Do eggs collected in surveys accurately reflect adult fecundities?

Hannes Höffle¹, Frode B. Vikebø¹, Olav S. Kjesbu¹

¹Institute of Marine Research and Hjort Centre for Marine Ecosystem Dynamics, Bergen, NO
Measurements of fecundity

- Spawning stock biomass (SSB)
- Population fecundity
- Stock reproductive potential (SRP)
Population fecundity

- Potential: Number of maturing oocytes
- Realized: Number of eggs in the Sea

How well do they match?
Sources of Error

- Sampling error
- Size and age structure
- Atresia
- Egg mortality
- Movement between different batches
North East Arctic cod

Graph showing changes in SSB (Mtonnes) and Proportion Fish at age-9+ (%) from 1948 to 2012.
Spawning migration survey

Mar. – Apr., since 1985

Acoustics

CTD

Bottom Trawls (N=902)

Ichthyoplankton (N=2114)
Temperature at 30 m

- Offshore: Warm Atlantic water
- Inshore: Cool runoff influenced water
- Cooling in Vestfjorden
Models of Stage I egg distribution

Generalized additive mixed models (GAMMs)

\[y_i = X_i \beta + f_1(x_{1i}) + f_2(x_{2i}) + \cdots + f_n(x_{ni}) + Z_i b + \varepsilon_i \]

Separate for areas 00 (Vestfjorden) and 05 (Yttersida)

Models for presence/absence and non-zero abundance

Fixed Factors
- Local temperature at 30 m
- Bottom Depth
- Proportion of old fish (age-9+)
- Regional temperature index (Kola transect)

Random Factors
- Autocovariate
- Median Year Day
Models of Stage I egg distribution – 00 Vestfjorden

Höffle et al. 2014
Models of Stage I egg distribution – 05 Yttersida

Höffle et al. 2014
Real and modeled egg distribution

Survey Data

Model

Höffle et al. 2014
Scaling to annual egg production

\[N(t) = N_{max} e^{\frac{-1}{2\sigma^2}(t-t_{max})^2} \]

\(\sigma \) Standard Deviation

\(t \) Day of the Year

\(N(t) \) No. eggs at day \(t \)

Peak spawning: Days 93 and 98 (>69°N)

Standard Deviation: 15
Potential fecundity – NEA cod

- Gonad samples
- Winter and Lofoten cruise
- 191 fish
- Number and size of oocytes
- Image analysis (auto-diametric)
Potential fecundity vs. length

\[y = 0.0494e^{0.0475x} \]

\[R^2 = 0.8118 \]
Potential fecundity vs. weight

\[y = 0.0007x - 0.7163 \]

\[R^2 = 0.8762 \]
Scaling to population fecundity

- Length and Weight based formulae

Data from Stock assessment and survey

- Length, weight, maturity and numbers at age
- Sex ratio
Potential and realized fecundity

-38 % vs. Length
-52 % vs. Weight
Conclusion and outlook

- Highly variable relationship of realized and potential fecundity

What next?

- Include atresia, mortality and drift
- Resolve spatial distribution of fecundities
Acknowledgements

Captains and crews of the ships involved.

ICES for additional CTD data.

AFWG for stock data.

Dr. Svein Sundby
Dr. Per Solemdal
Dr. Arved Staby

Thank you!

hannes.hoeffle@imr.no