Forord

Denne analysen er en avsluttende oppgave for mastergradstudiet i samfunnsøkonomi ved NTNU. Jeg vil rette en stor takk til veileder Per Tovmo for konstruktiv tilbakemelding, nyttige kommentarer og god tilgjengelighet. Det rettes også en takk til Sverre Kvalvik ved Forsvarets Forskningsinstitutt for gode råd og rettledning i oppstartsfasen.

Min gode kammerat Jostein Økland Andersen skal også takkes for mange gode tilbakemeldinger og nyttige diskusjoner.

Oppgaven dediseres tidligere og stadig tjenestegjørende i Forsvaret.

Trondheim, august 2013

Odd Erik Myren
"The general who wins a battle makes many calculations in his temple ere the battle is fought. The general who loses a battle makes but few calculations beforehand."

-Sun Tzu, the Art of War
Innhold

1. Innledning ... 1
 1.1 Problemstilling ... 1
 1.2 Disposisjon ... 2
 1.3 Tidligere forskning .. 2

2. Teori ... 7
 2.1 Etterspørselen etter forsvarsgoder 7
 2.2 Forutsetninger ... 13

3. Empirisk modell .. 15
 3.1 Teoretisk eller ateoretisk fremgangsmåte 15
 3.2 Funksjonsform ... 16
 3.3 Simultanitet ... 19
 3.4 Dynamikk .. 23
 3.5 Empiriske modell ... 25
 3.6 Datamaterialet .. 27

4. Resultater .. 33
 4.1 Fixed effect, random effect og IV-metoden 33
 4.2 Delt utvalg ... 36
 4.3 Dummyer ... 38

5. Konklusjon ... 43

Referanseliste ... 45

Appendiks .. 49
1. Innledning

Finanskrisen illustrerte en sårbarhet i den globale økonomien. Det er liten tvil om at dagens vestlige samfunn i stor grad er avhengig av økonomiske forhold som et velfungerende handel-, penge- og valutamarked. Motivasjonen bak denne analysen er å øke forståelsen om forholdene mellom økonomi og sikkerhet. Vil et skift i de økonomiske markedene ha konsekvenser for det sikkerhetspolitiske bildet?

1.1 Problemstilling

For å undersøke dette temaet velges en kvantitativ tilnærming, og det blir sett på hvordan forsvarevne har blitt påvirket av finanskrisen. Det er 3 grunner til at nettopp finanskrisen peker seg ut. For det første ga den tydelige utslag i økonomien og er allment anerkjent som en økonomisk krise. For det andre var den global, og gjør det mulig å se på effekten over flere nasjoner. For det tredje skjedde den i nyere tid slik at overordnende faktorer, som for eksempel teknologisk fremskritt, ikke har endret seg vesentlig frem til i dag.

At finanskrisen inntraff relativt nylig medfører også komplikasjoner. Det er bare noen få år som har blitt påvirket av krisen, slik at effektene kan være vanskelig å identifisere. Antall observasjoner etter finanskrisen kan økes ved å inkludere flere nasjoner i analysen. Det velges derfor å se nærmere på hvordan medlemmene i NATO har blitt påvirket.

Det sikkerhetspolitiske bilde har utallige aspekter, men de militære styrkene i de enkelte statene har helt klart en betydning. Denne analysen avgrenses derfor til å kun se på sammenhengen mellom finanskrisen og de militære kapasitetene. Ved å gjøre en empirisk analyse av de militære utgiftene til NATO-medlemmene, vil følgende problemstilling besvares:

Hvilken effekt har finanskrisen hatt på forsvarsutgiftene i NATO?
1.2 Disposisjon

1.3 Tidligere forskning

Looney og Mehay (1990) estimerte USAs realverdi av forsvarsutgifter fra 1965-1985. De fant et positiv signifikant estimat på 0,723-0,935 ut fra forsvarsutgiftene i foregående periode. Forventede forsvarsutgifter i Sovjet hadde en koeffisient på 0,295 når alle forklaringsvariablene

1 "Spill" kan fra engelsk oversettes til å bety "smitte over på", og utledes nærmere i kapittel 2.1.
var inkludert, men økte til 0,844 når utgiftene i NATO og détente\(^{2}\) ble ekskludert. Kontroll for utgiftene i NATO ble gjort ved å se på avviket fra trenden hos de andre medlemsnasjonene, og medførte en positiv signifikant effekt på forsvarsutgiftene til USA. Dette gir indikasjoner på at USA ikke er en "free-rider\(^{3}\) i alliansen. Av de realøkonomiske forklaringsvariablene hadde inflasjon og forrige års budsjetunderskudd signifikant negativ effekt, og avvik fra trenden i føderal inntekt hadde en signifikant positiv effekt. Forfatterne argumenterer at de realøkonomiske variablene reflekterer veksten i økonomien og inkluderer derfor ikke BNP i sin analyse. En modell med alle forklaringsvariablene oppnådde en justert R\(^{2}\) på hele 0,974.

I en analyse av Frankrike gjennomført av Schmidt, Pilandon og Aben (1990), finner forfatterne en signifikant positiv effekt av BNP på de militære utgiftene. En signifikant effekt av utgiftene blant de resterende NATO-medlemmene og Sovjet er ikke overaskende. Men fortønne er derimot noe utradisjonelle. Utgiftene i NATO gir en positiv effekt, mens utgiftene i Sovjet gir en negativ effekt. Det kan derfor virke som at NATO påvirker i form av en trussel, og Sovjet bidrar med en "spill-in" effekt. Dette kan i noen grad forklares med at Frankrike trakk seg fra den felles militære kommandoen til NATO i løpet av perioden som er analysert.

\(^{2}\) Détente er en betegnelse på avspenning mellom USA og Sovjetunionen som foregikk på 1970-tallet.

\(^{3}\) "Free-rider" kan oversettes fra engelsk til "gratisspassasjer", og utledes nærmere i kapittel 2.1.

\(^{4}\) Regelen om 3 % engasjement var en ikke-bindende avtale innført i 1978, og gikk ut på at medlemmene skulle øke sine forsvarsutgifter med 3 % årlig for å styrke de konvensjonelle styrkene. Denne ble sporadisk etterlevert.

6 Crisis Management doktrinen ble innført i stor grad som følge av opplosningen til Sovjetunionen. Oppløsningen medførte at tidligere undertrykte etniske grupper fikk rom til å gjennomføre voldelige opprør. Konflikten i tidligere Jugoslavia markerte på mange måter starten på et engasjement fra NATO som ikke gikk inn under Artikkel 5. Crisis Management medfører at NATO kan bidra for å beskytte den sivile befolkningen, samt i humanitære kruser og naturkatastrofer.
2. Teori

2.1 Etterspørselen etter forsvarsgoder

En standard neo-klassisk modell kan benyttes for å forklare nivået på de militære utgiftene (Smith, 1995). Det antas innledende at aktørene er rasjonelle, og dermed velger en sammensetning av goder som gir høyest nytte(U). Godene deles inn i to kategorier: Sikkerhet gitt av et militært forsvar(S), og ikke-militære goder gitt av konsum(C). I en analyse av forsvarsutgifter er det naturlig å se på stater som aktører. Dermed blir det aktuelt å benytte en sosial nyttefunksjon, og medianvelgerteorien er mye brukt til dette formålet.

I korthet innebærer medianvelgerteorien at medianvelgeren vil diktere resultatet av valget. Dette forutsetter at velgermassen står ovenfor et endimensjonalt valg, slik som for eksempel nivået på forsvarsutgiftene. Anta at det er to partier som stiller til valg, og disse har to forskjellige syn på hvor mye penger som bør brukes på forsvaret. Hver enkelt velger vil stemme på det partiet som ligger nærmest egne preferanser. Hvis velgernes preferanser er symmetrisk og unimodalt fordelt, kan for eksempel en normalfordelingskurve illustrere preferansene til velgermassen. Konkurransen om flest stemmer vil medføre at partiene beveger seg mot preferansene til medianvelgeren. Partiet som får stemmen til medianvelgeren vil også få stemmene til majoriteten i befolkningen. På den måten kan vil medianvelgerens preferanser, for hvor mye som skal

7 Stater defineres her som en institusjon som har autoritet til å styre folket i ett samfunn og har indre og ytre suverenitet over et bestemt territorium. Dette innebærer monopol på legitim bruk av fysiske tvangsmidler.
8 Unimodal betyr at fordelingen kun har en "topp", slik som for eksempel normalfordelingen, t-fordelingen og chi²-fordelingen.

Sikkerhet defineres i denne analysen som oppfattet fravær av trusler om et angrep. Denne vil være uobserverbar og må erstattes av en kvantifiserbar variabel slik som eget militært forbruk (M_i). En sosial sikkerhetsfunksjon for en stat på generell form vil være gitt av:

$$ S_i = S_i(M_i, M_j, X S_i) \quad i, j = 1, ..., n \quad i \neq j $$

Altså er sikkerhet gitt av eget militært forbruk, militært forbruk i andre stater (M_j), og andre strategiske eller politiske variabler (X) som kan gi skift i sikkerhetsbilde. Variablene varierer over tid, men fotskriften t utelates innledningsvis for å forenkle fremstillingen. Økt militært forbruk i egen stat vil gi økt sikkerhet. Det militære forbruk i andre stater kan gi en positiv, nøytral eller negativ effekt på sikkerheten i eget land. Der det eksisterer allianser mellom statene (M^A_j) forventes det en positiv effekt. Fiendtlige stater (M^F_j) forventes å gi en negativ effekt på sikkerheten, og det forventes ingen effekt fra nøytrale stater (M^N_j).

$$ \frac{\partial S_i}{\partial M_i} > 0 \quad \frac{\partial S_i}{\partial M^A_j} > 0 \quad \frac{\partial S_i}{\partial M^F_j} < 0 \quad \frac{\partial S_i}{\partial M^N_j} = 0 $$

Variablen X har ofte vært hovedinteressen i analyser av de militære utgiftene. Hilton og Vu (1991) inkluderte en variabel for endringer i NATO-doktrinen og atomvåpenkapasiteter. Looney

Dudley og Montmarquette (1981) gir et eksempel på en spesifikk sikkerhetsfunksjon for individet:

\[s_i = \frac{M_i + \beta M_j^A}{N_i^\alpha} \] (3)

Der \(\beta \) er en parameter som sier noe om hvor mye de allierte sine utgifter bidrar til individets sikkerhet \(s \). Variablen \(N \) er innbyggertallet og parameter \(\alpha \) forteller noe om egenskapene til godet. Når \(\beta \) er positiv, vil militære utgifter blant allierte stater bidra positivt til individets sikkerhet. Hvis \(\alpha = 0 \) vil sikkerhet være et rent kollektivt gode, og \(\alpha = 1 \) medfører at sikkerhet er privat gode. Videre i denne analysen antas det at sikkerhet er et kollektivt gode.

Etter å ha definert en sosial sikkerhetsfunksjon i likning (1), kan denne settes inn i den sosiale nyttefunksjonen som sier noe om preferansene mellom de to godene. Likning (4) gir den generelle sosiale nyttefunksjonen:

\[U_i = U_i(S_i, C_i, N_i, XU_i) \] (4)

Foruten sikkerhet og konsum, inkluderer denne innbyggertallet og andre variabler som kan gi skift i nytten \(XU \). Økt sikkerhet eller mer konsum vil gi økt nytte, slik at:

\[\frac{\partial U_i}{\partial S_i} > 0 \quad \frac{\partial U_i}{\partial C_i} > 0 \] (5)
I en stat kan forsvarsevnen bli sett på som et kollektivt gode, altså ikke-ekskluderende og ikke-rivaliserende. For en stat blir derfor nyttens av sikkerhet uavhengig av innbyggertallet. Derimot oppfyller konsum trolig ikke disse kravene, og det blir konsum pr innbygger som blir vesentlig i den sosiale nyttefunksjonen. Innbyggertallet må derfor inkluderes i nyttefunksjonen.

Når en aktør søker å få størst mulig nytte, vil den være begrenset av ressursene til rådighet. For staten kan disse ressursene representeres i form av BNP \(Y\). Ressursene kan benyttes på sikkerhet eller konsum, og prisnivå på de respektive godene er med på å avgjøre mengden. Begrensningen staten er pålagt defineres følgende budsjettbetingelse:

\[
y_i = p_c C_i + p_m M_i
\]

(6)

der \(p_c\) og \(p_m\) er prisnivå på henholdsvis konsum og militært forbruk.

Etterspørselen etter forsvarsgoder finnes ved å maksimere nytten med hensyn til de to godene, gitt budsjettbetingelsen. Dette gjøres ved å sette likning (1) inn i (4) og benytte dette som objektfunksjon, mens (6) benyttes som budsjettsgrenser i en Lagrange-likning. Følgende problem formuleres:

\[
\max_{M_i, C_i} U_i \left[S_i \left(M_i, M_j, XU_i \right), C_i, N_i, XU_i \right]
\]

\[
u. b. b: \ Y_i = p_c C_i + p_m M_i
\]

(7)
Løsningen finnes ved å sette de partielle deriverte lik null, og løse ut med hensyn til C og M^p.

På generell form blir da etterspørselen etter militære utgifter gitt av likning (8), og etterspørselen etter konsum av likning (9):

$$M_i = M_i(P^m/p_c, Y_i, N_i, M_j, XU_i, XS_i), \quad (8)$$

$$C_i = C_i(P^m/p_c, Y_i, N_i, M_j, XU_i, XS_i) \quad (9)$$

Etterspørselen etter konsum er ikke av interesse og vil ikke bli utledet nærmere.

Det forventes at sikkerhet er et normalt gode ($\partial M_i/\partial Y_i > 0$). Positiv inntektseffekt kan tolkes som at større inntekt gir staten flere ressurser tilgjengelig, og dermed kan de militære utgiftene økes. Eller i motsatt tilfelle så vil redusert inntekt gi færre ressurser tilgjengelig, og militære utgifter må reduseres. I tillegg kan det alternativt tolkning, som at økt inntekt medfører større verdier å forsvare. Altså er det større risiko for et fiendtlig angrep, som øker kravet til sikkerheten. Men denne tolkningen innebærer at inntekt må inngå som variabel i både sikkerhetsfunksjonen og budsjettbetingelsen.

Etterspørselen etter militære goder gitt av likning (8) kan tolkes som en reaksjonsfunksjon:

$$M_i = R(M_{-i}, X_i) \quad (10)$$

Der X_i er en vektor bestående av de eksogene variablene i sikkerhetsfunksjonen (1), nyttefunksjonen (4) og budsjettbetingelsen (6) til staten i. Vektoren M_{-i} består av de militære utgiftene til alle de andre statene. Denne funksjonen gir den beste reaksjonen, gitt nivåene som er satt i de andre statene. Hvis alle aktørene velger de militære utgiftene ut fra reaksjonsfunksjonen, vil løsningen være en Nash-likevekt.

Helningen til reaksjonsfunksjonen med hensyn til M_{-i} vil være bestemt av dM_i/dM_{-i}. Ved å differensiere førsteordensbetingelsen fra maksimeringen av nyttefunksjonen (4):

$$\frac{\partial U_i}{\partial M_i} \equiv U'_i M_i = 0 \quad (11)$$

Der 2. ordens betingelse er oppfylt: $\partial U''_i M_i < 0$
finnes helningen som:

\[dU'_{i_{M_i}} = \frac{\partial U'_{i_{M_i}}}{\partial M_i} dM_i + \frac{\partial U'_{i_{M_i}}}{\partial M_{-i}} dM_{-i} = 0 \Rightarrow \frac{dM_i}{dM_{-i}} = -\frac{\frac{\partial U'_{i_{M_i}}}{\partial M_{-i}}}{\frac{\partial U'_{i_{M_i}}}{\partial M_i}} \]

(12)

Andreordensbetingelsen for maksimering tilsier at nevneren \(\frac{\partial U'_{i_{M_i}}}{\partial M_{-i}} \) er negativ. Dette medfører at fortegnet til helningen er ene og alene gitt av fortegnet til telleren \(\frac{\partial U'_{i_{M_i}}}{\partial M_i} \). Sistnevnte kan ha både positivt og negativt fortegn. En positiv helning tilsier at økt militært forbruk i andre stater vil medføre økt militært forbruk i egen stat. Negativ helning tilsier det motsatte. Disse effektene benevnes som spill-over effekt. Men telleren kan også ha verdien null, som medfører at det ikke eksisterer noen spill-over. Etterspørselen etter de militære godene er da ikke avhengig av \(M_{-i} \). I realiteten er derfor spill-over effekten kun til stede når helningen til reaksjonsfunksjonen er signifikant forskjellig fra null (Brueckner, 2003).

I likning (2) ble statene delt i tre: alliert, fiendtlig og nøytrale. I neste avsnitt deles derfor spill-over effekten også inn i disse kategoriene.

Spill-over fra fiendtlige stater betegnes som en trusseeffekt, og vil være gitt av \(\partial M_i/\partial M_f^F \). Det er intuitivt å forme forventet å være positiv. Den kalde krigen er en illustrasjon av dette forholdet, hvor USA og Sovjetunionen fulgte hverandre i opprustningen av sine militære styrker. En økning i militære utgifter hos en fiendtlig stat medfører redusert sikkerhet i egen stat. Egne militære utgifter vil dermed økes for å kompensere for den tapte sikkerheten. I teorien vil ikke en nøytral stat ha noen effekt på egne militære utgifter, fordi nøytrale stater ikke vil påvirke sikkerheten i egen stat. Det forventes derfor at \(\partial M_i/\partial M_f^N \) = 0. Effekten fra allierte stater på egne militære utgifter betegnes som spill-in effekt, og vil være gitt av \(\partial M_i/\partial M_f^A \). Tidligere forskning tilsier at fortegnet til spill-in er avhengig av forholdet mellom forsvarsgodene i de forskjellige statene (Murdoch & Sandler, 1984). Hvis forsvarsgodene i de to allierte statene er substitutter er det en tendens til negativ effekt. Der hvor forsvarsgodene er komplementære har koeffisienten ofte et positivt fortegn, men en lav verdi. En stat blir ofte betegnet som free-rider når økt forbruk på militære goder hos en alliert medfører redusert eget forbruk. En free-rider har altså en signifikant negativ spill-in effekt (Murdoch & Sandler, 1990). En spill-in koeffisient på -1, vil
tilsi at den aktuelle staten reduserer sine militære utgifter like mye som alliansen øker. En positiv spill-in indikerer at statene samarbeider om forsvarsstrategien.

2.2 Forutsetninger

Deres analyse pekte mot at medianvelgermodellen var aktuell i 3 nasjoner, og oligarkimodellen i 4 nasjoner. Men ingen av modellene var aktuelle i de tre siste nasjonene. De konkluderer med at mer forskning er nødvendig på dette område før det kan gis et absolutt svar på hvor anvendbare disse modellene er.

Neste forutsetning er vanlig innenfor økonomien, og går ut på at aktørene er rasjonelle. Rasjonaliteten defineres som at hver aktør gjør det valget som gir høyest nytte, gitt aktørens subjektive preferanser. Når nyttefunksjonen og budsjettbetingelsen er kjent, vil kravet om rasjonalitet medføre forutsigbare resultater. På individnivå kan denne forutsetningen være troverdige, men den kan kritisere seg på nasjonalt nivå. En stat er ikke en enhetlig rasjonell aktør, men derimot en kompleks og sammensatt koalisjon av mennesker i et politisk og byråkratisk landskap. Rivalisering, lobbyvirksomhet, kjøpslåing og gjentjenester innenfor det politiske miljøet kan bidra til at alternativet som velges ikke er det som gir høyest nytte. Forskjellige spill mellom individene i politikken kan gi utfall som ikke er paretooptimal. Et eksempel på en slik situasjon er det klassiske spillet Fangenes Dilemma. Selv om individene gjør rasjonelle valg, er

10 Oligarkimodeller går ut på at beslutningstakerne består av en mindre gruppe. Av definisjon styrer denne gruppen ut fra egen vinning og preferanser. I praksis kan denne modellen benyttes i situasjoner der beslutninger blir tatt av en folkevalgt og hans/hennes egenopnevnte ministere/rådgivere

Konklusjonen blir at det foreligger argumenter for at den neo-klassisk modellen presentert i dette kapittelet ikke gir et utfyllende bilde av etterspørselen til militære utgifter. Men at den i stedet gir et meget forenklet bilde av en særdeles komplisert prosess. Modellen har likevel en nytteverdi siden den gir parameter som kan tolkes, identifiserer kritiske antagelser og tilrettelegger for at resultatet kan inkluderes i en større kunnskap rundt prosessen. Modeller er i sin natur en bevisst forenkling av virkeligheten for å gi et rammeverk hvor empiri kan organiseres og spørsmål besvares (Smith, 1995). I denne analysen blir det derfor antatt at forutsetningen om medianvelgerteorien og rasjonalitet holder, og at inkluderingen av foregående års utgifter fanger opp eventuelle standardiserte handlemåter.
3. Empirisk modell

I kapittel 3 blir det tatt utgangspunkt i teorien presentert i kapittel 2, for så stegvis bygge opp en empirisk modell. De fire første delkapitlene tar for seg hver sin utfordring og hvordan disse løses i denne analysen. Først blir det tatt stilling til en teoretisk eller ateoretisk fremgangsmåte. Deretter blir det sett nærmere på funksjonsformen til etterspørselsfunksjonen. Delkapittel 3 tar for seg problemet rundt simultanitet og delkapittel 4 ser nærmere på dynamikken i modellen. Den empiriske etterspørselsfunksjonen og noen økonometriske utfordringer presenteres i delkapittel 5, før datamaterialet og de enkelte variablene beskrives i delkapittel 6.

3.1 Teoretisk eller ateoretisk fremgangsmåte

Argumentet for en ateoretisk tilnærming er at prosessen som bestemmer nivået på de militære utgiftene, er så komplekse at strukturelle og teoretiske modeller ikke vil ha noen nytteverdi. Hvis motivet bak analysen er å gi modellen kun en beskrivende rolle vil denne tilnærmeningen være nyttig. Den ateoretiske metoden er egnet som en praktisk måte å komme frem til prognoser, eller som en oppsummering av egenskapene til datamaterialet. Hvis modellen skal ha strukturell eller
kausal status, må konklusjonene være troverdige. En fremgangsmåte for å oppnå dette i en ateoretisk tilnærming har vært å sette opp en "Vektor Autoregression"-modell(VAR) og teste for Granger kausalitet (Smith, 1995).

Men den ateoretiske metoden er noe kontroversiell og har blitt kritisert som ubrukelig eller misledende. Den har blitt beskyttet for å være for opptatt av økonomistisk teknikker uten å ta nok hensyn til troverdigheten bak konklusjonene som den statistiske manipulasjonen har kommet frem til (Smith, 1995). En teoretisk tilnærming vil gi muligheter til å sammenligne koeffisienter fra forskjellige analyser og muliggjør testing av teori opp mot empiri. Gitt at de teoretiske spesifikasjonene holder vil denne fremgangsmåten også gi mer effisiente estimatorer.

3.2 Funksjonsform

\[
M_{it} = \alpha_i + \beta_i Y_{it} + (\gamma_{1t} + \gamma_{2t} D_t) A_{i,t-1} + \varepsilon_{it}
\]

\[
A_{it} = \sum_{j=1}^{N} M_{jt} - M_{it}
\]

Her er spill-in fra de andre NATO landene representert av variabelen \(A \). Dummyen \(D \) er lik 0 før 1974 og 1 i påfølgende år, og tillater skift i etterspørselen som følge av overgangen til Flexible Response. Sistnevnte er et eksempel på den tidligere nevnte strategiske eller politiske variabelen XS.

For å se nærmere på hvordan en lineær etterspørselsfunksjon kan utledes, gjøres følgende antagelser: Nyttefunksjon har en Cobb-Douglas funksjonsform, sikkerhetsfunksjon er lineær og utledningen forenkles ved å se bort fra \(N \), \(XU \) og \(XS \). Den generelle nyttefunksjonen fra likning (4) kan da skrives:

\[
U_i = a \log(S_i) + (1 - a) \log(C_i)
\]

Denne nyttefunksjonen kan modifiseres til å ta høyde for et minimum av konsum\((C^*) \) ved å erstatte \(\log(C) \) med \(\log(C - C^*) \). Det antas videre at det ikke eksisterer noen allierte, og at staten kun trenger å forholde seg til én truende nabostat. Sikkerhetsfunksjonen kan da skrives:

\[
S_i = M_i - M_i^* = M_i - (b_0 + b_1 M_i^P)
\]

Her er \(M_i^* \) det minste nivået på militært forbruk som staten trenger for å motstå et eventuelt angrep fra naboen. \(M_i^P \) er bestemt ut ifra et fast urelatert element\((b_0) \) og ut fra motstanderens
militært forbruk \(b_1 \). Det faste elementet \(b_0 \) kan tolkes som naturlig strategiske forsvarsmechanismer. Et aktuelt eksempel for Norge kan være Lyngenalpene i Nord-Norge, som vil gi \(b_0 \) et negativt fortegn. Koeffisienten \(b_1 \) kan tolkes som den relative effektiviteten av styrkene i kamp (Smith, 1995).

Ved å benytte budsjettbetingelsen gitt i likning (6) blir Lagrange funksjon:

\[
L = a \log(M_i - M^*_i) + (1 - a) \log(C_i) - \lambda(Y_i - p_cC_i - p_mM_i)
\]

(17)

Maksimering med hensyn til militært forbruk og konsum gir følgende første ordens betingelser:

\[
\frac{\partial L}{\partial M_i} = \frac{a}{M_i - M^*_i} + \lambda p_m = 0 \Rightarrow \frac{a}{(M_i - M^*_i)p_m} = -\lambda
\]

(18)

\[
\frac{\partial L}{\partial C_i} = \frac{1 - a}{C_i} + \lambda p_c = 0 \Rightarrow \frac{1 - a}{C_ip_c} = -\lambda
\]

(19)

\[
\frac{\partial L}{\partial \lambda} = Y_i - p_cC_i - p_mM_i = 0
\]

(20)

Lagrange multiplikatoren elimineres ved å sette (18) lik (19):

\[
C_i = \frac{p_m}{p_c} \frac{1 - a}{a} (M_i - M^*_i)
\]

(21)

Etterspørselen etter militære goder finnes deretter ved å sette (21) inn i likning (20) og løse med hensyn til \(M_i \):

\[
M_i = \frac{a}{p_m} Y_i + (1 - a)(b_0 + b_1M^*_i)
\]

(22)

Etterspørselen etter militært forbruk er en funksjon av BNP, prisnivå, andre stater sine militære utgifter, preferanseparametere \((a) \) og strategiske parameter \((b) \).

Ved å anta at de militære og sivile prisene er konstante i forhold til hverandre, kan det benyttes realverdier for BNP. Det er da enkelt å skrive likning (22) som en etterspørsel med lineær funksjonsform:

\[
M_i = \alpha + \beta_1 Y^{real}_i + \beta_2 M^*_i
\]

(23)
3.3 Simultanitet

En lineær etterspørselsfunksjon kan estimeres ved hjelp av OLS. Men estimatoren vil da inneholde en skjevhet. Årsaken til dette er at restleddet korrelerer med de militære utgiftene i de andre statene, samtidig som sistnevnte inngår som en forklaringsvariabel. Denne korrelasjonen henger sammen med at de militære utgiftene blir bestemt simultant i hver enkelt stat. For å se nærmere på dette simultanitetsproblemet, tas det utgangspunkt i etterspørselen gitt av likning (8) med en lineær funksjonsform. Utledningen forenkles ved å se bort fra et eventuelt konstantledd og på kun 2 stater \((i, j = 1, 2)\):

\[
M_1 = \beta_1 M_2 + X_1 \theta_1 + e_1 \\
M_2 = \beta_2 M_1 + X_2 \theta_2 + e_2
\]

\[(24)\]

\[(25)\]

Her vil \(X\) være en vektor av de eksogene variablene i etterspørselsfunksjonen. Parameteren \(\beta\) gir spill-over effekten og \(\theta\) er en vektor av parameter for de respektive eksogene variablene. Det stokastiske restleddet er gitt av \(e\). Ved å løse (24) og (25) med hensyn på \(M_1\) kan det på redusert form skrives:

\[
M_1 = \frac{1}{1 - \beta_1 \beta_2} X_1 \theta_1 + \frac{\beta_1}{1 - \beta_1 \beta_2} X_2 \theta_2 + \frac{1}{1 - \beta_1 \beta_2} (e_1 + \beta_1 e_2)
\]

\[(26)\]

Fra likning (26) er det tydelig at \(M_1\) er avhengig av \(e_2\) slik at \(cov(M_1, e_2) \neq 0\). Dermed vil ikke Gauss-Markov-betingelsen; \(E(M_1|e_2) = 0\), være oppfylt og estimering av likning (25) med OLS vil gi en skjev estimator. Tilsvarende gjelder for likning (24). Ved å utvide til \(n\) stater og skrive på matriseform kan ligningssystemet (24) og (25) skrives som:

\[
\begin{bmatrix}
M_1 \\
M_2 \\
\vdots \\
M_n
\end{bmatrix} = \beta
\begin{bmatrix}
0 & \omega_{12} & \cdots & \omega_{1n} \\
\omega_{21} & 0 & \cdots & \omega_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{n1} & \omega_{n2} & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
M_1 \\
M_2 \\
\vdots \\
M_n
\end{bmatrix}
+ \begin{bmatrix}
X_1 & 0 & \cdots & 0 \\
0 & X_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & X_n
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_n
\end{bmatrix}
+ \begin{bmatrix}
e_1 \\
e_2 \\
\vdots \\
e_n
\end{bmatrix}
\]

\[(27)\]

Spill-over effekten er her delt opp i to: \(\beta\) er uavhengig av forholdene mellom statene, mens \(\omega_{ij}\) representerer en vektingsfaktor som sier noe om hvor stor effekt stat \(j\) sine militære utgifter vil påvirke stat \(i\). Et eksempel kan være at denne faktoren representerer hvor stor andel av stat \(j\) som grenser mot stat \(i\).
Likning (27) kan skrives om til:

\[M = \beta W M + X \theta + e \]
(28)

Her benevner \(W \) en vekttingsmatrise, og denne likningen gir løsningen:

\[M = (I_n - \beta W)^{-1} X \theta + (I_n - \beta W)^{-1} e \]
(29)

Den tilfeldige staten \(k \) sine militære utgifter \(M_k \), er avhengig av rad \(k \) i matrisen \((I_n - \beta W)^{-1}\) multiplisert med alle restleddene gitt av vektoren \(e \). Dermed er hvert enkelt element i \(M \) korrelerert med alle restleddene, og OLS estimatoren for \(\beta \) vil inneholde en skjevhet (Brueckner, 2003).

Kjernen til simultanitetsproblemet ligger altså i spill-over effekten, gitt av \(\beta W \). Før det presenteres en løsning på problemet, deles spill-over effekten opp i effekter fra fiendtlige, nøytrale og allierte stater. Siden alle statene bestemmer nivået på sine militære utgifter samtidig, vil simultanitetsproblemet være gjeldende uavhengig hvilket forhold det er mellom statene. I kapittel 2 ble det forventet en positiv effekt fra fiendtlige stater, negativ fra allierte stater, og ingen effekt fra nøytrale stater. I enkleste form kan dette modelleres ved å gi \(\omega_{ij} \) i likning (27) et negativt fortegn når stat \(i \) og \(j \) er allierte, og lik null når en av statene er nøytrale. Fiendtlige stater beholder et positivt fortegn. En annen metode vil være å skille de tre effektene fra hverandre ved å skrive likning (28) som:

\[M = \beta^F W^F M + \beta^A W^A M + \beta^N W^N M + X \theta + e \]
(30)

Her vil \(\omega_{ij} = 1 \) i \(W^F \), når stat \(i \) og \(j \) er fiendtlige. Tilsvarende vil \(\omega_{ij} = 1 \) i \(W^A \) når stat \(i \) og \(j \) er allierte, og i \(W^N \) når en av statene er nøytrale. I de resterende tilfellene vil \(\omega_{ij} = 0 \). \(\beta^F \) vil sammen med tilhørende vekttingsfaktor gi trusseleffekten, spill-inn vil være gitt av en vekttingsfaktor og \(\beta^A \), og eventuell effekt fra nøytrale land vil være gitt av \(\beta^N \) og dens vekttingsfaktor\(^{11}\). De allierte statene vil være representert av NATO, og medlemmene vil være gitt av \(i, j = 1, ..., l \). Truselen vil i denne oppgaven kun bestå av Russland. Dette valget begrunnes

\(^{11}\) Her defineres \(\omega_{ij} \) slik at den kun kan ha to verdier; 0 eller 1. En stat med to fiender kan dermed ikke skille på truslene fra de to, og begge fiendene blir likeverdig. En alternativ løsning er derfor å la \(\omega_{ij} \) ha en glidende overgang fra 0 til 1, der et høyere tall representerer et høyere spenningsnivå mellom de aktuelle statene. Tilsvarende kan gjøres for allierte, hvor et høyere tall kan representerer sterkere allianser, bedre samtøring, felles interesser, felles doktriner, osv. Dette åpner også for at to stater som pr definisjon er allierte, kan ha forskjellig syn på hvor sterk alliansen er.
senere i oppgaven. Matrisen W^F vil dermed inneholde verdier i kun én linje og én kolonne. Likning (30) skrives om ved å endre notasjonen for militære utgifter i Russland(M_{RUS}) til trusselvariabel(T), og antar at nøytrale stater ikke påvirker militære utgifter i andre stater\footnote{Mellomregningen fra likning (27) til likning (36) utledes detaljert i appendikset}. Setter altså ($M_{RUS} = T$), ($\beta^N = 0$) og skriver:

$$M_{-RUS} = \delta T + \beta^A W^A_{-RUS} M_{-RUS} + X_{-RUS} \theta_{-RUS} + e_{-RUS} \quad (31)$$
$$T = \mu \sum_{i=1}^{l} M_i + X_{RUS} \theta_{RUS} + e_{RUS} \quad (32)$$

Her er benevningen forenklet noe ved å sette $\beta^F \omega_{i,RUS} = \delta_i$, og definere δ som en kolonnevektor av ($\delta_1, \delta_2, ..., \delta_l$). Matriser med fotskrift -RUS indikerer at verdiene for Russland er fjernet. Videre er det antatt at Russland ser på NATO som en samlet trussel og ikke skiller mellom de forskjellige medlemmene, slik at $\omega_{RUS,1} = \omega_{RUS,2} = \cdots = \omega_{RUS,l}$. Kan da definere $\beta^F \omega_{RUS,i} = \mu$.

Antar videre at det enkelte medlemslandet i NATO ikke skiller på de militære utgiftene fra de andre medlemmene. Dette betyr at for eksempel Norge vurderer en økning i Danmark sine militære utgifter som likeverdig til en tilsvarende økning i USA. Kan da skrive $\omega_{12} = \omega_{13} = \cdots = \omega_{1l}$, $\omega_{21} = \omega_{23} = \cdots = \omega_{2l}$, osv., og forenkler uttrykket ved å definere $\beta^A \omega_{ii} = \gamma_i$.

$$M_1 = \gamma_1 M_{-1} + \delta_1 T + X_1 \theta_1 + e_1 \quad (33)$$
$$M_2 = \gamma_2 M_{-2} + \delta_2 T + X_2 \theta_2 + e_2$$
$$\vdots$$
$$M_l = \gamma_l M_{-l} + \delta_l T + X_l \theta_l + e_l \quad (35)$$
$$T = \mu \sum_{i=1}^{l} M_i + X_{RUS} \theta_{RUS} + e_{RUS} \quad (36)$$

Der $M_{-i} = \sum_{j=1}^{l} M_j - M_i$ \quad $i, j = 1, ..., l$

Spill-over effekten for et NATO-medlem har da blitt delt opp i en spill-in effekt fra de allierte i form av γ_i og trusseleffekt fra Russland i form av δ_i. Russland har ingen spill-in effekter, men en
trusseeffekt fra NATO i form av μ. Effekten fra nøytrale er utelatt, da denne forventes å være null.

Simultanitetsproblemet kan løses ved å benytte instrumentvariable til å estimere spill-over effektene. Metoden stiller to krav til instrumentvariablene. De må være relevante, som betyr at de er korrelert med den aktuelle forklaringsvariabelen. Og de må være eksogene, som betyr at de ikke korrelert med restleddet.

Utleder dette nærmere ved å benytte likning (24) og (25) der X_2 benyttes som instrument for M_2. Kravet om relevans vil være $cov(X_2, M_2) \neq 0$, og kravet om eksogenitet vil være $cov(X_2, e_1) = 0$. Ved å estimere likning (25), er kravet om relevans oppfylt hvis hypotesen $H_0: \theta_2 = 0$ kan forkastes. Forenkler utledningen ved å anta $\theta_1 = 0$, og benytter kovarianser slik at likning (24) kan skrives:

$$cov(X_2, M_1) = \beta_1 cov(X_2, M_2) + cov(X_2, e_1)$$

(37)

Under forutsetningen om eksogenitet kan dette skrives som:

$$\beta_1 = \frac{cov(X_2, M_1)}{cov(X_2, M_2)}$$

(38)

Dermed kan det finnes en estimator for β_1 som er konsistent, gitt at kravene om relevans og eksogenitet er oppfylt (Wooldridge, 2009).

Som instrumenter til M_{jt} og T på høyre side av likningene (33) til (36), benyttes tidsserieegenskapene til de militære utgiftene. Utleder her for de allierte, men tilsvarende vil også gjelde for Russland. Ved å anta at utgiftene primært er gitt av tidligere verdier, kan følgende likning formuleres:

$$M_{jt} = \rho_{0j} + \rho_{1j} M_{j,t-1} + \ldots + \rho_{pj} M_{j,t-p} + X_{jt} \varphi_j + V_{jt}$$

(39)

φ_j er her en vektor med parameter og V_{jt} er et restledd med standard stokastiske egenskaper. Ved å estimere parameterne i likning (39), kan de estimerte militære utgifter finnes som:

$$\hat{M}_{jt} = \hat{\rho}_{0j} + \hat{\rho}_{1j} M_{j,t-1} + \ldots + \hat{\rho}_{pj} M_{j,t-p} + \hat{X}_{jt} \varphi_j$$

(40)
Kravet om relevans vil være oppfylt hvis de estimerte parameterne til $\rho_{jt}, ..., \rho_{jp}$ og ϕ_j er signifikant forskjellig fra null. Da vil de respektive variablene korrelere med de militære utgiftene, slik at $cov(M_{jt}, M_{jt-1}) \neq 0$, $cov(M_{jt}, M_{jt-p}) \neq 0$, osv. Kravet om eksogene instrumenter tilsier at de ikke skal korrelere med restleddet i den opprinnelige likningen, slik at $cov(e_{it}, M_{jt}) = \ldots = cov(e_{it}, M_{jt-p}) = cov(e_{it}, X_{jt}) = 0$. Sistnevnte kan ikke testes, og må derfor være gitt intuitivt eller begrunnet i form av teori. Argumentasjon for eksogenitet vil bli presentert sammen med de enkelte variablene senere i dette kapittelet.

Gitt at betingelsene er oppfylt, kan det formuleres en ny modell med instrumentvariabler:

$$M_{it} = \hat{\gamma}_i \hat{M}_{-i,t} + \delta_i \hat{T}_t + X_{it} \theta_1 + e_{it} \tag{41}$$

$$T_t = \hat{\mu} \sum_{l=1}^{k} \hat{M}_{lt} + X_{RUS,t} \theta_{RUS} + e_{RUS,t} \tag{42}$$

$$\hat{M}_{-i,t} = \sum_{j=1}^{l} \hat{M}_{jt} - \hat{M}_{it} \tag{43}$$

$$\hat{M}_{jt} = \hat{\rho}_{0j} + \hat{\rho}_{1j} M_{jt-1} + \ldots + \hat{\rho}_{pj} M_{jt-p} + \hat{X}_{jt} \phi_j \tag{44}$$

$$\hat{T}_t = \hat{\rho}_{0,RUS} + \hat{\rho}_{1,RUS} T_{t-1} + \ldots + \hat{\rho}_{p,RUS} T_{t-p} + \hat{X}_{RUS,t} \phi_\tau \tag{45}$$

Der $i, j = 1, \ldots, l$

I likning (41) vil $E(M_1 | e_2, \ldots, e_3, e_t, e_{RUS}) = E(M_2 | e_3, \ldots, e_t, e_{RUS}) = \ldots = 0$ og Gauss-Markov-betingelsen er oppfylt. Tilsvarende gjelder for T i likning (42). $\hat{\gamma}_i, \hat{\delta}_i$ og $\hat{\mu}$ vil gi estimat analogt til γ_i, δ_i og μ når begge kravene til instrumentene er oppfylt.

3.4 Dynamikk

Dynamikken i prosessen er en viktig faktor både ut fra teoretisk og empirisk perspektiv.

Smith (1995) viser dette ved å ta en ateoretisk tilnærming til dynamikken. Følgende enkel modell defineres for de militære utgiftene:

$$\ln(M_t) = \rho_0 + \rho_1 \ln(M_{t-1}) + \rho_2 \ln(M_{t-2}) + \eta_t + \epsilon_t \tag{46}$$

Her benyttes logaritmen til de militære utgiftene, slik at estimatorene til de differensierte variablene kan tolkes som vekstrater. Det tas høyde for en trend i form av η_t, og det stokastiske
restløddet som følger de standard forutsetningene er gitt av ε_t. Smith benytter data fra tabell 7.1A i Murdoch og Sandler (1990) og finner estimatene for de fire største medlemmene i NATO; USA, Frankrike, Tyskland og Storbritannia, i perioden 1960 til 1958. Hvis $\rho_1 = 1$ og $\rho_2 = 0$ er prosessen en "random walk" og hvis $\rho_1 + \rho_2 = 1$ er det en førsteordens autoregresjon av vekstratene. I begge disse spesielle situasjonene er det en enhetsrøt i prosessen. For alle de fire landene ble det gjennomført en "Argumented Dickey Fuller" test, ADF(1). Resultatet var at hypotesen om at tidsseriene var integrert av første orden, I(1), ikke kunne forkastes. Altså ved hjelp av å differensiere modellen en gang, kunne man oppnå en stasjonær modell. Ingen av likningene viste signifikant seriekorrelasjon, og en høy R^2 indikerte at minst 89% av variasjonen kunne forklares ut i fra denne ateoretiske fremgangsmåten.13 Men hypotesen om random walk med drift kunne ikke forkastes for Frankrike og Storbritannia. Den ateoretiske tilnærmingen kan derfor kun forklare de militære utgiftene i 2 av de fire NATO-medlemmene. Men selv om resultatene ikke gir en entydig konklusjon, er de med på å illustrere at dynamikken i utgiftene kan være relevant. Det blir derfor naturlig å inkludere tilbakedaterte verdier for de militære utgiftene i den generelle modellen.

I en modell hvor den avhengige variabelen er inkludert som tilbakedaterte forklaringsvariabler, vil det være ønskelig å kontrollere om modellen er stabil og stasjonær. Det vil si at det ikke eksisterer noen enhetsrøtter. Den vanligste metoden er å gjennomføre en ADF-test som det ble gjort i modellen gitt av likning (46). Utfordringen i denne analysen er at det benyttes paneldata, og at statene i datamaterialet ble medlem av NATO på forskjellige tidspunkter. Datamaterialet er derfor ikke balansert, noe som vanskelig gjør testingen. En alternativ metode for å kontrollere for enhetsrøtter er å se direkte på estimatene. For at de karakteristiske røttene skal ligge innenfor enhetsirkelen, må $\sum_{t=1}^{p} \rho_i < 1$. Dette betegnes som den nødvendige betingelsen. Siden ρ_i kan være både positiv og negativ er det tilstrekkelig om $\sum_{t=1}^{p} |\rho_i| < 1$ (Enders, 2010). Hvis den tilstrekkelige betingelsen er oppfylt, er det ikke nødvendig å beregne de karakteristiske røttene. Hvis kun den nødvendige betingelsen er oppfylt må røttene beregnes.

For å ta høyde for de dynamiske egenskapene, inkluderes en tilbakedatert avhengig variabel som forklaringsvariabel. Dette er også en enkel måte å ta høyde for utelatte variabler (Wooldridge, 2009). Hvis den utelatte variabelen er med på å bestemme de militære utgiftene i en periode, så er

13 Den høye R^2 er noe misledende, illustrert av R^2 til den differensierte modellen som gikk fra 0,11 til 0,42.
det stor sannsynlighet for at den var med på å bestemme nivået i foregående periode også. På den måten fungerer den tilbakedaterte variabelen som en proxy for de utelatte variablene. Altså kan modellen på denne måten fange opp eventuelle standardiserte handlemåter som beskrevet i teorikapittelet.

3.5 Empiriske modell

Etter å ha valgt en ateoretisk fremgangsmåte og en lineær etterspørselsfunksjon, samt tatt høyde for simultanitet og dynamikk, kan den generelle empiriske modellen formuleres. I denne analysen er det kun etterspørselen etter de militære utgiftene i NATO som er av interesse og med utgangspunkt i likning (41) vil denne være gitt av:

\[M_{it} = \beta_0 + \pi_1 M_{it-1} + \delta \widehat{M}_{i,t} + \theta_1 Y_{it} + \theta_2 \left(\frac{P_m}{p_c} \right)_{it} + \theta_3 N_{it} + \alpha_i + \varepsilon_{it} \] \hspace{1cm} (47)

\[M \quad \text{– Militære utgifter} \]
\[\widehat{M}_{i,t} \quad \text{– Spill-in variabel gitt av likning (43) og (44)} \]
\[Y \quad \text{– Brutto Nasjonalprodukt} \]
\[P_m \quad \text{– Priser på militære goder} \]
\[P_c \quad \text{– Priser på sivile goder} \]
\[N \quad \text{– Antall innbyggere} \]
\[\beta_0 \quad \text{– Konstantledd} \]
\[\alpha_i \quad \text{– Individspesifikt restledd} \]
\[\varepsilon_{it} \quad \text{– Idiosynkratisk restledd som følger de standard økonometriske forutsetningene.} \]

Datamaterialet inneholder empiri for Russland og alle de 28 medlemsnasjonene i NATO fra 1988 til 2012. Altså er \(l = 28 \), \(i = (1, \ldots, l) \) og \(t = (1988, \ldots, 2012) \).

Her er restleddet delt opp i to ledd for å skille på den individspesifikke og idiosynkratiske delen. Forutsetningen for en forventningsrett estimator er blant annet at restleddet ikke er korrelert med en av forklaringsvariablene. I denne analysen er det stor sannsynlighet for at den individspesifikke delen ikke oppfyller dette kravet. For eksempel vil myndighetene i de forskjellige statene ha ulik struktur og sammensetning, det kan eksistere ulike handelsavtaler, samt forskjellige lover og regler som argumenterer for at det individspesifikke restleddet skaper problemer. En løsning er å benytte en "fixed effect"(FE) eller "random effect"(RE)
transformasjon. FE går ut på å trekke fra gjennomsnittet over tid. Siden det individspesifikke restleddet er konstant over tid, vil dette være uforandret og forsvinner fra likningen. Ser nærmere på dette ved å forenkle likning (47) til kun å inneholde én variabel, og skriver:

\[M_{it} = \beta_0 + \theta_1 Y_{it} + \alpha_i + \epsilon_{it} \] (48)

Gjennomsnittet over tid vil være gitt av:

\[\bar{M}_{it} = \beta_0 + \theta_1 \bar{Y}_{it} + \alpha_i + \bar{\epsilon}_{it} \] (49)

Der \(\bar{M}_{it} = \sum_{t=1}^{T} M_{it} \) osv.

Ved å trekke likning (49) fra (48) kan følgende likning estimeres med OLS:

\[\tilde{M}_{it} = \tilde{\beta}_0 + \theta_1 \tilde{Y}_{it} + \tilde{\epsilon}_{it} \] (50)

Der \(\tilde{M}_{it} = M_{it} - \bar{M}_{it} \) osv.

Altså er ikke \(\alpha_i \) lengre en del av funksjonen mens \(\theta_1 \) er uforandret. Random effect er noe mer komplisert å utlede, men meget forenket så estimeres likning (50) der \(\hat{M}_{it} = M_{it} - \psi \bar{M}_{it} \).

Verdien på \(\psi \) vil variere fra 0 til 1, og er avhengig av variansen til restleddene og antall perioder i utvalget. Hvis \(\psi = 0 \) vil RE tilsvare det samme som Pooled OLS, og \(\psi = 1 \) vil medføre at RE er det samme som FE (Wooldridge, 2009).

En annen feilkilde kategoriserer som målefeil. Denne kan eksistere i den avhengige variabelen og i forklaringsvariablene. Hvis den avhengige variabelen inneholder målefeil, og denne er uavhengig av forklaringsvariablene, vil dette føre til at variansen til estimatene øker. Estimatorene vil altså fortsatt være forventningsrett. Men hvis det er en klassisk målefeil i forklaringsvariablene, vil dette derimot være en skjævhet i estimatorene (Wooldridge, 2009). Når det gjelder den avhengige variablen i denne analysen, så er sannsynligheten for at de militære utgiftene inneholder målefeil ganske store. For det første definerer statene sine militære utgifter forskjellig. For det andre er det av sikkerhetspolitiske årsaker mulig at en stat bevisst rapporterer feil nivå, da særlig i form av underrapportering. Noe av denne målefeilen kan korrigeres ved å bruke en felles definisjon. Utfordringen ligger i at de militære utgiftene også benyttes som forklaringsvariabler. Det blir sett litt nærmere på problemet med feilrapportering under beskrivelsen av datamaterialet, og da særlig under avsnittet om trusselvariabelen.

26
Heteroskedastisitet vil si at restleddvariansen ikke er konstant men avhengig av forklaringsvariablene. Konsekvensen av dette er at t-statistikken til en OLS estimator ikke er t-fordelt. Dermed blir de standard hypotesetestene ikke gyldig lengre. Men dette løses enkelt ved å estimere robuste koeffisienter. Dette er i dag inkludert i de fleste statistikkprogrammer (Wooldridge, 2009).

Den siste feilkilden ligger i multikollinearitet. Det vil si at en av forklaringsvariablene i stor grad kan forklares av en lineær funksjon av de andre forklaringsvariablene i modellen (Wooldridge, 2009). En konsekvens av dette er at estimatorene vil ha en større varians og standardavvik. Det kan derfor resultere i at nullhypotesen ikke forkastes, og estimatene da fremstår som ikke-signifikante. Den beste løsningen på dette problemet er å øke antall observasjoner. En alternativ løsning er å fjerne en av forklaringsvariablene, men dette kan igjen gi problemer i form av en utelatt variabel

3.6 Datamaterialet

Det meste av datamaterialet er hentet fra databasen til Verdensbanken (The World Bank, 2013a). De samler inn tall fra de forskjellige statene sine egne statistiske byrå. Kvaliteten på dataen er derfor veldig avhengig av den enkelte stat sine metoder og systemer for innsamling av empiri. Verdensbanken jobber kontinuerlig med å hjelpe utviklingsland til å forbedre sin innsamling av statistikk (The World Bank, 2013b). I denne oppgaven blir det primært benyttet tall fra godt utviklet industriland, slik at det er rimelig å anta at det ikke eksisterer nevneverdig kritiske forhold rundt datakvaliteten.

Den avhengige variabelen

Forskjellige land definerer militære utgifter på forskjellig måte. Utfordrende områder er for eksempel atom- eller romfartsprosjekter som har både sivil og militær funksjon, samt vernepliktige og paramilitære styrker. I sin innsamling av data, benytter SIPRI en egen definisjon
av militære utgifter. Dette gjør det mulig å sammenligne tallene fra de forskjellige land. Der det er mulig inkluderer tallene utgifter til: (a) militære styrker, inkludert fredsbevarende styrker, (b) forsvarsdepartement og andre offentlige organisasjoner engasjert i forsvarsprosjekter, (c) paramilitære styrker når disse anses som trent, utstyrt og tilgjengelig for militære operasjoner, og (d) militær romfartsaktivitet. Dette vil da inkludere utgifter til (i) personell, herunder nåværende civile og militære, pensjoner til militært personell og sosiale utgifter til personellet og deres familier, (ii) operasjoner og vedlikehold, (iii) innkjøp, (iv) militær forskning og utvikling, (v) militær anleggsarbeid, og (vi) militærhjelp. SIPRI inkluderer ikke sivilforsvar og nåværende utgifter til tidligere militære aktiviteter som veteranstøtte, demobilisering, konvertering av våpenproduksjonsanlegg og våpendestruksjon (SIPRI, 2013c). Det antas at SIPRI sin definisjon, og deres innsamlingsmetoder, korrigerer noe av en eventuell målefeil. SIPRI oppgir de militære utgiftene i lokal valuta og konstante 2011 dollar. Sistnevnte blir benyttet i denne analysen og er justert både for endringer i pris og valuta. De militære utgiftene er i hele tusen dollar.

Figur 1: Illustrasjon av de militære utgiftene i utvalgte nasjoner. Logaritmisk skala
Forklaringsvariablene

14 Modellen gikk ut på å summere Sovjet sine styrker ved å bruke amerikanske priser, for så regne om til rubler og dividere med BNP for å finne andelen benyttet på militæret (Smith, 1995).

BNP er definert som summen av netto aggregert verdi av all produksjon i økonomien, pluss eventuelt beskatning og minus eventuelle subsidier som ikke er inkludert i netto verdi. Det er ikke tatt høyde for avskrivning av fabrikkerte eiendeler, samt forringelse og nedbryting av naturressurser (The World Bank, 2013a). Det er aktuelt å benytte BNP i andre stater som instrument for å estimere spill-in effekten. Kravet til BNP blir da $\text{cov}(e_{it}, Y_{it}) = 0$. Dagens globale økonomi er av slik karakter at det er liten tvil om BNP i forskjellige stater korrelerer. Men siden det kontrolleres for egen BNP i etterspørselsfunksjonen, vil denne korrelasjonen fanges opp. Restleddet kan dermed antas å være uavhengig av BNP til andre stater, og kan benyttes som instrument.

16 Multipolar er når flere enn to stater har majoriteten av økonomisk, kulturell og militær innflytelse i verden. Dette er i motsetning til Unipolar eller Bipolar hvor det er kun snakk om én eller to stater. Da den Kalde Krigen var på sitt mest intense var dette et eksempel på Bipolar verden der NATO og WTO hadde høyest innflytelse.
Største utfordring med datamaterialet er å samle troverdige tall på prisnivåer. For sivile varer har det vært mulig å benytte konsumprisindekser i en lengre periode, men de fleste har en tilsvarende indeks for militære varer. Der det likevel eksisterer slike offentlige indekser, er det metodiske problemer i måten de er beregnet, da særlig innenfor produktivitetsvekts blant offentlige ansatte og kvalitetsendringer på materiell (Smith, 1995). En vanlig metode for å unngå dette problemet er å anta at de relative militære og sivile priser er konstante, slik at effekten av prisendringer blir fanget av konstantleddet i likningen. En annen løsning er å benytte militære utgifter som andel av BNP i stedet for faktiske utgifter. Dette medfører at pris- og inntektselastisiteten antas å være like. Det er lite som antyder at totale militære utgifter er sensitive på priser, men enkelte deler vil være det. For eksempel er forskjellen i andel personell- og materiellutgifter varierende fra land til land, der høylønnede stater velger en mer kapitalintensiv profil (Smith, 1995). I mangel på priser på militære varer blir den første løsningen valgt for å ta høyde for dette problemet. SIPRI viste i 1984 at prisen på militær aktivitet varierer tilsvarende som andre priser, som indikerer at de relative prisene er konstante. De relative prisene kan da fjernes fra etterspørselsfunksjonen, og realverdier for de militære utgiftene blir benyttet som avhengig variabel (Murdoch & Sandler, 1990). Realverdiene for BNP beregnes ved å benytte samme deflator som for de militære utgiftene, og er oppgitt i hele tusen dollar.

Som beskrevet i teorien, vil innbyggerantallet bli relevant i etterspørselen etter militære goder på grunn av konsumet. Derimot vil ikke innbyggertallet være relevant for andre stater. Kravet om eksogenitet til instrumentvariabelen vil dermed være oppfylt $cov(e_{it}, N_{jr}) = 0$, og innbyggertallet kan benyttes som instrument i estimeringen av spill-in effekten.

For å kunne se effektene av finanskrisen, defineres det en dummyvariabel($D09$). Denne tar verdien 1 for år 2009 eller senere, og 0 ellers. Selv om finanskrisen slo inn i 2008, antas det i denne analysen at virkningene ikke ble gjeldene på de militære utgiftene før 2009. Bakgrunnen for denne antagelsen er at det først var når investeringsbanken Lehman Brothers gikk konkurs i september 2008, at finanskrisen utviklet seg til en global krise. Videre blir de fleste militære organisasjonene styrt med årsbudsjetter, slik at en eventuell endring i forbruket først vil komme til synes i neste års budsjet. Denne analysen vil ikke prøve å svare på i hvilken grad finanskrisen har påvirket sikkerheten eller nytten til staten, men kun fokusere på hvilken effekt den har hatt på etterspørselsfunksjonen.
4. Resultater

For å ta høyde for at statene har blitt medlem av NATO på forskjellige tidspunkter, defineres det en dummy(DNATO) for medlemskap. DNATO er lik 1 når staten er medlem og 0 ellers. Estimeringen blir kun kjørt for de observasjonene der DNATO er lik 1, for på den måten ekskludere observasjoner der den aktuelle staten ikke var medlem.

Signifikansnivået er alltid relevant i en slik analyse. I denne oppgaven benevnes signifikansnivå lavere enn 0,01 som svært signifikant. Signifikansnivå lavere enn 0,05 benevnes som signifikant, og nivå lavere enn 0,10 benevnes svakt signifikant. Alle estimat med statistisk signifikansnivå på 0,10 eller høyere benevnes ikke-signifikant.

4.1 Fixed effect, random effect og IV-metoden

Innledningsvis estimeres de militære utgiftene til medlemmene av NATO gitt av likning (47), der det blir sett bort fra simultanitetsproblemet. Trusselvariabelen blir da behandlet som en eksogen variabel gitt av Russland sine militære utgifter, og spill-in blir sett på som eksogent gitt av summen til de andre NATO-medlemmene. Resultatet fra paneldateregresjonen er presentert i tabell 1. For å ta høyde for eventuelle uobserverte individspesifikke variabler benyttes en modell med fixed effect transformasjon(FE). Hvis de uobserverte variablene er ukorrelert med forklaringsvariablene, vil transformasjonsmetoden random effect(RE) gi en effisient estimator (Wooldridge, 2009). I tabell 1 presenteres en FE-modell i kolonne 2, og en RE-modell i kolonne 3. Begge modellene er estimert med robuste standardavvik. En Hausman-test har en nullhypotese om at de uobserverte effektene er ukorrelert med forklaringsvariablene, noe som gjør at estimatene fra FE og RE blir relativt like. FE-metoden vil gi konsistente estimator i begge tilfellene. RE-metoden gir derimot inkonsistente estimator hvis nullhypotesen forkastes, men
effisiente estimator hvis den ikke forkastes. En Hausman-test av modellene "FE" og "RE" gir en testobservator på 111,5317. Denne er chi2-fordelt og kan forkastes med et signifikansnivå som er lavere enn 0,01. Altså gir RE-metoden inkonsistente estimatorer, og FE-metoden blir derfor valgt.

<table>
<thead>
<tr>
<th></th>
<th>FE</th>
<th>RE</th>
<th>FE IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{t−1}$</td>
<td>0,911***</td>
<td>0,962***</td>
<td>0,845***</td>
</tr>
<tr>
<td></td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
</tr>
<tr>
<td>M_{t}</td>
<td>-0,00732***</td>
<td>0,000979</td>
<td>-0,0156***</td>
</tr>
<tr>
<td></td>
<td>(0,000)</td>
<td>(0,546)</td>
<td>(0,000)</td>
</tr>
<tr>
<td>T</td>
<td>0,0133***</td>
<td>-0,00121</td>
<td>0,0485***</td>
</tr>
<tr>
<td></td>
<td>(0,002)</td>
<td>(0,338)</td>
<td>(0,003)</td>
</tr>
<tr>
<td>Y</td>
<td>0,0121***</td>
<td>0,00384</td>
<td>0,0142***</td>
</tr>
<tr>
<td></td>
<td>(0,001)</td>
<td>(0,209)</td>
<td>(0,000)</td>
</tr>
<tr>
<td>N</td>
<td>-0,273</td>
<td>-0,0772</td>
<td>0,0901</td>
</tr>
<tr>
<td></td>
<td>(0,284)</td>
<td>(0,343)</td>
<td>(0,665)</td>
</tr>
<tr>
<td>Obs.</td>
<td>461</td>
<td>461</td>
<td>386</td>
</tr>
<tr>
<td>R^2</td>
<td>0,953</td>
<td>0,945a</td>
<td>0,961</td>
</tr>
<tr>
<td>Justert R^2</td>
<td>0,953</td>
<td>0,997b</td>
<td>0,961</td>
</tr>
</tbody>
</table>

p-verdier i parentes
* $p<0,10$ ** $p<0,05$ *** $p<0,01$
a R^2 "Within"
b R^2 "Overall"

For å ta høyde for simultanitet benyttes instrumentvariabelmetoden. Instrumentene finnes ved å estimere likning (44) og (45) der $p = 5$. Deretter pålegges det restriksjoner ved å sette de estimatene som ikke er signifikante til null. Restriksjonene testes med t/f-tester, og målet er å stå igjen med en modell for hver stat som kun har signifikante estimat. Tabell 1 A i appendikset viser en oversikt over resultatene for hvert NATO-medlem og Russland. Med unntak av Danmark18 har alle variablene et signifikansnivå som er lavere enn 0,10. Videre er det relativt høye forklaringsgrader i form av justert R^2. Unntaket er her Danmark og Romania. En tommelfingerregel er at F-verdien skal være høyere enn 10. Dette gjelder for alle statene med unntak av Danmark, Romania og Slovakia. Men når utgiftene til alle statene summeres, vil

17 Hausman test på modeller hvor det er benyttet robuste standardavvik er ikke mulig, så testen er gjennomført på modellene der robuste standardavvik ikke er benyttet.
18 Variabelen for innbyggertallet inkluderes for Danmark selv om denne ikke er signifikant. Dette gjøres for å få signifikant estimat for $M_{t−3}$
verdiene fra disse ha liten betydning. Det antas derfor at kravet om relevante instrumentene er oppfylt. De estimerte parameterne ble deretter benyttet til å predikere de militære utgiftene i de respektive statene, og en spill-in variabel ble beregnet gitt av likning (43). Denne nye spill-in variabelen og predikerte militære utgifter i Russland ble så benyttet til å estimere likning (47), og den nye modellen presenteres i kolonne 4 i tabell 1 under navnet "FE IV".

I den instrumenterte modellen er alle estimat sterkt statistisk signifikant, med unntak av innbyggertallet som er ikke-signifikant. Modellen har en relativ høy forklaringsgrad. Justert R^2 tilsier at ca. 96 % av variasjonen i de militære utgiftene forklares av denne modellen. På grunn at instrumentene inneholder tilbakedaterte verdier, reduseres antall observasjoner fra 461 til 386.

De tilbakedaterte militære utgiftene har et estimat på 0,845. Tilsvarende resultat kom Looney og Mehay (1990) fram til i deres analyse av USA. Dette indikerer inkrementalisme, og at beslutningsregler og våpenmengde har stor betydning for de militære utgiftene. En t-test viser at hypotesen $\pi_1 = 1$, kan forkastes med signifikansnivå 0,01. Modellen vil derfor ikke eksploderer over tid og det eksisterer en langsiktig likevekt. Koeffisienten tilsier at en økning i de militære utgiftene på 1 000 dollar, vil medføre en økning på 845 dollar neste år. Det kan altså argumenteres for at forsvarsutgiftene først og fremst blir bestemt ut i fra beslutningsregler, som for eksempel krav til operativ evne eller en fastsatt mengde stående styrker.

Estimatet til spill-in variabelen er signifikant negativ. NATO-medlemmene mottar derfor noe nytte fra de allierte sine utgifter, og kan redusere sine egne. Dette innebærer at sikkerhetsgodet i en NATO-stat er et substitutt til tilsvarende gode fra de allierte statene, og at det eksisterer en form for free-riding blant NATO-medlemmene. For det gjennomsnittlige NATO-medlemmets vil en samlet økning av de militære utgiftene på 1 000 dollar hos de andre allierte statene, medføre en reduksjon i egne militære utgifter tilsvarende ca. 16 dollar.

Trusselvariabelen har en positiv koeffisient, og indikerer at Russland sine militære utgifter er en medvirkende faktor til nivået på de militære utgiftene i NATO. Hvis Russland øker sine militære utgifter med 1 000 dollar, vil det gjennomsnittlige NATO-landet øke sine militære utgifter med ca. 49 dollar. Fortegnet bekrefter at NATO ser på Russland som en trussel. Looney og Mehay (1990) fant tilsvarende resultat i sin analyse, men en betydelig høyere verdi. De konkluderte med
at datidens Sovjet så ut til å få mindre betydning for de militære utgiftene i USA, noe resultatene i denne analysen er med på å underbygge.

Innbygghertallet har en positiv koeffisient, men denne er ikke signifikant. Så innbyggertallet har ingen effekt på etterspørselen etter militære utgifter.

4.2 Delt utvalg

<table>
<thead>
<tr>
<th>Tabell 2: Instrumentert modell og delt utvalg</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{t-1})</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(T)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(Y)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(N)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Obs.</td>
</tr>
<tr>
<td>(R^2)</td>
</tr>
<tr>
<td>Justert (R^2)</td>
</tr>
<tr>
<td>p-verdier i parentes</td>
</tr>
<tr>
<td>* p<0,10</td>
</tr>
<tr>
<td>** p<0,05</td>
</tr>
<tr>
<td>*** p<0,01</td>
</tr>
</tbody>
</table>

I andre kolonne presentere den originale modellen der alle observasjonene benyttes. Estimatene før finanskrisen er listet under Periode 1 i kolonne 3. Periode 2 i kolonne 4 viser estimatene etter finanskrisen. De tilbake daterte militære utgiftene er meget signifikant i begge periodene, men...
koeffisienten er betydelig lavere i den siste. Før finanskrisen var den på 0,887, mot kun 0,663 etter 2008. Altså er det fortsatt indikasjoner på inkrementalisme, men tidligere verdier har ikke like stor betydning. Det lavere estimatet betyr at staten har gått bort fra enkelte beslutningsregler. For eksempel kan det tenkes at staten har redusert sine stående styrker, operative krav eller antall øvelser.

I likhet med BNP skifter også estimatet til innbyggertallet fra positivt ikke-signifikant i første periode, til negativt (svakt)signifikant i siste periode. Det negative fortegnet antyder at sikkerhetsgodet etter finanskrisen har egenskaper som ligner mer på et privat gode. Murdoch og Sandler (1990) fant en negativ signifikant effekt av innbyggertallet på de militære utgiftene i Sverige. Årsaken er at økt innbyggertall har gitt større samfunnsutgifter, på bekostning av de
militære. Dette ble bekreftet i deres analyse av en positiv sammenheng mellom ikke-militære utgifter og innbyggertallet. De påpeker også at selv om innbyggertallet kan ha et relativt høyt estimat, så var endringen i innbyggertallet så liten i perioden. Den reelle endringen i militære utgifter på grunn av befolkningsøkning ble derfor minimal. På grunn av den korte tidshorisonten i periode 2, er det også i denne analysen liten endring i innbyggertallet, og det samme argumentet blir gjeldende.

Resultatene i denne estimeringsmetoden skiller seg ut fra teorien og funnene i modellen FE IV. Justert R^2 opprettholder sin verdi på ca. 96 % i første periode, men synker betraktelig til ca. 66 % i periode to. Modellen mister altså en del forklaringskraft etter finanskrisen. En forklaring til dette ligger i at de fleste observasjonene havner inn under den første perioden. Ved flere observasjoner etter finanskrisen, kan det være mulig at denne metoden gir mer troverdige resultater.

4.3 Dummyer

$D09$ introduseres i likning (47) og en ny utvidet modell kan skrives som:

$$M_{it} = (\beta_0 + \beta_{0D} D09_t) + \pi_i M_{it-1} + (\tilde{\gamma} + \tilde{\gamma}_{D} D09_t) \tilde{M}_{i,t-1} + (\hat{\delta} + \hat{\delta}_{D} D09_t) \tilde{\gamma}_t + (\theta_1 + \theta_{1D} D09_t) Y_{it} + \theta_2 N_{it} + \alpha_i + \epsilon_{it}$$ \hspace{1cm} (51)

Der:

$$D09_t = \begin{cases} 0 \text{ når } t < 2009 \\ 1 \text{ ellers} \end{cases}$$

Prisvariabelen er her fjernet som beskrevet tidligere. Denne utvidede modellen vil kunne sin noe om endringer i konstantleddet(β_{0D}), spill-in($\tilde{\gamma}_{D}$), trusselvariabelen($\hat{\delta}_{D}$) og inntekten(θ_{1D}).

Resultatet fra estimeringen presenteres som modell D1 i andre kolonne i tabell 3.

Før det blir sett nærmere på estimatene til dummyvariablene, sammenlignes de variablene som er felles for FE IV og D1. Den tilbakedaterte variabelen for de militære utgiftene har fått en svak økning fra 0,845 til 0,870 og er fortsatt sterkt signifikant. Spill-in variabelen har gått fra å være -0,0156 og sterkt signifikant, til -0,0262 og signifikant. Trusselvariabelen har relativt sett fått en betydelig endring fra 0,0485 i modellen uten dummyer, til 0,121 i modellen D1. Den er nå svakt signifikant, men antyder at Russland ble sett på som en større trussel før Finanskrisen. BNP
variablen er fortsatt sterkt signifikant, og er blitt noe lavere i forhold til FE IV modellen. Innbyggervariablen er betydelig endret, men den er fortsatt ikke signifikant.

Ingen av estimatene til dummyvariablene er signifikante. Det er da naturlig å teste om alle disse kan forkastes, og følgende test formuleres:

\[H_0: \beta_{0D} = \gamma_D = \delta_D = \theta_{1D} = 0 \text{ (dvs. modellen FE IV er riktig)} \]

\[H_A: \beta_{0D} \neq 0, \gamma_D \neq 0, \delta_D \neq 0, \theta_{1D} \neq 0 \text{ (dvs. modellen D1 er riktig)} \]

Med 4 restriksjoner og 27 frihetsgrader blir testobservatoren \(F = 12.76 \). Det betyr at nullhypotesen kan forkastes med et signifikansnivå som er lavere enn 0,01. Selv om ingen av dummyene er signifikante i D1, så er sistnevnte modell å foretrekke fremfor FE IV. En årsak til ingen av dummyene kan forkastes kan være multikollinearitet. Det blir sett nærmere på dette i tabell A 2 i appendikset.

I neste steg pålegges det restriksjoner på to av dummyvariablene. Dette gir 6 alternative modeller, og dermed 6 hypoteser som må testes. Første nullhypotese som testes er at trusselvariablen og konstantleddet ikke er signifikant forskjellig som følge av finanskrisen. Altså \(\beta_{0D} = \gamma_D = \delta_D = \theta_{1D} = 0 \).

Modellen med disse begrensningene presenteres som D2 i tredje kolonne i tabell 3. Den alternative hypotesen blir igjen representert av D1. Testobservatoren F er opplyst i nest siste rad i tabellen, med tilhørende p-verdi i siste rad. For modellen D2 er F=0,91 som medfører en p-verdi på 0,4164. Restriksjonen som er pålagt kan altså ikke forkastes. Deretter testes de resterende hypotesene. Konstantleddet og spill-in variablen antas ingen endret effekt etter finanskrisen i modellen D3(\(\beta_{0D} = \gamma_D = 0 \)). Konstantleddet og BNP variablen i D4(\(\beta_{0D} = \theta_{1D} = 0 \)), spill-in og trusselvariablen i D5(\(\gamma_D = \delta_D = 0 \)), BNP og trusselvariablen i D6(\(\theta_{1D} = \delta_D = 0 \)), samt spill-in og BNP variablen i D7(\(\gamma_D = \theta_{1D} = 0 \)). For modellene D3-D6 ble testobservatoren F fra 0,86 til 1,71 og disse modellene kan derfor ikke forkastes som verdig alternativ til D1. Modellen D7 fikk derimot testobservatoren F=7,25 og kan forkastes med et signifikansnivå lavere enn 0,01.

Det kan nå testes om modellen måler tre begrensninger. Hypotesene (\(\beta_{0D} = \gamma_D = \theta_{1D} = 0 \)), og (\(\gamma_D = \delta_D = \theta_{1D} = 0 \)) er ikke aktuelle å teste på grunn av at D7 allerede har blitt forkastet. De aktuelle begrensningene blir derfor (\(\beta_{0D} = \delta_D = \theta_{1D} = 0 \)) presentert som modell D8, og (\(\beta_{0D} = \gamma_D = \delta_D = 0 \)) presentert som modell D9.
Tabell 3: Utvidet og alternative modeller med dummyer

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{t-1}</td>
<td>0,870***</td>
<td>0,885***</td>
<td>0,884***</td>
<td>0,877***</td>
<td>0,885***</td>
<td>0,883***</td>
<td>0,828***</td>
<td>0,845***</td>
<td>0,882***</td>
</tr>
<tr>
<td></td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
</tr>
<tr>
<td>M_{1}</td>
<td>-0,0262**</td>
<td>-0,0146***</td>
<td>-0,0133***</td>
<td>-0,0261***</td>
<td>-0,0146***</td>
<td>-0,0162***</td>
<td>-0,0266***</td>
<td>-0,0166***</td>
<td>-0,0123***</td>
</tr>
<tr>
<td></td>
<td>(0,010)</td>
<td>(0,001)</td>
<td>(0,002)</td>
<td>(0,000)</td>
<td>(0,001)</td>
<td>(0,000)</td>
<td>(0,008)</td>
<td>(0,000)</td>
<td>(0,001)</td>
</tr>
<tr>
<td>$D09.M_{1}$</td>
<td>0,0111</td>
<td>0,00120***</td>
<td>0,0279**</td>
<td>0,0222***</td>
<td>0,000451</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,319)</td>
<td>(0,000)</td>
<td>(0,030)</td>
<td>(0,002)</td>
<td>(0,200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0,121*</td>
<td>0,0356**</td>
<td>0,0357**</td>
<td>0,117***</td>
<td>0,0354**</td>
<td>0,0419***</td>
<td>0,131*</td>
<td>0,0469***</td>
<td>0,0406***</td>
</tr>
<tr>
<td></td>
<td>(0,070)</td>
<td>(0,014)</td>
<td>(0,010)</td>
<td>(0,002)</td>
<td>(0,014)</td>
<td>(0,003)</td>
<td>(0,087)</td>
<td>(0,004)</td>
<td>(0,007)</td>
</tr>
<tr>
<td>$D09.T$</td>
<td>-0,403</td>
<td>0,00929</td>
<td>-0,367**</td>
<td>-1,000</td>
<td>-0,400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,197)</td>
<td>(0,174)</td>
<td>(0,198)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0,0115***</td>
<td>0,0111***</td>
<td>0,0111***</td>
<td>0,0110**</td>
<td>0,0112***</td>
<td>0,0113***</td>
<td>0,0146***</td>
<td>0,0143***</td>
<td>0,0110***</td>
</tr>
<tr>
<td></td>
<td>(0,004)</td>
<td>(0,008)</td>
<td>(0,018)</td>
<td>(0,008)</td>
<td>(0,003)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
</tr>
<tr>
<td>$D09.Y$</td>
<td>-0,000643</td>
<td>-0,00109***</td>
<td>-0,00108***</td>
<td>-0,00114***</td>
<td>-0,000996***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,274)</td>
<td>(0,007)</td>
<td>(0,006)</td>
<td>(0,005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0,435</td>
<td>0,403</td>
<td>0,404</td>
<td>0,478</td>
<td>0,401</td>
<td>0,377</td>
<td>0,112</td>
<td>0,0774</td>
<td>0,408</td>
</tr>
<tr>
<td></td>
<td>(0,454)</td>
<td>(0,492)</td>
<td>(0,495)</td>
<td>(0,480)</td>
<td>(0,495)</td>
<td>(0,493)</td>
<td>(0,625)</td>
<td>(0,711)</td>
<td>(0,489)</td>
</tr>
<tr>
<td>$D09$</td>
<td>20445664,0</td>
<td>1270022,5***</td>
<td>-22299974,2***</td>
<td>30772290,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,310)</td>
<td>(0,000)</td>
<td>(0,004)</td>
<td>(0,185)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Konstant</td>
<td>-11959786,8</td>
<td>-15869455,5</td>
<td>-16741230,2</td>
<td>-12954985,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,424)</td>
<td>(0,369)</td>
<td>(0,357)</td>
<td>(0,475)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observ.</td>
<td>386</td>
<td>386</td>
<td>386</td>
<td>386</td>
<td>386</td>
<td>386</td>
<td>386</td>
<td>386</td>
<td>386</td>
</tr>
<tr>
<td>R^2</td>
<td>0,964</td>
<td>0,962</td>
<td>0,962</td>
<td>0,964</td>
<td>0,962</td>
<td>0,963</td>
<td>0,961</td>
<td>0,962</td>
<td>0,962</td>
</tr>
<tr>
<td>Justert R^2</td>
<td>0,963</td>
<td>0,962</td>
<td>0,962</td>
<td>0,963</td>
<td>0,962</td>
<td>0,961</td>
<td>0,962</td>
<td>0,961</td>
<td>0,962</td>
</tr>
<tr>
<td>F a</td>
<td>-0,91</td>
<td>1,01</td>
<td>0,86</td>
<td>0,95</td>
<td>1,71</td>
<td>7,25</td>
<td>5,50</td>
<td>7,83</td>
<td></td>
</tr>
<tr>
<td>P a</td>
<td>-0,4164</td>
<td>0,3770</td>
<td>0,4324</td>
<td>0,4004</td>
<td>0,1994</td>
<td>0,0030</td>
<td>0,0044</td>
<td>0,0006</td>
<td></td>
</tr>
</tbody>
</table>

p-verdier i parentes
* p<0,10 ** p<0,05 *** p<0,01
a F/p-verdi for test av modellen mot H^a: D1 er riktig
Testobservatoren for disse hypotesene blir henholdsvis 5,5 og 7,83. Dermed kan begge nullhypotesene forkastes med et signifikansnivå lavere enn 0,01. Konklusjonen blir at det ikke kan pålegges restriksjoner på tre eller alle fire dummyene. Altså må den endelige modellen inneholde minst to dummyer. Videre kan ikke disse to dummyene kun være for konstantleddet og trusselvariabelen, slik som i modell D7.

Modellene D2, D3, D4, D5 og D6 er alle gyldige forenklinger av den utvidede modellen D1. Alle disse har en høy justert R^2 på ca. 0,96. Det vil si at disse modellene forklarer ca. 96 % av variasjonen i de militære utgiftene. Dette er et relativt høyt tall, men Murdoch og Sandler (1990) fant i sin analyse av Sverige en R^2 på 0,96-0,99. Hvilken av disse modellene som best forklarer etterspørselen etter de militære utgiftene er ikke gitt. Ser derfor nærmere på resultatet av estimeringen i alle disse fem alternative modellene.

Variablen for tilbakedaterte militære utgifter har et estimat på 0,877-0,885 og er sterkt signifikant i alle modellene. Alle modellene forkaster også hypotesen $\pi_1 = 1$, og er derfor stabile og har en langsiktig likevekt.

Spill-in variablen er sterkt signifikant og negativ i alle modellene. For modellene som har en dummy for spill-in etter finanskrisen, varierer koeffisienten fra -0,0146 til -0,0261. Disse modellene tilsier at finanskrisen har medført en endring i estimatene til henholdsvis -0,0134(D2), 0,0018(D4) og 0,006(D6)\footnote{Modell D2:-0,0146+0,0012= -0,0134 Modell D4:-0,0261+0,0279= 0,0018 og Modell D6:-0,0162+0,0222= 0,006}. Altså er det i D4 og D6 et statistisk signifikant skift som gjør at spill-in variabelen blir positiv. Men en test av de nye koeffisientene i D4 og D6 tilsier at disse ikke er signifikante. Det kan derfor kun konkluderes med at bevisene for free-riding ikke lengre er til stede etter finanskrisen. Derimot er det nye estimatet til D2 sterkt signifikant, og konkluderer med at fenomenet free-riding er sveket med ca. 8,2 \footnote{Modell D2: -0,0012/0,0146 \approx -8,2 %} etter 2008. De to gjenverrende modellene D3 og D5 argumenterer for at spill-in variabelen er uforandret etter finanskrisen, og har et estimat fra -0,0133 til -0,0146.

I modellen D4 er trusselvariabelen positiv før finanskrisen med en estimert verdi på 0,117. Etter finanskrisen endres dette estimatet til -0,25\footnote{Modell D4: 0,117-0,367= -0,25}. Denne modellen argumenterer for at trusselvariabelen skifter fortegn som følge av finanskrisen, og at Russland i teorien går fra å være...
en trussel til å gi en spill-in effekt. En tolkning av dette resultatet er at NATO etter finanskrisen ser på Russland som en bidragsyter til å skape stabilitet i det globale sikkerhetsbilde, og dermed benytter Russland sine militære utgifter som substitutt for deres egne. Modellen D3 tar også høyde for en endring som følge av finanskrisen, men finner ikke noen signifikant forskjell. Sammen med D2, D5 og D6 er de resterende estimatene for trusselvariabelen signifikante og ligger mellom 0,354-0,0419.

Alle modellene finner så å si det samme estimatet for inntektseffekten. Dette ligger på 0,011-0,0113 og er sterkt signifikant, med unntak av D4 som kun har signifikansnivå lavere enn 0,05. De tre modellene D2, D3 og D5 inkluderer en dummy for finanskrisen og viser at inntektseffekten går noe ned til ca. 0,01. Dette er i seg selv veldig små endringer, men relativt sett er dette en reduksjon på ca. 10 %. Ved å benytte gjennomsnittverdier for de militære utgiftene og BNP, kan det beregnes en inntektselastisitet. Elastisiteten sier hvor mange prosent de militære utgiftene endrer seg som følge av én prosent endring i BNP. De gjennomsnittlige militære utgiftene for NATO-medlemmene er i perioden ca. 42,4 milliarder, og BNP har et gjennomsnitt på ca. 1 438 milliarder. For modellen D2 gir dette en inntektselastisitet på ca. 0,377 før finanskrisen, og ca. 0,340 etter finanskrisen.

Ingen av modellene finner signifikante estimat for innbyggertallet. En dummy for konstantleddet er inkludert i D5 og D6. Siden de militære utgiftene er oppgitt i hele tusen, er verdien på disse estimatene noe store. D5 tilsier at etterspørselen skifter oppover med ca. 1,3 milliarder, mot modellen som D6 tilsier et negativt skift på ca. 22,3 milliarder.

22 Modell D2: 0,0111-0,00109=0,01001 Modell D3:0,0111-0,00108=0,01002 Modell D5:0,0112-0,00114=0,01006
23 Modell D2: -0,00109/0,0111≈-9,8 % Modell D3: -0,00108/0,0111≈-9,7 % Modell D5: -0,00114/0,0112≈-10,2 %
5. Konklusjon

Denne analysen har forsøkt å svare på hvilken effekt finanskrisen har hatt på de militære utgiftene i NATO. For å gjøre dette har det blitt utledet en neo-klassisk modell til å forklare etterspørselen etter de militære utgiftene. Etterspørselsfunksjonen ble så estimert ved å benytte data for NATO-medlemmer og Russland fra 1988 og frem til 2012. Innledningsvis ble fixed effect transformasjon og instrumentvariabler benyttet for å kontrollere for individspesifikke utelatte variabler og simultanitetsproblemet. For å svare på problemstillingen ble først utvalget delt i to perioder, og en modell ble estimert for hver av disse. Deretter ble hele utvalget estimert samlet, og tidsdummyer introdusert for å fange opp effektene. Forskjellige hypoteser ble testet for å kontrollere om de forskjellige effektene var signifikante.

I den instrumenterte modellen ble det funnet at de militære utgiftene er avhengig av militære utgifter i forrige periode, spill-in, trusselvariabelen og BNP. Det ble bekreftet tilstedeværelse av inkrementalisme. Spill-in variabelen tilsa at det gjennomsnittlige NATO-medlemmet er en free-rider, og at sikkerhetsgodet til en hvis grad kan substitueres mellom de allierte. Russland kan tolkes som en trussel, og inntektseffekten bekreftet at sikkerhet er et normalt gode.

Det er derfor mer troverdig å konkludere med resultatene fra modellene med tidsdummyer. En utvidet modell med 4 tidsdummyer ble estimert. Forskjellige hypotesetester førte til fem alternative modeller. Disse fem har flere fellestrekk og blir benyttet til å svare på problemstillingen.

For det første er det militære utgifter i forrige periode som har størst estimat. Modellene er stabile på lang sikt og de militære utgiftene blir i hovedsak bestemt av utgiftene i foregående periode.
Gitt alt annet likt, så vil en økning i de militære utgiftene på 1 milliard medføre en økning på mellom 877 og 885 millioner år etter.

For det andre er inntektseffekten relativ lik i alle modellene, og tilsier at sikkerhet er et normalt gode. Tre av modellene konkluderer med at inntektseffekten reduseres med ca. 10 % fra 2009 og utover. Dette tilsier at de militære utgiftene etter finanskrisen er mindre følsomme for svingninger i BNP.

For det tredje kan det konkluderes med at Russland i hovedsak har en positiv effekt på de militære utgiftene, som er upåvirket av finanskrisen. Derfor er Russland fortsatt en relevant trusselvariabel. Men én av de alternative modellene skiller seg ut, og gir variabelen et negativt fortegn etter finanskrisen.

De fem alternative modellene spriker mest når det kommer til spill-in variabelen. To av modellene sier at koeffisienten for spill-in er uforandret som følge av finanskrisen. Én modell sier at effekten av spill-in reduseres med ca. 8,2 %, og to modeller sier at effekten forsvinner. Det kan derfor konkluderes med at free-riding er uforandret eller redusert blant NATO-medlemmene etter finanskrisen. I ytterste konsekvens er den redusert så mye at den ikke lengre eksisterer.

Én av de to sistnevnte modellene, som påstår at spill-in forsvinner, er den samme som påstår at trusselvariabelen får en negativ effekt. Konsekvensene av finanskrisen i denne modellen er altså at NATO-medlemmer mister spill-in effekten fra sine allierte, men i stedet får en tilsvarende effekt fra Russland.

Referanseliste

Appendiks

Detaljert utledning av likning (27) til (36)

Tar utgangspunkt i likning (27):

\[
\begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_n
\end{pmatrix} = \beta
\begin{pmatrix}
0 & \omega_{12} & \cdots & \omega_{1n} \\
\omega_{21} & 0 & \cdots & \omega_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{n1} & \omega_{n2} & \cdots & 0
\end{pmatrix}
\begin{pmatrix}
X_1 & 0 & \cdots & 0 \\
0 & X_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & X_n
\end{pmatrix}
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_n
\end{pmatrix} +
\begin{pmatrix}
e_1 \\
e_2 \\
\vdots \\
e_n
\end{pmatrix}
\tag{27}
\]

Som kan skrives:

\[
M = \beta W M + X \theta + e
\tag{28}
\]

Løsningen for denne med hensyn til militære utgifter vil være:

\[
M(I_n - \beta W) = X \theta + e
\tag{A1}
\]

Som gir:

\[
M = (I_n - \beta W)^{-1} X \theta + (I_n - \beta W)^{-1} e
\tag{29}
\]

Skiller på effektene fra fiendtlige, allierte og nøytrale stater, og skriver:

\[
\begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_l \\
\vdots \\
M_n
\end{pmatrix} = \beta^F
\begin{pmatrix}
0 & \omega_{12} & \cdots & \omega_{1l} & \omega_{1n} \\
\omega_{21} & 0 & \cdots & \omega_{2l} & \omega_{2n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\omega_{l1} & \omega_{l2} & \cdots & 0
\end{pmatrix}
\begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_l \\
M_n
\end{pmatrix} +
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_l \\
\theta_n
\end{pmatrix} +
\begin{pmatrix}
e_1 \\
e_2 \\
\vdots \\
e_l \\
e_n
\end{pmatrix}
\tag{A2}
\]

\[
\begin{pmatrix}
X_1 & 0 & \cdots & 0 \\
0 & X_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & X_n
\end{pmatrix}
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_n
\end{pmatrix} +
\begin{pmatrix}
e_1 \\
e_2 \\
\vdots \\
e_l \\
e_n
\end{pmatrix}
\]
Som kan skrives som likning (30):

\[
M = \beta^F W^F M + \beta^A W^A M + \beta^N W^N M + X\theta + e
\]

(30)

Fyller inn \(\omega_{ij} = 0\) i \(W^F\) der hvor \(i\) og \(j\) ikke er fiender, og \(\omega_{ij} = 0\) i \(W^A\) der hvor \(i\) og \(j\) ikke er allierte. Benevner NATO-medlemmene som \(i, j = 1, \ldots, l\), og Russland som den staten \(n\) slik at \(M_n = M_{RUS} = \tau\) osv. Antar ingen effekt fra nøytrale stater slik at \(\beta^N = 0\):

\[
\begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_l \\
T
\end{pmatrix} = \beta^F \begin{pmatrix}
0 & 0 & \cdots & 0 & \omega_{1,RUS} \\
0 & 0 & \cdots & 0 & \omega_{2,RUS} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \omega_{l,RUS}
\end{pmatrix} \begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_l \\
T
\end{pmatrix}
\]

\[
+ \beta^A \begin{pmatrix}
0 & \omega_{12} & \cdots & \omega_{1l} & 0 \\
\omega_{21} & 0 & \cdots & \omega_{2l} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\omega_{l1} & \omega_{l2} & \cdots & 0 & 0
\end{pmatrix} \begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_l \\
T
\end{pmatrix}
\]

(A3)

\[
\begin{pmatrix}
X_1 \\
0 \\
\vdots \\
X_l
\end{pmatrix} \begin{pmatrix}
0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & X_{RUS}
\end{pmatrix} + \begin{pmatrix}
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_l
\end{pmatrix} + \begin{pmatrix}
e_1 \\
e_2 \\
\vdots \\
e_{RUS}
\end{pmatrix}
\]

Forenkler med å skrive \(\beta^F \omega_{i,RUS} = \delta_i\). Antar at Russland ikke skiller mellom medlemmene i NATO slik at \(\omega_{RUS,1} = \omega_{RUS,2} = \cdots = \omega_{RUS,l}\), og skriver \(\beta^F \omega_{RUS,1} = \mu\):

\[
\begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_l \\
T
\end{pmatrix} = \begin{pmatrix}
0 & 0 & \cdots & 0 & \delta_1 \\
0 & 0 & \cdots & 0 & \delta_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \delta_l
\end{pmatrix} \begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_l \\
T
\end{pmatrix}
\]

(A4)
Ved å løse ut disse matrisene, for så skrive de militære utgiftene for Russland i en egen ligning, kan dette skrives som:

\[
\begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_l
\end{pmatrix} =
\begin{pmatrix}
\delta_1 \\
\delta_2 \\
\vdots \\
\delta_l
\end{pmatrix}^T + \beta A
\begin{pmatrix}
0 & \omega_{12} & \cdots & \omega_{1l} \\
\omega_{21} & 0 & \cdots & \omega_{2l} \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{l1} & \omega_{l2} & \cdots & 0
\end{pmatrix}
\begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_l
\end{pmatrix}
\]

\[
\begin{pmatrix}
X_1 \\
X_2 \\
\vdots \\
X_l
\end{pmatrix} =
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_l
\end{pmatrix} +
\begin{pmatrix}
e_1 \\
e_2 \\
\vdots \\
e_l
\end{pmatrix}
\]

\[T = \mu \sum_{i=1}^{l} M_i + X_{RUS} \theta_{RUS} + e_{RUS} \quad \text{(A5)}\]

Som da gir likningene (31) og (32):

\[M_{-RUS} = \beta^A W_{-RUS} M_{-RUS} + X_{-RUS} \theta_{-RUS} + e_{-RUS} \quad \text{(31)}\]

\[T = \mu \sum_{i=1}^{l} M_i + X_{RUS} \theta_{RUS} + e_{RUS} \quad \text{(32)}\]

Antar videre at det enkelte medlemslandet i NATO ikke skiller på de militære utgiftene fra de andre medlemmene. Dette betyr at for eksempel Norge vurderer en økning i Danmark sine militære utgifter som likeverdig til en tilsvarende økning i USA. Kan da skrive

\[\omega_{12} = \omega_{13} = \cdots = \omega_{1l} \quad \omega_{21} = \omega_{23} = \cdots = \omega_{2l}, \text{ osv, og forenkler uttrykket ved å definere} \]

\[\beta^A \omega_{ll} = \gamma_l.\]

\[
\begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_l
\end{pmatrix} =
\begin{pmatrix}
\delta_1 \\
\delta_2 \\
\vdots \\
\delta_l
\end{pmatrix}^T + \beta A
\begin{pmatrix}
0 & \gamma_1 & \cdots & \gamma_1 \\
\gamma_2 & 0 & \cdots & \gamma_2 \\
\vdots & \vdots & \ddots & \vdots \\
\gamma_l & \gamma_l & \cdots & 0
\end{pmatrix}
\begin{pmatrix}
M_1 \\
M_2 \\
\vdots \\
M_l
\end{pmatrix}
\]

\[
\begin{pmatrix}
X_1 \\
X_2 \\
\vdots \\
X_l
\end{pmatrix} =
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_l
\end{pmatrix} +
\begin{pmatrix}
e_1 \\
e_2 \\
\vdots \\
e_l
\end{pmatrix}
\]

\[T = \mu \sum_{i=1}^{l} M_i + X_{RUS} \theta_{RUS} + e_{RUS} \quad \text{(A8)}\]
Dette gir igjen likningene (33)-(36):

\[M_1 = \gamma_1 M_{-1} + \delta_1 T + X_1 \theta_1 + e_1 \]
\hspace{1cm} (33)

\[M_2 = \gamma_2 M_{-2} + \delta_2 T + X_2 \theta_2 + e_2 \]
\hspace{1cm} (34)

\[\vdots \]

\[M_l = \gamma_l M_{-l} + \delta_l T + X_l \theta_l + e_l \]
\hspace{1cm} (35)

\[T = \mu \sum_{i=1}^{l} M_i + X_{RUS} \theta_{RUS} + e_{RUS} \]
\hspace{1cm} (36)

Der \(M_{-i} = \sum_{j=1}^{i} M_j - M_i \quad i, j = 1, ..., j \)
Tabell A 1: Instrumenter

<table>
<thead>
<tr>
<th></th>
<th>Norge</th>
<th>USA</th>
<th>Belgia</th>
<th>Canada</th>
<th>Danmark</th>
<th>Frankrike</th>
<th>Island</th>
<th>Italia</th>
<th>Luxemburg</th>
<th>Nederland</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{t-1}</td>
<td>0,366*</td>
<td>1,279***</td>
<td>0,839***</td>
<td>1,305***</td>
<td>0,809***</td>
<td>0,565*</td>
<td>0,667***</td>
<td>0,677***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,088)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,052)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
</tr>
<tr>
<td>M_{t-2}</td>
<td>-0,423*</td>
<td>-0,428*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,076)</td>
<td>(0,083)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{t-3}</td>
<td></td>
<td>-0,413*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,490**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,086)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0,044)</td>
</tr>
<tr>
<td>M_{t-4}</td>
<td></td>
</tr>
<tr>
<td>M_{t-5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0,619*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0,071)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>1,426**</td>
<td>0,880**</td>
<td></td>
<td></td>
<td>0,00136*</td>
<td></td>
<td>0,00805**</td>
<td>0,0109***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,010)</td>
<td>(0,049)</td>
<td></td>
<td></td>
<td>(0,089)</td>
<td></td>
<td>(0,012)</td>
<td>(0,001)</td>
<td>(0,001)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>24</td>
<td>23</td>
<td>24</td>
<td>23</td>
<td>24</td>
<td>3</td>
<td>24</td>
<td>20</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,010)</td>
<td>(0,049)</td>
<td>(0,279)</td>
<td>(0,003)</td>
<td>(0,000)</td>
<td></td>
<td>(0,001)</td>
<td>(0,001)</td>
<td>(0,001)</td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>24</td>
<td>23</td>
<td>24</td>
<td>23</td>
<td>24</td>
<td>3</td>
<td>24</td>
<td>20</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0,754</td>
<td>0,959</td>
<td>0,878</td>
<td>0,945</td>
<td>0,159</td>
<td>0,681</td>
<td>0,993</td>
<td>0,841</td>
<td>0,890</td>
<td>0,870</td>
</tr>
<tr>
<td>Justert R^2</td>
<td>0,731</td>
<td>0,952</td>
<td>0,872</td>
<td>0,936</td>
<td>0,071</td>
<td>0,666</td>
<td>0,987</td>
<td>0,817</td>
<td>0,870</td>
<td>0,851</td>
</tr>
<tr>
<td>F</td>
<td>32,17</td>
<td>146,4</td>
<td>158,3</td>
<td>108,3</td>
<td>1,798</td>
<td>46,86</td>
<td>150,2</td>
<td>35,19</td>
<td>43,21</td>
<td>44,77</td>
</tr>
</tbody>
</table>

p-verdier i parentes
* $p<0,10$ ** $p<0,05$ *** $p<0,01$
Tabell A 1: Instrumenter forts.

<table>
<thead>
<tr>
<th></th>
<th>Portugal</th>
<th>UK</th>
<th>Tyskland</th>
<th>Hellas</th>
<th>Spania</th>
<th>Tyrkia</th>
<th>Tsjekkia</th>
<th>Ungarn</th>
<th>Polen</th>
<th>Bulgaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{t-1})</td>
<td>1,329***</td>
<td>0,667***</td>
<td>0,427**</td>
<td>1,162***</td>
<td>0,934***</td>
<td>0,911***</td>
<td>-0,525*</td>
<td>0,806***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,022)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,071)</td>
<td>(0,000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_{t-2})</td>
<td>-0,741***</td>
<td>-0,479**</td>
<td>-0,550***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,004)</td>
<td>(0,013)</td>
<td>(0,009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_{t-3})</td>
<td>-0,531**</td>
<td>-0,179**</td>
<td>-0,529***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,034)</td>
<td>(0,026)</td>
<td>(0,001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_{t-4})</td>
<td></td>
<td>-0,182*</td>
<td>0,704***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,071)</td>
<td>(0,001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M_{t-5})</td>
<td></td>
<td>-0,798***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Y)</td>
<td>-0,00703*</td>
<td>0,00222**</td>
<td>-0,00656*</td>
<td>0,0261***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,067)</td>
<td>(0,035)</td>
<td>(0,081)</td>
<td>(0,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>4,147***</td>
<td>-2,218**</td>
<td>2,347*</td>
<td>-3,990***</td>
<td>0,863**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,000)</td>
<td>(0,027)</td>
<td>(0,057)</td>
<td>(0,000)</td>
<td>(0,035)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obs.	22	23	22	20	22	21	16	20	20	20
\(R^2 \)	0,896	0,947	0,974	0,925	0,806	0,748	0,850	0,768	0,975	0,643
Justert \(R^2 \)	0,872	0,938	0,968	0,899	0,786	0,720	0,827	0,725	0,968	0,600
F	36,69	112,2	160,8	34,76	39,56	26,77	36,91	17,66	146,7	15,28

p-verdier i parentes
* p<0,10 ** p<0,05 *** p<0,01
<table>
<thead>
<tr>
<th></th>
<th>Estonia</th>
<th>Latvia</th>
<th>Litauen</th>
<th>Romania</th>
<th>Slovakja</th>
<th>Slovenja</th>
<th>Albanija</th>
<th>Kroatija</th>
<th>Russland</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{t-1}</td>
<td>0,418**</td>
<td>0,321***</td>
<td>0,567***</td>
<td>0,714***</td>
<td>0,857***</td>
<td>0,562***</td>
<td>1,250***</td>
<td>0,558***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,014)</td>
<td>(0,003)</td>
<td>(0,009)</td>
<td>(0,003)</td>
<td>(0,001)</td>
<td>(0,005)</td>
<td>(0,000)</td>
<td>(0,003)</td>
<td></td>
</tr>
<tr>
<td>M_{t-2}</td>
<td>0,479**</td>
<td>0,411**</td>
<td>-0,448**</td>
<td>-0,473***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,047)</td>
<td>(0,012)</td>
<td>(0,045)</td>
<td>(0,009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{t-3}</td>
<td>-0,963***</td>
<td></td>
<td>-0,216***</td>
<td>-0,515***</td>
<td>0,351**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,003)</td>
<td></td>
<td>(0,002)</td>
<td>(0,007)</td>
<td>(0,022)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{t-4}</td>
<td></td>
<td></td>
<td></td>
<td>-0,494***</td>
<td>-0,715***</td>
<td>-0,767***</td>
<td>0,101**</td>
<td>0,520***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0,007)</td>
<td>(0,000)</td>
<td>(0,001)</td>
<td>(0,012)</td>
<td>(0,009)</td>
<td></td>
</tr>
<tr>
<td>M_{t-5}</td>
<td></td>
<td>0,0175***</td>
<td>0,0219***</td>
<td>0,0198***</td>
<td></td>
<td>0,00641**</td>
<td></td>
<td>0,0184**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,001)</td>
<td>(0,023)</td>
<td>(0,023)</td>
<td></td>
<td>(0,010)</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0,0175***</td>
<td>0,0219***</td>
<td>0,0198***</td>
<td></td>
<td></td>
<td>0,00641**</td>
<td></td>
<td>0,0184**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,000)</td>
<td>(0,000)</td>
<td>(0,001)</td>
<td></td>
<td>(0,023)</td>
<td>(0,023)</td>
<td></td>
<td>(0,010)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-0,405**</td>
<td>-6,111**</td>
<td>-1,947**</td>
<td>-0,610***</td>
<td>1,513*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,026)</td>
<td>(0,049)</td>
<td>(0,044)</td>
<td>(0,001)</td>
<td>(0,059)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Obs.</th>
<th>16</th>
<th>15</th>
<th>15</th>
<th>20</th>
<th>18</th>
<th>20</th>
<th>17</th>
<th>19</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0,991</td>
<td>0,987</td>
<td>0,837</td>
<td>0,451</td>
<td>0,642</td>
<td>0,869</td>
<td>0,955</td>
<td>0,957</td>
<td>0,981</td>
<td></td>
</tr>
<tr>
<td>Justert R^2</td>
<td>0,986</td>
<td>0,982</td>
<td>0,792</td>
<td>0,348</td>
<td>0,565</td>
<td>0,844</td>
<td>0,940</td>
<td>0,948</td>
<td>0,975</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>219,1</td>
<td>193,1</td>
<td>18,79</td>
<td>4,383</td>
<td>8,353</td>
<td>35,31</td>
<td>63,57</td>
<td>110,5</td>
<td>165,9</td>
<td></td>
</tr>
</tbody>
</table>

p-verdier i parentes
* p<0,10 ** p<0,05 *** p<0,01
Multikollinearitet i utvidet modell

Som beskrevet i teorien så vil multikollinearitet føre til høye standardavvik, og føre til at nullhypoteser ikke kan forkastes. I tabell A 2 presenteres en korrelasjonsmatrise for variablene i modell D1.

Tabell A 2: Korrelasjonsmatrise for modell D1

<table>
<thead>
<tr>
<th></th>
<th>M_{t-1}</th>
<th>M_{i}</th>
<th>$D09. M_{i}$</th>
<th>T</th>
<th>$D09. T$</th>
<th>Y</th>
<th>$D09. Y$</th>
<th>N</th>
<th>$D09$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{t-1}</td>
<td>1,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_{i}</td>
<td>0,8739*</td>
<td>1,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D09. M_{i}$</td>
<td>-0,6536</td>
<td>-0,4962</td>
<td>1,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>-0,9531*</td>
<td>-0,9716*</td>
<td>0,5165</td>
<td>1,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D09. T$</td>
<td>0,9768*</td>
<td>0,9035*</td>
<td>-0,5267</td>
<td>-0,9736*</td>
<td>1,0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0,4915</td>
<td>0,2711</td>
<td>-0,1513</td>
<td>-0,3847</td>
<td>0,5018</td>
<td>1,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D09. Y$</td>
<td>-0,2584</td>
<td>-0,2052</td>
<td>0,8430*</td>
<td>0,1648</td>
<td>-0,1250</td>
<td>0,3837</td>
<td>1,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-0,7489</td>
<td>-0,5248</td>
<td>0,3402</td>
<td>0,6478</td>
<td>-0,7489</td>
<td>-0,9437*</td>
<td>-0,2155</td>
<td>1,0000</td>
<td></td>
</tr>
<tr>
<td>$D09$</td>
<td>-0,7675</td>
<td>-0,7787</td>
<td>0,0383</td>
<td>0,8464*</td>
<td>-0,8695*</td>
<td>-0,4989</td>
<td>-0,3416</td>
<td>0,6796</td>
<td>1,0000</td>
</tr>
</tbody>
</table>

* korrelasjon har større absoluttverdi enn 0,8

Det er relativ høy korrelasjon mellom flere variabler i denne modellen. Alle variablene har en korrelasjonskoeffisient større enn 0,8 med minst én annen variabel. Men det er særlig trusselvariabelen, og dummyen til trusselvariabelen som korrelerer. Disse korrelerer med hverandre og i tillegg med 3 andre variabler. En løsning på problemet med multikollinearitet kan være å fjerne en variabel. I dette tilfellet ser det ut som at dummyen til trusselvariabelen er den som skaper størst problemer. Altså kan det på grunn av multikollinearitet argumenteres for at de alternative modellene D2, D5 og D6 i tabell 3 er å foretrekke.