstrategier de velger å bruke på algebraiske tekstoppgaver. Derfor har jeg stilt følgende forskningsspørsmål:

Hvilke tolkninger gjør elever på 7. trinn underveis i løsning av aritmetiske og algebraiske tekstoppgaver? Hvilke strategier bruker elevene for å løse dem, og i hvilken grad inneholder strategiene algebraisk tenkning?

Jeg har tatt med tekstoppgaver av både aritmetisk og algebraisk struktur fordi jeg ønsker å se om det er forskjell i tolkninger elever gjør i aritmetiske og algebraiske tekstoppgaver. Tekstoppgaver er som sagt, oppgaver som er skrevet med verbalt språk, som beskriver et problem uten en opplagt løsning. Tekstoppgaver krever at elever forstår situasjonen i oppgaven, at de kommer opp med lösninger, og vurderer løsningene underveis (Kjærnsli et al., 2014). Med begrepet ”tolkning” mener jeg hvordan elevene bruker sin oppfatning av oppgaveteksten i sine vurderinger til en løsning av oppgaven. Jeg ønsker å undersøke hvordan
den verbale teksten og konteksten i oppgaven kan påvirke elevers oppfatning av situasjon i en tekstoppgave, og løsningen av den. Med ”strategier” mener jeg hvilke aritmetiske eller algebraiske regnemetoder elevene bruker for å løse tekstoppgaver. Hvordan går de ulike metodene fram, og er det en aritmetisk eller algebraisk tankegang bak?

For å få svar på mine spørsmål tok jeg utgangspunkt i et småskala kvalitativt studie, der jeg kunne spørre hver enkelt deltager hva de tenkte. Jeg ønsket å få en mer detaljert beskrivelse hvor jeg gikk i dybden for å finne ut av noe, som kjennetegner et kvalitativt forskningsprosjekt i følge Cohen, Manion, Morrison, og Bell (2011). Jeg observerte to elevgrupper på 7. Trinn, på totalt 5 elever, mens de arbeidet med tekstoppgaver. Tanken bak gruppeobservasjoner var at elevene skulle føle seg tryggere sammen, for øvrig uten å sammenligne elevene. Jeg er interesserert i å forstå hvilke ulike tolkinger som kan forekomme blant elever, uavhengig av om det er én enkeltelever, eller en gruppe elever sammen.

1.3 Teorigrunnlag

1.4 Oppgavens oppbygging

Oppgaven består av 6 kapitler, innledning, teori, metode, analyse av tekstoppgavene, analyse og drøfting av elevers tolkninger og til slutt et kapittel med avsluttende refleksjoner og perspektivering. Etter dette innledningskapittelet, har jeg gått nærmere inn på teorigrunnlaget som oppgaven bygger på. Jeg har definert begreper jeg har brukt i analysen, sett på strukturen i aritmetiske og algebraiske tekstoppgaver, og beskrevet ulike tolkninger og strategier elevene kan gjøre med oppgaver skrevet med tekst. I kapittel 3 har jeg begrunnet metoden som ligger til grunn for mitt forskningsprosjekt. Jeg har gjort rede for den teoretiske og metodiske tilnærmingen til studiet, samt beskrevet konteksten elevene befant seg i. I tillegg har jeg beskrevet gjennomføringen av datainnsamlingen og hvordan jeg har analysert datamaterialet. Til slutt har jeg drøftet prosjektets pålitelighet og troverdighet, samt etiske og metodiske utfordringer.

I kapittel 4, det første analysekapittelet, har jeg analysert tekstoppgavene elevene fikk. Jeg har sett på strukturen i tekstoppgavene, belyst hva som kan være vanskelig, og hvordan oppgavene eventuelt kan løses. I kapittel 5 har jeg presentert mine analyser av elevenes tolkninger av en oppgavetekst, og elevenes strategier i løsningen av tekstoppgavene. I tillegg har jeg i slutt av kapittelet kort drøftet mine funn opp mot forskningsspørsmålet. I kapittel 6 har jeg gitt noen avsluttende refleksjoner. Jeg har reflektet rundt betydningen av mine funn med tanke på elever i skolen generelt, og for meg som lærer.
2.0 Teoretisk grunnlag

2.1 Tekstoppgaver

Tekstoppgavene i min studie er av aritmetisk og algebraisk art. Forskjellen på aritmetiske og algebraiske tekstoppgaver er hvordan den ukjente, svaret på oppgaven som elevene skal frem til, er representert. I aritmetiske tekstoppgaver er den ukjente i slutten av "problemet" (Koedinger & Nathan, 2004). Det beskrives noen regneoperasjoner som må gjøres for å komme frem til den ukjente. I algebraiske tekstoppgaver er den ukjente representert i starten av den aritmetiske regneprosessen som er beskrevet (Koedinger & Nathan, 2004). Da får elevene oppgitt slutresultatet av en/flere regneoperasjon(er), og må finne utgangspunktet for den aritmetiske regneprosessen som er beskrevet.

2.2 Forskning som er gjort på tekstoppgaver

Det er forsket mye på tekstoppgaver i forbindelse med både aritmetikk og algebra. Cummins et al. (1988) har undersøkt elevers oppfattelse av oppgaveteksten, og funnet ut at mange elever har vanskelig for å forstå teksten i tekstoppgaver. Elevene regner ofte riktig ut i fra hva de tror de skal finne, men så kan de ha misforstått teksten i oppgaven, og svarer derfor ikke

2.3 Tekstoppgaver i algebra

I min studie jobbet elevene med tekstoppgaver som består av ulike situasjoner som de prøvde å løse ved hjelp av relasjoner som var oppgitt i oppgaveteksten. Elevene var på et pre-algebra stadium, før de arbeider med oppgaver som inneholder algebraiske symboler (Bergsten et al., 1997). Elevene i min studie jobber med det Kieran (2007, s. 720), kaller generational activity
within the context of word problems, tekstoppgaver som kontekst for en generaliserende aktivitet. Elevene var ikke kommet så langt at de jobbet med bokstavsymboler, men brukte retorisk algebra, som er en startfase i overgangen til algebra.

2.3.1 Algebraisk tenkning
Bergsten et al. (1997) skiller mellom algebraisk og aritmetisk tenkning ved at en som tenker aritmetisk har fokus på å gjennomføre regneoperasjoner på tall, mens algebraisk tenkning innebærer at man betrakter selve operasjonen på tallene og arbeider med aritmetikkens struktur (Bergsten et al., 1997, s. 18f). Kieran (2004a) definerer algebraisk tenkning innenfor skolealgebraen slik:

Algebraic thinking in the early grades involves the development of ways of thinking within activities for which letter-symbolic algebra can be used as a tool but which are not exclusive to algebra and which could be engaged in without using any letter—symbolic algebra at all, such as analyzing relationships between quantities, noticing structure, studying change, generalizing, problem solving, modeling, justifying, proving, and predicting. (Kieran, 2004a, s. 149)

En algebraisk tenkmåte kan i følge Kieran (2004a) læres uten bruk av bokstavsymboler ved at en for eksempel analyserer forhold mellom verdier, undersøker hvilken struktur oppgaver har, eller arbeider med relasjoner mellom mengder i tekstoppgaver. Ut ifra min forståelse av Bergsten et al. (1997) og Kieran (2004a) sine definisjoner av algebraisk tenkning, ser jeg på algebraisk tenkning som fokus på operasjoner på tall, struktur og sammenhenger mellom mengder i oppgaver.

2.4 Struktur i tekstoppgaver

Bednarz og Janvier (1996) kaller de aritmetiske tekstoppgavene for ”connected”, altså sammenhengende. Det vil si at de kjente verdiene har en direkte sammenheng, der en kan koble sammen to kjente data. Det er en direkte sammenheng mellom en gitt delmengde, og relasjon mellom den og neste delmengde (Bednarz & Janvier, 1996). De aritmetiske tekstoppgavene som elevene i min studie har arbeidet med, har følgende struktur:

![Diagram av tekstoppgave](image)

Figur 2.1: Struktur i aritmetisk tekstoppgave (Bednarz & Janvier, 1996, s. 124)

Figur 2.1 viser strukturen i en sammenhengende aritmetisk tekstoppgave. De svarte boksene representerer de kjente verdiene som er oppgitt i tekstoppgaven. Siden det er en direkte kobling mellom de kjente verdiene, kan elevene ta for seg ét problem om gangen. Det vil si at
De kan begynne med den oppgitte mengden, sammen med relasjon til neste mengde, og finne den neste mengden. Slik kan elevene fortsette å ta et problem om gangen til alle delmengder er funnet, og til slutt summere delmengdene for å finne totalsummen av delmengdene (Bednarz & Janvier, 1996; Bergsten et al., 1997).

De algebraiske tekstoppgavene kaller Bednarz og Janvier (1996) for "disconnected", altså usammenhengende oppgaver (Bednarz & Janvier, 1996, s. 124). Det er ikke noen direkte sammenheng mellom to kjente data, så elevene kan ikke bruke de oppgitte verdiene sammen. De algebraiske tekstoppgavene som elevene i min studie har arbeidet med, har følgende struktur:

![Diagram](image)

Figur 2.2: Struktur i algebraisk tekstoppvge (Bednarz & Janvier, 1996, s. 124)

tenke på helheten i tekstoppgaven med alle delmengdene og relasjonene mellom dem (Bednarz & Janvier, 1996).

I de aritmetiske og algebraiske tekstoppgavene som elevene har arbeidet med i min studie er det tre delmengder i hver av oppgavene. Jeg har valgt å ha med tre delmengder fordi jeg ønsket at oppgavene ikke skulle være for lett, men heller ikke for vanskelig. Det kan både være færre og flere delmengder med i tekstoppgaver. Dersom det hadde vært to delmengder med i oppgaven, var jeg redd elevene skulle ”se” svaret med en gang. Jeg ønsket at oppgavene skulle være litt vanskelig slik at elevene måtte diskutere seg fram til løsninger, slik at jeg fikk bedre innsikt i hvordan de tenkte. Jeg ønsket derimot ikke at tekstoppgavene skulle bli for vanskelig, med å ha flere delmengder enn tre, da det er viktig at elevene føler mestring.

2.5 Tolkning av tekstoppgaver

Koedinger og Nathan (2004, s. 131) viser til to faser i prosessen med å løse tekstoppgaver, ”the comprehension phase” og ”the solution phase”. Oversatt til norsk kan disse fasene forstås som forståelsesfasen og løsningsfasen. Forståelsesfasen går ut på hvordan elevene forstår selv teksten som er skrevet, at de forstår alle ordene, og hvordan de forstår konteksten. Når eleven har gjort seg opp en forståelse, går de over til å løse tekstoppgavene i løsningsfasen, som tar for seg hvilke strategier de bruker for å løse tekstoppgavene (Koedinger & Nathan, 2004).

2.5.1 Forståelsesfasen

I forståelsesfasen jobber eleven med å forstå teksten i en oppgave. De tar for seg små deler av teksten, for eksempel et ord eller en setning, og lager en ekstern representasjon som enten kan være en aritmetisk operasjon eller et algebraisk uttrykk (Koedinger & Nathan, 2004). Det er vanskelig å måle elevers forståelse, men jeg kan undersøke hvilke tolkninger eleven gjør av en tekstoppgave, og ut i fra tolkningene, danne meg et bilde av hvordan eleven tenker i arbeid med tekstoppgaver.

Hvilke tolkninger eleven gjør av teksten i en oppgave, kalles elevens verbale tolkning (Walkington, 2012). For at elevene skal kunne komme i gang med tekstoppgaver er det viktig at de forstår teksten som er skrevet. I følge Koedinger & Nathan (2004, s. 138) vil eleven gjøre færre feil i løsningen av tekstoppgaver, som er skrevet med verbalt språk, enn abstrakte

En typisk verbal tolkning enkelte elever gjør feil, er at de ser etter tall i oppgaveteksten, og oversetter nøkkelord i teksten direkte til en matematisk operasjon (Hegarty, Mayer, & Monk, 1995; Walkington et al., 2012). Det ser ut til at elevene oversetter nøkkelord fra oppgaveteksten til aritmetisk regneoperasjon uten å utvikle enn full forståelse for konteksten, og opererer med tall litt tilfeldig for å prøve å få det til å ”se rett ut” (Walkington et al., 2012). Direkte oversettelse er kjent som en metode for mindre suksessfulle løsninger, ettersom den ikke tar hensyn til de regneoperasjonen som er oppgitt indirekte i oppgaveteksten (Hegarty et al., 1995). For eksempel kan det stå i oppgaveteksten at en mengde er tre ganger så mye som en annen mengde. Når elever får oppgitt den største mengden, vil de som oversetter direkte, multiplisere den største mengden med tre. Dette gir feil svar, ettersom mengden elevene skal finne må være mindre enn den største mengden.

Walkington et al. (2012) fant ut at elevene i deres forskning brukte kunnskap de hadde om ulike situasjoner både produktivt, og uten at det var til hjelp. Enkelte ganger førte bruk av kontekstkunnskap til feil svar på tekstoppgaver, og de mener at dersom elever ikke forstår
teksten eller situasjonen i tekstoppgaver, kan det påvirke hvordan elever lser oppgavene videre (Walkington et al., 2012). For at elever skal lse tekstoppgaver riktig, er det viktig at de klarer å tolke oppgaveteksten riktig, men det kan være vanskelig for elever å forstå situasjonen som er beskrevet (Walkington et al., 2012). Elever må forstå hvilke verdier i teksten som representerer hva, og hvilke relasjoner som beskriver hvilke verdier i mengdene. Stacey og MacGregor (1999) erfarte i sin studie at enkelte elever var usikre på hvilken av mengdene i en tekstoppgave som var den ukjente. Ofte kan elever gjøre riktige aritmetiske utregninger, men svaret blir feil fordi de har misforstått teksten (Cummins et al., 1988). I følge Cummins et al. (1988) blir elevenes lösningsstrategier til tekstoppgaver bestemt av kvaliteten på deres oppnådde forståelse av tekstoppgaven, og forståelsen ser ut til å være påvirket av det verbale språket i oppgaveteksten (Cummins et al., 1988). Det betyr at tolkninger elever gjør i forståelsesfasen kan ha stor betydning for hvilke lösningsstrategier elevene velger å bruke i løsningen av dem.

2.5.2 Uformelle strategier i lösningsfasen

Når elever har gjort en tolkning av oppgaveteksten, går de over til å løse tekstoppgaven i løsningsfasen. Strategiene elever bruker kan enten være formelle algebraiske lösningsmetoder som for eksempel likninger, eller det kan være uformelle aritmetikkbaserte lösningsstrategier som for eksempel at elevene gjetter seg fram til et svar (Koedinger & Nathan, 2004). Jeg var interessert i å se på de uformelle strategiene som elever kan gjøre, og uformelle strategier som er funnet i tidligere forskning er blant annet ”kjent verdi som utgangspunkt”, ”dele og generere” og ”gjett og sjekk” (Bednarz & Janvier, 1996; Koedinger & Nathan, 2004; Walkington et al., 2012).

Figur 2.3: Algebraisk tekstoppgave behandles som aritmetisk tekstoppgave (Bednarz & Janvier, 1996, s. 125)

Figur 2.3 viser hvordan enkelte elever behandler den algebraiske tekstoppgaven som en aritmetisk tekstoppgave. Den blå pilen i figur 2.3b skal illustrere at det er summen av de tre delmengdene som behandles som en av delmengdene. Elevene bruker totalverdien av alle mengdene til å regne direkte med motsatt regneoperasjon enn det relasjonen mellom leddene er, for å finne de andre delmengdene (Bednarz & Janvier, 1996). Denne metoden gir feil svar med algebraiske tekstoppgaver, ettersom elevene kun tar hensyn til én og én relasjon og ikke tar hensyn til strukturen i oppgaven (Bednarz & Janvier, 1996). Denne tolkningen antyder at elevene ikke har oppfattet situasjonen i konteksten riktig.

En annen uformell aritmetikkbasert strategi som elevene kan bruke på algebraiske tekstoppgaver er deler og genererer (Bednarz & Janvier, 1996). Da bruker elevene den kjente verdien (summen) som er oppgitt i oppgaveteksten, og deler likt på antall delmengder (Bednarz & Janvier, 1996). Dersom summen består av tre delmengder, så dividerer elevene summen på tre. Da får de en "startmengde" og regner ut de to andre delmengdene ut i fra de relasjonene som er oppgitt mellom mengdene (Bednarz & Janvier, 1996):
Figur 2.4 viser hvordan den kjente summen blir delt på tre, for å få en startmengde som kan genereres videre. Når elevene generer videre, bruker de startverdien de har fått etter å ha delt likt, og regner med relasjonene mellom mengdene for å finne resterende delmengder. Denne strategien gir feil svar ettersom det ikke går å dele likt mellom delmengder som har ulikt antall objekter. Elevene prøver å finne en startmengde ved å dele likt, og skjønner kanskje at startmengden vil hjelpe dem å finne de andre delmengdene.

Figur 2.5 viser fremgangsmåten i strategien gjett og sjekk. Den blå boksen er et tall elevene gjetter som utgangspunkt, og er det første steget i prosessen. Når de har et tall å starte med, kan de finne neste delmengde (steg 2). Elevene bruker så den andre delmengden til å finne den tredje delmengden (steg 3). Når elevene har funnet de tre delmengdene, summerer de delmengdene og får en totalsum (steg 4). Totalsummen elevene får, sammenligner de med den totalsummen som er oppgitt i oppgaveteksten. Hvis totalsummen er lik den gitte verdien i oppgaveteksten, godtar elevene det tallet de gjettet på. Dersom totalsummen ikke skulle være lik totalsummen i oppgaveteksten, prøver de ut et nytt tall som utgangspunkt. Elevene kan fortsette å gjette på ulike tall fram til de får en totalsum som er lik den totale summen som er oppgitt i oppgaveteksten.

3.0 Metode

I metodekapittelet vil jeg ta for meg valgene jeg har gjort i forkant, underveis og i etterkant av innsamlingen av datamaterialet til min studie. Først vil jeg starte med å begrunne hvorfor studiet kan knyttes til en kvalitativ forskningsmetode, og jeg vil beskrive konteksten rundt studiet. Deretter vil jeg gjøre rede for selve datainnsamlingen, hva som er samlet inn og hvordan den er bearbeidet. Til slutt vil jeg avslutte med en diskusjon rundt studiets pålitelighet, troverdighet og noen etiske og metodiske betraktninger.

3.1 Kvalitativ forskningsmetode

3.2 Innsamling av datamateriale
I følge Cohen et al. (2011) er det vanlig å gjøre en ikke-sannsynlighetsinnsamling av datamaterialet i en kvalitativ forskning. Det vil si at innsamling av datamateriale skjer av en liten gruppe elever, og en liten andel av befolkningen. Ettersom det er en liten andel av elever, er et slikt studie kun representativ for seg selv og ikke for hele befolkningen (Cohen et al., 2011). Om samme type undersøkelse blir gjort på andre elever på samme trinn, vil det kunne gi andre svar. Derimot ønsker jeg med disse 5 elevene å gå i dybden av hvordan enkelte elevene tenker, og hvilke tolkninger de gjør. På grunnlag av tolkningene elevene i min studie gjør, vil jeg vite noe om hvordan elever kan tenke rundt tekstoppgaver.

Empirien som er samlet inn består av transkripsjon av lyden i videoopptak og elevbesvarelser. I tillegg skrev jeg mine egne feltnotater med tanker jeg gjorde meg underveis. Observasjonene ble gjennomført i løpet av to uker. Hver av gruppene jobbet med tekstoppgavene én økt hver på 60 minutter.
3.2.1 Valg av skole og elever

3.2.2 Valg av oppgaver
Oppgavene jeg har valgt ut til min undersøkelse er hentet fra Bednarz og Janvier (1996) sin forskning. Oppgavene er skrevet med verbalt språk, der det er én aritmetisk tekstoppgave og to algebraiske tekstoppgaver. Konteksten i oppgavene handler om samling av frimerker, kortspill, og idrett. Disse kontekstenene kjenner stort sett de fleste elevene til, og blir mer konkret sammenlignet med abstrakte symboler. De tre tekstoppgavene er som følger:

Frimerkeoppgaven:
"Albert har fire ganger så mange frimerker som Judit, og syv ganger så mange frimerker som Sofie. Hvis Albert har 504 frimerker, hvor mange har de til sammen?".
Kortoppgaven:
"Tre gutter spiller kort. Til sammen har de 198 kort. Peter har seks ganger så mange kort som Daniel, og Georg har to ganger så mange kort som Daniel. Hvor mange kort har hver av dem?"

Idrettsoppgaven:
"På en skole deltok 133 elever i de tre ballspillene basket, handball og fotball. Handball ble spilt av dobbelt så mange elever som basket. På fotballtreningen var det åtte elever mer enn i handballtreningen. Hvor mange spilte handball?"

I kapittel fire har jeg gått nærmere inn på hver enkelt oppgave, og gjort en analyse av dem. Jeg har sett hvordan strukturene i oppgavene er, og belyst hva som kan være vanskelig for elever når de skal løse dem. Selv om algebraisk tenkning involverer mer en bare problemløsning av tekstoppgaver, som for eksempel grafer, symbolmanipulasjon og generalisering av mønster, så skal ikke oppgavene jeg har valgt ut representere all algebraisk tenkning. Jeg ønsker å undersøke et område innen algebra, bruk av tekstoppgaver som tilnærmning til algebra.

3.2.3 Observasjon av gruppearbeid
I observasjon av de to elevgruppene, var jeg deltagende på den måten at jeg spurte elevene underveis hvordan de resonnerte rundt oppgaver, og forklarte hvis de var usikker på noe. Observasjon hvor jeg er noe deltagende, kaller Krumsvik (2014) for observatør som deltager, der deltaking i gruppa er sekundært til rollen som informasjonsinnsamler. Deltagelsen min i gruppa handlet om at jeg skulle få mer informasjon ut av elevene om hva de tenkte og resonnerte, og ikke som en fullverdig deltager i gruppa. Hvis elevene sto helt fast med en oppgave, hjalp jeg dem likevel for at de skulle føle mestring, ettersom det var vanskelige oppgaver for dem. Der jeg har hjulpet elevene videre i en løsning som ikke lenger er elevenes strategi, vil jeg være tydelig i analysen om hva som er elevenes resonnering og strategier, og hva de eventuelt ikke har fått til.

3.3 Analysearbeidet
Jeg vil i dette kapittelet belyse hvordan analysearbeidet mitt har foregått. På samme måte som underveis i gjennomføringen av undersøkelsene, så vil forskeren i analysearbeidet være farget av sitt teoretiske ståsted og perspektiver (Postholm, 2010). Postholm (2010) påpeker at jeg som forsker, fortsatt må strebe etter å møte datamaterialet med et åpent sinn, og være åpen for nye funn enn det jeg har en forventning om å finne.

3.3.1 Datamaterialet
Datamaterialet består av transkripsjoner av lydopptak, feltnotater og elevenes skriftlige besvarelser. Transkripsjonene er hovedmaterialet jeg har brukt i analysen, med elevenes skriftlige besvarelser som støtte til transkripsjonene. Mine feltnotater, av analyser/tanker underveis i observasjonen, ble brukt til å tilføye beskrivelser og koder i analysen.

3.3.2 Analysemetode
møte datamaterialet med et åpent sinn, og la datamaterialet fortelle meg hva jeg skal se etter (Nilssen, 2012).

1. Tolkninger elever gjør i tolkningsfasen
 - Elevers verbale tolkning av oppgaveteksten
 - Elevers tolkning av situasjonen i konteksten
2. Uformelle strategier i løsningsfasen

Den første kategorien går ut på hvilke tolkninger elevene gjorde av oppgaveteksten, og hvordan de tolket ord og begreper. Jeg har også sett på hvilke tolkninger elevene gjorde av situasjonen i konteksten. Det går ut på at elevene skjønner hva oppgaven spor om, hvilke relasjoner som blir beskrevet eller om de bruker konteksten til hjelp på noen måte. Den andre kategorien går ut på hvilke strategier elevene bruker for å løse tekstoppgaven. Jeg har sett på hva som kjennetegner de ulike strategiene, og i hvilken grad de bærer preg av algebraisk tenkning.

3.4 Studiens troverdighet og pålitelighet

Som jeg har nevnt tidligere vil forskeren være farget av sitt teoretiske ståsted når en går ut i feltet og undersøker noe (Postholm, 2010). Derfor var det viktig at jeg var klar over min egen
rolle i undersøkelsen (Cohen et al., 2011). Alt jeg gjorde var påvirket av forskning og teori jeg hadde lest, og andre erfaringer jeg hadde gjort meg på forhånd. Funnene jeg fant i min forskning var påvirket av meg for jeg går ut i feltet, både av intensjonen min med studiet og forskningsspørsmålet jeg hadde stilt.

For at studien skal være så troverdig som mulig, kan det være lurt å bruke flere metoder for å samle datamateriale, dette kaller Postholm (2010) for triangulering. Jeg brukte både transkripsjoner av lydopptak, elevbesvarelser og egne feltnotater. Teorigrunnlaget mitt består av flere forskere som har gjort de samme undersøkelsene som meg. Disse forskningene er delvis gjort med en kvantitativ metode, der mange elever er testet i det samme emnet, og delvis kvalitativt. At tidligere forskning både er gjort kvalitativ og kvantitativt kan være med å styrke de funnene jeg har gjort i denne studien. Det er også viktig at jeg viser tilstrekkelig med datamateriale til å underbygge de tolkningene jeg har gjort, og de resultatene jeg har fått (Nilssen, 2012).

Etterprøvbarhet handler om at andre forskere skal kunne gjøre det samme studiet og få samme resultat (Krumsvik, 2014). Etterprøvbarhet er ikke like lett å la seg gjøre i kvalitativ forskning med få kandidater, som i kvantitativ forskning med mange kandidater. Derfor er det viktig at jeg er oppmerksom på at funnene i min studie er et resultat av deltagere og den konteksten studien ble gjennomført i. Nilssen (2012) påpeker at jeg som forsker vil påvirke forskningskonteksten og datamaterialet bare ved at jeg er til stedet i situasjon som blir forsket på, og mitt teoretiske ståsted vil påvirke det jeg ser i datamaterialet. Derimot kan aktiviteter som har fungert i enkelte skolesammenhenger bli tilpasset andre klesrom, og ha en naturalistisk generalisering (Postholm, 2010). Det vil si at aktiviteten ikke kan overføres
direkte eller generaliseres til alle klasserom, men siden jeg beskriver konteksten tydelig, hva som har skjedd, så kan lesere oppdage likheter mellom beskrevet og egen kontekst (Postholm, 2010).

3.5 Etiske betraktninger og metodekritikk

I kvalitativ forskning er det en nær relasjon mellom forsker og forskningsdeltagere, og da er det viktig at etiske prinsipper blir overholdt både før, underveis og etter datainnsamlingsperioden (Postholm, 2010). Ettersom deltagerne er elever på barneskolen, og mindreårige, må foreldre/foresatte samtykke til at barna kan være med. Før jeg begynte med innsamling av datamateriale sendte jeg ut informasjonsbrev til foreldre/foresatte, der jeg presenterte meg og mitt forskningsstudie og bad om tillatelse til å gjøre lydopptak av elevobservasjoner. Samtidig informerte jeg om at all informasjon om elevene skulle anonymiseres, slik at det ikke skal være mulig å spore tilbake i ettertid. I tillegg forklarte jeg at elevene når som helst i prosjektet kunne trekke seg fra prosjektet. Alle disse elementene har jeg prøvd å overholde etterpå, der jeg blant annet i transkripsjonene har brukt fiktive navn, og jeg har ikke navngitt skolen hvor undersøkelsen er blitt gjort.

Da jeg skulle gå i gang med datainnsamlingen, var det kun fem av elevene i klassen som hadde fått tillatelse og ønsket å være med. I utgangspunktet hadde jeg en plan om å ha tre elever på hver gruppe, men siden det kun var fem elever totalt som ville være med, ble den ene gruppa på kun to elever. Jeg kunne ikke velge elever slik at jeg kunne sikre meg noen som snakket, for å få vite mest mulig av elevenes tanker. Det resulterte i at på den ene gruppen var det en elev som nesten ikke pratet igjennom hele øken. Derimot var de andre på gruppa flinke til å si hva de tenkte høyt som har vært en styrke for datamaterialet mitt.

Det gikk ganske lang tid før jeg fikk klarsignal fra skolen jeg gjorde undersøkelsen på, at jeg fikk komme. I tillegg hadde læreren på trinnet mange andre oppgaver som skulle gjøres, slik at jeg rakk ikke å gjøre noe pilotprosjekt for å teste ut hvilke oppgaver som fungerte. Dermed måtte jeg gjennomføre datainnsamlingen med de oppgavene jeg hadde, uavhengig av om de fungerte eller ikke. Av den grunn valgte jeg å ha med noen ekstra oppgaver på ulike nivåer og vurderte underveis hvilke oppgaver jeg gav dem.
4.0 Analyse av tekstoppgavene

I analysen av tekstoppgavene som ble gitt til elevene vil jeg si litt om strukturen i oppgaven, vanskelighetsgraden og hvordan det er mulig at elever tolker og løser oppgavene. Med dette kapittelet har jeg prøvd å synliggjøre grunnlaget for analysen av elevers tolkninger av tekstoppgaver.

4.1 Frimerkeoppgaven
Frimerkeoppgaven er som følger: "Albert har fire ganger så mange frimerker som Judit, og syv ganger så mange frimerker som Sofie. Hvis Albert har 504 frimerker, hvor mange har de til sammen?".

![Diagram for frimerkeoppgaven](image)

Figur 4.1 viser strukturen i frimerkeoppgaven. Her er den kjente mengden 504 frimerker, som Albert har. I tillegg er relasjonene mellom den kjente mengden og de andre delmengdene med
frimerker oppgitt. Elevene skal finne summen av de tre delmengdene, hvor mange frimerker Albert, Judit og Sofie har til sammen. Det er en aritmetisk struktur i oppgaven ettersom det er en direkte sammenheng mellom de kjente dataene, mengden 504 og relasjonene mellom mengdene (Bednarz & Janvier, 1996). Eleven kan bruke den kjente mengden sammen med relasjonene og gjennomføre et problem om gangen, altså bruke mengden 504 sammen med relasjon ”x 4” og finne mengden med kort som Judit har, og etterpå bruke mengden 504 sammen med relasjon ”x 7” for å finne mengden med kort som Sofie har.

I frimerkeoppgaven kan ikke elevene bruke de regneoperasjonen som står eksplisitt uttrykt i teksten som for eksempel ”ganger så mange”, men de må bruke motsatt regneoperasjon. Til tross for at det er en direkte sammenheng mellom de kjente dataene, må elevene ta hensyn til situasjon og vurdere hvilke regneoperasjoner de må bruke for å løse oppgaven. For eksempel har Albert fire ganger så mange frimerker som Judit. Selv om det står i teksten ”fire ganger så mange”, så betyr det ikke at elevene skal multiplisere 504 med fire, men elevene må bruke motsatt regneoperasjon, og dele 504 med fire for å finne mengden med hvor mange frimerker Judit har.

Strukturen i tekstoppgaven, hvor det er den største mengden som er oppgitt, krever at elevene både mestrer de ulike regnealgoritmene, og at de skjønner at de må bruke motsatt regneoperasjon enn det som er uttrykt i teksten. Motsatt av ”ganger så mange”, vil være divisjon for å finne riktig svar. Med direkte oversettelse vil elevene multiplisere 504 med fire i stedet for å dele, siden de oversetter nøkkelordet ”ganger så mange” direkte som multiplikasjon, uten å ta hensyn til situasjonen i konteksten.

Frimerkeoppgaven er den eneste tekstoppgaven med aritmetisk struktur jeg har tatt med i denne studien. Ettersom elevene ikke har fått introdusert algebra, regner jeg med at mange vil ha vanskeligere for å løse tekstoppgavene som har algebraisk struktur. Jeg vil ha med frimerkeoppgaven for at elevene skal få jobbe med en oppgave som er på deres nivå, men i tillegg vil jeg se hvordan de tolker oppgaveteksten i en aritmetisk tekstoppgave, siden den kan by på utfordringer dersom de oversetter nøkkelord direkte fra tekst til matematiske notasjoner.
4.2 Kortoppgaven

Kortoppgaven er som følger: "Tre gutter spiller kort. Til sammen har de 198 kort. Peter har seks ganger så mange kort som Daniel, og Georg har to ganger så mange kort som Daniel. Hvor mange kort har hver av dem?"

Kortoppgaven er også hentet fra Bednarz og Janvier (1996). Den var en av syv tekstoppgaver de hadde med i sin forskning om hvilke uformelle strategier elever brukte for å løse tekstoppgaver med en struktur som vanligvis blir gitt i algebra. De fant ut at 31,59 % av elevene klarte å løse denne oppgaven med egne uformelle strategier. Kortoppgaven var den tekstoppgaven som flest elever i deres forskning klarte å løse (Bednarz & Janvier, 1996, s. 120f). Den semantiske strukturen i tekstoppgaven er som følger:

![Diagram av kortoppgaven](image)

Figur 4.2: Struktur i kortoppgaven (Bednarz & Janvier, 1996, s. 121)

Kortoppgaven krever i motsetning til den aritmetiske oppgaven, at elever må ha fokus på mer enn de ulike regnealgoritmer de skal bruke på disse. De må også ta hensyn til tre ukjente

Elever som oversetter nøkkelord direkte til matematiske notasjoner vil kunne oversette ”seks ganger så mange” med å ta den oppgitte verdien 198 og multiplisere med seks. De oversetter nøkkelordene ganger så mange som multiplikasjon mellom to tall i oppgaven. Med en tolkning hvor struktur blir tatt hensyn til, vil elevene kanskje vurdere innholdet og hvilke regneoperasjoner som skal brukes, og vurdere ut i fra situasjonen om det skal brukes multiplikasjon eller divisjon i oppgaven.

Jeg valgte å ha med kortoppgaven fordi jeg ville se hvordan elevene tolket oppgaveteksten, situasjonen i konteksten og hvilke strategier de valgte å bruke for å løse en algebraisk tekstoppgave. Kortoppgaven har tre delmengder med kun multiplikative relasjoner mellom delmengdene, som jeg tenkte var lettere for elever å løse enn oppgaver med både multiplikativ og additiv relasjon mellom delmengdene.

4.3 Idrettsoppgaven

Idrettsoppgaven er som følger: ”På en skole deltok 133 elever i de tre ballspillene basket, handball og fotball. Handball ble spilt av dobbelt så mange elever som basket. På fotballtreningen var det åtte elever mer enn i handballtreningen. Hvor mange spilte handball?”

Idrettsoppgaven er hentet fra Bednarz og Janvier (1996), der også denne oppgaven var en av syv oppgaver de hadde med i sin forskning. I motsetning til kortoppgaven, så hadde idrettsoppgaven veldig lav prosent av elever som fikk rett på oppgaven, bare 2,78 % av elevene som deltok i forskningen klarte denne tekstoppgaven. Bednarz og Janvier (1996) forklarer at strukturen i oppgaven kan påvirke om elevene får til oppgaven eller ikke. Ettersom kortoppgaven hadde to multiplikative relasjoner, mens idrettsoppgaven både har en multiplikativ og en additiv relasjon, er det derfor er en mer kompleks oppgave. Den semantiske strukturen i idrettsoppgaven er som følger:
Figur 4.3 viser strukturen i idrettsoppgaven. Denne oppgaven har en algebraisk struktur, altså er den usammenhengende (Bednarz & Janvier, 1996). Den kjente verdien i oppgaven er 133 elever som totalt deltar i de tre ballspillene. I tillegg er relasjonene mellom antall objekter i delmengdene kjent, der antall elever som spiller handball er dobbelt så mange som basket, og antall elever som spiller fotball er 8 mer enn handball. Alle de tre mengdene er ukjent, og elevene skal finne antall elever som spiller handball. Det er ikke noen direkte sammenheng mellom de kjente verdiene. Det vil si at elevene ikke kan dele 133 på to eller trekke åtte fra 133 for å finne en av delmengdene.

I idrettsoppgaven er den første mengden gjentatt to ganger for handball og to ganger for fotball, men i tillegg har fotball åtte elever ekstra. Dermed er mengden med elever i basket gjentatt fem ganger, pluss de åtte ekstra elevene i den siste mengden. Eleven kan enten prøve seg fram med ulike tall, eller de kan trekke fra åtte og dele den totale summen på fem for å finne verdien til den første delmengden, og deretter finne antall elever som spiller handball. Eleven som oversetter nøkkeord direkte, vil trolig multiplisere den kjente verdien, 133 med to ettersom det er dobbelt så mange som spiller handball, og eventuelt plusse på åtte for å finne den siste mengden.

Grunnen til at jeg valgte å ta med denne oppgaven er at jeg ville ha med en tekstoppgave med algebraisk struktur som var litt mer kompleks enn kortoppgaven, med både multiplikative og additive relasjoner. Jeg vil se om det er andre utfordringer elevene står ovenfor, og hva disse
utfordringene eventuelt er. Dersom elevene klarer å løse idrettsoppgaven, vil jeg se på hvilke strategier de eventuelt valgte for å løse oppgaven.
5.0 Elevenes tolkninger av tekstoppgaver

I analysekapittelet har jeg presentert funnene jeg har gjort i analysen av elevers tolkninger og løsning av tekstoppgaver. Jeg vil bruke episoder fra datamaterialet for å støtte opp om funnene mine. Som nevnt i metoden begynte jeg først å kode materialet mitt, så sammenlignet jeg kodene og lagde kategorier som beskriver elevenes tolkning og strategier for å løse tekstoppgaver i matematikk. På bakgrunn av mine analyser har jeg delt funnene inn i følgende hovedkategorier:

1. Tolkninger elever gjør i tolkningsfasen
2. Uformelle strategier i løsningsfasen

5.1 Tolkninger elever gjorde i tolkningsfasen

I analysen av elevers tolkning av tekstoppgaver har jeg først sett på hvordan elevene tolker tekstoppgaven som en verbalt skrevet tekst. Jeg kan ikke måle hvordan elevene førstår, men har sett på hvilke tolkninger de har gjort, hvordan de har brukt tekst og kontekst undervis i løsning av tekstoppgaver. Ut ifra mine analyser av funn, har jeg delt elevens tolkninger i tolkningsfasen inn i to underkategorier:

- Elevenes verbale tolkning av oppgaveteksten
- Elevenes tolkning av situasjonen i konteksten
Den verbale tolkningen av en tekst handler om hvordan elever tolker teksten i en oppgave. Den verbale tolkningen som en av elevene gjorde, var at hun oversatte nøkkelord i teksten direkte til matematisk notasjon. I den aritmetiske tekstoppgaven, frimerkeoppgaven, skulle elevene finne ut hvor mange frimerker tre barn hadde til sammen. Ordene ”ganger så mange” i linje 51 er uttrykt med store bokstaver fordi eleven la ekstra trykk på ordene.

<table>
<thead>
<tr>
<th>48</th>
<th>Helene</th>
<th>"Albert har fire ganger så mange frimerker som Judit, og syv ganger så mange frimerker som Sofie. Hvis Albert har 504 frimerker, hvor mange har de til sammen?"</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Maren</td>
<td>Da vi må ta 504 fire ganger.</td>
</tr>
<tr>
<td>50</td>
<td>Helene</td>
<td>Nei, da må vi ta 504 delt på fire.</td>
</tr>
<tr>
<td>51</td>
<td>Maren</td>
<td>Nei, GANGER SÅ MANGE! Altså, da må du ta gange.</td>
</tr>
<tr>
<td>52</td>
<td>Helene</td>
<td>Ja, men vi finner jo ikke ut hva vi skal gange med.</td>
</tr>
<tr>
<td>53</td>
<td>Maren</td>
<td>Jo, 504.</td>
</tr>
<tr>
<td>54</td>
<td>Helene</td>
<td>Nei han har det. Og hvis han har fire ganger så mange, så må vi dele det på fire, trur jeg.</td>
</tr>
</tbody>
</table>

I episoden over sier Maren i utsagn 49 at de ”må ta 504 fire ganger”, og i utsagn 51 poengterer Maren enda en gang at de må multiplisere fordi det står ”ganger så mange” i oppgaveteksten. Maren vil med andre ord bruke multiplikasjon og gange 504 med fire, ettersom det står i oppgaveteksten at ”Albert har fire ganger så mange”. Episoden viser tydelig at Maren oversetter nøkkelordet ”ganger” direkte med multiplikasjon. Tekstoppgaven sier derimot indirekte at det er divisjon som må brukes i løsningen av oppgaven. I strukturen av oppgaven (se figur 4.1), ser vi at relasjonen mellom Judit og Albert er ”x 4”. Men siden det er Albert som har fire ganger så mange frimerker som Judit, så har Albert flest kort. Da går det ikke å multiplisere antall kort Albert har med fire, men må bruke motsatt operasjon, divisjon. Det virker som Maren kun leser oppgaveteksten og leter etter nøkkelord hun kan oversette. Maren sier ikke noe om konteksten i oppgaven, men vil kun oversette nøkkelord direkte til matematiske symboler. Helene prøver i utsagn 54 å forklare at ”siden han (Albert) har fire ganger så mange, så må vi dele”, altså bruke det motsatte av multiplikasjon, for å finne ut hvor mye hver av de andre har. Når Helene sier de må bruke motsatt regneoperasjon for å finne ut hva de andre har, så viser hun bedre forståelse for situasjonen enn Maren, ved at hun ikke bare oversetter nøkkelordene direkte, men vurderer hvilken regneoperasjon de må bruke ut i fra situasjonen i tekstoppgaven.
I kortoppgaven, som er en algebraisk tekstoppgave, fortsetter Maren med å oversette nøkkelordene hun finner i teksten direkte:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>"Tre gutter spiller kort. Til sammen har de 198 kort. Peter har seks ganger så mange kort som Daniel, og Georg har to ganger så mange kort som Daniel. Hvor mange kort har hver av dem?"</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>Helene</td>
<td>"Okei, da må vi først ta 198 ganger seks."</td>
</tr>
<tr>
<td>77</td>
<td>Maren</td>
<td>"Helene?"</td>
</tr>
<tr>
<td>78</td>
<td>Helene</td>
<td>"Peter har seks ganger så mye som.."</td>
</tr>
<tr>
<td>79</td>
<td>Maren</td>
<td>"Daniel."</td>
</tr>
<tr>
<td>80</td>
<td>Helene</td>
<td>"Åja, til sammen har de det ja."</td>
</tr>
<tr>
<td>81</td>
<td>Maren</td>
<td>"Tenkepause 7 sekund."</td>
</tr>
<tr>
<td>82</td>
<td>Maren</td>
<td>"Da kan vi ta 198 delt på tre."</td>
</tr>
</tbody>
</table>

I episoden over sier Maren i utsagn 77 at de må begynne med å "ta 198 ganger seks". I tekstoppgaven står det at de tre guttene har 198 kort til sammen, med andre ord er 198 den høyeste verdien i oppgaven. Da fungerer det ikke å multiplisere 198 med noe, som vil gi et ennå høyere tall. Når Maren vil multiplisere 198 med seks, er det et nytt eksempel på hvordan hun oversetter nøkkelordet "ganger" direkte med multiplikasjonen, uten at hun tar hensyn til situasjonen i tekstoppgaven. Helene setter spørsmålstegn til Marens utsagn, og i utsagn 79 begynner Maren på en forklaring: "Peter har seks ganger så mye som..". Derimot sier Maren i utsagn 82 at "da kan vi ta 198 delt på tre", som er motsatt regneoperasjon som multiplikasjon. Det virker som Maren innser at hun ikke kan oversette direkte, og bytter derfor regnealgoritme.

Det kommer ikke fram i episoden om Maren finner ut at de må bruke divisjon fordi konteksten sier det, eller om hun husker at de byttet til divisjon i frimerkeoppgaven og derfor gjør det samme i kortoppgaven. Likevel er det bra at Maren sier selv at de må bytte. I tillegg til at Maren sier de kan bytte til divisjon, så bytter Maren også ut tallet de skal dele 198 på. Jeg tolker det som at Maren litt tilfeldig prøver å utføre noen regneoperasjoner på tall som er oppgitt i oppgaveteksten, ettersom det ikke fungerer å oversette nøkkelordene direkte i kortoppgaven. Frimerkeoppgaven og kortoppgaven er eksempler på hvordan Maren gjør en
direkte oversettelse av nøkkelordene i teksten, som tyder på at Maren ikke har fått full forståelse for konteksten. I episodene over, oversetter Maren hennes tolkning av ord i tekstoppgaven når hun oversetter nøkkelord direkte, som viser hennes verbale tolkning av ordene i oppgaveteksten. Episodene over med frimerkeoppgaven og kortoppgaven, viser at direkte oversettelser kan skje med både aritmetiske og algebraiske tekstoppgaver.

Elevenes tolkning av situasjonen i konteksten går ut på hvordan de bruker kontekstkunnskaper de har fra før til hjelp i løsningen av tekstoppgaver, og hvordan de forstår situasjonen i konteksten. Elevers bruk av kontekstkunnskap kan enten være til hjelp for dem i løsningen, eller de kan bruke kunnskap om en kontekst feil, eller rett å slett ikke forstå situasjonen. I episoden under, jobber elevene med idrettsoppgaven hvor de prøver å dele totalt antall elever på antall grupper med aktiviteter:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>171</td>
<td>Helene</td>
</tr>
<tr>
<td>172</td>
<td>Lars</td>
</tr>
<tr>
<td>173</td>
<td>Helene</td>
</tr>
<tr>
<td>174</td>
<td>Maren</td>
</tr>
<tr>
<td>175</td>
<td>Lars</td>
</tr>
<tr>
<td>176</td>
<td>Student</td>
</tr>
<tr>
<td>177</td>
<td>Helene</td>
</tr>
</tbody>
</table>

Når elevene i episoden over deler 133 (totalt antall elever) på tre ulike grupper, spør Helene i utsagn 173 om hun skal ta med kommatall, og Maren og Lars sier i utsagnene 174-175 at det eventuelt ”blir en person i rest”. Når elevene får spørsmål om det er mulig å ha med kommatall svarer Helene i utsagn 177 at ”Nei ikke på folk”. Helene sier at ettersom det er mennesker med i konteksten, så er det ikke mulig å ha med kommatall som svar. Selv om de ikke finner svaret med å konkludere at de ikke kan bruke komma, så vil fortsatt kunnskapen om at de ikke kan bruke komma hjelpe dem til at de må ha et heltallig svar. Dermed bruker de sin kunnskap om konteksten produktivt. Når elevene resonnerer logisk ut i fra deres tidligere erfaringer fra kjente kontekster og situasjoner, kaller Walkington et al. (2012) det for et situasjonsbasert resonnement.
Den neste episoden viser hvordan noen av elevene var usikker på hvilke relasjoner det er mellom antall objekter i mengdene i en tekstoppgave. Elevene jobbet med frimerkeoppgaven, der relasjonene mellom antall objekter i mengdene blir diskutert:

48 Helene ”Albert har fire ganger så mange frimerker som Judit, og syv ganger så mange frimerker som Sofie. Hvis Albert har 504 frimerker, hvor mange har de til sammen?”

49 Maren Da vi må ta 504 fire ganger.

(...)

54 Helene Nei han har det. Og hvis han har fire ganger så mange, så må vi dele det på fire, trur jeg.

55 Maren Åja! Ja, mhm.

56 Helene Det går opp en gang… det går opp to ganger.

57 Maren Den siste går opp seks ganger. Da blir det, Judit har 126. Og syv ganger så mange frimerker som Sofie.

58 Helene Ja da må vi ta 504 delt på…

59 Maren Nei 126 kanskje..

60 Helene Ja men Albert har fire ganger så mange frimerker som Judit, OG han har syv ganger så mange som Sofie. Det fortsetter hvor mange HAN har.

I episoden over regner først elevene ut 504 delt på fire, og finner at Judit har 126 frimerker. Deretter skal de prøve å finne ut hvor mange frimerker Sofie har. I utsagn 58 sier Helene at de må ”dele 504 på…” for å finne ut hvor mange frimerker Sofie har, men Maren sier i utsagn 59 ”Nei, 126 kanskje”. For å finne ut hvor mange frimerker Sofie har, så mener Helene at de må dele 504 på noe, mens Maren mener de kanskje må dele 126 på noe. 504 er antall frimerker Albert har, og 126 er antall frimerker Judit har. Med andre ord diskuterer Helene og Maren om relasjon ”syv ganger så mye som” er mellom Sofie og Albert eller Sofie og Judit.
Figur 5.1 viser de to relasjonene (blå piler) som Helene og Maren diskuterer. Dersom den korteste pilen er riktig, at relasjon ”syv ganger så mange” er mellom Sofie og Judit, må de dele Judit sine 126 frimerker på syv for å finne hvor mange Sofie har. Derimot hvis det er den lengste pilen som er riktig, at relasjonen ”syv ganger så mange” er mellom Sofie og Albert, må de dividere Albert sine 504 frimerker på syv for å finne hvor mange frimerker Sofie har. Helene forklarer i utsagn 60 at ”Albert har fire ganger så mange frimerker som Judit, og han har syv ganger så mange som Sofie. Det fortsetter hvor mange HAN har”. Helene forklarer at relasjonen ”syv ganger så mange” må være mellom Albert og Sofie ettersom det står i oppgaveteksten at ”Albert har fire ganger så mange frimerker som Judit, og syv ganger så mange som Sofie”. Hun legger trykk på ”og” og poengterer at ”det fortsetter med hvor mange HAN har”, altså hvor mange flere frimerker Albert har, og dermed må relasjonen være mellom Albert og Sofie, altså den lengste pilen.

På samme måte som med studiet til Walkington et al. (2012), hadde elevene i min studie vanskelig for å forstå situasjonene fult ut selv om det var kjente kontekster som for eksempel kortspill. Elevene kan godt kjenne igjen en gitt kontekst, men det er like nødvendig å forstå alle relasjonene som er forklart i oppgaveteksten for at elevene skal forstå situasjonen fult ut. I den første episoden bruker elevene kunnskap om en virkelig situasjon med mennesker, som er en kjent kontekst, som hjelp for å komme bort fra galt spor i løsningen. Den siste episoden er et eksempel på hvordan noen elever kan tolke forholdene mellom mengdene i en tekstoppgave feil. Selv om elevene var to her, og de ble enige om hva som var riktig, viser det fortsatt at slike tolkninger kan forekomme hos noen elever. Elevenes tolkninger av kontekster og situasjoner i denne studien bekrfter Walkington et al. (2012) sine funn om at konteksten i
tekstoppgaver både kan være til hjelp og gjøre oppgavene vanskeligere. Elevene klarer ikke alltid å dra nytte av en kontekst, selv om konteksten er kjent for elevene.

5.2 Elevers uformelle strategier i løsningsfasen

I analysen av ulike strategier elevene brukte i løsningsfasen fant jeg tre uformelle strategier. Noen av disse strategiene brukte elevene i starten av oppgavene, men gikk over til andre strategier undervis i når de oppdaget at strategien ikke førte til riktig svar. Andre strategier ble brukt igjennom hele oppgaven. Noen strategier førte til feil svar, mens andre strategier førte til riktig svar. De uformelle strategiene elevene brukte i arbeid med tekstoppgaver var som følger:

- Deler likt
- Gjett og sjekk-metoden
- Kjent verdi som utgangspunkt

Når elevene jobbet med kortoppgaven hvor tre gutter spiller kort, og elevene skal finne ut hvor mange kort hver av dem har, delte likt på tre. Tekstoppgaven har en algebraisk struktur, og det er derfor ikke noen direkte sammenheng mellom den kjente verdien 198 og relasjonene som er oppgitt mellom antall kort hver av guttene har. Elevene begynner med å dele likt på tre:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>83</th>
<th>Helene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ja, 198 delt på tre ja, også.. Nei… For Peter har jo seks ganger så mange, og Georg har to ganger så mange kort som Daniel. Vent litt, Daniel har jo minst kort, Peter har mest, og Georg nest mest, eller nest minst, mellomst.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(...)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>85</td>
<td>Maren</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vi burde kanskje dele først på tre også kan vi regne ut i fra der.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(...)</td>
<td>De regner ut.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89</td>
<td>Helene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(...) Det blir 66.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90</td>
<td>Maren</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Da vet vi at de KAN ha 66. Da må vi regne ut sånn… Peter har seks ganger så mye…</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91</td>
<td>Helene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mhm.</td>
</tr>
</tbody>
</table>
I episoden over sier Helene i utsagn 83 at ”ja, 198 delt på tre ja”. Hun begynner først med at de kan dele 198 på 3, men så sier hun videre i samme utsagn: ”Nei… For Peter har jo seks ganger så mange, og Georg har to ganger så mange kort som Daniel”. Her virker det som Helene ser at det ikke fungerer å dele den totale summen på tre. Derimot sier Maren i utsagn 85 at ”vi burde kanskje dele først på tre også kan vi regne ut i fra der”. Her ser det ut som elevene først til dele totalmengden på de tre mengdene som er i denne tekstoppgaven, også videre generere videre ut i fra det utgangspunktet de får. De regner ut 198 delt på tre:

![Figur 5.2: Gruppe 1, kortoppgaven. Utregning hvor de deler likt på tre mengder.](image)

Når elevene deler på tre, finner de ut at det blir 66 på hver (se figur 5.2), og Maren poengterer i utsagn 90 at ”de kan ha 66. Da må vi regne ut sånn”. Her snakker Maren ennå om at de må regne videre for å komme videre i oppgaven. Derimot sier Maren i utsagn 92 at ”Så dem har 66 kort hver”. Det ser ut som Maren ender med at guttene har 66 kort hver. Her deler elevene totalsummen 198 på tre siden det er tre mengder, uten at de tar noen hensyn til forholdene mellom mengdene:

![Figur 5.3: Relasjoner som blir oversett når det deles likt](image)
Figur 5.3 viser strukturen i oppgaven sammen med løsningen når elevene deler totalt 198 kort på de tre mengdene. De blå pilene viser relasjonene mellom antall objekter i mengdene, men relasjonene er ikke tatt hensyn til av elevene i denne utregningen.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>Student</td>
<td>Peter skal ha seks ganger så mange kort som Daniel, hvis dere ganger 66 kort med seks, blir det mer eller mindre enn 198?</td>
</tr>
<tr>
<td>95</td>
<td>Helene</td>
<td>Det blir mer.</td>
</tr>
<tr>
<td>96</td>
<td>Student</td>
<td>Går det an at Daniel har 66 kort da?</td>
</tr>
<tr>
<td>97</td>
<td>Alle</td>
<td>Nei.</td>
</tr>
</tbody>
</table>

I utsagn 93 får elevene spørsmål om 66 ganger seks, som er forholdet mellom antall kort Peter har og antall kort Daniel har, er mer enn 198 som er totalt antall kort guttene som spiller kort har. I figur 5.3 hvor elevene hadde gjort utregningen 198 delt på tre, har de også regnet ut 66 ganger seks på høyre side av likhetstegnet, og fått til svar 396. Når elevene da får spørsmål om det er mulig at Daniel har 66 kort, svarer de nei (utsagn 97). Dermed går elevene bort fra denne strategien og begynner heller å prøve ut ulike tall.

Situasjon hvor elevene *deler likt* mellom mengdene er et eksempel på hvordan elever kan ha behov for å vite en av delmengdene, for å finne de andre delmengdene. Det at elevene har behov for å vite en av delmengdene kommer fram ved at Maren sier i utsagn 85 at de må dele på tre for "så å regne ut i fra der". Bednarz og Janvier (1996) fant også ut at elever hadde et behov for å vite en av delmengdene: "If they knew it, would allow them to generate the other quantities" (Bednarz & Janvier, 1996, s. 133). Om elevene vet en av delmengdene, for eksempel hvor mange kort enten Daniel, Peter eller Georg har, kan de finne de andre delmengdene ved hjelp relasjonene mellom antall kort hver av guttene har. Elevene i min studie regnet ikke videre, men delte kun likt. Elevene brukte kun en aritmetisk operasjon for å dele totalmengden likt på de tre delmengdene, og hadde dermed en ingen aritmetisk tankegang i strategiene. Dersom elevene *hadde* generert videre, ville elevene i følge Bednarz og Janvier (1996) hatt en tankegang nærmere algebraisk, ettersom en algebraisk tankegang ville vært å finne verdien til en av delmengdene, og derifra funnet de andre delmengdene. Selv om elevene finner den første delmengden feil, ved at de deler likt, så er allikevel den algebraiske tankegangen noe til stedet når elevene deler og genererer (Bednarz & Janvier, 1996).
Da elevene gikk bort i fra å dele totalsummen likt på mengdene, gikk de over å gjette og sjekke ulike tall (Bednarz & Janvier, 1996; Koedinger & Nathan, 2004; Walkington et al., 2012). De gjettet et tall som utgangspunkt og sjekket om tallet stemte:

<table>
<thead>
<tr>
<th></th>
<th>Helene</th>
<th>Hvis Peter har 75…Nei, måtte bare ta noe som var under 100.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tenkpause 7 sekund.</td>
<td>V ent litt, vi kan ikke ha det så høyt. Han kan ikke ha noe som blir mer enn 198 hvis vi ganger med seks. Så det må være sånn… Nei jeg vet ikke hvordan man finner det ut.</td>
</tr>
<tr>
<td>100</td>
<td>Helene</td>
<td>Ikke jeg heller.</td>
</tr>
<tr>
<td>101</td>
<td>Maren</td>
<td>Jeg bare tar et tall. 32 ganger seks… Oi, han kan ikke ha 32 heller, da blir det nesten ingen kort igjen. Eller kanskje…to ganger så mye…</td>
</tr>
</tbody>
</table>

I episoden over begynner Helene å gjette på ulike tall. I utsagnene fra 99 og 102 tester Helene ut tallene 75 og 32 som utgangspunkt. Helene sier det er litt tilfeldig hvilket tall hun prøver med, men sier at tallet ikke må bli mer enn 198 når det er ganget med seks. Først prøver hun ut 75, men oppdager at det er for høyt, og prøver da et lavere tall, 32:

![Figur 5.4: Gjetter to tall og sjekker om de gir riktig svar](image)

Figur 5.4 viser hvordan Helene gjettet seg til ulike tall for så å sjekke om disse stemte. I figur 5.4a er ”75” satt inn som en av delmengdene, som sammen med de oppgitte relasjonene til de andre delmengdene, kan sjekkes om det gir 198 kort til sammen. Helene sier i utsagn 100 at ”vent litt, vi kan ikke ha det så høyt. Han kan ikke ha noe som blir mer enn 198 hvis vi ganger med seks”. Videre tester Helene ut et nytt tall i utsagn 102 og sier ”Jeg bare tar et tall. 32
ganger seks… Oi, han kan ikke ha 32 heller, da blir det nesten ingen kort igjen”. Figur 5.4b viser 32 som startmengde, og når den er multiplisert med seks, gir det 192 kort. 192 er nesten like mye som 198 kort som guttene har til sammen, og Helene sier at 32 kort også blir for mye. Dermed har de gjettet to tall som ikke gir rett svar.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>134</td>
<td>Helene</td>
<td>Men hvis Peter har seks, nei tolv kort, da har Daniel to og da har Georg fire. Kan vi ikke bare plusse opp helt til alt samlet blir 198?</td>
</tr>
<tr>
<td>135</td>
<td>Maren</td>
<td>En, to og seks prøver vi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Helene</td>
<td>Da har han Peter 132, han Daniel 22 og Georg har 44.</td>
</tr>
</tbody>
</table>

I utsagn 134 foreslår Helene at ”hvis Peter har seks, nei tolv kort, da har Daniel to og da har Georg fire. Kan vi ikke bare plusse opp helt til alt samlet blir 198?” De setter opp tabell hvor de gjetter og sjekker ut tall. De setter opp følgende tabell:
Figur 5.5 viser tabellen elevene satte opp for å finne de ulike mengdene som til sammen ga 198 kort totalt. Som tabellen viser, så har elevene prøvd mange tall før de kom fram til riktig svar, og det tar lang tid for elevene å bruke denne strategien på hver tekstoppgave. Helene sier i utsagn 134 at dersom Peter har tolv kort, så har Daniel to og Georg fire kort hver. Strukturen til kortoppgaven (se figur 4.2) viser at relasjonene som Helene beskriver i utsagn 134 stemmer. Dersom Peter har to kort, så har Georg fire kort, som er to ganger så mange som Peter, og Georg har tolv kort, som er seks ganger så mange som Peter. Når elevene har tolket relasjonene mellom antall kort hver av guttene har riktig, så gir strategien gjett og sjekk riktig svar. Derimot tar strategien gjett og sjekk fort veldig lang tid. Selv om elevene har tolket relasjonene mellom antall objekter i delmengdene riktig, gjør elevene kun noen aritmetiske regneoperasjoner med tall, og strategien viser dermed liten grad av algebraisk tenkning.

Den siste strategien gikk ut på at elevene brukte den kjente verdi som utgangspunkt. Det er gruppe 2 som jobber med kortoppgaven, og de løser den på en litt annerledes måte enn elevene i gruppe 1 gjorde:
Marit
Skal vi da 198 delt på seks og to?

Hilde Marie
Georg har to ganger så mange kort som Daniel. (...)] Jeg kan ta delt på seks, så kan du ta delt på to da.

I utsagn 91 spør Marit om de skal ta "198 delt på seks og to". Ettersom dette er en algebraisk tekstoppgave så er det ingen direkte sammenheng mellom totalverdien 198 og relasjonene "seks ganger så mange" og "to ganger så mange". Når Marit og Hilde Marie deler 198 på seks og to, behandler de verdien og relasjonene som er oppgitt i tekstoppgaven som om det var en direkte sammenheng mellom dem:

Figur 5.6: Algebraisk struktur i tekstoppgaven blir gjort om til aritmetisk struktur

Den blå pilen i figur 5.6 viser hvordan verdien 198, som er den totale summen av de tre delmengdene, blir behandlet som en av delmengdene. Når elevene behandler verdien 198 som en av delmengdene, kan de gjøre regneoperasjoner på den kjente verdien, der de regner med de oppgitte relasjonene mellom delmengdene. Strukturen i den algebraiske tekstoppgaven blir omgjort til strukturen i en aritmetisk tekstoppgave, hvor det er en direkte kobling mellom de kjente verdiene og relasjonene som er oppgitt i tekstoppgaven (Bednarz & Janvier, 1996).

Hilde Marie
Ja, 99 og jeg har 33. Da må vi ta 99 pluss 33...Hva blir det? ...
Ja da har vi 132 kort, så da må vi finne ut hvor mange kort vi mangler for å få 198 da... 66. Og det blir da Daniel. 66 er Daniel. Daniel har 66 kort, også var det han Peter, seks ganger så mange så da blir det 33, nei det blir ikke riktig. Peter har

<table>
<thead>
<tr>
<th>96</th>
<th>Marit</th>
<th>Jeg tror vi må ta…</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>Hilde Marie</td>
<td>Vi må ta sånn 33, 66, 99. Da blir det jo…</td>
</tr>
<tr>
<td>98</td>
<td>Hilde Marie</td>
<td>Ja det blir jo riktig.</td>
</tr>
</tbody>
</table>

Figur 5.7: Besvarelse fra Marit og Hilde Marie, beskriver hvordan de kom fram til svaret.

Figur 5.7 viser Hilde Marie og Marit sin forklaring på hvordan de fant delmengdene. De forklarer hvordan de fordelte de ulike mengdene: ”så delte vi ut kortene etter den som hadde minst, mellomst og mest kort”. Med andre ord fant Hilde Marie og Marit tre delmengder som de ikke fikk til å stemme helt med relasjonene mellom antall kort hver av guttene hadde, og
fordelte etter hvem som hadde minst, mellomst og mest kort. Figur 5.8 viser fremgangen i løsningen av kortoppgaven for Marit og Hilde Marie:

Figur 5.8a viser tekstoppgavens opprinnelige algebraiske struktur, som blir gjort om til en aritmetisk struktur (figur 5.8b). Elevene bruker så den kjente verdien i tekstoppgaven til å finne de ulike delmengdene (figur 5.8c). Til slutt snur Marit og Hilde Marie litt på rekkefølgen av antall kort til Daniel, Georg og Peter ut i fra hvem av dem som hadde minst, mellomst og mest kort. Den blå pila i figur 5.8d viser at sluttresultatet som Marit og Hilde Marie fikk, ikke har tatt hensyn til relasjonen mellom Daniel og Peter sine kort. Peter skal egentlig ha seks ganger så mange kort som Daniel, men Marit og Hilde Marie sjekket ikke om den relasjonen stemte. Ettersom summen av de tre delmengdene gir 198, så konkluderer de med at svaret de har kommet fram til stemmer. Når elevene bruker strategien *kjent verdi som*
utgangspunkt, behandler de den algebraiske tekstoppgaven som en aritmetiske tekstoppgave, de endrer strukturen slik at de kun trenger å gjøre noen aritmetiske operasjoner for å finne de ulike delmengdene. Ettersom elevene kun gjøre aritmetiske operasjoner på noen tall, har strategien en aritmetisk og ikke en algebraisk tankegang.

Analysen av elevenes strategier i løsning av tekstoppgavene, viser at de har ulike måter å angripe en teksteppgave på. To av strategiene, dele likt og kjent verdi som utgangspunkt, førte til at elevene fikk feil svar på tekstoppgaven. Når eleven deler likt, tar de ikke hensyn til at det er ulikt antall objekter i hver av delmengdene, og det fungerer dermed ikke å dele likt. Strategien hvor elevene delte likt er ikke lik noen av strategiene som er funnet i tidligere forskning, men den er som sagt lik starten av strategien ”dele og genere” som Bednarz og Janvier (1996) fant i sin forskning. Når elevene tok utgangspunkt i den kjente verdien som var oppgitt i den algebraiske teksteppgaven, der det er totalmengden som oftest er oppgitt i algebraiske teksteppgaver, og behandler den som en av delmengdene, gjøre elevene den algebraiske teksteppgaven om til en struktur som en aritmetisk teksteppgave. En av strategiene, gjett og sjekk, førte til at elevene fikk riktig svar på oppgaven, fordi de klarte å tolke relasjonene mellom antall objekter i mengdene riktig. Strategien gjett og sjekk viser at elevene har mulighet til å løse algebraiske teksteppgaver til tross for at de ikke har fått innført algebra. Likt med alle tre strategiene er at ingen av dem viser algebraisk tankegang. Elevene gjør kun aritmetiske beregninger, og har derfor en aritmetisk tankegang.

5.3 Oppsummering og drøfting av funn
Resultatene i min studie viser at det kan være utfordringer for elever å tolke relasjonene mellom antall objekter i mengdene som er beskrevet med ord, som er nødvendig for at de skal forstå situasjonen i oppgaven rett. Hvis elever har utfordringer med å tolke relasjonene i oppgaven, kan det bety at tekstoppgaver ikke nødvendigvis gjør det lett for elever å løse dem bare fordi de er skrevet med verbalt språk. Tekstoppgaver kan ha flere utfordrende elementer med tekst og kontekst, som for eksempel direkte oversettelse av nøkkelord. Enkelte elever i min studie var usikre på hvilke relasjoner det var mellom antall objekter i mengdene, og samme funn fant som sagt studier som blant annet Walkington et al. (2012), at elever ikke alltid tolker forholdene mellom antall objekter i mengdene som er beskrevet med tekst, riktig. I tillegg fant som nevnt Stacey og MacGregor (1999), at noen elever ikke viste hvilken mengde i tekstoppgaven som var den ukjente, hvilken mengde de skulle finne. Resultatene i min og andres studie viser at det finnes utfordringer for elever å tolke tekstoppgaver riktig.

Selv om det er utfordringer med tolkning av en oppgavetekst, klarte elevene i min studie å løse noen algebraiske tekstoppgaver. Elevene hadde ikke erfaring med algebraiske tekstoppgaver fra før, men de hadde likevel noen uformelle strategier til løse algebraiske tekstoppgaver. Gjett og sjekk-metoden har flere andre forskere (Bednarz & Janvier, 1996; Koedinger & Nathan, 2004; Walkington et al., 2012) også funnet i sine studier som elevene uten erfaring fra algebra klarer å løse algebraiske tekstoppgaver med. Ettersom oppgaven er skrevet med tekst, må elevene tolke relasjonene mellom antall objekter i delmengdene riktig, for at svaret skal bli riktig. Strategien førte til at elevene i min studie fikk riktig svar, men elevene gjetter et tall, og utfører kun aritmetiske beregninger med tallene. At elevene klarer å løse algebraiske tekstoppgaver med gjett og sjekk-metoden i min og andres studier, viser at det er mulig for elever uten erfaring fra algebra å få til algebraiske tekstoppgaver. Likevel har alle de tre uformelle strategiene som elevene brukte i min studie, uansett om de førte til riktig svar eller ikke, til felles at elevene kun gjorde noen aritmetiske beregninger på noen tall.

I de strategiene som elevene i min studie brukte, var det kun aritmetiske beregninger. Elevene var opptatt av å gjøre beregninger med de tallene som var oppgitt i oppgaveteksten. Bergsten et al. (1997) formulerer aritmetisk tenkning slik at en har fokus på utregninger, å få et svar, og det er det elevene i min studie er opptatt av. Algebraisk tenkning handler om å betrakte operasjoner på tall, og ikke bare gjennomføre en operasjon for å få et svar (Bergsten et al., 1997). Det handler om å studere strukturer og sammenhenger i oppgaver. Når elevene i min
studie fokuserer på utregninger, kan det tyde på at de har en aritmetisk, og ikke en algebraisk, tankegang i løsning av tekstoppgavene. Resultatet av studien viser at det eksisterer utfordringer for noen elever når de gjør en tolkning av en oppgavetekst. Likevel har elever uten erfaring fra algebra, mulighet til å løse algebraiske tekstoppgaver, men strategiene deres har liten grad av algebraisk tenkning. Det betyr at vi ikke kan forvente at elever uten erfaring fra algebra, uten videre skal finne algebraiske sammenhenger og tenke algebraisk i sine løsningsstrategier. De trenger veiledning til å endre fokus fra aritmetisk til algebraisk tankegang.
6.0 Avsluttende refleksjoner

For elevene som deltok i denne studien var det deres første møte med algebraiske tekstoppgaver. Hensikten med studiet var å finne ut hvordan elever tolker en oppgavetekst, og hvilke strategier de bruker for å løse oppgavene. Siden elevene ikke har jobbet med algebraiske tekstoppgaver tidligere, var det interessant å se hvilke strategier de valgte å bruke for å løse tekstoppgavene, og i hvilken grad strategiene inneholdt algebraisk tenkning. I analysen har jeg trukket fram de ulike tolkningene som elevene gjorde, forklart de ulike strategiene elevene brukte i løsningen av tekstoppgavene og drøftet graden av algebraisk tenkning i de ulike strategiene. I denne siste delen av oppgaven vil jeg reflektere rundt betydningen av mine funn.

Resultatene av studien viser at elevener kan ha ulike utfordringer med tekstoppgaver. Utfordringer kan være:

- Tolke oppgaveteksten riktig
- Forstå relasjoner mellom antall objekter i mengdene i oppgaveteksten

Jeg har observert at noen elever leter etter nøkkelord i teksten som de oversetter direkte til matematiske symboler, uten at de tar hensyn til hva oppgaven egentlig spør om. I tillegg observerte jeg at noen elevener har utfordringer med å tolke relasjonene mellom antall objekter i mengdene riktig. Når en oppgave består av flere mengder, og forholdene mellom mengdene er beskrevet med tekst, må elever klare å tolke de ulike forholdene riktig. Denne studien viser at oppgaver skrevet med tekst, kan gi utfordringer for elevene med tolkningen av det verbale språket og å forstå situasjonen i oppgaven.

Resultatene viser at eleven har mulighet til å løse algebraiske tekstoppgaver. Utfordringen blir at elevene gjør de rette tolkningene og forstår relasjonene i oppgaveteksten. Elevene i min studie brukte tre ulike strategier når de prøvde å løse tekstoppgavene. Strategiene elevene brukte førte både til rette og gale svar, men analysen viser at elevene har en aritmetisk tankegang i løsningsprosessen. Det ser ut som elevene er veldig fokusert på svaret og hvilke regnearter de skal bruke, i stedet for strukturer og sammenhenger i oppgavene. Dermed har strategiene elevene i min studie brukte, liten grad av algebraisk tenkning med seg.

Tekstoppgaver som tilnærming til algebra er én tilnærming, og vil ikke si at andre tilnærmeringer skal utelukkes. Det er viktig at elevene møter flere metoder, slik at de får et
bredere spekter av tilnærminger som kan øke forståelsen og meningen med algebra. Fordelen med tekstoppgaver er at de er skrevet med verbalt språk som elevene er kjent med fra før, og siden de ikke inneholder vanskelige symboler, kan de tas i bruk allerede på barneskolen. Likevel viser denne studien at elever kan ha ulike utfordringer med tolkning av oppgavetekster. Elever har ulike strategier å angripe tekstoppgaver med, og kan klare å løse noen algebraiske tekstoppgaver retorisk med de erfaringer de har med fra aritmetikken. Derimot viser studien at elevene hadde liten grad av algebraisk tenkning i sine strategier, og at elevene ikke kommer frem til algebraisk tenkning av seg selv, men trenger veiledning til å skifte fokus fra en aritmetisk til en algebraisk tankegang. Derfor er jeg enig med Carpenter og Levi (2000) om at det er viktig å fokusere på algebraisk tenkning tidlig i barneskolen ettersom det tar tid å utvikle algebraisk tenkning.

Studien viser at det fortsatt er flere uløste spørsmål med tanke på elevers arbeid med tekstoppgaver. Ville eleven som eventuelt har jobbet med algebra på tidligere klassetrinn enn det som er vanlig i dag, hatt mer algebraisk fokus i sine strategier i løsninga av tekstoppgaver? Det kunne også vært interessant å gjøre samme undersøkelse på ungdomsskolen, etter de har fått introdusert algebra. Hvilke utfordringer ville eventuelt vært tilstede med deres arbeid med tekstoppgaver?
Litteraturliste

Vedlegg: Informasjonsskriv og samtykkeerklæring

Til foreldre/foresatte for elever på 7. trinn ved XXXXXXX skole

Anmodning om tillatelse til video-/lydopptak av intervju, og samle inn besvarelser.

For å få så godt dokumenterte data som mulig, har jeg i samråd med min veileder kommet til at det vil være ønskelig å gjøre videoopptak/lydopptak av gruppearbeid/intervju av elever. Derfor ber jeg om tillatelse fra dere til å kunne gjøre videoopptak/lydopptak, samt samle inn tekster skrevet av elever på 7. trinn ved XXXXXXX skole. Det er snakk om video/lydopptak av noen intervju/gruppearbeid. Forutsetningen for tillatelsen er at alt innsamlet materiale blir behandlet med respekt og konfidensielt, og at prosjektet ellers følger gjeldende retningslinjer for personvern. Det er naturligvis helt frivillig å delta og man kan til enhver tid trekke seg fra deltakelse uten å måtte oppgi noen grunn til det.

Video-/lydopptak vil være basert på intervju av en gruppe elever som skal jobbe med noen oppgaver og forklare hva han/hun tenker og gjør underveis. Opptakene vil kun bli sett/hørt av meg, min veileder og eventuelt av andre masterstudenter i matematikkdidaktikk ved høgskolen. I materiale som skrives eller på annen måte presenteres for andre, vil involverte personer bli anonymisert. Innsamlede data vil bli slettet etter at prosjektet er avsluttet, senest 1. August 2015.

Hvis noen vil vite mer om dette, eller hva det innsamlede materialet skal brukes til, så er det bare å ta kontakt med meg på telefon eller e-post (se øverst for detaljer).

Jeg håper dere synes dette er interessant og viktig, og at dere er villige til å la deres barn være med på det. Jeg ber foreldre/foresatte om å fylle ut svarsflippa på neste side om hvorvidt dere gir tillatelse til å la deres barn være med på prosjektet i klassen.
På forhånd takk!

Vennlig hilsen
Ida Christine Myrvang

Samtykkeerklæring

Som del av prosjekt om elevers forståelse av likninger, ber jeg om tillatelse til å samtale med barnet ditt/deres, gjøre lyd- og videoopptak der han/hun er med, og kopiere/bruke tekster skrevet av han/henne. Tillatelse av samtykkeerklæringen vil ikke nødvendigvis føre til innsamling av datamateriale av eleven, men ut i fra tillatelsene, vil jeg velge ut noen elever som deltar i prosjektet.

Sett kryss i ruta:

☐ Jeg/vi gir tillatelse. Jeg/vi har snakket med jenta/gutten vår om dette, og hun/han har også gitt sitt samtykke.

Jeg/vi er klar over at deltagelsen er frivillig, og at vi og barnet når som helst og uten grunn kan trekke oss fra prosjektet.

Dato: …………………

Elevene fornavn og etternavn: ……………………………………………………………………………

Underskrift av foresatt(e): ………………………………………………………………………

Vennligst returner svarslipen til matematikkler på 7. Trinn så snart som mulig.