Costs and benefits of financial regulation: Short-selling bans and transaction taxes

Terje Lensberga,\#, Klaus Reiner Schenk-Hoppéa,b,\#, Dan Ladleyc

aDepartment of Finance, NHH – Norwegian School of Economics, Helleveien 30, 5045 Bergen, Norway
bLeeds University Business School and School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
cDepartment of Economics, University of Leicester, Leicester LE1 7RH, United Kingdom

Abstract

We quantify the effects of financial regulation in an equilibrium model with delegated portfolio management. Fund managers trade stocks and bonds in an order-driven market, subject to transaction taxes and constraints on short-selling and leverage. Results are obtained on the equilibrium properties of portfolio choice, trading activity, market quality and price dynamics under the different regulations. We find that these measures are neither as beneficial as some politicians believe nor as damaging as many practitioners fear.

1. Introduction

Regulatory reform of capital markets is high on policy makers’ agenda. Since the 2008 crisis, financial transaction taxes and bans on short selling have seen strong political support. More than 30 countries implemented short-selling bans in 2008, and the dominant member states of the European Union are determined to impose a financial transaction tax on all market participants, including financial intermediaries. Policy makers praise both measures for their ability to stabilize markets. Financial practitioners, in contrast, claim that these regulations reduce liquidity and increase the cost of capital.

While the finance literature emphasizes the impact of regulation on liquidity, price discovery and volatility, economists tend to be more concerned with speculative trading and excessive risk-taking. We attempt to bridge the gap by integrating trading and portfolio management in a numerical model with market microstructure and heterogeneous agents.1 The goal is to provide a framework which represents a wide range of potentially important mechanisms, and where the equilibrium effects of these mechanisms can be measured and compared across different regulatory regimes in a coherent manner. To this end, the model offers detailed information on portfolio holdings, order flow, liquidity, cost of capital, price discovery, short-term volatility and long-term price dynamics. Since the interrelation between portfolio holdings, liquidity and trading decisions is likely to be of critical importance during periods of market distress, the model contains an exogenous business cycle process that will enable us to quantify the effect of regulation on long swings in asset prices.

The model is populated by a large number of fund managers who use quantitative strategies to manage portfolios of stocks and bonds on behalf of their clients. Assets can be traded by submitting orders to an exchange which operates a continuous double auction. Competition among funds is modeled as a multiperiod tournament based on past performance. Survival depends on realized performance, with new entrants exerting pressure on low-performing funds by increasing their risk of client attrition.2 Brown et al. (1996) and Brown et al. (2001) have demonstrated that

1 As pointed out by Parlour and Seppi (2008), modeling the interaction between trading and portfolio management is key to understanding the impact of macroeconomic shocks on financial markets.

2 Busse et al. (2010) find that competition among U.S. equity funds is intense with attrition rates as high as 25\% over 3-year horizons.
models of this type capture many of the empirical regularities associated with the entry and exit of managed funds.

To solve the model, we represent the quantitative trading strategies of individual funds as computer programs, and apply a genetic programming algorithm to capture the processes of competition and innovation in the market for portfolio management services. The algorithm operates by arranging tournaments among randomly selected funds at the end of each trading day. In every tournament, the two worst performing funds are replaced by new entrants whose strategies are obtained by copying, crossing and mutating the computer programs of the two best performing ones. We run the model for a large number of trading days and check for convergence to an equilibrium by (a) testing for structural breaks in the relationship between market prices and risk-neutral asset prices, and (b) estimating a stochastic discount factor model to test whether the market prices of the converged model are consistent with a rational expectations equilibrium.

An important feature of this modeling approach is that risk preferences and other trader characteristics are endogenous. In particular, there are no utility functions and no preassigned roles as informed/uninformed, liquidity trader and the like. Instead, the model implements Alchian's (1950) 'as if' view of rational behavior as the outcome of a competitive evolutionary process. It should be emphasized that the absence of explicit preferences and roles entails neither risk neutrality, nor symmetric information, nor otherwise identical agents. Our stochastic discount factor model reveals that market prices are consistent with a rational expectations equilibrium for an economy with a representative agent who maximizes logarithmic utility. At the same time, among individual funds we find substantial heterogeneity in terms of risk-taking, trading activity and information usage. Some funds seek high risk by taking leveraged, speculative positions while others are passive, risk averse investors holding the market portfolio. We also observe specialization on trading styles such as news trading and high frequency trading, value trading and market making. Since styles differ by selective use of information, specialization on styles becomes an endogenous source of asymmetric information in the model considered here.

In this paper, we apply the modeling framework to forecast the equilibrium effects of financial transaction taxes and constraints on short selling and leverage. Four regulatory scenarios are considered: (i) A benchmark scenario, calibrated to the S&P 500 index and current U.S. stock market regulations, where trade is subject to initial and maintenance margin requirements and no transaction tax is levied; (ii) a short-selling ban, corresponding to a permanent and global implementation of the ban of short selling that was imposed during the financial crisis; (iii) a ban of all leveraged trade (both short-selling and borrowing); and (iv) a tax of 10 basis points on the value of each trade imposed on both counterparties to the transaction.

1.1. Policy implications

The model provides detailed information about the quantitative effects of these regulatory measures. We find that good market liquidity comes at the cost of high short-term volatility and enhanced long swings in asset prices. Informational efficiency of prices, however, can be obtained without regard to the preferred mix of liquidity and market stability. Liquidity is best under the current regulatory regime, while market stability is best under a full leverage ban. A short-selling ban provides a compromise but with the additional benefit of a lower cost of capital. Financial transaction taxes, in contrast, entail costs but no significant benefits.

Although the model captures a considerable amount of institutional detail, it still abstracts from many real-world aspects that could alter these conclusions. For instance, since the model has only one risky asset and no labor income or consumption, there is little scope for policy reforms to have an impact on the benefits from risk sharing and hedging. Another concern is the cost of information acquisition, which can be expected to influence the effect of regulation on price discovery via incentives to collect and act on information. In this paper, information is freely available, but any strategy that uses it entails model risk, i.e., the strategy might fail in unfamiliar situations. The associated cost is positive for investors who trade on information, and zero for investors with buy-and-hold strategies. Apart from that, we know very little about the magnitude of this cost of using information, and therefore our estimated effects of policy reforms on price discovery are probably off the mark. With these caveats in mind, we continue with a detailed discussion of the results.

1.2. Benchmark

The benchmark scenario is characterized by high trading activity in terms of volume, order size and trade frequency, and low transaction costs measured by bid-ask spread and market impact. Average daily turnover is 2.5% of outstanding shares, and the quoted bid-ask spread is approximately 10 basis points.

We observe a high degree of heterogeneity with respect to investment strategies. However, we find that funds can be classified by a small number of common styles which can be interpreted as value trading, news trading/arbitrage and market making/liquidity supply. There is a strong size effect with smaller funds tending to hold extreme positions and submit large orders relative to wealth under management.

The most active traders are leveraged funds with speculative trading strategies. Just over 9% of wealth is held by these funds, but they contribute half of the trading volume. We find that trades by leveraged funds tend to cause transient price volatility which is exploited by informed traders. Leveraged funds are liquidity takers, while funds that make long-term investments in the market portfolio are net liquidity suppliers. We find that speculators, by being net liquidity consumers, stimulate liquidity supply which leads to an increase in market liquidity in equilibrium.

On average, stocks trade at a 25% discount to their risk-neutral price, which suggests that the representative fund is mildly risk-averse. This discount is strongly counter-cyclical. Short selling contributes to high discounts during recessions. In part this is an effect of delegated portfolio management due to the principle-agent relationship identified in Shleifer and Vishny (1997). Short positions are increased when stock prices fall because short sellers outperform the market during these periods. In rising markets, the opposite is true. This leads to counter-cyclical short interest in our model. During recessions, short sellers’ positions are bets on bankruptcies or financial restructuring of companies in the real economy. Either event will reduce or even clear their short positions at no cost which implies that the short-term realized performance of short sellers is better than the market average. Occasionally, this mechanism leads to bear runs which aggravate downturns and amplify long swings in asset prices, as measured by the mean stock price decline from a peak in an expansion to a trough in the next recession.

We also observe short squeezes which can occur when some short sellers are forced to buy due to margin violations. When the resulting buy pressure causes the price to rise, more margin calls can ensue which further increases demand for the stock. We find that in these situations funds with leveraged long positions act as sellers. Their supply, however, does not fully satisfy the demand from distressed buyers. By waiting rather than selling now, leveraged long funds keep the option of selling later to even more distressed buyers.
1.3. Transaction tax

The policy debate on the benefits of transaction taxes has a long history in economics. Keynes (1936) argued that excessive short-term trading by uninformed traders could lead to speculative bubbles and should be discouraged through transaction taxes. The proposal was revived by Tobin (1978) as a tax on foreign exchange to reduce short-term international capital mobility. Stiglitz (1989) and Summers and Summers (1989) lend their support to the tax as a means to discourage wasteful information gathering and prevent market crashes. Since then, financial transaction taxes have received considerable support among academics, and European policy-makers have taken steps towards their implementation.

We find that a tax on financial transactions has a strong negative impact on trading activity and liquidity. This is due to an increase in transaction costs which in part is a direct effect of the tax. However, the tax also has an indirect effect of roughly the same size due to wider bid-ask spreads and greater market impact. The increase in the bid-ask spread is a partial compensation to market makers for the additional cost of doing business after imposition of the tax. Of the total tax burden, 97.5% is borne by liquidity takers.

Higher transaction costs lead to more long-term investment in the market portfolio, as suggested by the proponents of the tax. However, the wealth held by leveraged funds is only slightly reduced to just below 5% of total investment. Differences in trading activity also persist. In this sense, the tax fails to deter speculation. The model illustrates that a tax on trading has a negligible effect on portfolio holdings as it does not alter the incentive to hold short or leveraged long positions. For the same reason, we find no evidence that the tax reduces long swings in asset prices. Price discovery is less efficient, but volatility is slightly lower than in the benchmark scenario. The cost of capital is unchanged because the tax applies to transactions of equity against debt, which does not distort relative asset prices.

1.4. Short-selling ban

Empirical studies find that bans on short selling have an asymmetric effect on price efficiency (Bris et al., 2007). Other empirical papers find that short-selling bans reduce volatility (Chang et al., 2007) and increase stock prices (Chang et al., 2012). Both observations are confirmed by Chang et al. (2012) who use a unique data set of Chinese stocks for which short-selling constraints were removed in 2010.

We find that a ban on short selling reduces trading activity to about half the benchmark level, but without increasing transaction costs. Order book depth is reduced, but so are order sizes, and the net effect is a slight reduction in bid-ask spread and market impact. The ban on short positions has a direct impact on speculators and market makers. Funds that seek risky positions are forced to move into leveraged long strategies which leads to an increase of wealth held in leveraged long portfolios by 50%. Large passive funds are less affected by the ban. The equilibrium effect is a reduction in transaction costs, a calmer market with slightly improved price efficiency, and substantially lower volatility.

Short-selling bans, by their very mechanics, curb speculative bear runs. Indeed, we find less severe decline in prices during recessions which dampens long swings in asset prices. Less downward pressure on prices during downturns and lower volatility have a positive effect on the cost of capital which is substantially reduced by a 7% increase in the average stock price.

Empirical studies of the 2008 short-selling ban draw more negative conclusions: Increased trading costs through wider bid-ask spreads; reduced order book depth; and poorer price discovery. To study these short-term effects, we simulate a ban on short selling that is imposed after a prolonged period of severe decline in prices. We find that the temporary market dynamics differs from that observed in equilibrium. During the simulated 15-day ban, percentage volume-weighted spreads and market impact increase by 90% and 146% relative to the base case, while trade volume and the number of trades decrease by 22% and 18%, respectively. On day 15 of the ban, the stock price is up 9.4% relative to the base case. Differences in stock prices and trading activity between the two scenarios increase throughout the temporary ban, but systematic differences in spreads and market impact disappear halfway through the ban. These findings suggest that lower trading activity is a permanent effect of a short-selling ban, while higher transaction costs are a temporary phenomenon associated with an unexpected change in the regulatory regime.

1.5. Leverage ban

Although a ban of all short and leveraged long positions might be impossible to enforce in practice, this scenario provides additional insight into the role of leverage for trading and market stability. As the funds’ ability to trade on differences in opinion is curtailed, trade volume is reduced by 90% relative to the benchmark level. The order book is extremely shallow, but effective trading is impossible to enforce in practice, this scenario provides additional insight into the role of leverage for trading and market stability. As the funds’ ability to trade on differences in opinion is curtailed, trade volume is reduced by 90% relative to the benchmark scenario due to the drop in trade volume. Supplying liquidity becomes less profitable and trading focuses more on value than on news. This shift in funds’ focus coincides with the lowest volatility of daily returns across all scenarios. By curbing both bear runs and speculative bubbles, the leverage ban reduces long swings further compared to a short-selling ban.

2. Model

The model represents fund managers who trade, on behalf of their clients, the debt and equity of an aggregate firm over an infinite time horizon. Trading takes place in a continuous order-driven market, subject to margin requirements and transaction taxes.

2.1. Market and investors

2.1.1. Real economy

The real economy is represented by one aggregate firm whose equity and debt are publicly traded. The aggregate firm generates daily earnings per share which are determined by a geometric Ornstein–Uhlenbeck process with time-varying mean. The specification of the firm’s EBIT-process follows Goldstein et al. (2001) but adds an unobservable business cycle component as in Veronesi (1999):

\[\frac{de_t}{e_t} = \eta^d (\mu^d - e_t) dt + \sigma dW_t, \]

where \(e_t \) is the state of the economy at time \(t \). The economy is either in expansion \((s_t = 1)\) or contraction \((s_t = 0)\). Expected earnings are higher during expansions, \(\mu^t > \mu^d \), and the speed of mean reversion is higher in contractions, \(\eta^d > \eta^d \). The duration of the state of the economy is exponentially distributed with mean \(1/\lambda \) where

\[\lambda \]

\(v^0 > v^1 \). Earnings exhibit short-term volatility \(\sigma \) and a medium-term trend \(\mu^p (\mu^e - \epsilon) \).\(^5\)

The earnings process is observable, but the state of the economy is not. An estimate of the probability distribution over the possible states of the economy is provided using Bayes’ rule. Denote by \(P_t \) the Bayesian estimate of the probability that the current state \(S_t \) is 1. The time in years between two earnings observations is given by \(\Delta = 1/(250 - 100) \). Given a prior \(P_t \) and a new earnings observation \(e_{t+1} \), the realized earnings growth is \(R_{t+1} = (e_{t+1} - e_t) / e_t \). Its distribution is normal, see (1). The posterior \(P_{t+1} \) is given by

\[
P_{t+1} = \frac{\exp(-\Delta/v^0)(1-P_t)\beta_{t+1}^s + [1-\exp(-\Delta/v^1)]P_t\beta_{t+1}^s}{(1-P_t)\beta_{t+1}^s + P_t\beta_{t+1}^s}
\]

where, for \(s = 0, 1 \),

\[
\beta_{t+1}^s = \frac{1}{\sqrt{2\pi t \Delta}} \exp \left(- \frac{(R_{t+1} - \eta^s(\mu^e - \epsilon) \Delta^2)^2}{2\sigma^2 \Delta} \right)
\]

The risk-neutral value of the earnings process with current state \(e_t \) and Bayesian estimate \(P_t \) is

\[
V(P_t, e_t) := (1 - P_t)V^0(e_t) + P_tV^1(e_t),
\]

where \(V^s(e_t) \) is calculated as the expected net present value of future earnings per share, conditional on \(S_t = s \).

\section*{2.1.2. Financial securities}

The aggregate firm issues stock and bonds. The bond price is used as a numéraire and set to one. The price per share of stock is denoted \(p \). On day \(t \), there are \(S_t \) shares and \(B_t \) bonds outstanding. Debt per share is \(d_t := B_t / S_t \). Each bond entitles its holder to a fixed overnight interest payment \(r > 0 \). Shareholders receive a dividend equal to the residual net income \(e_t - rd \) per share. Negative net income is associated with financial distress of firms in the real economy, leading to dilution of existing shareholders’ equity through debt restructuring or bankruptcies. We abstract from the details by assuming that negative net income leads to interest payments that consist in part of a transfer of shares from shareholders to bondholders. For each bond, the aggregate firm pays \(e_t / d_t \) and the shareholders make up the shortfall by transferring \((r - e_t / d_t) / p \) shares to the bondholders.

We do not model the firm’s financing decision but assume that it keeps debt per share constant at \(d = d_0 \). At the end of every trading day the firm issues new shares and bonds in proportions \(1 : d \). The proceeds are used to increase the scale of its operations, which is proportional to the number of shares outstanding. Investors spend all of their income on the new issue by purchasing \(e_t / (p_t + d) \) shares of issued stock for each share held, and investing their remaining income in new bonds. The number of shares and bonds bought is then \(S_t e_t / (p_t + d) \) and \(S_t e_t - p_t S_t e_t / (p_t + d) = d S_t e_t / (p_t + d) \), respectively. This leaves debt per share constant at \(d \) and yields a total proceeds of \(S_t e_t \), equal to the total income of investors.

\section*{2.1.3. Order book}

Shares are traded against bonds by submitting limit orders to an exchange which operates a continuous double auction. Each order is a commitment to buy or sell shares at the posted price up to the announced quantity. An order crossing the spread is a market order.\(^6\) Market orders are executed at the best price offered by the current standing limit orders. Partial execution against limit orders at different prices is possible, with any remaining quantity being added to the order book. At every point in time the order book is the collection of all non-executed orders. Limit orders are included in the book observing the usual price-time priority. A limit order remains in the order book until it is executed or the trader submits a new order which cancels any standing order by the same trader. The bid (ask) is the highest (lowest) price among all buy (sell) orders.

\subsection*{2.1.4. Margin trading}

Investors can trade on margin by borrowing stocks or bonds to take on short or leveraged long positions in the stock. We do not model individual lender-borrower contracts but impose the constraint that the supply of stock available for borrowing cannot exceed the current number of shares outstanding. Margin trading is managed by brokers, who will organize a stock loan for a short sale, or lend bonds for a leveraged long position, using the trader’s portfolio as collateral. We assume that each trader has a margin account with a broker which encompasses the entire financial situation of the trader.\(^7\)

A trader’s assets consist of positive stock holdings valued at the bid, and claims on the broker and the aggregate firm. Claims on the broker are bonds deposited with the broker, and payments for any shares that have been sold in the past. Claims on the firm consist of accrued, but unsettled dividend and interest payments. Liabilities to the broker are loans to cover leveraged long positions in the stock, and stock loans valued at the ask. A portfolio \((B_t, S_t)\) held at the end of a trading day receives the amount

\[
rB_t + (e_t - rd)S_t - b_tL_t,
\]

where \(e_t - rd \) is the net income per share, \(r \) the overnight interest rate, \(b_t \) the broker fee, and \(L_t \) the trader’s margin loan. We assume that a margin loan agreement must cover the trader’s current leverage with the addition of any that would result from the execution of some standing limit order with positive or negative quantity \(Q \). The effective margin loan is

\[
L_t = -\min\{0, p_t S_t, p_t (S_t + Q), B_t, B_t - p_t Q_t\}.
\]

We assume that the traders’ claims on the broker yield overnight interest at the same rate as the bond. We also assume that margin loans (net debt to the broker) are charged at an additional 2.5% per annum.\(^8\)

\subsection*{2.1.5. Margin requirements}

Margin trading is subject to margin requirements which are set by regulatory authorities and brokers. An investor holding a portfolio with \(B_t \) bonds and \(S_t \) shares meets the margin requirement \(M_t \) provided

\[
M_t | p_t S_t | \leq B_t + p_t S_t,
\]

where \(p_t \) is the bid (ask) price for a trader who is long (short) in the stock, i.e., portfolios are marked-to-market. Initial margin requirements apply to new positions while existing positions are subject to lower maintenance requirements. In the U.S., the Federal Reserve Board (Regulation T) regulates initial margin requirements which have been set at 50% since 1974. Maintenance margin requirements are regulated by the Financial Industry Regulatory Authority (FINRA) and the stock exchanges. They currently require a margin of at least 25%, but most brokers have stricter house requirements, typically 30–35%. If a trader’s equity ratio in a margin account falls below the initial margin requirement, the account becomes restricted and the broker is not allowed to increase lending. A trader with a restricted margin account can therefore only place orders that will increase her equity ratio, i.e., buying (selling) stocks if

\footnotesize{\(^5\) Information about the earnings process is updated 100 times per day. Actual earnings payments are determined by the value of \(e_t \) at the end of each trading day.

\(^6\) The term ‘market order’ is used here as short-hand for ‘marketable limit order.’

\(^7\) This is equivalent to assuming that the traders will honor their obligations to the broker as long as they are financially able to do so.

\(^8\) In practice interest on margin loans comes in addition to the call money rate, which is the interest rate that banks charge to brokers for margin loans to their customers. We do not distinguish between short- and long-term interest rates and use 2.5% as a proxy for the broker’s cost of providing a margin loan.}
short (leveraged long). We impose initial and maintenance margin requirements of 50% and 33%, respectively. Under a short-selling ban, leveraged long positions are allowed subject to fulfillment of these requirements. If all margin trade is banned, investors cannot be short in either stocks or bonds.

2.1.6. Circuit breakers and pre-trade risk management

Most exchanges use circuit breakers to halt trading in response to large intraday market-wide declines in security prices. After a halt, trading is usually restarted with a call auction. We simplify by restricting the price range of submitted limit orders to the current market price ±10%. Similar mechanisms are used by futures market operators such as CME. We also impose a maximal order size amounting to 1% of the total number of shares outstanding.

2.1.7. Transaction tax

A tax of 10 basis points on the value of each trade can be imposed on both counterparties to the transaction. No exemptions apply. Our goal is to model the current EU proposal, which aims at taxing the financial sector, and where the tax is paid by all market participants, including market makers and other financial intermediaries.9

2.1.8. Investors

There are infinitely many investors, indexed i = 1, . . . , N. Investors will also be referred to as ‘traders,’ ‘funds’ or ‘fund managers,’ depending on the context. Each fund follows a quantitative trading strategy which determines the current limit order, i.e., a price-quantity pair, as a function of the information available at the time of order submission. A trader’s information comprises knowledge about the order book (bid, ask, and the quantities available at these prices), the risk-neutral value of the earnings process, changes in the stock mid price and risk-neutral value during the last 24 h, current portfolio holdings, and state of the margin account.

2.1.9. Order submission

A trading day is divided into N time periods. In each time period, a randomly selected trader arrives at the market. The broker first verifies whether the trader’s current portfolio meets the maintenance margin requirement and, if not, enforces compliance by issuing a margin call. A margin call is modeled as a market order with a quantity that is large enough for the trader’s post-trade portfolio to fulfill the maintenance margin ratio. If the trader receives no margin call, he can submit an order to the book. The order is derived from the trader’s strategy. Real numbers are rounded to the nearest price tick and lot size. Positive and negative quantities are interpreted as buy and sell orders, respectively. A valid order is submitted as is and cancels any standing order by the trader.

A trader’s strategy can produce invalid orders, i.e., orders that fail to comply with the margin restrictions, or orders that are meaningless. A margin violation occurs if execution of an order would cause the trader’s margin account to become restricted, or if already restricted, would further reduce the trader’s equity ratio. Meaningless orders are orders whose price or quantity is not a proper real number, e.g., as a result of division by zero. Invalid orders are dealt with by liquidating the leveraged part of a trader’s portfolio, as a proxy for a broker’s action to prevent potential losses on clients with erratic behavior.

2.1.10. Closing the model

The model generates a residual flow of claims which consists of tax payments, broker fees, portfolio holdings of bankrupt funds, and portfolio holdings of funds that enter and exit the market via tournaments. Terminated funds relinquish their portfolio holdings, and new funds receive 20% of the average portfolio. The net flows of shares and bonds are accumulated on a daily basis, and the current balances are redistributed among all existing funds in proportion to their managed wealth at a rate of 1% per day.

2.2. Solution algorithm

The model is solved using a genetic programming (GP) algorithm with tournament selection.10 The GP algorithm approximates an equilibrium by searching for new strategies that outperform existing ones until the market is weak-form efficient and the distribution of strategies is stable. The outcome of this search is a set of heterogeneous strategies which are adapted to the institutional setting and geared towards survival.

Tourism selection is based on the model for the entry and exit of managed funds proposed by Brown et al. (1996) and Brown et al., 2001. We use wealth under management as a proxy for past performance. The ranking position of funds that recently entered the market is dominated by short-term realized returns because all funds enter the market with the same initial endowment. Consequently, small differences in realized returns have a strong effect on the ranking position of young funds. The situation is different for large, established funds whose longevity is due to superior past performance. These funds typically have only few competitors with a similar amount of wealth under management, and their ranking position is therefore less dependent on short-term performance.

The GP algorithm operates on the computer programs which define the trading strategies of funds. The computer programs are implemented in machine code following Nordin (1997). Each program consists of a list of at most 128 machine instructions which operate on variables and constants stored in memory, using the CPU floating point registers to store and manipulate temporary variables. An instruction specifies an operator and one or two operands. Operators consist of +, −, |, ×, maximum, minimum, change sign, variable manipulations swap, copy, program–flow instructions, if, goto, and relational operators <, >, ≤, ≥, =, ≠. Operands consist of 10 input variables, 4 temporary variables and 213 numerical constants. When a program executes, the temporary variables are initialized to pre-defined values and the instructions are performed in order. The trader’s order (a price and a quantity) is determined by the values of the first two temporary variables after the program has executed.

The algorithm starts by randomly generating a computer program for each fund. From this initial state, trading proceeds as explained in Section 2.1. Over many trading days, the algorithm replaces low performing programs with genetic recombinations of high performing ones as follows: At the end of every trading day, there are tournaments where underperforming fund managers are replaced by new entrants who either follow investment strategies that performed well in the past or random modifications of those strategies. The programs of market entrants are derived using the standard genetic operators crossover and mutation. Our implementation of the algorithm is as follows:

1. Tournament: Randomly select eight programs from the trader population and rank them according to wealth under management.

9 In contrast, the current British, French and Italian FTs do not apply to market makers. Our model can be adapted to this case by exempting limit order traders from the tax.

10 GP is an evolutionary computation technique that has proved successful in many engineering fields (Koza, 1992). For applications of GP and related methods in financial economics, see, e.g., Arifovic (1996), Lensberg and Schenk-Hoppé (2007), and Noe et al. (2003, 2006).
2. Reproduction: Replace the two programs with the lowest rank by copies of the strategies of the two with the highest rank.

3. Crossover: With probability γ_1, recombine the genetic material of the two copied programs by swapping randomly selected sublists of instructions between the two programs.

4. Mutation: Each of the two programs copied undergoes a mutation with probability γ_2: A single instruction in the program is randomly selected, and replaced with a randomly generated instruction.

The algorithm is run with a population of size 20,000 and four tournaments at the end of each day. The crossover and mutation probabilities are set to $\gamma_1 = 0.5$ and $\gamma_2 = 0.95$. A run model consists of two stages: Solution and data collection. The number of trading days for the solution stage is identical across scenarios and large enough to ensure convergence. Data are then collected during an additional 10,000 trading days.

2.3. Calibration and data set

The benchmark scenario is calibrated with the current U.S. margin requirements and no financial transaction tax. Parameter values are either derived from empirical observations or chosen to give results consistent with historical averages and stylized facts. This is done by first calibrating the earnings process to capture those features that are related to business cycles, and the short-term variations that arise due to earnings surprises. We then run the model for a range of values of debt per share, and choose that term variations that arise due to earnings surprises. We then run the model for a range of values of debt per share, and choose that

The data set comprises time-series of all investors' orders and portfolio holdings, the order book, and information about prices, earnings and risk-neutral stock prices. It contains 200 independent time-series over 10,000 trading days for each scenario. Realizations of the earnings process differ between runs, but are identical across all regulatory scenarios for each run, which allows paired statistical tests on daily data relative to the benchmark. Table 2 contains summary statistics for key variables across the full data set of 8 million observations.

The risk-neutral price (RNP) per share of stock is defined as $v(P_i, t, e_t) = V(P_i, e_t) - d$. Here $V(P_i, e_t)$ is the risk-neutral value of the earnings process defined in (2) and d is the risk-neutral value of bonds per share which coincides with the number of bonds per share. For computational purposes $v(P_i, e_t)$ is approximated by two polynomials in $\log(e_t) / C_2$: $v^+(e_t) = 2_0 + 2_1 \log(e_t) + \ldots + 2_n \log^n(e_t)$, one for each state $s \in \{0, 1\}$ of the economy. The representation

\[
(1 - P_j) v^+(e_t) + P_t v^-(e_t),
\]

with

\[
x(0) = (21.0631, -2.1233, -0.8165, -0.05959, -0.001421)
\]

\[
x(1) = (46.3463, 5.7138, 0.1622, -0.004786, -0.0002859)
\]

has an $R^2 > 0.999$ on a domain that includes all earnings realizations in our experiments.

We will use the risk-neutral stock price as a benchmark in the statistical analysis. To compare the market price of the stock with its RNP, we define the stock price discount $p_i := 1 - P_i / RNP_i$. It is positive (negative) if the stock trades below (above) its RNP.

Table 2 shows that the RNP varies between 8.8 and 27, while the range of market prices is much wider and includes the predefined bounds which are set at 1 and 100. These bounds are hit when one side of the order book is empty. The number of such instances equals the number of missing observations for quantities at the bid and ask: 8 days with an empty buy book at the close, and 13 days with an empty sell book. These 21 instances occurred in the benchmark scenario of the model during 4 periods of extreme price fluctuations which lasted 16 days on average.

Convergence of the model is checked by testing for a structural break in the relationship between the discount and the RNP of the stock. We use data collected from the last 20% trading days of the model solution stage. Table 3 shows no evidence of any structural break in the time-series for the first three scenarios. For the tax scenario, the evidence against the null hypothesis is stronger, but still not significant at the 5% level.

Table 1

<table>
<thead>
<tr>
<th>Values of key model parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of traders</td>
</tr>
<tr>
<td>Initial shares per trader</td>
</tr>
<tr>
<td>Initial bonds per trader</td>
</tr>
<tr>
<td>Mean regime durations ν_a</td>
</tr>
<tr>
<td>Mean earnings levels μ_t</td>
</tr>
<tr>
<td>Mean reversion speeds θ_a</td>
</tr>
<tr>
<td>Instantaneous volatility</td>
</tr>
<tr>
<td>Trading days per year</td>
</tr>
<tr>
<td>Price range</td>
</tr>
<tr>
<td>Tick size</td>
</tr>
<tr>
<td>Lot size</td>
</tr>
<tr>
<td>Interest rate</td>
</tr>
<tr>
<td>Broker fee</td>
</tr>
<tr>
<td>Initial/maintenance margins</td>
</tr>
<tr>
<td>Transaction tax (if levied)</td>
</tr>
<tr>
<td>Tournaments per day</td>
</tr>
</tbody>
</table>

Table 2

Sufficiently large population to sustain a competitive market.

Net supplies of shares and bonds are chosen to obtain a mean equity ratio closest to the 60% long-run average.

<table>
<thead>
<tr>
<th>Reproduction:</th>
<th>Replace the two programs with the lowest rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossover:</td>
<td>With probability γ_1, recombine the genetic material of the two copied programs by swapping randomly selected sublists of instructions between the two programs.</td>
</tr>
<tr>
<td>Mutation:</td>
<td>Each of the two programs copied undergoes a mutation with probability γ_2: A single instruction in the program is randomly selected, and replaced with a randomly generated instruction.</td>
</tr>
</tbody>
</table>

The benchmark scenario is calibrated with the current U.S. margin requirements and no financial transaction tax. Parameter values are either derived from empirical observations or chosen to give results consistent with historical averages and stylized facts. This is done by first calibrating the earnings process to capture those features that are related to business cycles, and the short-term variations that arise due to earnings surprises. We then run the model for a range of values of debt per share, and choose that...
and are predetermined at time \(t \). We choose \(z_t = (1, R_t, P_t - P_{t-1}, \delta t / \delta_{t-1}) \), which contains a constant term, lagged stock returns, lagged changes in the Bayesian state probability, and lagged earnings growth. The idea is that instruments and pricing errors should be uncorrelated in order to rule out excess returns from trading on knowledge of \(z_t \).

We assume that \(m_{t,\Delta} \) is proportional to \((w_t / \tilde{w}_t)^{\gamma} \), where \(w_t \) denotes the value of the market portfolio at time \(t \). The parameter \(\gamma \) in the SDF can be thought of as the constant relative risk aversion of a representative agent with direct or indirect preferences over wealth. In view of the results on growth optimal wealth strategies and risk preferences (Kelly, 1956), we test \(\gamma \) against the null hypothesis that \(\gamma = 1 \), which corresponds to logarithmic utility. We emphasize that our assumptions regarding the SDF do not mean that the investors in our model solve explicit utility maximization problems. Investor behavior is determined by competition for survival, and the SDF is only used to rationalize the price process of the stock.

Table 4 reports the results of estimating the empirical counterpart to (5) with GMM on quarterly data for each scenario. The data sets consist of 160 quarters for each of the 200 model runs. The estimated risk aversion coefficient is not significantly different from 1 in any of the four scenarios, consistent with our hypothesis of log utility maximization. The first three scenarios pass the model specification test (J-test) at the 5% significance level, but the tax scenario does not. This suggests that there are statistical arbitrage opportunities in the converged models of the tax scenario. To gauge the size of these arbitrage opportunities, we regressed the pricing errors from the GMM model on the instruments \(z_t \). The correlation between the actual and predicted pricing errors is 0.038, and the volatility of the actual pricing error is 0.084. This yields a predictable pricing error of 0.038 \times 0.084 = 0.0032 (32 basis points), which is less than the average cost of a round trip in the tax scenario (51 basis points, cf. Table 12). The evidence against the pricing model of the tax scenario is therefore weaker than indicated by the J-test in Table 4. We conclude that, with a possible exception for the tax scenario, asset prices can be rationalized in terms of a representative agent with log utility of wealth.

Fig. 1 provides additional information on the short-run price dynamics of the model. Autocorrelations in daily log returns are small and generally insignificant in all scenarios, except under a 11 For details on estimation and evaluation of SDF models, we refer to Cochrane (2005, Ch. 10).
and the current which represents log changes in the earnings variable. Garman–Klass intraday volatility computed from Open, High, Low and Close prices. All variables represent nominal changes from one trading day to thenext, except for Earnings, impact and Order book depth are intraday averages; Stock price discount, Short interest, Long leverage and Earnings are measured at the end of every trading day; and Volatility is volume-weighted execution prices of market sell (buy) orders, both relative to the mid price. Order book depth is the average volume available at the bid and ask. Spread, Market

earnings surprises (Earnings) and five groups of endogenous variables: Risk premium (Stock price discount); trading activity (Trade volume); liquidity (Bid-ask spread, Market impact and Order book depth); intraday volatility (Volatility); and margin trading (Short interest and Long leverage). Bid-ask spread is the difference between ask and bid, and Market impact is the absolute difference between the bid (ask) and volume-weighted execution prices of market sell (buy) orders, both relative to the mid price. Order book depth is the average volume available at the bid and ask. Spread, Market impact and Order book depth are intraday averages; Stock price discount, Short interest, Long leverage and Earnings are measured at the end of every trading day; and Volatility is Garman–Klass intraday volatility computed from Open, High, Low and Close prices. All variables represent nominal changes from one trading day to the next, except for Earnings, which represents log changes in the earnings variable. Business conditions are defined in terms of the Bayesian state probability \(P \) that the economy is currently in an expansion, and the current outlook is positive or negative according to whether \(P \) was above or below its median value at the close of the previous trading day. The data set consists of 10,000 observations from each of the 200 independent runs for the benchmark scenario. To control for run level fixed effects, we compute correlation matrices separately for each run and report their average in the table.

Table 5
Correlations under varying business conditions in the benchmark scenario. The variables include exogenous earnings surprises (Earnings) and five groups of endogenous variables: Risk premium (Stock price discount); trading activity (Trade volume); liquidity (Bid-ask spread, Market impact and Order book depth); intraday volatility (Volatility); and margin trading (Short interest and Long leverage). Bid-ask spread is the difference between ask and bid, and Market impact is the absolute difference between the bid (ask) and volume-weighted execution prices of market sell (buy) orders, both relative to the mid price. Order book depth is the average volume available at the bid and ask. Spread, Market impact and Order book depth are intraday averages; Stock price discount, Short interest, Long leverage and Earnings are measured at the end of every trading day; and Volatility is Garman–Klass intraday volatility computed from Open, High, Low and Close prices. All variables represent nominal changes from one trading day to the next, except for Earnings, which represents log changes in the earnings variable. Business conditions are defined in terms of the Bayesian state probability \(P \) that the economy is currently in an expansion, and the current outlook is positive or negative according to whether \(P \) was above or below its median value at the close of the previous trading day. The data set consists of 10,000 observations from each of the 200 independent runs for the benchmark scenario. To control for run level fixed effects, we compute correlation matrices separately for each run and report their average in the table.

<table>
<thead>
<tr>
<th>Positive outlook</th>
<th>Earnings</th>
<th>Stock discount</th>
<th>Trade volume</th>
<th>Bid-ask spread</th>
<th>Market impact</th>
<th>Book depth</th>
<th>Volatility</th>
<th>Short interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock discount</td>
<td>-0.66</td>
<td>-0.14</td>
<td>-0.11</td>
<td>-0.08</td>
<td>-0.09</td>
<td>-0.13</td>
<td>-0.25</td>
<td>0.08</td>
</tr>
<tr>
<td>Trade volume</td>
<td>0.15</td>
<td>0.11</td>
<td>0.20</td>
<td>0.07</td>
<td>0.04</td>
<td>0.14</td>
<td>0.28</td>
<td>-0.06</td>
</tr>
<tr>
<td>Bid-ask spread</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.04</td>
<td>-0.30</td>
<td>-0.34</td>
<td>0.18</td>
<td>-0.20</td>
<td>-0.13</td>
</tr>
<tr>
<td>Market impact</td>
<td>0.78</td>
<td>0.74</td>
<td>0.74</td>
<td>-0.23</td>
<td>-0.12</td>
<td>0.06</td>
<td>0.11</td>
<td>-0.07</td>
</tr>
<tr>
<td>Book depth</td>
<td>-0.17</td>
<td>0.01</td>
<td>0.07</td>
<td>-0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.05</td>
<td>-0.25</td>
</tr>
<tr>
<td>Volatility</td>
<td>0.11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Short interest</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Long leverage</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.07</td>
</tr>
</tbody>
</table>

Table 6
Autocorrelations under varying business conditions in the benchmark scenario. Variables and data as in Table 5. Bold faced coefficients are significantly different from zero at a p-value of 0.0001.

<table>
<thead>
<tr>
<th>Lag (days)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock discount</td>
<td>-0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.00</td>
<td>-0.01</td>
<td>-0.06</td>
<td>-0.00</td>
<td>0.00</td>
<td>-0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Trade volume</td>
<td>-0.27</td>
<td>-0.15</td>
<td>-0.03</td>
<td>-0.01</td>
<td>0.00</td>
<td>-0.27</td>
<td>-0.14</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Bid-ask spread</td>
<td>-0.39</td>
<td>-0.06</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.34</td>
<td>-0.11</td>
<td>0.03</td>
<td>-0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Market impact</td>
<td>-0.40</td>
<td>-0.05</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.36</td>
<td>-0.09</td>
<td>0.02</td>
<td>-0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Book depth</td>
<td>-0.39</td>
<td>-0.09</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.37</td>
<td>-0.10</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Volatility</td>
<td>-0.42</td>
<td>-0.02</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.40</td>
<td>-0.03</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Short interest</td>
<td>-0.21</td>
<td>-0.03</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.07</td>
<td>-0.03</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Long leverage</td>
<td>-0.29</td>
<td>-0.04</td>
<td>-0.02</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.23</td>
<td>-0.02</td>
<td>-0.03</td>
<td>-0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Fig. 1. Autocorrelations in daily log returns. For each scenario, data are collected from 200 model runs over 10,000 trading days. The mean autocorrelation functions are computed across those 200 runs. The dashed lines connect confidence intervals of 2 standard errors computed at each lag.

transaction tax. In the tax scenario, statistically significant autocorrelations below 2% are observed for lags up to 6 days. With a daily price volatility of about 1%, the predictable abnormal return (about 2 bp) is much too small to compensate for a 51 bp roundtrip cost.

Further time-series properties of the model are provided in Tables 5 and 6 using data from the benchmark scenario. Table 5 contains contemporaneous correlations between exogenous earnings surprises (Earnings) and daily changes in five groups of

endogenous variables: Risk premium (Stock price discount); trading activity (Trade volume); liquidity (Bid-ask spread, Market impact and Order book depth); intraday volatility (Volatility); and margin trading (Short interest and Long leverage). To gauge the effect of varying business conditions on the time-series properties, we split the data set at the median of the Bayesian state probability \(P \) with \(P > \text{median}(P) \) and \(P < \text{median}(P) \) representing positive and negative outlook, respectively.
We find that positive earnings surprises improve liquidity and reduce the risk premium, volatility and trading activity, Table 5. Short interest varies inversely with earnings across business conditions, but leveraged long positions move procyclically in good times and countercyclically in bad times. The time-series properties of margin trading are discussed in detail in Section 3.

Cross-correlations among the three liquidity measures have the expected signs, and so does the positive correlation between trade volume and volatility and the negative relationship between volatility and liquidity. We also find that trade volume is positively correlated with order book depth, and with the bid-ask spread and market impact. The positive relationship between volume and spread is consistent with the findings of Chordia et al. (2000, Table 8), who attribute it to the interaction of market makers with informed traders. Comparing markets across business conditions, we observe that contemporaneous correlations tend to be somewhat weaker during bad times.

Table 6 contains autocorrelations of the endogenous variables for lags up to 5 days. Our results are in line with those reported in Chordia et al. (2001, Table IV) for all variables that overlap with theirs, except that our data contain no calendar effects. Autocorrelations for intraday volatility are close to their S&P 500 counterparts. In bad times, first-order autocorrelations tend to be slightly weaker and higher-order correlations slightly stronger than in good times.

3. Results

This section presents quantitative results on the equilibrium effects of leverage constraints and transaction taxes using model-generated data on portfolio holdings, order flow, liquidity, cost of capital, price discovery, short-term volatility and long-term price dynamics.

3.1. Investor behavior

Specialization is a prerequisite for success in the market for portfolio management services. Fund managers therefore face a number of strategic choices. The most important ones concern investment style (product differentiation) and strategy implementation (trading and risk management). The complexity and variety in the investment styles of fund managers pose a challenge in forecasting the impact of regulatory reform. The 2008 short-selling ban, for instance, disrupted the business models of many financial firms who in turn decried the measure as counterproductive to its aims. The Coalition of Private Investment Companies’s letter to the SEC in 2011 provides an insightful account of the industry’s sentiment and its opposition to current regulatory proposals.12

Regulation can be beneficial if it prevents investors from taking on too much risk. For instance, Robert Shiller made a case for fighting speculative bubbles through active management of margin requirements after the burst of the dot-com bubble in 2000.13 More recently, the G20 countries have taken steps to discourage excessive leverage. Among the tangible outcomes of these initiatives is the European Parliament’s Legislative Resolution ‘on the proposal for a regulation […] on Short Selling and certain aspects of Credit Default Swaps’ (COM/2010/0482). This resolution seeks to restrict short selling with the aim of preventing speculative attacks against European sovereign debt instruments and financial institutions.

In this section, we explore the variation in investor behavior across the different regulatory scenarios of the model. We find that regulation has a profound impact on trading activity, while risk taking and portfolio holdings are affected to a lesser extent. Trading styles are remarkably robust to regulatory change. The same set of styles emerges in all scenarios, with some notable differences in their relative importance.

In markets with delegated fund management, passive investment in the market portfolio offers two main advantages: Returns in line with the market average, and low transaction costs. Returns matching that of the market ensure low volatility of the fund manager’s relative performance, which reduces the risk of client attrition. Table 7 shows that in all regulatory scenarios some 40–50% of total wealth is managed by funds that invest in the market portfolio, while wealth held in leveraged positions (short and long) amounts to less than 10%. This pattern is reversed with respect to trading activity. Table 8 shows that funds holding leveraged positions trade five to seven times more per dollar under

Table 7

<table>
<thead>
<tr>
<th>Position</th>
<th>Base case</th>
<th>No short</th>
<th>No leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>4.06</td>
<td>4.62</td>
<td></td>
</tr>
<tr>
<td>All bond</td>
<td>2.49</td>
<td>10.47</td>
<td>1.12</td>
</tr>
<tr>
<td>Overweight bond</td>
<td>13.39</td>
<td>11.75</td>
<td>9.69</td>
</tr>
<tr>
<td>Market portfolio</td>
<td>45.14</td>
<td>47.35</td>
<td>33.15</td>
</tr>
<tr>
<td>Overweight stock</td>
<td>24.32</td>
<td>13.43</td>
<td>23.16</td>
</tr>
<tr>
<td>All stock</td>
<td>5.46</td>
<td>17.00</td>
<td>3.90</td>
</tr>
<tr>
<td>Leveraged long</td>
<td>5.10</td>
<td>4.34</td>
<td></td>
</tr>
</tbody>
</table>

Table 8 Trading activity by investors’ portfolio positions. Trading activity T(P) is defined as the ratio of trading volume per unit of wealth under management by investors in position P, relative to the average across all investors. The percentage of total trade volume by investors in position P, v(P), is calculated on the same bins as w(P) in Table 7. Trading activity is given by T(P) = v(P)/w(P). Investors with trading activity above (below) 0.05 have a larger (smaller) trading volume than the average investor per unit of wealth. P-Values in parentheses are calculated as in Table 7. The number of observations is 200 in each scenario.

<table>
<thead>
<tr>
<th>Position</th>
<th>Base case</th>
<th>No short</th>
<th>No leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>5.33</td>
<td>6.26</td>
<td></td>
</tr>
<tr>
<td>All bond</td>
<td>6.63</td>
<td>2.25</td>
<td>12.78</td>
</tr>
<tr>
<td>Overweight bond</td>
<td>1.41</td>
<td>2.44</td>
<td>1.67</td>
</tr>
<tr>
<td>Market portfolio</td>
<td>0.39</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Overweight stock</td>
<td>0.48</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>All stock</td>
<td>2.42</td>
<td>3.92</td>
<td></td>
</tr>
<tr>
<td>Leveraged long</td>
<td>5.24</td>
<td>6.72</td>
<td></td>
</tr>
</tbody>
</table>

12 http://www.sec.gov/comments/4-627/4627-139.pdf
management than the average fund, while those who hold the market portfolio trade less than half the average volume. Funds holding the market portfolio thus have the traits of passive investors, while those who hold leveraged positions are active portfolio managers.

In the model a transaction tax raises the cost of active portfolio management and provides investors with additional incentives to pursue passive investment strategies. As a result, in this scenario more than 50% of total wealth is invested in the market portfolio. The effects of leverage restrictions on wealth invested in the market portfolio are not significant, but the market portfolio seems to attract more investors when a ban on short selling is extended to a full leverage ban.

Table 7 shows that a transaction tax does not discourage leverage, contrary to suggestions made by its proponents. Wealth in short positions actually increases, although by less than one percentage point, and wealth in leveraged long positions decreases by a similar amount. Consequently, wealth managed by all leveraged funds is barely changed relative to the 6% benchmark level.

A short-selling ban increases wealth in leveraged long positions by about one half, but reduces wealth in all leveraged positions from 9% to 7.5%. Relative to the benchmark, a leverage ban generates a 60% increase in the wealth invested in portfolios that are long in one asset only. Although margin restrictions curb leveraged risk-taking, neither margin restrictions nor transaction taxes seem to dampen the investors' appetite for risk.

To explore the effects of regulation on trading styles, we collect data for individual traders on portfolio holdings, trading activity and sensitivity to information, and carry out a factor analysis for each scenario. The estimated factor models turn out to be structurally identical across scenarios, and individual factors can be interpreted in terms of real-world trading styles. We examine the relative importance of these trading styles across scenarios and find significant differences related to information acquisition and investment horizon.

Data for the factor analyses are obtained by randomly selecting one executed order for each scenario, run and day. This yields a total of $4 \times 200 \times 10,000 = 8$ million orders. For each order, we compute values for the 12 variables listed in Table 9. The first four variables represent trader size, trade volume relative to managed wealth, order type (limit or market order) and the distance of the trader’s portfolio from the market portfolio. The remaining eight variables represent the sensitivity of the trader’s strategy to information. For each information variable x_j, an indicator variable is set to 1 if a change in x_j alters the quoted price by at least one tick or the order quantity by at least one lot. Vectors of indicator variables are divided by their sum (if positive) to obtain a measure of the extent to which the trade was based on selective information. Variables representing order book quantities are excluded to avoid multi-collinearity, and all variables are standardized by run to control for run level fixed effects. The table shows the results of estimating a three-factor model with maximum likelihood and varimax rotation for each scenario. White and black circles correspond to positive and negative factor loadings, respectively, and circle areas represent absolute values. In the tax scenario, the ordering of factors 2 and 3 is swapped to match their ordering by explained variance in the other scenarios.
factors corresponding to eigenvalues greater than 1. Like other criteria for factor model selection, this one is vulnerable to sampling error. We deal with this problem by computing distributions for the eigenvalues with data from each of the 200 independent runs for each scenario. Fig. 2 provides box plots of these distributions for the five largest eigenvalues. As only the first three eigenvalues are consistently greater than 1 in each scenario, the analysis suggests using three factors throughout.

Table 9 contains the results of estimating a three-factor model for each of the four scenarios. The factors are ordered by explained variance, except for the taxation case, where factors F_2 and F_3 are swapped to facilitate comparison with the other scenarios. White and black circles areas represent positive and negative factor loadings, respectively.

Factor F_2 distinguishes between two types of informed traders.15 The factor assigns positive scores to traders who are sensitive to information on market prices and RNPs, i.e., value traders. Negative scores are assigned to traders who are sensitive to daily changes in those variables, i.e., news traders and arbitrageurs. Factor F_1 distinguishes between two types of uninformed traders. It scores positive for traders who are sensitive to the bid-ask spread and prefer limit to market orders. These characteristics are representative of market makers and other specialized liquidity suppliers. Negative scores are obtained by traders who pay attention to their portfolio position and RNP, but who are insensitive to price information. These traders appear to be involved in carry trades or other cyclical strategies. F_3 is a size factor which scores positive for large traders who hold positions close to the market portfolio, and negative for small traders who hold extreme positions and submit large orders relative to their equity.

We next examine whether the distribution of these styles varies across scenarios, Table 10. Styles are represented by proxy variables for liquidity suppliers, value traders, news traders and informed traders (news or value traders) on the raw data of Table 9.

Style distributions are qualitatively similar across scenarios except for a few notable differences relative to the base case: (i) Informed traders are underrepresented in the tax scenario; and (ii) the ratio of news traders to value traders is substantially higher in the tax scenario and lower in the scenario with a leverage ban. The first result supports Stiglitz’s (1989) hypothesis that a transaction tax will reduce effort spent on information acquisition, but the second one contradicts his conjecture that the tax discourages short-term speculative trading by redirecting investors’ focus towards the long term. In the tax scenario more funds hold the market portfolio. Since this strategy does not require information, there is less information acquisition in the aggregate. The shift from value investing to short-term speculation in the tax scenario coincides with the shift in relative trading activity: Leveraged funds contribute a larger proportion to the trade volume in the tax scenario than in the benchmark case, Table 8. The results in Table 10 suggest that a full leverage ban would advance the goal of reducing the focus on the short-term. A pure short selling ban would have the opposite effect, as it entails the largest number of news traders among all four scenarios.

The emergence of different investment styles matters beyond the issue of characterizing individual fund behavior. Since styles reflect differences in the informational basis of trading decisions, heterogeneity of styles can generate asymmetric information among potential counterparties. For instance, our findings support the standard view that market makers tend to be uninformed relative to their clients. This example illustrates the strength of our modeling approach, which delivers the prediction without any assumptions about trader types or costs of acquiring information.

3.2. Liquidity

Liquid markets offer investors the opportunity to trade large volumes at low cost whenever they want to trade. When liquidity dries up the consequences can be disastrous, as evidenced by the failure of Bear Sterns and other major financial firms in 2008 (Brunnermeier, 2009).

Transaction taxes are generally found to reduce liquidity because trading becomes more costly. Sweden’s painful experience with the effect of high transaction taxes in the late 1980s and early 1990s is a case in point. Campbell and Froot (1994) provide a detailed account and also quantify the impact of the tax on

15 Informed traders are traders who can form rational beliefs about asset mispricing. As a proxy we check whether a trader’s order is sensitive to the stock price and the RNP or to changes in both variables.
investor behavior, migration of trade and use of non-taxed instruments such as derivatives. Now as then, proponents of the tax argue that low trading volume is a benefit as it discourages 'socially worthless activities' by clever and overpaid people.\footnote{16}

There is also the, less commonly shared, view that frequent traders are net liquidity takers and therefore by curtailing their activities with a tax, liquidity may actually improve.

Theoretical studies find that transaction taxes have negative effects on trade frequency and volume (Constantinides, 1986; Kupiec, 1996; Scheinkman and Xiong, 2003). By abstracting from the market microstructure, these papers do not capture the full equilibrium effect on trading costs which can also increase as a result of wider spreads or a shallower book. In quote-driven markets, for instance, Subrahmanyam (1998) and Dupont and Lee (2007) show that the impact of a tax on trading costs depends on the competition between market-makers and the degree of information asymmetry. We therefore expect to find the tax to reduce liquidity because some traders specialize in liquidity provision (Section 3.1).

We analyze the net liquidity supply of different groups of investors, and provide results on order book properties and transaction costs. Table 11 contains information on net liquidity supply. Traders are classified by portfolio positions at the time of order submission, and net liquidity supply is measured as the difference between daily limit order and market order volume.\footnote{17} The executed volume of each order is attributed by equal parts to the trader's portfolio position at the time of the current and next order submission. In the base scenario, active investors demand liquidity and passive ones supply it. This pattern is enhanced when a transaction tax is imposed, contrary to arguments put forward by its proponents. Restriction of margin trade fundamentally alters the pattern of net liquidity supply. Table 11 reveals that under a short-selling ban the largest suppliers of liquidity are active traders who are constrained to holding all-bond portfolios. This effect disappears when the ban on short selling is extended to a full leverage ban because some traders specialize in liquidity provision (Section 3.1).

Table 11 contains results on market liquidity measured by the bid-ask spread, market impact, order book depth and trading activity. The market impact of a buy (sell) order is the absolute difference between the current ask (bid) and the volume-weighted execution price. Endogenous market impact is computed across all executed orders, and order book depth is the market impact of a large order (0.2% of the benchmark trade volume), computed from the state of the book at the close of every trading day.

The base scenario is characterized by high liquidity with a low quoted spread of about 10 basis points and an endogenous market impact of only 1 basis point. The effects of the regulatory scenarios on the quoted bid-ask spread and endogenous market impact are small, except in the tax scenario where the spread is twice as high as in the benchmark scenario and market impact is five times larger. The effects on order book depth are more pronounced. A ban on short selling increases the market impact of the large order by 60%, and in the leverage ban and tax scenarios, the market impact is about four times larger.

Trade frequency, order size and trade volume are highest in the base scenario, Table 12. A ban on short selling reduces trade volume to about 50% of the benchmark level, and a leverage ban cuts it down to 10%. The transaction tax, despite being only 10 basis points, reduces the trade volume to 20% of the benchmark level.

\begin{table}
\centering
\caption{Net liquidity supply. The data are annual means of daily observations of 100\(\frac{v_1(P) - v_2(P)}{v_1(P) + v_2(P)},\) where \(v_1(P)\) is the limit order volume of all traders in position \(P\), and \(v_2(P)\) is the corresponding market order volume. Values and classification of portfolio positions as in Table 7. The number of observations is 200 in each scenario.}
\begin{tabular}{cccc}
\hline
Position & Base case & No short & No leverage & Taxation \\
\hline
Short & -4.28 & 14.62 & (0.000) & (0.000) \\
All bond & -1.51 & 6.00 & -1.48 & -5.91 \\
Overweight bond & 4.39 & 4.50 & -0.66 & 10.61 \\
Market portfolio & 4.04 & 4.41 & -0.82 & 11.85 \\
Overweight stock & 2.63 & 2.03 & 2.91 & 7.96 \\
All stock & -3.44 & 7.19 & 0.06 & 5.37 \\
Leveraged long & -1.80 & 9.73 & & -4.47 \\
Leveraged short & (0.000) & (0.000) & (0.000) & (0.000) \\
\hline
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{Liquidity. The data set consists of run means of daily observations of each variable. For each day, the closing bid and ask are computed as the median bid and ask across the last 50 of 20,000 intraday time steps. The bid-ask spread is the difference between the closing ask and bid. Market impact is the difference between the current bid (ask) and the average execution price of a market sell (buy) order. Market impact is calculated as (i) the average market impact across all market orders submitted during the day (endogenous order size), and (ii) the average market impact of one large buy order and one large sell order of 50,000 shares submitted at the close. The large order size corresponds to 0.2% of the average daily trade volume in the base case. In the table, spreads and market impacts are reported in basis points (bp) relative to the mid price. Average order size on a given day is calculated as trade volume divided by the number of trades. Days between trades is the average time, measured in days, between two consecutive trades by the same investor, calculated as the number of investors (20,000) divided by the number of trades on the given day. Turnover per day is trade volume divided by the number of shares outstanding (10 million shares). Round-trip cost is the total cost, including taxes, of buying and selling a volume equal to the endogenous order size using market orders. P-Values in parentheses are calculated as in Table 7. The number of observations is 200 in each scenario.}
\begin{tabular}{cccc}
\hline
Position & Base case & No short & No leverage & Taxation \\
\hline
Bid-ask spread (bp) & 10.18 & 9.60 & 10.93 & 20.64 \\
& (0.000) & (0.059) & (0.015) & (0.005) \\
Market impact (bp) & 1.07 & 0.91 & 1.96 & 5.26 \\
& (0.000) & (0.013) & (0.000) & (0.000) \\
Market impact (bp) & 3.11 & 5.00 & 13.14 & 12.34 \\
& (50,000 shares) & (0.000) & (0.000) & (0.000) \\
Average order size & 6.067 & 3.330 & 2.012 & 1.980 \\
& (number of shares) & (0.000) & (0.000) & (0.000) \\
Days between trades & 5.23 & 6.21 & 17.73 & 8.95 \\
& (0.000) & (0.000) & (0.000) & (0.000) \\
Turnover per day & 2.465 & 1.15% & 0.25% & 0.49% \\
& (0.000) & (0.000) & (0.000) & (0.000) \\
Round-trip cost (bp) & 12.32 & 11.43 & 14.85 & 51.16 \\
& (0.000) & (0.000) & (0.000) & (0.000) \\
\hline
\end{tabular}
\end{table}

\footnote{16}{See Section 2.1.1 in Campbell and Froot (1994) for more details on these comments and the Swedish experience.}

\footnote{17}{For every order that is executed in full or part, the quantity that is executed against standing limit orders is classified as a market order, and any quantity that is executed against incoming market orders is classified as a limit order.}

Differences in trade volumes are mainly due to differences in order sizes, except in the leverage ban scenario where a small order size is accompanied by a very low trade frequency.

The net effects of differences in liquidity on trading costs are shown in Table 12. Round-trip cost is the average cost incurred by a trader who uses market orders to open and close a position. It amounts to the effective spread (bid-ask spread plus two times the average market impact) in addition to the tax, if any. Relative to the base scenario, a ban on short selling reduces the round-trip cost by a marginal amount, while a leverage ban leads to a moderate increase. In contrast, the transaction tax increases the round-trip cost from 12 to 51 bp, of which 20 bp are directly related to the tax. The remaining 19 bp are due to a higher effective spread. This implies that 97.5% of the transaction tax falls on the liquidity takers. To see this, consider a round-trip involving an impatient
trader and a market maker. Their transactions generate a tax bill of 20 bp to each party. In addition, the trader pays the market maker 19 bp as a result of the increased effective spread. This amount almost covers the tax bill of the market maker, except for a 1 bp reduction in profits.

The negative impact of the short-selling ban on trade volume and trading activity are consistent with the empirical evidence. Studies of the 2008 short-selling ban find significant negative effects on liquidity, price discovery and volatility, see, e.g., Battalio and Schultz (2011), Beber and Pagano (2013), Boehmer et al. (2013), Boulton and Braga-Alves (2010), Kolasiniski et al. (2013), and Marsh and Payne (2012). However, the dramatic increase in the transaction costs of banned stocks reported by Boehmer et al. (2013) is not observed as an equilibrium effect in the model. This suggests that some of the empirical results on short-selling bans may be due to short-run effects which are not equilibrium phenomena.

The 2008 U.S. short-selling ban differs from the ban considered in our model in three main respects: (1) The ban was an emergency action taken in response to a severe decline in the market values of financial stocks; (2) the announcement marked an unexpected and temporary shift in the regulatory regime; and (3) during the 15 trading days the ban was imposed, prices of banned stocks continued to fall along with the overall market.

To assess the short-term effects of a temporary ban on short selling, we carried out a controlled experiment in a similar market situation within our modeling framework. From each run of the base scenario, a period of market distress is selected that resembles the situation of the 2008 short-selling ban. This is done by choosing a period of 1 year and 15 days from each run of the base case as follows: For all periods, percentage declines in RNP over the first year and the subsequent 15 days are calculated separately, and the period with the largest product of the two percentage declines is selected. The last 15 days become the intra-ban period for the experiment. Data are collected from 200 runs on time paths for the earnings process identical to those of the base case, but with a temporary ban on short selling in place during each intra-ban period.

During the simulated 15-day ban, percentage volume-weighted spreads and endogenous market impact increase by 90% and 146% relative to the base case, while trade volume and the number of trades decrease by 22% and 18%, respectively. On day 15 of the ban, the stock price is up 9.4% relative to the base case. This is in line with the findings of Harris et al. (2013), who estimate a 10–12% price increase during the 2008 ban. Differences in stock prices and trading activity between the two scenarios increase throughout the temporary ban, but systematic differences in spreads and market impact disappear halfway through the ban. These findings suggest that lower trading activity is a permanent effect of a short-selling ban, while higher transaction costs are a temporary phenomenon associated with an unexpected change in the regulatory regime.

3.3. Market dynamics and the business cycle

The effect of regulation on long-term market movements is influenced by the governance structures in the portfolio management industry. Under delegated fund management, the principal-agent relationship between investors and fund managers relies on past performance as a proxy for unobservable skill, see e.g., Shleifer and Vishny (1997). This will induce short sellers to increase their positions during downturns and decrease them during upturns, as observed by Lamont and Stein (2004). Short-selling bans could therefore benefit long-term market stability. In contrast, transaction taxes impact the order flow by raising the cost of trading, but have no direct effect on the cost of portfolio holdings. Their effect on long swings in asset prices is therefore less clear.

The destabilizing effects of leverage are well documented in the theoretical literature. Leverage can exacerbate asset price movements through several channels: directly affecting borrowing capacity (Kiyotaki and Moore, 1997), pro-cyclical borrowing induced by counter-cyclical volatility (Adrian and Shin, 2010), fire sales in illiquid markets during downturns (Shleifer and Vishny, 1992, 2011), and forced closure of arbitrage fund managers’ positions when mispricing becomes more severe (Shleifer and Vishny, 1997). Similar mechanisms are present in our model: Short positions are increased when stock prices fall, volatility, bid-ask spread and market impact are all counter-cyclical, and losses on speculative positions increase the risk of client attrition.

We find that leverage restrictions dampen long swings in asset prices by preventing bear runs during recessions, while a transaction tax has no effect. The peak-to-trough variable in Table 13 measures the amplitude of price movements over business cycles as the mean percentage decline in the stock price from a peak in an expansion to the trough in the subsequent recession. In the benchmark scenario, the mean peak-to-trough decline across 687 business cycles is 43.1%. Both types of leverage restrictions have a dampening effect on long-term price movements. A ban on short selling reduces the mean decline by 3.5 percentage points to 39.6%, and a leverage ban reduces it by 4.8 percentage points to 38.3%. A transaction tax, on the other hand, has no significant effect on the mean peak-to-trough decline.

Peak-to-trough movements are largely determined by the difference in average price levels observed during booms and recessions. In Table 13 the variables ‘High’ and ‘Low’ are the means of maximal and minimal stock prices across 200 40-year periods, and ‘Range’ is the difference between ‘High’ and ‘Low.’ While the mean does not differ significantly across scenarios, the low mean is 4% higher in the tax scenario and 15% higher in the two scenarios with a short-selling ban. The range is narrower under a full leverage ban, but is not significantly different in the other three scenarios. We can therefore conclude that leverage restrictions reduce long swings by supporting stock prices during recessions.

The effect can be explained by analyzing differences in the cyclicity of the stock price discount across scenarios. The discount is the percentage amount by which the market price of the stock is lower than its risk-neutral price. Table 14 shows that the discount on the stock moves counter-cyclically in all scenarios, but less so in those two where short selling is banned. The more moderate reaction of the discount in these two scenarios is due to leverage restrictions reducing downward price pressure from counter-cyclical short selling. Stock prices are supported during

Table 13

<table>
<thead>
<tr>
<th># obs.</th>
<th>Base case</th>
<th>No short</th>
<th>No leverage</th>
<th>Taxation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak-to-trough</td>
<td>4 x 687</td>
<td>43.1% (0.000)</td>
<td>39.6% (0.000)</td>
<td>38.3% (0.000)</td>
</tr>
<tr>
<td>High</td>
<td>4 x 200</td>
<td>21.49 (0.000)</td>
<td>22.15 (0.190)</td>
<td>21.55 (0.872)</td>
</tr>
<tr>
<td>Low</td>
<td>4 x 200</td>
<td>8.16 (0.000)</td>
<td>9.37 (0.000)</td>
<td>9.39 (0.000)</td>
</tr>
<tr>
<td>Range</td>
<td>4 x 200</td>
<td>13.33 (0.000)</td>
<td>12.78 (0.200)</td>
<td>12.15 (0.002)</td>
</tr>
</tbody>
</table>
This is consistent with Lamont and Stein's (2004) observation that the number of observations is 1,000 for each scenario.

For each scenario, we sort all data records (200 × 10,000) by RNP, split the data set into 1,000 bins of size 0.1%, and compute the mean of each variable on the 2,000 observations of each bin. The mean RNP of each bin is identical across scenarios because the realizations of RNP are identical by run. We regress each variable on RNP by OLS for each scenario and report the coefficient on RNP. For the base case, we also report p-values in parenthesis. For the other scenarios, the p-values refer to tests of differences in the coefficients on RNP relative to the base case. The number of observations is 1,000 for each scenario.

Table 14

<table>
<thead>
<tr>
<th>Base case</th>
<th>No short</th>
<th>No leverage</th>
<th>Taxation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount</td>
<td>−1.952</td>
<td>−1.602</td>
<td>−1.396</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Short interest</td>
<td>−1.164</td>
<td>−1.079</td>
<td>−1.059</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Long leverage</td>
<td>−0.007</td>
<td>0.231</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

recessions by the very mechanics of short-selling bans which curb speculative bear runs. Indeed, we observe counter-cyclical short interest in the base and tax scenarios, with short positions increasing during downturns and decreasing during upturns. Table 14. This is consistent with Lamont and Stein’s (2004) observation that short interest moved counter-cyclically during the dot-com bubble.

Counter-cyclical short selling is a consequence of delegated fund management, as predicted by Shleifer and Vishny (1997). Short sellers experience capital losses during upturns, and negative profits during booms when dividends are high. Their poor performance leads to a further reduction of wealth under management as clients withdraw funds. In downturns, capital gains are positive, and short sellers continue to perform well throughout the recession when dividends are consistently low. The good performance leads to an inflow of funds to short sellers which, in turn, allows them to take on larger positions.

In recessions, a short position is effectively a bet on high rates of bankruptcy among companies in the real economy. A short position generates a positive cash flow at the time of sale and, if the company is bankrupt, clears the short position at no cost. Leveraged long positions are different because borrowed bonds have to be repaid in full. Consequently, the incentives to hold leveraged long positions during booms are weaker than the incentives to hold short positions during busts. This difference in incentives explains the differences in cyclicality between short interest and long leverage in the base and tax scenarios of Table 14.

To sum up, our model predicts that leverage restrictions dampen long swings in asset prices by preventing bear runs caused by short sellers who speculate on financial distress of companies in the real economy. The transaction tax has no beneficial effect on long term price swings because it does not alter the incentives to hold leveraged positions.

3.4. Pricing and price discovery

This section is concerned with the effect of regulation on the level and information content of stock prices. From a macroeconomic perspective, higher stock prices reduce the cost of capital which promotes growth. Consequently, regulatory reform can improve welfare if it increases stock prices by reducing price fluctuations or by increasing the demand for stocks in other ways. On the micro level, efficient capital allocation relies on informationally efficient prices.

We find that stock prices are highest under the short-selling ban and lowest in the base and tax scenarios, Table 15. The major part of these differences can be accounted for by volatility which is highest in the base scenario, somewhat lower in the tax scenario, and much lower in the two scenarios with leverage restrictions. Lower volatility under the short-selling ban is in line with the empirical findings of Chang et al. (2007) and the increase in stock price with those in Chang et al. (2012). Both observations are confirmed by Chang et al. (2012) who use a unique data set of Chinese stocks for which short-selling constraints were removed in 2010. In our model a short-selling ban increases the equilibrium price level by 7%, but a full leverage ban increases it by only 5%, despite lower volatility in this scenario. We attribute the difference to Miller (1977) result on overvaluation in markets with diverging opinions and short-selling constraints.16

Empirical studies find that transaction taxes lower asset prices (Schwert and Seguin, 1993; Umlauf, 1993; Bond et al., 2004; Matheson, 2011). Theoretical work by Kupiec (1996) predicts that prices will be reduced by the net present value of future tax payments. In our model, every transaction involves a sale of one asset and a purchase of equal value of the other. Since the tax is paid by both parties to the transaction, no asset has a tax advantage, and there is no effect on their relative prices. This observation lends support to a point made by the proponents of a transaction tax. If the tax is introduced, it should be global and uniform to cover all asset classes. Otherwise distortions may occur and the cost of capital is raised for issuers of taxed versus non-taxed assets.

To study the information content of prices, we adapt the statistical measures of Bris et al. (2007) to our context. Price efficiency is measured as the R^2 in regressions of daily log stock returns on daily log innovations to RNP. We test for asymmetric price discovery of good and bad news by computing upside (downside) R^2 in the same way for days with an increasing (decreasing) RNP. R^2 and the difference between downside and upside R^2 are reported in Table 15.

Price efficiency is worst in the tax scenario, better in the base case, and best in the two scenarios with leverage restrictions. Inferior price discovery in the tax scenario is due in part to higher transaction costs which generate larger hysteresis in the traders’ response to information, as predicted by Constantinides (1986). The positive effect of the short-selling ban on price discovery is consistent with the empirical findings in Chang et al. (2012) and Chang et al. (2012) but at odds with Bris et al. (2007).

16 Schenkmman and Xiong (2003) show that this effect persists in a dynamic model with both rational and overconfident investors.
Table 16
Margin trading during extreme events. For each scenario and run, we identify the most extreme event, defined as the 5-day period that maximizes the range of the log closing stock price \(\Delta C0 \) across all 5-day periods of that run. For each extreme event, we collect information about changes in the log stock price \(\Delta p \), short interest \(\Delta SI \), and long leverage \(\Delta LL \). We also compute net margin trade \(\Delta (LL - SI) \). All variables are normalized by their respective standard deviations computed by run on the full samples. The table contains conditional means and medians for each variable for negative extreme events, \(\Delta p < 0 \), and positive extreme events, \(\Delta p > 0 \). For the base case, the \(P \)-Values refer to one-sample Wilcoxon tests. For the other scenarios, they refer to Mann–Whitney \(U \) tests of differences between that scenario and the base case. The number of observations is 200 in each scenario.

<table>
<thead>
<tr>
<th>Change in short interest</th>
<th>Base case</th>
<th>No short</th>
<th>Taxation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in short interest</td>
<td>(\Delta p < 0)</td>
<td>(\Delta p > 0)</td>
<td>(\Delta p < 0)</td>
</tr>
<tr>
<td>Mean (\Delta p)</td>
<td>5.53</td>
<td>–10.69</td>
<td>5.62</td>
</tr>
<tr>
<td>Median (\Delta p)</td>
<td>4.78</td>
<td>–6.43</td>
<td>(0.000)</td>
</tr>
<tr>
<td>(P)-Value (\Delta p)</td>
<td>4.02</td>
<td>–2.62</td>
<td>4.97</td>
</tr>
<tr>
<td>Median (\Delta p)</td>
<td>4.32</td>
<td>–2.36</td>
<td>6.02</td>
</tr>
<tr>
<td>(P)-Value (\Delta p)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Change in long leverage</td>
<td>(\Delta p < 0)</td>
<td>(\Delta p > 0)</td>
<td>(\Delta p < 0)</td>
</tr>
<tr>
<td>Mean (\Delta p)</td>
<td>–2.44</td>
<td>8.76</td>
<td>4.97</td>
</tr>
<tr>
<td>Median (\Delta p)</td>
<td>1.68</td>
<td>3.24</td>
<td>6.02</td>
</tr>
<tr>
<td>(P)-Value (\Delta p)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Change in stock price</td>
<td>(\Delta p < 0)</td>
<td>(\Delta p > 0)</td>
<td>(\Delta p < 0)</td>
</tr>
<tr>
<td>Mean (\Delta p)</td>
<td>–8.96</td>
<td>11.42</td>
<td>–8.77</td>
</tr>
<tr>
<td>Median (\Delta p)</td>
<td>–8.58</td>
<td>9.83</td>
<td>–8.30</td>
</tr>
<tr>
<td>(P)-Value (\Delta p)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.286)</td>
</tr>
<tr>
<td>Number of observations</td>
<td>122</td>
<td>78</td>
<td>155</td>
</tr>
</tbody>
</table>

Downside-minus-upside \(R^2 \) is positive across all scenarios, indicating that the market digests bad news more efficiently than good news. The asymmetry is lowest in the scenario where short selling is banned. This is consistent with Diamond and Verrecchia’s (1987) prediction that restrictions on short selling can impede price discovery in response to bad news under asymmetric information. However, downside-minus-upside \(R^2 \) is only slightly higher under a full leverage ban. This is a puzzle. Although we do not impose private information on the model, funds are still asymmetrically informed due to the specialization on trading styles that prevails in equilibrium. The result should therefore, at least in part, be driven by the mechanism described in Diamond and Verrecchia’s (1987). If this reasoning were correct, a full leverage ban should restore the asymmetry observed in the benchmark model. This does not happen, which indicates that other mechanisms may be driving these results.

It turns out that these observations can be reconciled by considering the impact of extreme events on the measure of price efficiency. The results in Table 16 suggest that the price discovery measure \(R^2 \) is strongly influenced by bear runs and short squeezes. During extreme events, defined as 5-day periods with abnormally large absolute returns, shorts sell large amounts of stock when prices fall. When prices rise, they buy twice as much per unit of time as margin violations trigger forced liquidation. Traders who are leveraged long do the opposite, but to a lesser extent. Therefore, when short-selling is allowed, net margin trade destabilizes prices during extreme events, and more so during short squeezes relative to bear runs. This resembles the relationship between returns and innovations to RNP, producing higher kurtosis and lower price efficiency in terms of \(R^2 \) (Table 15). In addition, the asymmetry generates less negative skewness and higher downside-minus-upside \(R^2 \).

Dropping the 10 most extreme events from each run, the difference in downside-minus-upside \(R^2 \) between the base case and the short-sale ban scenario is reduced from 0.029 (Table 15) to 0.016. Our estimate of the negative effect of the short-sale ban on price discovery in response to bad news is therefore biased upwards by more than 80%. This illustrates that price dynamics during extreme events can distort standard measures of price efficiency that have been used to draw inferences about asymmetric price discovery with respect to good and bad news. A similar point is made by Chang et al. (2012).

4. Conclusion

Financial stability is high on the agenda of politicians and regulators. Several measures have been proposed to deal with the recent crises, but quantitative knowledge about their long-term implications is scarce. Our paper introduces a new methodology to quantify the effects of regulatory reform in an equilibrium model with market microstructure. We apply this methodology to measure the effects of leverage restrictions and financial transaction taxes on market quality and financial stability. The approach enables a detailed analysis of the dynamic equilibrium of portfolio choice, trading activity, market quality and price dynamics under the different regulatory measures.

We find that a short-selling ban reduces both short-term volatility and long swings in asset prices which positively impacts price discovery and lowers the cost of capital. There is no adverse effect on transaction costs but liquidity is worse in terms of trade volume and order book depth. A leverage ban enhances the positive effects of the short-selling ban on market stability, but liquidity is very poor, and the cost of capital is higher. A financial transaction tax has a negative impact on liquidity and price discovery, but no significant effect on long swings in asset prices.

Our analysis suggests several new hypotheses for empirical investigation: (1) Introduction of a short-selling ban has a permanent effect on stock prices and trading activity, but only a temporary effect on transaction costs; (2) Evidence of inferior price discovery related to negative information about stocks subject to a short-selling ban can be accounted for by asymmetric price dynamics during extreme events; (3) Transaction taxes shift the focus of investors from value investment to news trading; (4) Transaction taxes induce investors to hold the market portfolio, but do not curb the extent of speculative positions.

The model can be extended in several directions. Alternative forms of financial transaction taxes can be examined with only minimal changes to the model. For example, tax exemption for market makers can be represented by charging the full amount.
of the tax to the market order side of every transaction. A preliminary analysis of this case suggests that the main impact of such a change in the tax base is a substantial reduction in effective spreads along with an increase in order book depth. By adding a call auction mechanism, one can analyze circuit breakers, as well as the relative merits of continuous trading and repeated auctions. The effect of regulatory discrimination between asset classes can be explored by introducing cash as a medium of exchange and trading different assets against cash on separate order books.

Acknowledgement

Financial support by the European Commission under the Marie Curie Intra-European Fellowship Programme (grant agreement PIEF-GA-2010-274454) and the Swiss National Center of Competence in Research ‘Financial Valuation and Risk Management’ (NCCR FINRISK) as well as computing time from the Norwegian Metacenter for Computational Science (NOTUR) is gratefully acknowledged. Part of this paper was written during a visit to the HaushoﬀResearch Institute for Mathematics at the University of Bonn in the framework of the Trimester Program Stochastic Dynamics in Economics and Finance. We thank the reviewers for their helpful comments.

References

