Avdeling for lærerutdanning og naturvitenskap

Bjørn Erik Krogssæter

Bacheloroppgave

Elevers forståelse av naturvitenskapens egenart gjennom utforskende arbeid

Students’ understanding of Nature of Science through Inquiry Based Teaching

Grunnskolelærerutdanningen 5-10. trinn

2014

Samtykker til utlån hos høgskolebiblioteket

JA ☒ NEI ☐

Samtykker til tilgjengeliggjøring i digitalt arkiv Brage

JA ☒ NEI ☐
Norsk sammendrag

Tittel: Elevers forståelse av naturvitenskapens egenart gjennom utforskende arbeidsmåter

Forfatter: Bjørn Erik Krogsæter

År: 2014 **Sider:** 71

Emneord: naturfag, utforskende arbeid, naturvitenskapens egenart, epistemologi

Sammendrag:

Denne oppgaven bygger på en kvalitativ studie, hvor det ble gjort intervjuer knyttet til utforskende arbeidsmåter, naturvitenskapens egenart og elevenes epistemologiske forståelse av dette. Ut ifra dette er min problemstilling: «Hvilken forståelse av naturvitenskapenes egenart kan utforskende arbeid i naturfag utvikle hos elevene?».

Jeg har hentet data fra to intervjuer, av to elever fra praksisskolen jeg var på høsten 2013, i 8. trinn. Elevene var igjennom samme naturfagundervisning, som bestod av et utforskende arbeid de selv planla og gjennomførte. Jeg har analysert og tolket elevenes svar ut ifra Sandovals teori om naturvitenskapelig epistemologi for å kartlegge deres forståelse av naturvitenskapens egenart, og hvordan det utforskende arbeidet har bidratt til dette.

Undersøkelsen viser at elevene tilegner seg til en viss grad forståelse av naturvitenskapens egenart gjennom å arbeide utforskende. Naturvitenskapens egenart referer til egenarten ved naturvitenskapelig kunnskap, arbeidsmåter og en sammensatt samhandling mellom teori, data og modeller.
Engelsk sammendrag (abstract)

Title: Students understanding of Nature of Science through Inquiry Based Science Teaching

Author: Bjørn Erik Krogseter

Year: 2014 | **Pages:** 71

Keywords: Science, Inquiry Based Science Teaching, Nature of Science, epistemology

Summary:

This paper is based on a qualitative study. I conducted interviews related to Inquiry Based Science Teaching, Nature of Science (NOS) and student epistemological understanding of this. The problem I address in this paper is: "What understanding of Nature of Science can Inquiry Based Science Teaching in Science develop for students". I have collected data from two interviews, with students from the same school. This took place at the practice school I was at in autumn 2013, in 8th grade. The students went through the same science teaching, which consisted of an exploratory work they planned and carried out themselves. I have analyzed and interpreted the students' responses. The analysis are based on Sandoval’s theory of scientific epistemology, to map their understanding of the nature of science individuality, and how the exploratory work contributed to this.

The survey shows that students acquire a certain degree of understanding of NOS through working with Inquiry Based Science. Where NOS refers to the distinctive character by scientific knowledge, working methods, and a complex interaction between theory, data and models.
Innhold

NORSK SAMMENDRAG ... 2
ENGELESK SAMMENDRAG (ABSTRACT) .. 3
INNHOLD .. 4
FORORD .. 7
1. **INNLEDNING** ... 8
 1.1 **OPPBYGNING AV OPPGAVEN** .. 8
 1.2 **BEGREPSFORKLARING** .. 9
2. **TEORI** ... 10
 2.1 **BEGREPET UTFORSKENDE ARBEIDSMÅTER** ... 10
 2.2 **UTFORSKENDE ARBEIDSMÅTER OG FORSKERSPIREN** .. 11
 2.3 **NATURVITENSKAPENS EGENART** ... 12
 2.4 **NATURVITENSKAPENS EGENART OG KUNNSKAPSLØFTELSE** .. 12
 2.5 **EPISTEMOLOGI** ... 13
 2.5.1 **Naturvitenskapelig epistemologi** ... 13
 2.5.2 **Praktisk og formell epistemologi** .. 14
3. **METODE** .. 16
 3.1 **GJENNOMFØRING I PRAKSIS** .. 16
 3.1.1 **Bakgrunn for undervisningen** .. 16
 3.1.2 **Undervisning med utforskehende arbeidsmåter i praksis** ... 16
 3.2 **KVALITATIV FORSKNINGSMETODE** .. 18
 3.2.1 **Intervju som metode** .. 18
 3.2.2 **Intervjugeide** .. 19
 3.3 **BESKRIVELSE AV STUDIEN** ... 19
 3.3.1 **Utvalg** ... 19
3.3.2 Intervju situasjon .. 19
3.3.3 Innsamling av data ... 20
3.3.4 Analyse av data .. 20
3.3.5 Reliabilitet og validitet ... 21

4. ANALYSE OG RESULTATER .. 22

4.1 BJØRN ... 22

4.2 PIA ... 25

5. DROFTING .. 28

5.1 NATURVITENSKAPENS EGENART .. 28

5.2 EPISTEMOLOGI ... 29

5.2.1 Perspektiv 1 ... 29

5.2.2 Perspektiv 2 ... 30

5.2.3 Perspektiv 3 ... 30

5.2.4 Perspektiv 4 ... 31

6. AVSLUTNING .. 32

LITTERATURLISTE ... 33

VEDLEGG 1, FISKEBEINSMETODEN .. 35

VEDLEGG 2, INTERVJUGUIDE .. 38

VEDLEGG 3, INTERVJUTRANSKRIPT .. 41

BJØRN ... 41

PIA ... 52

VEDLEGG 4, ANALYSE OG INNDELING AV TRANSKRIPTER 63

BJØRN: ... 63

PIA: .. 67
Tabelliste:

Tabell 1: Beskrivelse av elevenes utforsknings arbeid..17

Tabell 2: Epistemologiske perspektiver...21
Forord

Arbeidet med denne bacheloroppgaven har vært lærerikt og spennende, men også krevende på mange måter. Gjennom egen skolegang på Høgskolen i Hedmark og erfaring fra praksisperioder, har jeg fått et helt nytt blikk på naturfaget i skolen. Undervisningen på Høgskolen har høyt fokus på praktiske aktiviteter og utforskende arbeid, altså det at elevene skal få «gjøre». Gjennom eksempler på aktiviteter jeg har lært, og prøvd i praksis, innsert jeg at det ikke alltid krever så mye ekstra av læreren for å variere metodene og tilpasse undervisningen. Dette har blitt en høy motivasjonsfaktor for meg når jeg selv skal undervise i naturfag, og er bakgrunnen for valgt tema i min bacheloroppgave.

Jeg vil spesielt takke veilederen min Anne Holt, for gode tips, råd og veiledninger med konkrete tilbakemeldinger. Samt hennes vilje til å dele egen forskning og erfaring med meg. Jeg vil også takke mine medstudenter for diskusjoner, korrekturlesing og latter underveis i arbeidet, og min mor for hjelp med korrekturlesing. Til slutt vil jeg også takke praksisskolen som gjorde det mulig å gjennomføre undersøkelsen.

Flisa, 15. mai 2014

Bjørn Erik Krogsæter
1. Innledning

Det står i læreplanen i naturfag under hovedområdet forskerspiren, at naturvitenskapen fremstår på to måter i naturfagundervisningen. Både som et produkt som viser den kunnskapen vi har i dag. Og som en prosess som handler om naturvitenskapelige metoder og hvordan kunnskap blir til. Prosessene innebærer hypotesedanning, eksperimentering, systematiske observasjoner, kritisk vurdering, argumentasjon, begrunnelser for konklusjoner og formidling (Utdanningsdirektoratet, 2013).

Ut ifra dette har jeg kommet frem til følgende problemstilling:

«Hvilken forståelse av naturvitenskapenes egenart kan utforskende arbeid i naturfag utvikle hos elevene?»

1.1 Oppbygning av oppgaven

1.2 Begrepsforklaring

Jeg har i denne oppgaven valgt å bruke begrepet utforskningsarbeidsmåter i stedet for naturvitenskapelige arbeidsmetoder. Disse begrepene regner jeg som likeverdige. Jeg velger å bruke utforskningsarbeidsmåter fordi dette har blitt ett utbredt begrep i Norge. Både i læreplanen for naturfag, og i teori er dette mye brukt. Og det er et mer virkelighetsnært begrep enn naturvitenskapelig arbeidsmåter.
2. Teori

Jeg vil begynne dette kapittelet med å gjøre rede for, og utdype hva som legges i begrepet utforskningsarbeidsmåter, og hvilken rolle dette har i skolen. Videre tar jeg for meg begrepet epistemologi, og går nærmere inn på begrepene naturvitenskapelig, praktisk og formell epistemologi, før jeg til slutt gjør rede for naturvitenskapens egenart.

2.1 Begrepet utforskningsarbeidsmåter

2.2 Utforskende arbeidsmåter og forskerspiren
Hovedområdet Forskerspiren i læreplanen for naturfag lyder slik:

I naturfagundervisningen framstår naturvitenskapen både som et produkt som viser den kunnskapen vi har i dag, og som prosesser som dreier seg om hvordan naturvitenskapelig kunnskap bygges og etableres. Prosessene omfatter utvikling av hypoteser, eksperimentering, systematiske observasjoner, diskusjoner, kritisk vurdering, argumentasjon, begrunnelser for konklusjoner og formidling. Forskerspiren skal ivareta disse dimensjonene i opplæringen og integreres i de andre hovedområdene. (Utdanningsdirektoratet, 2013)

Knain & Kolstø (2011) refererer også til det engelske begrepet for utforskende arbeidsmåter, «Inquiry Based Science Teaching», som kan beskrives veldig likt som i Forskerspiren:

Inquiry is a multifaceted activity that involves making observations; posing questions; examining books and other sources of information to see what is already known; planning investigations; reviewing what is already known in light of experimental evidence; using tools to gather, analyze, and interpret data; proposing answers, explanations, and predictions; and
communicating the results. Inquiry requires identification of assumptions, use of critical and logical thinking, and consideration of alternative explanations. (National Research Council, 1996, s.23)

2.3 Naturvitenskapens egenart

Abd-El-Khalick skriver at naturfaglærere kan hjelpe elever til å utvikle kunnskap og forståelse av naturvitenskapens egenart gjennom nøye planlegging, og strukturert undervisning med utforsknende arbeidsmåter, hvor elevene har muligheter for refleksjon (Khishfe & Abd-El-Khalick, 2002).

Noen naturfaglærere har også sagt: «NOS…cannot be taught directly, rather it is learned, like language, by being part of a culture, namely, the culture of scientific practice» (Abd-El-Khalick et al., 2004, s. 16).

Naturvitenskap og naturvitenskapelig tenkemåte er ikke noe man kan lære elevene i løpet av én time på skolen, men det er noe elevene tilegner seg gjennom å være en del av en naturfaglig «kultur». Ut ifra de to påstandene ovenfor må man da gjennom nøye planlagte timer, la elevene arbeide utforsknende med muligheter for refleksjon, lage og teste hypoteser, innhente og vurdere data, og drøfte og sammenligne resultater. Dette for å tilegne seg kunnskap om og forstå naturvitenskapens egenart (Abd-El-Khalick, 2013).

2.4 Naturvitenskapens egenart og kunnskapsløftet

Utforsknende arbeidsmåter har i lang tid vært en svært mye brukt og aktuell arbeidsmetode i naturfag. I kunnskapsløftet er det også mange kompetanse mål som baserer seg på blant annet at elevene skal planlegge og gjennomføre undersøkelser, og rapportere om sine funn. Arbeidet mot disse kompetanse målene baserer seg hovedsakelig på utforsknende arbeidsmetoder. Det står også i læreplanen for naturfag, under formål med faget at:
Å arbeide både praktisk og teoretisk i laboratorier og i naturen med ulike problemstillinger er nødvendig for å få erfaring med og utvikle kunnskap om metoder og tenkemåter i naturvitenskapen. Dette kan bidra til å utvikle kreativitet, kritisk evne, åpenhet og aktiv deltagelse i situasjoner der naturfaglig kunnskap og ekspertise inngår … Kompetanse i å forstå ulike typer naturvitenskapelige tekster, metoder og teknologiske løsninger gir et godt grunnlag for yrkesfaglige utdanninger, videre studier og livslang læring i yrke og fritid. (Utdanningsdirektoratet, 2013)

Det er altså nødvendig å arbeide både praktisk og teoretisk med ulike problemstillinger, for å utvikle forståelse av og kunnskap om naturvitenskapens egenart. Dette for å utvikle evnen til å delta i situasjoner hvor naturfaglig kunnskap og ekspertise inngår, som vil danne et grunnlag for videre utdanning, yrke og fritid.

2.5 Epistemologi

Epistemologi er også et begrep som har mange ulike definisjoner i ulike type litteratur. Opprinnelig, i filosofien, handlet det om hva som karakteriserer kunnskap og tilegnelse av kunnskap. Det ble konkludert med at personer utvikler seg fra å se kunnskap som sikker, rett eller gal, til å forstå at kunnskap har en iboende usikkerhet (Perry, 1970). Jeg vil videre redegjøre for hva som kjennetegner naturvitenskapelig epistemologi og i tillegg presentere definisjoner på praktisk og formell epistemologi.

2.5.1 Naturvitenskapelig epistemologi

Med utgangspunkt i den opprinnelige definisjonen av epistemologien som nevnt ovenfor, er det mulig å definere naturvitenskapelig epistemologi, som elevers oppfatninger om hva som karakteriserer naturvitenskapelig kunnskap og arbeidsmåter, kort sagt naturvitenskapens egenart (Øyehaug, 2014).

Sandoval (2005) har også forsøkt å oppsummere naturvitenskapens epistemologi i fire ulike perspektiver på naturvitenskapens egenart:

1. Naturvitenskapelig kunnskap må betraktes som konstruert
2. Naturvitenskapelige metoder kan arte seg svært forskjellig – avhengig av hva som skal undersøkes
3. Naturvitenskapelig kunnskap er av forskjellige typer (teorier, lover, hypoteser)
4. Kunnskapen vi har i naturvitenskapen er mer eller mindre sikker

Han argumenterer for at disse fire punktene er et minstekrav for det elever bør forstå om hva som karakteriserer naturvitenskapen. Videre sier han også at dette er nødvendig for å ta begrundede valg i livet sitt (Sandoval, 2005).

De fire perspektivene kan tas hensyn til på ulike måter i naturfagsundervisningen. Læreplanen i naturfag på ungdomstrinnet under hovedområdet forskerspiren legger spesielt vekt på:

- Å lage hypoteser, planlegge og gjennomføre undersøkelser av dem, og diskutere observasjoner og resultater i en rapport, og samtale om hvorfor dette er viktig.
- Forklare hvorfor argumentering, uenighet og publisering er viktig i naturvitenskapen
- Som nevnt tidligere, å se naturvitenskapen som et produkt som viser den kunnskapen vi har i dag, og som prosess om hvordan naturvitenskapelig kunnskap blir til.
 (Utdanningsdirektoratet, 2013)

Som nevnt tidligere krever det nøye planlagte timer for at elevene skal reflektere over, og utvikle forståelse av naturvitenskapens egenart gjennom utforsknende arbeid. Dersom undervisningen spesielt vekter utforming og refleksjon over hypoteser, kan dette utvikle epistemologisk forståelse hos elevene om at naturvitenskapelig kunnskap er konstruert, dette vil dekke perspektiv 1. Perspektiv 2 kan tas hensyn til ved at elevene får muligheten til å reflektere over, og bestemme forskningsmetoder til utforsknende arbeid de gjennomfører. Dette kan være med på å utvikle en forståelse av at metoden må passe til det som skal undersøkes, og dermed at naturvitenskapelige arbeidsmetoder varierer. Videre vil det å utvikle bevisshet hos elevene om at det er kvalitativ ulikhet mellom hypoteser, modeller, teorier og lover dekke perspektiv 3. Dette kan gjøres ved at elevene arbeider med dette kombinert, med diskusjon om ulikheter. Til slutt, for at elevene skal forstå at naturvitenskapelig kunnskap er mer eller mindre sikker, er det blant annet mulig å diskutere og sammenligne resultater fra forskning og undersøkelser, og drøfte usikkerhet og feilkilder i ulike typer forskning (Øyehaug & Holt, 2014).

2.5.2 Praktisk og formell epistemologi

Sandoval (2005) definerer *praktisk epistemologi* som epistemologiske ideer elevene anvender når de selv konstruerer naturvitenskapelig kunnskap, gjennom utforsknende arbeidsmåter. Han mener at elevens epistemologiske forståelse bør undersøkes når de arbeider utforsknende. Han
definerer også formell epistemologi, dette er elevers refleksjoner om profesjonell eller formell naturvitenskap, om hva «ekte» forskere gjør i deres samfunn. Videre argumenterer Sandoval for at forskning på elevers naturvitenskapelige epistemologi også må ha analyser av elevenes egne ideer, om hva det innebærer å arbeide utforskende, for på den måten å bygge bro mellom praktisk og formell epistemologi (Sandoval, 2005).
3. Metode

I metodekapittelet vil jeg først beskrive bakgrunnen for undervisningsmetoden, og hvordan undervisningen ble gjennomført med utforskningsarbeidsmåter. Jeg vil videre gjøre rede for forskningsmetode, innsamling av data og analyse av innsamlet data.

3.1 Gjennomføring i praksis

3.1.1 Bakgrunn for undervisningen

3.1.2 Undervisning med utforskningsarbeidsmåter i praksis

Undervisningen omhandlet temaene kjemiske reaksjoner i levende organismer og sirkulasjonssystemet hos mennesker. Som nevnt ovenfor bestod den av en mengde praktiske aktiviteter, både lærerstyrte demonstrasjoner og elevforsøk. Jeg velger å gå inn på kun fem av de 12 timene, av hensyn til oppgavens begrensning. Disse timene er knyttet til et utforskningsarbeid og naturvitenskapens egenart, og har direkte sammenheng med intervjuene, og dataene som er relevante for min oppgave. Det er også verdi å merke seg metoden som ble brukt for planlegging, og gjennomføring av dette elevforsøket (vedlegg 1, fiskebeinsmetoden). Fiskebeinsmetoden er et struktureringsverktøy til hjelp ved utforskningsarbeid. Videre vil jeg presentere hva som ble gjort i det utforskningsarbeidet med sirkulasjonssystemet som tema i en tabell (tabell 1).
Lærerens rolle i det utforskende arbeidet er også sentral, hvor læreren stod for formidling av blant annet:

- Informasjon om ulike forskere
- Teori, metoder, feilkilder
- Naturvitenskapens egenart, forskjell mellom hypotese og teori, hvorfor man forser, og om teorier som eksisterer er uforanderlige

Dette er blant de viktigste faktorene som ble formidlet, og elevene fikk på denne måten i det utforskende arbeidet, reflektere over ulike sider ved naturvitenskapens egenart.

Tabell 1: Beskrivelse av et utforskende arbeid elevene planla og gjennomførte. Delt inn i ulike faser elevene var igjennom ved bruk av fiskebeinsmetoden.

<table>
<thead>
<tr>
<th>Faser:</th>
<th>Gjennomføring i undervisningen (hva som ble gjort):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger og observasjon</td>
<td>Introduksjon med at elevene gikk opp og ned på stolen sin og ble bedt om å gjøre observasjoner av det som skjer med kroppen. Elevene observerte at de ble:</td>
</tr>
<tr>
<td></td>
<td>- Varme</td>
</tr>
<tr>
<td></td>
<td>- Slitne</td>
</tr>
<tr>
<td></td>
<td>- Vondt i beina</td>
</tr>
<tr>
<td></td>
<td>- Pulsen øker</td>
</tr>
<tr>
<td>Forskningsspørsmål</td>
<td>Læreren styrte en diskusjon for at klassen skulle enes om et felles forskningsspørsmål. Forskningsspørsmålet ble «hvorfor øker pulsen når man går opp og ned på en stol».</td>
</tr>
<tr>
<td>Brainstorming</td>
<td>Elever og lærer diskuterte ulike faktorer som kan påvirke pulsen.</td>
</tr>
<tr>
<td>Planlegging</td>
<td>Elevene ble enige om en faktor de ville undersøke nærmere. De ville undersøke hvordan ulike aktiviteter påvirker pulsen. Dette er den uavhengige variabelen (UV), mens pulsk er den avhengige variabelen (AV). Neste steg var å gjøre elevene bevisste på konstante variabler (KV), elevene kom med forslag til hva disse måtte være. Et eksempel var testpersonenes fysiske form. Elevene bestemte hvilke måleinstrument (I), enhet (E) og metode (M) som skulle brukes i undersøkelsen, og utførte tabeller de skulle bruke både i gjennomføringen, og rapporten.</td>
</tr>
<tr>
<td>Hypotesedanning</td>
<td>I tilknytning til brainstormingen ble elevene bedt om å utforme en hypotese for hvilken aktivitet som får pulsen til å øke mest. Det ble presisert at de skulle ha med bekrinnelse på hva de tror. (Jeg tror at…fordi…)</td>
</tr>
<tr>
<td>Gjennomføring</td>
<td>Elevene fulgte sin egen undersøkelsesplan og gjennomførte i grupper. Alle undersøkte den samme variabelen (puls) og holdt de andre variabelene konstante (eks. fysisk form, kjønn). Hver testperson fant sin hvilepuls for deretter å gjennomføre tre ulike aktiviteter i bestemte intervaller, og hvile mellom aktivitetene. De målte pulsen på tradisjonelt vis, ved å telle antall hjerteslag.</td>
</tr>
</tbody>
</table>
Oppsummering

Vi oppsummerte i fellesskap. Her fremstilte alle gruppene en graf over pulsen til testpersonen. Til slutt skrev elevene en forskningsrapport, lærer la her vekten på malen for å skrive en rapport (hva er viktig å ha med). Altså innledning med forskningsspørsmål og hypotese, teori, metode, resultater og diskusjon/drøfting/konklusjon.

3.2 Kvalitativ forskningsmetode

I min bacheloroppgave har jeg brukt kvalitativ forskningsmetode, dette er den mest hensiktsmessige metoden for å innhente data for å besvare min problemstilling. Gjennom kvalitative metoder får man mer detaljerte data, og metoden sier noe om spesielle kjennetegn ved det som undersøkes (Johannessen, Tufte, & Christoffersen, 2010). Jeg vil på denne måten få et bedre innblikk i elevenes tanker og refleksjoner, om deres forståelse av naturvitenskapens egenart. En kvalitativ undersøkelse er også mer uformell og fleksibel, slik at spørsmål kan tilpasses og gjøre det enklere for informanten å åpne seg, da kan spørsmålene rettes mot elevenes egen erfaring av å arbeide utforsknende. På den andre siden kan det også være vanskeligere å tolke og sammenligne responsen fra informanten (Johannessen et al., 2010).

3.2.1 Intervju som metode

Intervju er en metode som brukes for å få detaljerte og utdypende svar fra informantene. Dette gjøres ved at forskeren kan skreddersy intervjuet ut fra informantens situasjon, og etter hva forskeren faktisk er ute etter. Da er det mulig å få frem kompleksitet og nyanser. I min undersøkelse ble det brukt semistrukturert intervju, hvor det ble stilt fortolkende og teoretiske spørsmål. Et semistrukturert intervju har en overordnet intervjuguide som utgangspunkt, men forskeren kan bevege seg fritt i denne, og spørsmål kan tilpasses. Hensikten med fortolkende og teoretiske spørsmål er å få frem oppfatninger, beskrivelser, fortolkninger, forståelse og forklaringer. Intervjuet var også et såkalt standardisert intervju, det vil si at alle elevene ble stilt de samme hovedspørsmålene (Johannessen et al., 2010). Ut ifra kjennetegnene ved kvalitative intervjuer ovenfor, var dette den mest hensiktsmessige metoden for datainnsamling med tanke på at jeg skulle kartlegge elevenes naturvitenskapelige epistemologi. Altså for å få frem elevenes forståelse og oppfattelse naturvitenskapens egenart.
3.2.2 Intervjuguide

3.3 Beskrivelse av studien

3.3.1 Utvalg

Data i tilknytning til denne oppgaven ble innhentet fra intervju med to elever på 8.trinn, fra samme skole. Elevene er en del av forskningsprosjektet nevnt ovenfor, og har hatt lik naturfagundervisning i forhold til tid og omfanget av oppgaven og disse ligger til grunn for å belyse min problemstilling.

3.3.2 Intervjusituasjon

Alle intervjuene ble gjennomført på skolen, i et grupperom i nærheten av klasserommet. Her satt forsker og informant ovenfor hverandre, på hver sin side av en pult. Forsker hadde intervjuguiden foran seg som støtte for det semistrukturerte intervjuet. Informanten fikk utdelt
tre ark, brainstormingsskjema, fiskebensarket (se vedlegg 1), og resultatene fra undersøkelsen (pulsmålinger). Disse var til hjelp når elevene skulle svare på spørsmålene knyttet til den utforskende undersøkelsen de gjorde. Her var elevene i en naturlig situasjon ved at de er i en kjent situasjon, i et rom de kjenner.

3.3.3 Innsamling av data

Elevsitater og data jeg benytter i denne oppgaven er hentet fra videoopptak av intervjuene, som senere ble transkribert. Forskningsprosjektet er meldt til NSD, og elever og deres foresatte har gitt samtykke til gjennomføringen. Hver av intervjuene hadde en varighet på ca. 30 minutter. Ved å bruke opptak vil man få med seg alt som blir sagt i intervjuene, samt at forsker kan være mer tilstede ved at hun slipper å notere underveis i intervjuet. På denne måten vil dataene bli mer relevante og pålitelige (Johannessen et al., 2010).

For å gjøre dataene i oppgaven mer troverdige ble intervjuene transkribert ordrett, både det forsker og informanter sa. Derfor har transkriptene et muntlig språk hvor både nøling, usikkerhet og pauser er inkludert. Slik som for eksempel «…eh…», «mmm…mmm» og «men, men». Pauser er vist ved tre punktum, «…».

3.3.4 Analyse av data

I analysearbeidet ble de to intervjuene gjennomgått hver for seg. Først utelukket jeg informasjon i intervjuene som var irrelevant for studien. Det ble så brukt en kategoribasert inndeling av dataene, som gjør det mulig å identifisere spesielle kategorier i datamaterialet (Johannessen et al., 2010). Sitatene ble kategorisert ut ifra elevenes refleksjoner over de fire epistemologiske perspektivene som er presentert i tabell 2 nedenfor.
Tabell 2: Fire perspektiver for hva som kjenner egner naturvitenskapelig kunnskap og arbeidsmåter (Sandoval, 2005).

<table>
<thead>
<tr>
<th>Perspektiv</th>
<th>Epistemologisk perspektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Naturvitenskapelig kunnskap må betraktes som konstruert</td>
</tr>
<tr>
<td>2</td>
<td>Naturvitenskapelige metoder kan arte seg svært forskjellig – avhengig av hva som skal undersøkes</td>
</tr>
<tr>
<td>3</td>
<td>Naturvitenskapelig kunnskap er av forskjellige typer (teorier, lover, hypoteser)</td>
</tr>
<tr>
<td>4</td>
<td>Kunnskapen vi har i naturvitenskap er mer eller mindre sikker</td>
</tr>
</tbody>
</table>

3.3.5 Reliabilitet og validitet

Når vi snakker om undersøkelsens reliabilitet handler dette hovedsakelig om hvilke data som brukes, hvordan disse er samlet inn og hvordan de er blitt bearbeidet. I kvalitative undersøkelser bruker man ofte begrepet pålitelighet i stedet for reliabilitet (Johannessen et al., 2010). Påliteligheten i denne oppgaven er ivaretatt ved at undersøkelsens kontekst, forskningsprosess, metoder, avgjørelser og resultat er nøyde beskrevet, slik at leseren har mulighet til å sette seg inn i undersøkelsen og forstå både data, metode, drøfting og resultater.

Validitet i kvalitative undersøkelser sier noe om hvorvidt det er en kobling mellom det som undersøkes og data som er blitt samlet inn (Johannessen et al., 2010). Med andre ord handler det om i hvor stor grad metoder, data og funn er relevante i forhold til det jeg ønsket å undersøke (Jordet, 2007). I denne oppgaven ønsker jeg å finne ut om utforskningsforbeholdende arbeidsmetoder kan være med på å styrke elevenes forståelse av naturvitenskapens egenart. For å finne ut dette ble det gjennomført intervjuer med to elevener, hvor disse ble spurt spørsmål direkte knyttet til naturvitenskapens egenart. Spørsmålene omhandlet hypoteser, teorier og metoder, samt hvordan disse utvikles, forbedres og endres. Intervjuene er blitt analysert med utgangspunkt i epistemologisk teori, som er en kategorisering av elevenes forståelse av naturvitenskapens egenart, dette mener jeg styrker validiteten i min oppgave.
4. Analyse og resultater

4.1 Bjørn

Bjørn er en elev som er utadvendt og aktiv i timene, både muntlig og skriftlig, med reflekterte svar. Han er en elev som svarer det første han tenker, og korrigerer dette underveis i svaret, dette vises også i sitatene jeg presenterer videre i analysen.

Han svarer dette når han blir spurtt om hva som er typisk for det vi kaller naturvitenskap:

Mmm…kanskje hvordan jorda ble til. (…) At det er…mye om hvordan alt er bygd opp da. Om molekyler, og atomer og sånn. (…) med magiske briller.

En ting å merke seg her er at Bjørn nevner magiske briller. Dette er noe elevene ble introdusert for i undervisningen. Elevene satte på seg «magiske briller», for å se for seg hvordan molekyler og atomer oppfører seg.

Perspektiv 1, Naturvitenskapelig kunnskap må betraktes som konstruert

Bjørn viste forståelse av at naturvitenskapelig kunnskap må betraktes som konstruert når han ble spurtt om hva som er typisk for et eksperiment. Han svarte da:

(…) prøver å finne ut av noe (…) en undersøkelse, sånn noe du ikke vet noe om fra før (…)

Her viser eleven at han har en forståelse av at kunnskapen vi har i dag har vi fått gjennom testede ideer man ikke vet noe om fra før. På samme måte som de gjorde ved å forske på puls ved ulike aktiviteter. Han skjønner altså at en undersøkelse må gjøres for å konstruere kunnskapen. Videre ble det også stilt et spørsmål om teorier kan forandre seg. Her svarte Bjørn:

Kan hende vi finner ut mer senere. Kan aldri være helt nøyaktig, eller helt sikkert at det er sånn. Finner ut mer og mer hele tiden.
Dette kan også tolkes under samme kategori. Kunnskapen utvikler seg, altså vi konstruerer mer og mer kunnskap med tiden. Han tror at naturvitenskapelig kunnskap består av testede ideer, og at forskere gjør eksperimenter for å se om de har rett eller ikke. Dette formidlet også lærer i etterkant av det utforskende arbeidet, på grunn av at det var noen ulikheter mellom gruppene og feilkilder i elevenes undersøkelse.

Perspektiv 2, Naturvitenskapelige metoder kan arte seg forskjellig

Videre i analysen har Bjørn en viss forståelse av at naturvitenskapelige metoder kan arte seg svært forskjellig. Han ble spurt om resultatet av en undersøkelse vil være mest troverdig dersom det er mange eller få testkandidater, dette spørsmålet ble stilt ut ifra det utforskende arbeidet de selv hadde gjennomført i timen. Her sier Bjørn:

Da ville jeg stolt på den med veldig mange. Hvert fall sjekka kondisjonen og sånn…først.

Bjørn viser her en vag forståelse av at metoder kan variere, ved at enkelte undersøkelser kan bli mer troverdige dersom de er testet med mange kandidater. Samt at variabler, som for eksempel kondisjon, må være konstante gjennom en undersøkelse.

På den andre siden, når Bjørn ble stilt spørsmål om forskere bruker kreativitet og fantasi når de skal forske på noe, viser han usikkerhet. Han mener at de er kreative ved at de finner ut ting de skal forske på og gjøre. Som en videreføring av spørsmålet ble han spurt, «(…)når forskere skal finne metoder(…)» sier han:

(...)

Dette kan tolkes til at han tror de følger en bestemt oppskrift ved alle forsøk, muligens er dette blitt overført på grunn av at de fulgte en oppskrift (Vedlegg 1, fiskebeinsmetoden) når de planla sin undersøkelse.

Perspektiv 3, Naturvitenskapelig kunnskap er av forskjellige typer

Et av spørsmålene som ble stilt i intervjuet, var om det er noen forskjell mellom teori og hypotese. Her gjør Bjørn rede for ulikhetene mellom disse, og viser at han betrakter teorier og hypoteser som to ulike kategorier. Han sier:

Mmm…hypotese er jo…hva du tror før da, men teori er blitt forska på…og vet du mer sikkert.

Denne begrunnelsen kan virke litt utilstrekkelig, men videre begrunner Bjørn en teori slik: «teori er noe…som vi vet ganske sikkert…eller har en mening om…og tror det er sånn og
mange stemmer nok, men vi kan ikke være helt sikre på en måte.» Han svarer direkte og relativt konkret på hva en teori er. Han fikk i tillegg spørsmål om hvorfor man lager hypoteser, dette begrunner han slik: «for å...finne ut om man har forstått det riktig da, eller om man finner ut noe nytt etterpå.» dette sett i sammenheng med hans syn på forskjellen mellom hypoteser og teorier tyder på at han har god forståelse av at disse tilhører ulike kategorier og differensierer mellom disse.

Perspektiv 4, Kunnskapen i naturvitenskapen er mer eller mindre sikker

Det er i midlertidig flere av svarene Bjørn har gitt som faller innenfor flere av perspektivene. Spørsmålene og svarene om hva en teori er og hvorfor man lager hypoteser, som jeg presenterte i perspektiv 3, vil også være med å belyse perspektiv 4. Bjørn viser forståelse av at kunnskapen vi har er mer eller mindre sikker, ved at han sier at «teori er noe vi vet ganske sikkert», «eller har en mening om», «vi kan ikke være helt sikre på en måte». Det samme gjelder med hypoteser ved at han sier det er for å finne ut om man har forstått det riktig, eller om man finner ut noe nytt etterpå. Her viser han forståelse ved at han erkjenner at kunnskapen kan endre seg på den måten at vi kan finne ut mer, eller noe annet i fremtiden.

I tilknytning til det utforskende arbeidet elvene selv hadde gjennomført, ble Bjørn spurt hvorfor han ville gjort undersøkelsen flere ganger. Her gir han uttrykk for en forståelse av feilkilder ved undersøkelser, når han sier: «For å sjekke om at det er helt nøyaktig, og at det er...at det ikke var tilfeldig den første gangen.» Han erkjenner at naturvitenskapelig kunnskap blir mer sikker ved å utforme hypoteser som må testes og at dette bidrar til å utvikle kunnskap.

Det samme påpekte Bjørn da han ble spurt om teorier vil forandre seg, som også nevnt i analysen av perspektiv 1, hvor han sier at en teori vil antagelig forandre seg når man forsker mer på et fenomen. Man finner ut mer og mer hele tiden sier han. Det samme kommer også til uttrykk når han blir spurt hva grunnen er til at forskningsrapporter skrives etter en bestemt mal slik de selv gjorde:

Eh...kanskje det er for at man kan sammenligne lettere med andre...

Ved å erkjenne at hypoteser, metoder og resultater kan sammenlignes med andre, betyr dette at han har forståelse av at dette kan styrke kunnskapen vi allerede har, eller eventuelt avdekke usikkerhet/ulikheter i undersøkelser.
4.2 Pia

Pia deltok også aktivt i dialoger i timene. Hun er noe mer forsiktig, og tenker mer gjennom sineuttalelser enn Bjørn. Dette viser seg også i dataene ifra intervjuet som jeg presenterer nedenfor.

Jeg velger her å trekke ut to overordnede hovedsitater, på grunn av at disse sitatene har en vesentlig plass i å bestemme Pias forståelse av naturvitenskapens egenart innenfor alle de epistemologiske perspektivene. På lik linje som Bjørn, ble hun spurt om teorier kommer til å forandre seg. Pia svarer slik (hovedsitat 1):

Ja. For at det kan være andre folk som forsker på det samme og kanskje bruker andre metoder da, og finner ut noe mer, eller noe annet. De kan jo bruke den teorien som de andre har funnet ut da.

Hun ble også spurt om hvorfor man lager hypoteser før en undersøkelse, da svarer hun (hovedsitat 2):

For å se om det man trur, er faktisk…at det stemmer da…eller at en gammel teori, at en kanskje bruker den og så forsker på nytt og funnet ut at ting du har funnet ut med den teorien er riktig da, kan være en grunn.

Hun svarer for øvrig dette når hun blir spurt om hva som er typisk for det vi kaller naturvitenskap:

At man forsker på noe som er i naturen, som er levende. (…) det er noe dødt der også tror jeg.

Perspektiv 1, Naturvitenskapelig kunnskap må betraktes som konstruert

Her er det relevant å snakke om hovedsitat 1 og 2 i forhold til om Pia har en god forståelse av at naturvitenskapelig kunnskap må betraktes som konstruert. Pia sier rett ut at man kan bruke teorier som andre har funnet ut, på lik linje som de gjorde med teori om sirkulasjonssystemet i sitt utforsknende arbeid. Dette indikerer en forståelse av at forskere har konstruert de naturvitenskapelige teoriene. Videre sier hun at kunnskapen vi i dag besitter er blitt forsket på, og funnet ut av fra før, og ved bruk av andre metoder og utforming av (nye) hypoteser kan ny kunnskap konstrueres.

Pia ble også spurt om hvordan forskere fikk den kunnskapen vi har om hvordan atomer er bygd opp. Her sier hun:

Gjennom å eksperimentere og hypoteser, og…alt de gjorde innen forsøket da.

Perspektiv 2, Naturvitenskapelige metoder kan arte seg forskjellig

I forhold til Pias epistemologiske oppfattelse av naturvitenskapelige metoder, er det også her nødvendig å trekke frem hovedsitat 1 og 2. Da hun ble spurt om teorier vil forandre seg sa hun «(...), folk som forsker på det samme og kanskje bruker andre metoder (...)». I tillegg da hun ble spurt om hvorfor man lager hypoteser sa hun «(...), at en gammel teori, at en kanskje bruker den og så forsøker på nytt (...)». Dette sett i sammenheng tyder på at hun har en god forståelse av at man må utnytte ulike naturvitenskapelige metoder, og velge den som egner seg best for undersøkelsens for å få gode, troverdige og riktige resultater. På lik linje som når elevene diskuterte hvilken metode de skulle bruke for å forsøke på hva som påvirker pulsen.

Perspektiv 3, Naturvitenskapelig kunnskap er av forskjellige typer

På samme måte som i perspektiv 2 kan vi også ta utgangspunkt i de to hovedsitatene. Her gjør Pia rede for teorier og hypoteser hver for seg, og har ikke problemer med å se på disse som to ulike typer kunnskap.

Pia ble også spurt om å sammenligne teorier og hypotese, og om det er noen forskjell mellom dem. Da svarte Pia:

Green...teori er jo noe som folk har funnet ut før da, og hypotese er kanskje noe du tror eller sammen med noen andre da. Det er at du bruker noe...den teorien som noen andre har funnet på, liksom, flettet inn i din egen tanke.

Her er hun også tydelig på at teori er en testet antagelse om, forklaring på eller sammenheng innenfor et fenomen i naturen. Mens en hypotese er en gjetting på noe man tror ut ifra de teorier som foreligger. Teorien skal på en måte være flettet inn i din egen tanke, og ligge til grunn for ethvert utforskningsarbeid, som Pia gir uttrykk for. Dette kan også knyttes til at elevene selv utfører en hypotese for sin undersøkelse, hvor teori om sirkulasjonssystemet lå til grunn.
Perspektiv 4, Kunnskapen i naturvitenskapen er mer eller mindre sikker

Pia ser på kunnskapen vi har i naturvitenskapen som mer eller mindre sikker på flere måter. Dette kommer blant annet frem da hun ble spurt om hvor sikre forskere er på hvordan atomet er bygd opp og hvordan de fikk den kunnskapen. Da sa hun følgende:

(...) jeg tror de er ganske sikre på det, for jeg tror det er ganske mange forskjellige som har forska på det. (...) gjennom å eksperimentere og hypotesser, og...alt de gjorde gjennom forsøket da.

Her kan vi se at hun tror denne teorien er ganske sikker, men dette er på grunnlag av nøye gjennomførte undersøkelser, gjennom flere utforskende arbeid med ulike forskere. Pia forstår at det krever lange prosesser for å komme så langt at man kan si at kunnskapen er ganske sikker.

Hovedsitat 1 og 2 er relevante her også. Pia sier blant annet at man bruker en gammel teori og undersøker et fenomen på nytt, med nye metoder, på denne måten vil man i mange tilfeller få nye funn, eller videreutvikle den naturvitenskapelige kunnskapen vi har.
5. Drøfting

I dette kapittelet vil jeg drøfte problemstillingen, i lys av teorien presentert i kapittel to, og resultatene presentert i det foregående kapittelet. Problemstillingen er som nevnt: «Hvilken forståelse av naturvitenskapenes egenart kan utforskende arbeid i naturfag utvikle hos elevene?». Jeg deler opp kapittelet ved å først drøfte dataene knyttet til naturvitenskapens egenart generelt, før jeg tar for meg Sandovals fire perspektiver. Jeg har har valgt å drøfte begge elevbesvarelsene under samme avsnitt.

5.1 Naturvitenskapens egenart

Det er verdt å merke seg elevenes svar når de ble spurte: «hva som er typisk for det vi kaller naturvitenskap». Ut ifra min problemstilling vil dette være relevant å se på. Bjørn sier at det kan være noe om hvordan jorda ble til, om hvordan alt er bygd opp med molekyler og atomer. For å se dette kreves det magiske briller. Pia har derimot en mer usikker uttalelse, hun sier at det handler om at man forsøker på noe som er i naturen, som er levende. Videre sier hun, det er noe dødt der også tror jeg. Bjørn viser til en viss grad forståelse av at i naturvitenskap leter man etter forklaringer og sammenhenger i naturen.

Dette kan også sees i sammenheng med hva Sandoval (2005) sier om praktisk epistemologi, de anvender ideen om at naturvitenskapelig kunnskap er av forskjellige typer i tilknytning til naturvitenskap når de arbeider utforsknende.

5.2 Epistemologi

5.2.1 Perspektiv 1

Både i Bjørn og Pias respons var det elementer som indikerer at de har en viss forståelse av at naturvitenskapelig kunnskap må betraktes som konstruert. Begge var blant annet inne på det samme da de ble spurt om teorier kommer til å forandre seg. De kommer inn på at man finner ut mer og mer hele tiden, ved bruk av andre metoder og gamle teorier. Begge er også inne på perspektiv 1 med hensyn til eksperimenter, at man konstruerer ny kunnskap gjennom å eksperimentere og undersøke.

Her ser vi at elevene har et syn på naturfag både som produkt som viser den kunnskapen vi har i dag, samt som prosesser om hvordan naturvitenskapelig kunnskap bygges (Utdanningsdirektoratet, 2013). Dette sier også noe om at elevene forstår hva «ekte» forskere gjør, i henhold til Sandovals definisjon på formell epistemologi (Sandoval, 2005). Vi kan derfor si at elevene har utviklet forståelse av at naturvitenskapelig kunnskap er konstruert, ut ifra hva Øyehaug og Holt (2014) sier, om utforming og refleksjon over hypotesser. De sier dette bidrar til at elever utvikler erkjennelse om at naturvitenskapelig kunnskap ikke er endelig.

5.2.2 Perspektiv 2

Pia ser ut til å være klar over at hvilken metode man bruker når man arbeider utforsknende, er avhengig av hva som undersøkes. Dette gjør derimot ikke Bjørn, han er inne på det når han blir stilt et ledende spørsmål om hvilken metode som ville vært best i det utforsknende arbeidet de selv tok del i, men viser usikkerhet ved videre spørsmål knyttet til metoder. Analysen gir utilstrekkelig med informasjon for å trekke en konklusjon om Bjørns oppfattelse av naturvitenskapelige metoder.

Selv om begge elevene deltok i samme utforsknende arbeid, og fikk muligheten til å reflektere over, og bestemme forskningsmetode til sin egen undersøkelse, burde de fått en forståelse av at metoden må passe til det som undersøkes (Øyehaug & Holt, 2014).

Vi ser her at hvert fall Pia har fått forståelse av den delen av naturvitenskapens egenart som handler om arbeidsmåter og metoder, muligens ut ifra å selv arbeide utforsknende. Dette vil i så fall si at hun med hensyn til metoder har anvendt ideer om praktisk epistemologi (Sandoval, 2005). Vi kan tolke det til at Bjørn også har en vag forståelse av bruk av ulike metoder ut ifra analysen, men en konklusjon er som som sagt vanskelig å trekke.

5.2.3 Perspektiv 3

hadde rene teoritimer om sirkulasjonssystemet og celleånding. Det står også beskrevet i læreplanen for naturfag, at elevene skal være med på å lage hypoteser og se på naturvitenskapen som et produkt (teori) (Utdanningsdirektoratet, 2013).

5.2.4 Perspektiv 4

Gjennom analysen og resultatene ser vi at Bjørn og Pia på mange måter gir uttrykk for at den kunnskapen vi har i naturvitenskapen er mer eller mindre sikker. Begge elevene reflekterer godt over denne delen av naturvitenskapens egenart. De har kjennskap til kjennetegn ved hypoteser, teorier og metoder, samt at disse stadig blir utviklet, forbedret og endret (Abd-El-Khalick, 2013). Bjørn og Pia nevner begge at kunnskapen vi har kan bli endret gjennom nye undersøkelser, med nye metoder hvor gammel teori ligger til grunn. Ut ifra dette har de erkjent at naturvitenskapens egenart utgjør et samspill mellom teori, data og modeller (Øyehaug, 2014). Her kan vi se at mye av elevenes refleksjoner, tar utgånpunkt i det utforsknende arbeidet de selv gjennomførte, med tanke på at de selv var gjennom prosessen med valg av metode, hypoteser og ved at de hadde hatt undervisning om sirkulasjonssystemet. Perry (1970) konkluderte også med at mennesker utvikler seg fra å se kunnskap som sikker, rett eller gal, til å forstå at kunnskap har en iboende usikkerhet, det ser vi at Bjørn og Pia har gjort. I det utforsknende arbeidet ble det diskutert og sammenlignet resultater fra elevenes egen forskning, og det ble drøftet usikkerhet og feilkilder i tilknytning til dette, som kan være til hjelp for elevene til å forstå at naturvitenskapelig kunnskap er mer eller mindre sikker.
6. Avslutning

Begge elevene har ideer om hvorfor man lager hypoteser, hvorfor man forsker og hvilken rolle teori spiller i dette, samt sammenligning av resultater. Dette er alle faktorer som er en viktig del av naturvitenskapens egenart (Abd-El-Khalick, 2013; Øyehaug, 2014). Dette sett i sammenheng med hvordan elevene reflekterer til sitt eget arbeid underveis i intervjuelle, kan vi si at det utforskningskende arbeidene elevene deltak i, har til en viss grad vært med å styrke deres oppfattelse av naturvitenskapens egenart på enkelte områder.

Sandoval argumenterer for at de fire epistemologiske perspektivene er et minstekrav for det elevene bør forstå. Siden begge elevene i større eller mindre grad viser en forståelse av alle perspektivene, og at de reflekterer rundt eget arbeid når de ble intervjuet, kan vi si at begge har tilegnet seg høyere forståelse av naturvitenskapens egenart, gjennom å arbeide utforskningskende. Antagelig har de utviklet denne forståelsen gjennom min undersøkelse, men det er også mulig de hadde denne kunnskapen fra før. Om de faktisk har tilegnet seg denne gjennom min undervisning, er vanskelig å avgjøre. Det er også vanskelig å avgjøre hvor høy deres forståelsen er. Dette på grunn av det begrensede utvalget, og begrenset data fra enkelte spørsmål knyttet til utforskningskende arbeidsmåter og naturvitenskapens egenart i intervjuet.

Utforskningskende arbeidsmåter har også vist seg å være effektive både for elevene og lærere. Med tanke på at dette bridrar til økt motivasjon, interesse og prestasjoner hos begge parter, trenger kanske norsk skole å ha mer fokus på å la elevene arbeide utforskningskende. Både for å øke faktorer som motivasjon, interesse og prestasjoner, men også som en metode for å øke kunnskapen om naturvitenskapens egenart. Netttopp fordi dette vil være en viktig del av elevenes liv, for å forstå hvordan de selv kan undersøke ting de lurer på, hvordan vi har fått kunnskapen vi har i dag og bedømme hvilken kunnskap som er sikker. Ikke minst vil dette også bidra til at elevene blir bedre til å ta egne reflekterte valg i sitt eget liv. Elevene vil få «trening» på å ta valg gjennom vurderinger de må gjøre underveis i et utforskningskende arbeid. Både ved utforming av hypotese, valgt av teori som må ligge til grunn, metode, diskusjon, og sammenligning av resultater. Dette krever at lærere lar elevene ta del i den naturlaglige «kulturen». Gjennom nøy planlagte timer, hvor de får arbeide utforskningskende med muligheter for refleksjon, får elevene mulighet til å tilegne seg kunnskap om, og forstå naturvitenskapens egenart. Muligens er også norsk skole på rett vei, ved at lærerplanen i naturfag vektlegger utforskningskende arbeid mer og mer. Prosessene i et slik arbeid vil gi grunnlag for videre utdanning, yrke og fritid.
Litteraturliste

Vedlegg 1, Fiskebeinsmetoden

Dette er et verktøy til hjelp i planlegging av utforskende arbeid.

STEG 1 (Valg av problemstilling)

Det utforskende arbeidet starter gjerne med at elevene skal observere et fenomen. Observasjonene noteres på post-it-lapper som klistres på Observasjonsdiagrammet. Bestem hvilken observasjonen som skal undersøkes videre. Flytt denne post-it-lappen til linjen nederst på Observasjonsdiagrammet (dette blir den avhengige variabelen (AV)).

STEG 2 (Hypotesedanning)

STEG 3 (Lage forskningsdesign)

Elevene må ta stilling til hvordan hver enkelt variabel skal måles, hva slags instrument (I), enhet (E) og metode (M) de skal bruke.
Observasjonsdiagram

Observasjonen som undersøkes videre blir den avhengige variabelen (AV)

AV er ..

Brainstormingsposter

Hva kan påvirke AV?

List opp alt som kan påvirke den avhengige variabelen
Fiskebeinorganisering av undersøkelsen

Fiskebeinorganisering av undersøkelsen: Sirkulasjonssystemet

Praktisk og variert undervisning i naturfag på ungdomstrinnet
3.1 a Tenk deg at du skulle undersøke om denne figuren stemmer

Hva er forskningsspørsmålet her?

Arkene fra fiskebeinsundersøkelsen legges ut og omtales/beskrives kort.

Når ble forskningsspørsmålet identifisert?

3.1.b. Hva skal skulle man forsøke å finne ut her? Fiskebensmetoden: Vise de tre viktigste trinn, på hvilke av disse ble forskningsspørsmålet identifisert?

3.2.a. Hva ville din hypotese til denne undersøkelsen vært? Hvorfor?

3.2.b. Hva tror du resultatet vil bli og hvorfor tror du det?

3.3 Dere gjorde en undersøkelse som liknet litt i klassen. Da laget dere også hypotese. Hvorfor laget du en hypotese/lager forskere hypoteser?
3.4.a. I denne undersøkelsen: Hva ville du måle og hvordan ville du gjøre det? Visse fiskebensmetoden. Hvordan ville denne kunne hjulpet deg i planleggingen?

3.4.b. Hva slags enkle undersøkelser eller målinger på sirkulasjonssystemet kan du gjøre?

3.4.c. Tenk deg at du måler pulsen ved hjelp av et stetoskop. Hvordan kunne du gjennomført undersøkelsen din da?

3.5.a. Hvordan vil du organisere dataene dine?

4.5.b. På hvilken måte vil du skrive opp pulsmålingene du gjør?

3.6 Tenk deg at du fikk et annet resultat enn figuren over. Hva kan dette skyldes?

3.8. Forskningsrapporten: Hvorfor skrives den etter en bestemt mal?

Case 2: Praktisk og formell epistemologi del II

3.1 Det finnes forskere som forsøker å finne ut noe om naturen. Nå har dere vært «små forskere» i klasserommet. Å forske på naturen (for eksempel på stearinlys som brenner og pulsmålinger) kalles naturvitenskap. Hva er typisk for det vi kaller naturvitenskap?

3.2 Hva er et eksperiment?

3.4 Etter at en forsker har utviklet en naturvitenskapelig teori (for eksempel om forbrenningsreaksjoner), vil teorien noen gang komme til å forandre seg?

- Hvis du tror at naturvitenskapelige teorier er uforanderlige, forklar hvorfor. Gi eksempler som støtter svaret ditt.
- Hvis du tror at naturvitenskapelige teorier kan forandre seg:
 (a) Forklar hvorfor teorier forandrer seg.
 (b) Forklar hvorfor vi tar strevet med å lære oss naturvitenskapelig teorier. Gi eksempler som støtter svaret ditt.
3.5 Hvordan ser et atom ut?

Hvor sikre er forskere på hvordan atomet er bygd opp?

Hvordan fikk forskerne kunnskap om hvordan et atom ser ut?

3.6 Forskere gjør eksperimenter/undersøkelser for å prøve å finne svar på spørsmål som de lurer på. Bruker forskere kreativitet og fantasi når de gjør undersøkelser?

DU har jo prøvd deg litt som forsker – brukte du da fantasi og kreativitet?

- Hvis ja, i hvilke deler av undersøkelsen tror du at forskere bruker kreativitet og fantasi: i planleggingen av undersøkelsen, når de samler inn data, etter at de har samlet inn data? Forklar hvorfor forskere bruker kreativitet og fantasi. Hvis det passer, gi eksempler.
- Hvis du tror at forskere ikke bruker kreativitet eller fantasi, forklar hvorfor du tror det. Hvis det passer, gi eksempler.

3.7 Er det noen forskjeller i måten man forsker på i de forskjellige delene av naturvitenskapen? For eksempel på det ikke-levende (for eksempel stearinlys som brenner og vann som stiger pga lite trykk) og det levende (hjertefrekvensen hos mennesker)? For å vise hva du mener, gi eksempler.
Vedlegg 3, Intervjutranskript

Bjørn

Transkript av intervju med Bjørn om naturvitenskapens egenart

(12:19)

BJØRN: Ja.

BJØRN: Ah… blir pulsen like høy på en ikke trent person og en trent person, med samme aktivitet.

BJØRN: Ja.

INTERVJUER: Så begynte vi her, så gikk vi liksom gjennom… gjorde observasjon, og så gikk vi gjennom … kanskje etter hvert endte der da (peaker på fiskebensarket). Eh… hvor her var det man… eh… hvor er det her man liksom identifiserte forskningsspørsmålet. Hvor er… hvor var det vi gjorde det?
BJØRN: Eh… her (peker på brainstormingsarket).

INTERVJUER: Mmm. Kan du si litt om det. Hvorfor… hvorfor sier du akkurat der?

BJØRN: Jeg husker… at vi brukte sånne gule lapper (peker på brainstormingsarket), og så flytta vi dem ned hit (peker på fiskebensarket).

BJØRN: Mmm. Jeg tror… eh… jeg tror den trente personen hadde eh… fått mindre pulser siden … han ikke får så… så høy puls da, for han er vant med det, men den ikke trente har ikke gjort det så ofte og, og… stiger veldig fort da.

INTERVJUER: Ja…. Eh, men hvorfor tror du… det er en hypotese, og den, så kanskje det vil stemme, men litt mer om hvorfor. Hvorfor tror du at en trent person har lavere pulser enn en … Hva er det som er grunnen til det? Hva ville du trodd var grunnen til det?

BJØRN: Tror det er på grunn av at lungene klarer å trekke inn lufta og… pumpe det videre ned i kroppen kjappere da, sånn at han får mer energi og… ikke tar inn mer luft kanskje, men at den ikke trente den må jobbe mye fortere da for å få energi.

INTERVJUER: Mmm. Men, den… får lavere puls… Hva, hva… Hva skal til… hva er lav puls for noe? Hva vil det si om…

BJØRN: At hjertet ikke banker så fort.

INTERVJUER: Ja. Og hvorfor trenger han ikke, altså litt mer… du har sagt litt, men av typen, hva… hva er det som skal til for at hjertet da kan ikke pumpe så fort?

BJØRN: At han ikke trenger så mye energi.

INTERVJUER: Det kunne det ha vært. Det kan også være noe med… for det trenger du jo. Så hva er det med… hva er det med hjertet? Til en trent i forhold til en mindre trent, kanskje? Kan en tenke, for eksempel er det…

BJØRN: At’n klarer å pumpe mer på ett slag.

BJØRN: For å… finne ut om man har forstått det riktig da, eller om man finner ut noe nytt etterpå.

BJØRN: Jeg ville brukt pulsklokke, altså på begge, og… at begge gjorde den samme aktiviteten eh… samme tid

BJØRN: Mmm. Tror jeg ville tatt de samme personene hele tiden. Ikke byttet ut, siden det kan være forskjellig hvor godt trent de er.

INTERVJUER: Hvordan ville du valgt ut… eh… forsøkspersoner, eller person. Hvordan ville du valgt de ut?

BJØRN: En som kanskje driver med mye idrett, og en som ikke holder på med idrett i det hele tatt.

INTERVJUER: Mmm. Mmm. Ville du gjort det mange ganger, eller ville du bare hatt to personer?

BJØRN: Jeg ville hatt to personer, men jeg ville kanskje gjort det flere ganger.

INTERVJUER: Hvorfor det?
BJØRN: For å sjekte om at det er helt nøyaktig, og at det er … at det ikke var tilfeldig den første gangen.

INTERVJUER: OK. Eh… eh… ja. Hvordan ville du ha organisert dataene dine? Skjønner du hva jeg mener når jeg sier…

BJØRN: Ja. Eh… jeg ville først lage en tabell… med alle… alle tidene og… puls, pulstalla likt da, og så ville jeg ha laget et linjediagram etterpå.

BJØRN: Hvor lenge jeg ville holde på med aktiviteten, på en måte?

INTERVJUER: Mmm.

BJØRN: Spørs hvor hard aktiviteten er da.

INTERVJUER: Mmm. Mmm.

BJØRN: Hvis det er eh… spurting for eksempel, full intensitet, så ville jeg kanskje tatt … hva du spurte

INTERVJUER: Nei. Ja, du ville.

BJØRN: i 20 sekunder.

INTERVJUER: OK. Mmm. Eh… hvis du fikk et annet resultat enn denne figuren her, hva, hva kan det skyldes? Hva kunne det ha skyldes at du fikk, ikke sant, at du skulle teste den, og så fikk du et annet resultat.

BJØRN: Det kan… for eksempel være at den trente har hatt eh… mye lavere intensitet, eller høyere enn den ikke trente. At de ikke har samme intensitet. Eller at eh… det viser seg at kanskje den ikke trente personen var mer trent enn det vi trodde og…

INTERVJUER: Mmm. Mmm. Mmmm. Og ellers… kunne det vært noe med… målinga,

INTERVJUER: Mmm. Hva hvis du hadde 10 personer, eh… som hadde funnet ut at var ikke trent, og 10 personer som var trente… hadde det kunne gjort… hva ville det gjort med resultatene?

BJØRN: Tror da ville det gå opp og ned, det diagrammet… fordi… alle er jo ikke like godt trent og… noen er mer trent enn andre.

INTERVJUER: Hvis dette skulle si noe om hvordan det er… skal si noe om hvordan det er… prøve å gi et resultat som er… sånn… generelt da.

BJØRN: Ja, da tror jeg det her stemmer. Den trente ligger litt…

INTERVJUER: Jeg tenkte på hvis du skulle brukt bare to personer i forhold til du brukte… 200 personer… der du hadde sjekka… ikke sant om… du hadde sjekka… kondisjon på forhånd da. Hvilket resultat ville du ha stolt mest på da, den med de to eller der det er veldig mange som har vært med i undersøkelsen?

BJØRN: Da ville jeg ha stolt på den med veldig mange. Hvert fall sjekka kondisjonen og sånn… først.

INTERVJUER: Ja. Fordi…

BJØRN: Fordi da vet jeg det er ganske forskjell da, på trent og ikke trent

INTERVJUER: Mmm. Ja. OK. Hvilke teorier ville du ha brukt for å forklare disse resultatene?

BJØRN: Eh… det med… ccc…celleånding, tror jeg.

INTERVJUER: Mmm.

BJØRN: …jeg ville gjort. Jeg vet ikke helt hvordan jeg skulle forklart eh…

INTERVJUER: Hva med…

BJØRN: …trenger jo energi for å… gjøre aktiviteten da.

INTERVJUER: Ja.

BJØRN: …og da er det jo hjertet som pumper ressursene ned til
INTERVJUER: Ja.

BJØRN: …cellene.

INTERVJUER: Ja, ikke sant. Så da ville du brukt teori om cellene, og hva mer… av teori, sånn (lager hermetegn i lufta)

BJØRN: sirkulasjonssystemet kanskje

INTERVJUER: Hvert fall den kanskje.

BJØRN: Ja.

INTERVJUER: Yess, eh… ja… eh… eh… et spørs… skal vi se… hva er en teori. Hva er en teori? Hva er en teori for noe?

BJØRN: Teori er noe… som vi vet ganske sikkert… eller har en mening om… og tror det er sånn og mange stemmer nok, men vi kan ikke være helt sikre på en måte.

INTERVJUER: Hvis du sammenligner med hypotese, er det noen forskjell?

BJØRN: Mmm… hypotese er jo… hva du tror før da, men teori har blitt forska på… og vet du mer sikkert.

BJØRN: Eh… kanskje det er for at man kan sammenligne lettere med andre…

BJØRN: Ja.

INTERVJUER: Klarer du å si noe om hva som er typisk for naturvitenskap?

BJØRN: Mmm… kanskje hvordan jorda ble til.

INTERVJUER: Det er et eksempel.

BJØRN: Ja.

INTERVJUER: Men har du noe mer sånn. Hva hvis du skulle satt noen kjennetegn på naturvitenskap… Hva er typisk for naturvitenskap? Hvis noen spurte, hva ville du svart da?

BJØRN: At det er… mye om hvordan alt er bygd opp da. Om molekyler, og atomer og sånn.

BJØRN: Mmm. Med magiske briller.

INTERVJUER: Ja du må, du må ha magiske briller. Da kan vi egentlig gå til neste spørsmål, som er litt sånn i samme… som du kunne tatt med, nemlig hva er et eksperiment? Hvis du skulle sagt deg og, hva er et eksperiment? … eller hva er typisk for et eksperiment?

BJØRN: At du kansje… prøver å finne ut av noe … en undersøkelse, sånn noe du ikke vet noe om fra før, må en måte…

INTERVJUER: Mmm.

BJØRN: …at du ikke har prøvd før.

INTERVJUER: Hva kalt… hva er det som er typisk da? Hva kjennetegner det? Hva…

BJØRN: Eh…

BJØRN: Hmm... ville plassert hva vi skulle bruke for å finne ut av det i hvert fall.

INTERVJUER: Ja.

BJØRN: sånn som utstyr da.

INTERVJUER: Ja. Ikke sant, men... du sa noe at du ville flytte ned derifra (peker nederst på observasjonsarket) til dit (peker på fiskebensarket). Hva var det vi skulle undersøke i den kurven her (peker på prøvearket), det var...

BJØRN: Det var eh... om en trent person ikke eh... eller hvem som på en måte fikk høyest puls

INTERVJUER: Ja. Det var det du undersøkte. Hva ville du ha... åssen var det den funka, den derre... fiskebeins...

BJØRN: Hmmm...

INTERVJUER: Her var det (peker på brainstormingsarket)... vi hadde en brainstorming. Hva som kunne påvirke... hva var forskningsspørsmålet. Forskningsspørsmålet her var ... hva, hva er det som er typisk for eh... hva er det som er karakteristisk, eller hva er det som er forskjellen mellom en trent og en ikke trent person når det gjelder puls?

BJØRN: Ja.

INTERVJUER: Da er vi her (peker på brainstormingsarket). Hva er det vi skal undersøke. Hvilke ting er det vi skal undersøke her?

BJØRN: Eh... hvor høy pulsen er

INTERVJUER: Ja, pulsen ikke sant. Den måtte vi plassert et sted. Og så måtte vi... Pulsen er der ikke sant.

BJØRN: Ja.

INTERVJUER: Men hva er det som eh... varierer... her? (pause) Hva er det som ikke... hvilke faktorer er det vi skal variere?

BJØRN: Eh... er det mellom trent og ikke trent?

BJØRN: Ja.

INTERVJUER: Er du enig?

BJØRN: Mmm.

INTERVJUER: Mmm. Så da er det det. Så det er noe sånn… men det er noe… hvor er det vi har hypotesen her da? Når vi dreiv (peker på brainstormingsarket). Da vi dreiv.. Når var det vi laget hypotesen i dette skjemaet her?

BJØRN: Eh… jeg ville sagt, hvis forskningsspørsmålet er der (Peker på fiskens hode på fiskebensarket), så ville jeg hatt det ganske nærme forskningsspørsmålet, ut her eller… (peker på fiskebenet)

INTERVJUER: Ja. Og det er jo egentlig kanskje når du driver med brainstorming at du… hva, hva kan påvirke pulsen? Så har du jo hypotesen her… hypotesen din er jo ganske nær der (peker på fiskebensarket) så kanskje som du sa også, nemlig, jeg tror at, jeg tror at den trente har mer høyere pulser enn den ikke trente

BJØRN: Mmm.

INTERVJUER: Mmm, ok, så det var litt om eksperiment. Eh, og etter at en forsker har utvikla en teori. Vi snakket om det i sted med teori. For eksempel om celleånding eller,… vil den teorien noen gang komme til å forandre seg? Vil han være sånn alltid, eller…?

BJØRN: Hmm… det er ikke sikkert.

INTERVJUER: Nei.

BJØRN: Kan hende vi finner ut mer senere.

INTERVJUER: Ja.

BJØRN: Kan aldri vite helt nøyaktig, eller helt sikkert at det er sånn. Finner ut mer og mer hele tiden.
INTERVJUER: Kan vi… ja. Eh… eh… og så et helt annet spørsmål. Det har vi vært inne på sted da, men hvordan ser et atom ut?

BJØRN: Eh… med en gang jeg tenker, så tenker jeg sånne sirkler (lager sirkler i lufta), sånn

INTERVJUER: Ja.

BJØRN: Vet ikke helt, jeg, med det ser ut som sånn eh… små partikler som beveger litt på seg i mikroskopet.

INTERVJUER: Hvordan… hvor sikre er, er vi forskerne på hvordan atomet ser ut?

BJØRN: (liten puse) Det tror jeg de er ganske sikre på, siden de har forska veldig mye på det og… har sett mye i mikroskop og sånn.

INTERVJUER: Mmm. Vet du hvordan vi fikk kunnskap om, du har jo vært inne på det allerede, hvordan fikk vi kunnskap om atomene, om hvordan atomet ser ut?

BJØRN: Det var vel når de oppfant mikroskopet. De begynte å se på hvordan ting var bygd opp og sånn.

INTERVJUER: Jeg tror, jeg tror, jeg tror mikroskopet er … det er vanskelig å se, eller du kan nå da, etter hvert kanskje kunne… de brukte andre metoder, som ikke du har lært om… sånn stråling og… gamma og mye sånne spesielle metoder som jeg ikke er noe god på, men kanskje ikke bare mikroskopet. Men, det var bare som et supplement, men de kan nå også, etter hvert bruke kjempesterke mikroskoper. Så kan de etter hvert bruke de og. Ja. OK. Nå närmer vi oss slutten, så nå, ja. Forskere gjør eksperimenter for å finne svar på, ja, det har vi jo snakke om. Er de, og det tror jeg vi spurte deg om forrige gang og, men, men bruker de forsk, bruker de kreativitet og fantasi når de skal forske på disse… de som er forskere? Og når du var, når du prøvde deg litt her som forsker, fikk du brukt noe kreativitet?

BJØRN: Hmm… det er jeg litt usikker på. Eh… de er ganske kreative som… finner opp og… finner ut ting de skal gjøre og sånn da.

INTERVJUER: For å finne metode og sånn.

BJØRN: Ja… og hva de skal forske på. Men, når det kommer til, når de skal utføre det så følger de vel veldig sånn…
INTERVJUER: …slags oppskrift, ja.

BJØRN: Ja.

INTERVJUER: Det kan være begge deler.

BJØRN: Ja.

INTERVJUER: Ja, men litt må de ha?

BJØRN: Ja.

INTERVJUER: Ja. OK. Eh… siste spørsmål nå faktisk. Eh, og det er, eh nå har jo dere undersøkt på deg sjøl som, det er levende, og stearinlys og vann, som da er ikke levende, og det er to forskjellige, ja. Er det noe forskjell øh, eh… du sa at det er en slags oppskrift, men er det, er det det egentlig, er det noe som for eksempel er forskjellig når du skal undersøke noe som er levende og noe som er dødt? For eksempel stearinlys og vann, og levende. Er det noe forskjell der? På metoder?

INTERVJUER: Kan jo hende… hva med celleåndinga da? Der har du noe…

BJØRN: Ja.

INTERVJUER: Men er det noen hensyn du må ta da for eksempel? Som du ikke trenger, altså, er det forskjell på

BJØRN: Må ha tillatelse og sånn da, av menneskene.

INTERVJUER: Ja. Akkurat det er jo forskjellig.

BJØRN: Ja.

SLUTT
Pia

Transkript av intervju med Pia om naturvitenskapens egenart

INTERVJUER: Da begynner jeg rett på jeg, siden tiden går. Da er det sånn at vi begynner med den der… eh… fordi at eh… vi skal snakke litt om den eh…

PIA: …

INTERVJUER: På prøven ja.

PIA: Ja

PIA: Mmm

INTERVJUER: Eh… hva er forskningsspørsmålet der?

PIA: Eh…

INTERVJUER: Tror du.. På det, det… (peker på prøvearket)

PIA: På det der? Eh…

INTERVJUER: Hva var det, hvis du…

PIA: Impulsen ligger høyere og fortere på en ikke-trent person enn en trent person, og hvorfor…?

INTERVJUER: Mmm. Ja! Kjempefint. Hvis du… husker du den her (Peker på brainstormingsarket)?

PIA: Ehh, Jaaa…

INTERVJUER: Brain… sånn, sånn

PIA: Ikke det der.
INTERVJUER: Men du husker…

PIA: Jeg husker litt av det ja.

INTERVJUER: Vi drev med noen observasjoner først og så gikk vi videre og så til slutt så var det en måte å planlegge en undersøkelse.

PIA: Ja.

INTERVJUER: I hvilken av disse trinnene her, eh… var det vi fant eller, bestemte forskningsspørsmålet?

PIA: Den? (peker på brainstormingsarket)

INTERVJUER: Mmm.

PIA: Da var det masse forskjellige forslag og så plukka vi ut en. Jeg husker ikke hvem det var, men…

INTERVJUER: Mmm.

PIA: Da var det masse forskjellige forslag og så plukka vi ut en. Jeg husker ikke hvem det var, men…

INTERVJUER: Mmm.

PIA: Ja, og så plasserte vi den DER (peker på hodet til fiskebensarket)

PIA: Jeg ville tenkt at den ikke-trente personen som ville stige mye fortere, og… fordi atte kanskje celleåndingen til trente personen har foregått, eller at den er vant til at den må produsere energi for da kanskje den ikke trente personen ikke… at celleåndingen til den ikke er så vant til å … bruke så mye energi.

INTERVJUER: Mmm. Der er det jo noe dere ikke har lært enda. Hva er det som egentlig skjer hos trente personer. Det har med hjertet sin størrelse og effektivitet å gjøre.

PIA: Å ja.

PIA: Ja.
INTERVJUER: som du tenkte hvorfor. Eh, og dere gjorde jo en undersøkelse som ligna litt. Ikke den (peker på prøvearket), men dere gjorde en som ligna, ikke sant, i klassen. Da laget dere også en hypotese. Vi skal ikke gå inn på det nå, men jeg lurte på hvorfor lager man hypoteser før man gjør en undersøkelse?

PIA: For å se om det man trur, er faktisk... at det stemmer da... Eller at en gammel teori, at en kanskje bruker den og så forsker på nytt og funnet ut at ting du har funnet ut med den teorien er riktig da, kan være en grunn.

INTERVJUER: Ja kjempefint. Bra. I denne undersøkelsen her.

PIA: Ja.

INTERVJUER: Eh… i denne her (peker på prøvearket) hva ville du måle, og hvordan ville du legge opp den undersøkelsen? Si litt om det.

PIA: Jeg ville målt hjerteslag per minutt, og brukt pulsklokke.

INTERVJUER: Ja. Og litt mer… både med …

PIA: Hvordan…

INTERVJUER: Litt mer hvordan undersøkelsen…

PIA: Eh… jeg ville, i hvert fall da vi testa det ut det med pulsen da, her, så fordelte vi oppgaver. Jeg synes det var fint da. For da var det en som skrev ned hva hjerteslagene var og sånn, og så var det en som tok tida, og så var det en som observerte at alt funka bra da, eller at vi gjorde det riktig. Så var det… så jeg tror jeg ville brukt samme metoden som vi gjorde.

INTERVJUER: Mmm. Men tenk… ja det er fint, det er bra. Viktige ting, nøyaktighet, fordeling og sånt, men eh… litt mer om hvem… forsøkspersoner og…

PIA: Å ja. Du tenker på alder og sånn

INTERVJUER: Jaaaa… du har jo de røde og blå der og … hvem ville du ha med i undersøkelsen?

PIA: Jeg tror jeg ville testet flere enn bare to.

INTERVJUER: Ja, mmm. og hvilken gruppe folk ville det ha vært da?
PIA: Kanskje sånn…

INTERVJUER: I forhold til kondisjon

PIA: Å ja. Sånn sett ja, eh… en som kanskje er toppidrettsutøver da, og en som… kanskje ikke jogger så mye og er ikke så vant til å … være i aktivitet. Så det er det som avgjør da, altså mosjon.

INTERVJUER: Kjempefint S, ja, kunne en sånn type undersøkelse, en sånn type diagram (peker på brainstormingsarket og fiskebensarket) ha hjulpet deg å planlegge undersøkelsen?

PIA: Ja. Hvert fall den der (peker på brainstormingarket)

INTERVJUER: Hva er det den, den, den,… hva er det den kan hjelpe deg med?

PIA: Eh… At man liksom kan finne ut, det er på en måte hypotesen da. At man kan finne hvem av de som kan være årsaken til at det skjer da.

INTERVJUER: Så, det du har plassert her?

PIA: Eh… hva tenker du på da?

INTERVJUER: Nei i forhold til den undersøkelsen (peker på prøvearket). Hvordan ville den ha sett ut her (peker på fiskebensarket)?

PIA:

INTERVJUER: Du skal undersøke … puls

PIA: Ja, da må det være puls da.

INTERVJUER: Ja. (ler) Men, du skal undersøke,… hva er… hva for slags faktorer man undersøker her? (pause) Hva er det du skal undersøke? Hva er det som skal vir… kunne virke på pulsen?

PIA: Aktiviteten … eller?

INTERVJUER: Ja, på den, på den grafen (peker på prøvearket). Hva er det de… hvem er det de sammenligner da?
PIA: De sammenligner en trent person og en ikke trent person

INTERVJUER: mmm …Så hva ville det stått der da (peker på fiskebensarket) … Hva er det vi undersøker her (peker på fiskebensarket)?

PIA: Eh… puls på en trent person og en ikke trent person.

INTERVJUER: Mmm. Da ville det stått kondisjon på den der (peker på den uavhengige variabelen på fiskebensarket)

PIA: Ja.

INTERVJUER: OK. Eh… hvordan ville du ha organisert dataene dine?... Når du hadde disse to, si to eller…

PIA: Jeg ville hatt de i først sånn derre, jeg vet ikke hva det heter, men sånn, ikke tab… tabell tror jeg. Ja og så skrivi sånn liksom etter så, så mange sekunder, og så ville jeg stilt det opp likt på begge og så limt det inn i diagram til slutt.

PIA: Det kan kanskje skyldes at pulsklokka stoppa.

INTERVJUER: Mmm.

PIA: Sånn som det skjedde når vi gjorde det. Eller det kan skje at … eller at ikke den testpersonen hadde tatt ordentlig i da. At den ikke har gjennomført aktiviteten riktig, eller ikke brukt all energien han kunne ha brukt. Og det kan skyldes unøyaktige resultater, eller … tider som du måler på da.

INTERVJUER: Mmm.

PIA: Ja.

INTERVJUER: Kjempefint. Hva kalle du det… alt du sa nå. Har du et begrep for det?

PIA: Feilkilder?
INTERVJUER: Ja. Mmm. Hva... Eh.. er det... Jeg skulle stilt deg et spørsmål til. Er det mulig, hvis du har nå to personer, en trent og en ikke trent.

PIA: Mmm.

INTERVJUER: Er det passe? Eller hva ville en forskergruppe som skulle gjøre dette på...?

PIA: Jeg tror de kunne tatt og testet forsøket flere ganger. Og kanskje med flere personer.

INTERVJUER: Mmm.

PIA: Sammenlignet data.

INTERVJUER: Mmm.

PIA: Og sånn.

INTERVJUER: Hvorfor det?

PIA: For å se atte ... ting stemmer da.

INTERVJUER: Ja. Det er fint det. Eh... hvilke teori ville du ha brukt til å forklare den der?

PIA: Celleånding og sir...kulasjonssystem.

INTERVJUER: Mmm. Hva slags teori er det. Ja hvordan kan det forklare det? At en trent har lavere... puls enn...

PIA: Ja, jeg tenker mest på at celleåndingen foregår fortere, og sånt... da får den mer energi kjappere enn en som ikke er så vant til sånn ... aktivitet og sånn da.

INTERVJUER: Det er kanskje ikke celleåndingen som går fortere, men systemet er ...

PIA: Sirkulasjonssystemet...

INTERVJUER: ...raskere. Liksom alt er mer effektivt... Større (viser hjertekompresjon med hendene), mer blod... Alt er liksom mer effektivt... Da trenger ikke hjertet å slå så fort, når ting er effektivt.

PIA: Hæ?

PIA: Nei. Har ikke det med pulsen å gjøre?

INTERVJUER: Ja, pulsen er jo hvor ofte det slår, og …

PIA: Hvis det slår fortere, da er det liksom

INTERVJUER: Eh… hva er… hvis du sammenligner teori med hypotese

PIA: Eh… teori er jo noe som folk har funnet ut før da, og hypotese er kanskje noe du tror eller sammen med noen andre da.

INTERVJUER: Mmm.

PIA: det er at du bruker noe… den teorien som noen andre har funnet på, liksom, flettet inn i din egen tanke.

PIA: Men det… Jeg skal si, eh… det her (peker på rapporten) skjønner ikke helt hva som skjedde for hvilepulsen var akkurat det samme. Men så ble det på 2 isteden. jeg klarte ikke å fikse på det…

INTERVJUER: Nei… men det… det går sikkert bra. Men det jeg vil spørre deg om, det var, hvorfor har man bestemte avsnitt her? Hadde kanskje … du skulle hatt innledning, men du har teorien her, selv om du ikke har skrevet … det kunne du ha gjort, altså en metode og en resultatdel

PIA: Ja.

INTERVJUER: Kanskje du også skulle hatt en konklusjon. Ikke sant. Hvorfor har man sånne … inndelinger… i sånne rapporter? … Hva er grunnen til det?

INTERVJUER: Ja. Hvis andre skulle lese det da? … Er det noen fordel da å ha en bestemt struktur?

PIA: Nja, for at da forstår du kanskje hva som er innholdet i det avsnittet da, og hva de kanskje skal fokusere på.

PIA: At man forsker på noe som er i naturen, som er levende.

INTERVJUER: Er det bare levende eller? Det som er i naturen?

PIA: Nei… det er noe dødt der også tror jeg

INTERVJUER: Mmm. Hva da? Som vi ikke kaller… som ikke er levende…

PIA: Hmm…

INTERVJUER: Et stearinlys, og magnesium, er det levende?

PIA: Nei.

INTERVJUER: Det er ganske mye av det vi forsker på i naturvitenskapen som … er ikke levende.

PIA: Ja.

INTERVJUER: Hva er typisk for et eksperiment?

PIA: At du tester ut noe… og får et resultat

INTERVJUER: Mmm.
PIA: Ja.

PIA: Ja.

INTERVJUER: Vil teorien komme til å forandre seg? Vil … kan teorier forandre seg?

PIA: Ja. For at det kan være andre folk som forsker på det samme og kanskje bruker andre metoder da, og finner ut noe mer, eller noe annet. De kan jo bruke den teorien som de andre har funnet ut da.

INTERVJUER: Ja. Eh… det er bra S. Hvordan ser et atom ut?

PIA: … Hvordan de ser ut?

INTERVJUER: Ja, veldig kort.

PIA: Er det ikke sånn at de er bygd opp av flere… å nei, det er molekyl det. Atomet sitter vel sammen med flere andre atomer?

INTERVJUER: Ja, ja… atomet kan sitte sammen med andre atomer.

PIA: Ja. Det kan være alene ja.

INTERVJUER: Hvor sikre er forskere på hvordan atomet er bygd opp?

PIA: Jeg vet ikke jeg, jeg tror de er ganske sikre på det, for jeg tror det er ganske mange forskjellige som har forska på det.

INTERVJUER: Mmm. Hvordan fikk de den kunnskapen?

PIA: Gjennom å eksperimentere og hypoteser, og … alt de gjorde innen forsøket da.

INTERVJUER: Ja. Eh… når forskere gjør eh… undersøkelser… eh… og du gjorde det også, dere gjorde det i klassen, trenger du noe kreativitet og, og eh… fantasi for å gjøre forsøk?
PIA: Ja, jeg tenker på de magiske brillene dere sa til oss da. At du må se for deg hva som skjer.

INTERVJUER: Mmm.

PIA: For da tror jeg du får litt… bedre resultat…. Hvis du tenker deg at…

INTERVJUER: Tenker deg… Ja. Er det noen andre… deler av det som trenger, der du trenger litt sånn fantasi og… kreativitet?

PIA: Hmm…. Når du skriver sånn eh… hvordan hele … eh, sirkulasjonssystemet, eller hvordan celleåndingen foregår, så hadde jeg hvert fall likt om de hadde skrevet med litt sånn morsomme ord og sånn, for da hadde det vært gøyere å lese.

INTERVJUER: Så det å formilde…

PIA: Sammenligne …

INTERVJUER: Skrive på en måte som gjør at…

PIA: Ja. Skrive på en måte som gjør at det er enklere å forstå.

INTERVJUER: Mmm. Eh… så tenkte jeg bare et siste spørsmål, så skal vi gi oss. Eh… er det noe forskjell på, når du forsker på forskjellige deler av naturvitenskapen, for eksempel når du forsker på noe som er levende, og noe som er ikke levende? Er det noe forskjell… på det. Er alle forsøk like?

PIA: Jeg tror det er forskjell på det.

INTERVJUER: Mmm.

PIA: Ja, men jeg vet ikke helt hvilken forskjell.

INTERVJUER: Ja. Du kan ikke tenke noen eksempler på…

PIA: Hmm… de som er levende trenger jo… for å leve da, oksygen og vann og… alt sånt og da. Og de som ikke er levende de trenger jo ikke noe for å ikke lever, for de lever ikke.

INTERVJUER: Da trenger ikke å ta hensyn til det… når du eksperimenterer

PIA: Ja.
INTERVJUER: Ja. Å ta hensyn til det, at levende organismer er... må ha okyg... eller «må» ha mat og oksygen

PIA: Ja.

INTERVJUER: Kjempefint S. da har vi tatt i gjennom

SLUTT
Vedlegg 4, Analyse og inndeling av transkripter

Jeg lagde fargekoder for å skille mellom de ulike perspektivene (venstre kolonne) når jeg analyserte transkriptene. Jeg har også brukt farger på de sitatene som dekker flere perspektiver (høye kolonne).

Bjørn:

<table>
<thead>
<tr>
<th>Perspektiv 1: Naturvitenskapelig kunnskap må betraktes som konstruert</th>
<th>Hva er et eksperiment?...eller hva er typisk for et eksperiment?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• At du kanskje…prøver å finne ut av noe…en undersøkelse, sånn noe du ikke vet noe om fra før, på en måte…at du ikke har prøvd før.</td>
</tr>
<tr>
<td></td>
<td>• Vil den teorien noen gang kommer til å forandre seg? Vil han alltid være sånn, eller…?</td>
</tr>
<tr>
<td></td>
<td>• Kan hende vi finner ut mer senere. Kan aldri være helt nøyaktig, eller helt sikkert at det er sånn. Finner ut mer og mer hele tiden.</td>
</tr>
<tr>
<td></td>
<td>Hvor sikre er forskere på hvordan atomet ser ut?</td>
</tr>
<tr>
<td></td>
<td>• Det tror jeg de er ganske sikre på, siden de har forsøk veldig mye på det og…har sett i mye mikroskop og sånn.</td>
</tr>
<tr>
<td></td>
<td>Hvordan fikk vi kunnskap om hvordan atomet ser ut?</td>
</tr>
<tr>
<td></td>
<td>• Det var vel når de oppfant mikroskopet. De begynte å se på hvordan ting var bygd opp og sånn.</td>
</tr>
</tbody>
</table>
Perspektiv 2: Naturvitenskapelige metoder kan arte seg svært forskjellig - avhengig av hva som undersøkes

Hvis du skulle brukt bare to personer i forhold til du brukte...200.. personer hvilket resultat ville du stolt mest på?

- Da ville jeg stolt på den med veldig mange. Hvert fall sjekk kondisjonen og sånn... først.

Spørsmål fra fiskebeinmetoden om utstyr som skal brukes

- Hmm...ville plassert hva vi skulle bruke for å finne ut av det i hvert fall,

Hvor sikre er forskere på hvordan atomet ser ut?

- Det tror jeg de er ganske sikre på, siden de har forska veldig mye på det og...har sett i mye mikroskop og sånn.

Hvordan fikk vi kunnskap om hvordan atomet ser ut?

- Det var vel når de oppfant mikroskopet. De begynte å se på hvordan ting var bygd opp og sånn.

Bruker forskere kreativitet og fantasi når de skal forske på noe?

- Hmm...det er jeg litt usikker på. Eh...de er ganske kreative som...finner opp og...finner ut ting de skal gjøre og sånn da.

For å finne metode og sånn?

- Ja...og hva de skal forske på. Men, når det kommer til, når de skal
utføre det så følger de vel veldig sånn…
Slags oppskrift, ja.

- Ja

Er det noe forskjell når du skal undersøke noe som er levende og noe som er dødt?

Men er det noen hensyn du må ta da for eksempel?

- Må ha tillatelse og sånn da, av menneskene.

<table>
<thead>
<tr>
<th>Perspektiv 3: Naturvitenskapelig kunnskap</th>
<th>Hvilke teorier ville du brukt for å forklare disse resultatene?</th>
</tr>
</thead>
<tbody>
<tr>
<td>er av forskjellige typer (teorier, lover, hypoteser)</td>
<td>- Ehh…det med…ccc…celleånding tror jeg.</td>
</tr>
<tr>
<td></td>
<td>- Sirkulasjonssystemet kanskje</td>
</tr>
<tr>
<td></td>
<td>Hva er en teori?</td>
</tr>
<tr>
<td></td>
<td>- Teori er noe…som vi vet ganske sikkert…eller har en mening om…og tror det er sånn og mange stemmer nok, men vi kan ikke være helt sikre på en måte</td>
</tr>
<tr>
<td></td>
<td>Hvis du sammenligner med hypotese, er det noen forskjell?</td>
</tr>
<tr>
<td></td>
<td>- Mmm…hypotese er jo…hva du tror før da, men teori er blitt forsla på…og vet du mer sikkert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perspektiv 4: Kunnskapen vi har er mer eller mindre sikker</th>
<th>Hvorfor lager man hypoteser?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- For å…finne ut om man har forstått det riktig da, eller om man finner ut noe nytt etterpå.</td>
</tr>
<tr>
<td>Hvorfor ville du gjort undersøkelsen flere ganger?</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>- For å sjekke om at det er helt nøyaktig, og at det er … at det ikke var tilfeldig den første gangen (forståelse av at hypoteser må testes)</td>
<td></td>
</tr>
<tr>
<td>- Har ett sitat her knyttet til feilkilder (se i transkriptet)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hva er en teori?</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Teori er noe … som vi vet ganske sikkert … eller har en mening om…og tror det er sånn og mange stemmer nok, men vi kan ikke være helt sikre på en måte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hva tror du er grunnen til at man skal følge en mal når man skriver forskningsrapport?</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Eh… kanskje det er for at man kan sammenligne lettere med andre…</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vil den teorien noen gang komme til å forandre seg? Vil den være sånn alltid, eller…?</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hmm…det er ikke sikkert, kan hende vi finner ut mer senere. Kan aldri være helt nøyaktig, eller helt sikkert at det er sånn. Finner ut mer og mer hele tiden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hvor sikre er forskere på hvordan atomet ser ut?</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Det tror jeg de er ganske sikre på, siden de har forska veldig mye på det og…har sett i mye mikroskop og sånn.</td>
</tr>
</tbody>
</table>
Hvordan fikk vi kunnskap om hvordan atomet ser ut?

- Det var vel når de oppfant mikroskopet. De begynte å se på hvordan ting var bygd opp og sann.

Pia:

Perspektiv 1: Naturvitenskapelig kunnskap må betraktes som konstruert

Er det passe å gjennomføre med to personer? Eller hva ville en forskergruppe som skulle gjøre dette på?

- Jeg tror de kunne tatt og testet forsøket flere ganger. Og kanskje med flere personer. Sammenlignet data. For å se atte ting stemmer.

Hva er typisk for det vi kaller naturvitenskap?

- At man forsker på noe som er i naturen, som er levende.

Hva er typisk for et eksperiment?

- At du tester ut noe...og får et resultat

Vil teorien komme til å forandre seg?

- Ja. For at det kan være andre folk som forsker på det samme og kanskje bruker andre metoder da, og finner ut noe mer, eller noe annet. De kan jo bruke den teorien som de andre har funnet ut da.
<table>
<thead>
<tr>
<th>Hvor sikre er forskere på hvordan atomer er bygd opp?</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Jeg vet ikke jeg, jeg tror de er ganske sikre på det, for jeg tror det er ganske mange forskjellige som har forska på det.</td>
</tr>
<tr>
<td>Mmm. Hvordan fikk de den kunnskapen?</td>
</tr>
<tr>
<td>- Gjennom å eksperimenterere og hypoteser, og...alt de gjorde innen forsøket da.</td>
</tr>
</tbody>
</table>

Perspektiv 2: Naturvitenskapelige metoder kan arte seg svært forskjellig - avhengig av hva som undersøkes

<table>
<thead>
<tr>
<th>Hvorfor lager man hypoteser før man gjør en undersøkelse?</th>
</tr>
</thead>
<tbody>
<tr>
<td>- For å se om det man trur, er faktisk...at det stemmer da...eller at en gammel teori, at en kanskje bruker den og så forsker på nytt og funnet ut at ting du har funnet ut med den teorien er riktig da, kan være en grunn.</td>
</tr>
</tbody>
</table>

Vil teorien komme til å forandre seg?

| - Ja. For at det kan være andre folk som forsker på det samme og kanskje bruker andre metoder da, og finner ut noe mer, eller noe annet. De kan jo bruke den teorien som de andre har funnet ut da. |

Når du forsker på noe som er levende og ikke levende, er det noen forskjell på det?

| - Jeg tror det er forskjell på det. Mmm. |
| - Ja, men jeg vet ikke helt hvilken forskjell. Ja. Du kan ikke tenke noen eksempler på... |
| - Hmm...de som er levende trenger jo...for å leve da, oksygen og vann og...alt sånn og da. Og de som ikke...
<table>
<thead>
<tr>
<th>Perspektiv 3: Naturvitenskapelig kunnskap</th>
<th>Hvorfor lager man hypoteser før man gjøre en undersøkelse?</th>
</tr>
</thead>
<tbody>
<tr>
<td>er levende de trenger jo ikke noe for å ikke lever, for de lever jo ikke.</td>
<td>- For å se om det man trur, er faktisk...at det stemmer da...eller at en gammel teori, at en kanskje bruker den og så forsker på nytt og funnet ut at ting du har funnet ut med den teorien er riktig da, kan være en grunn.</td>
</tr>
<tr>
<td>er av forskjellige typer (teorier, lover, hypoteser)</td>
<td>Er det passe å gjennomføre med to personer? Eller hva ville en forskergruppe som skulle gjøre dette på?</td>
</tr>
<tr>
<td></td>
<td>- Jeg tror de kunne tatt og testet forsøket flere ganger. Og kanskje med flere personer. Sammenlignet data. For å se atte ting stemmer.</td>
</tr>
<tr>
<td></td>
<td>Hvilken teori ville du brukt for å forsklare den der?</td>
</tr>
<tr>
<td></td>
<td>- Celleånding og sir...kulasjonssystemet</td>
</tr>
<tr>
<td></td>
<td>Eh...hva er...hvis du sammenligner teori med hypotese</td>
</tr>
<tr>
<td></td>
<td>- Eh...teori er jo noe som folk har funnet ut før da, og hypotese er kanskje noe du tror eller sammen med noen andre da. Det er at du bruker noe...den teorien som noen andre har funnet på, liksom, flettet inn i din egen tanke.</td>
</tr>
<tr>
<td></td>
<td>Hva er grunnen til at forskningsrapporter skrives etter en mal?</td>
</tr>
<tr>
<td></td>
<td>- Det er vel fordi atte først det du tror og så hvordan du gjennomførte det, og så hva som ble resultatet. At du</td>
</tr>
</tbody>
</table>
kan sammenligne det…det du trodde da med det du har etter…eller litt likt.
Hvis noen andre skulle lese det, er det noen fordel med en bestemt struktur?

- Nja, for at da forstår du kanskje hva som er innholdet i det avsnittet da, og hva de kanskje skal fokusere på.

Vil teorien komme til å forandre seg?

- Ja. For at det kan være andre folk som forsker på det samme og kanskje bruker andre metoder da, og finner ut noe mer, eller noe annet. De kan jo bruke den teorien som de andre har funnet ut da.

Perspektiv 4: Kunnskapen vi har er mer eller mindre sikker

Hvorfor lager man hypoteser før man gjøre en undersøkelse?

- For å se om det man trur, er faktisk…at det stemmer da…eller at en gammel teori, at en kanskje bruker den og så forsker på nytt og funnet ut at ting du har funnet ut med den teorien er riktig da, kan være en grunn.

(Feilkilder) Tenk deg at du fikk et annet resultat da. Hva kan det skyldes?

- Det kan skyldes at pulsklokka stoppa. Sånn som det skjedde når vi gjorde det. Eller det kan skje at…eller at ikke den testpersonen hadde tatt ordentlig i da. At den ikke har gjennomført aktiviteten riktig, eller ikke brukt all energien han kunne ha brukt. Og det kan skyldes unøyaktige resultater, eller…tider som du målet da.
Er det passe å gjennomføre med to personer? Eller hva ville en forskergruppe som skulle gjøre dette på?

- Jeg tror de kunne tatt og testet forsøket flere ganger. Og kanskje med flere personer. Sammenlignet data. For å se atte ting stemmer.

Hva er typisk for det vi kaller naturvitenskap?

- At man forsker på noe som er i naturen, som er levende.

Hva er typisk for et eksperiment?

- At du tester ut noe…og får et resultat

Vil teorien komme til å forandre seg?

- Ja. For at det kan være andre folk som forsker på det samme og kanskje bruker andre metoder da, og finner ut noe mer, eller noe annet. De kan jo bruke den teorien som de andre har funnet ut da.

Hvor sikre er forskere på hvordan atomer er bygd opp?

- Jeg vet ikke jeg, jeg tror de er ganske sikre på det, for jeg tror det er ganske mange forskjellige som har forska på det.

Mmm. Hvordan fikk de den kunnskapen?

- Gjennom å eksperimentere og hypoteser, og…alt de gjorde innen forsøket da.