DNA excision repair of uracil and 5-fluorouracil in human cancer cell lines
Torkild Visnes

DNA excision repair of uracil and 5-fluorouracil in human cancer cell lines

Avhandling for graden philosophiae doctor

Trondheim, desember 2009

Norges teknisk-naturvitenskapelige universitet
Faculty of Medicine
Department of cancer research and molecular medicine
NTNU
Norges teknisk-naturvitenskapelige universitet

Avhandling for graden philosophiae doctor

Faculty of Medicine
Department of cancer research and molecular medicine

©Torkild Visnes

ISSN 1503-8181

Doktoravhandlinger ved NTNU, 2009:260

Trykt av Tapir Uttrykk
DNA excision repair of uracil and 5-fluorouracil in human cancer cell lines

Thesis for the degree of Philosophiae Doctor

Trondheim, October 2009

Norwegian University of Science and Technology
Faculty of Medicine
Department of Cancer Research and Molecular Medicine
Contents

Contents.. 2
Sammendrag på norsk .. 3
Acknowledgements ... 4
List of Papers... 5
List of Abbreviations.. 6
List of Papers I-III ... 83

1. INTRODUCTION.. 9
1.1 Base loss ... 9
1.2 Deamination .. 9
1.3 Reactive oxygen species .. 10
1.4 Alkylating agents ... 12
1.5 Misincorporation by polymerases .. 13
1.6 DNA damage and cancer ... 15

2.0 DNA REPAIR MECHANISMS.. 17
2.1 Direct reversal of DNA damage ... 17
2.2 Repair of double strand breaks .. 18
2.3 Mismatch repair (MMR) ... 20
2.4 Nucleotide excision repair (NER) .. 23
2.5 Base excision repair (BER) ... 24

2.5.1 Human uracil-DNA glycosylases ... 27
2.5.2 Uracil-DNA glycosylase (UNG) ... 27
2.5.3 Single-strand selective monofunctional uracil-DNA glycosylase 1 (SMUG1)................. 30
2.5.4 Thymine-DNA glycosylase (TDG) .. 31
2.5.5 Methyl-CpG binding domain 4 (MBD4) .. 32
2.5.6 8-oxoguanine DNA glycosylase (OGG1) .. 33
2.5.6 MutY homolog (MUTYH) .. 34
2.5.7 Nth endonuclease III-like 1 (E. coli) (NTHL1) .. 36
2.5.8 Nei endonuclease VIII-like 1 & 2 (E. coli) (NEIL1 and 2) ... 36
2.5.9 N-methylpurine-DNA glycosylase (MPG) .. 38
2.5.10 APEX nuclease (multifunctional DNA repair enzyme) 1 (APEX1, APE1).................. 39
2.5.11 Polynucleotide kinase 3’ phosphatase (PNKP) ... 41
2.5.12 DNA polymerase β (POLβ) ... 42
2.5.13 DNA Polymerase δ and ε (POLδ and ε) .. 43
2.5.14 Flap Structure-specific endonuclease 1 (FEN-1) ... 43
2.5.15 DNA ligases in BER .. 44
2.5.16 X-ray repair complementing defective repair in Chinese hamster cells 1 (XRCC1) 45
2.5.17 Proliferating cell nuclear antigen (PCNA) .. 46
2.5.18 Poly(ADP-Ribose) Polymerase 1 and -2 (PARP-1 and -2) .. 46
2.5 Mitochondrial DNA repair .. 48

3.0 AIMS OF THE STUDY... 49

4.0 SUMMARY OF PAPERS AND GENERAL DISCUSSION .. 51
4.1 Paper I: Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis ... 51
4.2 Paper II: The rate of base excision repair of uracil is controlled by the initiating glycosylase 55
4.3 Paper III: Cytotoxicity of 5-fluoropyrimidines is mainly through RNA incorporation and thymidylate synthase inhibition rather than DNA fragmentation from DNA excision repair 59

5 REFERENCES.. 67
6 PAPERS I-III .. 83
Sammendrag på norsk

Inntil nylig har ikke fler-nukleotid BER vært observert i cellenes mitokondrier, som har sitt eget DNA å ta vare på. Hvordan ville i så fall mitokondriene håndtere skader som i cellekjernen repareres av fler-nukleotid BER? Dette har vi undersøkt i det første arbeidet, hvor vi fant at også mitokondriene kunne utføre fler-nukleotid BER.

Utrykket av glykosylasen UNG varierer mellom forskjellige mennesker, organer og cellelinjer. I det andre arbeidet viser vi at hastigheten til BER sporet som helhet kontrolleres på det første trinnet, det vil si av mengde og aktivitet av DNA-glykosylasen som initierer reparasjonen. UNG initerte all observerbar reparasjon av uracil paret med adenin, mens reapasjon av uracil paret med guanin ble initiert hovedsakelig av UNG, med et relativt stort bidrag fra TDG i en av cellelinjene.

I det tredje arbeidet har vi studert hvordan 5-fluorouracil repareres i DNA og hvilken betydning DNA-reparasjon har å si for virkningsmekanismen for 5-fluorouracil. Vi fant at BER, initert av UNG2, står for det aller meste av reparasjonen når 5-fluorouracil er paret med adenin. Når 5-fluorouracil er paret med guanin utfører BER, initert av UNG2, SMUG1 eller TDG det meste av reparasjonen, mens mismatch-reparasjon ser ut til å være av mindre betydning. Nedregulering av de nevnte glykosylaslene og hemming av BER-sporet påvirket imidlertid ikke kreftcellulinjens følsomhet for 5-fluorouracil. Dermed fører det til at i dette tilfellet spiller ikke inkorporering i DNA og påfølgende DNA-reparasjon noen stor rolle for celledød. I stedet ser det ut som om 5-fluorouracil heller dreper celler via inkorporering i RNA, samt ved at dannelsen av thymidin-nukleotider hemmes.
Acknowledgements

This thesis presents work performed at the Department of Cancer Research and Molecular Medicine at the Norwegian University of Science and Technology from 2003 to 2009. Financial support has been received from the National Programme for Research in Functional Genomics in Norway (FUGE), the Research Council of Norway, the Norwegian Cancer Association, the Cancer Fund at St. Olav’s Hospital Trondheim, the Svanhild and Arne Must Fund for Medical Research and the European Union Integrated Project on DNA Repair. I am grateful that these have allowed me to make a small contribution to the advancement of science.

I would also like to thank my supervisor Hans E. Krokan for his endless patience and support. Hans has the ability to find the positives and provide encouragement to downbeat researchers when experiments could have gone (a lot) better. His superior knowledge and experience have been invaluable to this thesis. He is also a very likeable fellow. Thanks.

Furthermore, I would like to thank the past and present members of the DNA repair group. It has been exceedingly inspiring and fun to work alongside such excellent scientists. The people I have been fortunate enough to have as co-authors deserve credit, especially Mansour for his unrivalled enthusiasm, endless knowledge and great skill. I would also like to thank the ones I have been fortunate enough to share office with over the years: Lars, Trude, Cecilie, Henrik, Tara, Lene, Jörn, as well as everyone from the hovedfagskontor at MTFS. Thank you for many laughs and great discussions.

I am very grateful to my family, for keeping my spirits high and supporting me through tough times. Finally, I would like thank Lisa and Ludvig for providing the most important thing of all: happiness. I could not have written this without your love and support.
List of Papers

Paper I:
Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis.
(Akbari M, Visnes T, Krokan HE and Otterlei M).

Paper II:
The rate of base excision repair of uracil is controlled by the initiating glycosylase.
(Visnes T, Akbari M, Hagen L, Slupphaug G and Krokan HE)

Paper III:
Cytotoxicity of 5-fluoropyrimidines is mainly through RNA incorporation and thymidylate synthase inhibition rather than DNA fragmentation from DNA excision repair
(Pettersen HS, Visnes T, Vågbø CB, Doseth B, Kavli B and Krokan HE)
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-AN</td>
<td>4-amino-1,8-naphthalimide</td>
</tr>
<tr>
<td>5-FU</td>
<td>5-fluorouracil</td>
</tr>
<tr>
<td>5-FdUMP</td>
<td>5-fluoro-2'-deoxyuridinemonophosphate</td>
</tr>
<tr>
<td>5-F(dU)</td>
<td>5-fluoro-2'-deoxyuridine</td>
</tr>
<tr>
<td>5-FdUTP</td>
<td>5-fluoro-2'-deoxyuridine triphosphate</td>
</tr>
<tr>
<td>5-F(rU)</td>
<td>5-fluorouridine</td>
</tr>
<tr>
<td>8-oxoG</td>
<td>7, 8-dihydro-8-oxoguanine</td>
</tr>
<tr>
<td>9-1-1</td>
<td>Rad9-Rad1-Hus1 heterotrimer</td>
</tr>
<tr>
<td>AID</td>
<td>Activation-Induced Deaminase</td>
</tr>
<tr>
<td>ALKBH1-8</td>
<td>alkB, alkylation repair homolog (E. coli) 1-8</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activator protein-1</td>
</tr>
<tr>
<td>APC</td>
<td>Adenomatous polyposis coli</td>
</tr>
<tr>
<td>APE1</td>
<td>APEX nuclease (multifunctional DNA repair enzyme) 1</td>
</tr>
<tr>
<td>Apn1</td>
<td>AP endonuclease 1(S. cerevisiae)</td>
</tr>
<tr>
<td>APOBEC</td>
<td>Apolipoprotein B mRNA editing enzyme</td>
</tr>
<tr>
<td>AP-site</td>
<td>Apurinic or apyrimidinic site</td>
</tr>
<tr>
<td>ATPase</td>
<td>Adenosinetriphosphatase</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>B-cell CLL/lymphoma 2</td>
</tr>
<tr>
<td>BER</td>
<td>Base excision repair</td>
</tr>
<tr>
<td>cccDNA</td>
<td>Covalently closed circular DNA</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>CIN</td>
<td>Chromosomal instability</td>
</tr>
<tr>
<td>COX IV</td>
<td>Cytochrome c oxidase subunit IV</td>
</tr>
<tr>
<td>CpG</td>
<td>Cytosine-phosphate-Guanine</td>
</tr>
<tr>
<td>CS</td>
<td>Cockayne syndrome</td>
</tr>
<tr>
<td>CSR</td>
<td>Class-switch recombination</td>
</tr>
<tr>
<td>DHFR</td>
<td>Dihydrofolate reductase</td>
</tr>
<tr>
<td>DNA2</td>
<td>DNA replication helicase 2 homolog (yeast)</td>
</tr>
<tr>
<td>DNA-PK</td>
<td>Protein kinase, DNA-activated</td>
</tr>
<tr>
<td>DNMT3b</td>
<td>DNA (cytosine-5-)-methyltransferase 3 beta</td>
</tr>
<tr>
<td>dRP</td>
<td>Deoxyribosephosphate</td>
</tr>
<tr>
<td>dRPase</td>
<td>Deoxyribosephosphate phosphodiesterase</td>
</tr>
<tr>
<td>DSB</td>
<td>Double-strand break</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double-stranded DNA</td>
</tr>
<tr>
<td>dUTPase</td>
<td>Deoxyuridine triphosphatase</td>
</tr>
<tr>
<td>EXO1</td>
<td>Exonuclease 1</td>
</tr>
<tr>
<td>FADD</td>
<td>Fas (TNFRSF6)-associated via death domain</td>
</tr>
<tr>
<td>FaPyA</td>
<td>4,6-diamino-5-formamidopyrimidine</td>
</tr>
<tr>
<td>FaPyG</td>
<td>2,6-diamino-4-hydroxy-5-formamidopyrimidine</td>
</tr>
<tr>
<td>FEN-1</td>
<td>Flap structure-specific endonuclease 1</td>
</tr>
<tr>
<td>FTO</td>
<td>Fat mass and obesity associated</td>
</tr>
<tr>
<td>GEN1</td>
<td>Gen1 homolog 1 endonuclease (drosophila)</td>
</tr>
<tr>
<td>GG-NER</td>
<td>Global genomic nucleotide excision repair</td>
</tr>
<tr>
<td>H2AXγ</td>
<td>H2A histone family, member X (phosphorylated)</td>
</tr>
<tr>
<td>HIGM</td>
<td>Hyper-IgM Syndrome</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>5-hm(dU)</td>
<td>5-hydroxymethyl-2'-deoxyuridine</td>
</tr>
<tr>
<td>HMGB1</td>
<td>High-mobility group box 1</td>
</tr>
<tr>
<td>HNPCC</td>
<td>Hereditary non-polyposis colorectal cancer</td>
</tr>
<tr>
<td>HR</td>
<td>Homology-directed repair</td>
</tr>
<tr>
<td>HR23B</td>
<td>RAD23 homolog B (S. cerevisiae)</td>
</tr>
<tr>
<td>Hsp70</td>
<td>Heat-shock protein 70kDa</td>
</tr>
<tr>
<td>Hus1</td>
<td>HUS1 checkpoint homolog (S. pombe)</td>
</tr>
<tr>
<td>IR</td>
<td>Ionising radiation</td>
</tr>
<tr>
<td>Ku70,80</td>
<td>Ku antigen 70 and 80 kDa</td>
</tr>
<tr>
<td>LIG1</td>
<td>DNA ligase I</td>
</tr>
<tr>
<td>LIG3</td>
<td>DNA ligase III</td>
</tr>
<tr>
<td>LIG4</td>
<td>DNA ligase IV</td>
</tr>
<tr>
<td>LP</td>
<td>Long patch BER</td>
</tr>
<tr>
<td>M1G</td>
<td>Pyrimido[1,2-a]purin-10 (3H) –one</td>
</tr>
<tr>
<td>MAP</td>
<td>MUTYH-associated polyposis</td>
</tr>
<tr>
<td>MBD4</td>
<td>Methyl-CpG binding domain protein 4</td>
</tr>
<tr>
<td>MCM7</td>
<td>Minichromosome maintenance complex component 7</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>MED1</td>
<td>Methyl-CpG binding endonuclease 1 (aka MBD4)</td>
</tr>
<tr>
<td>MEF</td>
<td>Mouse embryonic fibroblast</td>
</tr>
<tr>
<td>MGMT</td>
<td>O-6-methylguanine-DNA methyltransferase</td>
</tr>
<tr>
<td>MLH1,2,3</td>
<td>MutL homolog 1, 2 and 3</td>
</tr>
<tr>
<td>MMR</td>
<td>Mismatch repair</td>
</tr>
<tr>
<td>MMS</td>
<td>Methyl methanesulfonate</td>
</tr>
<tr>
<td>MNNG</td>
<td>N-Methyl-N'-Nitro-N-Nitrosoguanidine</td>
</tr>
<tr>
<td>MNU</td>
<td>N-methyl-N'-nitro-N-nitrosoguanidine</td>
</tr>
<tr>
<td>MPG</td>
<td>N-methylpurine-DNA glycosylase</td>
</tr>
<tr>
<td>Mre11</td>
<td>Meiotic recombination 11 homolog A (S. cerevisiae)</td>
</tr>
<tr>
<td>MRN</td>
<td>Mre11-Rad50–Nbs1 heterotrimer</td>
</tr>
<tr>
<td>MSH</td>
<td>MutS homolog</td>
</tr>
<tr>
<td>MSI</td>
<td>Microsatellite instability</td>
</tr>
<tr>
<td>mtDNA</td>
<td>Mitochondrial DNA</td>
</tr>
<tr>
<td>MTH1</td>
<td>MutT-homolog 1</td>
</tr>
<tr>
<td>MutLα</td>
<td>MLH1-PMS2 heterodimer</td>
</tr>
<tr>
<td>MutLβ</td>
<td>MLH1-MLH2 heterodimer</td>
</tr>
<tr>
<td>MutLγ</td>
<td>MLH1-MLH3 heterodimer</td>
</tr>
<tr>
<td>MutSα</td>
<td>MSH2-MSH6 heterodimer</td>
</tr>
<tr>
<td>MutSβ</td>
<td>MSH2-MSH3 heterodimer</td>
</tr>
<tr>
<td>MUTYH</td>
<td>MutY homolog (E. coli)</td>
</tr>
<tr>
<td>MX</td>
<td>Methoxyamine</td>
</tr>
<tr>
<td>NAD+</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>Nbs1</td>
<td>Nijmegen breakage syndrome 1 (nibrin)</td>
</tr>
<tr>
<td>NEIL1,2,3</td>
<td>Nei endonuclease VIII-like 1,2 and 3 (E. coli)</td>
</tr>
<tr>
<td>NEM</td>
<td>N-Ethylmaleimide</td>
</tr>
<tr>
<td>NER</td>
<td>Nucleotide excision repair</td>
</tr>
<tr>
<td>NF-kB</td>
<td>Nuclear factor-kB</td>
</tr>
<tr>
<td>NHEJ</td>
<td>Non-homologous end-joining</td>
</tr>
</tbody>
</table>
NIR Nucleotide incision repair
NTHL1 Nth endonuclease III-like 1 (E. coli)
OGG1 8-oxoguanine DNA glycosylase
p53 Tumour protein p53
PAR Poly (ADP-ribose)
PARG Poly (ADP-ribose) glycohydrolase
PARP-1 Poly(ADP-ribose) polymerase
PCNA Proliferating cell nuclear antigen
PMS2 PMS2 postmeiotic segregation increased 2
PNKP Polynucleotide kinase 3'-phosphatase
POL $\alpha\beta\gamma\delta\epsilon\lambda$ DNA polymerase $\alpha, \beta, \gamma, \delta, \epsilon, \lambda$
PUA 3'-phospho-α,β-polyunsaturated aldehyde
Rad1 RAD1 homolog (S. pombe)
Rad50 RAD50 homolog (S. cerevisiae)
Rad52 RAD51 homolog (RecA homolog, E. coli)
Rad9 RAD9 homolog (S. pombe)
RAR Retinoic acid receptor
RFC Replication factor C
ROS Reactive oxygen species
RPA Replication protein A
RXR Retinoid X receptor
SHM Somatic Hyper-mutation
siRNA Small interfering RNA
SMUG1 Single-strand-selective monofunctional uracil-DNA glycosylase 1
SN Single-nucleotide BER
SSB Single-stranded DNA break
ssDNA Single-stranded DNA
SUMO Small ubiquitin-like modifier
TC-NER Transcription-coupled nucleotide excision repair
TDG Thymine-DNA glycosylase
THF N5,N10-methylenetetrahydrofolate
TMZ Temozolomide
TS Thymidylate synthase
TTD Trichothiodystrophy
UDG Uracil-DNA glycosylase
Ugi Uracil-DNA glycosylase inhibitor
UNG 1, 2 Uracil-DNA glycosylase 1 and 2
VDAC1 Voltage-dependent anion channel 1
WRN Werner syndrome protein, RecQ helicase-like
XLF XRCC4-like factor
XP Xeroderma Pigmentosum
XRCC X-ray repair complementing defective repair 1
YB-1 Y box binding protein 1
1. INTRODUCTION

A human embryo develops from a single cell at the time of conception into a multitude of different cells that comprise the adult body. Decades later, these cells will collectively have the experiences of a lifetime, while the genetic material will remain essentially unchanged. Genetic information is also stable at far longer timescales, as the genetic information that constitutes a human, chimpanzee, mouse or whale show far more similarity than morphology would suggest. Yet, while DNA is apparently exceedingly stable, it is far from chemically inert. The chemical structure of DNA is altered through chemical reactions with a multitude of exogenous chemicals such as those found in cigarette smoke, as well as the exposure to ionising and ultraviolet radiation. Furthermore, compounds found in the cellular environment may also damage DNA. The most abundant of these is water, which is present at a concentration of ~55 M.

1.1 Base loss

Water can react with DNA in several ways. The N-glycosidic bond between base and sugar is particularly susceptible to hydrolysis, resulting in base loss and the generation of an exposed deoxyribose site called an apurinic/apyrimidinic (AP) site in DNA [1]. Purines are lost from DNA at a higher rate than pyrimidines. Guanine hydrolyses at a slightly higher rate than adenine, while the loss of pyrimidines is ~20 times slower than that of guanine. The rate of depurination is 4 times higher in ssDNA than in dsDNA [2]. It has been estimated that this takes place approximately 10000 times per human diploid cell per day [2,3].

1.2 Deamination

Water can also react with exocyclic amino groups in DNA bases, most frequently at 5-methylcytosine and cytosine to produce thymine and uracil, respectively. The former deaminates at a four times higher rate than the latter, and the deamination rate is several hundred-fold increased in single-stranded DNA (ssDNA). Estimates on the formation of uracil from cytosine range from 70 to a few hundreds per cell per day, depending on
how much of the DNA is assumed to be single-stranded ([4] and references therein). While 5-methylcytosine deaminates at a higher rate than cytosine, it is much rarer in the human genome. Thus, approximately 10% of cytosine deaminations occur at 5-methylcytosines [1]. In addition, the exocyclic amino groups of adenine and guanine are vulnerable to hydrolytic deamination, producing xanthine and hypoxanthine, respectively. However, these products are formed at only about 2-3% the rate of cytosine deamination. These exocyclic amino groups are involved in Watson-Crick base pairing, so the products of deamination will be mutagenic. Deaminated (5-methyl) cytosine pairs with adenine, while hypoxanthine pairs with cytosine. Xanthine is non-coding (Figure 1) [1].

![Figure 1: Hydrolytic deamination of DNA bases generates base analogues that are mis- or non-coding. The preferential base-pairing partner is given in parentheses. Note that the deamination of 5-methylcytosine results in a base normally present in DNA.](image)

1.3 Reactive oxygen species

Many processes produce reactive oxygen species (ROS) in the cell. Up to 0.2% of the oxygen consumed in normal oxidative respiration in mitochondria are converted to superoxide ions (O$_2^-$) [5], which is further converted to hydrogen peroxide (H$_2$O$_2$) and the very reactive hydroxyl radicals (•OH) inside the cell. Furthermore, similar ROS are created as a consequence of ultraviolet light, inflammation, cell injury, phagocytosis, and the hydroxylation of steroids and drugs [6]. ROS oxidation of DNA results in
single- and double-strand breaks, AP-sites, as well as a multitude of modified bases [6,7]. For pyrimidines, the double bonds between 5 and 6 positions are especially vulnerable, as are methyl groups in thymine and 5-methylcytosine. Purines are frequently oxidised in the 8-position, which may create ring-opened formamidopyrimidines (FaPyA and FaPyG), and a multitude of other lesions [7]. Many of these appear to be generated in large amounts endogenously in mammalian cells, and may be mis- or non-coding, mutagenic and/or cytotoxic. Quantitation of these lesions is problematic, however, and estimates vary by several orders of magnitude. Furthermore, reactions of ROS with polyunsaturated membrane lipids produce potent DNA-reactive agents as by-products. These yield several mutagenic etheno- and propanobase adducts [8], the best studied is malondialdehyde (MDA), which predominantly produces pyrimido[1,2-a]purin-10 (3H) -one, abbreviated M1G, in DNA [9]. Additionally, ionising radiation (IR) produces ROS in large amounts. IR is naturally present in the environment, as a result of the disintegration of naturally occurring radionuclides, or may be extra-terrestrial in origin. IR damages DNA directly through the excitation and ionisation of bases and sugars in DNA or indirectly through the generation of ROS. IR induces localised base damage, single- and double-strand breaks, and is used in the treatment of cancer [10].
Many alkylations interfere with Watson-Crick hydrogen bonding, and generates mis- or non-coding adducts.

1.4 Alkylating agents

Endogenous alkylating agents participate as methyl-donors in many biochemical reactions, and are ubiquitous in mammalian cells. Exogenous alkylating agents exist in cigarette smoke, environmental toxins and products of incomplete burning of biomass. Many are carcinogens, such as benzo(a)pyrene. Both endo- and exogenous alkylating agents may interact and adduct nucleophilic centres in DNA bases, i.e. at positions occupied by oxygen and nitrogen atoms (Figure 2) [10,11]. One of the most abundant endogenous methyl donors is S-adenosyl-L-methionine, which has the potential to alkylate bases in DNA, predominantly resulting in 4000 7-methylguanines, 600 3-methyladenines, as well as 10-30 O6-methylguanines per human cell per day [12]. These, and other examples of methylated bases, are found in samples from human cells at steady state levels at around one per 10^7 nucleotides, give or take an order of magnitude [13]. The biological consequences of these lesions are diverse. While 7-methylguanine is thought to be rather harmless, 3-methyladenine blocks replication and is highly cytotoxic, and O6-methylguanine is highly mutagenic and cytotoxic [1]. While
many of the alkylating agents are carcinogenic, such as the tobacco-specific nitrosoamines [14], they may also be used to treat cancer. Monofunctional agents (e.g. carrying one reactive group) such as temozolomide (TMZ) methylate DNA bases, while bifunctional agents, i.e. those carrying two reactive groups such as melphalan, also have the capacity to crosslink two different bases that can be on the same or different strands of DNA [10]. Thus, exogenous alkylating agents are of vital importance for both the generation and treatment of human cancer.

1.5 Misincorporation by polymerases

In addition to the threats posed by reactive compounds constantly present in the cellular environment, enzymes that exert their normal function may also alter or damage the sequence of DNA. One example of this includes the introduction of mismatches by DNA polymerases, which has a small probability of introducing mismatched nucleotides during DNA synthesis. A suboptimally balanced nucleotide pool may further decrease the replication fidelity. Under these conditions, a high or low concentration of one or more nucleotides may lead to the formation of non-Watson-Crick base pairing (reviewed in [15]). Furthermore, replicative DNA polymerases tend to incorporate dNTPs carrying a base with similar structure as the four canonical bases. Hence, dGTP which is easily oxidised in the 8-position (8-oxo-dGTP) is readily incorporated into DNA. During replication, its incorporation is precluded by MutT-homolog 1 (MTH1), which hydrolyses 8-oxo-dGTP to 8-oxo-dGMP [16].

A similar preclusive mechanism acts on dUTP, which is a normal intermediate during de novo synthesis of dTTP. dUTPase hydrolyses dUTP to dUMP, which is in turn is converted to dTMP by reaction with N5,N10-methylenetetrahydrofolate (THF) catalysed by thymidylate synthase (TS). The inhibition or lack of either enzyme or THF due to dietary factors, results in an increased dUTP/dTTP ratio. As the replicative polymerases have a similar K_m towards these nucleotides, dUTP is readily incorporated into DNA resulting in U:A base pairs according to standard Watson-Crick base pairing. These are not mutagenic by themselves, but because the repair of U:A to T:A may employ a polymerase with a higher error frequency than replicative polymerases, the resulting repair of U:A may well result in mutagenesis [17]. Furthermore, the
replacement of uracil with thymine in DNA alters the binding of transcription-factors [18]. While substantial amounts of thymine can be replaced with uracil in the genomes of genetically engineered *E. coli* and *S. cerevisiae*, they will eventually stop dividing due to a “general failure of macromolecular biosynthesis” [19,20]. Furthermore, replacing about ~1% of thymines with uracil in *S. cerevisiae* results in a mutator phenotype characterised by AT to CG transversions [21].

Mammalian cells accumulate uracil in their genomes too. This is aggravated by treatments which result in a higher dUTP/dTTP ratio, i.e. methotrexate inhibits dihydrofolate reductase (DHFR), thus reducing the availability of THF to be used as a methyl-donor in dTMP synthesis [22]. Folic acid and vitamins B6 and B12 are all required for the biosynthesis of THF. THF will not be replenished if the supply of these nutrients is low enough, ultimately leading to an increased uracil misincorporation into DNA of mammalian cells. Importantly, folate deficiency in humans are linked to several disorders including colon cancer, neurodegeneration and birth defects ([23]; reviewed by [24]).

The manipulation of TS activity is exploited in the treatment of cancer, as treatment with fluoropyrimidines leads to inhibition of TS. The fluoropyrimidines are inter-converted to a variety of fluorinated ribonucleotides and deoxyribonucleotides inside the cell. 5-fluoro-2-deoxyuridine monophosphate (5-FdUMP) binds with high affinity to TS and inhibits the enzyme. This depletes the level of dTTP, necessary for DNA synthesis. Moreover, the dUTP/dTTP ratio increases, which results in insertion of dUMP into DNA. Finally, imbalanced nucleotide pools may lead to the generation of mispairs by replicative polymerases [25,26,27]. However, this is not the only proposed cytotoxic mechanism of fluoropyrimidines, as 5-FU is incorporated into both RNA and DNA [28]. 5-FU pairs most efficiently with adenine, but may also pair with guanine through a pH-dependent ionisation of the base [29]. The removal of 5-FU by DNA repair processes could contribute to the cytotoxicity of the drug [25] either as a consequence of repair, or indirectly as a consequence of utilising a skewed nucleotide pool for repair [15]. Finally, the incorporation into RNA disrupts rRNA, tRNA and mRNA, as well as the processing of uridine into pseudouridine [30,31,32,33,34,35]. All
of these mechanisms can probably contribute to cytotoxicity to some extent, but even after half a century of clinical use the relative contribution of each is still a matter of dispute.

While the examples mentioned so far have described damage to DNA due to interaction with endogenously occurring reactive substances in a more or less random manner, endogenously encoded enzymes may also specifically damage DNA. Human cells contain a number of enzymes in the apolipoprotein B-editing catalytic polypeptide (APOBEC) family, that deaminates cytosine to uracil in nucleic acids, thus potentially yielding a CG->TA mutation [36]. The best studied of these is the activation-induced deaminase (AID), which specifically deaminates cytosine residues in immunoglobulin loci in maturating B-cells. This is required for class-switch recombination (CSR) as well as somatic hypermutation (SHM) [37,38]. Others, e.g. APOBEC3G, deaminates retroviral genomes in the cytosol, thereby restricting their replication [39].

Thus, even if we disregard exogenous threats such as IR and environmental chemicals, the DNA of human cells are under constant assault from reactive components of the cellular environment, in sum totalling at the very least a few ten thousands DNA lesions per cell per day, most of which are potentially mutagenic. Yet the DNA of human cells are replicated with an impressive accuracy - less than one of the 3.2·10⁹ base pairs in the human genome are mutated per replication [40]. However, several DNA repair mechanisms maintain the chemical and sequential integrity of the genome by removing DNA damage prior, during and after replication.

1.6 DNA damage and cancer

In contrast to somatic cells, which replicate their DNA with high fidelity, are cancer cells characterised by the accumulation of mutations of all types. The most striking examples are provided by the fact that most cancer cells are not diploid, i.e. they carry an abnormal number of chromosomes, which in turn alters the expression of thousands of genes [41]. Alternatively, chromosomes may also contain insertions, deletions, amplifications, rearrangements or translocations of large chromosomal segments. These may generate oncogenic fusion proteins, or put normally coding genes under the control
of different promotors [42]. Such chromosomal changes are referred to as chromosomal instability (CIN). Yet another example of genetic instability is hereditary non-polyposis colon cancer (HNPCC). HNPCC is characterised by a rather stable number and structure of chromosomes, but is associated with changes in the number of simple repetitive sequences 1-6 nucleotides in length. This may potential result in inactivating frameshift mutations. Such repetitive sequences are called microsatellites and hence, variation in the number of repeats is referred to as microsatellite instability (MSI) [43]. Additionally, tumour cells tend to accumulate point mutations more frequently than normal tissue [44,45,46]. And even when the nucleotide sequence is preserved, epigenetic changes in methylation status may very well alter the expression of genes that promote tumourigenesis, as demonstrated for the human \textit{MLH1}-gene [47].

Is the documented genomic instability a cause of or consequence of cancer? Is it an early or late event in carcinogenesis? It has been argued that the sheer volume of genetic changes observed in cancer cells is so large that it could not have arise as a result of a normal mutation rate. Thus, an enhanced mutation rate brought about by random mutations in genes responsible for the stability of DNA (e.g. DNA repair genes) could well be an early event in tumourigenesis [46,48]. This hypothesis is, however, debated [49]; some maintain that an instability at the chromosome-level is sufficient to explain cancer [41], others argue that a mutator phenotype – at any level – is not necessary at all. In this scenario, rare mutations in genes that confer some kind of growth advantage to the cell will be selected for. Thus, given enough cell divisions and natural selection, they argue that normal mutation rates may well account for the genetic variability of human cancers [50].
2.0 DNA REPAIR MECHANISMS

The DNA in a human cell is continuously challenged by various modifications and alterations even in the absence of exogenous DNA damaging agents. Yet, human cells are able to cope with these challenges and replicate with high fidelity by employing enzymatic systems that detect and repair damaged DNA. In many cases the repair is error-free, returning DNA to the state it was in before the lesion. Repair may, however, also be error-prone, thus ‘repairing’ DNA to something else than the original state. About 150 human genes are currently identified as or (suspected to be) implicated with DNA repair. A frequently updated table summarising these genes, and containing links to relevant databases are found at http://www.cgal.icnet.uk/DNA_Repair_Genes.htm [51,52].

2.1 Direct reversal of DNA damage

The simplest imaginable mechanism of direct damage reversal is demonstrated by ligases, which re-join strand breaks generated by e.g. oxidative damage [10].

The AlkB-homologue family, of which there are at least nine members in the human genome, provides an example of direct repair of methylated bases in nucleic acids [53,54]. The bacterial AlkB-enzyme removes alkyl-groups from N-1 position of adenine, and the N-3 position of cytosine, in a process requiring Fe$^{2+}$, 2-oxoglutarate and molecular oxygen. The offending alkyl group is oxidised to an unstable hydroxyalkyl-moiety, which spontaneously de-associates from the base as formaldehyde. This restores DNA to its original state, at the energetic expense of the concurrent conversion of 2-oxoglutarate to succinate and CO$_2$ [55], reviewed in [56]. All the nine known human AlkB-homologues are expressed [54,57], but biochemical activities have hitherto only been identified for the fat and obesity associated protein (FTO), ALKBH1, 2 and 3 [54,58,59,60].

The protein O6-methylguanine-DNA methyltransferase (MGMT) recognises and repairs guanine alkylated at the O6-position or thymine alkylated the O4-position. These lesions are formed by reaction with endogenous and exogenous alkylating agents. These are
pre-mutagenic and pre-toxic lesions, as they preferentially form base pairs with thymine and guanine, respectively [61,62]. MGMT removes the offending alkyl-group by permanently transferring it to a cysteine residue in the active reaction site. As a consequence, the protein is inactivated, ubiquitinylated [63] and swiftly degraded by the proteasome [64]. Thus, the repair of a single alkylation requires the synthesis and degradation of a whole 22 kDa protein. It follows from this that the number of MGMT molecules per cell dictates the capacity to repair such alkylated lesions directly. MGMT upregulation increases the cells’ tolerance to alkylating agents significantly [65]. On the other hand, if MGMT is knocked down [66,67] or out [68] the cells become hypersensitive (reviewed in [69]).

2.2 Repair of double strand breaks

Double-strand breaks (DSB) are cytotoxic lesions where the backbones of both DNA strands are cleaved. DSBs come in two forms; two-ended DSBs describe a simple fracture of DNA, where one DNA double helix is broken in two. This may happen at any stage of the cell cycle, as a consequence of IR, physical stress or the repair of closely positioned lesions at opposite strands. On the other hand, one-ended DSBs are generated during S-phase or G2, and happens when a replication fork encounters a single-strand break (SSB) [70]. The severity of DSB can be seen when there is a failure to repair them, which may lead to cell death or large scale chromosomal rearrangements in the form of insertions, deletions and translocations [71].

Human cells have at least two distinct mechanisms for the repair of DSBs, non-homologous end-joining (NHEJ) and homology-directed repair (HR). As the names may suggest, the former process is less accurate than the latter, and is simpler mechanistically. In NHEJ, a heterodimer of Ku70 and Ku80 binds to each DSB. These in turn recruit DNA-dependent protein kinase (DNA-PK), which becomes activated and
Figure 3: Repair of double-strand breaks. (A) Non-homologous end-joining of a double strand break. Ku70/Ku80 heterodimers and DNA-PK are sequentially recruited to the double strand breaks, followed by (auto)phosphorylation of DNA-PK and nearby proteins. The two broken strands are brought together and ligated by a complex containing LIG4, XRCC4 and XLF.

(B) Homology-directed repair of a double-strand break. 5' ends are degraded, and the resulting 3' overhang invades a DNA strand containing a homologous sequence, e.g. in the sister chromatid. DNA is synthesised past the break point (blue lines), followed by branch migration. The nascent DNA is released and allowed to anneal to the other side of the strand break, thus connecting the two ends of DNA. After the Holliday junction has been resolved, flaps, gaps and nicks are processed.

phosphorylates itself and other proteins when two ends of DNA are positioned opposite each other. Finally, the two DNA ends are joined by a complex containing DNA ligase IV (LIG4), XRCC4 and XLF [70]. If the DSBs arose from IR it is likely that both strands of DNA contain multiple lesions (so-called dirty ends), in which case additional processing is required to rejoin ends. Several proteins seem to be involved in processing of dirty ends, including – among others - Aprataxin, the Werner syndrome protein (WRN), Artemis, Mre11-Rad50–Nbs1 (MRN) -complex and DNA polymerases μ and λ [70,72]. NHEJ has limited specificity in that it joins two ends of DNA, thus potentially joining 'wrong' ends, which may lead to gross chromosomal rearrangements. Additionally, a few base pairs may be lost during the joining process. HR, on the other
hand, is able to rejoin ends in an error-free manner and even restores missing sequence information. It achieves this by using a homologous template located elsewhere in the cell, preferentially on the sister chromatid. The MRN-complex, which degrades one of the strands in the 5'->3' direction initiates this process [73]. RAD51 and associated proteins then bind the remaining ssDNA and guide it to a homologous sequence elsewhere in the genome [74,75]. The free 3' end on the invading strand primes DNA synthesis, which continues past the break point of the original homologous sequence, thus generating a Holliday-like structure. This allows the recessed side of the other strand break to anneal to the newly replicated strand. The original sequence is restored after the Holliday junction has been resolved by symmetrical nicking of both strands by Gen homolog 1 (GEN1) [76], then if necessary followed by removal of flaps, gap resynthesis and nick ligation [10,70]. The examples given above are, however, only one of several possible DSB-repair mechanisms.

2.3 Mismatch repair (MMR)

DNA is usually replicated at a very high fidelity, with the four canonical bases in DNA binding to each other in a manner described by Watson-Crick base pairing [77]. That is, however, not always the case, as mispairing can be introduced by incorporating the wrong nucleotide during DNA synthesis, strand slippage during replication of repeat sequences, recombination involving non-identical sequences or chemical alteration of bases [78]. These lesions are all potentially mutagenic and substrates for mismatch repair, which removes the mismatch along with a relatively large fragment of DNA followed by re-synthesis. Furthermore, MMR is involved in many diverse processes, including antibody diversification, regulation of recombination and crossovers, as well as the DNA damage response [79]. Mechanistically, the obvious challenge for MMR is to distinguish the newly replicated strand containing an erroneous base from the template strand. The human MMR system is initiated by a MutS heterodimer, of which there are at least two in human cells. MutSα comprises the MutS homologues (MSH) 2 and 6 and recognises simple base-base mismatches and small insertion-deletion loops (≤ 2 bases), while MutSβ
Mismatches are generated during semi-conservative DNA synthesis (red). They are recognised and bound by MutSα followed by recruitment of MutLα. These generate sliding clamps which translocates along DNA until a strand discontinuity is encountered. In the leading strand this strand discontinuity is located 3’ to the mismatch, while in Okazaki fragments, the strand discontinuity may be 3’ or 5’ to the mismatch. If the closest strand discontinuity is located 5’ to the mismatch (left), EXO1 will be loaded onto the SSB and degrade the all DNA between the discontinuity and ~150 nucleotides past the mismatch. However, EXO1, which is exclusively 5’→3’, cannot act directly if the closest discontinuity is located 3’ to the mismatch (right). Here, MutLα will generate one or more incisions around the mismatch in the strand that harbours the discontinuity and load EXO1, which then degrades the strand containing the mismatch in the 5’→3’ direction. In both cases resynthesis (blue) and ligation are performed by POLδ, PCNA, RPA, RFC and LIG1.

(containing MSH2 and 3) recognises larger insertion-deletion loops [78]. The binding of a MutS-heteroduplex to a mismatch leads to the recruitment of one of three MutL-heteroduplexes, and the formation of a ternary complex containing the mismatch and the MutS-MutL heteroduplexes. This forms a sliding clamp that translocates along the DNA in either direction at the expense of ATP hydrolysis until it encounters a strand.
break that acts as a signal to discriminate the nascent and template strands [79]. If the strand break is positioned 5' to the mismatch, the strand between the nick and the mismatch, as well as some 100-150 nucleotides past the mismatch, is degraded by exonuclease 1 (EXO1) [80,81,82]. If the strand break is 3' to the mismatch, an endonuclease in the PMS2 subunit of MutLα is activated, which incises the nascent strand ~150 nucleotides 5' to the mismatch [80,83] followed by EXO1 degradation. Repair is then completed by the synthesis of a new strand by DNA polymerase δ or ε, aided by proliferating cell nuclear antigen (PCNA), replication factor C (RFC) and replication protein A (RPA), followed by ligation by DNA ligase I (LIG1). The proteins mentioned above are sufficient to reconstitute both 5' and 3' nick-directed MMR in vitro (Figure 4). However, many additional factors are shown to interact with the central MMR machinery [84], and the mechanisms briefly outlined above are therefore probably more intricate in vivo.

Deficiencies in the core MMR components are mutagenic, and may lead to point mutations as well as MSI, characterised by variations in the number of repeats at repetitive sequences. The consequence of this at the level of the mammalian organism is HNPCC [43]. In addition, MMR deficient cells tolerate many DNA damaging agents. Examples include N7-alkylating agents (MNNG, MNU), intrastrand cross-linking agents such as cisplatin [85,86], antimetabolites such as 6-thioguanine [87,88] and fluoropyrimidines [89,90,91,92]. When challenged with these agents, MMR proficient cells arrest in G2/M [93,94] and may eventually undergo apoptosis [95], while MMR deficient cells continue to divide at the expense of genomic stability. Two not mutually exclusive hypotheses exist to explain this. The first notes that many of these agents damage both strands of DNA. Since MMR is directed towards the newly replicated strand, it is unable to repair damage in the template strand. Thus, MMR may excise and try to repair the non-damaged strand, leading to the generation of another mismatch, thus initiating a cascade of repeated misincorporations opposite the offending base [96]. This concept has been termed futile repair (reviewed in [27]). Alternatively, the recognition (and repair) of lesions by MMR may initiate ATM- and/or ATR-mediated signalling cascades, which in turn arrest the cell in G2/M, and may guide the cell towards apoptosis [93,94].
2.4 Nucleotide excision repair (NER)

NER excises DNA lesions as part of an oligonucleotide, which is about 30 nucleotides in length in humans. NER does not appear to recognise DNA damage in itself, rather it detects distortions of the DNA double helix. These tend to be pyrimidine dimers introduced by UV-light, or bulky lesions introduced by chemotherapeutics or environmentally encountered chemicals (e.g. benzo(a)pyrene) [10]. Inactivating mutations in human NER genes are associated with xeroderma pigmentosum (XP), a cancer-prone syndrome resulting in epithelial skin cancer induced by exposure to sunlight, as well as Cockayne syndrome (CS) and trichothiodystrophy (TTD) [97]. NER is a multi-step process, where 20 to 30 known proteins participate in a well defined and orderly fashion (Figure 5) (reviewed in [10,98,99]). Global genomic NER (GG-NER) is initiated by recognition of the helix distortion by a heterotrimer consisting of XPC, RAD23 homolog B (HR23B) and centrin 2 [100,101], followed by binding of XPA and RPA to the damaged area (reviewed in [98]). Alternatively, if RNA polymerase II is blocked by a DNA lesion in actively transcribed genes, the CS genes A and B recruit the rest of the NER machinery and remove the stalled RNA polymerase. This mode of NER is called transcription-coupled NER (TC-NER) (reviewed in [102]). Irrespective of how repair was initiated, the next steps are thought to be identical for GG- and TC-NER. Following damage recognition, the multi-protein complex that is transcription factor IIH (TFIIH) unwinds the DNA sequence surrounding the lesion using XPB and XPD helicases, which are part of the TFIIH complex. The resulting single-stranded bubble-structure is stabilised by RPA. Then endonucleases XPG and XPF cuts the DNA backbone 5 or 6 nucleotides 3' to the lesion and 20 to 22 nucleotides in the 5' direction, respectively, thus releasing an oligonucleotide. Replicative DNA polymerases then fill in the resulting gap, using the un-damaged strand as template [103,104].
Global genomic NER

- Damage recognition by XPC, HR23B, centrin 2

Transcription-coupled NER

- Bulky lesion stalls RNA polymerase complex. Binding of CSA and CSB.

- Binding of TFIIH and recruitment of other core NER factors.

- XPB and XPD unwinding of helix.

- XPG and XPF incision at either side of the lesion.

- Release of lesion as part of an oligonucleotide followed by resynthesis and ligation.

Figure 5: Nucleotide Excision Repair of bulky lesions in DNA. Bulky, helix distorting lesions anywhere in nuclear DNA are recognised by a complex of XPC, HR23B and centrin 2 (upper left branch), which then recruits core NER protein complexes (middle branch). Additionally, these bulky lesions stalls RNA polymerase on actively transcribed DNA strands (upper right branch), in which case CSA and CSB replaces the stalled RNA polymerase with core NER components (middle branch). XPB and XPD helicases unwind the double helix surrounding the lesion, followed by incisions on either side of the lesion by endonucleases XPF and XPG. The damaged DNA is then removed as part of an oligonucleotide, followed by resynthesis and ligation.

2.5 Base excision repair (BER)

BER is initiated by a damage specific glycosylase, which recognises and excises an offending base, resulting in a free base and an AP-site. It is thought to be the quantitatively most important mode of DNA repair in mammalian cells [105]. A few glycosylases are bifunctional, in that they display an additional lyase activity that
incises the DNA backbone 5' and/or 3' to the deoxyribose (β and δ-elimination, respectively) (Figure 6).

Figure 6: Gap tailoring during BER. Monofunctional glycosylases generate a natural AP-site (top), at which point the DNA backbone still is intact. The resulting AP-site is then incised by APE1 at the 5' side of the phosphate, generating a 3'OH group and a 5' deoxyribosephosphate (dRP) fragment (middle, left). Bi-functional glycosylases carry associated lyase activity able to incise the DNA backbone by β-elimination, resulting in the generation of a 3'-phospho-α,β-polymunsaturated aldehyde (PUA) and a 5' phosphate group (middle, middle). The PUA is released by the 3'-phospho-diesterase activity of APE1, again generating a 3'OH group. Glycosylases of the NEIL-type are able to carry out β,δ-elimination, leaving a 1-nucleotide gap flanked by phosphates on either side (middle, right). While APE1 may act on this lesion as well, through its associated 3' phosphatase activity, it is more likely that this may be mediated by the more potent PNKP [106], or aprataxin [107].

Next, AP endonuclease 1 (APE1) incises the DNA backbone 5' to the deoxyribose, followed by the incorporation of one or several nucleotides, removal of the remaining deoxyribose fragment and ligation. This may take place by at least three slightly different sub-pathways, defined by the number of nucleotides that are incorporated (Figure 7).
Figure 7: Replacing the excised nucleotide: SN and LP. Following gap tailoring, BER may be completed by the insertion of one or several nucleotides followed by ligation. POLβ inserts the first nucleotide in all cases. Provided that the dRP-fragment can be removed by the inherent dRP-lyase activity of the polymerase, the resulting nick can then be closed by XRCC1/Ligase IIIα complex. This is the single nucleotide pathway (left branch). If, however, the dRP-fragment is resistant to dRP-lyase removal, POLβ may insert a second nucleotide. This allows the dRP-fragment to be removed as part of a small flap (middle branch). Alternatively, a switch to replicative POLδ or ε may occur, and these may insert a longer patch of nucleotides (in this case, three) downstream of the original lesion. The displaced strand is then cleaved off by FEN-1, and the resulting nick ligated by DNA ligase I (right branch). The latter (right) pathway is exclusive to proliferating cells, while the single- and two-nucleotide pathways are employed in both proliferating and non-proliferating cells.

Single-nucleotide (SN) and long patch (LP) pathways have been successfully reconstituted in vitro using purified proteins. In the SN-pathway, one nucleotide is incorporated by POLβ, followed by the generation of a ligatable end by 3’ deoxyribose lyase (dRPase) activity residing in the 8 kDa fragment of the same polymerase. Finally, DNA ligase IIIα in conjunction with XRCC1 ligates the nick [108]. Alternatively, the dRP-fragment may be removed as part of a single-stranded ‘flap’ generated by strand-
displacement synthesis. This happens if the dRP-fragment is modified in such a way that it becomes resistant to the dRPase activity of POLβ. In non-proliferating cells this is performed by POLβ, which inserts another nucleotide, followed by flap removal by flap endonuclease 1 (FEN-1) and ligation (two-nucleotide pathway) [17,108]. Alternatively, POLδ or ε (together with RFC and PCNA) may incorporate an even longer patch. The dRP-fragment is removed by FEN-1, along with the displaced nucleotides, followed by ligation by LIG1 (LP-pathway) [109,110]. The latter pathway is apparently exclusive to proliferating cells, while single- and two nucleotide pathways can be carried out in non-proliferating cells as well [17].

2.5.1 Human uracil-DNA glycosylases

The human genome contains four known genes encoding glycosylases capable of removing uracil from DNA. These are uracil-DNA glycosylase (UNG), single-strand selective monofunctional uracil-DNA glycosylase 1 (SMUG1), thymine-DNA glycosylase (TDG) and methyl-CpG binding domain protein 4 (MBD4). UNG, SMUG1 and TDG adopt the same α/β core fold and belong to the same super family [111].

2.5.2 Uracil-DNA glycosylase (UNG)

The human UNG gene encodes two open reading frames driven by separate promotors and encodes the 304 amino acids in UNG1 and 313 amino acids in UNG2. They share the C-terminal 269 amino acids that are necessary and sufficient for catalytic activity, but differ in their N-terminal sequences that contain mitochondrial (UNG1) and nuclear (UNG2) localisation signals, respectively [112,113].

Uracil in both single and double-stranded DNA are the main substrates for the UNG-proteins, and they are exceptionally active relative to other glycosylases [114]. UNG-enzymes may also excise uracil-analogues with modifications in the 5' and/or 6' position that are small enough to fit into the catalytic active site of the enzyme, although at lower efficiency. Examples include 5-fluorouracil (5-FU), isodialuric acid, 5-hydroxyuracil and alloxan [115,116]. Among the biologically relevant substrates, the catalytic domain of the human UNG are most active on uracil in ssDNA, followed by uracil in dsDNA.
opposite guanine, then adenine [117]. However, the surrounding base sequence has a significant effect on catalytic efficiency [117,118].

UNG1 mRNA is expressed in all tissues examined, whereas UNG2 mRNA is mainly associated with proliferating tissues [119]. Following serum starvation, both mRNA’s, as well as total activity are upregulated at the entry of S-phase, seemingly independent of ongoing DNA synthesis [119,120,121]. The protein level of UNG2 is upregulated in S-phase and degraded in G2/M or early G1. hUNG1, on the other hand, is apparently expressed rather stably through the cell cycle [119,122,123,124,125,126]. UNG2 co-localises with PCNA and RPA in replication foci, where UNG2 probably acts on misincorporated uracil [122]. Co-immunoprecipitation experiments support these observations, as not only proteins necessary for SN- and LP-pathways co-immunoprecipitate with UNG2, but also the replication-associated proteins cyclin A, MCM7 and DNA polymerase α [127,128]. Furthermore, specific inhibition of UNG-proteins remove nearly all activity on U:A base pairs in extracts from human cells [116,127,129]. In addition, the apparent inverse expression pattern of TDG and UNG2 [124], suggests that UNG2 may be the major activity acting on deaminated cytosines during S-phase. UNG1 appears to be the only uracil-DNA glycosylase in mitochondria [129], and would therefore be responsible for uracil repair in all contexts.

UNG2 is modified by post-translational phosphorylation at Ser23, Thr60 and Ser64 [123]. These phosphorylations regulate cellular turnover, as the two latter residues appear to form part of a phosphodegron, which is a signal for ubiquitinylination and proteosomal degradation subsequent to phosphorylation. Furthermore, phosphorylation at any of these sites increases activity by up to 30%. Finally, the binding to RPA is increased by phosphorylation at Ser23, and diminished by phosphorylation at Thr60 and Ser64, while binding to PCNA is relatively unaffected by phosphorylation at any of these sites [123].

Gene-targeted Ung−/− knockout mice appear to develop normally, but display lymphoid hyperplasia early in life and a 22-fold increase in B-cell lymphomas at a later age compared to wild type [130,131]. A variety of cells derived from Ung−/− mice
accumulate genomic uracil and display a slight increase in mutation rate and frequency [130,132,133,134,135,136,137]. Omitting folate from the growth medium results in a mild increase in genomic uracil and mutation rate in cultured Ung−/− MEFs, compared to wild type [135]. While brain cells (but not colon epithelial cells) from Ung−/− mice fed with a folate-deficient diet also accumulated genomic uracil, they did not display the (mild) mutator phenotype. Nevertheless, they appear more vulnerable to neurodegeneration, which may be consistent with some cognitive and behavioural changes displayed by Ung+/− animals that were fed a folate-deficient diet [135]. Moreover, following brain damage provoked by cerebral ischemia, murine Ung-mRNA and protein activity were upregulated, especially in the cytoplasmic/mitochondrial fraction. Moreover, in Ung−/− mice, brain ischemia and reperfusion resulted in an increase in infarct size compared with wild type [133]. This was further aggravated when the animals were fed a folate-deficient diet [138]. These results suggest that murine UNG may protect neurons from tissue damage brought about by folate deficiency or ischemia.

Another deviation from wild type is apparent in the acquired immune system of Ung−/− mice. Here, B-cells from Ung−/− mice display an altered mutation spectrum at dC and dG sites during somatic hypermutation (SHM). Moreover, Ung−/− mice exhibit defects in class-switch recombination (CSR), i.e. an altered balance of serum immunoglobulin isotypes, with higher levels of IgM and lower levels of IgG3 compared to wild type [139]. These defects in the murine acquired immunosystem may be explained mechanistically by UNG2-mediated excision of uracil, generated through cytosine deamination by AID [139]. However, since the overexpression of mutants of UNG2 with <1% wild type activity in Ung−/− B-cells efficiently restores CSR, the canonical catalytic activity of UNG2 may not necessarily be required for CSR [140,141]. Thus, it has been suggested that UNG2 may play a structural rather than catalytic role in CSR, possibly acting as a scaffold for other repair factors [142,143]. Humans that carry recessive inactivating mutations in the UNG-gene show a similar phenotype as Ung−/− mice, especially with respect to CSR and SHM. Together these defects manifest themselves as a form of hyper-IgM syndrome (HIGM), interestingly similar to that caused by deficiencies in the AID-gene. In humans, however, the CSR defect is more
severe than in Ung-knockout mice, while the SHM mutation spectrum is affected in a similar manner in both species, i.e. only at cytosine and guanine [144]. These inactivating mutations either result in UNG2 proteins that are catalytically inactive or that are excluded from the nucleus [145].

The activity of the UNG proteins shows considerable variation between tissues as well as individuals [146,147,148]. Furthermore, cancer cells appear to display a large variation in the level and activity of both total UNG and UNG2 proteins, in contrast to un-transformed fibroblast cell lines that show a quite low and uniform expression of UNG proteins. The variation between cancer cell lines is not caused by polymorphisms in the coding regions of the UNG-gene, but rather reflects variations in the level of protein expression of UNG2 [149]. The effect of this variation on BER is unclear, although a single study suggests that forced overexpression of UNG2 results in a significant growth inhibition as response to inhibitors of TS at short – but not long – incubation times. Concurrently, a significantly elevated level of single-strand breaks as estimated by the comet assay was observed. This indicates that overexpressed UNG2 removed misincorporated uracil in excess of what the rest of the BER pathway could process, thus resulting in an accumulation of repair intermediates [150]. This was not sufficient to affect cell death or clonogenicity, but nevertheless suggests that high expression levels of UNG-proteins could contribute to genetic instability.

2.5.3 Single-strand selective monofunctional uracil-DNA glycosylase 1 (SMUG1)

SMUG1 has a broad substrate specificity, recognising uracil as well as a number of different uracil-analogues with substitutions in the 5' and 6' positions. Major substrates for SMUG1 are ethenocytosine, 5-fluorouracil and in particular 5-hydroxymethyluracil, for which it is the major activity in human cells [116]. When APE1 and Mg2+ are present in the reaction mixture the preferred substrate for SMUG1 is actually uracil in double-stranded DNA, in spite of the nomenclature [116]. SMUG1 is localised in nuclei with high levels in nucleoli and is constitutively expressed throughout the cell cycle [116] and similarly expressed in both proliferating and non-proliferating tissues [132]. Knocking down Smug1 in MEFs with siRNA results in a mutator phenotype, especially
G:C to A:T transitions, in a manner which is non-redundant with UNG2 [136]. Additionally, Smug1-knockdown MEFs are sensitive towards ionizing radiation and 5-FU [136,151]. SMUG1 forms foci with DNA polymerase λ (POLλ) in irradiated mouse cells, and these enzymes co-immunoprecipitate, indicating that the glycosylase is involved in repair of oxidised pyrimidines, in addition to repair of deaminated cytosines [152].

2.5.4 Thymine-DNA glycosylase (TDG)

The search for an enzyme able to repair deaminated 5-methylcytosines, which results in the canonical base thymine mispaired with guanine, led to the discovery of TDG. This glycosylase binds and excises thymine in T:G mispairs, thus initiating BER [153,154]. While the activity on the T:G mispair is rather small, TDG is up to ~100 times more active on uracil in U:G mispairs. The highest known activity is that of 5-FU opposite guanine, for which the turnover number is up to ~1000 times higher than on T:G mispairs [155]. This is to a large degree sequence specific, with the highest activity when a guanine is present 3' to the mispaired thymine (or other lesion), thus mimicking a deaminated 5-methylcytosine in a CpG context [155]. In addition to deamination products, TDG can also excise oxidised bases (hydroxyuracil, 5-methylhydroxyuracil) and products of lipid peroxidation (ethenocytosine) [156]. Once TDG has excised its target base it binds extremely tight to the product AP-site [157,158], to such an extent that the purified enzyme does not turn over (reviewed in [159]). The full product inhibition is alleviated by the next enzyme in the BER pathway, APE1, which displaces TDG from the AP-site [158], and by the covalent addition of a Small Ubiquitin-like Modifier (SUMO, 1 or 3) [160] to the C-terminus of TDG [161]. This induces a conformational change in TDG, which radically alters the way it interacts with DNA. The SUMO-conjugated protein can no longer bind AP-sites, thus facilitating catalytic turnover and resulting in an enhanced processing of U:G. Concurrently, however, the ability to process T:G is reduced [162]. Release from the AP-site is aided by physical interaction with the XPC-HR23B complex [163]. The T:G glycosylase activity is further stimulated by the physical association with the RAD9-RAD1-HUS1 heterotrimer (abbreviated 9-1-1 complex) [164]. 9-1-1 is similar to PCNA in that it acts as a sliding clamp and interacts with many downstream BER proteins [165,166,167,168,169].
While *TDG*-mRNA is expressed at similar levels in all tissues studied [170], and at similar levels throughout the cell cycle [121], the protein level is tightly linked with the progression of the cell cycle. TDG is highly expressed in G1 and G2/M, but is degraded at the entry of S-phase by the proteasome. This is the opposite expression profile to that of UNG2 [124]. TDG has so far not been implicated in carcinogenesis. Unlike most other mice with targeted deletions of other glycosylases, *Tdg*–/– mice lose viability halfway through the gestational period [159]. However, cells derived from knockout embryos are tolerant to 5-FU, indicating that the TDG could mediate fluoropyrimidine cytotoxicity. Overexpression and knockdown of TDG in HeLa-cells exposed to 5-FU results in sensitisation and tolerance, respectively, thus mirroring the murine phenotype [171]. Furthermore, forced expression of TDG during S-phase is apparently harmful to the cell and results in S-phase arrest [124]. While one might invoke several explanations why TDG-initiated DNA repair in S-phase would be detrimental, one should keep in mind that TDG is also established as a regulator of transcription. TDG interacts with transcription factors such as c-Jun, retinoic acid receptor (RAR) and retinoid X receptor (RXR), estrogen receptor α, p53 and others [172,173,174,175] (reviewed in [159]). Furthermore, recent evidence hints at a role for TDG in the maintenance of methylated CpG sequences, as TDG interacts with DNMT3b (DNA (cytosine-5-) -methyltransferase 3β) [176].

2.5.5 Methyl-CpG binding domain 4 (MBD4)

Two different groups discovered MBD4 independently. One group found the protein in a database search for candidate proteins that could bind to methylated CpG-sequences [177], and another in a yeast two-hybrid screening that used human MLH1 as bait [109]. It later turned out that these two studies had identified one and the same protein, which contains an N-terminal methyl-CpG binding domain that targets the protein to methylated CpG-sequences *in vivo* and *in vitro* [177] and a C-terminal domain similar to bacterial glycosylase/lyases. The C-terminal domain harbours monofunctional glycosylase activity on thymine, uracil and 5-FU when paired with guanine, which is especially active in methylated CpG contexts [178,179]. Like most other glycosylases,
the activity of MBD4 is strongly inhibited by its slow dissociation from the AP-site [180].

The human MBD4-gene contains a polynucleotide stretch of 10 adenines that is frequently mutated in human MSI-positive cancers (reviewed in [109,179,181,182]). The loss or gain of an extra adenine results in a premature stop codon in the mRNA, which is translated to a truncated protein that lacks the glycosylase domain. However, the methyl-CpG binding domain is still intact and able to bind methylated CpG-sequences. In vitro, the truncated MBD4 acts as a dominant negative inhibitor of the wild type MBD4 activity as well as other UDGs, most likely through steric hindrance. When the truncated MBD4 is transfected into human cell lines, it confers an increase in mutation frequency, a predisposition to structural chromosomal rearrangements and altered clonogenic response to cisplatin and etoposide [183]. Knockout mice have an increased mutation frequency, especially at CpG-sequences [184,185]. They also display reduced apoptosis in the murine intestine in response to several DNA damaging agents, including 5-FU, to which Mbd4−/− MEFs were considerably more tolerant [186,187]. The absence of apoptosis and tolerance to cytotoxic agents are thought to be mediated by interactions with Fas-associated death domain protein (FADD) and/or MLH1 [109,188].

2.5.6 8-oxoguanine DNA glycosylase (OGG1)

A major mutagenic DNA-lesion induced by oxidative damage is 7, 8-dihydro-8-oxoguanine (8-oxoG), which may form base pairs with adenine and result in G:C → T:A transversion mutations [189,190,191]. OGG1 excises 8-oxoG from DNA when paired with cytosine, thus initiating BER. It carries an additional lyase activity cause incision at the DNA backbone 3’ to the AP-site, and is therefore classified as a bifunctional glycosylase [192]. Alternative splicing of OGG1-mRNA generates two major isoforms in human cells. The α-isoform is targeted to the nucleus, and the β-isoform is targeted to mitochondria [193]. OGG1 expression is apparently not cell cycle regulated, at mRNA or protein levels [121,194], and OGG1 is not induced by oxidative stress [195].
OGG1 binds tightly to the AP-site after base excision, and there is consequently little turnover of the purified enzyme. However, APE1 stimulates dissociation of OGG1 from the AP-site, thus allowing the enzyme to turn over. The presence of APE1 results in an increase in glycosylase activity [196] and uncoupling of glycosylase and lyase activities [197]. SN-BER of 8-oxoG has been reconstituted using only four enzymes (OGG1, APE1, POLβ and LIG1) [198], and studies on extracts suggest that this is the predominant mode of repair for this lesion [172,199].

Gene-targeted Ogg1-knockout mice have an increased level of 8-oxoG in DNA, increased G:C to T:A transversion mutations, and a predisposition to lung adenoma/carcinoma in old animals [189,200,201]. Polymorphisms in the human OGG1-gene are present in the human population and may contribute to lung carcinogenesis, although the literature is rather ambiguous (see review in [183,202]). Regulating the expression of OGG1 in human cells exposed to oxidative stress modulates survival. Overexpression of OGG1 in irradiated human cells is apparently harmful, while suppression of expression leads to increased survival. This is thought to be caused by double strand breaks created by simultaneously occurring repair processes close to each other on opposite strands, as overexpression of OGG1 protects against H2O2, and suppression of OGG1 sensitises cells [203,204].

2.5.6 MutY homolog (MUTYH)

8-oxoG that escapes excision and repair by OGG1 is premutagenic because replicative polymerases may incorporate an adenine opposite this lesion [205]. This generates the substrate for the MUTYH glycosylase, which excises the normal adenine base when it is paired with 8-oxoG [206,207]. This initiates BER, which cause insertion of a cytosine opposite the 8-oxoG, generating the substrate for OGG1, thus eventually resulting in a repaired G:C base pair [208]. In addition, the human MUTYH excises adenine when mispaired with guanine [209,210], although the functional significance of this activity is not clear. MUTYH is a bifunctional glycosylase, but the lyase activity of the enzyme is dramatically lower than the glycosylase activity. Human cells contains at least two different isoforms localised in the nucleus and mitochondria and no less than 10 different mRNAs, indicating that even more isoforms could be present [211].
APE1 stimulates the glycosylase activity of MUTYH by alleviating AP-site product inhibition, and these two proteins interact directly [210,212]. Expression of MUTYH is upregulated in G1/S and MUTYH co-localises and interacts directly with PCNA and RPA in replication foci [212,213]. However, the steps following APE1 incision are not known at present, as no direct interactions between MUTYH and POLβ or δ have so far been observed [212]. These polymerases would, however, tend to re-incorporate adenine rather than cytosine opposite 8-oxoG, and thus probably initiate a futile repair cycle [214]. Rather, DNA POLλ may be a good candidate to ensure the incorporation of cytosine opposite 8-oxoG, as the presence of PCNA and RPA increases both the selectivity for cytosine opposite 8-oxoG, as well as the efficiency of POLλ. Concurrently, PCNA and RPA repress the efficiency of POLβ at an 8-oxoG template [215]. Consistent with this, murine POLλ is localised to sites of oxidative damage, and Poll-knockout MEFs are hypersensitive to oxidative DNA damage [152]. MUTYH has also been shown to interact and co-localise with MSHα [216] as well as the 9-1-1 complex, especially after oxidative stress [10].

Mutyh^{−/−}-mice show no obvious phenotype, with a lifespan and tumour frequency close to the wild type [217]. However, when crossed with *Ogg^{−/−}* animals to generate the double knockout, the offspring have reduced lifespan, an accumulation of 8-oxoG in lung tissue, small intestines and liver and a dramatic increase in tumour incidence in lungs, small intestines and ovaries [217,218]. This demonstrates in principle that the repair of 8-oxoG is important to prevent carcinogenesis in mammals. Consistent with this, variants of the human MUTYH-gene coding for catalytically weakened proteins confer a recessive predisposition to colorectal cancer, as well as an accumulation of G:C to T:A transversions in the gene encoding Adenomatous polyposis coli (APC) [219]. This disorder has been termed MUTYH-associated polyposis (MAP) (reviewed in [220]). Biallelic inheritance of MUTYH-variants results in a 93-fold excess risk of colorectal cancer, and may account for ~2% of colorectal cancers diagnosed before 40 years of age, and less than ~1% of patients diagnosed before 55 years of age [221].
2.5.7 Nth endonuclease III-like 1 (E. coli) (NTHL1)

NTHL1 is a bifunctional glycosylase that excises oxidised pyrimidines from DNA, most notably thymine glycol, 5-hydroxycytosine, FaPyG and dihydrouracil [222,223,224,225,226]. The β-lyase activity is several-fold lower than the preceding glycosylase activity [227]. NTHL1 interacts directly with PCNA, p53 and XPG, and its glycosylase activity is stimulated by the two latter enzymes [228], as well as by APE1 and Y-box binding protein 1 (YB-1) [227,229]. Interestingly, NTHL1 also stimulates itself through a DNA-independent dimerisation [230].

The expression of NTHL1 is cell cycle regulated, with the highest level of mRNA observed during S-phase [226]. It is localised in the nucleus as well as mitochondria [225,231]. Mice with targeted disruptions in the Nthl1-gene have been generated, but show no overt phenotype compared to wild type even when exposed to IR or H2O2 [232,233]. However, the expression level of NTHL1 is an important determinant for cellular survival in irradiated human cells. Here, induced overexpression of NTHL1 leads to an increased mutation frequency, double strand breaks and lower survival [203]. Downregulation of NTHL1-mRNA and protein by siRNA results in fewer double strand breaks in response to IR, but a survival similar to that of overexpressing cells, indicating that the protein level of NTHL1 has to be tightly regulated. Interestingly, the response to H2O2 is different, as overexpression increases survival while downregulation sensitises cells [204].

2.5.8 Nei endonuclease VIII-like 1 & 2 (E. coli) (NEIL1 and 2)

Like the well-characterised bacterial endonuclease VIII (Nei; endonuclease eight), the NEILs are bi-functional glycosylases that excise oxidised bases from DNA. They have the ability to carry out β- and δ-elimination on the resulting AP-site, resulting in a 1-nucleotide gap flanked by 3' and 5' phosphates [234,235,236]. The resulting 3' phosphate must be removed prior to nucleotide insertion, but this is a very poor substrate for APE1. Instead, polynucleotide kinase 3' phosphatase (PNKP) removes the 3' phosphate. Thus, BER can be performed independently of APE1 [106,236,237]. It has also been suggested that NEIL1 and NEIL2 could participate in the removal of
deoxyribose-fragments in short patch BER, a task which is normally performed by POLβ [238].

NEIL1 recognises and excises a large variety of oxidised pyrimidines. It is the only known enzyme able to act on FaPyA [223], and it can also excise thymine glycol, 5-hydroxycytosine, 5-hydroxyuracil, 5,6-dihydrothymine and 5,6-dihydouracil [233,234,236]. It is present in the nucleus as well as mitochondria [239]. The expression of NEIL1 is strongly induced during S-phase [235]. Furthermore, it is active in fork- and bubble-structures, unlike OGG1 and NTHL1. NEIL1 interacts with PCNA, which also stimulates its activity [240,241]. Hence, it is likely to play a role in genomic surveillance at or near the replication fork. NEIL1 is also shown to interact with and – in most cases - be stimulated by all subunits of the 9-1-1 complex as well as WRN, CSB, FEN-1, POLβ and LIG3α [106,164,241,242,243].

Downregulation of NEIL1-mRNA and protein in human and hamster cells by siRNA results in an increased level of oxidative DNA damage and mutation rate, both spontaneously and after oxidative stress [244]. SiRNA-mediated knockdown of Neil1 in MEFs results in sensitisation to IR. Neil1-knockout mice develop normally until 7 months of age, when males, and to a lesser extent females, have been reported to develop severe obesity along with obesity-associated ailments, but not cancer [245]. Furthermore, Nthl1−/−Neil1−/−-double knockout mice show a very high incidence of lung and liver tumours compared to either single knockout. This was accompanied by an accumulation of FaPyA and to a lesser extent FaPyG in DNA from mice lacking Neil1, while the level of 8-oxoG in DNA was rather similar [246]. However, the latter group did not observe the obese phenotype in Neil1−/− mice. Although these groups report conflicting phenotypes for the Neil1-knockout animals, they both report that the observed phenotype (be it cancer or obesity) is less severe for females than for males [245,246].

NEIL2 excises oxidised pyrimidines, with the most pronounced activity towards 5-hydroxyuracil, and somewhat less on 5,6-dihydouracil and 5-hydroxycytosine. It is localised exclusively in the nucleus [234,236]. Like NEIL1, it is active in bubble structures of varying sizes, indicating that it could be active in transcription and/or
replication [240] and its expression is rather unaffected by the cell cycle [236]. NEIL2 appears to interact directly with POLβ and LIG3α, and co-immunoprecipitates with these two as well as with PNKP and XRCC1 – but not APE1. These proteins are in concert able to repair 5-hydroxyuracil in plasmid DNA in an APE1-independent manner, either when added together as recombinant proteins or as a multi-protein complex immunoprecipitated from cells [237]. Furthermore, NEIL2 interacts with YB-1, which also stimulates NEIL1 activity [247].

While NEIL3 has extensive homology to *E. coli* Nei, NEIL1 and NEIL2 [234], no glycosylase activity has so far been associated with the protein. The only known activity of NEIL3 is an AP lyase-activity on ssDNA. Thus, it might be relevant in the response to oxidative damage, as the protein can partially rescue Nei- and Fpg-deficient *E.Coli* from oxidative stress [248].

2.5.9 N-methylpurine-DNA glycosylase (MPG)

MPG is a monofunctional glycosylase that removes purine bases methylated in N3- and N7-positions, as well as hypoxanthine, N6-ethenoadenine and 3-ethenoguanine (reviewed in [105,249]). *MPG*-mRNA and activity are up-regulated during the S-phase [121]. MPG interacts with PCNA, which also stimulates its activity [121]. Furthermore, its glycosylase activity is stimulated by APE1 and HR23B [250,251] and it interacts with Methyl-binding domain 1 protein (MBD1) and XRCC1 [252,253].

Monofunctional methylating agents such as methyl methanesulfonate (MMS) and TMZ induce methylations at purine bases, with the relatively harmless 7-methylguanine as the quantitatively most important lesion [254,255]. The direct cytotoxicity is mediated by generation of another cytotoxic and mutagenic lesion, 3-methyladenine. Although rather counter-intuitive, induced overexpression of MPG does not protect against these agents, but confers a sensitation to the cells [256,257,258]. This effect is, however, not seen when exposed to methylating agents that yield almost exclusively 3-methyladenine [258]. Thus, it would appear that the accumulation of toxic BER intermediates stemming from the repair of relatively harmless adducts by overexpressed MPG mediates cell death. Agents that target BER intermediates, such as methoxyamine (MX)
and PARP-1 inhibitors, aggravates the cytotoxicity of methylating agents (reviewed in [259]), also when MPG is overexpressed [257]. Furthermore, while Polb−/− MEFs are hypersensitive to alkylating agents, they are as sensitive as wild type when the Mpg-gene is knocked out as well [260,261].

2.5.10 APEX nuclease (multifunctional DNA repair enzyme) 1 (APEX1, APE1)

APE1 is a multi-functional enzyme that modifies DNA with several known activities on damaged DNA. It was first identified as an AP-endonuclease that incises the DNA backbone at AP-sites, generating a 3'OH and a 5' deoxyribosephosphate (dRP) – fragment [262,263]. APE1 also contains a 3' phosphodiesterase activity generating a 3'OH from 3'phospho-α,β-polyunsaturated aldehyde (PUA), the product of bifunctional glycosylases and a 3' phosphatase activity which releases phosphate and generates a 3' OH (reviewed in [264]). Furthermore, APE1 contains a 3'->5' exonuclease activity that excises mismatches at 3' nicked or gapped DNA structures [216]. It also contains an endonuclease activity acting on oxidised bases, which incises the DNA backbone in a glycosylase-independent manner, generating a 3'OH group and a “dangling” 5' damaged base. The latter process has been termed nucleotide incision repair (NIR) [265,266]. Additionally, APE1 is a regulator of transcription factors, including AP-1, NF-κB, p53 and numerous others. In many cases the transcription factors are actively kept in an active reduced state through interaction with the N-terminal redox domain of APE1 (reviewed in [264,267]).

Given the many roles of APE1, it comes as no surprise that attempted generation of knock-out Apex−/− mice results in embryonic lethality [268]. Haploinsufficient Apex+/− mice are viable, but they have increased spontaneous mutation rates [269] and an increased cancer incidence when exposed to oxidative stress [270]. Furthermore, reducing the APE1 expression level by anti-sense RNA results in hypersensitivity to a range of different DNA damaging agents, but not UV [271]. SiRNA-mediated silencing of APE1-mRNA and protein in human cells results in an accumulation of AP-sites, followed by blocked cell proliferation and apoptosis. This may be reversed by the
expression of *S. cerevisiae* Apn1, that has a similar AP endonuclease activity, but are structurally unrelated to human APE1 and unable to regulate transcription factors or interact with other human BER proteins [272]. On the other hand, an increase in the already high endogenous level of APE-1 leads to resistance against many DNA damaging agents, again with UV as an exception ([273], reviewed in [264]). APE-1 is furthermore upregulated during S-phase [274], and as a consequence of genotoxic stress (reviewed in [264]).

Most of the known human glycosylases bind tightly to the product AP-site and are inhibited by them, including SMUG1, TDG, MBD4, MUTYH, OGG1, NTHL1 and MPG [158,180,196,210,227,251,275]. APE1 alleviates the product inhibition and stimulates the turnover of most of these glycosylases by displacing them from the AP-site. If bifunctional glycosylases are displaced prior to the relatively slow β-elimination reaction, then they act as being monofunctional and hand over an intact AP-site to APE1 [197,210,227]. This type of glycosylase stimulation by displacement may be a “passive” process, in which APE1 decreases the amount of AP-sites available for glycosylases through its enzymatic mechanism [197], or alternatively an active process that displaces glycosylases from the AP-site through formation of a temporary glycosylase-APE1-DNA complex [276,277]. These models are not mutually exclusive. While APE1 stimulation of glycosylases is well established, the effect of a glycosylases on APE1 activity has not been thoroughly examined. A few studies show that the presence of a glycosylase tightly bound to the AP-site weakly inhibits endonuclease activity of APE1 [158,275], in effect slowing down repair of AP-sites. UNG2 does not bind to AP-sites but its activity is nevertheless reported to stimulate APE1 [116,275].

Similar to the glycosylases, APE1 remains bound to the product of its reaction, the 5' dRP-fragment [278,279]. APE1 promotes binding of POLβ, the next enzyme in the SN BER pathway, to nicked AP-sites, and stimulates its dRP-ase activity. Reciprocally, POLβ stimulates the AP-endonuclease activity of APE1 [278,280]. These bilateral interactions between glycosylases and APE1, and APE1 and POLβ prompted the suggestion that BER intermediates are bound by the preceding enzyme in the pathway until the next protein arrives, at which point the intermediate is shuttled from one repair
enzyme to the other, much like the baton in a relay [281]. In addition to DNA glycosylases and POLβ, there is evidence for a rather extensive network of protein-protein interactions regarding APE1 and BER proteins. APE1 is shown to stimulate and/or physically interact with PCNA, LIG1 and FEN-1 (all involved in LP-BER) [282,283], as well as the 9-1-1 complex, XRCC1, p53, high mobility group box 1 protein (HMGB1), Heat-shock protein 70 (Hsp70) and WRN [167,284,285,286,287,288]. Many of these factors are associated with APE1 as part of BER-competent multi-protein complexes, which may be formed even in the absence of DNA damage [127,128]. Negative regulators of APE1 include BCL-2, which inhibits endonuclease activity and disrupts the APE1-XRCC1 complex [289], and granzyme A, which degrades APE1 by proteolytic cleavage, directing the cell towards apoptosis [290].

Several polymorphisms in the APE1 gene have been identified in the human population, some in the coding regions of the gene [291]. As the phenotype of Apex+/− mice and downregulation by siRNA may suggest, inactivating mutations could play a role in mutagenesis and carcinogenesis. However, results from epidemiological studies are so far too ambiguous to suggest a causal relationship between APE-1 polymorphisms and cancer (reviewed in [259,292]).

2.5.11 Polynucleotide kinase 3’phosphatase (PNKP)

As mentioned, the phosphate-flanked 1-nt gaps generated by NEIL glycosylases are poor substrates for APE1. Here, the 3’ phosphatase-activity of PNKP comes into play, thereby unveiling the 3’OH group required for nucleotide-insertion by polymerases [106]. A multi-protein complex proficient in SN BER has been isolated from human cells, containing (among others) NEIL2 and PNKP but not APE1 [237]. The ‘end-cleaning’ properties of PNKP are also involved in the repair of double- and single-strand breaks [293,294]. PNKP-mRNA and protein downregulation by siRNA confers sensitivity to several genotoxic agents as well as a ~7-fold increase in spontaneous mutation frequency [295].
2.5.12 DNA polymerase β (POLβ)

POLβ has two main activities in BER, localised in two different domains. The polymerase activity is contained in the 31 kDa C-terminal domain. This activity is the main polymerase in SN BER [296,297,298], and may also be responsible for incorporation of the first nucleotide in LP-BER [299]. In addition, POLβ contains lyase activity in an 8 kDa N-terminal domain required for removing the dRP fragment generated by APE1 during SN BER [298,300]. As this latter activity is the catalytically slowest of the BER enzymes it was proposed that excision of dRP is the rate-limiting step in SN-BER [301]. Furthermore, it appears to be the clearly dominant dRPase activity in mammalian cells [302,303]. POLβ takes part in an extensive network of interactions with BER proteins, among them APE1, PNKP, PCNA, XRCC1, PARP1 and 2, LIG1, and FEN-1 (reviewed in [304]) also as part of multi-protein complexes. XRCC1 and LIG1 seem to inhibit strand-displacement synthesis by POLβ [108,198], while WRN and FEN-1 stimulates it [305,306]. This may suggest that the presence of BER proteins close to the repair site affects the extent of LP strand-displacement. The functional significance of PCNA and PARP-1 and 2 on POLβ is unclear, or there are conflicting results in the literature (discussed in [307]).

While attempted generation of Polb-/- mice results in embryonic lethality [308], Polb-/- embryonic fibroblasts are able to grow in culture. They show an extreme sensitivity to MMS, which can be reversed by expressing the 8 kDa-lyase domain of the murine POLβ alone [302]. Haploinsufficient (i.e. Polb +/-) mice are viable, with an increased mutation rate when exposed to alkylating agents [309]. The spontaneous mutation frequency is not affected, but increased tumour formation and CIN are observed in the heterozygous animals [310]. POLβ is frequently overexpressed in human cancers (compared to normal tissue) [311]. POLβ overexpression confers a mutator phenotype and an enhanced tumour formation to chinese hamster ovary cells [312,313]. Furthermore, POLβ is frequently mutated in a range of different human tumour specimens, and some of these mutations are in coding regions of the gene [314]. This may result in proteins with altered properties, such as lower replicative fidelity and/or dRPase-activity [315,316]. Expression of some of these are mutagenic and sufficient for
cellular transformation of mouse cells [317]. Additionally, deletion mutants found in human cancers lead to a dominant negative phenotype, where the truncated protein hinders the wild type from binding to DNA [318].

2.5.13 DNA Polymerase δ and ε (POLδ and ε)

In addition to their roles in semi-conservative DNA synthesis, these polymerases are also involved in gap filling in long-patch BER, MMR and NER. In extracts from Polb-deficient murine cells, both POLδ and ε can perform both LP and slow SN BER, in a process requiring PCNA and RFC [319,320]. The current understanding of the process is that POLβ inserts the first nucleotide in both sub-pathways, followed by the insertion of several more by POLδ or ε resulting in LP repair [299]. LP-BER has been reconstituted with APE1, POLδ or ε, PCNA, RFC, FEN-1 and LIG1 as necessary and sufficient factors [110,321]. Furthermore, both polymerases co-immunoprecipitates with core BER factors in a BER competent multi-protein complex [128].

2.5.14 Flap Structure-specific endonuclease 1 (FEN-1)

When replicative polymerases encounter another strand of nucleic acid on the template, they can continue replicative DNA synthesis by displacing the obstructing strand. This generates a structure with a protruding single-stranded 5'end. This structure arises during lagging strand DNA synthesis, LP BER and HR. The single-stranded protruding 5' fragment can be removed by FEN-1 by cleaving at the junction between double- and single-stranded structures, thus generating a ligatable end [322]. FEN-1 also contains a 5'→3' exonuclease activity that degrades nicks, gaps and recessed ends [323], and a gap endonuclease activity that cleaves the single-stranded regions of gaps (e.g. stalled replication forks), thus generating a double-strand break [324].

Oxidised or reduced AP-sites in the BER-pathway cannot be processed by the lyase activity of POLβ [325]. Instead, FEN-1 removes these modified AP-sites as part of an oligonucleotide, which is generated by strand-displacement synthesis by POLβ, δ or ε [306,326]. FEN-1, alone or in conjunction with PARP-1, stimulates POLβ-mediated strand-displacement synthesis at modified AP-sites [327]. PCNA stimulates FEN-1
binding to substrate and subsequent catalysis [328], an effect which is antagonised, at least in vitro, by the expression of the PCNA binding protein p21 [329]. FEN-1 activity is also stimulated by APE1, POLβ, PARP-1, WRN and 9-1-1 [165,282,327,330].

Fen1−/− knockout mice are not viable, but heterozygotes display an apparently normal phenotype. However, when an additional Apc-allele is mutated in a Fen+/− background, the animals develop MSI-positive tumours [331]. Many human cancers frequently overexpress FEN-1 [332], and furthermore, cancer-associated mutations in the human FEN1-gene have been identified. Many of these mutations lead to a protein that is inactive for 5′ exonuclease and gap endonuclease activities. Mice homozygous for these partially inactive proteins have increased autoimmunity, chronic inflammation and cancer incidence [333].

2.5.15 DNA ligases in BER

Two of the three known DNA ligases in humans have been implicated in BER. These are DNA ligase I (LIG1) and DNA ligase III (LIG3), in PCNA-associated excision repair and XRCC1-associated short patch repair, respectively. The third known ligase (DNA ligase IV, LIG4) appears to function only in NHEJ and V(D)J recombination [334]. All human ligases derive their energy from ATP, in contrast to bacterial ligases, which are dependent on NAD+ [10].

LIG1 interacts with the DNA clamps 9-1-1 complex and PCNA. The latter protein recruits LIG1 to replication foci, where it functions to join Okazaki-fragments in lagging strand synthesis [335]. LIG1 is present in both proliferating and non-proliferating cells, but the mRNA level increases markedly when cells are induced to proliferate [336]. The discovery of the PCNA interaction led to the notion that LIG1 was involved in PCNA-dependent LP BER, a position which was strengthened by reconstitution experiments with purified proteins [110,321,326] and its presence in multi-protein BER-competent complexes [128,337]. Furthermore, a mutant cell line defective for LIG1 has significantly longer in vitro repair tracts in LP BER, while SN BER is unaffected [338]. Finally, LIG1 has been proposed to be a patch size mediator for POLδ and ε [110]. The 9-1-1 complex interacts in vitro and in vivo with LIG1, an
interaction that is stimulated by UV light. The 9-1-1 complex coordinates and stimulates the sequential activities of FEN-1 and LIG1 [339], suggesting that it functions as a DNA damage-induced PCNA-like factor in DNA repair. LIG1 also interacts with APE1 and POLβ [283,337].

The LIG3-gene encodes two isoforms, referred to as α and β. The LIG3β isoform is apparently specific for testis, while the LIG3α isoform is expressed in all other cells and tissues as well [340]. Furthermore, the α-mRNA contains two translation start codons. These result in proteins with different N-termini that specifically direct them to the nucleus or mitochondria [341]. Most of the nuclear LIG3α is in a complex with XRCC1, and this interaction is apparently required for its stability, as unbound LIG3α is swiftly degraded in the absence of XRCC1 [342,343]. Thus, cells deficient for XRCC1 are also functionally deficient for LIG3α. Both XRCC1 and LIG3α binds to PARP-1 and poly(ADP-ribose), and are thus recruited to DNA with strand-breaks [344]. LIG3α is thought to perform DNA ligation in SN BER and single-strand break repair. Consistent with this, LIG3α is found in BER-competent multi-protein complexes [237,293,345], and it is one of four core proteins sufficient for complete SN BER in reconstitution experiments [108].

2.5.16 X-ray repair complementing defective repair in Chinese hamster cells 1 (XRCC1)

The XRCC1 protein harbours no known enzymatic activity, but cells deficient in this protein are nevertheless sensitive to a range of DNA damaging agents, e.g. IR as well as oxidative and methylating agents (reviewed in [346]). XRCC1 binds rapidly to sites of damaged DNA in vivo [347] and purified XRCC1 binds to BER intermediates in vitro including small gaps and nicks [348], natural AP-sites as well as 5’ and 3’ incised AP-sites (i.e. the product of monofunctional glycosylases, APE1 and bifunctional glycosylases, respectively) [349]. Extracts from XRCC1-deficient Chinese hamster ovary (CHO) cells have a 2 to 4 fold reduced ligation efficiency [350]. Furthermore, XRCC1 has the ability to interact with and/or stimulate BER proteins at all steps of the pathway, including MPG, OGG1, NEIL2, APE1, POLβ, LIG3α, PCNA, PARP-1 and -2
and PNKP [108,237,253,286,293,342,351,352,353,354]. XRCC1 has also been found as a member of several multi-protein complexes, at least some of which are probably formed independent of DNA damage [127,128,355]. Together these observations suggest a role in single-strand break repair and BER as a scaffolding protein, which stimulates, orchestrates and recruits other repair proteins to the site of DNA damage.

Gene-targeted mice deficient for \textit{Xrcc1}, or for that matter mice that overexpress murine XRCC1, have not been obtained due to embryonic lethality [356,357], thus underlining the importance of a tightly regulated expression of XRCC1 in murine cells. In the human population, single-nucleotide polymorphisms in the coding regions of the \textit{XRCC1}-gene are relatively widespread, but the epidemiological significance regarding cancer is rather ambiguous [292,358].

\subsection*{2.5.17 Proliferating cell nuclear antigen (PCNA)}

PCNA is a donut-formed homotrimeric protein that encapsulates DNA and acts in replication forks as a sliding clamp for replicative polymerases. It is loaded onto DNA by RFC. Like XRCC1, PCNA do not contain any (known) enzymatic activities, but rather seem to function as a scaffolding protein that keeps various replication and repair factors in close proximity to DNA. PCNA interacts with numerous BER proteins, including UNG2, MUTYH, NTHL1, NEIL1, APE1, XRCC1, POL\textbeta{}, FEN-1, DNA LIG1, PARP-1 and WRN [122,212,228,241,251,282,328,329,354,359]. PCNA is required for LP BER by POL\textdelta{} and \epsilon{} [110,321]. When the cyclin-dependent kinase inhibitor p21 is expressed, it binds to PCNA and sequesters it from repair factors, thus inhibiting LP repair [329].

\subsection*{2.5.18 Poly(ADP-Ribose) Polymerase 1 and -2 (PARP-1 and -2)}

PARP-enzymes catalyse the polymerisation of NAD$^+$ to chains of poly(ADP-ribose) (PAR), which may be elongated up to 200 units in length. PARP-1 is responsible for most of the PARP-activity in mammalian cells, and binds as a dimer with high affinity to DNA containing strand-breaks. This activates the enzyme [360], leading to auto-
ribosylation of PARP-1 itself, as well as nearby acceptor proteins (e.g. a number of histones, p21, p53, XRCC1, POLβ and LIG3α). Auto-ribosylation of PARP-1 leads to its dissociation from DNA due to charge repulsion between the negatively charged PAR and the phosphate groups in DNA [361]. This dissociation is necessary for DNA repair enzymes to access the lesion. Thus, in the absence of NAD⁺, or in the presence of PARP-1 inhibitors, the binding of PARP-1 to damaged DNA inhibits repair. This leads to accumulation of DNA repair intermediates in the form of strand-breaks [346,362]. Furthermore, it has been shown that PARP-1 binding to DNA recruits and stabilises XRCC1 and associated proteins into nuclear foci at strand-breaks [363]. PARP-1 inhibitors sensitises cells to any agent that directly or indirectly produces strand-breaks [346], an effect which can be exploited in cancer chemotherapy. Following the dissociation of auto-ribosylated PARP-1 from DNA, PAR is rapidly degraded by PAR glycohydrolase (PARG), thus allowing re-binding of PARP-1 to damaged DNA. The binding of PARP-1 to damaged DNA is therefore a rather transient and dynamic phenomenon. If this process is allowed to repeat itself, for instance if the strand-break is not easily repaired, or the number of strand-breaks is so large that they overwhelm the cellular repair capacity, PARP-1 will soon consume all intracellular NAD⁺. This is a signal for cell death, which may be dependent or independent of caspases, depending on the metabolic status of the cell in question (reviewed in [364]).

While PARP-1 modifies several BER proteins covalently, it can also interact with them directly, as demonstrated for POLβ, PCNA, XRCC1, WRN and LIG3α, thereby recruiting them to sites of damage (reviewed in [304]). Several of these are stimulated by this interaction. Furthermore, under conditions where ATP is scarce it has been suggested that ATP for ligation are derived from the PAR-polymer, and that this constitutes the rate-limiting step of BER [365].

Eighteen proteins in the PARP-family have so far been identified in humans, of which PARP-1 is the most abundant and accounts for at least 85% of the PARP-activity in living cells, while PARP-2 accounts for some ~10% [366,367]. These are the only family members that are responsive to damaged DNA. Neither Parp-1 nor Parp-2
knockout mice display grave aberrant phenotypes in the absence of DNA damaging agents, but attempted double knockouts are embryonic lethal [368].

2.5 Mitochondrial DNA repair

Each human cell contains several mitochondria, and each mitochondrion contains several copies of their own 16,569 bp genome (mtDNA). Each copy of the mtDNA genome encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that participate in the electron transport chain. The lack of histones and the proximity to oxygen radicals produced by the "leaky" electron transport chain makes the mtDNA especially exposed to oxidative damage. Consequently, quite a few of the estimated ~2000 proteins that populate mitochondria must be involved in DNA repair. The best established DNA repair pathway in mitochondria is BER. Five glycosylases have so far been reported in mammalian mitochondria: UNG1, OGG1, MUTYH, NTHL1 and NEIL1 [112,193,211,231,239]. Furthermore, mitochondria contain APE1, APE2 and LIG3α. Together with the only known polymerase activity in mitochondria, DNA polymerase γ (POLγ), which also contains a dRP-ase activity, these enzymes are sufficient to complete BER by the insertion of a single nucleotide, while LP BER requires FEN-1 or DNA2 to excise the flap generated by strand displacement [129,369].

Other excision repair pathways are not as well characterised. NER is not thought to be active in this organelle, as pyrimidine dimers are apparently not repaired in mtDNA [370,371,372]. HR and NHEJ may be active in mitochondria [373,374,375], although mitochondria are apparently unable to repair some of the lesions that are removed by these pathways in nuclei [376]. Direct repair proteins, specifically MGMT and ALKBH1, are also present and active in mitochondria [60,376]. Finally, mammalian mitochondrial extracts appears to harbour a functional MMR pathway [377]. However, none of the core MMR-proteins seem to be directed to mammalian mitochondria. Rather, mitochondrial MMR seems to be initiated by YB-1 [378].
3.0 AIMS OF THE STUDY

The base excision repair pathway has traditionally been subdivided into single-nucleotide and long patch subpathways. Mechanistically, these pathways differ in two ways; by the number of nucleotides that are inserted, and the way in which the AP-site is removed. In SN-BER the AP-site is removed by beta-elimination, which is performed by POLβ and γ in the nucleus and mitochondria, respectively. These activities are, however, not able to remove modified AP-sites [325]. Instead, reduced or oxidised AP-sites are removed as part of an oligonucleotide ‘flap’ that is displaced from dsDNA by long patch synthesis. The dominant activity on ‘flap’ substrates in nuclear DNA is FEN1. However, prior to paper I, neither FEN1 nor FEN-1 like activities had been demonstrated in mitochondria. Indeed, mitochondrial BER was thought to proceed exclusively by the SN-pathway [379,380]. Thus, the aim of this study was to examine the capacity of mitochondria for repair of lesions that in the nucleus require LP BER. This work is presented in paper I.

Four uracil-DNA glycosylases have been identified in human cells. These are UNG, SMUG1, TDG and MBD4. Of these four, UNG is apparently the quantitatively most important glycosylase. There is a substantial variation in uracil-excision activity among different tissues, individuals and cell lines [146,147,148,149]. The significance of this variation on the rest of the BER pathway is not clear, especially since the rate-limiting step of BER have been proposed to reside at every step of the pathway, except for nucleotide insertion. In murine male germ cells, uracil-repair seems to be limited by the expression of UNG in young animals and APE1 in older [381]. Furthermore, the catalytically slowest process in SN-BER is the removal of the dRP-fragment by POLβ, so in reconstitution experiments the rate is determined by the level of POLβ [301]. Finally, the ligation step has also been suggested to be rate-limiting [365]. Furthermore, DNA glycosylase overexpression is cytotoxic and/or inhibits growth in cells that are challenged with treatments that specifically generates their substrates in DNA [150,203,204,257,258]. Using nuclear extracts from human cell lines known to vary in the expression of UNG2, we aimed to examine which of the known nuclear BER pathways...
proteins, if any, acted as bottle necks in the repair of uracil in DNA in human cell lines. This work is presented in paper II.

5-FU has been in clinical use for over half a century, but the exact mechanism by which it kills cells is still a matter of debate. The current understanding of the cytotoxic mechanism involves inhibition of TS and incorporation of fluorinated uracils into RNA and DNA [26]. The latter aspect has received considerable attention in recent years, as a variety of cells in which DNA repair proteins are downregulated or absent display an altered sensitivity to 5-FU or one of its metabolites [25]. Several DNA repair pathways can initiate repair of 5-FU from nuclear DNA. The ability to excise 5-FU from DNA is demonstrated for UNG2, SMUG1, TDG and MBD4 [116,151,155,157,382,383] , which initiate the BER pathway. Alternatively, the MMR pathway has also been shown to act on 5-FU in DNA [384]. We aimed to determine the relative significance of each DNA glycosylase to initiate BER in vitro, and compare the efficiency of BER and MMR to the repair of 5-FU from DNA. Furthermore, we examined what effect downregulation of the DNA repair enzyme that was quantitatively dominant in vitro had on fluoropyrimidine cytotoxicity. This work is presented in paper III.
4.0 SUMMARY OF PAPERS AND GENERAL DISCUSSION

4.1 Paper I: Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis.

Akbari M, Visnes T, Krokan HE and Otterlei M.

The mitochondrial genome is under continuous attack from ROS due to its proximity to the electron transport chain. ROS oxidises and modifies only bases in DNA, but also AP-sites that are generated by spontaneous hydrolysis or as BER intermediates. These modified AP-sites cannot be excised by beta-elimination employed by the dRP lyase activity of POLβ in nuclei and POLγ in mitochondria [325]. Hence, oxidised AP-sites are refractory to repair by the SN-pathway. The only known pathway to excise these modified AP-sites in human cells is to remove them as part of a ‘flap’ oligonucleotide during LP-BER [299]. Yet, mitochondrial BER was thought to take place exclusively by SN-BER [379,380]. So how would oxidised AP-sites be repaired in mitochondria?

An essential and critical factor in the study of mitochondrial BER is to prepare mitochondrial extracts free of nuclear contaminants, in this case especially those involved in DNA repair. We did this by treating partially purified intact mitochondria from HeLa and HaCaT cells with proteinase K. The mitochondrial double membrane served as a barrier that protected mitochondrial proteins from degradation. Proteinase K was then partially removed by centrifugation. Residual proteinase K was inhibited with proteinase inhibitor cocktail, thereby allowing extraction of mitochondrial proteins free of nuclear BER proteins. The purity of the extract and absence of nuclear contaminants was then confirmed by the following observations: 1) Absence of the nuclear proteins POLδ, PCNA, lamin A+C and UNG2, as judged by Western blot analysis. 2) Presence of VDAC1, COX IV and UNG1, specific for mitochondria, as judged by Western blot analysis. 3) All UDG-activity and complete U:A BER in the extract were inhibited by neutralising antibody against the catalytic domain of UNG, indicating that SMUG1, TDG and MBD4 were not present in the extract. 4) We detected DNA polymerase activity in the presence of aphidicolin but not N-ethylmaleimide (NEM), indicating that the polymerase activity stemmed from the mitochondrial POLγ. (Aphidicolin inhibits
POLα, δ and ε, while NEM – at the concentration used here – inhibits POLα, γ, δ, and ε but not β).

By exposing cccDNAs containing an AP-site in a specific position to mitochondrial extracts from HeLa and HaCaT, we observed incorporation of labelled deoxynucleotides not only at the lesion site, but also at a few nucleotides 3’ of the lesion, suggesting mitochondrial LP-BER. Omitting ATP from the reaction mixture resulted in an increased incorporation in the 3’ fragment, indicating that DNA ligase activity was a patch size mediator. Furthermore, by purifying the substrate DNA after the reaction and treating it with T4 DNA ligase, we observed a nearly complete conversion of repair intermediates to ligated fragment, indicating that the LP-repair intermediates were ligatable and hence could not have contained any dRP- or flap-fragments. In addition, we demonstrated the efficient repair of tetrahydrofuran, a modified AP-site that is resistant to dRP-lyase activity and consequently repaired exclusively by LP-BER. These observations were consistent with mitochondrial LP-BER, and furthermore – suggested the presence of a flap endonuclease activity in the mitochondrial extract, analogous to nuclear BER. However, at the time, there was no such enzyme(s) associated with mitochondria.

We therefore constructed a circular DNA substrate that imitated the flap-containing BER intermediate by annealing two overlapping oligonucleotides, to a circular ssDNA molecule followed by strand elongation and ligation. The oligonucleotide upstream of the overlap junction was radiolabelled at the 5’ end, while the other oligonucleotide served as a flap. The ligation of these two oligonucleotides would be indicative of complete repair, which requires the removal of the overlapping flap. After treating the substrate with mitochondrial extract and cutting the DNA 18 and 33 nucleotides on either side of the flap, we detected a shift in gel migration of the radiolabelled oligo, which was inhibited by the addition of EDTA. This shift indicated that the two oligonucleotides had been ligated, and that the obstructing flap must have been removed. Furthermore, this strongly suggested that mitochondria harboured an enzyme that could resolve flap-structures from DNA. We could, however, not detect the quantitatively dominant nuclear flap endonuclease, FEN-1, in the mitochondrial extracts.
by Western blot analysis, although we were able to detect FEN-1 by Western blot analysis in a nuclear extract. In order to increase sensitivity, we also attempted to immunoprecipitate FEN-1 from mitochondrial extract. However, even after immunoprecipitation we were still not able to detect mitochondrial FEN-1, whereas this was easily done in nuclear immunoprecipitates. In addition, the FEN-1-immunoprecipitate from nuclear extracts was active on flap-DNA substrates, while the FEN-1-immunoprecipitate from mitochondrial extracts was not. Finally, we showed that the flap-removing activity in mitochondrial extracts was of an endonucleolytic nature, as it released the expected 5-mer from a substrate containing a 5 nucleotide flap, similar to nuclear extracts and FEN-1 immunoprecipitate. In addition to the 5-mer flap, we also detected smaller fragments, which probably represent exonucleic digestion after the flap release. However, we cannot exclude the possibility that at least some of the flap-removing activity processively digested the flap from the 5’ end prior to ligation. Nevertheless, together these observations are consistent with LP BER in mitochondrial extracts that do not stem from nuclear contaminants, and that an activity similar to FEN-1 is involved in mitochondrial LP-BER.

Shortly after publication, three independent papers confirmed our initial observation of LP-BER in extracts from protease-treated mitochondria [369,385,386]. Furthermore, they all detected FEN-1 in mitochondria by Western blot analysis, although the significance of FEN-1 in LP-BER varied between the studies. One group isolated a multi-protein complex that was proficient in LP-BER, but which did not appear to contain FEN-1. Moreover, siRNA-mediated downregulation of FEN1-mRNA and protein had little effect on flap endonuclease activity, and the product of a flap endonuclease assay yielded a product that was smaller than expected, although the possibility of exonucleic digestion of the released flap could not be ruled out. Thus, Szczesny et al argued that while FEN-1 was present in mitochondria, it was not involved in LP-BER [385]. On the other hand, Liu et al demonstrated that FEN-1 immunodepletion from mitochondrial extracts significantly reduced both flap endonuclease-activity and LP-BER. Furthermore, they demonstrated that FEN-1 downregulation by siRNA resulted in delayed repair of oxidative damage in mitochondrial, but not nuclear DNA [386]. Finally, Zheng et al detected mitochondrial
FEN-1, but also identified another flap endonuclease in mitochondria, the DNA replication helicase 2 homolog (yeast), abbreviated DNA2. This protein has ATPase, helicase and nuclease domains, the latter active on 5' flap structures. In yeast, it is involved in the resolution of certain secondary structures during replication, as well as the removal of Okazaki fragments. In human cells, DNA2 appears to be localised in mitochondria as well as the nucleus [387]. Moreover, Zheng et al reported a physical interaction between DNA2 and POLγ. Both DNA2 and FEN-1 were apparently involved in the removal of a 5' flap by slightly different mechanisms. FEN-1 cleaved the flap at the ssDNA/dsDNA junction, whereas DNA2 cleaved one to ten nucleotides at the 5' end of the flap. Importantly in the context of LP-BER, the immunodepletion of either protein lead to a lower ligation efficiency, and simultaneous immunodepletion of both abolished ligation completely. The addition of purified DNA2 or FEN-1 reversed these effects. Furthermore, reconstituted LP-BER with purified APE1, POLγ and LIG3α displayed only very low ligation efficiency when either DNA2 or FEN-1 was present and a high efficiency when both were present [369].

Taken together, the available evidence suggests that LP-BER takes place in human mitochondria. DNA2 and FEN-1 are both able to create ligatable ends during strand displacement synthesis, perhaps synergistically. Additionally, one or both enzymes are probably involved in the replication of mtDNA, an issue that is far from settled mechanistically [388,389]. Thus, several models are open for speculation. DNA2 and FEN-1 may be specific for either LP-BER or replication, with little or no functional overlap or they may operate synergistically in one or both pathways. The generation of mutants that are not imported into mitochondria would probably be an important step towards elucidating the roles of DNA2 and FEN-1 in mammalian mitochondria. It is, however, not likely that additional flap endonucleases are present in human mitochondria, since immunodepletion of both endonucleases abolished all detectable flap endonuclease activity in the mitochondrial extract [369].
4.2 Paper II: The rate of base excision repair of uracil is controlled by the initiating glycosylase.

Visnes T, Akbari M, Hagen L, Slupphaug G and Krokan HE

UDGs catalyse the first step in BER, in which a minimum of four enzymes cooperates to replace a damaged with a normal base. Interestingly, the intermediates in the process are strand-breaks that could be far more dangerous to the cell than the original base lesion. Thus, as suggested by the extensive network of protein-protein interactions documented for BER proteins, the process must be well coordinated and orchestrated to avoid accumulation of BER intermediates. However, the identity of the rate-limiting step of mammalian BER has so far remained elusive, every step of the pathway have been suggested to be rate limiting, with the exception of nucleotide insertion. Uracil-repair seems to be limited by the expression of the initiating glycosylase in male germ cells derived from young mice, while in cells from older mice the limiting factor seems to be Ape1 [381]. In reconstitution experiments, the rate of BER is apparently determined by the rate of the catalytically slowest process, i.e. the removal of the dRP-fragment by POLβ [301]. Finally, the ligation step has also been suggested to be rate-limiting [365]. If, however, the rate of the pathway were determined at any of the intermediate steps, then one would expect large amounts of base damage to be converted to the intermediate that precedes the rate-limiting step. Thus, if the lyase activity of POLβ were rate limiting, most of the base damage would be converted into a strand-break containing a newly inserted base at the 5' side, and a dRP-fragment at the 3' side. Such processes seem to be responsible for the cytotoxicity conferred by induced overexpression of OGG1, NTHL1 and MPG to agents that produce their substrates in DNA [203,257,258].

There is a substantial variation in uracil-excision activity among different tissues and individuals [146,147,148]. This variation is apparently not caused by variation in genotype, as a screen of 62 cell lines from human sources revealed no polymorphisms in the coding region of the UNG-gene [149]. However, extracts prepared from these cell
lines varied several-fold in the ability to remove uracil [149]. With all this in mind, how would the large variations in UDG-activity documented in human cell lines affect BER?

For this purpose, we prepared nuclear extracts from eight cell lines of human origin. Of these cell lines there were seven cancerous and one untransformed fibroblast. We did not detect any mitochondrial UNG1, which indicates that the nuclear extracts were essentially free of mitochondrial contaminants. We found great variation in UDG-activity among the extracts, as measured on a substrate containing [3H]U:A base pairs. The measured UDG-activities corresponded roughly to those measured by Kvaløy et al (R²=0.45, P=0.051) [149]. Furthermore, we found large variations in the content of other BER proteins according to Western blot analysis, with the exception of PCNA and POLδ, which were rather similar in all extracts. Furthermore, we observed a highly significant correlation between content of UNG2 in the extracts and measured UDG-activity. Only two of the proteins showed significant correlation with each other, namely POLδ and LIG1. No correlation, neither positive nor negative, was observed between TDG and UNG2, in spite of their inverse regulation through the cell cycle [124]. This suggests that UNG2 and TDG are truly differentially regulated from cell line to cell line, and the variations observed here are not only consequences of different cell cycle profiles at the time of harvest.

We furthermore subjected the eight nuclear extracts to in vitro BER-analysis, using cccDNA containing a single uracil opposite adenine or guanine. We also generated the AP-site and nicked AP-site (nAP) intermediates, by pre-treating the substrates with the purified catalytic domain of UNG, or UNG and APE1, respectively. The efficiency of repair was Uracil < AP < nAP in all eight extracts, and the repair of U:A and U:G showed a striking highly significant correlation with the level of UNG2 and UDG-activity, especially for the U:A substrate. These observations indicate that the rate of U:A repair – and to some extent the U:G substrate - was determined by the protein content and activity of the initiating glycosylase UNG2, and that overall rate of repair is determined at the first step of the pathway.
The lower correlation between UDG-activity and U:G repair was essentially caused by one outlier, the AGS extract, which repaired U:G substrate with disproportionately high efficiency. If data from this extract were excluded from the data set, the correlation between U:G repair and UNG2 was as good as that between U:A and UNG2. This suggests that UNG2 was the major initiator of U:G repair in the other cell lines, and that the rate of U:G BER was controlled at the first step for this lesion as well. Furthermore, the AGS extract contained the second lowest level of UNG2 in our panel and the highest content of TDG. We therefore decided to investigate the relative contribution of uracil-DNA glycosylases to U:G repair in three extracts. Using inhibitory antibodies against UNG2, SMUG1 and TDG we were able to silence >95% of U:G repair in AGS, SW480 and T-47D extracts, indicating that the fourth known UDG in human cells, MBD4, was of quantitative minor importance, and that the other three were quantitatively dominant. By omitting one of the three inhibitory antibodies, we estimated the contribution from each glycosylase to U:G repair. This revealed that UNG2 still accounted for most of the U:G repair in the AGS extract, but also that TDG was able to repair U:G very efficiently. In the two other cell lines, which contained more UNG2 and less TDG than the AGS extract, UNG2 was responsible for ~90% of repair while TDG only accounted for ~5%. SMUG1 appeared to be of low importance in all extracts, and UNG2 initiated >95% of U:A repair in all three extracts. Thus, the disproportionate efficient U:G repair in the AGS extract is most likely explained by a high expression level of TDG. This was a rather unexpected finding, as previous studies indicated that all detectable U:G excision activity in mammalian cells can be quenched by inhibiting UNG and SMUG1 [116,132]. However, TDG depends on SUMOylation to alleviate the extremely tight product inhibition by the AP-site. This process, in turn, requires Mg\(^{2+}\) and ATP, factors that are not included in oligonucleotide cleavage assays. Thus, using a BER assay on plasmid DNA allowed us to observe a hitherto unsuspected high activity of TDG in nuclear extracts of human origin. TDG is highly expressed in G1 and subsequently degraded in S-phase, and vice versa for UNG2. TDG could therefore be a major contributor to U:G repair outside of S-phase. UNG2, on the other hand, is probably the major activity on uracil in all contexts during the S-phase.
Intriguingly, we found the content of LIG3α to correlate with U:G repair equally well as UNG2. However, if we hypothesise that LIG3α is the rate-limiting factor for U:G repair, then one would expect it to be rate-limiting for AP-site and nAP-substrates as well. That was, however, not the case. Furthermore, ligation efficiency of U:G substrate was rather similar in all extracts. We found no other significant correlations between repair of the intermediate substrates and any of the BER factors studied. This raises the question of imbalanced repair of AP-sites, as some of the extracts that contained the most APE1 repaired AP-sites with low efficiency. One should keep in mind that APE1 has cellular functions that are independent of BER. Discrepancy between APE1 content and AP-site repair in extracts suggests that the expression level of APE1 in nuclei of human cell lines may be dictated by other factors than cellular repair capacity. However, another possible explanation for the discrepancy between APE1-level and AP-site repair is that Western blot analysis may not necessarily reflect the AP-site incision activity in the extracts. APE1 activity is likely to be affected by inhibitory proteins such as BCL-2 [289], post-translational modifications and complex formation.

We furthermore observed that uracil and AP-site substrates were repaired with higher efficiency when the lesion was positioned opposite guanine, rather than adenine. In contrast, the repair efficiency of nicked AP-site substrate was similar in both contexts. Therefore, specificity for the opposite base is likely to reside at the AP-site incision stage of the pathway, although purified recombinant human APE1 displayed a rather similar activity for both AP:A and AP:G, as also observed by others [390]. These observations suggest that there are other factors not considered in this paper that may direct AP-site incision in different contexts. A speculative notion is that DNA glycosylases, which display specificity to the opposite base and bind to AP-sites [158,180,196,210,227,251,275] can stimulate or inhibit the access of APE1 to the AP-sites. These interactions have been postulated to recruit APE1 to the AP-site and ”protect” it [391], but in the few cases where this has been studied, the presence of a glycosylase bound to the AP-site inhibits incision activity of APE1 [158,275].
4.3 Paper III: Cytotoxicity of 5-fluoropyrimidines is mainly through RNA incorporation and thymidylate synthase inhibition rather than DNA fragmentation from DNA excision repair

Pettersen HS, Visnes T, Vågbø CB, Doseth B, Kavli B and Krokan HE

The exact mechanism causing 5-fluorouracil (5-FU) cytotoxicity is still a matter of debate, even though it has been in clinical use for half a century. Already from the very start it was clear that 5-FU was internally metabolised and incorporated into RNA and DNA [392]. Incorporation into RNA perturbs the general metabolism of RNA in several different ways. It disturbs processing of rRNAs [33,393], post-transcriptional modification of tRNAs [30,31] as well as snRNA-protein complexes, thus inhibiting splicing of pre-mRNA [32,34], as well as post-transcriptional conversion of uridine to pseudouridine present in rRNA, tRNA and snRNA [35]. Another metabolite, 5-FdUMP, strongly inhibits the action of Thymidylate synthase (TS), which methylates dUMP at the 5' position of the base, thus generating dTMP. During inhibition of TS, less dTTP is generated, leading to an inhibition of DNA synthesis. When the level of dTMP is reduced, the levels of dAMP, dCMP and dGMP are perturbed as well, since the individual dNTP levels in the cell are regulated through various feedback mechanisms. Consequently, the DNA synthesis that does go on may be expected to be error prone, generating mismatches at a much higher frequency than under normal conditions [15]. The replicative polymerases may also incorporate analogues of dTTP into DNA. Incorporation of dUTP results in a U:A base pair, which may be repaired by UNG2 or SMUG1 [116], while incorporation of 5-FdUTP results in 5-FU:A or 5-FU:G base pairs [29,394]. Purified recombinant UNG2, SMUG1 and TDG are all able to recognise 5-FU:A in DNA, while 5-FU:G may be recognised by UNG2, SMUG1, TDG and MBD4 [116,151,155,157,382,383]. Furthermore, as 5-FU:G is a mismatch it can be repaired through the MMR pathway [384]. It has also been suggested that MMR may recognise and repair 5-FU:A [384].

While at least five different mechanisms may be involved in the repair of 5-FU from DNA, their relative significance in repair and cytotoxicity has so far not been
determined. Nevertheless, the role of DNA repair in 5-FU cytotoxicity has recently received considerable attention. Cells derived from knockout mice deficient in various DNA repair genes are generally less sensitive to fluoropyrimidines compared to wild type. This includes the MMR genes \textit{Msh2} and \textit{Mlh1} \cite{89,187}, as well as the BER genes \textit{Tdg}, \textit{Mbd4} and \textit{Polb} \cite{171,186,395}. Cells from gene-targeted mice deficient for these genes are all less sensitive to fluoropyrimidines. However, cells from \textit{Ung}-/- mice are as sensitive to fluoropyrimidines as wild type \cite{130,151}. Finally, MEFs that express siRNA against \textit{Smug1}-mRNA constitutively are more sensitive to 5-FU than control cells \cite{151}. Human cells deficient in MMR reflect these findings, as they are less sensitive to fluoropyrimidines \cite{89,90,91}. Less evidence is available for BER deficiency in human cells, as neither downregulation of POL\textbeta{} by siRNA \cite{311} nor expression of the UNG-specific inhibitor Ugi \cite{396} has any apparent effect on fluoropyrimidine cytotoxicity. However, silencing of human \textit{UNG2} by siRNA are reported to increase resistance towards 5-F(dU) \cite{397}.

Primarily, we wanted to clarify the relative significance of DNA glycosylases and MMR to 5-FU-DNA repair. Using nuclear extracts from several human cancer cell lines, we found that the excision of 5-FU opposite adenine and in single-strand context depended entirely on UNG2, as the addition of Ugi abolished these activities completely. However, when 5-FU was opposite guanine, the relative contribution from UNG2, SMUG1 and TDG were all rather similar and varied from extract to extract. A similar analysis using BER-incorporation assays mirrored the oligonucleotide cleavage assays in that 5-FU:A repair was completely inhibited by Ugi, while endogenous levels of UNG2, SMUG1 and TDG were all able to initiate repair of 5-FU:G. However, there was an apparent discrepancy between oligonucleotide cleavage and BER assays, in that TDG seemed a lot more active in the latter assays. One should keep in mind that TDG binds with strong affinity to the product AP-site, an interaction that abrogates enzymatic turnover \cite{157,158}. This is alleviated by SUMOylation, which releases TDG from the AP-site \cite{161,162}. SUMOylation \textit{in vitro} requires ATP and Mg2+, factors that were absent from the oligonucleotide cleavage assays. While ATP could potentially be included in the oligonucleotide cleavage assays, the presence of Mg2+ is not possible as it activates potent exonucleases in the extracts. TDG activity is therefore not favoured in
oligonucleotide cleavage assays, and its more dominating presence in BER assays could perhaps be expected.

We also wanted to clarify the roles of BER and MMR in the repair of 5-FU, as a recent paper suggested involvement of MMR in both 5-FU:A and 5-FU:G repair [384]. MMR assay strategies are usually depended on restriction enzymes that specifically differentiate between damaged/mismatched DNA and normal base pairs [79]. Because a 5-FU:A base pair is so similar to T:A that no known restriction enzyme can distinguish between them, the study of 5-FU:A using restriction enzymes alone is not possible [384]. Nevertheless, an MMR proficient extract incorporated more radioactivity into plasmid DNA containing 5-FU:A than an MMR-deficient control extract. The authors therefore suggested that MMR could be involved in the repair of 5-FU:A, in spite of the inability of the MutSα heterodimer to bind 5-FU:A base pairs in electrophoresis mobility shift-assays [384]. We were, however, able to monitor 5-FU:A-repair using the restriction enzyme HincII to distinguish between repaired and un-repaired DNA. The repaired DNA contained normal base pairs, which was recognisable for HincII. Unrepaired substrates contained 5-FU, which was removed by the catalytic domain of UNG after the reaction, thus generating an AP-site. This AP-site was further adducted with MX, which HincII could not recognise. Using this strategy, we were able to show that 5-FU:A was repaired exclusively by BER in HeLa and SW480 nuclear extracts. 5-FU:G could also be repaired by MMR, as we observed a nick-dependent conversion of 5-FU:G to C:G when UNG2, SMUG1 and TDG were inhibited and/or immunodepleted. The process was, however, rather slow compared to BER, which repaired >85% of 5-FU:G within 30 minutes of the reaction. This indicates that BER, initiated by UNG2, SMUG1 or TDG, is the predominant mode of repair in HeLa and SW480. However, the role of MMR is most likely underestimated using this assay, since it depends on the presence of nick in the DNA substrate, which is likely to be sealed directly by ligase activity in the nuclear extracts.

Having established that the majority of 5-FU-repair in vitro was performed by UNG2, SMUG1 and TDG we performed siRNA-mediated knockdown of these glycosylases in HeLa and SW480. Using specific siRNAs we reduced the protein levels of UNG2 and
TDG by >75% for several days. SMUG1 was reduced with at least 60% and this conferred tolerance to the drug 5-hydroxymethyl-2’-deoxyuridine (5-hm(dU)) in both cell lines. 5-hm(dU) is incorporated into DNA and the excision of this erroneous (but still rather innocent) base by SMUG1 mediates cytotoxicity through the generation of strand-breaks and probably DNA damage signalling. [398,399,400,401,402]. Thus, 5-hm(dU) cytotoxicity is rather similar to the DNA repair-mediated cytotoxicity proposed for 5-FU. However, it is not incorporated into RNA, and its metabolites does not inhibit TS [403], so it serves as a good control for BER-mediated cytotoxicity. However, all knockdown cells were as sensitive to varying concentrations of 5-FU, 5-F(dU) as 5-F(rU) as control cells in both cell lines. Thus, fluoropyrimidine cytotoxicity was apparently of a different nature than the DNA repair mediated cytotoxicity of 5-hm(dU), suggesting that other mechanisms than DNA repair mediated fluoropyrimidine cytotoxicity. Furthermore, downregulation of SMUG1 in cells exposed to 5-hm(dU) shifted the cells from G1/S arrest to G2-arrest, while downregulation of UNG, SMUG1 or TDG in cells exposed to 5-FU and 5-F(dU) had no such effect. Adding BER inhibitors MX and the PARP-1 inhibitor 4-amino-1,8-naphthalimide (4-AN) modulated the cytotoxicity of 5-hm(dU), but not of 5-F(dU). Again, this suggest that BER is not involved in 5-F(dU) cytotoxicity.

If DNA repair did not mediate the cytotoxicity of fluoropyrimidines, then what did? We observed that 5-FU, 5-F(dU) and 5-F(rU) inhibited TS with similar efficiencies in HeLa and SW480. Since the two cell lines displayed large variations in the sensitivity to these compounds, especially so for 5-F(dU), this indicated that other factors, in addition to TS-inhibition, modulated cytotoxicity in these cell lines. Using quantitative LC-MS/MS we found that cells exposed to 5-FU preferentially incorporated 5-FU into RNA rather than DNA, at a ~3000:1 ratio. For cells exposed to 5-F(dU), however, the RNA/DNA ratio was about ~6:1. Furthermore, we attempted to rescue the cells by adding increasing amounts of the nucleosides that presumably were in short supply during fluoropyrimidine exposure. The addition of uridine to 5-F(rU)-exposed cells had the greatest effect, and this treatment rescued both cell lines from the toxic effects of 5-F(rU). Concurrently, 5-FU incorporation into RNA was greatly reduced. This indicates
that incorporation into RNA mediated the cytotoxicity of 5-F(rU). Conversely, 5-F(dU) cytotoxicity was alleviated by the addition of thymidine and deoxyuridine, indicating that a lack of these DNA precursors is vital for the toxic effects of this drug. Finally, cytotoxicity of the clinically relevant 5-FU was partially reversed by high concentrations of uridine, but not thymidine or deoxyuridine. This indicates that incorporation of 5-FU into RNA plays at the very least some part in cytotoxicity, although addition of increasing levels of uridine did not reduce incorporation of 5-FU into RNA notably. The lack of uridine reversal for 5-FU is most likely explained by the fact that 5-FU may take two slightly different pathways into RNA. One is the sequential addition of ribose- and phosphate-groups by uridine phosphorylase (UP) and uridine kinase (UK), respectively, generating 5-F(rU) as intermediate product. The other pathway is the direct addition of both these groups by orotate phosphoribosyltransferase (OPRT). Both pathways generate 5-FUMP, but only the former pathway could be expected to be affected by addition of uridine to the medium.

Taken together, our in vitro data suggests that genomic 5-FU is primarily repaired via the BER pathway, initiated by UNG2, SMUG1 and TDG. However, the specific downregulation of these glycosylases had little effect on fluoropyrimidine cytotoxicity. Rather, the cytotoxicity of 5-FU in HeLa and SW480 is most likely mediated by TS-inhibition and incorporation into RNA, and not excessive DNA repair. This is based on the following lines of evidence: 1) Knockdown of the three quantitatively dominant 5-FU glycosylases had no effect of fluoropyrimidine cytotoxicity or cell cycle arrest. This was in contrast to the cytotoxicity and cell cycle arrest seen with 5-hm(dU), which both were affected by SMUG1 downregulation. 2) Cells exposed to 5-FU incorporated 5-FU into RNA rather than into DNA. 3) Inhibition of BER using MX or 4-AN did not affect the cytotoxicity of 5-F(dU). 4) Rescue experiments using nucleotide precursors suggested that 5-FU cytotoxicity was mediated through TS inhibition and incorporation into RNA.
These results are apparently in conflict with recent publications that implicate BER in fluoropyrimidine cytotoxicity. Ung−/− MEFs are as sensitive to fluoropyrimidines as the wild type [130,151], while downregulation of UNG2 in HeLa by siRNA conferred a marked tolerance to 5-F(dU) [397]. However, transfecting HeLa with the UNG-specific inhibitor Ugi did not affect fluoropyrimidine response [396]. Downregulation of SMUG1 in MEFs sensitises cells, while induced overexpression increases the tolerance to 5-FU [151]. Tdg−/− MEF and ES cells are more tolerant to 5-FU than wild type, whereas downregulation of endogenous TDG-levels in HeLa has a marginally protective effect. However, induced overexpression of human TDG sensitises HeLa cells in an apparent dose-dependent manner [171], although matters may be complicated by the dual role of TDG as both a DNA repair protein and transcription regulator [173]. Mbd4−/− MEFs are less sensitive to 5-FU compared to wild type, but also to a range of other cytotoxic agents that induces lesions that are not suspected to be substrates for MBD4 [186,187]. This indicates that this glycosylase may function as a general apoptosis-promoting factor rather than being directly involved in the repair of 5-FU. Later steps of the BER pathway are not as well characterised, although Polβ−/− MEFs are ~8-fold more resistant to 5-F(dU) than wild type [395]. On the other hand, downregulation of POLβ in human cancer cell lines has no apparent effect on the response to 5-FU [311]. Overexpression of a catalytically inactive mutant of human APE1, which binds to AP-sites and blocks subsequent repair steps, confers hypersensitivity to fluoropyrimidines in CHO-cells [404]. Finally, CHO-cells without functional XRCC1 genes are as sensitive as the wild type [405]. A coherent synthesis of these results is not easily achieved, although the results do suggest that 5-FU cytotoxicity, especially in MEFs, may very well take place by a mechanism that is partly mediated by DNA repair. Yet, there are probably quite a few differences in 5-FU metabolism and DNA repair between murine embryonic fibroblasts and human cancer cell lines. One example may be the very high preferential incorporation of 5-FU into RNA, compared to DNA observed for human cancer cell lines (~3000:1 in human cancer cell line, ~11:1 in MEFs [151]). Another example is provided by the relative contributions of glycosylases to 5-FU excision. Here, SMUG1 appeared to have a dominant role in MEFs, but not in human cell lines, in which UNG2 was the dominant enzyme. These species and/or cell type differences indicates that the DNA repair
response to 5-FU could be different in these systems. Nevertheless, the report from Caradonna's group clearly suggests that downregulation of UNG2 in HeLa increases the tolerance to 5-F(dU) [397]. Apart from technical differences (cell culture, incubation times), we find it hard to reconcile this result with ours, although it is conceivable that a cell could harbour functional mitochondrial succinate dehydrogenase (the enzyme responsible for colorimetric change in MTT assays) but still be unable to form colonies following trypsination.

MMR has been proposed to mediate 5-FU cytotoxicity in human cells, although our *in vitro* data suggest that the contribution of MMR to repair of 5-FU incorporated into DNA is rather modest. How, then, might a minor role for MMR in 5-FU repair be reconciled with its role as an apparent mediator of 5-FU cytotoxicity? MMR is also involved in the repair of mismatches between ordinary bases, which are generated as a result of imbalanced nucleotide pools during TS inhibition [15]. The synthesis of long repair patches under these conditions could also generate novel mismatches, thus initiating an iterative futile repair cycle. MMR is also involved in DNA damage checkpoint signalling, which is likely to affect 5-FU cytotoxicity [91]. Thus, in spite of its modest contribution to 5-FU repair *in vitro*, the MMR pathway could well mediate fluoropyrimidine cytotoxicity through mechanisms that are independent of 5-FU DNA repair.

If 5-FU-DNA glycosylases were important mediators of 5-FU cytotoxicity, then one might expect their expression (or at least the expression of some other downstream BER gene) to be altered in 5-FU resistant cells. This is, however, not the case in large scale microarray profiling of a variety of 5-FU resistant and sensitive cells, where BER genes tend not to be differentially regulated [406,407,408,409,410,411]. Even when we consider the obvious problem of false positives in these large-scale studies, the large variation in gene sets that characterise resistant or sensitive cells indicates that there may be several different mechanisms of 5-FU cytotoxicity in human cancer cells. As the different studies generally find different data sets, this suggests that resistance to 5-FU
can be achieved through several different strategies. Even so, the conspicuous absence of BER and DNA repair factors in these data sets indicates that modulation of DNA repair is not one of them. The current evidence points to TS-inhibition and RNA incorporation, as the main mechanisms of 5-FU cytotoxicity in human cancer cells [411,412,413,414,415].
5 REFERENCES

130. Andersen S, Heine T, Sneve R, Konig I, Krokan HE, et al. (2005) Incorporation of dUMP into DNA is a major source of spontaneous DNA damage, while excision of uracil is not required for cytotoxicity of fluoropyrimidines in mouse embryonic fibroblasts. Carcinogenesis 26: 547-555.

6 PAPERS I-III

Paper I:
Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis.
(Akbari M, Visnes T, Krokan HE and Otterlei M).

Paper II:
The rate of base excision repair of uracil is controlled by the initiating glycosylase.
(Visnes T, Akbari M, Hagen L, Slupphaug G and Krokan HE)

Paper III:
Cytotoxicity of 5-fluoropyrimidines is mainly through RNA incorporation and thymidylate synthase inhibition rather than DNA fragmentation from DNA excision repair
(Pettersen HS, Visnes T, Vågbø CB, Doseth B, Kavli B, and Krokan HE)
Paper I
Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis

Mansour Akbari, Torkild Visnes, Hans E. Krokan, Marit Otterlei*

Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7006 Trondheim, Norway

1. Introduction

Human mitochondrial DNA (mtDNA) is a closed-circular molecule of approximately 16,600 basepairs containing 37 genes which code for 13 polypeptides, 22 tRNAs and 2 rRNAs. All polypeptides are subunits of mitochondrial respiratory complexes of the inner membrane. Although mtDNA only encodes 13 of the ~90 different proteins present in the respiratory chain, it is important for normal cellular function because cells depleted of mtDNA (ρ0 cells) do not respire normally [1].

Genetically engineered mutator mice that accumulated a substantial number of mutations in mtDNA showed early aging phenotypes and reduced lifespan underlining the significance of mtDNA maintenance [2].

The electron flow during mitochondrial respiration can give rise to reactive oxygen species (ROS) [3]. ROS can cause DNA base lesions and strand breaks, which if left unrepaired may result in mutations and genomic instability [4]. The mutation rate in some regions of human mtDNA, including rRNA and tRNA sequences, is 20–100-fold higher than that of nuclear DNA [5].

Base excision repair (BER) corrects a variety of small base lesions in DNA. The UNG gene encodes both the nuclear (UNG2) and the mitochondrial (UNG1) forms of the human uracil-DNA glycosylase (UDG). We prepared mitochondrial extracts free of nuclear BER proteins from human cell lines. Using these extracts we show that UNG is the only detectable UDG in mitochondria, and mitochondrial BER (mtBER) of uracil and AP sites occur by both single-nucleotide insertion and long-patch repair DNA synthesis. Importantly, extracts of mitochondria carry out repair of modified AP sites which in nuclei occurs through long-patch BER. Such lesions may be rather prevalent in mitochondrial DNA because of its proximity to the electron transport chain, the primary site of production of reactive oxygen species. Furthermore, mitochondrial extracts remove 5′ protruding flaps from DNA which can be formed during long-patch BER, by a “flap endonuclease like” activity, although flap endonuclease (FEN1) is not present in mitochondria. In conclusion, combined short- and long-patch BER activities enable mitochondria to repair a broader range of lesions in mtDNA than previously known.
DNA [5]. Somatic and hereditary mutations of mtDNA are associated with a variety of diseases including diabetes and deafness [6,7] cancer [8] and neurodegenerative disorders [9].

DNA polymerase γ (POLγ) is the only DNA polymerase identified in human mitochondria [10]. POLγ is a processive DNA polymerase which consists of two subunits, a large 140 kDa catalytic subunit, POLγA [11] and an accessory factor, POLγB [12]. The large subunit contains a 3′–5′ exonuclease (proof-reading) as well as a dRP lyase activity that removes 5′-deoxyribosephosphate (dRP) moieties during BER [13]. The accessory subunit stimulates the DNA synthesis activity and processivity of POLγ [12,14].

BER is apparently the main mechanism for repair of ROS-generated base lesions in DNA [4]. BER of several oxidative base lesions and uracil have been detected in mitochondria [reviewed in 15]. Nuclear BER in human cells occurs by replacement of a single nucleotide or short-patch repair (SP) or several nucleotides; the so-called long-patch (LP) repair [16]. It is known that the dRP lyase activity of POLγ is unable to cleave modified (oxidized/reduced) moieties [17], the repair of which requires flap endonuclease and LP BER. Given the high rate of ROS production in mitochondria, it is likely that oxidized moieties are continuously formed in mtDNA. How mitochondria deal with DNA damage that requires LP BER in nuclei is not known. BER by enzymes purified from Xenopus laevis mitochondria, or by extract from rat liver mitochondria apparently occurs as single-nucleotide insertion [18,19].

Our main aim in conducting this study was to examine the capacity of mitochondria for repair of lesions that in the nucleus require LP BER. First we established an improved capacity of mitochondria for repair of lesions that in the nucleus require LP BER. We harvested the cells by trypsination and washed the cells once with cold PBS and once with an isotonic buffer (20 mM HEPES-KOH pH 7.4, 5 mM MgCl₂, 5 mM KCl, 1 mM DTT, and 0.25 M sucrose), resuspended the cells in a hypotonic buffer (20 mM HEPES-KOH pH 7.4, 5 mM MgCl₂, 5 mM KCl, 1 mM DTT) and incubated them on ice for 5–10 min before disruption of the cells by a Dounce homogenizer (5–10 strokes). We immediately added (1:1, v/v) 2× MSH buffer (20 mM HEPES-KOH pH 7.4, 4 mM EDTA, 2 mM EGTA, 5 mM DTT, 0.42 mM mannitol, 0.14 M sucrose) to the homogenate to stabilize the mitochondrial membrane as described previously [21]. We centrifuged the homogenate three times at 2000 × g, each time for 5 min to separate cell debris and nuclei (the pellet) from mitochondria (the supernatant), and then pelleted the mitochondria at 3000 × g for 30 min. The mitochondrial pellet was then resuspended in 1 ml 1× MSH/50% Percoll, the suspension loaded on top of a 1× MSH/50% Percoll gradient (12 ml) and centrifuged at 50,000 × g for 1 h at 4 C. The mitochondria were removed from the gradient and washed once with 1× MSH buffer to remove Percoll, once with 1 ml buffer B (10 mM HEPES-KOH pH 7.4, 0.21 M mannitol, 0.7 M sucrose, and 2.5 mM DTT), resuspended in buffer B containing 1 mg/ml proteinase K in a final volume of 1 ml (unless otherwise is indicated) and incubated at 37 C for 30 min. The mitochondria were pelleted at 10,000 × g for 5 min and washed twice with 0.5 ml of a protease inhibitor mix (0.5 ml protease inhibitor cocktail (1 Complete® tablet dissolved in 1 ml water), 0.5 ml 2× MSH, and 5 mM phenylmethylsulfonyl fluoride (PMSF)). We routinely isolated mitochondria from 30 dishes (150 mm) at 85–90% confluence which after proteinase K treatment yielded on average 0.6–0.8 mg mitochondrial protein.

2. Materials and methods

2.1. Chemicals and antibodies

Synthetic oligonucleotides were purchased from MedProbe (Oslo, Norway). [α-32P]dCTP, [α-32P]dCTP, and [γ-32P]ATP (3000 Ci/mmol) were from Amersham Biosciences. Proteinase K, aphidicolin, N-ethylmaleimide (NEM), and Percoll® were from Sigma–Aldrich. Complete® protease inhibitor and T4 DNA ligase were from Roche Inc. Restriction enzymes and T4 polynucleotide kinase were from New England Biolabs. Primary antibodies; APE1 (ab194), APE2 (ab13691), VDAC1 (ab15895), COX IV (ab16056), lamin A + C (ab8994), FEN-1 (ab 462) were all from Abcam Ltd., UK. Antibody to PCNA (sc-7691), COX IV (ab16056), lamin A + C (ab8984), FEN-1 (ab 462) was from Santa Cruz Biotechnology, Inc., USA, polyclonal FEN-1 antibody was from Bethyl (BLS87), and POLγ (D73020) was from Transduction Laboratories. Neutralizing antibody against the catalytic domain of UNG has been described previously [20]. Paramagnetic protein-A beads were from Dynal, Norway.

2.2. Cell culture

HeLa and HaCaT cells were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal calf serum, 0.03% glutamine, and 0.1 mg/ml gentamicin in 5% CO₂.

2.3. Isolation of crude mitochondria

We harvested the cells by trypsination and washed the cells once with cold PBS and once with an isotonic buffer (20 mM HEPES-KOH pH 7.4, 5 mM MgCl₂, 5 mM KCl, 1 mM DTT, and 0.25 M sucrose), resuspended the cells in a hypotonic buffer (20 mM HEPES-KOH pH 7.4, 5 mM MgCl₂, 5 mM KCl, 1 mM DTT) and incubated them on ice for 5–10 min before disruption of the cells by a Dounce homogenizer (5–10 strokes). We immediately added (1:1, v/v) 2× MSH buffer (20 mM HEPES-KOH pH 7.4, 4 mM EDTA, 2 mM EGTA, 5 mM DTT, 0.42 mM mannitol, 0.14 M sucrose) to the homogenate to stabilize the mitochondrial membrane as described previously [21]. We centrifuged the homogenate three times at 2000 × g, each time for 5 min to separate cell debris and nuclei (the pellet) from mitochondria (the supernatant), and then pelleted the mitochondria at 3000 × g for 30 min. The mitochondrial pellet was then resuspended in 1 ml 1× MSH/50% Percoll, the suspension loaded on top of a 1× MSH/50% Percoll gradient (12 ml) and centrifuged at 50,000 × g for 1 h at 4 C. The mitochondria were removed from the gradient and washed once with 1× MSH buffer to remove Percoll, once with 1 ml buffer B (10 mM HEPES-KOH pH 7.4, 0.21 M mannitol, 0.7 M sucrose, and 2.5 mM DTT), resuspended in buffer B containing 1 mg/ml proteinase K in a final volume of 1 ml (unless otherwise is indicated) and incubated at 37 C for 30 min. The mitochondria were pelleted at 10,000 × g for 5 min and washed twice with 0.5 ml of a protease inhibitor mix (0.5 ml protease inhibitor cocktail (1 Complete® tablet dissolved in 1 ml water), 0.5 ml 2× MSH, and 5 mM phenylmethylsulfonyl fluoride (PMSF)). We routinely isolated mitochondria from 30 dishes (150 mm) at 85–90% confluence which after proteinase K treatment yielded on average 0.6–0.8 mg mitochondrial protein.

2.4. Western blot analysis of intact mitochondria

We isolated mitochondria from 30 dishes (150 mm) by Percoll gradient as described above. The crude mitochondrial pellet was resuspended in 0.35 ml buffer B and the suspension divided in seven tubes (0.05 ml each). Proteinase K was added to the samples at the indicated concentrations followed by incubation at 37 °C for 30 min. Proteinase K was inactivated by adding 5 mM PMSF and Complete® protease inhibitor to the samples followed by addition of loading buffer (NuPage) and heating of the samples at 85 °C for 10 min. We separated proteins in 10% denaturing SDS-polyacrylamide gel (NuPage), and transferred them to a PVDF membrane (Immobilon™, Millipore). The membrane was incubated with the primary antibodies at 4 °C overnight, followed by incubation for 1 h at room temperature with either peroxidase-labeled polyclonal rabbit anti-mouse IgG/HRP or peroxidase-labeled polyclonal swine anti-rabbit IgG/HRP (DakoCytomation, Denmark). We incubated the membrane with chemiluminescence reagent (SuperSignali® West Femto Maximum, PIERCE, USA), and visu-
alized the bands in Image Station 2000R (Eastmann Kodak Company, USA).

2.5. Preparation of nuclear and mitochondrial extracts

We used a modification of the procedure described previously [22]. Mitochondria (pretreated with 1 mg/ml proteinase K) or nuclei were resuspended at 1× packed pellet volume (PPV) in buffer I (10 mM HEPES-KOH pH 7.9, and 150 mM KCl) and 1× PPV of buffer II (10 mM HEPES-KOH pH 7.9, 150 mM KCl, 2 mM EDTA, 2 mM DTT, 40% glycerol, 1% Nonidet P-40, 1% Triton X-100, 5 mM PMSF, Complete® protease inhibitor, and phosphatase inhibitor cocktails). The samples were then gently rotated at 4°C for 1 h, followed by centrifugation at 22,000 × g at 4°C for 15 min, and the supernatants recovered. The protein concentration was measured using the Bio-Rad protein assay. We always examined the purity of mitochondrial extracts by Western blot analysis for PCNA, POLα, VDAC-1, and COX IV before using the extracts in biochemical tests. Failure to inactivate proteinase K would be detected as degraded COX IV.

2.6. DNA substrates, BER assay, flap-removal assay, immunoprecipitation, and uracil-DNA glycosylase (UDG) activity assay

We prepared DNA substrates for BER assay containing uracil or a synthetic analog of an AP site, 2-hydroxymethyltetrahydrofuran (THF) at a single position as uracil or a synthetic analog of an AP site, 3-hydroxy-2-

For flap-DNA substrates, we annealed oligonucleotides containing none, one, two, or five non-complementary adenines at 5' end (Fig. 5A, underlined nucleotides) as well as a 5' end-labeled oligonucleotide upstream to the flap-containing oligo (shown in bold) to single-stranded circular plasmid (pGEM-3Zf(+)) and carried out DNA synthesis with T4 gene 32 ssDNA-binding protein, T4 DNA polymerase, T4 DNA ligase, and dNTPs. The DNA was purified using a PCR Purification Kit (Qiagen). Unless otherwise is indicated, the flap-removal assay was carried out in 0.020 mg mitochondrial extract, 50 mM HEPES-KOH pH 7.4, 2 mM DTT, 5 mM MgCl₂, 75 mM KCl, 1 mM ATP, 0.36 mg/ml BSA, T4 DNA ligase and 2 pmol of the indicated DNA-substrates at 37°C for 15 min in 20 μl reaction. The reaction was stopped by adding EDTA, SDS and proteinase K and further incubation for 30 min. The flap-removal activity of the immunoprecipitates was carried out in the presence of T4 DNA ligase.

For immunoprecipitation we covalently attached 0.02 mg polyclonal FEN-1 antibody to 0.2 ml premagnetic beads as described by the manufacturer. We incubated 0.04 ml of the beads with 0.2 mg HeLa nuclear or mitochondrial extract at 4°C for 4 h under constant rotation. The beads were washed four times with wash buffer (10 mM Tris–HCl pH 7.5, 100 mM KCl). The beads were then either used directly in flap-removal assay or boiled in loading buffer and used for Western blot analysis. UDG activity assay was performed as described earlier [25].

3. Results

3.1. Proteinase K treatment clears isolated mitochondria of nuclear protein contaminants

A prerequisite for analysis of mtBER in vitro is the preparation of mitochondrial extracts free of nuclear BER proteins. During the early stage of this study we found it difficult to isolate mitochondria completely free of nuclear proteins. In an attempt to clear mitochondria of nuclear proteins we treated intact mitochondria with proteinase K, a serine protease that exhibits broad cleavage specificity. Fig. 1A shows results of Western blot analysis of mitochondria that had been incubated with different concentrations of proteinase K at 37°C for 30 min. The absence of detectable nuclear lamin in mitochondrial extract has frequently been used to test the purity of mitochondria. Notably, the sample not treated with proteinase K was free of lamin A+C, while we detected nuclear proteins including UNG2, POLα, and PCNA (Fig. 1A, lane 1). Traces of nuclear proteins were still detectable in the samples treated with 0.5 mg/ml proteinase K (Fig. 1A, lane 2), but at 1 and 1.5 mg/ml proteinase K, the samples were cleared of detectable nuclear proteins (lanes 3 and 4). Proteinase K treatment degraded a fraction of the outer mitochondrial membrane (OMM) protein, voltage-dependent anion channel 1 (VDAC-1) at concentrations of 0.5 mg/ml and higher, while the inner membrane (IMM) proteins remained seemingly intact at proteinase K concentrations up to 2.5 mg/ml as demonstrated by the presence of full length COX IV (Fig. 1A). The amount of APE1 was reduced considerably at 0.5 mg/ml proteinase K compared with the untreated sample (Fig. 1A, lanes 2 and 1, respectively), but a fraction remained unchanged at concentrations of proteinase K of 0.5–2.5 mg/ml (lanes 2–6). This supports that APE1 is both a nuclear and a mitochondrial protein [26,27]. The amount of the second human endonuclease, APE2, did not change in the samples treated with proteinase K, indicating that APE2 is a true mitochondrial protein [27,28]. The additional band seen above the major APE2 band after proteinase K treatment is likely caused by cross-reaction of the antibody with a degraded protein. As expected UNG2 but not UNG1 was degraded by proteinase K treatment.

The ability to detect a protein by Western blot analysis depends on the sensitivity of the antibodies. We compared the sensitivity of antibodies against the nuclear proteins lamin A+C and PCNA by Western blot analysis of a serial dilution of total HeLa extract. PCNA was detected in fourfold more diluted extracts compared with lamin A+C (Fig. 1B). Next, we carried out Western blot analysis of a serially diluted purified recombinant PCNA and found that the PCNA antibody was able to detect as low as 1.8 ng protein (Fig. 1C). These results together with those shown in Fig. 1A support the use of this particular PCNA antibody as a suitable marker for detection of nuclear protein contaminants in mitochondrial extract. In conclusion, the results of Western blot analysis suggest that treatment of intact mitochondria with proteinase K enables us to prepare mitochondria that are free of nuclear BER proteins. We
therefore routinely treated intact mitochondria with 1 mg/ml proteinase K prior to preparation of extract that we used in the following experiments.

3.2. Extracts prepared from proteinase K treated mitochondria display POLγ specific DNA synthesis activity

Mammalian DNA polymerases show different sensitivity for aphidicolin and N-ethylmaleimide (NEM). Thus, aphidicolin inhibits DNA polymerases α, δ, and ε at 0.06 mM but not polymerases γ and β, while NEM inhibits DNA polymerases γ, α, δ, and ε at 2 mM but not POLβ even at 10 mM [29–31]. POLγ is the only DNA polymerase identified in human mitochondria [10]. We incubated mitochondrial extract with DNA substrate containing a nick at a defined position (Fig. 2A) with or without aphidicolin or NEM in the repair reaction. We used nicked-DNA to exclude possible inhibition of repair reactions before the DNA synthesis step by aphidicolin or NEM. The control sample shows that the extract is capable of carrying out DNA synthesis and subsequent ligation of newly synthesized DNA (Fig. 2B, lane 1). Addition of 0.1 or 0.3 mM aphidicolin to the reaction had no detectable inhibitory effect on DNA synthesis activity of the extract, while NEM at 5 mM dramatically inhibited this activity (Fig. 2B, lanes 2–4). This experiment indicates that our mitochondrial extract was not contaminated with the nuclear DNA polymerases α, δ, ε (which are inhibited by aphidicolin) or β (which is not inhibited by NEM), and that the extract displayed DNA polymerase activity comparable with POLγ. Altogether, the results shown in Figs. 1 and 2 demonstrate that the method used allowed us to prepare a pure mitochondrial extract.

3.3. Pure mitochondrial extracts retain BER activity and UNG is the only detectable uracil-DNA glycosylase in HeLa mitochondria

In human cells, four uracil-DNA glycosylases (UDG) have been identified [32]. Among these, UNG is the only known UDG targeted to both nucleus (UNG2) and mitochondria (UNG1) [33,34]. Nuclear BER in human cells has been extensively studied and shown to occur via SP and LP BER [16]. BER carried out by enzymes purified from Xenopus laevis mitochondria and extract from rat liver mitochondria was reported to occur via single-nucleotide insertion [18,19]. We tested mitochondrial uracil-BER using [α-33P]dTTP or [α-33P]dCTP and DNA substrate containing uracil at a specific position (Fig. 3A, U:A). We carried out the repair reaction in the absence or presence of neutralizing antibody against the catalytic domain of UNG which is identical in UNG1 and UNG2. Notably, repair of uracil was in form of several-nucleotide insertion (Fig. 3B, lanes 1 and 3). Neutralizing UNG by antibody prevented uracil-dependent DNA synthesis activity by mitochondrial extract (lanes 2 and 4, respectively).

Next, we used a more sensitive assay and verified the ability of mitochondrial extract to remove uracil from single-stranded as well as double-stranded DNA oligos containing U:A or U:G pairs. We found that inhibition of UNG in the reaction abolished all the uracil releasing activity of the extract (Fig. 3C, lanes 10–12). These results strongly suggest that UNG is the only DNA glycosylase responsible for removal of uracil in human mtDNA. Notably, because U:G is also a substrate for TDG and SMUG1 DNA glycosylases [32] the complete inhibition of removal of uracil from U:G substrate by neutralizing
Fig. 2 – Effect of inhibitors of DNA polymerases on mitochondrial DNA synthesis activity. (A) Schematic illustration of substrate for analysis of DNA synthesis activity. X represents the site of nick in DNA. (B) We incubated mitochondrial extract with nick-containing DNA substrate and [α-32P]dTTP in the absence or presence of aphidicolin or NEM at the indicated concentrations at 32 °C for 60 min. Purified DNA was digested with XbaI and HindIII and resolved in 12% denaturing polyacrylamide gel. As undamaged substrate we used DNA containing T in place of nick (T:A). High molecular weight (HMW) bands represent nucleotide incorporation outside the short fragments released after digestion of DNA with the indicated restriction enzymes.

UNG antibody indicates that our mitochondrial extract is free of the nuclear DNA glycosylases TDG and SMUG1, further supporting that the mitochondrial extract was essentially free of nuclear proteins.

3.4. BER DNA synthesis during repair of both uracil and AP sites by mitochondrial extract occurs through incorporation of several nucleotides

Next we carried out patch-size analysis of AP site BER. AP sites were produced by incubation of uracil-containing DNA substrates with recombinant UDG. A fraction of AP site repair was apparently via LP BER (Fig. 4A, lanes 2–4). Human DNA ligases need ATP for activity. We carried out BER in the presence or absence of additional ATP and ATP-generating agents in the reaction. In the absence of ATP, repair intermediates of different sizes were readily detected (Fig. 4B, lane 2) demonstrating the ability of the mitochondrial DNA polymerase, likely POLγ, to incorporate more than one nucleotide during BER DNA synthesis. Incubation of the purified DNA with T4 DNA ligase at 16 °C overnight resulted in close to complete ligation of repair intermediates (Fig. 4B, lanes 3 and 4). This indicates that most repair intermediates observed in lane 2 did not contain unprocessed 5′ deoxyribosephosphate (dRP) or 5′ flaps. Moreover, the results show that the indicated repaired fragments released by the digestion of DNA with XbaI and HindIII (see Fig. 3A) represent short and long-patch products and are not merely products of resynthesis of DNA past the HindIII recognition site.

The 3′–5′ exonuclease activity of POLγ may result in DNA synthesis 5′ upstream to the damage. We tested this using U:G DNA substrate (Fig. 3A) in combination with [α-32P]dTTP (to detect possible incorporation of radioactivity 5′ upstream to the damage) or [α-32P]dCTP (to detect incorporation of radioactivity at the site of the damage). We did not detect DNA synthesis activity 5′ upstream to the damage above the background (not shown). In conclusion, under our experimental conditions, DNA synthesis activity 5′ upstream to the damage either does not occur or takes place at very low frequency.

To test if the observed LP BER also takes place in cells other than HeLa cells, we carried out patch-size analysis of mitochondrial extract prepared from HaCaT cells. As shown in Fig. 4C, the isolation and purification of HaCaT mitochondria with our procedure cleared residues of PCNA and POLδ from mitochondria. BER analysis of the extract showed that, like HeLa mitochondrial extract, a fraction of the repair DNA synthesis product was between four to eight nucleotides long (Fig. 4D, lane 2). In conclusion, under our BER assay conditions, we found that BER by HeLa and HaCaT mitochondrial extracts takes place through both SP and LP DNA synthesis.

3.5. Mitochondrial extract removes 5′ protruding flaps from DNA

The observed LP BER by mitochondrial extract suggests strand-displacement during repair DNA synthesis resulting in the formation of 5′ single-strand flaps. Such flaps must be removed from DNA in order for ligation of DNA ends to take place. To search for a possible 5′ flap removal activity in mitochondrial extract we used the DNA substrate strategy.
Fig. 3 – Role of UNG in mitochondrial uracil-BER. (A) Schematic presentation of the strategy for BER analysis of mitochondrial extract. (B) We carried out uracil-BER analysis of mitochondrial extract in the absence or presence of a specific neutralizing UNG antibody (anti-UNG-Ab) using U:A DNA substrate and \([\alpha-\text{\[^32P\]}}\text{dCTP or \([\alpha-\text{\[^32P\]}}\text{dTTP as indicated. The repaired products (rep. prod.) were digested with XbaI/HincII (lanes 1 and 2) or HincII/PstI (lanes 3 and 4) to examine the uracil-BER patch-size as described in (A). (C) We incubated mitochondrial extract with 5′ end-labeled single- or double-strand oligonucleotides (22-mer) containing a centrally located uracil in the absence or presence of neutralizing UNG antibody as indicated (lanes 7–12). The reaction was carried out at 37°C for 60 min. As control we incubated the substrates with purified catalytic domain of UNG (rec.UNG, lanes 4–6). The full length and the cleaved oligos are shown as 22-mer and 11-mer, respectively.

Outlined in Fig. 5A. A schematic illustration of DNA fragments released after digestion of DNA with EcoRI and HindIII is provided in Fig. 5B, and the control digestion of the substrates is shown in Fig. 5C. To facilitate the identification of repaired DNA fragments (fragments II and IV), we prepared DNA substrate using an oligo that does not form flap upon annealing to template DNA. This “flap” oligo was either phosphorylated at 5′ position (F0-P) or not (F0). During the preparation of F0-P substrate, the ligation of fragments I and F0-P oligo will give rise to fragment IV. Fragment II represents restriction digested plasmid where the in vitro DNA synthesis has been incomplete (Fig. 5C, lane 1). The weak bands in fragments II and IV (lanes 2–5) represent synthesis extension of \(^{32}\text{P}}\text{ end-labeled oligo on single-strand circular DNA templates lacking the downstream flap-oligo, because of incomplete annealing of these oligos to the template DNA. Upon removal of the flap and subsequent ligation of DNA, the intensity of the bands corresponding to fragments II and IV will increase relative to the intensity of the initial DNA substrate concomitantly with a reduction in the intensity of the bands corresponding to fragments I and III. For repair analysis, DNA substrates were incubated with mitochondrial extract in the absence (Fig. 5D, lanes 1–3 and 7–9) or presence of EDTA (Fig. 5D, lanes 4–6 and 10–12). As can be seen in Fig. 5D, the intensity of the bands corresponding to fragments II and IV is higher in the absence than in the presence of EDTA (compare fragments II and IV, lanes 1–3 to lanes 4–6, respectively). Single digestion of DNA with EcoRI (Fig. 5D, lanes 7–12), further confirmed the indicated migration pattern.
Fig. 4 – Patch-size analysis of mitochondrial AP-BER. (A) We incubated mitochondrial extract with [α-32P]dCTP and the indicated AP site containing DNA substrates at 32 °C for 60 min. Then the purified DNA was digested with the indicated restriction enzymes to examine the size of repair DNA synthesis as well as the amount of ligated (total repair products) and unligated repair intermediates. (B) BER assay was carried out in the presence or absence of ATP and ATP generating agents (lanes 1 and 2, respectively). Half part of the purified DNA was further incubated with T4 DNA ligase at 16 °C overnight (lanes 3 and 4). (C) Western blot analysis of HaCaT mitochondrial extract before (lane 1) and after (lane 2) treatment of intact mitochondria with 1 mg/ml proteinase K. (D) BER analysis of HaCaT mitochondrial extract from proteinase K treated mitochondria.

of DNA fragments in Fig. 5B and C. Note that the repaired (ligated) DNA fragments were too long to be resolved in the gel after single digestion with EcoRI (Fig. 5D, the fragments over the dotted line). These results indicate that 5′ protruding flaps that may be formed during LP are cleaved from DNA by mitochondrial extract.

In the nuclei, single-stranded DNA flaps that can be formed during LP BER are cleaved by the nuclear protein FEN-1. Notably, using Western blot analysis we did not detect FEN-1 in our mitochondrial extract (Fig. 5E, lane 3). However, the ability of Western blot analysis to detect target proteins depends on the sensitivity of antibodies used. To further assure that the mitochondrial extract was not contaminated with FEN-1, we carried out immunoprecipitation of possible FEN-1 from mitochondrial extract as described in Section 2, using nuclear extract as control. Western blot analysis showed that immunoprecipitation removed a substantial fraction of FEN-1 from the nuclear extract (Fig. 5E, compare lane 1 with 2). FEN-1 was neither detected in mitochondrial extract, nor in immunoprecipitates from mitochondrial extract (Fig. 5E, lane 6) while it was detected in immunoprecipitates from nuclear extract (Fig. 5E, lane 5).

Next, we used the immunoprecipitated materials (anti-FEN-1) from nuclei and mitochondrial extracts in our flap-removal assay. The pattern of DNA fragments in the sample incubated with immunoprecipitated material from mitochondrial extract was identical to that of DNA substrate alone (Fig. 5F, lanes 1, 2, 4, and 5). However, a substantial increase in the intensity of the fragments II and IV was observed in the sample incubated with the immunoprecipitated FEN-1 from the nuclear extract (Fig. 5F, lane 3) similar to what was observed with the mitochondrial extract (Fig. 5D).

We next examined whether the 5′ protruding DNA was incised as a flap or digested exonucleolytically. For this purpose we end-labeled the oligo that contains five non-complementary adenines and prepared double-strand DNA substrates as above but in the absence of T4 DNA ligase (Fig. 5A, F5, the underlined DNA sequence). Incubation of the flap containing substrate with mitochondrial and nuclear extracts resulted in the release of 5-mer DNA (Fig. 5G, lanes 4 and 5, respectively). The reaction was carried out at 37 °C for 2 min. A fraction of the released DNA was degraded by the extract. Longer incubation (5 min) resulted in even more degradation of DNA (not shown). To further test if the observed fragment corresponded to 5-mer flap and to avoid degradation of the released flap by the extract we used with immunoprecipitated FEN-1 from nuclear extract in the reaction (Fig. 5G, lanes 6). The migration pattern of the released oligo (lane 6) corresponded to those of the extracts (lanes 4 and 5) and as expected not degraded. The end-labeled “flap-less” oligo (Fig. 5A, F0, the underlined DNA fragment) was used as controls (Fig. 5G, lanes 8–11). Addition of EDTA to the reaction
Fig. 5 – Analysis of 5′ flap-removal activity by HeLa mitochondrial extract. (A) Schematic illustration of the strategy for analysis of removal of 5′ protruding flaps by mitochondrial extract. The 33P end-labeled common oligo is shown in bold and marked with * at the 5′ end position. (B) Schematic presentation of DNA fragments released after digestion of DNA substrates with EcoRI and HindIII. Incomplete DNA synthesis (shown as dotted line) during the preparation of substrate together with failure to ligate 33P end-labeled oligo at 3′ end position to the downstream “flap” oligo results in the release of fragment I. Fragment II corresponds to 33P end-labeled oligo ligated at 3′ end position to the downstream oligo, but not ligated at the 5′ end position. Fragment III corresponds to 33P end-labeled oligo that is joined at the 5′ end to the synthesized DNA (shown as dotted line). Fragment IV represents 33P end-labeled oligo that has become ligated at both ends. (C) Lane 1, F0 (P) is the 5′ end phosphorylated form of F0 (flap-less oligo). Lanes 1–10 show the migration pattern of DNA substrates either digested with both EcoRI and HindIII or EcoRI alone as indicated. (D) The flap-containing DNA substrates
Mitochondrial extract carries out repair of AP site analog tetrahydrofuran (THF)

DNA polymerases γ and β have lyase activity [13, 35] enabling them to cleave the blocking 5′ terminal dRP moiety from DNA. The lyase activity of POLβ and POLγ implicates formation of Schiff’s base intermediate in an β-elimination reaction mechanism [13]. The lyase activity of POLβ is, similar to reduced/oxidized AP sites, unable to remove the 5′ THF residue [17, 35], because these lesions are resistant to β-elimination. Repair of these lesions requires the action of a flap-endonuclease and implicates LP-BER [36]. Therefore, we used THF as a model to test the ability of mitochondrial extract to repair modified AP sites compared with nuclear extract. For comparison we included repair of normal AP sites (normal AP) in the experiment. We found that mitochondrial extract repaired THF and normal AP sites with comparable efficiency (Fig. 6, lanes 2–7). An increasing amount of ligated products was detected with prolonged incubation indicating that (a) the flap-endonuclease activity of mitochondrial extract is free of nuclear BER proteins, (b) UNG is the only uracil-DNA glycosylase present in HeLa mitochondria, and (c) proteinase K was inactivated and (b) strand-displacement cannot account for the observed long-patch shown in Figs. 3 and 4.

A fraction of repair products of both lesions (normal AP site and THF) by mitochondrial extract, but not by nuclear extract, was in the form of repair intermediates. To test if the presence of the repair intermediates was a result of unprocessed 5′ dRPs or 5′ flaps in DNA we further incubated half of the DNA from samples corresponding to lanes 2–7 with T4 DNA ligase at 16 °C overnight. This treatment resulted in ligation of repair intermediates (compare lanes 2–7 with lanes 14–19, respectively). This indicates that the 5′ dRP ends and possibly also 5′ flaps that could have been formed during LP BER were processed during repair.

In summary our results show that (a) our mitochondrial extract is free of nuclear BER proteins, (b) UNG is the only uracil-DNA glycosylase present in HeLa mitochondria, and (c) were incubated with mitochondrial extract in the absence or presence of EDTA as shown. After purification of DNA from the extract, half part of DNA was digested with both EcoRI and HindIII (lanes 1–6), and the other half was digested with EcoRI (lanes 7–12). (E) Western blot analysis of the nuclear (lanes 1 and 2) and the mitochondrial (lanes 3 and 4) extracts before (Ext. pre-IP) and after (Ext. post-IP) the FEN1 immunoprecipitation. And Western blot analysis of immunoprecipitated material from the nuclear (lane 5) and the mitochondrial (lane 6) extracts. (F) Flap-removal activity of the immunoprecipitated FEN1 from nuclear extract (lanes 3 and 6) and possible FEN1 contaminant from the mitochondrial extract (lanes 2 and 5). We used 5F DNA substrate and carried out the reaction in the presence of additional T4 DNA ligase. Lanes 1 and 4 show the untreated flap-DNA substrate included as control. (G) Flap-removal activity of mitochondrial and the nuclear extracts as well as FEN1 immunoprecipitated from nuclear extract was assayed using circular DNA substrate containing 5′ end-labeled 5-mer flap (F5-subs.). As control we used circular DNA containing 5′-end labeled nick (F0-subs.). The broken line (- - -) indicates that a part of the gel has been deleted to shorten the image.
the mitochondrial extract is able to carry out SP and LP BER and displays flap-endonuclease specific activity.

4. Discussion

A prerequisite for analysis of mtBER in vitro is the preparation of mitochondrial extract free of nuclear BER proteins. During the present study we tested several procedures for isolation of mitochondria. Using Western blot analysis we found that a fraction of nuclear proteins including PCNA, POLδ, and UNG2 associated with mitochondria, possibly by attaching to mitochondria upon disruption of the cells. In addition to the Percoll gradient step that we routinely used in the present study, we also applied a discontinuous density gradient method which was reported to efficiently separate mitochondria from other organelles [38]. Thus, the gradient step enables us to separate organelles, but was insufficient for removing nuclear proteins attached to mitochondria. Incubation of intact mitochondria with trypsin has been used to clear mitochondria from nuclear proteins [27,39]. However, we found that some nuclear proteins including PCNA and UNG2 were particularly difficult to completely digest by this treatment. Thus, an additional or alternative step was necessary to clear mitochondria of nuclear proteins involved in long-patch BER in order to examine potential long-patch BER in mitochondria. Using proteinase K enabled preparation of a mitochondrial fraction devoid of detectable nuclear proteins. Biochemical analysis clearly demonstrated that the mitochondrial extracts prepared in this way are proficient in BER and therefore suitable for this line of analysis.

Our results indicate that UNG is the only DNA glycosylase in mitochondria for removal of uracil from mtDNA. Several reports support a role for UNG also in repair of oxidative DNA damage [27,40–42]. Ung−/− mice showed increase infarct size after focal-brain ischemia compared to control animals and experiments indicated a role for mitochondrial Ung in brain protection [41]. Recently, expression of UNG1 was shown to increase twofold after oxidative stress [27]. In addition to uracil, UNG removes isoosialuric acid, alloxan and 5-hydroxyuracil [43] although relatively inefficiently. These are cytosine-derived products of oxidative base damage. Experimental demonstration of these lesions in mtDNA, and a role of UNG1 for their removal, remains to be examined.

Nuclear BER has been extensively studied and found to take place as both SP and LP BER [16]. By comparison, mtBER patch-size has been far less studied. To our knowledge two reports on this subject are available [18,19]. In the first report a reconstituted BER with POLγ, AP-endonuclease, and DNA ligase, all purified from Xenopus laevis mitochondria, was in form of single-nucleotide insertion [18]. It is possible that factors contributing to the processivity of POLγ and LP BER were absent in the purified fractions. In the second study [19], difference in reaction conditions including sensitivity and type of DNA substrate used may explain the discrepancy in conclusions.

During nuclear LP BER, short 5′ single-stranded DNA (flaps) can be formed that is subsequently cleaved by flap endonuclease-1 (FEN-1) [44]. In Escherichia coli, the 5′ to 3′ nuclease activity of PolⅠ carries out this action [44,45]. To our knowledge a specific 5′ flap endonuclease in human mitochondria has not been identified. However, the results presented in Fig. 5 show that 5′ protruding flaps of length between 1 and 5 nucleotides were removed from DNA by a mitochondrial extract free of FEN-1. We are working on identifying the enzyme(s) responsible for this activity.

Exposure of DNA to ROS results in the formation of a variety of lesions, including oxidized AP sites [46]. Because of the close proximity of mtDNA to the inner membrane, which is the main site of ROS production in mitochondria, it is likely that oxidative modification of AP sites in mtDNA is a rather frequent event. We tested the ability of mitochondrial extract to repair modified AP sites using a DNA substrate containing THF which is resistant to lyase activity of POLδ [17] and that requires LP pathway for repair [36,47]. We found that THF and normal AP sites were repaired with equal efficiency by mitochondrial extract. Whether a 5′–3′ exonuclease activity or the lyase activity of POLγ is responsible for the removal of THF or a hitherto unidentified mitochondrial-specific 5′ flap endonuclease carries out this action remains to be examined.

In conclusion in this study we show that UNG is the predominant uracil-DNA glycosylase in mitochondria. Furthermore, we show that mitochondrial extract is able to carry out repair of modified AP sites, displays LP BER and specific flap-endonuclease activity. These data suggest that mitochondria repair a broad repertoire of DNA lesions that are expected to occur frequently in mtDNA.

Acknowledgements

This work is supported by the Norwegian Cancer Society, the Research Council of Norway, the Cancer Fund at St. Olav’s Hospital, Trondheim, the Svanhild and Arne Must Fund for Medical Research, and the European Union, integrated project on DNA repair.

REFERENCES

Paper II
The rate of base excision repair of uracil is controlled by the initiating glycosylase

Torkild Visnes, Mansour Akbari, Lars Hagen, Geir Slupphaug, Hans E. Krokan

Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Erling Skjålssons gate 1, N-7006, Trondheim, Norway

Abstract

Uracil in DNA is repaired by base excision repair (BER) initiated by a DNA glycosylase, followed by strand incision, trimming of ends, gap filling and ligation. Uracil in DNA comes in two distinct forms; U:A pairs, typically resulting from replication errors, and mutagenic U:G mismatches, arising from cytosine deamination. To identify proteins critical to the rate of repair of these lesions, we quantified overall repair of U:A pairs, U:G mismatches and repair intermediates (abasic sites and nicked abasic sites) in vitro. For this purpose we used circular DNA substrates and nuclear extracts of eight human cell lines with wide variation in the content of BER proteins. We identified the initiating uracil–DNA glycosylase UNG2 as the major overall rate-limiting factor. UNG2 is apparently the sole glycosylase initiating BER of U:A pairs and generally initiated repair of almost 90% of the U:G mismatches. Surprisingly, TDG contributed at least as much as single-strand selective monofunctional uracil–DNA glycosylase 1 (SMUG1) to BER of U:G mismatches. Furthermore, in a cell line that expressed unusually high amounts of TDG, this glycosylase contributed to initiation of as much as ~30% of U:G repair. Repair of U:G mismatches was generally faster than that of U:A pairs, which agrees with the known substrate preference of UNG-type glycosylases. Unexpectedly, repair of abasic sites opposite G was also generally faster than when opposite A, and this could not be explained by the properties of the purified APE1 protein. It may rather reflect differences in substrate recognition or repair by different complex(es). Lig III is apparently a minor rate-regulator for U:G repair. APE1, Pol/H9252, Pol/H9254, PCNA, XRCC1 and Lig I did not seem to be rate-limiting for overall repair of any of the substrates. These results identify damaged base removal as the major rate-limiting step in BER of uracil in human cells.

1. Introduction

Uracil is a frequently occurring lesion in DNA and the largest contribution probably comes from incorporation of dUMP instead of dTMP during replication, resulting in U:A pairs [1,2]. The amount of incorporated uracil in DNA may be enhanced by cytostatics that increase the dUTP/dTTP ratio [1,3]. Although incorporated dUMP is thought to be non-mutagenic, it may...
perturb DNA metabolism by interfering with the sequence specific binding of transcription factors [4]. Uracil in DNA may also result from spontaneous hydrolytic deamination of cytosine, generating mutagenic U:G mismatches at a rate of 70–200 events per day in each cell. In the absence of repair, this would clearly result in an unacceptably high mutation rate, given the perfect pairing of U with A [5,6].

In general, base excision repair (BER) of uracil in DNA is initiated by a uracil–DNA glycosylase (UDG) that cleaves the N-glycosidic bond between the base and deoxyribose, leaving an abasic site (AP-site). In humans, four enzymes displaying UDG-activity are known, among which nuclear UNG2 in the conserved UNG-family and single-strand selective monofunctional uracil–DNA glycosylase 1 (SMUG1) have been considered the most important in BER. SMUG1 was reported to be central in repair of U:G mismatches in mouse cells [7], but this is not necessarily the case for human cells, where UNG2 may be more important [8,9]. In fact, roles in BER of SMUG1 and particularly thymine–DNA glycosylase (TDG) which actually prefers uracil, are unsettled. Essentially nothing is known about the functional significance in BER of the fourth mammalian uracil–DNA glycosylases, methyl binding domain protein 4 (MBD4) [10]. Subsequent to base excision, AP-endonuclease 1 (APE1) cleaves DNA 5′ to the AP-site. BER may then follow two distinct routes characterised by the insertion of either one (short patch, SP) or several (long patch, LP) nucleotides. Both pathways have been reconstituted in vitro with purified enzymes. The SP pathway requires as a minimum a DNA glycosylase, APE1, Pol β, which removes 5′-deoxyribosephosphate (dRP) and inserts a single nucleotide, and finally ligation by DNA ligase III, usually in complex with XRCC1 [11]. If the AP-site is modified to become resistant to the AP-lyase activity of Pol β, an alternative polymerase may displace a segment of single-stranded DNA containing the lesion. The displaced strand is then cleaved by the structure specific enzyme flap endonuclease 1 (FEN1) and the resulting nick is ligated, most likely by DNA ligase I. The LP pathway has been reconstituted with APE1, DNA polymerase δ/ε, replication factor C (RFC), proliferating cell nuclear antigen (PCNA), FEN1 and DNA ligase I [12,13]. In vivo the mechanism is almost certainly more complex due to apparent redundancy of proteins carrying out different steps, different expression of the proteins during the cell cycle, compartmentalization of proteins, extensive protein–protein interactions, as well as post-translational modifications [2,14–18]. In addition, BER may under some conditions involve several other proteins, such as poly-(ADP-ribose) polymerase (PARP) [19], p53 [20] and WRN [21].

The ability to excise uracil among human cell lines was previously found to vary several-fold; a variation which was not caused by polymorphisms in the coding region of the human UNG-gene [22]. This variation is not limited to cancer cell lines, since substantial inter-individual variation in UDG-activity has also been reported in human tumour tissues and normal tissues [23,24]. The purpose of the present study was to examine which of the known nuclear BER proteins, if any, are bottle necks in the repair of uracil in DNA in human cell lines. Previous studies have proposed removal of 5′dRP by Pol β [25] or ligation [26] as rate-limiting step in mammalian BER.

We report here that UNG2, in spite of a very considerable variation in the level of several of the other proteins known to be required for BER, is the major rate-limiting factor in repair of U:A and U:G in nuclear DNA in human cell lines. However, for U:G repair TDG and SMUG1 also contribute to the initiation of BER. Surprisingly, TDG was at least as important for U:G repair as SMUG1. Except for a possible rate-limiting effect of low DNA ligase III content, we found no significant correlation between BER capacity and the content of several other BER proteins, indicating that no single factor can be identified as rate-limiting in human cancer cell lines.

2. Materials and methods

2.1. Cell culture and nuclear extracts

All cell lines were cultured in Dulbecco’s modified Eagle medium (4500 mg/l glucose), with 10% fetal calf serum, 0.03% glutamine and 0.1 mg/ml gentamicin in 5% CO₂. The cell lines were harvested at 50–70% confluence by trypsination, followed by washing in ice-cold phosphate-buffered saline (PBS). Nuclear extracts were prepared by swelling the cells in hypotonic buffer (20 mM HEPES-KOH pH 7.8, 1 mM MgCl₂, 5 mM KCl, 1 mM DTT and 1× Complete® EDTA-free protease inhibitor cocktail (Roche)) for 45 min followed by lysis of the cells using a Dounce homogenizer with a tight fitting pestle. Nuclei were centrifuged at 180 g and resuspended in 10× packed nuclear volume (PNV) of buffer 1 (10 mM Tris–HCl pH 8.0, 200 mM KCl, 2 mM EDTA, 1 mM DTT and 1× Complete® EDTA-free protease inhibitor cocktail (Roche)), centrifuged and resuspended in 2× PNV buffer II (same as buffer I, but also containing 0.5% (v/v) NP-40 and 40% (v/v) glycerol). Protein was extracted at 4°C for 2 h and cell debris removed by centrifugation at 13,000 × g for 15 min. Supernatants were aliquoted, snap frozen in liquid nitrogen and stored at −80°C. Protein concentrations were measured using the Bradford method (BioRad).

2.2. Standard UDG-assays on nick-translated DNA

Standard UDG-assays were performed essentially as described [9]. The standard substrate in UDG-assays was calf thymus DNA nick-translated in the presence of [³H]dUTP and unlabelled dNTPs. Thus, the substrate contains labelled uracil in a U:A context and the assay essentially measures activity encoded by the UNG-gene [27]. UDG-activity is given as units/mg protein in nuclear extract, where one unit is the amount of enzyme required to release 1 nmol of uracil from the UDG-substrate per minute at 30°C [16]. The 20 μl reaction mixtures contained final concentrations of 40 mM HEPES-KOH pH 7.8, 70 mM KCl, 1 mM EDTA, 1 mM DTT, 0.1 μg/g/ml BSA, 1.8 μM [³H]dUMP-containing calf thymus DNA (specific activity 0.5 mCi/μmol) and diluted nuclear extracts.

2.3. Western blot analysis

50 μg protein from each nuclear extract were separated by electrophoresis on NuPAGE® 4–12% Bis–Tris gradient gels (Invitrogen) and blotted onto PVDF membranes (Immobilon™, Millipore) by standard procedure, followed by blocking in 5% fat-free dry milk in PBS containing 0.1% Tween®-20 and hybridisation with primary and secondary antibodies, the lat-
ter conjugated with horseradish peroxidase (DAKO, Denmark). For Western blot analysis of UNG we used an antibody recognising the catalytic domain [27] at 0.5 μg/ml. TDG was detected with anti-murine TDG serum at a 1:500 dilution (a kind gift from Primo Schär). Antibodies against PCNA (ab29), DNA polymerase β (ab2856), XRC1 (ab1838), DNA ligase I (ab615) and DNA ligase III (ab587) were supplied by Abcam Ltd., UK. The antibody against APE1 (NB100-504) was from Novus Biologicals Inc., Littleton, CO, USA and the antibody against DNA polymerase δ (D73020–050) from Transduction Laboratories, Lexington, KY, USA and used as recommended by the supplier. The membrane used for the visualisation of TDG had previously been used for the visualisation of DNA ligase III (∼100 kDa), then stripped using 0.2 M NaOH for 5 min at room temperature, washed in water, reblocked and reprobed. All other BER proteins were visualised on separate membranes. We quantified the content of individual BER proteins in the extracts by luminometry using the SuperSignal West Femto Substrate (Pierce) a Kodak ImageStation 2000R and Kodak Molecular Imaging Software v4.0.1.

2.4. In vitro BER-assays

Substrates for the BER assay were prepared as described [16,28]. Briefly, an uracil-containing oligonucleotide (5’-GAT CCT CTA GAG TUG ACC TGC A-3’) was annealed to ssDNAs derived from the pGEM-3Zf(+) plasmid, containing either A or G opposite uracil. The lesions were positioned in otherwise identical sequence contexts in order to rule out any differences due to the sequence-dependency of uracil excision [29]. Following strand elongation and ligation, covalently closed circular DNA (cccDNA) was collected from a CsCl/ethidium bromide gradient, ethanol precipitated, washed and resuspended. These substrates will be referred to as U:A and U:G substrates, respectively. Substrates containing an AP-site were prepared by treating U:A and U:G cccDNA with the purified recombinant catalytic domain of human UNG [27], while substrates with nicked AP-sites (nAP) were prepared by additional treatment with recombinant purified human APE1. The AP-site substrate and the nAP-site substrate are therefore identical to natural intermediates in the BER process. Unless otherwise indicated, 250 ng cccDNA substrate was incubated at 30 °C for 30 min with 10 μg protein in final concentrations of 40 mM HEPES-KOH, 70 mM KCl, 5 mM MgCl2, 0.5 mM DTT, 2 mM ATP, 20 μM dATP, 20 μM GTP, 8 μM dCTP or dTTP depending on the radioactive isotope used, 4.4 mM phosphocreatine, 62.5 ng/μl creatine kinase and 50 nCi/μl [α-32P]dCTP or [α-32P]dTTP in a volume of 40 μl. The reactions were stopped by the addition of EDTA (to 18 mM) and 6 μg RNase A and incubated at 37 °C for 10 min followed by the addition of SDS (to 0.5%) and 12 μg proteinase K. After a further incubation for 30 min at 37 °C, DNA was purified by phenol/chloroform-extraction and ethanol precipitation and unless otherwise indicated digested with XbaI and HincII (New England Biolabs). This generated an 8-mer fragment labelled with a single incorporated nucleotide at the position of the original lesion. Provided that the ligation step was fairly efficient, this fragment was a quantitative measure of uracil-repair by both short patch and long patch pathways. Following 12% PAGE, bands were visualised and quantified with arbitrary units using ImageQuant software (Fujifilm). We investigated relative contribution of SMUG1, TDG and UNG2 to the initiation of uracil repair by pre-incubating extracts with a neutralising antibody to SMUG1 (0.11 μg/μl final concentration) [9], UNG (0.3 μg/μl final concentration), and/or neutralising anti-serum towards TDG at (1:50 dilution) [30] on ice for 30 min prior to the reaction.

2.5. AP-site incision assay

APE1 activity was measured by monitoring the incision of an oligonucleotide containing an AP-site opposite A or G. Briefly, a 22-mer oligonucleotide (5’-GAT CCT CTA GAG TUG ACC TGC A-3’) was 5’-end-labelled using T4 polynucleotide kinase and [γ-32P]ATP and annealed to a complementary 22-mer (5’-TGC AGG TCX ACT CTA GAG CAT C-3’) containing either A or G (X=A or G) opposite uracil. An AP-site was then generated by treatment with the purified recombinant catalytic domain of human UNG. Labelled duplex oligonucleotide (0.1 pmol) and increasing concentrations of unlabelled duplex oligonucleotide containing AP:A or AP:G were then incubated with purified APE1 under conditions similar to those in the BER assay (40 mM HEPES-KOH pH 7.8, 5 mM MgCl2, 1 mM DTT, 0.1 μg/μl BSA) at 30 °C for 5 min. Reactions were stopped by addition of formamide loading buffer containing 10 mM EDTA, heated at 90 °C for 10 min and oligonucleotides separated by 12% PAGE.

2.6. Statistical analysis

Linear regression analysis was employed to determine best-fit curves and corresponding coefficient of determination values (R²). P-values were calculated to determine whether the slopes of the linear regression curves were significantly different from zero, which would be the expected result if one assumes no correlation between the content of the relevant protein and repair capacity. Finally, t-tests were performed to determine the statistical significance of the apparent preference for U, AP and nAP opposite G in the extracts. All statistical analyses were done using Excel and GraphPad Prism.

3. Results

3.1. Preparation of nuclear extracts

To be able to directly compare results from in vitro repair assays using nuclear extracts from different cell lines, we carried out a series of experiments to establish conditions for extract preparation that gave reproducible results for all cell lines used. The criteria were reproducibility in terms of BER activity, UDG-activity and yield of protein per 10^6 cells. In our hands, isolation of nuclei after Dounce homogenization of hypotonically swollen cells, followed by centrifugation at 180 × g and extraction in hypertonic buffer containing detergent and 200 mM KCl gave reproducible results for all cell lines. Using lower salt concentration (100 mM KCl) for extraction under otherwise identical conditions resulted in several-fold lower protein yield, as well as lower BER activity. Higher salt (500 mM KCl) followed by dialysis increased the yield of protein, but
We were unable to visualise SMUG1 in the extracts due to low SMUG1 levels in the human nuclear extracts. The protein was only detectable following immuno-precipitation Western blot analysis, as displayed in Fig. 1A and Table 2.

The content of UNG2, TDG, APE1, Pol β and δ, XRCC1, PCNA and DNA ligase I and III in the extracts was examined by Western blot analysis, as displayed in Fig. 1A and Table 2. The results displayed are from one experiment. However, we have repeated Western blots using three independently prepared nuclear extracts for UNG2, APE1, XRCC1 and Lig III. Standard deviations were in the range 4.8–20%, demonstrating that variation between extract preparations is much smaller than between extracts from different cell lines. The mitochondrial UNG1 protein was not detected in any of the nuclear extracts, indicating that they were largely free of contaminants from mitochondria. We detected two bands for TDG—one representing an unmodified protein at an apparent molecular weight of ~60 kDa, and another that conforms to a SUMOylated form at ~84 kDa [31]. Quantitative Western blot analysis was limited to the 60 kDa form. We examined the possibility that expression of some of the proteins correlated with each other. However, the only significant correlation observed was that between the replication-associated proteins DNA polymerase δ and DNA ligase I (R² = 0.80 and P = 0.0027). Regrettably, we were unable to visualise SMUG1 in the extracts. This protein was only detectable following immuno-precipitation (data not shown), so our failure to detect SMUG1 was presumably due to low SMUG1 levels in the human nuclear extracts.

The relative protein content of UNG2 in the extracts was found to correlate strongly with UDG-activity (R² = 0.92 and P = 0.0002, Fig. 1B). This suggests that UNG2 was mainly responsible for the variation in UDG-activity measured under these assay conditions. Importantly, it also indicates that our quantitative Western analysis was suitable to gauge the content of BER proteins in different extracts. We found that the content of proteins frequently used as “loading control”, e.g. lamin A/C, varied much between cell lines, making them useless as a general loading control in experiments involving several cell lines. Instead, we relied on protein measurements and loaded 50 µg of total protein from each nuclear extract.

3.3. DNA-uracil and BER intermediates are repaired at different rates and the repair capacities vary among the different extracts

Nuclear extracts were used to study repair of cccDNA containing uracil, an AP-site or a nicked AP-site in a defined position (Fig. 1C). Each type of lesion was placed opposite A in the complementary strand to mimic the substrate resulting from incorporation of dUMP during replication, or opposite G to mimic the substrate resulting from cytosine deamination. Following incubation with nuclear extracts, repair was assessed by measuring the radioactivity incorporated into the fragment between the XbaI and HincII restriction sites. This is a good quantitative measure for BER, as exactly one radiolabelled nucleotide is incorporated into this fragment per BER event regardless of whether repair takes place via SP or LP subpathways. Technically, this does not provide information about the final ligation step of BER, as the product would not be different after incomplete BER in the form of unligated nick in the final intermediate. However, we found that ligation took place at high and largely similar efficiency in the extracts investigated. This control was carried out by digesting repair products with BamHI and PstI, which results in a 22-mer if the substrate is completely repaired and ligated, and a 14-mer representing an unligated, nicked repair product after one-nucleotide incorporation (Fig. 1D). We did not observe a significant accumulation of repair intermediates of size between 14 and 22 nucleotides, indicating negligible accumulation of repair intermediates other than the unligated 1 nucleotide extension product. However, with the methodology used, we cannot exclude the possibility that some intermediates containing an AP-site accumulated when starting BER with substrates containing uracil in a U:A or U:G context. Therefore, the intensity of the XbaI-HincII fragment was a useful approximation to complete BER in this system. Furthermore, the BER reaction was linear beyond the incubation time of 30 min used in subsequent experiments. The conditions used did not consume too much of the substrate for quantitative analysis, and the BER activity of the extract did not decay significantly during the incubation (Fig. 1E).

All extracts were capable of repairing the DNA substrates, although with different efficiencies (Fig. 2A and B). As expected, the substrates representing later stages in the BER pathway were generally repaired more efficiently than those representing earlier stages (U < AP < nAP), but the capacity of the extracts to repair each lesion varied several-fold. Some extracts repaired uracil and AP-sites with similar efficiencies.
Fig. 1 – BER proteins in nuclear extracts and measurement of BER activities. (A) Western blot analysis of BER proteins in nuclear extracts. From left to right: (1) AGS, (2) CCD 1064, (3) CX-1, (4) HCT-8, (5) MDA-MB-231, (6) SW480, (7) T-47D, and (8) ZR-75-1. TDG appears as two bands at ∼60 kDa and ∼84 kDa, the latter conforming to a SUMOylated form of TDG [31]. (B) Correlation between relative UNG2 content and UDG-activity in nuclear extracts. UNG2 content was set relative to that in the T-47D extract (100%), where UNG2 was most abundant. UDG-activity was measured by the standard UDG-assay (values taken from Table 1). (C) Overview of strategy for analysing the BER process. A plasmid containing uracil or, alternatively, an AP-site or a nAP-site (not shown in figure) in a defined position is incubated with nuclear extracts. BER is then quantified in restriction fragments (routinely XbaI and HincII) after incorporation of [α32P]dTTP or [α32P]dCTP in the position of the original lesion. For ligation analysis we digested the substrate with BamHI and PstI. Potential incorporation sites for radiolabelled [α32P]dTTP and [α32P]dCTP are indicated with asterisks. Y represents incorporation of dCMP or dTMP following BER. For analysis of BER of uracil in a U:G context, the complementary strand contained G instead of A (not shown in figure). (D) Fraction of ligated product (complete repair) after in vitro BER in nuclear extracts, measured as radioactivity in BamHI-PstI fragments using U:A or U:G substrates. The lower 14-mer fragment represents an unligated single nucleotide insertion intermediate while the upper 22-mer represents completely ligated product, resembling completed short- and long patch repair products, alternatively unligated long patch repair with a patch size of eight nucleotides or above. Ligation during U:A repair appeared to be slightly more efficient than for U:G repair, with 72–83% versus 67–79%, respectively, of the intensity in the upper fragment. (E) BER as function of time. Repair of U:G, AP:G and nAP:G substrates by SW480 nuclear extract after 15 min, 30 min and 45 min incubation, as monitored after digestion with XbaI and HincII.
Table 2 – Variation in the content of BER proteins among extracts

<table>
<thead>
<tr>
<th></th>
<th>UNG2</th>
<th>TDG</th>
<th>APE1</th>
<th>Pol β</th>
<th>Pol δ</th>
<th>PCNA</th>
<th>XRCC1</th>
<th>Ligase I</th>
<th>Ligase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGS</td>
<td>14</td>
<td>100</td>
<td>91</td>
<td>64</td>
<td>61</td>
<td>76</td>
<td>52</td>
<td>72</td>
<td>58</td>
</tr>
<tr>
<td>CCD1064</td>
<td>5</td>
<td>18</td>
<td>100</td>
<td>33</td>
<td>15</td>
<td>83</td>
<td>24</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>CX-1</td>
<td>82</td>
<td>42</td>
<td>49</td>
<td>17</td>
<td>91</td>
<td>78</td>
<td>32</td>
<td>84</td>
<td>89</td>
</tr>
<tr>
<td>HCT</td>
<td>40</td>
<td>15</td>
<td>64</td>
<td>48</td>
<td>36</td>
<td>87</td>
<td>37</td>
<td>42</td>
<td>74</td>
</tr>
<tr>
<td>MDA-MD-231</td>
<td>30</td>
<td>12</td>
<td>90</td>
<td>44</td>
<td>66</td>
<td>92</td>
<td>54</td>
<td>37</td>
<td>100</td>
</tr>
<tr>
<td>Sw480</td>
<td>13</td>
<td>20</td>
<td>44</td>
<td>39</td>
<td>100</td>
<td>87</td>
<td>100</td>
<td>100</td>
<td>69</td>
</tr>
<tr>
<td>T-47D</td>
<td>100</td>
<td>32</td>
<td>50</td>
<td>91</td>
<td>73</td>
<td>100</td>
<td>81</td>
<td>60</td>
<td>96</td>
</tr>
<tr>
<td>ZR-75-1</td>
<td>33</td>
<td>33</td>
<td>92</td>
<td>100</td>
<td>52</td>
<td>81</td>
<td>38</td>
<td>38</td>
<td>69</td>
</tr>
</tbody>
</table>

Protein content is given in percent relative to the extract in which the protein in question was found to be most abundant (100%). Quantitative Western analysis was limited to the non-SUMOylated form of TDG.

(T-47D and SW480), whereas others displayed up to 3–4-fold more efficient AP-site repair compared to uracil-repair (HCT-8 and CX-1). The most efficiently repaired substrate was generally the one containing nAP, which was repaired 1.4–5.6-fold faster than AP-sites, and 1.5–12-fold faster than uracil in DNA.

3.4. BER of uracil in DNA correlates with UDG-activity and UNG2 content

Generally, the extracts with the highest UDG-activity displayed the most efficient repair of both U:A and U:G (Fig. 2C and D, see also Fig. 4A). In particular, the repair of U:A correlated well with UDG-activity (R² = 0.84 and P = 0.0013) as well as with the relative content of UNG2 (R² = 0.84 and P = 0.0007). As shown in Fig. 1A, there is no co-variation between the DNA glycosylases or between these and other BER proteins. Thus, this highly significant linear relationship between BER and UNG2 suggests that increased expression of UNG2 results in more efficient repair of U:A, and that the glycosylase step is the rate-limiting step in BER of U:A. The correlation between UDG-activity and U:G repair was also significant, but weaker (R² = 0.67 and P = 0.013) and the correlation between U:G repair

Fig. 2 – BER of circular DNA containing uracil, AP-site or nAP-site by nuclear extracts. Note that in panels A–D nuclear extracts along the X-axis are ordered according to ascending UDG-activity, as measured in the standard UDG-assay. All UDG-activity values are taken from Table 1. (A) Repair of uracil (black bars), AP-sites (grey bars) and nAP-sites (white bars) opposite A by nuclear extracts. (B) As in panel A, but lesion opposite G. (C) Correlation between BER of U:A substrate and UDG-activity. (D) Correlation between BER of U:G substrate and UDG-activity. Each experiment was conducted three times, and the error bars represent standard deviation of the mean. The units for BER (along the Y-axis) are arbitrary.
and the relative content of UNG2 ($R^2 = 0.64$ and $P = 0.017$) was weaker as well. The weaker correlation with U:G substrate was essentially caused by one outlier in Fig. 2D, the extract from the AGS cell line. This extract displayed a significantly higher U:G repair than expected from its measured UDG-activity, and interestingly also contained the highest content of TDG of all the extracts. Because the UDG-activity assay measures excision of uracil from U:A base pairs, the contribution of other glycosylases with a relative preference for U:G mispairs (i.e. SMUG1, TDG and MBD4, reviewed in [10]) is most likely underestimated using this assay. We therefore investigated whether U:G repair in the AGS extract could be initiated by other U:G glycosylases to any significant extent. By adding neutralising antibodies against UNG2, SMUG1 and TDG to the reaction mixtures, we were able to inhibit BER of U:G in the AGS extract by $\sim 95\%$ (Fig. 3A), indicating that these glycosylases are the main enzymes initiating repair of U:G under these experimental conditions. The residual $\sim 5\%$ activity could either be due to incomplete inhibition by the three antibodies or result from activity of MBD4, which we did not have the means to selectively inhibit. By omitting one of the three neutralising antibodies from the reaction mixture, we were able to estimate the individual contribution to U:G repair from each glycosylase. Our results indicate that in extract of AGS cells, TDG initiated $\sim 30\%$ of the U:G repair, but even here UNG2 appeared to be the major uracil-excising activity, initiating $\sim 60\%$ of the repair events. SMUG1 appeared to initiate only $\sim 5\%$ of total repair. However, in extracts from cell lines SW480 and T-47D, which contained more UNG2 and less TDG than the AGS extract, UNG2 initiated almost 90% of U:G repair, whereas TDG and SMUG1 contributed roughly equally ($\sim 5\%$ each) to the rest of the BER initiations (Fig. 3A). To our knowledge, this is the first demonstration of a significant contribution of TDG to initiation of BER of uracil in a system mimicking a more complex cellular system. In agreement with previous studies using other methods [2,27,32], UNG2 was apparently the sole activity initiating repair of the U:A substrate in all three extracts (Fig. 3B).

Next we analysed the relationship between the content of individual BER proteins in the extract and the repair capacity of uracil, AP-site and nAP substrates (Fig. 4) and examined possible correlation to the rate of BER by linear regression analysis. Resulting coefficients of determination (R^2) are displayed in Table 3. We quantified each protein relative to the extract in which the protein in question was most abundant, e.g. for UNG2, the reference extract was T-47D. Except for UNG2, the most significant correlation appeared to be that between the content of DNA ligase III and U:G repair ($R^2 = 0.68$ and $P = 0.012$), thus suggesting that it was important for the efficiency of U:G repair. However, we observed no general correlation between the content of DNA ligase III (or any other protein) and the ligation efficiency of U:A or U:G (Fig. 1D), and the correlation between DNA ligase III and the repair of AP- and nAP-substrates was also low. We did not observe any clear relationships between the content of any of the other proteins and repair of the other substrates, except for APE1 which displayed a weak negative correlation with U:A repair ($R^2 = 0.52$ and $P = 0.045$).

3.5. Uracil and AP-sites are repaired more rapidly opposite G than opposite A

In six out of eight extracts U:G was repaired 1.7–3-fold more efficiently than U:A ($P < 0.05$), and AP-sites opposite G were repaired 1.2–4.7-fold more efficient than AP-sites opposite A in five ($P < 0.05$) (Fig. 5A and B). For repair of nAP-sites, the preference for G opposite the lesion was less obvious (Fig. 5C), with only four extracts displaying a significantly
more efficient nAP:G repair (1.3–1.8-fold, \(P < 0.05 \)). As the differences between substrates containing A or G opposite the lesion were more pronounced for uracil and AP-sites this could suggest that the base opposite the AP-site may affect binding and/or the activity of APE1. However, this effect cannot be explained from the known properties of AP-endonuclease, the major one being APE1 in mammalian cells [8,33]. Moreover, we found that the purified APE1 incised AP-sites with equal efficiency in both contexts (Fig. 5D). Equal incision opposite A and G has also been observed by others using the synthetic AP-site analog tetrahydrofuran [34].
Table 3 – Correlations between relative protein content and base excision repair capacities of nuclear extracts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UNG2</td>
<td>0.87* (0.85)*</td>
<td>0.44</td>
<td>0.45</td>
<td>0.64 (0.85)*</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>TDG</td>
<td>0.00</td>
<td>0.07</td>
<td>0.12</td>
<td>0.06</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>APE1</td>
<td>0.52</td>
<td>0.15</td>
<td>0.28</td>
<td>0.35</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>DNA Polymerase β</td>
<td>0.02</td>
<td>0.08</td>
<td>0.02</td>
<td>0.17</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>DNA Polymerase δ</td>
<td>0.40</td>
<td>0.09</td>
<td>0.41</td>
<td>0.31</td>
<td>0.17</td>
<td>0.06</td>
</tr>
<tr>
<td>PCNA</td>
<td>0.09</td>
<td>0.06</td>
<td>0.07</td>
<td>0.10</td>
<td>0.00</td>
<td>0.08</td>
</tr>
<tr>
<td>XRCC1</td>
<td>0.08</td>
<td>0.11</td>
<td>0.15</td>
<td>0.13</td>
<td>0.28</td>
<td>0.05</td>
</tr>
<tr>
<td>DNA Ligase I</td>
<td>0.26</td>
<td>0.10</td>
<td>0.32</td>
<td>0.22</td>
<td>0.24</td>
<td>0.08</td>
</tr>
<tr>
<td>DNA Ligase III</td>
<td>0.43</td>
<td>0.25</td>
<td>0.38</td>
<td>0.68*</td>
<td>0.07</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Correlation is displayed as coefficient of determination (R^2)-values of best-fit linear regression curves. **$P < 0.001$ and *$P < 0.05$. Values within parentheses represent R^2 from a data set in which the AGS extract is excluded on the basis of its high TDG content (outlier).

Fig. 5 – Effect of opposite base in BER of circular DNA containing U, AP-site or nAP-site opposite A (grey bars) or G (black bars). From left to right in panels A–C—1: CCD1064 (0.19), 2: AGS (0.34), 3: SW480 (0.80), 4: ZR-75-1 (0.83), 5: MDA-MB-231 (0.95), 6: HCT-8 (0.99), 7: CX-1 (1.6), 8: T-47D (2.4). (A) Repair of U positioned opposite A or G. (B) Repair of AP-site opposite A or G. (C) Repair of nAP-site opposite A or G. The units for repair are arbitrary. All experiments were performed in triplicates, and error bars represent standard deviations of the mean. *$P < 0.05$ and **$P < 0.01$. (D) A fixed amount of purified APE1 was incubated with 0.1 pmol labelled 22-mer oligonucleotide containing an AP-site opposite A or G as well as increasing concentrations of unlabelled 22-mer duplex oligonucleotide. Incision of the 22-mer at the AP-site results in the 14-mer product.

4. Discussion

We aimed at identifying rate-limiting factor(s) in BER of uracil and the roles of uracil-excisng glycosylases UNG2, SMUG1 and TDG in this process. For this purpose, we used nuclear extracts from eight human cell lines and a BER system that carries out all the steps in the repair process. Uracil in DNA is found in two very different contexts, U:A pairs as a result of a replication errors and U:G mismatches as a consequence of cytosine deamination. There is no a priori reason to assume that the processing of these structurally and biologically quite different lesions should involve the same proteins or protein complexes. However, we found that UNG2 is the major glycosylase for initiation of BER of both lesions. Furthermore, the concentration of DNA-uracil substrate (1 lesion per plasmid) in our studies is only approximately 3 nM, while the K_m for UNG2 is approximately 1000-fold higher [9]. The substrate concentration is therefore far below saturating conditions, but in spite of this UNG2 is a major rate-limiting factor in overall BER of uracil in DNA. Our results also indicate that, at least for proliferating human cells, measurements of UDG-activity...
on DNA nick-translated in the presence of 3H-labelled dUTP, in which U is found in a U:A context, is a good biomarker for the capacity of a cell to repair uracil in DNA. As mentioned above, other studies have proposed removal of S’dRP by Pol β [25] or ligation [26] as the rate-limiting step in mammalian BER. However, in the first study [25], BER was reconstituted using equimolar amounts of recombinant BER proteins, which may not resemble physiological conditions. In the second study the initial steps were not examined [26]. A third study using extracts from male germ cells demonstrated that uracil–DNA glycosylase was rate-limiting for BER in extracts from young mice, but not from old. In contrast, APE1 was apparently rate-limiting in old mice, but not in young [35]. Thus, the rate-limiting step in BER may change with age, at least in male murine germ cells. In addition, the rate-limiting step may vary depending on the type of lesion involved. The very strong correlation between uracil repair and the content/activity of UNG2 observed here indicates that in human cancer cells, the rate of uracil BER is controlled by the initiating glycosylase. In line with this, another study observed virtually no detectable repair intermediates during repair of uracil, 8-oxoguanine and hypoxanthine when examining complete repair [36]. This suggests that repair intermediates are very rapidly processed, and supports our data demonstrating that the rate-limiting step for repair of uracil resides in the first step of the BER pathway. This would seem to make sense, since constriction of repair at a later step could cause accumulation of repair intermediates that are more cytotoxic than the original lesion. This is thought to be the mechanism behind the cytotoxicity observed when glycosylases are highly overexpressed in the presence of agents which damage DNA, as demonstrated for N-methylpurine DNA glycosylase, 8-oxoguanine-DNA glycosylase 1 and human homologue of endonuclease III [37–39].

Generally, UNG2 initiates all U:A repair and the largest fraction of U:G repair. However, in the gastric carcinoma cell line AGS that contained very high TDG levels this glycosylase contributed to initiation of ~30% of U:G repair, as demonstrated using neutralising antibodies. Even here, UNG2 was the major contributor to BER initiation (~60%), while SMUG1 contributed far less (~5%) to U:G repair. In other cell lines (SW480 with medium level of UNG2, medium level of TDG, and T-47D with high UNG2, medium TDG) the contribution of TDG and SMUG1 to initiation of U:G BER was roughly equal (5–10%), but small compared with UNG2 (~90%). TDG has previously been thought to have a specialised or quantitatively minor role in U:G repair, due to the very low turnover number of the purified enzyme compared to UNG2 and SMUG1 [10,40], but here we find that it is quantitatively at least as important as SMUG1 in human cells. The catalytic turnover of TDG is strongly inhibited by binding to the product AP-site, but factors that displace TDG from the AP-site stimulate its turnover. Such factors include the cell cycle checkpoint complex Rad9-Rad1-Hus1 [41], the XPC-RAD23B protein complex [42], APE1 [43] and SUMOylation [31]. These factors may well contribute to increase the catalytic efficiency of TDG in the BER system employed here, and in intact cells. To our knowledge the present work is the first study to demonstrate a considerable contribution from TDG to BER of uracil in DNA, although U:G repair activity independent of UNG and SMUG1 has been reported [9,16]. In conclusion, UNG2 appears as the sole glycosylase initiating BER in a U:A context, and the major initiatior of U:G repair, but if UNG2 is poorly expressed TDG and SMUG1 may significantly complement UNG2.

UNG2 has the highest level of expression in the S-phase [18], and TDG peaks in the G1-phase of the cell cycle [44]. However, since all cells were harvested during exponential growth (50–70% confluency) and there was no inverse correlation between the content of UNG2 and that of TDG among the cell lines, the low UNG2 and high TDG content in the AGS extract likely reflect an intrinsic property of the cell line. Furthermore, the low UDG-activity (measured on a U:A substrate) in AGS cells was also reported in a previous study [45] and reproduced in independent experiments here. It was reported that TDG is 12–300-fold more active on U:G than on T:G mispairs, depending on surrounding sequence context [46]. Considering this result and data on cell cycle expression [44], TDG may well represent a major activity for repair of U:G mispairs outside the S-phase in human cells, a task that is likely to be shared by SMUG1, which is equally expressed in all phases of the cell cycle (unpublished data). UNG2 is present in BER complexes in replication foci during S-phase [2,14] and also probably in pre-assembled BER complexes [16]. Rapid post-replicative removal of incorporated dUMP depends on functional UNG2-activity [2,32]. In addition, the rate of removal of uracil in U:A pairs by purified UNG2 [9] (and also from U:G and U in single-stranded DNA) is orders of magnitude higher than that of TDG [30] and SMUG1 [9]. UNG2 is therefore an ideal enzyme for removal of incorporated dUMP-residues at a speed keeping up with the movement of the replication fork. It is conceivable that complexes containing UNG2 may be evolutionary optimised to process uracil in one of the two main lesion contexts, while all three glycosylases contribute to U:G repair. Generation of U:G mispairs from deamination is largely independent of the cell cycle, and probably infrequent compared with dUMP incorporation [1]. U:G mispairs present in the S-phase may need to be repaired relatively rapidly to avoid mutations and UNG2 may be a good candidate for this task. In agreement with this, MEFs from Ung knockout mice display ~5.2-fold increase in mutation rates, but SMUG1-deficient cells also show ~2.4-fold increase. For both cell types G:C to A:T transition mutations were the most common changes observed. This strongly indicates that both UNG2 and SMUG1 contribute to U:G repair and that they are not redundant. One possible explanation for this could be that they act mainly in different cell cycle phases, which also fits with the additive, rather than synergistic, effect of deficiency in both glycosylases in MEFs [47]. Little is known about the repair phenotype of Tdg knockout mice, as they lose viability midway through the gestation period [48].

We also found that the content of DNA ligase III correlates significantly with U:G repair ($R^2 = 0.68$ and $P = 0.012$) and must therefore be considered as a possible rate-limiting factor in U:G repair as well. This idea has considerable biological merit, as several studies have implicated the XRCC1–DNA ligase III complex in BER [11,49,50]. However, if the rate-limiting step for U:G repair resided at the ligation step, one might have expected that this would be the case for AP:G and nAP:G repair as well, but it is not. In addition, if data from the AGS extract are excluded on the basis of its high TDG content, we find that the correlation between UDG-activity/UNG2 content and U:G repair is as strong as that observed for U:A ($R^2 = 0.85$ and...
Moreover, we did not observe accumulation of unligated fragments during U-G repair, nor did we find a strong correlation between the content of DNA ligase III and the proportion of ligated to unligated fragment ($R^2 = 0.16$, Fig. 1D). We did not observe correlation between the content of any other BER protein and repair, except in the case of APE1, which has a weak inverse correlation with U-A repair ($R^2 = 0.52$ and $P = 0.045$). Our failure to find correlation between the content of BER proteins and AP-site or nAP-site repair may have several explanations. The rate-limiting step of AP and nAP repair may be controlled by some factor not considered here, and/or the Western blot analysis may not reflect the content of functional protein in the extracts. For example 30% of cancers characterised to date, somewhat surprisingly, express variant forms of DNA polymerase β, some of which contain altered polymerase and dRPase activity [51,52]. Furthermore, Bcl-2 was recently shown to modulate the activity of APE1 [53], indicating that AP-site processing is a rather complex issue. In addition, numerous protein–protein interactions and post-translational modifications are known to occur in the BER pathway and may be important in AP-site processing [2,14–18]. One of the unexpected features observed here was that AP-sites (and uracil) were generally more efficiently repaired when opposite G compared to opposite A. This was apparently not due to the properties of APE1 since incision at AP:A and AP:G by purified APE1 (Fig. 5D) was equally efficient in both contexts. This has also been observed by others [34], albeit with the AP-site analogue tetrahydrofuran. It thus appears likely that other factors may contribute to more efficient repair of AP-sites opposite G in most extracts.

Cancer cells are reported to be genetically unstable [54], and our results from a relatively modest number of cell lines demonstrate a wide variation in DNA repair protein expression and DNA repair capacity. Because of this variation results from one cell line may not be extrapolated to cancer cells in general. It is likely that both too low expression, too high expression and unbalanced expression may contribute to genetic instability. Unbalanced expression may contribute to variable responses to cytostatic drugs, including resistance. Identification of factor(s) governing the rate of DNA repair in cancer cells may therefore improve diagnosis and treatment of cancer.

Conflicts of interest

None.

Acknowledgements

This work has been supported by The European Community (Integrated Project DNA repair, grant no. LSHG-CT-2005-512113), The Norwegian Cancer Association, The Cancer Fund at St. Olav’s Hospital, The Svanhild and Arne Must Fund for Medical Research, the National Programme for Research in Functional Genomics in Norway (FUGE) and the Norwegian Research Council. We would like to thank Dr. Primo Schär for generously providing us with neutralising TDG antiserum. We also would like to thank Dr. Bodil Kavli for constructive comments on the manuscript.

References

Paper III
Cytotoxicity of 5-fluoropyrimidines is mainly through RNA incorporation and thymidylate synthase inhibition rather than DNA fragmentation from DNA excision repair

Henrik Sahlin Pettersen*, Torkild Visnes*, Cathrine Broberg Vågbø, Berit Doseth, Bodil M. Kavli and Hans E. Krokan

* Authors contributed equally

Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489 Trondheim, Norway

Corresponding author:

Hans E. Krokan

Department of Cancer Research and Molecular Medicine, NTNU, Erling Skjalgssons gate 1, N-7489 Trondheim, Norway

Fax: +47 2576400

Phone: +47 2573074

E-mail address: hans.krokan@ntnu.no
ABSTRACT

The cytotoxicity of 5-fluorouracil (5-FU) is thought to be mediated via thymidylate synthase inhibition by 5-FdUMP, and by incorporation of 5-FdUTP and 5-FUTP into DNA and RNA, respectively. Recently, cytotoxicity due to repair of 5-FU-containing DNA and subsequent DNA fragmentation has received considerable attention. This may involve mismatch repair (MMR) and base excision repair (BER) initiated by uracil-DNA glycosylases UNG2, SMUG1, TDG and MBD4, but their relative significance has not been examined. In extracts from human cancer cells (HeLa, SW480), we find that only BER repairs 5-FU:A, while BER and MMR both repair 5-FU:G. The major mechanism in vitro is BER initiated by UNG2. However, cytotoxicity was neither affected by siRNA-knock-down of either glycosylase, nor by inhibition of the common steps in BER. Furthermore, accumulation of 5-FU was ~3000-fold higher in RNA than in DNA in 5-FU treated cells. Although the mechanisms contributing to cytotoxicity were different for 5-FU, 5-F(rU) and 5-F(dU), reversal experiments by dT, dU and rU indicated that cytotoxic effects of fluoropyrimidines are mainly attributed to RNA effects and thymidylate synthase inhibition. BER apparently has a minor role in cytotoxicity and DNA repair by MMR is limited to a 5-FU:G context in human cancer cells.
INTRODUCTION

5-fluorouracil (5-FU) is one of the most widely used drugs in the treatment of cancer, including breast cancer, colorectal cancer and other gastrointestinal malignancies. It has been used as an anti-cancer drug for five decades, and presently some 2 million patients are treated each year. However, for approximately one-half of the patients given 5-FU based combination therapies the treatment has no positive effect, highlighting the need for more knowledge of its complex mechanism of action. 5-FU is a prodrug that is converted to several active metabolites that are thought to mediate cytotoxicity directly and indirectly by interfering with RNA and DNA functions. (Fig. 1) (1). Incorporation of 5-fluorouridine triphosphate (5-FUTP) into RNA causes disruption of rRNAs (2,3), tRNAs (4) and snRNA processing (5) and inhibits the conversion of uridine to pseudouridine in RNA (6). DNA metabolism is perturbed by 5-fluorodeoxyuridine monophosphate (5-FdUMP), which inhibits thymidylate synthase (TS) and thereby de novo synthesis of dTMP, resulting in dTTP deficiency, imbalanced nucleotide pools, and an increased incorporation of dUTP and 5-FdUTP into DNA (7).

Genomic uracil and 5-fluorouracil are repaired by base excision repair (BER) initiated by DNA-glycosylases. Purified recombinant forms of all four known human uracil-DNA glycosylases are able to excise 5-FU from DNA in vitro. Uracil-DNA glycosylase (UNG2), Single-strand selective monofunctional uracil-DNA glycosylase 1 (SMUG1) and thymine-DNA glycosylase (TDG) may all excise 5-FU in 5-FU:A- and 5-FU:G contexts, while Methyl-binding domain 4 protein (MBD4) is active only on 5-FU:G (8-11). In addition, mismatch repair (MMR) can process 5-FU:G in a nicked plasmid in vitro, and has been suggested to be able to repair 5-FU:A base pairs as well (12). However, the quantitative contribution from MMR and BER, as well as the possible role of individual DNA glycosylases, remain obscure.
Deficiency in DNA repair is associated with tolerance to 5-FU in several cell systems, indeed suggesting a role of DNA-repair in cytotoxicity. Accumulated repair intermediates in BER, such as abasic sites and cleaved DNA strands, are more cytotoxic than the original base lesion, and may therefore contribute to cell killing (13). Furthermore, synthesis of long repair tracts during MMR may be cytotoxic and mutagenic in cells having imbalanced and dTTP-depleted nucleotide pools (7,14). MMR may also act as a DNA damage sensor, inducing a rapid G2 arrest following 5-F(dU) treatment (15). A 5-FU-tolerant phenotype has been reported for both human and murine cells deficient in MMR (15,16). The evidence linking BER to fluoropyrimidine cytotoxicity is more ambiguous. Mouse embryonic fibroblasts (MEFs) derived from gene-targeted knockouts of the genes encoding TDG, MBD4 and DNA polymerase β did show an increased tolerance to fluoropyrimidines (17-20). In contrast, siRNA knock-down of Smug1 in MEFs reduced the tolerance to fluoropyrimidines while Ung−/− MEFs displayed essentially identical sensitivity to fluoropyrimidines as wild type (11,21). This was also the case for human cells expressing the UNG-specific inhibitor Ugi, and down-regulation of human DNA polymerase β had no effect on 5-FU cytotoxicity (11,22). One open question is whether MEF knockout cells, yeast mutants, and indeed individual human cancer cell lines in culture, are good models to study the mechanism of 5-FU in human cancer, since they may convert this prodrug to different levels of active metabolites.

In this paper we analyse the relative contribution of the BER- and MMR pathways to 5-FU DNA-repair in extracts of human cancer cells and intact cells. Furthermore, we determine the relative efficiency of each DNA glycosylase in initiating BER of 5-FU in DNA. In addition, we investigate the effect on cytotoxicity of BER inhibitors and down-regulation of individual DNA glycosylases by siRNA. Finally, we examine the ability of deoxy- and ribonucleosides
to reverse the effect of 5-fluoropyrimidines, and the incorporation of 5-FU into DNA and RNA. We find that BER is not likely to be a major factor mediating toxicity, and a role for DNA fragmentation to MMR would be initiated through a 5-FU:A context. Our results also suggest that cytotoxic mechanisms involving perturbation of RNA functions and TS inhibition hold up as major contributors to toxicity of 5-FU and its metabolites in human cancer cells.
MATERIALS AND METHODS

Cell lines, chemicals and enzymes

The human cancer cell lines HeLa S3 (cervix adenocarcinoma), SW480 (colon adenocarcinoma) and CX-1 (colon adenocarcinoma) were purchased from ATCC and cultured in DMEM (4500 mg/l glucose) with 10% FCS, 0.03% L-glutamine, 0.1 mg/ml gentamicin and 2.3 µg/ml fungizone at 37°C and 5% CO₂. MEFs were cultured as described (21). 5-FU, 5-F(dU), 5-F(rU), 5-hm(dU), methoxyamine, 4-amino-1,8-naphthalimide, nucleosides and oligodeoxynucleotides were from Sigma-Aldrich. siRNA targeting UNG (Assay ID: 36376), SMUG1 (AM16708A, ID: 21193, 140141, 21109) and TDG (Assay ID: 12923) were purchased from Ambion. Radionucleotides were from Perkin-Elmer. Restriction endonucleases were from New England Biolabs. Recombinant human His-tagged APE1, UNG2, SMUG1 and TDG were purified as described (9,23).

Preparation of nuclear extracts

Cultured cells were harvested at 50-70% confluency by trypsination, followed by washing in ice-cold PBS. Nuclear extracts were prepared as described (24). Protein concentrations were measured using the Bradford method (BioRad).

Combined MMR and BER assay

To generate a substrate for both BER and MMR a unique Nt.BbvCI site was introduced into the substrate plasmid (pGEM-3Zf+) at position 388 using the QuickChange Site-Directed Mutagenesis Kit (Stratagene) protocol. This allowed the introduction of a nick that serves as a strand distinguishing signal for MMR. Substrates for BER and MMR containing 5-FU opposite A or G in otherwise identical sequence contexts were then prepared essentially as described (24).
Substrate (300 ng cccDNA pretreated with 5 U Nt.BbvCI when indicated) were incubated with 40 µg nuclear extract (TDG depleted and preincubated with Ugi and neutralizing SMUG1 antibodies when indicated) in BER buffer (40 mM HEPES-KOH pH 7.8, 70 mM (or 110mM) KCl, 5 mM MgCl₂, 0.5 mM DTT, 250 µM NAD⁺, 2 mM ATP, 50 µM of each dNTP, 4.4 mM phosphocreatine, 2.5 µg creatine phosphokinase) at 37°C for the times indicated. The reactions were stopped by addition of 25 mM EDTA, 0.5% SDS, 150 µg/µl proteinase K and incubation at 55°C for 30 min. DNA was purified by phenol-chloroform extraction and ethanol precipitation with 10 µg glycogen as carrier. DNA was then treated with purified recombinant UNG (0.1 µg/µl)(25) (U- and 5-FU-substrates) or purified human TDG (0.5 µg/µl) (T:G substrates), as well as 50 mM methoxyamine (MX) and 0.2 µg/µl RNaseA (NEB buffer 2 +0.1 µg/µl BSA) for one hour at 37°C, followed by treatment with restriction endonucleases XmnI and HincII (5U each) for one hour. Restriction fragments were analysed on 2% agarose gels, stained with ethidium bromide and band intensities were quantified using ImageJ software (http://rsb.info.nih.gov/ij/).

DNA-glycosylase activity assays

5-FU- and 5-hmU-DNA excision activities were measured using a 22-mer oligonucleotide containing a centrally positioned modified base (5'GATCCTCTAGAGT-X-GACCTGCA-3', where X = 5-FU, 5-hmU or U). The oligonucleotides were labelled on the 5' end with FAM or ³³P. Double-stranded substrates were prepared by annealing the labelled strand to a complementary strand containing either A or G opposite the modified base. Base excision activity was measured in an assay mixture containing 5 µg nuclear extract (or 10 µg total extract or various amount of recombinant human His-tagged UNG2, SMUG1, TDG), 0.1 pmol oligonucleotide substrate, 20mM Tris-HCl pH 7.5, 50 mM NaCl, 1mM EDTA, 1mM DDT, 0.5 mg/ml BSA (UDG buffer) and 0.1 pmol recombinant human APE1 at 37°C for 30
min. The extracts were pre-incubated on ice with 0.1 µg UGI, 0.1 µg neutralizing SMUG1 antibody (PSM1) (8) and 1 µl anti-TDG antiserum (diluted 1:3) (26) when indicated. The reactions were stopped and analyzed as previously described (8).

UDG activity assays using [3H]-labelled calf thymus DNA substrates (U:A substrate) were performed in UDG buffer with 3 µg whole cell extract at 30°C for 10 min essentially as described (8).

BER incorporation assay
The assay were performed as described (24). Briefly, 300 ng cccDNA substrate and 10 µg nuclear extract were incubated in BER buffer, supplemented with 50 nM dCTP and 3 µCi \([\alpha^{33}P]dCTP\) for substrates containing 5-FU and 5-hmU opposite G, and 50 nM dTTP and 3µCi \([\alpha^{33}P]dTTP\) for substrates containing 5-FU opposite A. Ugi (0.1 µg), neutralizing SMUG1 antibody (0.1 µg) and 1 µl anti-TDG antiserum (diluted 1:3) where added when indicated. For PARP-1 inhibition increasing concentrations of 4-amino-1,8-naphtalimide (4-AN) were included for the indicated times. Reactions were stopped by addition of EDTA (25 mM), SDS (0.5%) and proteinase K (150 µg/µl). DNA was purified and treated with restriction endonucleases XbaI and HincII to release radiolabelled fragments.

AP-site incision assay
An AP-site substrate was generated by incubating 0.2 µM (20 pmol) 5’FAM-labelled 19mer double-stranded uracil containing oligonucleotide (U141A) (8) with 5 ng/µl (0.5 µg) purified recombinant UNG (25) in 100 µl UDG buffer at 30°C for 20 minutes Subsequently, 30 ng/µl (0.3 µg) Ugi was added to inactivate the glycosylase. Methoxyamine-modified AP-sites were generated by incubating AP-site substrate (0.2 pmol) in 0.5, 5 and 50 mM MX pH 7.2 (adjusted with NaOH) or corresponding concentrations of NaCl for 20 minutes at 30°C. AP-
site cleavage assays was performed using 100 fmol purified human AP endonuclease 1 (27) for 10 minutes at 30°C in 10 µl UDG buffer, supplemented with 7.5 mM MgCl₂. Reactions were stopped by adding 15 µl 95 % formamide.

Transfection with siRNA

160000 cells per well were plated in a 6 well dish in 1600 µl antibiotic free DMEM (4500 mg/l glucose) with 10% FCS and 0.03% L-glutamine, and cultured over night. siRNA targeting SMUG1 (a mix of three, final concentration 30 nM each), UNG (60 nM final), and TDG (60 nM final) was dissolved in OptiMEM (Invitrogen) and incubated with 4 µl/well Dharmafect transfection agent (Dharmacon) for 20 min, before adding the mixture to the culture, according to the manufacturers protocol. After 24 h cells were treated with trypsin, counted and replated in medium with antibiotics.

Preparation of whole cell extracts from siRNA transfected cells

Cells from 6 well dishes were harvested by trypsinization 48 h post transfection. Cell pellets were dissolved in 100 µl buffer containing 20 mM Tris-HCl pH 7.5, 200 mM NaCl, 1 mM EDTA, 1xComplete protease inhibitor (Roche), and 0,5 % NP-40 and sonicated for 3 x 30 seconds at 4°C. Cell debris was removed by centrifugation at 13000 x g for 15 min. Supernatants were snap-frozen in liquid nitrogen and stored at -80°C.

Western analysis

50-100 µg whole cell extract were treated with DNase and RNase for 10 min at room temperature, denatured at 70°C in LPS loading buffer, separated on the NuPage electrophoresis system (Invitrogen) and electro-blotted onto Immobilon PVDF membranes (Millipore). UNG was detected using the polyclonal UNG antibody PU059 (25), SMUG1 by
the polyclonal SMUG1 antibody PSM1 (8), TDG by hTDG-antiserum (26), and β-actin was detected using mouse monoclonal ab8226 (AbCam). The membranes were analyzed using HRP swine anti-rabbit (1:5000; DakoCytomation) and HRP rabbit anti-mouse (1:5000, DakoCytomation) secondary antibodies and Super Signal West Femto substrate (Pierce) on a KODAK Image Station 2000R.

Cytotoxicity assays

2000-4000 cells/well were plated on a 96 well plate in complete DMEM (10 % FBS, L-glutamine, gentamicin, and amphotericin B). Cells were exposed to the cytostatic drugs and nucleosides 24 hours after plating and cultured for further 96 hours. Living cells were then quantified using the MTT-assay. Growth medium was replaced with 100 µl fresh medium containing 0.5 mg/ml MTT, and the plates were further incubated at 37°C for 4 h. 50 µl of medium was subsequently removed, and 100 µl 2-propanol with HCl (0.1 M) were added. Plates were transferred to a mechanical shaker until the MTT-formazan was dissolved. The optical density of each well was read on a Titertek Multiscan Plus Reader at wavelength 588 nm.

FACS analysis of cell cycle

Cells were plated in a 6-well dish at approximately 25 % confluence and grown for 24 h followed by exposure to cytostatic drugs for 48 hours. Cells were harvested by trypsination, fixed by 70 % methanol and washed twice with PBS. Then cells were treated with 50 µl RNaseA (100 µg/ml in PBS) at 37 ºC for 30 min before DNA staining using 200 µl propidium iodide (50 µg/ml in PBS) at 37°C for 30 min. Cell cycle analyses were performed using a FACS Canto flow cytometer (BD-Life Science).
Thymidylate synthase assay

TS activity was measured as previously described (28) with minor modifications. Cells were seeded in 24-well plates at a density of 70,000 cells per well. Following overnight incubation, each well was treated with fluoropyrimidines, and/or varying concentrations of rU diluted in growth medium for one hour, followed by the addition of 1 μCi [5-³H]deoxyuridine (specific activity 20 Ci/mmol, Moravek Biochemicals Inc.) and incubated for 90 min, in a final volume of 500 μl. The reaction was stopped by transferring 400 μl of the growth medium to an equal volume 150 mg/ml activated charcoal suspension in 5% trichloroacetic acid. The samples were vortexed and centrifuged at 16,000 x g at 4°C for 15 min or more. Radioactivity in a 400 μl aliquot of the supernatant was counted using a liquid scintillation counter, and each value was corrected for background counts.

Quantitation of 5-FU in DNA and RNA by LC/MS/MS

Nucleic acids were isolated from fluoropyrimidine-treated cells by the Blood and cell culture mini DNA isolation kit (Qiagen) and by the mirVana RNA-isolation kit (Ambion). The DNA or RNA samples were enzymatically hydrolyzed to nucleosides using nuclease P1, phosphodiesterase I from Crotalus adamanteus venom, and alkaline phosphatase (all from Sigma-Aldrich) as described (29), followed by addition of 3 vol of methanol and centrifugation (16000 × g, 30 min). The supernatants were dried under vacuum and the resulting residues dissolved in 50 μl 5% methanol in water (v/v) for analysis of 5-F(dU) and 5-F(rU) by LC/MS/MS. A portion of each sample was diluted for the quantitation of the unmodified nucleosides (dA, dC, dG, dT, rA, rC, rG, and rU). Chromatographic separation of nucleosides was performed on a Shimadzu Prominence HPLC system with a Zorbax SB-C18 2.1x150 mm i.d. (3.5 μm) reverse phase column equipped with an Eclipse XDB-C8 2.1x12.5 mm i.d. (5 μm) guard column (all from Agilent Technologies), at ambient temperature and a
flow rate of 0.2 ml/min. For 5-F(dU) and 5-F(rU) separation the mobile phase consisted of water and methanol, starting with a 3.5-min linear gradient of 5-70% methanol, followed by 1 min with 70% methanol and 6.5 min re-equilibration with the initial mobile phase conditions. Chromatography of unmodified nucleosides was performed under isocratic conditions with water/methanol/formic acid in ratio 85/15/0.1% for deoxyribonucleosides, or 92/8/0.1% for ribonucleosides. Online mass spectrometry detection was performed using an Applied Biosystems/MDS Sciex 5000 triple quadrupole mass spectrometer (Applied Biosystems) with TurboIonSpray probe operating in negative electrospray ionization mode for 5-F(dU) and 5-F(rU), or positive electrospray ionization mode for unmodified nucleosides. LC/MS/MS chromatograms showing 5-F(dU) in DNA and 5-F(rU) in RNA hydrolysates are shown in the supplementary figure 1. The nucleosides were monitored by multiple reaction monitoring using the mass transitions 245.2→129.1 (5-F(dU)), 261.2→129.1 (5-F(rU)), 252.2→136.1 (dA), 228.2→112.1 (dC), 268.2→152.1 (dG), 243.2→127.1 (dT), 268.2→136.1 (rA), 244.2→112.1 (rC), 284.2→152.2 (rG), and 245.2→113.1 (rU). Quantitation was accomplished by comparison with pure nucleoside standards run intermediate the samples.
RESULTS

BER is the dominant pathway for repair of genomic 5-FU in human cancer cell lines in vitro, and contribution by MMR is limited to a 5-FU:G context

In vitro studies suggest that both BER and MMR contribute to repair 5-FU in DNA. However, their relative contribution has not been established (12). We examined the contribution of BER and MMR to repair of 5-FU:A and 5-FU:G in DNA in nuclear extracts from human cancer cell lines. For this purpose we employed an in vitro assay using a circular covalently closed DNA substrate (cccDNA) containing a single 5-FU at a defined position, as well as a unique recognition sequence for the nicking endonuclease Nt.BbvCI positioned at 298 bp 3' to the lesion (Fig. 2A). Any mismatch in the plasmid can be repaired by the MMR system when the plasmid is nicked (12). Distinction between substrate and product in in vitro MMR assays has traditionally been obtained using restriction endonucleases unable to cut mismatched recognition sequences. To study MMR-mediated 5-FU:A repair by this approach is not straight-forward, because restriction endonucleases that discriminate between 5-FU:A in the substrate from T:A in the product are not available (12). Thus, we exploited the fact that restriction endonuclease HincII (GTY^RAC, Y=C/T, R= A/G) is unable to digest a recognition sequence containing a centrally positioned abasic site (AP-site). By treating the incubated substrate DNA with a DNA glycosylase that excises the damaged base prior to HincII digestion, all unrepaired substrate is converted to non-cleavable substrate (due to the AP-site in the HincII recognition site). If the lesion is repaired, however, it will not be recognized by the glycosylase, thus the product (T:A or C:G in the HincII recognition site) will be cleaved by HincII (Fig. 2B). To validate the assay we used nuclear extract from SW480 and verified repair of a T:G mismatch in a nick-dependent manner, consistent with an active MMR system. The same extract under identical assay conditions also carried out repair of cccDNA-U:A substrate, but this process was completely inhibited by the UNG inhibitor
Ugi, consistent with BER initiated by UNG (Fig. 2C). Thus, these substrates can be used to measure both BER and MMR. One or both pathways can be specifically inactivated; BER by directly inhibiting the initiating glycosylase, and MMR by removing the strand-break that repair is critically dependent on. We then measured repair in nuclear extracts from SW480 and HeLa on a cccDNA-5-FU:A substrate. Repair of 5-FU:A was completely inhibited by the presence of the UNG2 inhibitor Ugi and anti-SMUG1 antibodies in extract from both cell lines. This was also the case for the nicked substrate, with no detectable repair after 60 min in the presence of Ugi and neutralizing SMUG1 antibodies, both at 70 mM KCl (Fig. 2D) and 110 mM KCl (data not shown). This indicates that BER is the main, possibly sole, pathway for repair of 5-FU:A. Surprisingly, we could not detect any contribution from TDG on 5-FU:A repair in either extract. The repair of 5-FU:G was also mainly performed by BER, as most of the cccDNA 5-FU:G substrate was repaired after 15 min whether it was nicked or not (Fig. 2E). Inhibition of BER by the addition of Ugi and anti-SMUG1 antibody to a TDG-depleted extract (12) inhibited all detectable repair of 5-FU:G (un-nicked) substrate, while a marked reduction was observed when using nicked substrate. These results indicate a dominant role for BER in repair of 5-FU in DNA, with a smaller contribution of MMR to 5-FU:G repair.

DNA repair of 5-FU in human cancer cells is predominantly initiated by UNG2, while SMUG1 and TDG are more important in mouse embryonic fibroblasts

Purified recombinant UNG2, SMUG1, TDG and MBD4 have all been reported to excise 5-FU from DNA *in vitro* (8-10,12). However, their relative importance in 5-FU-DNA repair in different cells has so far not been investigated. We analysed the contribution of UNG2, SMUG1, and TDG to the excision of 5-FU from DNA in nuclear extracts from three human cancer cell lines (SW480, HeLa and CX-1) as well as in MEFs. Nuclear extracts were
incubated with duplex oligonucleotides with a central 5-FU paired with adenine (5-FU:A), guanine (5-FU:G), or as single-stranded DNA (5-FU). SMUG1 and TDG activities in the extracts were inhibited using neutralising antibodies as described (8,26), while UNG2 activity was inhibited with Ugi. Note that MBD4 did not appear to be significantly involved quantitatively, as inhibition of UNG2, SMUG1 and TDG was sufficient to abolish essentially all measurable 5-FU excision in the extracts (Fig. 3A, line 5). UNG2 was the dominant activity with all the 5-FU substrates in extracts from human cancer cell lines (SW480, HeLa and CX1), while SMUG1 and TDG activities were measurable only on the 5-FU:G substrate (Fig 3A). In contrast, 5-FU excision by UNG2 was hardly detectable in the MEF extract, where it was dependent mainly on SMUG1 and TDG. Moreover, excision activity in a 5-FU:A context and in 5-FU in single stranded substrate was very low (Fig. 3A). In accordance with this, measurements of UDG activity in the extracts using a ³H-labelled calf thymus U:A-DNA substrate (which detects mainly UNG-activity) revealed very low UDG activity in the MEF extract compared to extracts of human cancer cells (Fig. 3B). This difference is interesting because results from 5-FU treatment of MEF cell systems are often assumed to be valid for human cells as well. We have, in fact, found that these differences apply to murine tumour cell lines as well (Doseth et al., unpublished data). To determine substrate preference and specific activity, experiments with purified recombinant human UNG2, SMUG1 and TDG were performed under identical conditions. The results confirmed that 5-FU is substrate for all three UDGs, with UNG2 as the most efficient enzyme on 5-FU:A and especially on 5-FU in a single-stranded context, while SMUG1 was the most efficient enzyme on 5-FU:G. As expected, TDG excised 5-FU efficiently from a 5-FU:G context (Fig. 3C), in accordance with the analysis of 5-FU-excision in nuclear extracts. A dominant role for UNG2 in BER of 5-FU:A was also substantiated by assays measuring complete BER incorporation assays in SW480 and HeLa extracts, since all detectable 5-FU:A repair activity was abolished when
Ugi was added to the nuclear extracts (Fig. 2D). On the other hand, UNG2, SMUG1 and TDG were all able to initiate 5-FU:G repair, although with varying efficiency.

Cellular sensitivity to fluoropyrimidines is not affected by siRNA knock-down of UNG, SMUG1 or TDG and 5-FU accumulates abundantly in RNA compared with DNA

Our in vitro data from nuclear extracts suggested that 5-FU in DNA was predominantly repaired by BER, initiated by UNG2, SMUG1 or TDG. We therefore used specific siRNAs to examine the in vivo effects of these UDGs in mediating fluoropyrimidine cytotoxicity in SW480 and HeLa cells. To avoid selection bias and phenotypic drift, we employed transient siRNA-mediated silencing. UNG, SMUG1 and TDG activities were reduced at least 70-90% 48 h after transfection (Fig. 4A), and western blots verified knock-down at the protein level (Fig. 4B). Generally, the knock-down effect was strongest at 48 hrs after transfection and then gradually faded out towards 50 to 75% residual activity after six days (data not shown). Thus, we exposed SW480 and HeLa cells to 5-FU and its metabolites 5-F(dU) and 5-F(rU) 48 h post transfection.

The DNA-directed effects of fluoropyrimidines would be analogous to the effect of 5-hydroxymethyl-2'-deoxyuridine (5-hm(dU)), which is incorporated into DNA, which in turn may lead to DNA strand breaks and apoptosis through excessive 5-hm(dU) excision by SMUG1 (8,30-32). Thus, since 5-hmdUMP does not inhibit thymidylate synthase (33), has no known RNA-directed effects, and is removed by a distinct DNA glycosylase, it constitutes an ideal positive control for the concept of DNA repair-directed cytotoxicity of fluoropyrimidines. We tested hmU-excision in nuclear extracts from SW480, HeLa and CX-1 and verified that SMUG1 was the only glycosylase having detectable activity on this substrate (Figure 4C). In accordance with this, SW480 SMUG1-knock down cells were more tolerant to
5-hm(dU) than control cells, while UNG and TDG knock downs had no effect on relative cytotoxicity after exposure to 5-hm(dU) (Fig. 5). These results demonstrate that BER can in principle enhance cytotoxicity of pyrimidine antimetabolites incorporated into DNA. HeLa tolerated very high doses of 5-hm(dU), but the SMUG1 knock-down effect was still detected at high concentrations also in this cell line.

To differentiate between the different proposed cytotoxic mechanisms of 5-FU, we also exposed the knock-down cells to varying concentrations of 5-F(dU) and 5-F(rU) to predominantly induce DNA- and RNA-mediated cytotoxicity, respectively (Fig. 1). However, we were not able to observe any significant change in sensitivity to 5-FU, 5-F(dU) or 5-F(rU) in UNG, SMUG1 or TDG knock down cells (Fig. 5).

Furthermore, while 5-hm(dU)-exposed cells were shifted from G1/S arrest towards G2/M arrest in SMUG1 knock-down cells, the cell cycle profiles after 5-FU and 5-F(dU) treatment were unaffected by knock-down of the glycosylases (Fig. 6A). The G1/S cell cycle arrest induced by both 5-FU, 5-F(dU), and 5-F(rU) was completely reversed by thymidine, both in SW480 and HeLa cells (Fig. 6B), indicating that the G1/S cell cycle arrest is due to thymidine starvation (presumably induced via TS inhibition). Importantly, both 5-FU- and 5-F(dU)-treated cells contained measurable quantities of 5-FU in DNA. However, 5-FU was more abundant in RNA compared to DNA, both after 5-FU treatment (~2000-3000-fold) and surprisingly also after 5-F(dU) treatment (~6 fold) (Table 1).

5-FU, 5-F(dU) and 5-F(rU) inhibit TS with similar efficiency in HeLa and SW480 cells

To further elucidate how the different fluoropyrimidines mediates cytotoxicity, we measured the activity of TS in HeLa and SW480 in the presence of varying concentrations of 5-FU, 5-
F(dU) and 5-F(rU) (Fig. 7). 5-F(dU) was by far the most potent inhibitor, inhibiting 50% of the TS activity (IC\textsubscript{50}) at 2.0 and 2.7 nM for HeLa and SW480, respectively. The IC\textsubscript{50}-values for 5-F(rU) were 0.45 and 0.63 µM for HeLa and SW480, respectively, while the corresponding values for 5-FU were 98 and 32 µM. Thus, as 5-FU, 5-F(dU) and 5-F(rU) inhibit TS with a rather similar efficiency in HeLa cells and SW480 cells, it seems that TS inhibition is insufficient to explain the large variations in cytotoxicity observed in Fig. 5.

Inhibition of PARP-1 and AP-site processing does not affect 5-F(dU) cytotoxicity

Lack of detectable effects on fluoropyrimidine cytotoxicity after knock-down of the individual 5-FU-DNA glycosylases may be due to redundancy, in which the different DNA glycosylases may substitute for each other in the repair process. Thus, to further explore whether BER mediates 5-F(dU) cytotoxicity we employed inhibitors that target the common steps of BER. Methoxyamine (MX) reacts with and inhibits processing of AP-sites by APE1 (34) and 4-AN is a potent inhibitor of PARP-1 polyribosylation (35). These inhibitors have previously been shown to affect cytotoxicity mediated by BER (36,37). The effect of MX on AP-site cleavage was tested *in vitro* by hAPE1 activity measurements. We employed an AP-site-containing duplex oligonucleotide pre-treated for 20 min with pH adjusted MX (~1:1 molarity of MX-HCl and NaOH to pH 7), and used corresponding NaCl concentrations as controls. MX treatment of AP-sites clearly inhibited cleavage by APE1 in a concentration dependent manner (Fig. 8A). From the results in Fig. 8A we decided to use 20 mM MX in the following cell culture experiments. To verify the effect of 4-AN on BER *in vitro*, we utilized a BER incorporation assay with HmU opposite G in the cccDNA substrate. More than 50 % inhibition of BER was achieved in presence of 10 µM 4-AN (Fig. 8B).
We further tested MX and 4-AN \textit{in vivo} by concurrent 5-hm(dU) and 5-F(dU) exposure of SW480 and HeLa cells. The cytotoxicity of MX and 4-AN treatment in itself had an approximately 10–20 % growth inhibitory effect on the cells, for which the data were normalized. The presence of 20 mM MX clearly enhanced the cytotoxicity of 5-hm(dU) in both SW480 and HeLa cells (Fig. 8C). Similarly, treatment with 10 µM 4-AN resulted in an enhanced 5-hm(dU) cytotoxicity at low concentrations. The effect of 4-AN was most pronounced in HeLa cells. At higher concentrations of 5-hm(dU), 4-AN had a protective, rather than aggravating effect on cytotoxicity. Importantly, however, both MX and 4-AN failed to affect the cytotoxicity of 5-F(dU)-treated cells in any discernible way (Fig. 8D). These results indicate that BER mediates the cytotoxicity of 5-hm(dU) cytotoxicity, but not that of 5-F(dU).

\textbf{Cytotoxicity of 5-FU, 5-F(dU) and 5-F(rU) is differentially reversed by dT, dU and rU, indicating quantitatively different mechanisms of action}

Since BER did not affect fluoropyrimidine sensitivity significantly, we wanted to explore the mechanisms further by attempting to reverse cytotoxicity by ribonucleosides (rU) and deoxynucleosides (dT, dU). For these reversal experiments, we exposed HeLa- and SW480 cells to fixed concentrations of 5-F(dU), 5-F(rU) and 5-FU and varying concentrations of thymidine (dT), deoxyuridine (dU), and uridine (rU) for four days. The cytotoxic effect of 5-F(dU) was partially reversed by thymidine (dT), and to a lesser extent deoxyuridine (dU), but not uridine (rU). The effects were, however, significantly different in the two cell lines (Fig. 9A). The cytotoxicity of 5-F(rU) was reversed by rU in both cell lines, but not by dU or dT (Fig. 9B). However, 5-FU toxicity was only marginally reversed by rU, and not by dU or dT (Fig. 9C). This was somewhat unexpected since dT reversed the G1/S cell cycle arrest of cells treated with either 5-FU, 5-F(dU) or 5-F(rU) (Fig. 5B). Consistent with the above results,
addition of rU strongly reduced the content of 5-FU in RNA for cells exposed to 5-F(rU), but not after exposure to 5-FU (Table 2). Since ribonucleosides may be converted to deoxyribonucleotides, we also examined the possible effect of rU on 5-F(rU)-mediated TS inhibition. Here, rU had two apparent effects. First, addition of rU alone resulted in a small to moderate decrease in apparent TS activity, which might be explained by pool effects. Secondly, and more importantly, rU alleviated TS-inhibition by 5-F(rU) at much lower concentrations than those required to reverse cytotoxicity in both cell lines (Fig. 9D). Therefore, it appears that 5-F(rU) more likely mediates cytotoxicity through interfering with RNA-functions than by inhibiting TS, in agreement with in inability of dT to reverse 5-F(rU) cytotoxicity (Fig. 9B).

In summary, cytotoxicity of 5’-subsituted pyrimidines from BER processes is a plausible mechanism, as demonstrated here in the case of 5-hm(dU). However, our results also strongly indicate that BER is not a major contributor to cytotoxicity of 5’-fluoropyrimidines in human cancer cells (HeLa and SW480), and a possible role of MMR would most likely be limited to a 5-FU:G context. Cytotoxicity of these agents appears to be mainly be attributed to TS-inhibition and dTTP-deficiency for 5-F(dU) and incorporation into RNA for 5-F(rU) and 5-FU, rather than a consequence of excessive DNA repair.
DISCUSSION

5-FU has been in clinical use for half a century and although several cytotoxic mechanisms have been proposed for the drug, their relative significance in killing cancer cells is not well understood. Several papers report that cells deficient in BER or MMR are more resistant to 5-FU or 5-F(dU) than the wild type. However, the relative quantitative contributions of these repair pathways have not been investigated. In this paper we report that BER, rather than MMR, was the sole repair activity of 5-FU in a 5-FU:A context in vitro, and also the dominant activity on nicked 5-FU:G substrate in nuclear extracts from human cancer cell lines (Fig. 2D&E). This may appear to be in contrast to a previous study, which found that MMR-proficient extracts incorporated more radio-labelled deoxynucleotides into nicked 5-FU:A substrates than MMR-deficient (12). However, it does not necessarily follow from this that MMR is involved in 5-FU:A repair, especially as an undamaged control substrate was not included in the study. MMR did, however, repair 5-FU:G, although MMR, at least in vitro, proceeded at a far lower rate than BER, which repaired ~70% of the substrate after only 15 min. It should be kept in mind that the presence of a nick in DNA is crucial for strand-discrimination, and hence for the activity of MMR. Since multiple ligases may seal the nick directly, the amount of substrate available for MMR may decline rapidly during incubation. Consequently, the relative contribution from MMR may be underestimated using this assay. In addition, it should be underlined that we have not examined the contribution of MMR to 5-FU:G repair in intact cells. While several studies have demonstrated that MMR-deficient cells are more tolerant to fluoropyrimidines than MMR-proficient, the identity of the DNA lesion that provokes MMR is not known. Our results and the inability of MMR proteins to recognise 5-FU:A in gel shift assays (12,15), indicate that MMR may act on mismatches involving 5-FU:G or alternatively mismatches introduced by DNA polymerases due to dNTP pool imbalances during TS inhibition. It is important to note that even if we only observe a
relatively modest contribution from MMR to repair of 5-FU in vitro, this does not exclude that MMR mediates cytotoxicity of 5-FU in vivo or in the clinic. Some 10-15% of colon cancers are MMR-deficient due to inactivating mutations or epigenetic silencing (38). Clinically, these patients generally respond well to 5-FU treatment (39,40), although resistance to 5-FU has been reported in cancer cell lines deficient in the MMR damage recognition proteins MSH2 (16) and MLH1 (20,41). Thus, while we observe a quantitative modest role of MMR in vitro, our results do not exclude a significant involvement of MMR in the 5-FU response in vivo.

Our results clearly demonstrate that UNG2 is the dominant glycosylase activity initiating 5-FU:A repair, at least in vitro. Given that UNG2 is downregulated in G1 (and vice versa for TDG) (42,43), 5-FU:A that escapes repair in S-phase may not be efficiently processed in G1. As a consequence, aberrant bases may well be present in the template strand during the subsequent S-phase. 5-FU:G, on the other hand, may be repaired by UNG2 or SMUG1 in S-phase and TDG or SMUG1 in G1, alternatively by MMR. We were not able to measure any contribution from MBD4. Our in vitro experiments with 5-hm(dU) demonstrate that the DNA fragmentation-hypothesis involving excision repair is a feasible idea. Furthermore, given our in vitro results, and that 5-FU is mainly incorporated opposite A, fragmentation of DNA by excessive glycosylase activity would be a more likely candidate than MMR. We therefore tested this hypothesis using intact human cancer cell lines, in which the different DNA glycosylases had been knocked down using siRNA, using 5-hm(dU) as a positive control for BER-mediated cytotoxicity. Knock-down of SMUG1 in cells exposed to 5-hm(dU) lead to a shift from G1/S to G2/M arrest and also reduced cytotoxicity. Furthermore, the cytotoxicity was modulated by BER inhibitors and reversed by the addition of thymidine to the medium. While this is consistent with a cytotoxic mechanism involving BER, the 5-hm(dU) results
were in stark contrast to those obtained with fluoropyrimidines. Here, the knock-down of individual glycosylases did not affect cytotoxicity or cell cycle arrest, and the addition of BER inhibitors had no apparent effect on cytotoxicity. Collectively, these experiments indicate that BER processes are neither substantially enhancing cytotoxicity due to DNA fragmentation, nor reducing cytotoxicity due to removal of 5-FU from DNA. Taken together, our results indicate that incorporation of a 5'-substituted thymine-analogue followed by excessive excision by a DNA glycosylase most likely explains the cytotoxicity of 5-hm(dU), but not that of fluoropyrimidines. The nucleoside reversal experiments suggest that TS-inhibition and RNA-incorporation are the most likely the dominant modes of cytotoxicity for fluoropyrimidines (Fig. 9).

These results may appear to be in conflict with results from MEFs demonstrating that resistance to 5-FU depends upon SMUG1, since SMUG1 knock-down increased sensitivity (11). However, our studies indicate that the divergent results may be explained by species differences, since we find that SMUG1 has a much more prominent role in removal of 5-FU in mouse cells, compared with human cells (Fig. 3A). Another apparent species and/or cell type difference was the observed ~3000:1 preferential incorporation of 5-FU into RNA in stead of DNA in HeLa (Table 1), compared to ~11:1 reported for wild type MEFs (11). Furthermore, Tdg−/− mouse embryonic stem cells and fibroblasts have an increased tolerance to 5-FU, while knock-down of endogenous levels of TDG in HeLa has a much smaller effect (19). Similarly, MEFs carrying gene-targeted disruptions in the gene encoding DNA polymerase β are more resistant to 5-FU compared to wild type (18), while knock-down of the human orthologue in two human cancer cell lines did not alter the sensitivity to 5-FU (22). It is likely that DNA repair may well mediate fluoropyrimidine cytotoxicity in MEFs, but these results may not be easily extended to human cancer cell lines. In contrast, silencing of UNG in
a human cervix cancer cell line (HeLa) was reported to increase resistance to 5-F(dU) treatment (17). Apart from technical differences in cell culture, incubation times and assay strategies, we find it hard to reconcile this result with ours. Nevertheless, the inclusion of a positive control in the form of 5-hm(dU) in our study lends strength to the argument that the contribution of BER-mediated cytotoxicity is rather modest in human cancer cells. The fact that the prodrug 5-FU is converted to several metabolites that may affect DNA and RNA transactions is most likely the basic reason for the apparently diverse mechanisms of action of the drug. There is little doubt that several of the proposed mechanisms may play a role under different conditions, but the problem is rather to identify the practical significance of each of them for therapy. Thus, the cytotoxic mechanism of 5-FU may vary between species, cell types and even individuals. It is certainly also different for various 5-fluoropyrimidines, as clearly demonstrated here. Consequently, the research literature is filled with conflicting reports, and the quantitative contribution of different RNA and DNA-related mechanisms of cytotoxicity remains elusive.

In summary, our results and other recent results allow the conclusion that the main mechanisms that mediate 5-FU cytotoxicity in human cells are TS-inhibition and RNA incorporation rather than BER of 5-FU. Our results do not exclude a role of MMR in toxicity of 5-FU, particularly since we have only carried out *in vitro* studies. Repair patches in MMR are long, frequently several thousand nucleotides, and may therefore be more sensitive to dNTP pool imbalances decreasing repair efficiency and increasing risks of polymerase errors introducing mismatches. The importance of TS-inhibition is further corroborated by the clinical success of combining 5-FU with leucovorin that stabilizes the TS:5-FdUMP complex (44). 5-FU, 5-F(dU) and 5-F(rU) inhibited TS with similar efficiencies in HeLa and SW480 (Fig. 7), but the these cell lines displayed very different sensitivities, especially to 5-F(dU),
(Fig. 5), indicating that additional factors modulate the cytotoxicity mediated by TS-inhibition. Interestingly, in a comprehensive drug activity gene expression study, 5-FU clustered with RNA synthesis inhibitors, suggesting that a major mechanism of action is RNA-directed (45). Finally, microarray profiling of 5-FU resistant cell lines tend not to find BER genes to be differentially regulated, as one might expect if BER were an important mediator of cytotoxicity (46-51).
ACKNOWLEDGEMENTS

We would like to express our gratitude to Professor Primo Schär (Basel, Switzerland), who provided TDG expression constructs and anti-sera against TDG, Olena Dyka (Trondheim, Norway) for the purification of recombinant human TDG and Nina Beate Liabakk (Trondheim, Norway) for FACS analysis.

FUNDING

This work was sponsored by the National Programme for Research in Functional Genomics in Norway (FUGE) in the Research Council of Norway; the Norwegian Cancer Association; the Cancer Fund at St. Olav’s Hospital Trondheim; the Svanhild and Arne Must Fund for Medical Research.
REFERENCES

characterizations of derivatives of HCT116 colorectal cancer cells that are resistant to the chemotherapeutic agent 5-fluorouracil. *Int J Oncol*, 24, 1279-1288.

FIGURE LEGENDS

Figure 1. Metabolism of 5-FU and mechanisms of cytotoxicity.

5-FU cytotoxicity is thought to be conveyed by four active metabolites (underlined in the figure); 5-FUTP (RNA incorporation), 5-FdUMP (TS-inhibition), 5-FdUTP and dUTP (DNA incorporation). The nucleotide metabolizing pathways which effectuate 5-FU cytotoxicity are indicated by full drawn arrows. Possible routes to 5-FU deactivation are indicated by dotted arrows. dUMP/dUTP (2'-deoxyuridine mono-/triphosphate), 5-F(dU) (5-fluoro-2'-deoxyuridine), 5-FU (5-fluorouracil), 5-F(rU) (5-fluorouridine), BER (base excision repair), dUTPase (deoxyuridinetriphosphatase), DHFU (dihydrofluorouracil), DHF (dihydrofolate), DPD (dihydropyrimidine dehydrogenase), MMR (mismatch repair), OPRT (orotic acid phosphoribosyl transferase), RR (ribonucleotide reductase), THF (tetrahydrofolate), TK (thymidine kinase), TP (thymidine phosphorylase), TS (thymidylate synthase), UK (uridine kinase), UP (uridine phosphorylase), 5-FUTP (5-fluorouridine triphosphate), 5-FdUMP and 5-FdUTP (5-fluoro-2'-deoxyuridine mono- and triphosphate).

Figure 2. Repair of 5-FU-DNA by BER and MMR in nuclear extracts.

A. Cartoon showing the cccDNA substrate designed to measure 5-FU:A and 5-FU:G repair by both BER and MMR. 5-FU is positioned in the HincII recognition sequence. Only the lesion containing strand is shown. The nicking endonuclease Nt.BbvCI cleaves one strand 298 bp 3' to the lesion, thus providing a strand-discrimination signal for MMR. B. Agarose gel showing HincII+XmnI treated cccDNA substrates containing either 5-FU:A, T:A, 5-FU:G or C:G in the HincII recognition site. Distinction between substrates (5-FU:A, 5-FU:G) and products (T:A, C:G) are performed by 5-FU excision by UNG generating AP-sites that are not cleaved.
by HincII. C. Positive controls for MMR and BER and their inhibition. cccDNA substrate (T:G, T:G-nicked, U:A) were incubated with SW480 nuclear extract (40 µg) for 60 min, followed by treatment with recombinant TDG (T:G) or UNG (U:A) and MX before purification and HincII + XmnI digestion. Ugi was added to the U:A reactions when indicated. D. 5-FU:A repair by SW480 and HeLa nuclear extracts. Nuclear extracts (40 µg) were incubated with cccDNA (5-FU:A, 5-FU:A-nicked) substrates and incubated for 15, 30, 45 and 60 min. Ugi and anti-SMUG1 antibodies were added to the reactions when indicated. E. 5-FU:G repair by SW480 and HeLa nuclear extracts. Nuclear extracts and TDG depleted nuclear extracts were incubated with cccDNA (5-FU:G, 5-FU:G nicked) substrates for 15, 30, 45, and 60 min. Ugi and anti-SMUG1 antibodies were added to the reactions when indicated.

BER + MMR is quantified from the reactions with cccDNA 5-FU:G nicked substrate, BER is quantified from the panel with cccDNA 5-FU:G substrate, MMR is quantified from the reactions with cccDNA 5-FU:G nicked substrate and TDG-depleted nuclear extract with Ugi and neutralizing SMUG1 antibody. The background (no repair) is quantified from the panel with cccDNA 5-FU:G-nicked substrate and TDG-depleted nuclear extract with Ugi and neutralizing SMUG1 antibody.

Figure 3. 5-FU and 5-hmU excision by human uracil-DNA glycosylases.
A. 5-FU excision by uracil-DNA glycosylases in nuclear extracts from human cancer cell lines (SW480, HeLa, CX1) and MEFs. Nuclear extracts (5 µg) were pre-incubated with Ugi, neutralizing SMUG1 (αSMUG1), and neutralizing TDG (αTDG) antibodies as indicated and assayed with oligonucleotide substrates containing 5-FU:A, 5-FU:G, or in a single-stranded context (5-FU). Excision of 5-FU allows piperidine cleavage of the 22-mer oligonucleotide substrate, resulting in a 13-mer product fragment. U, S and T indicate the individual activities of UNG2, SMUG1 and TDG, respectively. B. UDG activity in nuclear extracts nuclear
extracts from human cancer cell lines (SW480, HeLa, CX1) and MEFs. UDG activity was measured by the release of $[^3]$H]uracil from labelled calf thymus DNA (U:A substrate). C. Varying amounts (0-1000 fmol) of purified recombinant hUNG2, hSMUG1 and hTDG assayed with oligonucleotide substrates containing 5-FU in different contexts (5-FU:A, 5-FU:G, 5-FU). D. BER incorporation assay using a cccDNA substrate containing 5-FU opposite A (5-FU:A) or G (5-FU:G). Nuclear extracts (10 µg) from SW480 and HeLa were pre-incubated with Ugi, neutralizing SMUG1 (αSMUG1), and neutralizing TDG (αTDG) antibodies as indicated, and BER were detected by measuring incorporation of radio-labelled nucleotides.

Figure 4. Verification of siRNA down regulation of UNG, SMUG1 and TDG in SW480 and HeLa cell lines.

A. Measurement of siRNA down regulation by specific enzyme activity assays. Whole cell extracts of SW480 and HeLa UNG, SMUG1 and TDG knock-downs (48 h post-transfection) were assayed for UNG, SMUG1 and TDG activity, respectively and compared to control cells. UNG activity was measured by the release of $[^3]$H]uracil from labelled calf thymus DNA (U:A substrate). SMUG1 activity in the extract (10 µg) was measured with a uracil containing oligonucleotide annealed to a complementary strand containing G opposite U (U:G substrate) in the presence of Ugi and neutralizing TDG antibodies (37°C, 1 hour). TDG activity was measured in 10 µg extract on the same substrate, but in the presence of Ugi and neutralizing SMUG1 antibodies, and the samples were incubated at 37°C for 20 hours. B. Efficiency of siRNA down regulation verified by Western analysis. Western analysis of UNG, SMUG and TDG knock-down compared to control. Total extracts were prepared 48 hour post transfection. β-actin was included as loading control. C. hmU-excision activity of SW480, HeLa, and CX-1 nuclear extracts. Extracts (5 µg) were incubated with an oligonucleotide
containing a centrally positioned 5-hmU opposite A (5-hmU:A), opposite G (5-hmU:G) or in a single-stranded context (5-hmU) in presence or absence of neutralizing SMUG1 antibodies.

Figure 5. Relative cytotoxicity of UNG, SMUG1, and TDG knock-down cells after continuous treatment with 5-hm(dU), 5-FU, 5-F(dU), and 5-F(rU). HeLa and SW480 transfected with SMUG1↓ (green), UNG↓ (blue), TDG↓ (red) and control siRNA (black) were treated for four days with varying concentrations of 5-hm(dU), 5-FU, 5-F(dU), or 5-F(rU). Cytotoxicity was measured by the MTT assay. The curves represent relative cytotoxicity compared to untreated cells. The data points represent the mean ± SD of at least two parallel experiments.

Figure 6. FACS analysis of cell cycle distribution.

A. FACS analysis (cell cycle profiles) of SW480 control and knock-down cells (UNG↓, SMUG1↓, TDG↓) after treatment with 100µM 5-hm(dU), 25 µM 5-FU, and 25µM 5-F(dU) for 48 hours. **B.** FACS analysis (cell cycle profiles) of SW480 and HeLa cells treated with 5-hm(dU), 5-FU, 5-F(dU) and 5-F(rU) for 48 hours in the absence or presence of 100 µM dT. PI (Propidium Iodide).

Figure 7. Inhibition of thymidylate synthase by 5-F(dU), 5-F(rU) and 5-FU.

HeLa and SW480 was treated with varying concentrations of fluoropyrimidines. Thymidylate synthase activity was measured by counting [³H]H₂O released into the growth medium, and is plotted relative to the activity of untreated samples. The values represent the mean ± SD of at least three parallel experiments.
Figure 8. Effect of BER inhibitors on 5-hm(dU) and 5-F(dU) treated cells.

A. APE1 cleavage of MX-modified AP-sites. A double-stranded oligonucleotide containing an AP-site was pre-treated for 20 min with various concentrations of MX, and then incubated with purified hAPE1. The upper bands observed after denaturing PAGE represent uncleaved 19-mer substrate, whereas the lower bands represent the APE1 cleaved products. B. BER of 5-hmU:G in the presence of increasing concentrations of the PARP-1 inhibitor 4-AN. Nuclear extract from the SW480 cell line was pre-incubated with various concentration of 4-AN and assayed with the BER incorporation assay using cccDNA plasmid with a single HmU opposite G. BER was measured by monitoring the incorporation of $[\alpha^{33}\text{P}]d\text{CTP}$ at the position of hmU. C. Effect of BER inhibitors on the cytotoxicity of 5-hm(dU). HeLa and SW480 cells were treated for four days with varying concentrations of 5-hm(dU) in the presence of either 20 mM MX, 10 μM 4-AN or normal medium (control). The data represent the mean ± SD of at least two parallel experiments. D. Effect of BER inhibitors on the cytotoxicity of 5-F(dU). HeLa and SW480 cells were treated for four days with varying concentrations of 5-F(dU) in the presence of either 20 mM MX, 10 μM 4-AN or normal medium (control). The data represent the mean ± SD of at least two parallel experiments.

Figure 9. Cytotoxicity reversal experiments.

A. Relative cytotoxicity of SW480 and HeLa cells treated for four days with fixed doses of 5-F(dU) and varying concentrations of dT, dU, and rU. B. Relative cytotoxicity of SW480 and HeLa treated with fixed doses of 5-F(rU) and varying amounts of nucleosides. C. Relative cytotoxicity of SW480 and HeLa treated with fixed doses of 5-FU and varying amounts of nucleosides. The data represent the mean ± SD of at least three parallel measurements. D. Thymidylate synthase activity in HeLa and SW480 cells treated with varying amounts of rU
in the absence or presence of 2.5 µM 5-F(rU). The data represent the mean ± SD of three parallel measurements.

Supplementary figure 1: LC/MS/MS chromatograms showing 5-F(dU) in DNA and 5-F(rU) in RNA hydrolysates from 5-FU- or 5-F(dU)-treated HeLa cells. 5-FU:A cccDNA was employed as a positive control for 5-FU in DNA. For each mass transition the signal intensities are normalized according to the most abundant peak in the present samples. The arrows indicate the expected elution positions of the respective nucleosides.
Table 1: Incorporation of 5-FU in DNA and RNA from HeLa cells exposed to different concentrations of 5-FU or 5-F(dU) for 24 hours.

<table>
<thead>
<tr>
<th>Conc. (µM)</th>
<th>DNA (5-F(dU)/10⁶ nt)</th>
<th>RNA (5-F(rU)/10⁶ nt)</th>
<th>Ratio 5-FU (RNA/DNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-FU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.4 ±1.0</td>
<td>5419 ±90</td>
<td>2260</td>
</tr>
<tr>
<td>20</td>
<td>2.4 ±0.22</td>
<td>8262 ±420</td>
<td>3451</td>
</tr>
<tr>
<td>40</td>
<td>5.1 ±0.11</td>
<td>15046 ±1083</td>
<td>2967</td>
</tr>
<tr>
<td>5-F(dU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>27.5 ±5.6</td>
<td>169 ±8.8</td>
<td>6.2</td>
</tr>
<tr>
<td>2</td>
<td>46.0 ±3.6</td>
<td>303 ±0.7</td>
<td>6.2</td>
</tr>
<tr>
<td>4</td>
<td>72.0 ±3.4</td>
<td>457 ±51</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Table 2: Incorporation of 5-FU in RNA from HeLa cells exposed to 5-FU or 5-F(rU) combined with increasing concentration of uridine

<table>
<thead>
<tr>
<th>Uridine (µM)</th>
<th>5-FU in RNA (5-F(rU)/10⁶ nt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5-FU (10 µM)</td>
</tr>
<tr>
<td>0</td>
<td>3501 ±119</td>
</tr>
<tr>
<td>10</td>
<td>4339 ±263</td>
</tr>
<tr>
<td>100</td>
<td>3651 ±110</td>
</tr>
<tr>
<td>1000</td>
<td>3417 ±22</td>
</tr>
</tbody>
</table>
Figure 1

The diagram illustrates the metabolic pathway involving fluoropyrimidines and their role in DNA synthesis and repair. Key enzymes and intermediates include DPD, UP, TP, OPRT, TK, RR, dUTPase, THF, DHF, S, dUMP, dUTP, dTMP, dTTP, MMR, and BER. The pathway shows how fluoropyrimidines are metabolized and their implications in DNA integrity and repair processes.
Figure 2

A. Diagram of cccDNA substrate (3198 bp) with restriction sites (HincII, XmnI) and nicked point (Nt.BbvC).

B. Gel electrophoresis showing cccDNA (HincII + XmnI) with bands for 3198 Substrate, 1897 Product, 1301 Product.

C. Gel electrophoresis showing cccDNA (HincII + XmnI) with bands for 3198 Substrate, 1897 Product, 1301 Product.

D. Time-lapse gel electrophoresis for SW480 and HeLa cells with 5-FU:A and 5-FU:A nicked samples.

E. Time-lapse gel electrophoresis for SW480 and HeLa cells with 5-FU:G and 5-FU:G nicked samples.

Graphs showing 5-FU:G repair (%) over time for SW480 and HeLa cells with different mutation repair pathways.
Figure 3

A

<table>
<thead>
<tr>
<th></th>
<th>SW480</th>
<th>HeLa</th>
<th>CX-1</th>
<th>MEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extract</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ugi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αSMUG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αTDG</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5-FU:G</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5-FU:A</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5-FU</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>SW480</th>
<th>HeLa</th>
<th>CX-1</th>
<th>MEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme (fmol)</td>
<td>0</td>
<td>10</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>UNG2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SMUG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>TDG</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>SW480</th>
<th>HeLa</th>
<th>CX-1</th>
<th>MEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme (fmol)</td>
<td>0</td>
<td>10</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>5-FU:G</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5-FU:A</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5-FU</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th></th>
<th>SW480</th>
<th>HeLa</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-FU:G-cccDNA</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5-FU:A-cccDNA</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SW480</th>
<th>HeLa</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-FU:G</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5-FU:A</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SW480</th>
<th>HeLa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ugi</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αSMUG1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αTDG</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SW480</th>
<th>HeLa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ugi</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αSMUG1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>αTDG</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Figure 4

A

SW40 HeLa

UNG activity (%) UNG activity (%)

SMUG1 activity (%) SMUG1 activity (%)

TDG activity (%) TDG activity (%)

B

SW40 HeLa

UNG UNG

β-actin Cont. UNG Cont.

UNG2 UNG1 SMUG1 SMUG1

β-actin Cont. β-actin Cont.

SMUG1 Cont. SMUG1 Cont.

TDG Cont. TDG Cont.

C

<table>
<thead>
<tr>
<th>SW40</th>
<th>HeLa</th>
<th>CX-1</th>
<th>αSMUG1</th>
<th>5-hmU:A</th>
<th>5-hmU:G</th>
<th>5-hmU</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

kDa

32 38 40 55
Figure 6

A

<table>
<thead>
<tr>
<th>siRNA</th>
<th>Control</th>
<th>UNG↓</th>
<th>SMUG1↓</th>
<th>TDG↓</th>
</tr>
</thead>
</table>

Counts (10^3)

DNA content (PIx10^4)

5-FU (20 µM)

5-F(dU) (20 µM)

5-F(rU) (8 µM)

5-hm(dU) (100 µM)

5-FU (25 µM)

5-F(dU) (25 µM)

B

SW480

HeLa

Counts (10^3)

DNA content (PIx10^4)

+ dT (100 µM)

5-FU (20 µM)

5-F(dU) (20 µM)

5-F(rU) (8 µM)

5-hm(dU) (100 µM)

5-FU (25 µM)

5-F(dU) (1 µM)

5-F(rU) (0.5 µM)
Figure 7

Fluoropyrimidine (µM)

TS activity

0.00 0.01 0.1 1 10 100

HeLa 5-FU
HeLa 5-F(dU)
HeLa 5-F(rU)
SW480 5-FU
SW480 5-F(dU)
SW480 5-F(rU)
Figure 8

A

B

C

D

SW480

HeLa

Relative survival

Relative survival

Relative survival

Relative survival

5-hm(dU) (µM)

5-hm(rU) (µM)

5-F(dU) (µM)

5-F(dU) (µM)
Supplementary figure 1

5-FU treatment

<table>
<thead>
<tr>
<th>No treatment</th>
<th>5-FU 10 μM</th>
<th>5-FU 20 μM</th>
<th>5-FU 40 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-F(dU) in DNA (m/z 245.2→129.1)</td>
<td>5-F(rU) in RNA (m/z 261.2→129.1)</td>
<td>5-F(dU) in DNA (m/z 245.2→129.1)</td>
<td>5-F(rU) in RNA (m/z 261.2→129.1)</td>
</tr>
</tbody>
</table>

5-F(dU) treatment

<table>
<thead>
<tr>
<th>No treatment</th>
<th>5-F(dU) 1 μM</th>
<th>5-F(dU) 2 μM</th>
<th>5-F(dU) 4 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-F(dU) in DNA (m/z 245.2→129.1)</td>
<td>5-F(rU) in RNA (m/z 261.2→129.1)</td>
<td>5-F(dU) in DNA (m/z 245.2→129.1)</td>
<td>5-F(rU) in RNA (m/z 261.2→129.1)</td>
</tr>
</tbody>
</table>

Nucleoside standard

5-F(dU)

Positive control (5-FU plasmid)

5-F(dU)
Dissertations at the Faculty of Medicine, NTNU

1977
1. Knut Joachim Berg: EFFECT OF ACETYLSALICYLIC ACID ON RENAL FUNCTION
2. Karl Erik Viken and Arne Ødegaard: STUDIES ON HUMAN MONOCYTES CULTURED IN VITRO

1978
3. Karel Bjørn Cyvin: CONGENITAL DISLOCATION OF THE HIP JOINT.
4. Alf O. Brubakk: METHODS FOR STUDYING FLOW DYNAMICS IN THE LEFT VENTRICLE AND THE AORTA IN MAN.

1979
5. Geirmund Unsgaard: CYTOSTATIC AND IMMUNOREGULATORY ABILITIES OF HUMAN BLOOD MONOCYTES CULTURED IN VITRO

1980
6. Størker Jørstad: URAEMIC TOXINS
7. Arne Olav Jenssen: SOME RHEOLOGICAL, CHEMICAL AND STRUCTURAL PROPERTIES OF MUCOID SPUMT FROM PATIENTS WITH CHRONIC OBSTRUCTIVE BRONCHITIS

1981
8. Jens Hammerstrøm: CYTOSTATIC AND CYTOLYTIC ACTIVITY OF HUMAN MONOCYTES AND EFFUSION MACROPHAGES AGAINST TUMOR CELLS IN VITRO

1983
9. Tore Syversen: EFFECTS OF METHYLMERCUY ON RAT BRAIN PROTEIN.
10. Torbjørn Iversen: SQUAMOUS CELL CARCINOMA OF THE VULVA.

1984
11. Tor-Erik Widerøe: ASPECTS OF CONTINUOUS AMBULATORY PERITONEAL DIALYSIS.
12. Anton Hole: ALTERATIONS OF MONOCYTE AND LYMPHOCYTE FUNCTIONS IN REALTION TO SURGERY UNDER EPIDURAL OR GENERAL ANAESTHESIA.
13. Terje Terjesen: FRACTURE HEALING AND STRESS-PROTECTION AFTER METAL PLATE FIXATION AND EXTERNAL FIXATION.
14. Carsten Saunte: CLUSTER HEADACHE SYNDROME.
15. Inggrid Lereim: TRAFFIC ACCIDENTS AND THEIR CONSEQUENCES.
16. Bjørn Magne Eggen: STUDIES IN CYTOTOXICITY IN HUMAN ADHERENT MONONUCLEAR BLOOD CELLS.
17. Trond Haug: FACTORS REGULATING BEHAVIORAL EFFECTS OG DRUGS.

1985
18. Sven Erik Gisvold: RESUSCITATION AFTER COMPLETE GLOBAL BRAIN ISCHEMIA.
19. Terje Espevik: THE CYTOSKELETON OF HUMAN MONOCYTES.
20. Lars Bevanger: STUDIES OF THE 1bc (c) PROTEIN ANTIGENS OF GROUP B STREPTOCOCCI.
21. Ole-Jan Iversen: RETROVIRUS-LIKE PARTICLES IN THE PATHOGENESIS OF PSORIASIS.
22. Lasse Eriksen: EVALUATION AND TREATMENT OF ALCOHOL DEPENDENT BEHAVIOUR.
23. Per I. Lundmo: ANDROGEN METABOLISM IN THE PROSTATE.

1986
24. Dagfinn Berntzen: ANALYSIS AND MANAGEMENT OF EXPERIMENTAL AND CLINICAL PAIN.
25. Odd Arnold Kildahl-Andersen: PRODUCTION AND CHARACTERIZATION OF MONOCYTE-DERIVED CYTOTOXIN AND ITS ROLE IN MONOCYTE-MEDIATED CYTOTOXICITY.
26. Ola Dale: VOLATILE ANAESTHETICS.

1987
27. Per Martin Kleveland: STUDIES ON GASTRIN.
29. Vilhjalmur R. Finsen: HIP FRACTURES
30. Rigmor Austgulen: TUMOR NECROSIS FACTOR: A MONOCYTE-DERIVED REGULATOR OF CELLULAR GROWTH.
31. Tom-Harald Edna: HEAD INJURIES ADMITTED TO HOSPITAL.
33. Olav F. M. Sellevold: GLUCOCORTICOIDS IN MYOCARDIAL PROTECTION.
34. Terje Skjærpe: NONINVASIVE QUANTITATION OF GLOBAL PARAMETERS ON LEFT VENTRICULAR FUNCTION: THE SYSTOLIC PULMONARY ARTERY PRESSURE AND CARDIAC OUTPUT.
35. Eyvind Rodahl: STUDIES OF IMMUNE COMPLEXES AND RETROVIRUS-LIKE ANTIGENS IN PATIENTS WITH ANKYLOSING SPONDYLITIS.
36. Ketil Thorstensen: STUDIES ON THE MECHANISMS OF CELLULAR UPTAKE OF IRON FROM TRANSFERRIN.
37. Anna Midelfart: STUDIES OF THE MECHANISMS OF ION AND FLUID TRANSPORT IN THE BOVINE CORNEA.
38. Eirik Helseth: GROWTH AND PLASMINOGEN ACTIVATOR ACTIVITY OF HUMAN GLIOMAS AND BRAIN METASTASES - WITH SPECIAL REFERENCE TO TRANSFORMING GROWTH FACTOR BETA AND THE EPIDERMAL GROWTH FACTOR RECEPTOR.
40. Kjell-Arne Reins: THE EFFECT OF EXTRACORPOREAL CIRCULATION ON SUBCUTANEOUS TRANSCAPILLARY FLUID BALANCE.
41. Arne Kristian Sandvik: RAT GASTRIC HISTAMINE.
42. Carl Bredo Dahl: ANIMAL MODELS IN PSYCHIATRY.
43. Torbjørn A. Fredriksen: CERVICOGENIC HEADACHE.
44. Rolf A. Walstad: CEFTAZIDIME.
45. Rolf Salvesen: THE PUPIL IN CLUSTER HEADACHE.
46. Nils Petter Jørgensen: DRUG EXPOSURE IN EARLY PREGNANCY.
47. Johan C. Raeder: PREMEDICATION AND GENERAL ANAESTHESIA IN OUTPATIENT GYNECOLOGICAL SURGERY.
49. Anders Waage: THE COMPLEX PATTERN OF CYTOKINES IN SEPTIC SHOCK.
50. Bjarne Christian Eriksen: ELECTROSTIMULATION OF THE PELVIC FLOOR IN FEMALE URINARY INCONTINENCE.
51. Tore B. Halvorsen: PROGNOSTIC FACTORS IN COLORECTAL CANCER.
52. Asbjørn Nordby: CELLULAR TOXICITY OF ROENTGEN CONTRAST MEDIA.
53. Kåre E. Tvedt: X-RAY MICROANALYSIS OF BIOLOGICAL MATERIAL.
54. Tore C. Stiles: COGNITIVE VULNERABILITY FACTORS IN THE DEVELOPMENT AND MAINTENANCE OF DEPRESSION.
55. Eva Hofši: TUMOR NECROSIS FACTOR AND MULTIDRUG RESISTANCE.
56. Helge S. Haarstad: TROPHIC EFFECTS OF CHOLECYSTOKININ AND SECRETIN ON THE RAT PANCREAS.
57. Lars Engbretsen: TREATMENT OF ACUTE ANTERIOR CRUCIATE LIGAMENT INJURIES.
58. Tarjei Rygnestad: DELIBERATE SELF-POISONING IN TRONDHEIM.
59. Arne Z. Henriksen: STUDIES ON CONSERVED ANTIGENIC DOMAINS ON MAJOR OUTER MEMBRANE PROTEINS FROM ENTEROBACTERIA.
60. Steinar Westin: UNEMPLOYMENT AND HEALTH: Medical and social consequences of a factory closure in a ten-year controlled follow-up study.
61. Ylva Sahlin: INJURY REGISTRATION, a tool for accident preventive work.
62. Helge Bjørnstad Pettersen: BIOSYNTHESIS OF COMPLEMENT BY HUMAN ALVEOLAR MACROPHAGES WITH SPECIAL REFERENCE TO SARCOIDOSIS.
63. Berit Schei: TRAPPED IN PAINFUL LOVE.
64. Lars J. Vatten: PROSPECTIVE STUDIES OF THE RISK OF BREAST CANCER IN A COHORT OF NORWEGIAN WOMAN.
65. Kåre Bergh: APPLICATIONS OF ANTI-C5a SPECIFIC MONOCLONAL ANTIBODIES FOR THE ASSESSMENT OF COMPLEMENT ACTIVATION.
66. Svein Svenningsen: THE CLINICAL SIGNIFICANCE OF INCREASED FEMORAL ANTEVERSION.
67. Olbjørn Klepp: NONSEMINOMATOUS GERM CELL TESTIS CANCER: THERAPEUTIC OUTCOME AND PROGNOSTIC FACTORS.
68. Trond Sand: THE EFFECTS OF CLICK POLARITY ON BRAINSTEM AUDITORY EVOKED POTENTIALS AMPLITUDE, DISPERSION, AND LATENCY VARIABLES.
69. Kjetil B. Åshakk: STUDIES OF A PROTEIN FROM PSORIATIC SCALE, PSO P27, WITH RESPECT TO ITS POTENTIAL ROLE IN IMMUNE REACTIONS IN PSORIASIS.
70. Arnulf Hestnes: STUDIES ON DOWN’S SYNDROME.
71. Randi Nygaard: LONG-TERM SURVIVAL IN CHILDHOOD LEUKEMIA.
72. Bjørn Hagen: THIO-TEPA.
73. Svein Anda: EVALUATION OF THE HIP JOINT BY COMPUTED TOMOGRAPHY AND ULTRASONOGRAPHY.
74. Martin Svartberg: AN INVESTIGATION OF PROCESS AND OUTCOME OF SHORT-TERM PSYCHODYNAMIC PSYCHOTHERAPY.
75. Stig Arild Sørland: AORTIC REGURGITATION.
76. Harold C Sexton: STUDIES RELATING TO THE TREATMENT OF SYMPTOMATIC NON-PSYCHOTIC PATIENTS.
77. Maurice B. Vincent: VASOACTIVE PEPTIDES IN THE OCULAR/FOREHEAD AREA.
78. Terje Johannessen: CONTROLLED TRIALS IN SINGLE SUBJECTS.
79. Turid Nilsen: PYROPHOSPHATE IN HEPATOCYTE IRON METABOLISM.
80. Olav Haraldseth: NMR SPECTROSCOPY OF CEREBRAL ISCHEMIA AND REPERFUSION IN RAT.
81. Eiliv Brenna: REGULATION OF FUNCTION AND GROWTH OF THE OXYNTIC MUCOSA.
82. Gunnar Bovim: CERVICOGENIC HEADACHE.
83. Jarl Arne Kahn: ASSISTED PROCREATION.
84. Bjørn Naume: IMMUNOREGULATORY EFFECTS OF CYTOKINES ON NK CELLS.
85. Rune Wiseth: AORTIC VALVE REPLACEMENT.
86. Jie Ming Shen: BLOOD FLOW VELOCITY AND RESPIRATORY STUDIES.
87. Piotr Kruszewski: SUNCT SYNDROME WITH SPECIAL REFERENCE TO THE AUTONOMIC NERVOUS SYSTEM.
88. Mette Haase Moen: ENDOMETRIOSIS.
89. Anne Vik: VASCULAR GAS EMBOLISM DURING AIR INFUSION AND AFTER DECOMPRESSION IN PIGS.
90. Lars Jacob Stovner: THE CHIARI TYPE I MALFORMATION.
91. Kjell Å. Salvesen: ROUTINE ULTRASONOGRAPHY IN UTERO AND DEVELOPMENT IN CHILDHOOD.
92. Nina-Beate Liabakk: DEVELOPMENT OF IMMUNOASSAYS FOR TNF AND ITS SOLUBLE RECEPTORS.
93. Sverre Helge Torp: erbB ONCOGENES IN HUMAN GLIOMAS AND MENINGIOMAS.
95. Per Oscar Feet: INCREASED ANTIDEPRESSANT AND ANTIPANIC EFFECT IN COMBINED TREATMENT WITH DIXYRazine AND TRICYCLIC ANTIDEPRESSANTS.
96. Stein Olav Samstad: CROSS SECTIONAL FLOW VELOCITY PROFILES FROM TWO-DIMENSIONAL DOPPLER ULTRASOUND: Studies on early mitral blood flow.
97. Bjørn Backe: STUDIES IN ANTENATAL CARE.
98. Gerd Inger Ringdal: QUALITY OF LIFE IN CANCER PATIENTS.
99. Torvid Kiserud: THE DUCTUS VENOSUS IN THE HUMAN FETUS.
100. Hans E. Fjosne: HORMONAL REGULATION OF PROSTATIC METABOLISM.
101. Eylert Brodtkorb: CLINICAL ASPECTS OF EPILEPSY IN THE MENTALLY RETARDED.
102. Roar Juul: PEPTIDERGIC MECHANISMS IN HUMAN SUBARACHNOID HEMORRHAGE.
103. Unni Syversen: CHROMOGRANIN A. Physiological and Clinical Role.
104. Odd Gunnar Brakstad: THERMOSTABLE NUCLEASE AND THE nuc GENE IN THE DIAGNOSIS OF Staphylococcus aureus INFECTIONS.
105. Terje Engan: NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY OF PLASMA IN MALIGNANT DISEASE.
106. Kirsten Rasmussen: VIOLENCE IN THE MENTALLY DISORDERED.
108. Roar Stenseth: THORACIC EPIDURAL ANALGESIA IN AORTOCORONARY BYPASS SURGERY.
109. Arild Faxvaag: STUDIES OF IMMUNE CELL FUNCTION in mice infected with MURINE RETROVIRUS.
1996
110. Svend Aakhus: NONINVASIVE COMPUTERIZED ASSESSMENT OF LEFT VENTRICULAR FUNCTION AND SYSTEMIC ARTERIAL PROPERTIES. Methodology and some clinical applications.
111. Klaus-Dieter Bolz: INTRAVASCULAR ULTRASONOGRAPHY.
112. Petter Aadahl: CARDIOVASCULAR EFFECTS OF THORACIC AORTIC CROSS-CLAMPING.
113. Sigurd Steinshamn: CYTOKINE MEDIATORS DURING GRANULOCYTOPENIC INFECTIONS.
114. Hans Stifoss-Hanssen: SEEKING MEANING OR HAPPINESS?
115. Anne Kvikkst: LIFE CHANGE EVENTS AND MARITAL STATUS IN RELATION TO RISK AND PROGNOSIS OF CANCER.
117. Sigrid Hørven Wigers: CLINICAL STUDIES OF FIBROMYALGIA WITH FOCUS ON ETIOLOGY, TREATMENT AND OUTCOME.
119. Marit Martinussen: STUDIES OF INTESTINAL BLOOD FLOW AND ITS RELATION TO TRANSITIONAL CIRCULATORY ADAPTATION IN NEWBORN INFANTS.
120. Tomm B. Müller: MAGNETIC RESONANCE IMAGING IN FOCAL CEREBRAL ISCHEMIA.
121. Rune Haaverstad: OEDEMA FORMATION OF THE LOWER EXTREMITIES.
122. Magne Børset: THE ROLE OF CYTOKINES IN MULTIPLE MYELOMA, WITH SPECIAL REFERENCE TO HEPATOCYTE GROWTH FACTOR.
123. Geir Smedslund: A THEORETICAL AND EMPIRICAL INVESTIGATION OF SMOKING, STRESS AND DISEASE: RESULTS FROM A POPULATION SURVEY.
1997
124. Torstein Vik: GROWTH, MORBIDITY, AND PSYCHOMOTOR DEVELOPMENT IN INFANTS WHO WERE GROWTH RETARDED IN UTERO.
125. Siri Forsmo: ASPECTS AND CONSEQUENCES OF OPPORTUNISTIC SCREENING FOR CERVICAL CANCER. Results based on data from three Norwegian counties.
126. Jon S. Skranes: CEREBRAL MRI AND NEURODEVELOPMENTAL OUTCOME IN VERY LOW BIRTH WEIGHT (VLBW) CHILDREN. A follow-up study of a geographically based year cohort of VLBW children at ages one and six years.
127. Knut Bjørnstad: COMPUTERIZED ECHOCARDIOGRAPHY FOR EVALUATION OF CORONARY ARTERY DISEASE.
128. Grethe Elisabeth Borchgrevink: DIAGNOSIS AND TREATMENT OF WHIPLASH/NECK SPRAIN INJURIES CAUSED BY CAR ACCIDENTS.
129. Tor Elsås: NEUROPEPTIDES AND NITRIC OXIDE SYNTHASE IN OCULAR AUTONOMIC AND SENSORY NERVES.
130. Rolf W. Gråwe: EPIDEMIOLOGICAL AND NEUROPSYCHOLOGICAL PERSPECTIVES ON SCHIZOPHRENIA.
131. Tonje Stromholm: CEREBRAL HAEMODYNAMICS DURING THORACIC AORTIC CROSSCLAMPING. An experimental study in pigs.
1998
132. Martinus Bråten: STUDIES ON SOME PROBLEMS REALTED TO INTRAMEDULLARY NAILING OF FEMORAL FRACTURES.
133. Ståle Nordgård: PROLIFERATIVE ACTIVITY AND DNA CONTENT AS PROGNOSTIC INDICATORS IN ADENOID CYSTIC CARCINOMA OF THE HEAD AND NECK.
134. Egil Lien: SOLUBLE RECEPTORS FOR TNF AND LPS: RELEASE PATTERN AND POSSIBLE SIGNIFICANCE IN DISEASE.
135. Marit Bjørgaas: HYPOGLYCAEMIA IN CHILDREN WITH DIABETES MELLITUS
136. Frank Skorpen: GENETIC AND FUNCTIONAL ANALYSES OF DNA REPAIR IN HUMAN CELLS.
137. Juan A. Pareja: SUNCT SYNDROME. ON THE CLINICAL PICTURE. ITS DISTINCTION FROM OTHER, SIMILAR HEADACHES.
138. Anders Angelsen: NEUROENDOCRINE CELLS IN HUMAN PROSTATIC CARCINOMAS AND THE PROSTATIC COMPLEX OF RAT, GUINEA PIG, CAT AND DOG.
139. Fabio Antonaci: CHRONIC PAROXYSMAL HEMICRANIA AND HEMICRANIA CONTINUA: TWO DIFFERENT ENTITIES?
140. Sven M. Carlsen: ENDOCRINE AND METABOLIC EFFECTS OF METFORMIN WITH SPECIAL EMPHASIS ON CARDIOVASCULAR RISK FACTORES.
141. Terje A. Murberg: DEPRESSIVE SYMPTOMS AND COPING AMONG PATIENTS WITH CONGESTIVE HEART FAILURE.
143. Noëmi Becser Andersen: THE CEPHALIC SENSORY NERVES IN UNILATERAL HEADACHES. Anatomical background and neurophysiological evaluation.
145. Bård Kulseng: A STUDY OF ALGINATE CAPSULE PROPERTIES AND CYTOKINES IN RELATION TO INSULIN DEPENDENT DIABETES MELLITUS.
146. Terje Haug: STRUCTURE AND REGULATION OF THE HUMAN UNG GENE ENCODING URACIL-DNA GLYCOSYLASE.
149. Ronald Mårvik: PHARMACOLOGICAL, PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL STUDIES ON ISOLATED STOMACS.
150. Ketil Jarl Holen: THE ROLE OF ULTRASONOGRAPHY IN THE DIAGNOSIS AND TREATMENT OF HIP DYSPLASIA IN NEWBORNS.
151. Irene Hetlevik: THE ROLE OF CLINICAL GUIDELINES IN CARDIOVASCULAR RISK INTERVENTION IN GENERAL PRACTICE.
152. Katarina Tunôn: ULTRASOUND AND PREDICTION OF GESTATIONAL AGE.
154. Arild Aamodt: DEVELOPMENT AND PRE-CLINICAL EVALUATION OF A CUSTOM-MADE FEMORAL STEM.
155. Agnar Tegnander: DIAGNOSIS AND FOLLOW-UP OF CHILDREN WITH SUSPECTED OR KNOWN HIP DYSPLASIA.
156. Bent Indredavik: STROKE UNIT TREATMENT: SHORT AND LONG-TERM EFFECTS.
157. Jolanta Vanagaite Vingen: PHOTOPHOBIA AND PHONOPHOBIA IN PRIMARY HEADACHES.

1999

141. Terje A. Murberg: DEPRESSIVE SYMPTOMS AND COPING AMONG PATIENTS WITH CONGESTIVE HEART FAILURE.
143. Noëmi Becser Andersen: THE CEPHALIC SENSORY NERVES IN UNILATERAL HEADACHES. Anatomical background and neurophysiological evaluation.
145. Bård Kulseng: A STUDY OF ALGINATE CAPSULE PROPERTIES AND CYTOKINES IN RELATION TO INSULIN DEPENDENT DIABETES MELLITUS.
146. Terje Haug: STRUCTURE AND REGULATION OF THE HUMAN UNG GENE ENCODING URACIL-DNA GLYCOSYLASE.
149. Ronald Mårvik: PHARMACOLOGICAL, PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL STUDIES ON ISOLATED STOMACS.
150. Ketil Jarl Holen: THE ROLE OF ULTRASONOGRAPHY IN THE DIAGNOSIS AND TREATMENT OF HIP DYSPLASIA IN NEWBORNS.
151. Irene Hetlevik: THE ROLE OF CLINICAL GUIDELINES IN CARDIOVASCULAR RISK INTERVENTION IN GENERAL PRACTICE.
152. Katarina Tunôn: ULTRASOUND AND PREDICTION OF GESTATIONAL AGE.
154. Arild Aamodt: DEVELOPMENT AND PRE-CLINICAL EVALUATION OF A CUSTOM-MADE FEMORAL STEM.
155. Agnar Tegnander: DIAGNOSIS AND FOLLOW-UP OF CHILDREN WITH SUSPECTED OR KNOWN HIP DYSPLASIA.
156. Bent Indredavik: STROKE UNIT TREATMENT: SHORT AND LONG-TERM EFFECTS.
157. Jolanta Vanagaite Vingen: PHOTOPHOBIA AND PHONOPHOBIA IN PRIMARY HEADACHES.

2000

158. Ola Dalsegg Sæther: PATHOPHYSIOLOGY DURING PROXIMAL AORTIC CROSS-CLAMPING CLINICAL AND EXPERIMENTAL STUDIES.
159. xxxxxxxxxx (blind number)
160. Christina Vogt Isaksen: PRENATAL ULTRASOUND AND POSTMORTEM FINDINGS – A TEN YEAR CORRELATIVE STUDY OF FETUSES AND INFANTS WITH DEVELOPMENTAL ANOMALIES.
161. Holger Seidel: HIGH-DOSE METHOTREXATE THERAPY IN CHILDREN WITH ACUTE LYMPHOCYTIC LEUKEMIA: DOSE, CONCENTRATION, AND EFFECT CONSIDERATIONS.
162. Stein Hallan: IMPLEMENTATION OF MODERN MEDICAL DECISION ANALYSIS INTO CLINICAL DIAGNOSIS AND TREATMENT.
| 163. | Malcolm Sue-Chu: INVASIVE AND NON-INVASIVE STUDIES IN CROSS-COUNTRY SKIERS WITH ASTHMA-LIKE SYMPTOMS. |
| 164. | Ole-Lars Brekke: EFFECTS OF ANTIOXIDANTS AND FATTY ACIDS ON TUMOR NECROSIS FACTOR-INDUCED CYTOTOXICITY. |
| 165. | Jan Lundbom: AORTOCORONARY BYPASS SURGERY: CLINICAL ASPECTS, COST CONSIDERATIONS AND WORKING ABILITY. |
| 166. | John-Anker Zwart: LUMBAR NERVE ROOT COMPRESSION, BIOCHEMICAL AND NEUROPHYSIOLOGICAL ASPECTS. |
| 167. | Geir Falck: HYPEROSMOLALITY AND THE HEART. |
| 169. | Dalius Bansevicius: SHOULDER-NECK REGION IN CERTAIN HEADACHES AND CHRONIC PAIN SYNDROMES. |
| 170. | Bettina Kinge: REFRACTIVE ERRORS AND BIOMETRIC CHANGES AMONG UNIVERSITY STUDENTS IN NORWAY. |
| 171. | Gunnar Qvigstad: CONSEQUENCES OF HYPERGASTRINEMIA IN MAN |
| 172. | Hanne Ellekjær: EPIDEMIOLOGICAL STUDIES OF STROKE IN A NORWEGIAN POPULATION. INCIDENCE, RISK FACTORS AND PROGNOSIS |
| 173. | Hilde Grimstad: VIOLENCE AGAINST WOMEN AND PREGNANCY OUTCOME. |
| 175. | Kjell A. Kvistad: MR IN BREAST CANCER – A CLINICAL STUDY. |
| 176. | Ivar Rossvoll: ELECTIVE ORTHOPAEDIC SURGERY IN A DEFINED POPULATION. Studies on demand, waiting time for treatment and incapacity for work. |
| 177. | Carina Seidel: PROGNOSTIC VALUE AND BIOLOGICAL EFFECTS OF HEPATOCYTE GROWTH FACTOR AND SYNDECAN-1 IN MULTIPLE MYELOMA. |
| 2001 | Alexander Wahba: THE INFLUENCE OF CARDIOPULMONARY BYPASS ON PLATELET FUNCTION AND BLOOD COAGULATION – DETERMINANTS AND CLINICAL CONSEQUENCES |
| 180. | Odrun Arna Gederaas: BIOLOGICAL MECHANISMS INVOLVED IN 5-AMINOLEVULINIC ACID BASED PHOTODYNAMIC THERAPY |
| 181. | Pål Richard Romundstad: CANCER INCIDENCE AMONG NORWEGIAN ALUMINIUM WORKERS |
| 182. | Henrik Hjorth-Hansen: NOVEL CYTOKINES IN GROWTH CONTROL AND BONE DISEASE OF MULTIPLE MYELOMA |
| 183. | Gunnar Morken: SEASONAL VARIATION OF HUMAN MOOD AND BEHAVIOUR |
| 184. | Bjørn Olav Haugen: MEASUREMENT OF CARDIAC OUTPUT AND STUDIES OF VELOCITY PROFILES IN AORTIC AND MITRAL FLOW USING TWO- AND THREE-DIMENSIONAL COLOUR FLOW IMAGING |
| 185. | Geir Bråthen: THE CLASSIFICATION AND CLINICAL DIAGNOSIS OF ALCOHOL-RELATED SEIZURES |
| 186. | Knut Ivar Aasarød: RENAL INVOLVEMENT IN INFLAMMATORY RHEUMATIC DISEASE. A Study of Renal Disease in Wegener’s Granulomatosis and in Primary Sjögren’s Syndrome |
| 187. | Trude Helen Flo: RECEPTORS INVOLVED IN CELL ACTIVATION BY DEFINED URONIC ACID POLYMERS AND BACTERIAL COMPONENTS |
| 188. | Bodil Kavli: HUMAN URACIL-DNA GLYCOSYLASES FROM THE UNG GENE: STRUCTURAL BASIS FOR SUBSTRATE SPECIFICITY AND REPAIR |
| 189. | Liv Thommesen: MOLECULAR MECHANISMS INVOLVED IN TNF- AND GASTRIN-MEDIATED GENE REGULATION |
| 190. | Turid Lingaas Holmen: SMOKING AND HEALTH IN ADOLESCENCE; THE NORD-TRØNDELAG HEALTH STUDY, 1995-97 |
| 191. | Øyvind Hjertner: MULTIPLE MYELOMA: INTERACTIONS BETWEEN MALIGNANT PLASMA CELLS AND THE BONE MICROENVIRONMENT |
| 192. | Asbjørn Støylen: STRAIN RATE IMAGING OF THE LEFT VENTRICLE BY ULTRASOUND. FEASIBILITY, CLINICAL VALIDATION AND PHYSIOLOGICAL ASPECTS |
193. Kristian Midthjell: DIABETES IN ADULTS IN NORD-TRØNDELAG. PUBLIC HEALTH ASPECTS OF DIABETES MELLITUS IN A LARGE, NON-SELECTED NORWEGIAN POPULATION.

194. Guanglin Cui: FUNCTIONAL ASPECTS OF THE ECL CELL IN RODENTS

195. Ulrik Wissloff: CARDIAC EFFECTS OF AEROBIC ENDURANCE TRAINING: HYPERTROPHY, CONTRACTILITY AND CALCIUM HANDLING IN NORMAL AND FAILING HEART

196. Øyvind Halaas: MECHANISMS OF IMMUNOMODULATION AND CELL-MEDIATED CYTOTOXICITY INDUCED BY BACTERIAL PRODUCTS

197. Tore Amundsen: PERFUSION MR IMAGING IN THE DIAGNOSIS OF PULMONARY EMBOLISM

198. Nanna Kurtze: THE SIGNIFICANCE OF ANXIETY AND DEPRESSION IN FATIGUE AND PATTERNS OF PAIN AMONG INDIVIDUALS DIAGNOSED WITH FIBROMYALGIA: RELATIONS WITH QUALITY OF LIFE, FUNCTIONAL DISABILITY, LIFESTYLE, EMPLOYMENT STATUS, CO-MORBIDITY AND GENDER

199. Tom Ivar Lund Nilsen: PROSPECTIVE STUDIES OF CANCER RISK IN NORD-TRØNDELAG: THE HUNT STUDY. Associations with anthropometric, socioeconomic, and lifestyle risk factors

200. Asta Kristine Håberg: A NEW APPROACH TO THE STUDY OF MIDDLE CEREBRAL ARTERY OCCLUSION IN THE RAT USING MAGNETIC RESONANCE TECHNIQUES

2002

201. Knut Jørgen Arntzen: PREGNANCY AND CYTOKINES

202. Henrik Dollner: INFLAMMATORY MEDIATORS IN PERINATAL INFECTIONS

203. Asta Bye: LOW FAT, LOW LACTOSE DIET USED AS PROPHYLACTIC TREATMENT OF ACUTE INTESTINAL REACTIONS DURING PELVIC RADIOThERAPY. A PROSPECTIVE RANDOMISED STUDY.

204. Sylvester Moyo: STUDIES ON STREPTOCOCCUS AGALACTIAE (GROUP B STREPTOCOCCUS) SURFACE-ANCHORED MARKERS WITH EMPHASIS ON STRAINS AND HUMAN SERA FROM ZIMBABWE.

205. Knut Hagen: HEAD-HUNT: THE EPIDEMIOLOGY OF HEADACHE IN NORD-TRØNDELAG

206. Li Lixin: ON THE REGULATION AND ROLE OF UNCOUPLING PROTEIN-2 IN INSULIN PRODUCING ß-CELLS

207. Anne Hildur Henriksen: SYMPTOMS OF ALLERGY AND ASTHMA VERSUS MARKERS OF LOWER AIRWAY INFLAMMATION AMONG ADOLESCENTS

208. Egil Andreas Fors: NON-MALIGNANT PAIN IN RELATION TO PSYCHOLOGICAL AND ENVIRONMENTAL FACTORS. EXPERIENTAL AND CLINICAL STUDIES OF PAIN WITH FOCUS ON FIBROMYALGIA

209. Pål Klepstad: MOPRINE FOR CANCER PAIN

211. Ingrid Susann Gribbestad: MAGNETIC RESONANCE IMAGING AND SPECTROSCOPY OF BREAST CANCER

212. Ronnaug Astrid Ødegård: PREECCLAMPSIA – MATERNAL RISK FACTORS AND FETAL GROWTH

213. Johan Haux: STUDIES ON CYTOTOXICITY INDUCED BY HUMAN NATURAL KILLER CELLS AND DIGITOXIN

214. Turid Suzanne Berg-Nielsen: PARENTING PRACTICES AND MENTALLY DISORDERED ADOLESCENTS

215. Astrid Rydning: BLOOD FLOW AS A PROTECTIVE FACTOR FOR THE STOMACH MUCOSA. AN EXPERIMENTAL STUDY ON THE ROLE OF MAST CELLS AND SENSORY AFFERENT NEURONS

2003

217. Elisabeth Qvigstad: EFFECTS OF FATTY ACIDS AND OVER-STIMULATION ON INSULIN SECRETION IN MAN
218. Arne Åsberg: EPIDEMIOLOGICAL STUDIES IN HEREDITARY HEMOCHROMATOSIS: PREVALENCE, MORBIDITY AND BENEFIT OF SCREENING.
220. Siv Mørkved: URINARY INCONTINENCE DURING PREGNANCY AND AFTER DELIVERY: EFFECT OF PELVIC FLOOR MUSCLE TRAINING IN PREVENTION AND TREATMENT
221. Marit S. Jordhøy: THE IMPACT OF COMPREHENSIVE PALLIATIVE CARE
222. Tom Christian Martinsen: HYPERGASTRINEMIA AND HYPOACIDITY IN RODENTS – CAUSES AND CONSEQUENCES
223. Solveig Tingulstad: CENTRALIZATION OF PRIMARY SURGERY FOR OVARAIN CANCER. FEASIBILITY AND IMPACT ON SURVIVAL
224. Haytham Eloqayli: METABOLIC CHANGES IN THE BRAIN CAUSED BY EPILEPTIC SEIZURES
225. Torunn Bruland: STUDIES OF EARLY RETROVIRUS-HOST INTERACTIONS – VIRAL DETERMINANTS FOR PATHOGENESIS AND THE INFLUENCE OF SEX ON THE SUSCEPTIBILITY TO FRIEND MURINE LEUKAEMIA VIRUS INFECTION
226. Torstein Hole: DOPPLER ECHOCARDIOGRAPHIC EVALUATION OF LEFT VENTRICULAR FUNCTION IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION
227. Vibeke Nossum: THE EFFECT OF VASCULAR BUBBLES ON ENDOTHELIAL FUNCTION
228. Sigurd Fasting: ROUTINE BASED RECORDING OF ADVERSE EVENTS DURING ANAESTHESIA – APPLICATION IN QUALITY IMPROVEMENT AND SAFETY
230. Geir Torheim: PROCESSING OF DYNAMIC DATA SETS IN MAGNETIC RESONANCE IMAGING
231. Catrine Ahlén: SKIN INFECTIONS IN OCCUPATIONAL SATURATION DIVERS IN THE NORTH SEA AND THE IMPACT OF THE ENVIRONMENT
233. Einar Kjelsås: EATING DISORDERS AND PHYSICAL ACTIVITY IN NON-CLINICAL SAMPLES
234. Arne Wibe: RECTAL CANCER TREATMENT IN NORWAY – STANDARDISATION OF SURGERY AND QUALITY ASSURANCE
2004
235. Eivind Witsø: BONE GRAFT AS AN ANTIBIOTIC CARRIER
236. Anne Mari Sund: DEVELOPMENT OF DEPRESSIVE SYMPTOMS IN EARLY ADOLESCENCE
237. Hallvard Lærum: EVALUATION OF ELECTRONIC MEDICAL RECORDS – A CLINICAL TASK PERSPECTIVE
238. Gustav Mikkelsen: ACCESSIBILITY OF INFORMATION IN ELECTRONIC PATIENT RECORDS; AN EVALUATION OF THE ROLE OF DATA QUALITY
239. Steinar Kroksstad: SOCIOECONOMIC INEQUALITIES IN HEALTH AND DISABILITY. SOCIAL EPIDEMIOLOGY IN THE NORD-TRØNDELAG HEALTH STUDY (HUNT), NORWAY
240. Arne Kristian Myhre: NORMAL VARIATION IN ANOGENITAL ANATOMY AND MICROBIOLOGY IN NON-ABUSED PRESCHOOL CHILDREN
241. Ingunn Dybedal: NEGATIVE REGULATORS OF HEMATOPOIETIC STEM AND PROGENITOR CELLS
242. Beate Sitter: TISSUE CHARACTERIZATION BY HIGH RESOLUTION MAGIC ANGLE SPINNING MR SPECTROSCOPY
243. Per Arne Aas: MACROMOLECULAR MAINTENANCE IN HUMAN CELLS – REPAIR OF URACIL IN DNA AND METHYLATIONS IN DNA AND RNA
244. Anna Bofin: FINE NEEDLE ASPIRATION CYTOLOGY IN THE PRIMARY INVESTIGATION OF BREAST TUMOURS AND IN THE DETERMINATION OF TREATMENT STRATEGIES
245. Jim Aage Nøttestad: DEINSTITUTIONALIZATION AND MENTAL HEALTH CHANGES AMONG PEOPLE WITH MENTAL RETARDATION
246. Reidar Fossmark: GASTRIC CANCER IN JAPANESE COTTON RATS
248. Sturla Molden: QUANTITATIVE ANALYSES OF SINGLE UNITS RECORDED FROM THE HIPPOCAMPUS AND ENTORHINAL CORTEX OF BEHAVING RATS
249. Wenche Brenne Droyvold: EPIDEMIOLOGICAL STUDIES ON WEIGHT CHANGE AND HEALTH IN A LARGE POPULATION. THE NORD-TRONDELAG HEALTH STUDY (HUNT)
250. Ragnhild Stoen: ENDOTHELIUM-DEPENDENT VASODILATION IN THE FEMORAL ARTERY OF DEVELOPING PIGLETS
251. Aslak Steinsbekk: HOMEOPATHY IN THE PREVENTION OF UPPER RESPIRATORY TRACT INFECTIONS IN CHILDREN
252. Hill-Aina Steffenach: MEMORY IN HIPPOCAMPAL AND CORTICO-HIPPOCAMPAL CIRCUITS
253. Eystein Storøld: ASPECTS OF THE EPIDEMIOLOGY OF DEPRESSIONS BASED ON SELF-RATING IN A LARGE GENERAL HEALTH STUDY (THE HUNT-2 STUDY)
254. Viggs Pettersen: FROM MUSCLES TO SINGING: THE ACTIVITY OF ACCESSORY BREATHING MUSCLES AND THORAX MOVEMENT IN CLASSICAL SINGING
255. Marianne Fyhln: SPATIAL MAPS IN THE HIPPOCAMPUS AND ENTORHINAL CORTEX
256. Robert Valderhaug: OBSESSIVE-COMPULSIVE DISORDER AMONG CHILDREN AND ADOLESCENTS: CHARACTERISTICS AND PSYCHOLOGICAL MANAGEMENT OF PATIENTS IN OUTPATIENT PSYCHIATRIC CLINICS
257. Erik Skahheim Haug: INFRARENAL ABDOMINAL AORTIC ANEURYSMS – COMORBIDITY AND RESULTS FOLLOWING OPEN SURGERY
258. Daniel Kondziella: GLIAL-NEURONAL INTERACTIONS IN EXPERIMENTAL BRAIN DISORDERS
259. Vegard Heimly Brun: ROUTES TO SPATIAL MEMORY IN HIPPOCAMPAL PLACE CELLS
260. Kenneth McMillan: PHYSIOLOGICAL ASSESSMENT AND TRAINING OF ENDURANCE AND STRENGTH IN PROFESSIONAL YOUTH SOCCER PLAYERS
261. Marit Sæbø Indredavik: MENTAL HEALTH AND CEREBRAL MAGNETIC RESONANCE IMAGING IN ADOLESCENTS WITH LOW BIRTH WEIGHT
262. Ole Johan Kemi: ON THE CELLULAR BASIS OF AEROBIC FITNESS, INTENSITY-DEPENDENCE AND TIME-COURSE OF CARDIOMYOCYTE AND ENDOTHELIAL ADAPTATIONS TO EXERCISE TRAINING
263. Eszter Vanky: POLYCYSTIC OVARY SYNDROME – METFORMIN TREATMENT IN PREGNANCY
264. Hild Fjærtoft: EXTENDED STROKE UNIT SERVICE AND EARLY SUPPORTED DISCHARGE. SHORT AND LONG-TERM EFFECTS
265. Grete Dyb: POSTTRAUMATIC STRESS REACTIONS IN CHILDREN AND ADOLESCENTS
266. Vidar Fykse: SOMATOSTATIN AND THE STOMACH
268. Björn Inge Gustafsson: THE SEROTONIN PRODUCING ENTEROCHROMAFFIN CELL, AND EFFECTS OF HYPERSEROTONINEMIA ON HEART AND BONE
2006
269. Torstein Baade Rø: EFFECTS OF BONE MORPHOGENETIC PROTEINS, HEPATOCYTE GROWTH FACTOR AND INTERLEUKIN-21 IN MULTIPLE MYELOMA
270. May-Britt Tessem: METABOLIC EFFECTS OF ULTRAVIOLET RADIATION ON THE ANTERIOR PART OF THE EYE
271. Anne-Sofie Helvik: COPING AND EVERYDAY LIFE IN A POPULATION OF ADULTS WITH HEARING IMPAIRMENT
273. Ingvild Saltvedt: TREATMENT OF ACUTELY SICK, FRAIL ELDERLY PATIENTS IN A GERIATRIC EVALUATION AND MANAGEMENT UNIT – RESULTS FROM A PROSPECTIVE RANDOMISED TRIAL
274. Birger Henning Endreseth: STRATEGIES IN RECTAL CANCER TREATMENT – FOCUS ON EARLY RECTAL CANCER AND THE INFLUENCE OF AGE ON PROGNOSIS
275. Anne Mari Aukan Rokstad: ALGINATE CAPSULES AS BIOREACTORS FOR CELL THERAPY
276. Mansour Akbari: HUMAN BASE EXCISION REPAIR FOR PRESERVATION OF GENOMIC STABILITY
277. Stein Sundstrøm: IMPROVING TREATMENT IN PATIENTS WITH LUNG CANCER – RESULTS FROM TWO MULTICENTRE RANDOMISED STUDIES
278. Hilde Pleym: BLEEDING AFTER CORONARY ARTERY BYPASS SURGERY – STUDIES ON HEMOSTATIC MECHANISMS, PROPHYLACTIC DRUG TREATMENT AND EFFECTS OF AUTOTRANSFUSION
279. Line Merethe Oldervoll: PHYSICAL ACTIVITY AND EXERCISE INTERVENTIONS IN CANCER PATIENTS
280. Boye Welde: THE SIGNIFICANCE OF ENDURANCE TRAINING, RESISTANCE TRAINING AND MOTIVATIONAL STYLES IN ATHLETIC PERFORMANCE AMONG ELITE JUNIOR CROSS-COUNTRY SKIERS
281. Per Olav Vandvik: IRRITABLE BOWEL SYNDROME IN NORWAY, STUDIES OF PREVALENCE, DIAGNOSIS AND CHARACTERISTICS IN GENERAL PRACTICE AND IN THE POPULATION
282. Idar Kirkeby-Garstad: CLINICAL PHYSIOLOGY OF EARLY MOBILIZATION AFTER CARDIAC SURGERY
283. Linn Getz: SUSTAINABLE AND RESPONSIBLE PREVENTIVE MEDICINE. CONCEPTUALISING ETHICAL DILEMMAS ARISING FROM CLINICAL IMPLEMENTATION OF ADVANCING MEDICAL TECHNOLOGY
284. Eva Tegnander: DETECTION OF CONGENITAL HEART DEFECTS IN A NON-SELECTED POPULATION OF 42,381 FETUSES
285. Kristin Gabestad Nørsett: GENE EXPRESSION STUDIES IN GASTROINTESTINAL PATHOPHYSIOLOGY AND NEOPLASIA
286. Per Magnus Haram: GENETIC VS. AQUIRED FITNESS: METABOLIC, VASCULAR AND CARDIOMYOCYTE ADAPTATIONS
287. Agneta Johansson: GENERAL RISK FACTORS FOR GAMBLING PROBLEMS AND THE PREVALENCE OF PATHOLOGICAL GAMBLING IN NORWAY
289. Charlotte Björk Ingul: QUANTIFICATION OF REGIONAL MYOCARDIAL FUNCTION BY STRAIN RATE AND STRAIN FOR EVALUATION OF CORONARY ARTERY DISEASE. AUTOMATED VERSUS MANUAL ANALYSIS DURING ACUTE MYOCARDIAL INFARCTION AND DOBUTAMINE STRESS ECHOCARDIOGRAPHY
290. Jakob Nakling: RESULTS AND CONSEQUENCES OF ROUTINE ULTRASOUND SCREENING IN PREGNANCY – A GEOGRAPHIC BASED POPULATION STUDY
291. Anne Engum: DEPRESSION AND ANXIETY – THEIR RELATIONS TO THYROID DYSFUNCTION AND DIABETES IN A LARGE EPIDEMIOLOGICAL STUDY
293. Jon Olav Drogset: RESULTS AFTER SURGICAL TREATMENT OF ANTERIOR CRUCIATE LIGAMENT INJURIES – A CLINICAL STUDY
294. Lars Fosse: MECHANICAL BEHAVIOUR OF COMPACTED MORSELLISED BONE – AN EXPERIMENTAL IN VITRO STUDY
295. Gunilla Klensmeden Fosse: MENTAL HEALTH OF PSYCHIATRIC OUTPATIENTS BULLIED IN CHILDHOOD
296. Paul Jarle Mork: MUSCLE ACTIVITY IN WORK AND LEISURE AND ITS ASSOCIATION TO MUSCULOSKELETAL PAIN

2007
298. Haakon R. Skogseth: INVASIVE PROPERTIES OF CANCER – A TREATMENT TARGET?
IN VITRO STUDIES IN HUMAN PROSTATE CANCER CELL LINES
299. Janniche Hammer: GLUTAMATE METABOLISM AND CYCLING IN MESIAL TEMPORAL LOBE EPILEPSY
300. May Britt Drugli: YOUNG CHILDREN TREATED BECAUSE OF ODD/CD: CONDUCT PROBLEMS AND SOCIAL COMPETENCIES IN DAY-CARE AND SCHOOL SETTINGS
301. Anne Skjold: MAGNETIC RESONANCE KINETICS OF MANGANESE DIPYRIDOXYL DIPHOSPHATE (MnDPDP) IN HUMAN MYOCARDIUM. STUDIES IN HEALTHY VOLUNTEERS AND IN PATIENTS WITH RECENT MYOCARDIAL INFARCTION
302. Siri Malm: LEFT VENTRICULAR SYSTOLIC FUNCTION AND MYOCARDIAL PERFUSION ASSESSED BY CONTRAST ECHOCARDIOGRAPHY
303. Valentina Maria do Rosario Cabral Iversen: MENTAL HEALTH AND PSYCHOLOGICAL ADAPTATION OF CLINICAL AND NON-CLINICAL MIGRANT GROUPS
304. Lasse Løvstakken: SIGNAL PROCESSING IN DIAGNOSTIC ULTRASOUND: ALGORITHMS FOR REAL-TIME ESTIMATION AND VISUALIZATION OF BLOOD FLOW VELOCITY
305. Elisabeth Olstad: GLUTAMATE AND GABA: MAJOR PLAYERS IN NEURONAL METABOLISM
306. Lilian Leistad: THE ROLE OF CYTOKINES AND PHOSPHOLIPASE A2S IN ARTICULAR CARTILAGE CHONDROCYTES IN RHEUMATOID ARTHRITIS AND OSTEOARTHRITIS
307. Arne Vaaler: EFFECTS OF PSYCHIATRIC INTENSIVE CARE UNIT IN AN ACUTE PSYCHIATRIC WARD
308. Mathias Toft: GENETIC STUDIES OF LRRK2 AND PINK1 IN PARKINSON’S DISEASE
309. Ingrid Løvold Mostad: IMPACT OF DIETARY FAT QUANTITY AND QUALITY IN TYPE 2 DIABETES WITH EMPHASIS ON MARINE N-3 FATTY ACIDS
310. Torill Eidhammer Sjøbakk: MR DETERMINED BRAIN METABOLIC PATTERN IN PATIENTS WITH BRAIN METASTASES AND ADOLESCENTS WITH LOW BIRTH WEIGHT
311. Vidar Beisvåg: PHYSIOLOGICAL GENOMICS OF HEART FAILURE: FROM TECHNOLOGY TO PHYSIOLOGY
312. Olav Magnus Sendenå Fredheim: HEALTH RELATED QUALITY OF LIFE ASSESSMENT AND ASPECTS OF THE CLINICAL PHARMACOLOGY OF METHADONE IN PATIENTS WITH CHRONIC NON-MALIGNANT PAIN
313. Anne Brantberg: FETAL AND PERINATAL IMPLICATIONS OF ANOMALIES IN THE GASTROINTESTINAL TRACT AND THE ABDOMINAL WALL
314. Erik Solligård: GUT LUMINAL MICRODIALYSIS
316. Anne-Tove Brenne: GROWTH REGULATION OF MYELOMA CELLS
317. Heidi Knobel: FATIGUE IN CANCER TREATMENT – ASSESSMENT, COURSE AND ETIOLOGY
318. Torbjørn Dahl: CAROTID ARTERY STENOSIS. DIAGNOSTIC AND THERAPEUTIC ASPECTS
319. Inge-Andre Rasmussen jr.: FUNCTIONAL AND DIFFUSION TENSOR MAGNETIC RESONANCE IMAGING IN NEUROSURGICAL PATIENTS
320. Grete Helen Bratberg: PUBERTAL TIMING – ANTECEDENT TO RISK OR RESILIENCE? EPIDEMIOLOGICAL STUDIES ON GROWTH, MATURATION AND HEALTH RISK BEHAVIOURS; THE YOUNG HUNT STUDY, NORD-TRØNDELAG, NORWAY
321. Sveinung Sørhaug: THE PULMONARY NEUROENDOCRINE SYSTEM. PHYSIOLOGICAL, PATHOLOGICAL AND TUMOURIGENIC ASPECTS
322. Olav Sande Eftedal: ULTRASONIC DETECTION OF DECOMPRESSION INDUCED VASCULAR MICROBUBBLES
323. Rune Bang Leistad: PAIN, AUTONOMIC ACTIVATION AND MUSCULAR ACTIVITY RELATED TO EXPERIMENTALLY-INDUCED COGNITIVE STRESS IN HEADACHE PATIENTS
324. Svein Brekke: TECHNIQUES FOR ENHANCEMENT OF TEMPORAL RESOLUTION IN THREE-DIMENSIONAL ECHOCARDIOGRAPHY
325. Kristian Bernhard Nilsen: AUTONOMIC ACTIVATION AND MUSCLE ACTIVITY IN RELATION TO MUSCULOSKELETAL PAIN
352. Steven Keita Nishiyama: PERSPECTIVES ON LIMB-VASCULAR HETEROGENEITY: IMPLICATIONS FOR HUMAN AGING, SEX, AND EXERCISE
353. Sven Peter Näsholm: ULTRASOUND BEAMS FOR ENHANCED IMAGE QUALITY
354. Jon Ståle Ritland: PRIMARY OPEN-ANGLE GLAUCOMA & EXFOLIATIVE GLAUCOMA. SURVIVAL, COMORBIDITY AND GENETICS
355. Sigrid Botne Sando: ALZHEIMER’S DISEASE IN CENTRAL NORWAY. GENETIC AND EDUCATIONAL ASPECTS
356. Parvinder Kaur: CELLULAR AND MOLECULAR MECHANISMS BEHIND METHYLMERCURY-INDUCED NEUROTOXICITY
357. Ismail Cüneyt Güzey: DOPAMINE AND SEROTONIN RECEPTOR AND TRANSPORTER GENE POLYMORPHISMS AND EXTRAPYRAMIDAL SYMPTOMS. STUDIES IN PARKINSON’S DISEASE AND IN PATIENTS TREATED WITH ANTIPSYCHOTIC OR ANTIDEPRESSANT DRUGS
358. Brit Dybdahl: EXTRA-CELLULAR INDUCIBLE HEAT-SHOCK PROTEIN 70 (Hsp70) – A ROLE IN THE INFLAMMATORY RESPONSE?
359. Kristoffer Haugarvoll: IDENTIFYING GENETIC CAUSES OF PARKINSON’S DISEASE IN NORWAY
360. Nadra Nilsen: TOLL-LIKE RECEPTOR 2 – EXPRESSION, REGULATION AND SIGNALING
361. Johan Håkon Bjernøgaard: PATIENT SATISFACTION WITH OUTPATIENT MENTAL HEALTH SERVICES – THE INFLUENCE OF ORGANIZATIONAL FACTORS.
362. Kjetil Høydal: EFFECTS OF HIGH INTENSITY AEROBIC TRAINING IN HEALTHY SUBJECTS AND CORONARY ARTERY DISEASE PATIENTS; THE IMPORTANCE OF INTENSITY, DURATION AND FREQUENCY OF TRAINING.
363. Trine Karlsen: TRAINING IS MEDICINE: ENDURANCE AND STRENGTH TRAINING IN CORONARY ARTERY DISEASE AND HEALTH.
365. Cathrine Broberg Vågbø: DIRECT REPAIR OF ALKYLATION DAMAGE IN DNA AND RNA BY 2-OXOGLUTARATE- AND IRON-DEPENDENT DIOXYGENASES
366. Arnt Erik Tjønna: AEROBIC EXERCISE AND CARDIOVASCULAR RISK FACTORS IN OVERWEIGHT AND OBESE ADOLESCENTS AND ADULTS
367. Oluf Dimitri Røe: MALIGNANT MESOTHELIOMA: VIRUS, BIOMARKERS AND GENES. A TRANSLATIONAL APPROACH
368. Anja Bye: GENE EXPRESSION PROFILING OF INHERITED AND ACQUIRED MAXIMAL OXYGEN UPTAKE – RELATIONS TO THE METABOLIC SYNDROME.
369. Ola M. Rygh: 3D ULTRASOUND BASED NEURONAVIGATION IN NEUROSURGERY. A CLINICAL EVALUATION
370. Astrid Kamilla Stunes: ADIPOKINES, PEROXISOME PROFILERATOR ACTIVATED RECEPTOR (PPAR) AGONISTS AND SEROTONIN. COMMON REGULATORS OF BONE AND FAT METABOLISM
371. Silje Engdal: HERBAL REMEDIES USED BY NORWEGIAN CANCER PATIENTS AND THEIR ROLE IN HERB-DRUG INTERACTIONS
372. Kristin Offerdal: IMPROVED ULTRASOUND IMAGING OF THE FETUS AND ITS CONSEQUENCES FOR SEVERE AND LESS SEVERE ANOMALIES
373. Øivind Rognmo: HIGH-INTENSITY AEROBIC EXERCISE AND CARDIOVASCULAR HEALTH
374. Jo-Åsmund Lund: RADIOTherapy IN ANAL CARCINOMA AND PROSTATE CANCER
381. Tore Grüner Bjåstad: HIGH FRAME RATE ULTRASOUND IMAGING USING PARALLEL BEAMFORMING
382. Erik Søndenaa: INTELLECTUAL DISABILITIES IN THE CRIMINAL JUSTICE SYSTEM
384. Jonas Crosby: ULTRASOUND-BASED QUANTIFICATION OF MYOCARDIAL DEFORMATION AND ROTATION
385. Erling Tronvik: MIGRAINE, BLOOD PRESSURE AND THE RENIN-ANGIOTENSIN SYSTEM
386. Tom Christensen: BRINGING THE GP TO THE FOREFRONT OF EPR DEVELOPMENT
387. Håkon Bergseng: ASPECTS OF GROUP B STREPTOCOCCUS (GBS) DISEASE IN THE NEWBORN. EPIDEMIOLOGY, CHARACTERISATION OF INVASIVE STRAINS AND EVALUATION OF INTRAPARTUM SCREENING
388. Ronny Myhre: GENETIC STUDIES OF CANDIDATE TENE3S IN PARKINSON’S DISEASE
389. Torbjørn Moe Eggebo: ULTRASOUND AND LABOUR
390. Eivind Wang: TRAINING IS MEDICINE FOR PATIENTS WITH PERIPHERAL ARTERIAL DISEASE
391. Thea Kristin Våtsveen: GENETIC ABERRATIONS IN MYELOMA CELLS
392. Thomas Jozefiak: QUALITY OF LIFE AND MENTAL HEALTH IN CHILDREN AND ADOLESCENTS: CHILD AND PARENT PERSPECTIVES
393. Jens Erik Slagsvold: N-3 POLYUNSATURATED FATTY ACIDS IN HEALTH AND DISEASE – CLINICAL AND MOLECULAR ASPECTS
394. Kristine Misund: A STUDY OF THE TRANSCRIPTIONAL REPRESSOR ICER. REGULATORY NETWORKS IN GASTRIN-INDUCED GENE EXPRESSION
395. Franco M. Impellizzeri: HIGH-INTENSITY TRAINING IN FOOTBALL PLAYERS. EFFECTS ON PHYSICAL AND TECHNICAL PERFORMANCE
396. Kari Hanne Gjello: HEALTH-RELATED QUALITY OF LIFE AND CHRONIC PAIN IN PATIENTS UNDERGOING CARDIAC SURGERY
397. Øyvind Hauso: NEUROENDOCRINE ASPECTS OF PHYSIOLOGY AND DISEASE
398. Ingvild Bjellmo Johnsen: INTRACELLULAR SIGNALING MECHANISMS IN THE INNATE IMMUNE RESPONSE TO VIRAL INFECTIONS
399. Linda Tommerdal Roten: GENETIC PREDISPOSITION FOR DEVELOPMENT OF PREEMCLAMPSIA – CANDIDATE GENE STUDIES IN THE HUNT (NORD-TRØNDELAG HEALTH STUDY) POPULATION
400. Trude Teoline Nausthaug Rakvåg: PHARMACOGENETICS OF MORPHINE IN CANCER PAIN
401. Hanne Lehn: MEMORY FUNCTIONS OF THE HUMAN MEDIAL TEMPORAL LOBE STUDIED WITH fMRI
403. Trygve Solstad: NEURAL REPRESENTATIONS OF EUCLIDEAN SPACE
404. Unn-Merete Fagerli: MULTIPLE MYELOMA CELLS AND CYTOKINES FROM THE BONE MARROW ENVIRONMENT; ASPECTS OF GROWTH REGULATION AND MIGRATION
405. Sigrid Bjørnelv: EATING– AND WEIGHT PROBLEMS IN ADOLESCENTS, THE YOUNG HUNT-STUDY
406. Mari Hoff: CORTICAL HAND BONE LOSS IN RHEUMATOID ARTHRITIS. EVALUATING DIGITAL X-RAY RADIOGRAMMETRY AS OUTCOME MEASURE OF DISEASE ACTIVITY, RESPONSE VARIABLE TO TREATMENT AND PREDICTOR OF BONE DAMAGE
407. Siri Bjørgen: AEROBIC HIGH INTENSITY INTERVAL TRAINING IS AN EFFECTIVE TREATMENT FOR PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE
408. Susanne Lindqvist: VISION AND BRAIN IN ADOLESCENTS WITH LOW BIRTH WEIGHT
409. Torbjørn Hergum: 3D ULTRASOUND FOR QUANTITATIVE ECHOCARDIOGRAPHY
410. Jørgen Umes: PATIENT EDUCATION IN GASTRO-OESOPHAGEAL REFLUX DISEASE. VALIDATION OF A DIGESTIVE SYMPTOMS AND IMPACT QUESTIONNAIRE AND A RANDOMISED CONTROLLED TRIAL OF PATIENT EDUCATION
411. Elvar Eyjolfs: 13C NMRS OF ANIMAL MODELS OF SCHIZOPHRENIA
412. Marius Steiro Finland: CHRONIC AND ACUTE NEURAL ADAPTATIONS TO STRENGTH TRAINING
413. Øyvind Storen: RUNNING AND CYCLING ECONOMY IN ATHLETES; DETERMINING FACTORS, TRAINING INTERVENTIONS AND TESTING
414. Håkon Hov: HEPATOCYTE GROWTH FACTOR AND ITS RECEPTOR C-MET. AUTOCRINE GROWTH AND SIGNALING IN MULTIPLE MYELOMA CELLS
415. Maria Radtke: ROLE OF AUTOIMMUNITY AND OVERSTIMULATION FOR BETA-CELL DEFICIENCY. EPIDEMIOLOGICAL AND THERAPEUTIC PERSPECTIVES
416. Liv Bente Romundstad: ASSISTED FERTILIZATION IN NORWAY: SAFETY OF THE REPRODUCTIVE TECHNOLOGY
417. Erik Magnus Berntsen: PREOPERATIV PLANNING AND FUNCTIONAL NEURONAVIGATION – WITH FUNCTIONAL MRI AND DIFFUSION TENSOR TRACTOGRAPHY IN PATIENTS WITH BRAIN LESIONS
418. Tonje Strømmen Steigedal: MOLECULAR MECHANISMS OF THE PROLIFERATIVE RESPONSE TO THE HORMONE GASTRIN
419. Vidar Rao: EXTRACORPOREAL PHOTOChemOTHERAPY IN PATIENTS WITH CUTANEOUS T CELL LYMPHOMA OR GRAFT-vs-Host DISEASE
420. Torkild Visnes: DNA EXCISION REPAIR OF URACIL AND 5-FLUOROURACIL IN HUMAN CANCER CELL LINES