Polycystic ovary syndrome
- Metformin treatment in pregnancy -

Eszter Vanky

Dr.med. thesis

Department of Laboratory Medicine, Children’s and Women’s Health and Department of Community Medicine

Faculty of Medicine
Norwegian University of Science and Technology
Contents

I. Acknowledgements 7
II. List of papers 9
III. Abbreviations 11
IV. The history of polycystic ovary syndrome 13
V. Polycystic ovaries 15
 a. Definition 15
 b. Prevalence 15
VI. Polycystic ovary syndrome 15
 a. Definition 15
 b. Prevalence 17
VII. Pathogenesis 17
 a. Genetic predisposition 18
 b. Prenatal factors 18
 c. Environmental factors 19
 d. Insulin resistance 19
 e. Anthropologic reflections 20
VIII. Clinical presentations of PCOS 21
 a. Menstrual disturbances 21
 b. Obesity 21
 c. Hirsutism 21
 d. Androgenic alopecia 22
 e. Acanthosis nigricans 22
IX. PCO, PCOS and early pregnancy complications 22
 a. PCO and early pregnancy loss 22
 b. PCOS and early pregnancy loss 23
 1. Hypersecretion of LH 23
 2. Hyperandrogenism 24
 3. Insulin resistance 24
X. PCOS and pregnancy complications in the second and third trimester 26
 a. PCO, PCOS and gestational diabetes mellitus 26
 b. PCOS and pre-eclampsia 27
XI. Androgen and estradiol levels in normal pregnancy 28

XII. Androgen excess, pregnancy complications and fetal programming 29
 a. Placental dysfunction 30
 b. Pregnancy complications and excess androgens 31
 1. Pre-eclampsia 31
 2. PCOS 31
 3. Gestational diabetes mellitus 32

XIII. Metformin 33
 a. History 33
 b. Absorption 33
 c. Metabolism and elimination 33
 d. Metformin action 34
 e. Adverse effects 34

XIV. Metformin treatment in non-pregnant PCOS women 35
 a. Effect on menstruation 35
 b. Ovulation induction 35
 c. Pregnancy and live birth rate 36
 d. Effects on weight 36
 e. Effects on hirsutism 36
 f. Effects on acne 37
 g. Effects on androgen levels 37

XV. Safety aspects of metformin use in pregnancy 37
 a. Animal studies 37
 b. Studies in diabetic women 38
 c. Studies in PCOS women 38

XVI. Background of the study 40

XVII. Aims of the study 41
 a. Study I 41
 b. Study II 41

XVIII. Material and methods 42
 Paper I 42
 Paper II 42
 Statistical analyses 44
XIX. Main results
 Study I 45
 Study II 45
XX. Discussion and interpretation of the results
 Paper I 46
 Paper II 46
 Paper III 48
 Paper IV 48
XXI. Conclusions 49
XXII. Final reflections and future aspects 49
XXIII. Tables 51
XXIV. References 68
XXV. Paper I-IV 85
I Acknowledgements

The work presented in this thesis was financed from and performed at the Department of Obstetrics and Gynecology, St. Olavs Hospital, University Hospital of Trondheim during 2000 to 2004. I offer my sincere thanks to the head of the department Fredrik Sunde and section leader Anne Lise Beversmark who provided the facilities and support necessary to accomplish the project. Financial support to this project has also been provided from the Institute of Community Medicine, NTNU. I would also like to thank Norske Kvinner Sanitetsforening for economical support and Weifa A/S for supplies in metformin and placebo free of charge.

I wish to express my gratitude to a number of people who made important contributions to the accomplishment of this thesis;

First and foremost, I thank my principal supervisor Sven M. Carlsen, who provided an intellectual environment that made me see the complex and fascinating world of PCOS. He has an apparent gift of “scientific clairvoyance”, which is based on profound knowledge from different research fields. These elements he is able to fuse into interesting and innovative theories, frequently in conditions that lie in the borderland between Endocrinology and other fields, such as Gynecology and Obstetrics. His generosity, patience and creativity allowed me to develop and test new ideas (admittedly sometimes not so brilliant ones). Working with Sven has been a great privilege and quite fun.

My second supervisor Kjell Å. Salvesen (Pepe) has provided an encouraging, friendly atmosphere and is an excellent teacher in the writing of medical texts (albeit that he picked off my very last adjectives). You always had time for informal meetings to discuss the work, and I felt you gave this a high priority.

I also want to express my thanks to my third supervisor Mette Moen for her help in the writing process. You have a special gift for handling practical problems and organizing.

Furthermore, I want to thank my co-authors, Kristian Fougner, Pål Romundstad, Sigrun Kjøtrød, Kolbjørn Zahlsen, Olav Spigset, Henrik Hjorth-Hansen and Kristian Bjerve for their important contributions to this thesis. A special thanks to my co-author, colleague and good friend Runa Heimstad, for the laughs and tears we shared on the way, and your sincere, “back to earth” comments. Apart from being one of the most empathic and genuine persons I have ever met you are also an insightful and wise clinician.

To Vidar von Düring, head of IVF section; I greatly appreciate our discussions and your ability to pose the uncomfortable but necessary questions.

I am also grateful to midwives Liv Lorås, Hilde Oksfjellelv, Ingebjørg Nes, Hilde Bringedal and senior nurse Gerd Karin Skjotskift and Harriet Selle for their help in management and care for the patients. I also thank midwives who collected cord blood samples, day and night.

To all the women participating in this study; thank you for your positive attitude, trust and patience.

Lastly, I would like to thank my parents Anna and Farkas Vanky and my parents-in-law Brita and Erik Hjorth-Hansen for their caring love, and help with the children whenever we were on duty or otherwise busy.

Henrik, my colleague, best friend and love, without you and our children Anna and Peter, nothing would have been worthwhile.
II List of papers

Vanky E, Salvesen KÅ, Hjorth-Hansen H, Bjerke KS, Carlsen SM. The beneficial effect of metformin on pregnancy outcome in PCOS women is not associated with major changes in CRP or indices of coagulation. (Submitted)
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
<td>Adenosine Monophosphate</td>
</tr>
<tr>
<td>AGA</td>
<td>Appropriate for Gestational Age</td>
</tr>
<tr>
<td>AR</td>
<td>Assisted Reproduction</td>
</tr>
<tr>
<td>ASRM</td>
<td>American Society of Reproductive Medicine</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CAH</td>
<td>Congenital Adrenal Hyperplasia</td>
</tr>
<tr>
<td>CC</td>
<td>Clomiphene Citrate</td>
</tr>
<tr>
<td>DHEAS</td>
<td>Dehydroepiandrostenedione</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>EPL</td>
<td>Early Pregnancy Loss</td>
</tr>
<tr>
<td>ESHRE</td>
<td>European Society of Human Reproduction and Embryology</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicle Stimulating Hormone</td>
</tr>
<tr>
<td>FT</td>
<td>Free Testosterone</td>
</tr>
<tr>
<td>FTI</td>
<td>Free Testosterone Index</td>
</tr>
<tr>
<td>GDM</td>
<td>Gestational Diabetes Mellitus</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotropine Releasing Hormone</td>
</tr>
<tr>
<td>HCG</td>
<td>Human Chorionic Gonadotropin</td>
</tr>
<tr>
<td>HOMA</td>
<td>Homeostasis Model Assessment</td>
</tr>
<tr>
<td>ID/GC-MS</td>
<td>Isotope-Dilution Gas Chromatography-Mass Spectrometry</td>
</tr>
<tr>
<td>IGT</td>
<td>Impaired Glucose Tolerance</td>
</tr>
<tr>
<td>IR</td>
<td>Insulin Resistance</td>
</tr>
<tr>
<td>IVF</td>
<td>In Vitro Fertilization</td>
</tr>
<tr>
<td>LBR</td>
<td>Live Birth Rate</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinizing hormone</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institute of Health</td>
</tr>
<tr>
<td>NIR</td>
<td>Non-Insulin Resistant</td>
</tr>
<tr>
<td>OGTT</td>
<td>Oral Glucose Tolerance Test</td>
</tr>
<tr>
<td>PCO</td>
<td>Polycystic Ovary</td>
</tr>
<tr>
<td>PCOS</td>
<td>Polycystic Ovary Syndrome</td>
</tr>
<tr>
<td>PE</td>
<td>Pre-eclampsia</td>
</tr>
<tr>
<td>PIH</td>
<td>Pregnancy Induced Hypertension</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PM</td>
<td>Perinatal Mortality</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Clinical Trial</td>
</tr>
<tr>
<td>RIA</td>
<td>Radioimmunoassay</td>
</tr>
<tr>
<td>RPL</td>
<td>Recurrent Pregnancy Loss</td>
</tr>
<tr>
<td>SGA</td>
<td>Small for Gestational Age</td>
</tr>
<tr>
<td>SHBG</td>
<td>Sex Hormone Binding Globulin</td>
</tr>
<tr>
<td>W/H ratio</td>
<td>Waist / Hip ratio</td>
</tr>
</tbody>
</table>
IV The history of the polycystic ovary syndrome

“Giovane rustica, maritata, modicamente pingue, et infeconda, con due ovaie più grandi del normale, come uova di colomba, bernoccolute, lucenti et biancastre...“ (Young peasant woman, married, moderately lump and infertile, with ovaries larger than normal, like doves’ eggs, lumpy, shiny and whitish…) This description from 1721 by the Italian scientist Antonio Vallisneri is probably the first text of polycystic ovary syndrome (PCOS)\(^1\).

In 1844 Chereau described sclerotic changes in the ovary\(^2\). The association between hyperandrogenism and diabetes was first described by Achard and Thiers in 1921, in the paper “Le virilism pilaire et son association à l’insuffisance glycolytique”\(^3\).

In 1935, the two American gynecologists, Stein and Leventhal published a classic paper on a series of seven patients\(^4\). They described bilaterally enlarged polycystic ovaries, “two to four times the normal size, sometimes distinctly globular”, “tunica thickened, though, and fibrotic”, “follicle cysts near the cortex and almost entirely confined to the cortex”. “The colour of the ovary was oyster gray with bluish areas where the cysts were superficial and appeared on the surface as sago-like bodies”. Other characteristics included oligo-menorrhea, hirsutism and infertility.
According to Stein and Leventhal the diagnosis was based on the clinical appearance: hirsuitism, amenorrhea, infertility and histological specimen of polycystic ovaries with prominent theca, fibrotic thickening of the tunica albuginea and multiple cystic follicles.

In the 1960s it became evident that the “Stein-Leventhal syndrome” represented a variety of clinical manifestations. In the early 1970s, the scientific community focused on the changed function in the hypothalamic – pituitary – ovarian axis, increased serum levels of LH, and elevated LH/FSH ratio.

In the late 1970s the concept of PCOS developed. Burghen et al. were first to point out a link between PCOS and insulin resistance. They demonstrated that hyperandrogenism correlate with hyperinsulinemia in obese PCOS women. This was an important milestone.

Later, ultrasound became central in visualizing polycystic ovaries (PCO) and diagnosing PCOS. Swanson et al. were the first to describe the typical ultrasonographic appearance of polycystic ovaries in 1981, and Adams et al. refined the criteria for the ultrasonographic diagnosis of PCO.

The first treatment for PCOS was bilateral wedge resection of the ovaries, suggested by Stein and Leventhal. They reported regain of regular menstruations in seven patients, and pregnancy in two women, after wedge resection. Half a century later Gjønnæs, a Norwegian gynecologist, introduced laparoscopic ovarian drilling, as a more conservative method with fewer problems with adhesions.
V Polycystic ovaries

a) Definition
PCO reflects a description of ovarian morphology, from histological visualization or ultrasound imaging. The first definition suggested by Adams et al. was 10 or more follicles arranged peripherally.

The definition for PCO was revised in 2003. Balen and co-workers suggested:

1. 12 or more follicles in each ovary, each follicle measuring 2-9 mm in diameter and/or
2. Ovarian volume >10ml

Stromal density and distribution of the follicles are not included in the revised definition of PCO. Transabdominal and transvaginal ultrasound examination methods correlate well, and both are acceptable tools for the diagnosis. The criteria for polycystic ovaries are not applicable for adolescent girls, women using contraceptive pills, and postmenopausal women. In menstruating women, examination should be performed on the third to the fifth day of the menstrual cycle.

b) Prevalence
The prevalence of PCO in the general population is reported to be between 17-22% when ovaries are assessed by transabdominal ultrasound. With transvaginal ultrasound the prevalence of PCO is reported slightly higher (21-28%). Younger women seem to have PCO more often than those above 35 years of age.

VI Polycystic ovary syndrome

a) Definition
Until 2003 there was no international consensus on the definition of PCOS. In the United States, the National Institute of Health (NIH) Conference on PCOS 1990 recommended that diagnostic criteria should include evidence of hyperandrogenism (clinical or
biochemical) and ovulatory dysfunction in the absence of non-classic congenital adrenal hyperplasia (CAH). Polycystic ovarian morphology was not considered essential. A clear definition of ovulatory dysfunction, hirsutism or hyperandrogenism was, however, not given\(^\text{19}\). PCOS according to this definition was recognized in three principal phenotypes: 1) women with hirsutism, hyperandrogenemia and oligo-ovulation, 2) women with hirsutism and oligo-ovulation and 3) women with hyperandrogenemia and oligo-ovulation.

In Europe, the definition of PCOS was restricted to a condition with polycystic ovaries, identified by ultrasonography and one or more of the following; oligoamenorrhea, hyperandrogenism, obesity, elevated serum testosterone and / or elevated LH concentrations\(^\text{19}\). Ovulatory dysfunction was not mandatory\(^\text{20,21}\).

The need for a universal agreement on the definition of PCOS was obvious. In Rotterdam in 2003, the European Society of Human Reproduction and Embryology (ESHRE) and the American Society of Reproductive Medicine (ASRM) achieved a new consensus\(^\text{22}\). The new definition reflects the awareness that PCOS represents a multitude of clinical expressions and emphasizes the importance of realising it.

According to the Rotterdam 2003 consensus, two of the following three criteria must be fulfilled for the diagnosis:

1. Polycystic ovaries; 12 or more follicles in each ovary, each follicle measuring 2-9 mm in diameter and/or ovarian volume >10ml. One polycystic ovary is sufficient for the diagnosis
2. Oligo-/anovulation; clinically diagnosed as oligo-/ amenorrhea, i.e. menstrual cycles longer than 35 days or less than 10 menstruations per year
3. Hyperandrogenism; clinical or biochemical

The clinical definition of hyperandrogenism includes: hirsutism, acne and androgen alopecia, but the evaluation of hirsutism is difficult, because of racial differences\(^\text{23,24}\). Cosmetic treatment abolishes the expression and although there exists standardised scoring, the Ferrimann-Gallwey score is seldom used\(^\text{25}\). The Rotterdam consensus on the definition of PCOS has not defined clinical hyperandrogenism. The definition of biochemical hyperandrogenism is not without problems;

1. Modern immunoassay methods in routine clinical practice have recently been shown to be inaccurate for measuring testosterone in women\(^\text{26}\).
2. Normative ranges are not established, and adjustment for age and BMI should be recommended.
3. Other androgens than testosterone should also be considered, especially DHEAS and androstenedione.

The diagnosis of PCOS should not be based on one single criterion, and it can be argued that PCOS is a diagnosis of exclusions. Congenital adrenal hyperplasia, non-classic congenital adrenal hyperplasia, Cushing syndrome, acromegaly and androgen secreting tumours should be ruled out.

It is important to realise that the Rotterdam criteria has expanded the definition of PCOS compared with the NIH criteria, and created two new phenotypes i.e. 1) women with PCO, hirsutism / hyperandrogenemia and regular ovulations and 2) women with PCO, oligo-ovulations and normal androgens.

b) Prevalence

Although PCOS occurs universally, the prevalence, the time of onset of the clinical symptoms, and the severity of clinical presentations differ between ethnic and racial groups. It is also possible that the occurrence of PCOS varies with time within a population, due to the association with insulin resistance and circulating insulin levels.

The reported prevalence of PCOS varies from 3 % to 11 % depending on diagnostic criteria used and the population studied. Prevalence studies according to the Rotterdam criteria are not yet available. Probably, the prevalence will be higher because the Rotterdam criteria have a wider definition of PCOS than the previously used definitions.

VII Pathogenesis

PCOS is a common, but complex disorder. Its etiology is poorly understood, and different hypotheses have been proposed. There is some evidence for a genetic predisposition. Environmental factors seem to play an important role in the clinical presentation of the disorder.
a) Genetic predisposition
There is a reported familial clustering of PCOS, which may suggest a genetic component of the disorder \(^{38-41}\). Hyperandrogenism is one of the important inheritable characteristics \(^{42}\). Confounding environmental factors, limited number of family members due to sub-fertility, heterogeneous phenotypes, and lack of a uniform definition of PCOS have made genetic studies difficult.

Insulin resistance and early male pattern baldness in men seems to be a male phenotype of PCOS \(^{43}\). There is evidence for an autosomal dominant genetic model with low penetrance \(^{44}\). Genes involved in the regulation of steroid hormone synthesis and androgen receptor modulation have been suggested as an explanation for the genetic basis of PCOS \(^{45,46}\). These genes are CYP17A gene which encodes for the P450c 17α enzyme, and CYP11A gene encoding for the P450 side-chain cleavage enzyme \(^{47}\). The insulin gene, variable number tandem repeat (VNTR) has also been associated with the disturbances of the carbohydrate metabolism in PCOS \(^{46}\). More than one gene seems to be involved. Hence, polygenic inheritance seems to be responsible in the majority of cases. Results are, however, not conclusive and larger studies are needed \(^{48}\).

In one study, Hispanic American, Japanese, and Italian women with PCOS were investigated \(^{49}\). They had similar androgen levels, insulin resistance and prevalence of polycystic ovaries, but the Japanese PCOS women were less hirsute and less obese than the others. This demonstrates that clinical expression might differ according to genetic differences in ethnic populations.

b) Prenatal factors
One hypothesis for the pathogenesis of PCOS, is that the developmental process in utero or in early postnatal life is influenced by genetic and environmental factors \(^{50,51}\).

Female rhesus monkeys exposed prenatally to increased levels of testosterone, (their mothers were treated with testosterone during pregnancy), exhibit abnormal LH secretion, abnormal insulin secretion, central obesity and hyper-androgenic anovulation as adult animals, and their menarche was delayed by six months \(^{52}\). Similar observations have been made in sheep \(^{53}\). In both species, the ovaries were enlarged with multiple antral follicles. The clinical picture was equivalent to PCOS in humans.

Androgens are potent gene transcription factors. They can interact with their own receptors and potentiate gene expression through serine phosphorylation of cAMP \(^{54}\).
Hence, there is a possibility that androgen excess in human fetuses results in imprinting, which later in life can result in the PCOS phenotype.

Ewes exposed to testosterone during pregnancy gave birth to small newborn lambs. This supports the concept that fetal growth restriction and postnatal catch-up growth, can be programmed by prenatal exposure to sex steroids.

Other hypotheses suggest that a hyper-androgenic fetal ovary or a hyper-androgenic adrenal cortex are sources for prenatal androgen excess. Androgen exposure in utero may diminish hormonal negative feedback on the hypothalamic-pituitary axis leading to increased LH amplitude and frequency. LH is an important stimulator of ovarian steroid hormone synthesis, and this may result in increased stimulation of androgen production and secretion from the ovaries later in life. The ovarian response to HCG and GnRH is exaggerated in women with PCOS. Both in vitro and in vivo studies have shown increased androgen production from the theca cells in PCOS women.

c) Environmental factors
Diet and physical activity have major influence on the severity and expression of PCOS. Calorie restrictions, leading to at least 5% weight loss, resulted in increased insulin sensitivity, decreased circulating insulin levels and ovulation.

A diet rich in carbohydrates and monosaturated fatty acids may adversely influence the metabolic manifestation of the syndrome. In Great Britain PCOS women from the Indian subcontinent have more pronounced insulin resistance, hirsutism, acne, and sub-fertility than Caucasian counterparts with similar BMI. Clinical and biochemical presentations seem to be influenced by diet and lifestyle factors.

d) Insulin resistance
It is reported on association between obesity, insulin resistance and impaired fertility in PCOS women. Although insulin resistance is not a criterion for the PCOS diagnosis, it is a central feature of the syndrome.

The definition of insulin resistance is based on the effect of insulin on glucose homeostasis. Insulin resistance may be defined as increased insulin demand to maintain blood glucose levels normal. Among the most frequently used methods to measure insulin resistance in large scale studies are: fasting insulin, insulin c-peptide, insulin levels during an oral glucose tolerance test (OGTT), and homeostasis assessment model (HOMA) and
hyperinsulinemic clamp. More sophisticated methods also exist, but they are not feasible in routine clinical use or large scale studies.

Anovulatory PCOS women are more insulin resistant and, thus, hyperinsulinemic compared to weight matched women with normal ovulations. Insulin resistance seems to be selective for fibroblasts, muscle cells and adipose tissue in PCOS.

Insulin stimulates androgen synthesis in both the ovaries and adrenals. Ovarian stroma, theca cells and the adrenals are not resistant to the effect of insulin on androgen synthesis. Further, insulin acts synergistically with LH and augments steroid synthesis in the ovaries, resulting in follicle arrest and anovulation.

Insulin also inhibits the synthesis of sex hormone binding globulin (SHBG) in the liver, resulting in higher levels of free testosterone.

Rhesus monkeys exposed to androgens in utero show impairment of insulin secretion and insulin action. Abott et al. hypothesized that hyperandrogenemia during fetal development has an effect on body fat distribution, leading to centralized fat distribution, which in turn predisposes to insulin resistance.

The timing of fetal exposure to hyperandrogenism seems important, as maternal injection of testosterone in the early gestation leads to impaired beta-cell function and diminished ability of pancreatic beta-cells to respond to hyperglycemic episodes. Testosterone exposure in late gestation seems to result in increased visceral adiposity and increased insulin resistance in monkeys.

e) Anthropologic reflections

Until recently it may have been advantageous for a woman to be hyper-androgenic. With increased physical strength she had increased working capacity, in hunter, gatherer and agricultural societies, and, hence a better chance for survival. Probably, she could also better defend herself and her offspring. Further, insulin resistance enhanced her ability to store energy as subcutaneous fat when food was abundant. This helped her through periods of starvation. Food was limited in most societies and the physical demands of everyday life so hard, that she did not develop a full-blown PCOS. Hence, her fertility would not be significantly reduced.
VIII Clinical presentations of PCOS

a) Menstrual disturbances
Menstrual disturbances are common among PCOS women. The typical pattern is infrequent menstruations and occasional spottings, frequently seen as a result of anovulation. The three largest studies estimate that 80-90 % of the PCOS women have oligo-amenorrhea19,70,71. Neither of these studies was based on the Rotterdam 2003 criteria.
A regular menstrual pattern is influenced by weight loss and weight gain, and obesity augments anovulation72.

b) Obesity
The prevalence of obesity varies largely among PCOS women, depending on the population studied and the diagnostic criteria used. It is estimated that up to half of the PCOS patients are overweight (BMI $> 25 \text{ kg/m}^2$) or obese (BMI $> 30 \text{ kg/m}^2$)61,73.
PCOS women usually have the so called “male pattern obesity” or “central obesity”, which is associated with insulin resistance, increased risk of cardiovascular disease and type 2 diabetes74,75.
It is a clinical experience that PCOS women date their debut of symptoms to a period of increase in body weight, which often coincidence with a time of decreased physical activity.

c) Hirsutism
The prevalence of hirsutism varies with the population studied. Hirsutism in women is male pattern of body hair growth and is a clinical sign of hyperandrogenemia. Androgens stimulate hair follicles to thicker and darker hair growth.
Typically, hirsutism is seen as excess facial hair and/or hair on the chest and lower abdomen. The Ferriman-Gallwey score can be used to objectively classify hirsutism25. In PCOS women, the incidence of hirsutism is as high as 65-70 %19,70,71. The prevalence and extent of hirsutism depend on the ethnicity of the group studied. Hirsutism in Japanese women with PCOS is less common49.
d) **Androgenic alopecia**
Androgenic alopecia is a male type of hair loss from the terminal hair of the scalp. From clinical experience, we believe that alopecia is under-diagnosed in Scandinavian women with PCOS. Balen and Franks estimated the prevalence of alopecia to 6% and 3 %, respectively, in PCOS women\(^{19,70}\). Interestingly, one study reported that of 89 women with androgenic alopecia, 67% had polycystic ovaries\(^76\).

e) **Acanthosis nigricans**
Acanthosis nigricans manifests as skin pigmentation and papillomatosis. It is associated with insulin resistance and increased insulin secretion. It has been suggested that the skin lesion is due to increased insulin stimulated melanin synthesis in the melanocytes of the dermis. Acanthosis nigricans is typically seen in areas with increased mechanical exposure, such as the neck, the armpits and the groin. It has been reported to be present in 3 % of women with PCOS and is more frequent in dark-skinned populations. \(^{19}\).

IX PCO, PCOS and early pregnancy complications

Infertility and sub-fertility is one of the main reasons for PCOS women to consult the health service. Increased risk for pregnancy complications has, however, not been acknowledged by clinicians, and this problem has not been a major topic in textbooks of obstetrics and gynecology.

The notion that PCOS patients had increased risk for early pregnancy loss (EPL) became evident by studies carried out on patients with recurrent pregnancy loss (RPL) and IVF treatment.

a) **PCO and early pregnancy loss**
In a pioneer work from 1988, Sagle and colleagues reported that 82% of 56 spontaneously ovulating women with recurrent pregnancy loss (RPL) had polycystic ovaries (PCO) compared to 18% among parous controls\(^77\). Later, four prospective studies confirmed a high prevalence of PCO (36-81 %) in women with RPL\(^{78-81}\). Sub-fertility and obesity are increased among women with RPL\(^{78,80}\). A retrospective study on 1060 IVF treated
women demonstrated that those with PCO had 36% spontaneous abortions compared to 24% among those with normal ovaries \(^\text{82}\) (Table 1).

However, one prospective study on lean, regularly menstruating women suffering from RPL, found that PCO did not predict poor pregnancy outcome \(^\text{81}\) (Table 1). Probably this can be explained by that, only a few women in this group of lean patients with regular menstruations and PCO had PCOS.

b) PCOS and early pregnancy loss

Homburg found, in a prospective study, that 11 of 27 PCOS women who became pregnant after pulsatile LH releasing hormone treatment experienced EPL. Two retrospective studies reported 42% and 62% EPL in PCOS women \(^\text{83,84}\) (Table 2). Clinically recognized EPL in a general population in Norway was estimated to be about 8-9% \(^\text{85}\). A prospective study on healthy women found 16 % EPL \(^\text{86}\).

There is increasing evidence that women diagnosed with PCOS have an increased risk for EPL. There seems to be a 2-4 fold increased risk, depending on the population studied and diagnostic criteria used.

The pathogenesis for early pregnancy loss in PCOS women is unknown. Hypersecretion of LH, hyperandrogenism and insulin resistance has been suggested as possible etiological factors.

1) Hypersecretion of LH

Elevated or disturbed LH secretion during the follicular phase may play a negative role for pregnancy outcome. Homburg et al. reported that PCOS women with EPL had high concentrations of LH during the follicular phase compared with PCOS women who continued the pregnancy \(^\text{87}\). High pre-pregnant LH levels predicted increased risk for early pregnancy loss in women suffering from RPL. Sixty five percent of the women who had LH levels above 10 IU/L in pre-pregnancy follicular phase experienced EPL \(^\text{88}\). In a prospective study among women with RPL, 81% had abnormalities in the LH secretion \(^\text{80}\). Study results are, however, somewhat diverging dependent on the LH measurement methods and the populations studied. Rai et al. reported that in spontaneously conceiving, normal weight women with RPL, LH or testosterone levels were not associated with the miscarriage rate \(^\text{89}\). Serial measurements or urinary samples are necessary, because of the pulsatile nature of LH secretion (Table 3).
Suggested mechanisms of action for abnormal LH secretion are premature oocyte maturation, follicle atresia and an androgen-dominated milieu in the endometrium.

Abnormal LH secretion in the follicular phase seems to have a negative impact on early pregnancy outcome.

2) Hyperandrogenism

Obesity and the accompanying insulin resistance will increase hyperandrogenemia in PCOS, by inhibiting the hepatic synthesis of sex hormone binding globulin (SHBG).

Tulppala reported that women with RPL with a new miscarriage in the index pregnancy had higher free testosterone and DHEAS levels than those who completed the pregnancy. Women with RPL have higher testosterone levels than normal fertile controls. Androgens may act as antagonists to estrogens in the endometrium. Okon et al. postulated that high levels of androgens might have a detrimental effect on the endometrial function resulting in miscarriages. Elevated androgen levels and increased number of androgen receptors in the endometrium might be, partly, responsible for the poor reproductive performance. Increased androgen levels in PCOS women may originate from the ovaries or the adrenals. Elevated androgen levels may directly or indirectly influence early pregnancy outcome (Table 4).

3) Insulin resistance

Women suffering from recurrent pregnancy loss are more insulin resistant (IR) than age, weight and race matched controls. Anovulatory PCOS women are more IR than weight matched ovulatory PCOS women. The majority of PCOS patients are obese.

Exercise and weight loss, will reduce insulin resistance and result in better reproductive health. Weight loss (mean 10.2 kg) in 67 obese infertile women, of whom 75% had PCOS, resulted in live born babies in 67% of the women.

Hyperinsulinaemia might affect pregnancy outcome through enhanced androgen production both in the ovaries and the adrenals. The androgen milieu interferes with normal endometrial function and development. Insulin stimulates PAI-1 synthesis and increased PAI-1 activity has been demonstrated in PCOS women with miscarriages.

Both obese and lean PCOS women are more IR than weight matched controls, and obesity worsens IR. IR has a negative influence on fertility and seems to result in low conception rate. In a study of 383 IVF/ICSI treated women, EPL was higher in obese...
women than in lean ones. Obesity seems to be an independent risk factor for EPL95. Wang and colleagues claim that a high risk of spontaneous abortion in PCOS is related to a high prevalence of obesity96 (Table 5).

Glycodelin is a glycoprotein produced by the secretory glands of the decidualized endometrium. Decreased serum concentration of glycodelin is associated with early pregnancy loss and recurrent spontaneous abortions97,98. PCOS women have low glycodelin concentrations, in particular when they experience EPL.99 Hyperinsulinemia seems to suppress endometrial secretion of glycodelin99. This could explain the deleterious effect of hyperinsulinemia on pregnancy.

In conclusion, increased insulin resistance and elevated insulin levels may be a metabolic mediator for reduced fecundity both in PCOS women and in obese women generally. Improving insulin sensitivity and reducing circulating insulin levels seem to improve fertility.
X PCOS and pregnancy complications in the second and third trimester

When evaluating pregnancy outcome data for pregnancies achieved by assisted fertilization, clinicians became aware that pregnancies in PCOS women comprised a special group, different from other groups receiving assisted fertilization. The incidences of pre-eclampsia and gestational diabetes mellitus (GDM) among PCOS women have been studied, but the results were contradictory. This may be due to classification difficulties, since the criteria used for diagnosing PCOS were not uniform, and the criteria for diagnosing GDM also differ between countries. It may also be due to the fact that the PCOS populations studied differ with respect to body mass index, parity, race and single vs. multiple gestations. The control groups, with whom the PCOS populations were compared, were also heterogenic (i.e., normal controls, or non-PCOS patients who received fertility treatment). With a few exceptions, the studies were retrospective. A review on studies dealing with the association between PCOS pregnancies and GDM, pre-eclampsia and prematurity follows in Table 6 to Table 9.

a) PCO, PCOS and gestational diabetes mellitus

The relationship between PCO and GDM in a prior pregnancy has been studied in Sweden, Finland and the United Kingdom (Table 6). The control groups consisted of women with previous normal pregnancies. The studies were performed 6-54 months post partum. In all, 189 women with previous GDM were included. The prevalence of PCO ranged from 40% to 50% in the GDM groups and from 3% to 27% in the control groups. Holte et al. reported that women with previous GDM were more obese, hirsute and had more irregular menstrual bleedings than the control group (101). Kousta et al. found that women with previous GDM were more obese and more insulin resistant than normoglycemic controls (103). No differences were observed in androgen levels. Koivunen et al., however, reported that former GDM patients were not only more insulin resistant, but also had higher adrenal androgen levels than age and parity matched controls (102).

These data indicate that as many as 30-50% of women with a history of GDM would meet the diagnostic criteria of PCOS, and that there is an association between GDM and PCOS. This association could, however, be explained by obesity.
In most studies, where the PCOS population had similar BMI as the control group, PCOS women did not have an increased risk for GDM. Radon et al., however reports an increased prevalence of GDM among PCOS women compared to age and weight matched normal controls. Mikola et al. found that PCOS was an independent predictor for GDM in singleton pregnancies. The reported incidences for GDM in PCOS women vary from 7.5% to 41% (Table 7). The reported incidence for normal controls in the same studies vary from zero to 9% (Table 7).

There seems to be a higher incidence of GDM in PCOS women, despite the observation that these patients increase their insulin secretion during pregnancy more than non-PCOS patients. The increment of insulin secretion seems to be similar in PCOS women, who develop GDM, and those who do not. This is in accordance with the hypothesis that insulin resistance is more important than the capacity for insulin secretion in the pathogenesis of GDM in PCOS women.

Women with PCOS should be routinely screened for GDM in pregnancy according to the recommendations from The Royal College of Obstetrics and Gynecology.

There is a need for standardized, prospective studies in which age, BMI and multiple gestations are accounted for to estimate the prevalence of GDM in PCOS women.

b) PCOS and pre-eclampsia

Diamant and colleagues were the first to study the prevalence of pre-eclampsia (PE) in PCOS patients. In a retrospective study, they found that PCOS women compared to normal primipara had a three fold higher risk for PE. De Vries et al. found similar results in a study of PCOS women and age and parity matched controls. Mikola et al., however, found that the increased risk of PE was confined to nulliparous women. Gjønness concluded that the high prevalence of PE (13 %) was related to high BMI. One other Norwegian study reported a 22% incidence of PE among insulin resistant PCOS patients. The only prospective study found a high rate of PE in PCOS women compared to normal controls. Diverging results make the conclusion difficult. It seems, however, that the symptoms of pre-eclampsia commence relatively late in gestation and is of a mild form in most PCOS pregnancies (Table 8).
c) **PCOS and preterm delivery**

There has been little focus on the possible association between PCOS pregnancies and preterm delivery. Studies dealing with pregnancy outcome in PCOS women sporadically present figures for preterm delivery, but somehow, there have been no focus on this topic. In five central studies on pregnancy outcome in PCOS women with singleton pregnancies the preterm delivery rate is remarkably high. Gjønnæs reported 10% preterm delivery rate before 32 gestational weeks in PCOS women previously treated with ovarian wedge resection. Bjercke et al. observed 23% preterm birth rate (<37 weeks) among PCOS women after infertility treatment. These two studies represent a Norwegian population with good socioeconomic standards, but they were from two different hospitals and 14 years apart. The prevalence of preterm deliveries (<37 weeks) in Norway has remained stable around 6-7% during this period of time. Hence, in Norwegian PCOS women the preterm delivery rate appears to be three fold increased. The preterm delivery rate in Venezuela among PCOS women was also surprisingly high (33% <37 weeks).

In contrast, two retrospective studies from the Czech Republic and Finland observed no increased risk for preterm delivery in PCOS patients (Table 9).

XI Androgen and estradiol levels in normal pregnancy

Steroid hormone measurements in pregnancy were used for fetal surveillance and monitoring of fetal wellbeing in the 1960s and 1970s, before ultrasonography and other more informative tools became the method of choice.

Placenta plays a major role in steroid hormone synthesis and elimination. Fetal and maternal DHEAS is metabolized to estrogens via androstenedione and testosterone. The process converting androgens to estrogens is called aromatization.

DHEAS: DHEAS in maternal serum is reduced in pregnancy as a result of a 6-10 fold increased clearance. At delivery, however, maternal DHEAS levels are increased compared with earlier in pregnancy. This might reflect both increased production in the adrenals as a result of stress and/or decreased clearance in connection with delivery. DHEAS concentration is lower in the umbilical vein compared to maternal serum.
Androstenedione: Androstenedione levels increase slightly throughout pregnancy and reaches a maximum at delivery. Androstenedione levels in the umbilical vein are about 1/3 of the concentration in maternal serum. At birth, androstenedione levels in umbilical vessels are higher in boys than in girls.

Total testosterone: The total testosterone concentration increases about 30% during pregnancy and is at its peak at delivery. Fetal sex does not affect testosterone levels in either maternal or umbilical cord serum. Ninety-eight percent of the total testosterone is bound to SHBG and albumin and only 2% is free and assumed to be biologically active.

SHBG: Estrogens stimulate the synthesis of SHBG in the liver, and there is a 3-4-fold increase of SHBG in the second half of the pregnancy.

Free testosterone levels: FT is consistently low throughout pregnancy. Fetal FT is higher than maternal levels at delivery.

Estradiol: Estradiol is increased throughout the pregnancy, and in particular between week 20 and 35 because of enhanced synthesis of DHEAS in the increasing mass of placental tissue. At the end of pregnancy, the placental capacity for aromatization decreases as a sign of placental ageing. Possibly, this explains the increased maternal levels of testosterone and androstenedione at the end of pregnancy.

XII Androgen excess, pregnancy complications and fetal programming

It has been proposed that fetal growth restriction resulting from placental dysfunction, maternal stress or malnutrition increases the risk for cardiovascular disease, diabetes mellitus type-2 and hypertension in adult life.

Imprinting is when expressions of genes are permanently altered, so that the same genotype is expressed as different phenotypes.

The effect of excess androgens in pregnancy has been studied in animal models. It has been speculated on a possible mechanism, of excess androgens, on pregnancy complications and on fetal programming. This opens the possibility that increased fetal androgen exposure is the common pathogenic pathway to cardiovascular disease, diabetes mellitus type-2 and PCOS in adult life.
Eisner et al. demonstrated that female offspring of rhesus monkeys exposed to androgen excess *early* in pregnancy had impaired beta-cell function as adult animals with decreased ability to respond to hyperglycemic stimulation. Monkeys treated with testosterone in *late* pregnancy gave birth to offspring who developed high BMI, increased insulin resistance and excess visceral fat. By adulthood, prenatally androgen exposed rhesus monkeys demonstrated increased LH secretion, anovulation, hyperandrogenism and polycystic ovaries, and this condition was very similar to PCOS in man. These studies suggest that excess prenatal androgen exposure can be responsible for fetal programming of impaired insulin secretion and action.

Prenatal testosterone excess in sheep caused fetal growth restriction and postnatal catch-up growth. Increased testosterone levels in ewes were associated with increased levels of IGFBP-1 and IGFBP-2 in the fetus post natally. Both IGFBP 1 and IGFBP 2 are inversely associated with fetal growth. Decreased IGF-1 in humans are early markers of future adult diseases, such as type 2 diabetes and cardio-vascular diseases.

The intriguing question is, if excess androgen exposure in utero is a possible common pathway, where do these androgens come from? Finally, what are the mechanisms by which increased prenatal fetal androgen exposure leads to growth restriction?

a) Placental dysfunction

Placental dysfunction, leads to reduced utero-placental blood flow and fetal growth restriction. In baboons, reduced utero-placental blood flow resulted in an increase in fetal androstenedione, a precursor for testosterone.

In an in vitro study, using three placentas from mothers with small for gestational age (SGA) infants and three placentas from mothers with appropriate for gestational age (AGA) infants, the placentas were perfused with DHEAS. There was an accumulation of androstenedione and testosterone and low estrone and estradiol levels in the placental fluid from the SGA infant placentas. In placentas from AGA pregnancies, no accumulation of androgens occurred. In an in vivo study, DHEAS was administrated to pregnant women with suspected SGA infants. Serial measurements of androgens and estrogens were performed for four hours. Mothers, who subsequently gave birth to SGA infants, had higher levels of androstenedione and testosterone measured in venous blood following DHEAS administration compared to those with AGA infants. This finding...
indicates that dysfunctional, damaged or sub optimally functioning placentas have reduced capacity to aromatize androstenedione and testosterone to estrogens.

In humans, elevated androgen levels in utero is seen in fetuses with congenital adrenal hyperplasia (CAH)132. In adult women with CAH, 80% have PCO133. There is also evidence that exposure to excess androgen in utero programs the hypothalamic-pituitary axis to hypersecretion of LH. Elevated LH levels and disturbed pulsatory pattern of LH is seen in anovulatory PCOS women56.

In conclusion, there is evidence that dysfunctional placentas can create androgen excess in utero, which in turn has a potential to modulate beta-cell function and insulin sensitivity, and to alter the hypothalamic-pituitary axis function concerning LH-secretion. In addition, excess androgens without placental dysfunction can result in growth restriction of the animal fetus. These alterations might result in adult diseases connected to the metabolic syndrome and PCOS.

\textbf{b) Pregnancy complications and excess androgens in humans}

Androgen excess has been investigated and described in different pregnant populations with different pregnancy complications. Most studies have focused on PE, PCOS pregnancies and GDM.

\textbf{1) Pre-eclampsia}

In searching for the etiology of pre-eclampsia, several studies have investigated the steroid hormone levels in pre-eclamptic women134-141. Most, but not all studies,137,139 report elevated maternal androstenedione and testosterone in pre-eclamptic pregnancies in the third trimester or at delivery134-136,138,140,141. It has been hypothesized that elevated testosterone levels are involved in the pathogenesis of PE. Jiricek et al. demonstrated that androstenedione levels correlated positively to blood pressure and uric acid levels in PE women138. The more severe the PE was, the higher were the androstenedione levels. Carlsen and colleagues found that women who eventually developed PE, had elevated androstenedione and testosterone levels already in the early second trimester136. It is not known whether the elevated androgens are pathogenic factors for the development of PE or a result of a dysfunctional placenta. One important question is if maternal serum levels of androgens reflect the fetal environment.

\textbf{2) Polycystic ovary syndrome}
Hyper-androgenemia is one of the cardinal characteristics of non-pregnant PCOS women. The androgen status in pregnant PCOS women is, however, scarcely studied. Sir-Peterman and colleagues examined 20 pregnant PCOS women and 26 normal pregnant women at gestational weeks 10-16 and later at gestational weeks 22-28111. DHEAS, androstenedione, testosterone and FTI tended to be higher in early pregnancy and were significantly higher in later pregnancy in PCOS women.

3) Gestational diabetes mellitus

In in vitro studies, insulin and IGF-1 regulate steroidogenesis in the human placenta137,142,143. Insulin stimulates 3-beta-hydroxysteroid dehydrogenase leading to increased synthesis of progesterone from pregnenolone142. Progesterone is further converted to 17-OH-progesterone and androstenedione. The same enzyme 3-beta-hydroxysteroid dehydrogenase facilitates the conversion of DHEA to androstenedione. Insulin also inhibits the aromatization of androstenedione to estradiol143. Theoretically, insulin acting by all three mechanisms, could lead to elevated androstenedione and testosterone levels in pregnant women. Dokras and colleagues demonstrated that high insulin levels during OGTT in pregnant women correlated to high total testosterone and high free testosterone levels144. Amniotic fluid from insulin treated diabetic mothers had higher testosterone levels than amniotic fluid from normal pregnant women57.

Insulin resistance and GDM are frequent in PCOS pregnancies, and insulin levels are higher in pregnant PCOS women than in normal pregnant women111. Hence, elevated insulin levels could explain the elevated androgen levels in pregnant PCOS women.
XIII Metformin

a) History

Galega officinalis or French lilac is a perennial herb that blooms in July and August in most of Europe. It can be grown as far north as Trondheim. The extract of _Galega officinalis_ contains isoamyline guanidine, a hypoglycemic compound, which was used to treat diabetes mellitus in medieval Europe145,146. The biguanide metformin was discovered in the 1950s to have hypoglycemic effect. Two guanine molecules that are dimethylated make up metformin. In 1957 metformin was introduced as an agent for treatment of diabetes mellitus type-2. The use of metformin was restricted during the next decades because of reports of deaths associated to lactic acidosis during metformin treatment.

The drug had a renaissance in the 1990s, when metformin was proven to be particularly useful in the treatment of diabetes mellitus type 2. Other manifestations of metabolic syndrome could also be treated with metformin.

b) Absorption

Metformin is mainly absorbed from the jejunum147,148. Absorption of an oral dose is incomplete, about 20-30 % of metformin passes out with feces. Oral bioavailability of 500-1500 g metformin is estimated to be 50-60 %. Absorption is complete within 6 hours of administration147-149. Peak plasma concentrations in healthy volunteers are reached within 2 hours147,148 and estimated half-life is 2.8 hours149. Co-administration of food slightly decreases the rate and extent of metformin absorption150.

c) Metabolism and elimination

Metformin is water-soluble and is rapidly eliminated by renal excretion due to active tubular secretion. Renal clearance of metformin correlates well to creatinine clearance.
both in healthy volunteers and patients with kidney disease. Thirty to forty percent is recovered in urine after oral administration. Metabolites of metformin have not been detected, and metformin does not bind to plasma proteins.

d) Metformin action
In non-diabetic patients, metformin does not influence blood glucose levels.

In patients with diabetes mellitus type-2, metformin lowers fasting blood glucose and improves glucose tolerance. The anti hyperglycaemic activity of metformin is achieved by stimulation of peripheral glucose uptake, reduced hepatic gluco-neogenesis and to a minor degree delayed intestinal absorption. Metformin has a major effect on hepatic gluco-neogenesis. In non-diabetic subjects metformin has been demonstrated to lower cholesterol and LDL/HDL cholesterol ratio.

A recent study suggests that the mechanisms of action of metformin might be through its activation of AMP-activated protein kinase.

Long-term metformin therapy moderately impair intestinal absorption of vitamin B₁₂ in 30-46 % of the patients. The reduced absorption of vitamin B₁₂ and folate, leads to increased homocysteine levels. Homocysteine is the only cardiovascular risk factor adversely affected by metformin treatment. Megaloblastic anemia is rare in long-term metformin therapy, and peripheral neuropathy has not been reported. In some, but not all studies, reduced levels of serum folate has been demonstrated after metformin treatment.

e) Adverse effect
Gastrointestinal side effects occur in about 20 % of patients. Adverse effects are usually transient and resolve within one month of treatment, but 5 % of the patients cannot tolerate the drug. Gastrointestinal side effects, such as bloatedness, nausea, vomiting, diarrhea, constipation and metallic taste are most frequent. Increasing the dose slowly and taking the drug together with food, can diminish side effects. A severe and feared adverse effect is the development of lactic acidosis. This occurs in less than 1 in 10 000 patient years, and it has never been observed when contraindications to metformin administration is adhered to. The contraindications to metformin are impaired renal and hepatic function, alcohol abuse, and serious cardiovascular and pulmonary diseases. These are all conditions that predisposes to lactic acidosis per se.
XIV Metformin treatment in non-pregnant PCOS women

Since the first report on successful treatment of PCOS women with metformin for a decade ago \(^{164}\), many trials have been performed, and metformin treatment of PCOS women has become widespread. However, large well-designed studies are scarce, and few studies have lasted longer than six months. Many questions are unanswered. Should all PCOS patients be treated with metformin? If not, how shall we select the women who will benefit from treatment? Which symptoms should or could be treated and for how long time? What are the long-term effects of metformin in PCOS? Most review articles conclude that, large randomized controlled trials are needed. One review from the UK’s National Institute of Clinical Excellence states that metformin can be used as adjuvant treatment to general lifestyle improvements, or in combination with clomiphene in women who have failed to ovulate on clomiphene alone \(^{165}\).

The metformin dosage used in PCOS treatment varies between studies. Most studies have used doses of 500 mg three times daily or 850 mg twice daily.

a) Effect on menstruation
Uncontrolled observational studies report restored regular menses in approximately 62% of PCOS women with irregular cycles \(^{166}\). Five RCTs reported significant improvement in menstrual cycles \(^{167-171}\). However, one trial found minimal or no difference in menstrual patterns \(^{172}\).

b) Ovulation induction
Nine studies have evaluated the effects of metformin on ovulation \(^{66,173-180}\). Four of these were RCTs \(^{173,176-178}\). The combined data from all nine studies indicate that around 60% of previously anovulatory and mainly obese PCOS patients ovulated on metformin treatment. The restoration of regular menses and ovulations in these patients were seen within 3 to 6 months \(^{166}\). Harborne et al. reviewed seven RCTs with respect to ovulation induction \(^{167,168,173,178,181-183}\). She concluded that one additional ovulation was attained in every 5 month interval with metformin compared to placebo \(^{184}\). Lord et al. reviewed seven placebo controlled trials and found that the odds ratio for metformin treated PCOS
women to ovulate was 3.88 compared to placebo treated women. Metformin also seems to induce ovulation in normo-androgenic anovulatory women.

Nestler and colleagues evaluated the effect of metformin combined with CC. They concluded that metformin in addition to CC enhanced ovulation in obese PCOS women. The odds ratio for ovulation was 4.41 in studies where metformin was combined with ovulation induction agent vs. ovulation induction agent alone. Non-obese PCOS women seemed to respond better to metformin treatment than obese PCOS women.

e) Pregnancy and live birth rate
There are no available data supporting improved pregnancy rate for metformin treatment alone. However, in overweight CC resistant PCOS women, six-months metformin treatment resulted in 32 live births among 54 women while 20 live births were achieved in 55 women treated with ovarian diathermy. Metformin combined with CC increased ovulation and pregnancy rate compared with CC alone. Among normal weight PCOS women, pre-treatment with metformin prior to conventional IVF/ICSI tends to improve pregnancy rates.

The impact of metformin on live-birth rate has not been proved.

d) Effects on weight reduction
Out of seven RCTs, which had weight as endpoint, six demonstrated reduction of body weight with metformin treatment compared with placebo. The studies lasted from one to six months and the average reduction in BMI was 4%. However, in a systematic review and meta-analysis of RCTs, Lord et al. concluded that there was no evidence that metformin caused weight reduction in PCOS women. The most recent prospective randomized study, which had BMI as a main outcome measure, reported that metformin significantly reduced body weight during an eight-months period of treatment. Weight reduction seems to be dose-related in obese PCOS women.

e) Effects on hirsutism
Six trials have examined the effect of metformin on hirsutism. Three trials demonstrated a statistically significant, but small reduction in the Ferriman-Gallwey score. The other three trials did not find any effect. The studies were small and had a short follow up time. Recently, a long-term RCT evaluated hirsutism as primary endpoint. Both
Ferriman-Gallwey score, mean hair diameter and patient perception showed that metformin had an effect on moderate to severe hirsutism in a 12-months perspective 184.

f) Effects on acne
There is essentially no data available.

g) Effects on androgen levels
In seven RCT the average reduction of androgen hormone levels (free testosterone, free androgen index and total testosterone) were around 20%, with wide variations, in the metformin groups 167,168,173,178,181-183. The data on SHBG are inconclusive 184.

XV. Safety aspects of metformin use in pregnancy

The present knowledge about the effect of metformin on the fetus is mainly based on animal studies, mice embryo experiments, case reports and clinical observations. Some reports are almost 45 years old, and the quality of the studies varies. The American Food and Drug Administration classifies metformin as a Category B drug, which is defined as:

"Either animal-reproduction studies have not demonstrated a fetal risk but there are no controlled studies in pregnant women or animal reproduction studies have shown an adverse effect (other than a decreased fertility), that was not confirmed in controlled studies in women in the first trimester (and there is no evidence of risk in later trimesters) 194.

a) Animal studies
Four studies in rat and mouse embryos have been published. Two studies from 1961 report that metformin passes the placenta 195, but it was not teratogenic when administered in high doses to pregnant rats 196 (Table 10). Two more recent studies on whole mouse embryo cultures, showed no teratogenic or toxic effect on embryo development 197,198, although Denno et al. reported delayed closure of the neural tube 198 (Table 10).
b) Studies on diabetic women

Placental passage: The first report on metformin passage through the placenta was based on detection of metformin in the amniotic fluid from two women who had used metformin in pregnancy [199]. Metformin was not found in fetal cord blood. A laboratory study of placentas from eight healthy women, reported that metformin did not influence glucose transport or uptake [200]. Hague et al. found metformin in cord blood from seven diabetic mothers [201].

Possible teratogenic effects: Any reported teratogenic effect of metformin should be evaluated with care. Most studies have been retrospective, descriptive and the prospective ones are not randomized. Until recently, the use of metformin in pregnancy was restricted to patients with diabetes mellitus type-2. Thus, the study populations consist of women with high risk for pregnancy complications and congenital fetal malformations. Diabetic mothers have higher incidence of fetal anomalies, possibly due to hyperglycemia in early pregnancy. The treatment period (pregnancy weeks) and the dosage used vary between different studies. Some of the studies were conducted in developing countries with considerable socioeconomic problems [202,203] (Table11).

There is no evidence of teratogenic effects of metformin on the human fetus (Table11). When compared with other diabetic women, congenital malformations were similar or fewer in the offspring of metformin treated women [199,202-204].

Perinatal morbidity and mortality: Except for one study [205], perinatal mortality and morbidity seem to be similar or lower in metformin treated diabetics compared with diet or insulin treated diabetics [202-204]. Hellmuth et al. reported increased prevalence of pre-eclampsia and perinatal mortality in metformin treated versus insulin or sulfonylurea treated diabetic women [206]. This study was retrospective and lasted for decades, and women in the metformin group were significantly more obese than women treated with sulphonylureas or insulin.

c) Studies on PCOS women.

Glueck and colleagues reported on a large number of PCOS patients treated with metformin in pregnancy [207]. Until April 2004, they had prospectively followed 126 PCOS women with 151 fetuses. All the women used metformin at the time of conception. The offspring of PCOS women were compared to gender specific data from the general American population, and among the 126 live born babies, they reported only two congenital birth defects; one sacrococcygeal teratoma and one tethered spinal cord.
Metformin did not influence birth length and weight, growth or motor-social development in the first 18 months of life.

In conclusion, so far, there is insufficient evidence to decide whether or not metformin has teratogenic effects (Table 10 to Table 12).
In 1998, I heard a very inspiring lecture about PCOS, by Dr Sven M. Carlsen. The endocrinological approach to PCOS was a new aspect for me, and many of my colleagues at the Department of Obstetrics and Gynecology. After several creative discussions we agreed to initiate a small study involving 45 non-pregnant PCOS women, followed up and treated for 14 weeks208. This successful co-operation was continued by a six-months study on 50 non-pregnant PCOS women209. The first paper in this thesis is based on these two studies.

Being an obstetrician and gynecologist, it was natural to focus on PCOS and pregnancy. In 2000, when we planned the study, the general scientific focus was on problems connected to infertility treatment. The reports of Velazquez and Glueck on metformin treatment of pregnant PCOS women were unpublished84,210. The few studies investigating pregnancy complications in PCOS women indicated an elevated risk for gestational diabetes and pre-eclampsia. We suspected that hyperandrogenemia was involved in the pathogenesis. The idea emerged to treat PCOS women with metformin throughout pregnancy, hypothesizing that it would reduce maternal androgen levels, and thus, influence pregnancy outcome.
XVII Aims of the studies

Study I:
1) To investigate the clinical, biochemical and ultrasonographic characteristics of non-pregnant, Scandinavian PCOS women and to evaluate possible differences between eumenorrhoic and oligoamenorrhoic PCOS women (Paper I)

Study II:
1) To investigate possible effect of metformin on androgen levels in pregnant PCOS women (Paper II)

2) To investigate a possible effect of metformin on pregnancy outcome in PCOS women (Paper II)

3) To investigate the trans-placental passage of metformin in PCOS women (Paper III)

4) To analyze if metformin influenced the acid-base status of the newborn (Paper III)

5) To investigate a possible effect of metformin on C-reactive protein levels and indices of coagulation factors and fibrinolysis in pregnant women with PCOS (Paper IV)
XVIII Material and methods

Paper I
In two prospective studies, we used identical inclusion and exclusion criteria and definition for PCOS. Clinical, biochemical and ultrasonographic data from screening consultations in these two studies are the underlying material for the present paper.

Inclusion criteria were polycystic ovaries (defined as ≥ 9 sub-capsular follicles with a diameter of 3-8 mm), identified by transvaginal ultrasonography, and age between 18 and 40 years. In addition, at least one of the following criteria had to be fulfilled; testosterone > 2.5 nmol/l, SHBG < 30 nmol/l, fasting C-peptide > 1.0 nmol/l, oligoamenorrhea, or hirsutism, judged clinically as male pattern excessive growth of body hair.

Exclusion criteria included pregnancy, breast-feeding, known liver disease, alanine aminotransferase > 60 IU/l, creatinine > 130 µmol/l, known alcohol abuse, diabetes mellitus and treatment with oral glucocorticoids. Congenital adrenal hyperplasia was excluded by 17-hydroxyprogesterone measurements.

We collected data from 95 PCOS women and we excluded 15 patients from the analyses. Six women were excluded because of hormonal contraception use at the time of screening evaluation, and six because of BMI< 25 kg/m². In one woman ovarian insufficiency has been overlooked and two women was not fasting when blood samples were drawn.

The remaining 80 women were recruited between December 1999 and June 2001 from the gynecological or endocrinological outpatient clinics at Trondheim University Hospital or by advertisement in the local newspaper. All participants presented one or more of the following clinical problems; anovulatory infertility, oligoamenorrhea or hirsutism.

Retrospectively, we evaluated the participating patients according to the “Rotterdam Consensus” criteria from 2003 and found that all women met the criteria for PCOS according to the new guidelines.

Paper II – IV
These three papers are based on a study population of 40 pregnant PCOS women with singleton pregnancies included in a RCT. Two women withdrew within two weeks after inclusion, because of motivation failure. Thirty-eight women completed the study. The
participants were recruited from October 2000 to March 2003 from the gynecological and infertility outpatient clinic. Two of the 38 women, also participated in study I (Paper 1) described above.

The diagnosis of PCOS was based on the criteria described in Study 1. All the patients met the Rotterdam criteria for PCOS, when this was assessed retrospectively. Inclusion criteria were PCOS diagnosis, singleton viable fetus between gestational week 5 and 12 and maternal age of 18 – 40 years at inclusion. We chose to include a broad spectrum of PCOS patients with no restrictions regarding mode of conception and metformin pretreatment.

To avoid clustering of participants in the trial, a pharmacist performed stratification according to metformin use at conception and the patients were block randomized. Blood samples were drawn at inclusion and at gestational weeks 19, 32 and 36. Oral glucose tolerance test were performed at inclusion and at gestational weeks 19 and 32. When pregnancy complications occurred, all patients were examined, followed up and treated according to clinical routines in Norway.

Blood samples

Testosterone and androstenedione analyses:

For testosterone analysis, we initially used the commercially available Elecsis 2010 method, which was the routine method used at the Department of Clinical Chemistry, The University Hospital of Trondheim. Elecsis 2010 (Roche-Boehringer-Mannheim) is a competitive ELISA method. This method is automated, quick and relatively inexpensive. Unfortunately, we were not aware of the report by Tayeb and colleagues. She found that none of the ten most used, commercially available immunoassay methods were sufficiently reliable for the low testosterone concentrations seen in women. Most methods overestimate low concentrations of testosterone. Elecsis 2010, however, underestimate testosterone values in women.

In addition, we suspected that androstenedione values measured by Immulite 2000, an automated immunoassay, were imprecise. According to advice from reviewers and specialists in clinical chemistry, we reanalyzed our material. We chose Diagnostic Products Corporation (DPC) Coat-A-Count (Los Angeles, CA). This method is a RIA method, which turned out to slightly overestimate the low testosterone values compared to isotope-dilution gas chromatography-mass spectrometry (ID/GC-MS) in the study of Tayeb. This overestimation is assumed to be an effect of interference with other androgen metabolites. Torjesen reported that RIAs agreed well with the ID/GC-MS, although
interferences happen. To solve this problem an extraction was performed before testing.

Analysis of metformin concentration in serum

Immediately after, and independently of the mode of delivery, blood samples were drawn from the antecubital vein from the mother, and samples both from the umbilical artery and vein. Information, about the last capsules of metformin taken before delivery, was registered. Metformin in serum was analyzed by liquid-chromatography-mass spectrometry method.

Statistical analyses

Paper I and II

Values are reported in means and standard deviations for continuous normally distributed variables. Categorical variables are presented as numbers and percents. Differences between the study groups were compared with two tailed t-tests for independent samples. Non-parametric tests, Mann-Whitney, for independent sample were used where normality could not be assured. Pearson’s correlation coefficient was used for correlation analyses. Simple linear regression analyses were used to investigate linear trends. Fisher’s exact test was used for evaluation of discrete data. Data were analyzed according to the intention to treat principle (Paper II).

Paper III and IV

Values are reported as medians and inter quartile ranges (IQR). For correlation analyses Spearman’s rank test were used. In Paper IV values are log transformed to overcome uneven distribution. General linear model was used for repeated measures (Paper IV).
XIX Main results

Study I
“Clinical, biochemical and ultrasonographic characteristics of Scandinavian women with PCOS” (Paper I)
 1) Except for thicker endometrium and smaller ovarian volume in regularly menstruating women, there were no clinical or biochemical differences between eumenorrhoic and oligoamenorrhoic PCOS women. There was a positive linear trend for increasing BMI with increasing number of diagnostic criteria met.

Study II
“Metformin reduces pregnancy complications without affecting androgen levels in pregnant PCOS women: results of a randomized study” (Paper II)
 1) Metformin did not influence androgen levels in pregnant PCOS women.
 2) None of the women in the metformin group experienced severe pregnancy complications. Seven women experienced severe pregnancy complications in the placebo group.

“Placental passage of metformin in women with polycystic ovary syndrome” (Paper III)
 2) Metformin passes freely the placenta. At the time of birth, the fetus is exposed to therapeutic metformin concentrations.
 3) Metformin does not seem to influence pH levels in the umbilical artery.

“The beneficial effect of metformin on pregnancy outcome in PCOS women is not associated with major changes in CRP or indices of coagulation” (Paper IV)
 4) Metformin treatment in pregnancy did not result in major changes in C-reactive protein, D-dimer, antithrombin III, activated protein C resistance and activated partial thromboplastin time. Protein C increased slightly in the metformin group.
XX

Discussion and interpretation of the results

Paper I

In 1999 to 2001, when this study was planned and performed, there was no general agreement on the definition of PCOS. We discussed whether or not we should include “normal weight” (BMI < 25 kg/m2) PCOS women. There was a widespread opinion, that slim PCOS women differed from obese, not only in the pathogenesis of the disease, but also in clinical features and prognosis. They might not only represent a subgroup, but perhaps a separate entity. Therefore, we chose to include those with BMI above 25 kg/m2. Today, however, we would have used the Rotterdam criteria, without selection according to BMI.

After Carmina and Lobo presented their study results suggesting that almost 75% of hyper-androgenic, normally menstruating women had evidence of PCOS, we decided to assess, if eumenorrhoic and oligomenorrhoic patients differed in clinical or biochemical characteristics. Our study confirmed that normally menstruating Scandinavian women can have PCOS and this is important to know in everyday clinical practice.

There has been, and still are, an ongoing discussion about the implications of PCOS on the present and future health of these women. Are these possible implications due to PCOS per se, or are they related to other endocrine and metabolic changes secondary to overweight and adiposity? The present study seems to strengthen the view that obesity is involved in the pathogenesis of PCOS. The severity of PCOS was positively correlated with increasing obesity.

Paper II

This paper was a pilot study with a limited number of participants. The primary aim of the study was to investigate possible differences in androgen levels between metformin and placebo treated pregnant PCOS women. Power calculations were made from change assumptions in testosterone levels. Metformin effects on the pregnancy outcomes were secondary outcomes. We assumed that there might be minor differences in clinical outcomes. We were very surprised by the results. The pilot study was meant to be a
feasibility study, and to form the basis for power calculations of a full-scale study on pregnancy outcome.

Among women, who had been pregnant before, almost half of the previous pregnancies had ended as spontaneous abortions. This is well in line with other retrospective reports on pregnancy outcome in PCOS women (Table 2).

The pregnancy related complications were unexpectedly high among placebo treated women. This is so, even if we take in to account that prospective follow-up studies are more “accurate” in identifying pathology. We believe that the women included in this study had severe PCOS. They sought help for their condition, and they were motivated to participate in a study.

We believe that pregnancies in PCOS women should be regarded as high-risk pregnancies.

We included both normal weight and overweight women independent of mode of conception. Women, who conceived on metformin treatment, were also included. As metformin treatment has become widespread among Norwegian PCOS women, this reflects the real world in clinical practice. Pre-study metformin treatment could theoretically have influenced our results. Indeed, nineteen women used metformin at conception. Thus, we did a stratified block randomization to control for pre-randomization use of metformin.

Eleven of 22 women in the placebo group used metformin at inclusion, and 8 of 18 women in the metformin group used metformin at inclusion. Even if pre-study metformin could influence pregnancy complications, which we do not know, this influence would be equally distributed between the two randomized groups.

The minimum two days “wash-out” period may be insufficient to abolish any metformin effects, although $t_{1/2}$ for metformin is 1.5-4.5 hours in non-pregnant women. Only seven women had a “wash-out” period shorter than two weeks. Exploratory analyses with exclusion of these seven patients did not change the results materially.

Metformin was surprisingly well tolerated in pregnancy. None of the participant stopped medication, and only six women used reduced dosage. Three of these six women received metformin and three received placebo.

Testosterone and androstenedione measurements were a problem. Isotope-dilution gas chromatography-mass spectrometry (ID/GC-MS) is considered as the gold standard. This method does not suffer from cross reactivity and matrix effects. It is, however, expensive.
and laborious, and it was not available for us at the time of the study. In Norway, it is still not available for androgen analyses in serum.

Steroid hormones, i.e. androgens are commonly analyzed by commercially available automated immunoassays. Immunoassays use either radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA) method for testosterone measurements. Traditionally, testosterone immunoassays involve extraction of structurally related molecules, which can interfere with the results.

Testosterone and androstenedione values are presented according to Elecsis 2010 and RIA methods after extraction (Table 12). Testosterone and androstenedione values differed in the two analyzes, but the conclusion is unchanged; metformin does not influence androgen levels in pregnant PCOS women.

Paper III
There is, in the present study, no evidence that metformin has any teratogenic or adverse effects on the mother or the fetus. The present study demonstrates that metformin passes the placenta to the fetus, and that some hours after ingestion, concentrations tended to be higher in the umbilical artery than maternal serum. In adults, metformin is eliminated by renal tubular secretion. Hence, one may speculate that metformin is excreted to the amniotic fluid and reabsorbed to the fetal circulation by swallowing. This could explain the higher concentrations found in the umbilical artery.

Possible long-term effects of metformin in the offspring are unknown. Theoretically, metformin can alter or modulate metabolic pathways in the fetus. It is of utmost importance to follow up children exposed to metformin in utero in RTCs.

Paper IV
Elevated CRP levels in early pregnancy have been associated with pregnancy complications such as GDM, pre-eclampsia and fetal growth restriction in non-PCOS women. Metformin has been reported to decrease CRP levels in non-pregnant PCOS women. Impaired fibrinolytic capacity has been demonstrated in PCOS women. It was a logical step to investigate the possible effect of metformin on CRP levels and coagulation indices. However, we found no major effect of metformin on the measured parameters that could explain the effect of metformin on pregnancy complications.
XXI Conclusions

We found no major differences in oligoamenorrhoic and eumenorrhoic PCOS women with respect to clinical and biochemical parameters, except for thicker endometrium and smaller ovarian volume. Obesity seemed to worsen the clinical presentation of PCOS.

PCOS is associated with an increased risk for pregnancy related complications. The results indicate that PCOS pregnancies should be regarded as high-risk pregnancies. Metformin is well tolerated in pregnancy. It seems to prevent pregnancy complications in the second and third trimester in PCOS women. Metformin passes the placenta, and the fetus is exposed to therapeutic levels of metformin. However, metformin have no major effects on androgens, CRP or coagulation factors. How metformin exerts its possible effect on pregnancy outcome is unrevealed.

XXII Final reflections and future aspects

One great challenge for future research is to motivate women to participate in randomized, placebo-controlled trials. Many women seem to be convinced of the positive effects of metformin on pregnancy, by the information they receive from the web, and they are not willing to “risk” to end up with placebo in a trial. To communicate and interpret scientific results in a sober and nuanced way to a general population is a major task and a great challenge. Also doctors should understand that it is unwise to advocate metformin treatment in pregnancy before solid, reliable data are available.

The present data are encouraging, but before routine use of metformin can be recommended to pregnant PCOS patients, our results must be confirmed by at least one well-designed large-scale study.

If the results are confirmed by a larger randomized controlled trial, there are still many questions to answer:

- What is the mechanism of action, by which metformin exerts its effect on pregnancy complications? What are the pregnancy complications that metformin can prevent?
• Which patients should be recommended to use metformin in pregnancy? All PCOS women, only those with earlier complications or only obese PCOS women? Or just those who conceive on metformin?

• When should one start and stop the treatment and what is the optimal dose that should be used? Should there be given additional folic acid or vitamin B₁₂?

• Are there any negative consequences of stopping metformin use in pregnancy?

• How does metformin influence the offspring on short or long-term basis? As long as we do not know the long-term effects of antenatal metformin exposure, follow-up of the offspring from clinical trials should be compulsory.

As a continuum of my thesis, a prospective randomized, double blind, multi-centre study initiated from our department was started up in February 2005. We aim to include 300 - 350 pregnant PCOS patients, treat them with metformin or placebo and follow them throughout pregnancy. The offspring will be followed at least to the age of 18 years. This will hopefully provide some of the answers, - and most certainly raise new questions.
Tables
Table 1. Early pregnancy loss and PCO

<table>
<thead>
<tr>
<th>Name of first author and year of publication</th>
<th>Study design</th>
<th>Participants</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagle M 1988</td>
<td>Retrospective</td>
<td>56 women with RPL 11 parous women</td>
<td>RPL ⇒ 82% PCO Controls ⇒ 18% PCO</td>
<td>High prevalence of PCO among women with RPL</td>
</tr>
<tr>
<td>Balen AH 1993</td>
<td>Retrospective</td>
<td>1060 IVF pregnancies</td>
<td>27 % EPL 5 % ectopic pregnancies PCO ⇒ 36% EPL Normal ovaries ⇒ 24% EPL</td>
<td>Higher EPL rate among women with PCO compared to women with normal ovaries</td>
</tr>
<tr>
<td>Watson 1993</td>
<td>Prospective</td>
<td>21 women with RPL 10 multiparous controls</td>
<td>RPL Controls ⇒ 81% PCO Controls ⇒ 10% PCO High LH ⇒ 81% EPL</td>
<td>High LH among women with RPL High testosterone in the RPL group</td>
</tr>
<tr>
<td>Tulppala M 1993</td>
<td>Prospective</td>
<td>50 women with RPL 20 healthy controls</td>
<td>RPL ⇒ 44% PCO Controls ⇒ 12% PCO</td>
<td>High prevalence of PCO among women with RPL</td>
</tr>
<tr>
<td>Clifford K 1994</td>
<td>Prospective</td>
<td>500 women with RPL</td>
<td>56 % PCO 31 % obesity 32 % sub-fertility</td>
<td>High prevalence of PCO among women with RPL</td>
</tr>
<tr>
<td>Liddell HS 1997</td>
<td>Prospective</td>
<td>73 women with RPL Mean BMI 24 kg/m²</td>
<td>36 % PCO 64 % normal ovaries</td>
<td>PCO in RPL did not predict poor pregnancy outcome</td>
</tr>
<tr>
<td>Rai R 2000</td>
<td>Prospective cohort</td>
<td>486 RPL</td>
<td>RPL ⇒ 41% PCO</td>
<td>High LH was not associated with high miscarriage rate PCO morphology did not predict pregnancy loss in RPL women conceiving spontaneously</td>
</tr>
</tbody>
</table>

RPL = Recurrent Pregnancy Loss
EPL = Early Pregnancy Loss
LH = Luteinizing Hormone
Table 2. Early pregnancy loss and PCOS

<table>
<thead>
<tr>
<th>Name of first author and year of publication</th>
<th>Study design</th>
<th>Participants</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homburg R 1988</td>
<td>Prospective</td>
<td>54 PCOS women treated with pulsatile LH releasing hormone</td>
<td>41 PCOS women ovulated 27 PCOS women became pregnant 11 PCOS women experienced EPL</td>
<td>High LH levels associated negatively with conception and pregnancy outcome High rate of EPL in PCOS women</td>
</tr>
<tr>
<td>Glueck CJ 2002</td>
<td>Retrospective</td>
<td>40 PCOS women</td>
<td>100 pregnancies in 40 PCOS women 62% of the pregnancies ended as EPL</td>
<td>High rate of EPL in PCOS women</td>
</tr>
<tr>
<td>Jakubowicz DJ 2002</td>
<td>Retrospective</td>
<td>31 PCOS women</td>
<td>42% EPL</td>
<td>High rate of EPL in PCOS women</td>
</tr>
</tbody>
</table>

EPL = Early Pregnancy Loss
LH = Luteinizing Hormone
Table 3. Early pregnancy loss and LH

<table>
<thead>
<tr>
<th>Name of first author and year of publication</th>
<th>Study design</th>
<th>Participants</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homburg R 1988</td>
<td>Prospective</td>
<td>54 PCOS women</td>
<td>LH levels lower in those who conceived vs. not conceived</td>
<td>Low LH levels associated both with conception and continued pregnancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LH levels higher in those who miscarried vs. continued pregnancy</td>
<td></td>
</tr>
<tr>
<td>Regan L 1990</td>
<td>Prospective</td>
<td>197 women with spontaneous ovulations</td>
<td>LH < 10U I/L: 88% pregnant, 12% EPL</td>
<td>High pre-pregnancy follicular phase LH is negative for conception and pregnancy outcome</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LH > 10 UI/L: 67% pregnant, 65% EPL</td>
<td></td>
</tr>
<tr>
<td>Watson H 1993</td>
<td>Prospective</td>
<td>21 women with RPL, 10 multi-parous controls</td>
<td>RPL ⇒ 81% PCO, Controls ⇒ 10% PCO, High LH ⇒ 81% EPL</td>
<td>High LH among women with RPL</td>
</tr>
<tr>
<td>Clifford K 1996</td>
<td>Prospective, Randomised, controlled</td>
<td>106 RPL</td>
<td>LH suppression ⇒ 52% LBR, No LH suppression ⇒ 63% LBR</td>
<td>Pre-pregnancy LH suppression did not improve life birth rate</td>
</tr>
<tr>
<td>Rai R 2000</td>
<td>Prospective cohort</td>
<td>486 RPL</td>
<td>RPL ⇒ 41% PCO</td>
<td>High LH was not associated with high miscarriage rate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCO morphology did not predict pregnancy loss in RPL women conceiving spontaneously</td>
</tr>
</tbody>
</table>

LBR = Life Birth Rate
RPL = Recurrent Pregnancy Loss
LH = Luteinizing Hormone
Table 4. Early pregnancy loss and androgens

<table>
<thead>
<tr>
<th>Name of first author and year of publication</th>
<th>Study design</th>
<th>Participants</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tulppala M 1993</td>
<td>Prospective</td>
<td>50 women with a history of RPL 20 healthy controls</td>
<td>Before index pregnancy: ↑ total testosterone and DHEAS levels in women with EPL vs. successful pregnancies</td>
<td>↑ androgens in women with EPL</td>
</tr>
<tr>
<td>Watson H 1993</td>
<td>Prospective</td>
<td>21 women with RPL 10 multiparous controls</td>
<td>↑ testosterone in RPL compared to controls</td>
<td>↑ testosterone in the RPL group</td>
</tr>
<tr>
<td>Okon MA 1997</td>
<td>Retrospective</td>
<td>43 regularly menstruating women with RPL 18 fertile controls</td>
<td>↑ testosterone, ↑ DHEAS, ↑ androstenedione, ↑ FTI and ↓ SHBG in the RPL group vs. controls</td>
<td>RPL women, with or without PCOS, had higher androgen levels than normal controls. High androgen concentrations may result in abnormal secretory endometrium</td>
</tr>
</tbody>
</table>

RPL = Recurrent Pregnancy Loss
DHEAS = Dehydroepiandrosterone Sulphate
EPL = Early Pregnancy Loss
FTI = Free Testosterone Index
SHBG = Sex Hormone Binding Globuline
Table 5. Early pregnancy loss, obesity and insulin resistance

<table>
<thead>
<tr>
<th>Name of first author and year of publication</th>
<th>Study design</th>
<th>Participants</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>
| Dale PO 1998 | Prospective | 42 IVF treated PCOS women | 17 IR PCOS
BMI higher in IR PCOS
Higher FTI and lower SHBG in the IR-PCOS | IR PCOS had higher cancellation of IVF treatment, and lower conception rate than NIR PCOS |
| Clark AM 1998 | Prospective | 67 obese infertile women completing diet and life style program
20 obese infertile drop outs (75% of the participants had PCOS) | Completing study: ↓ BMI (3.7) and
18% vs. earlier 75% EPL
67% LBR
Drop outs: ↓ BMI 0.4
No pregnancies | Weight loss in obese PCOS women improves fertility |
| Huber-Buchholz M 1999 | Prospective | 18 anovulatory PCOS
10 ovulatory PCOS
Weight matched | Decreased insulin sensitivity and increased insulin levels in anovulatory PCOS women | Exercise and sensible eating with minimal weight loss improve reproductive health in obese PCOS women |
| Fedorcsak P 2000 | Retrospective | 383 IVF/ICSI patients Lean (BMI < 25) vs. Obese (BMI ≥ 25) | 12 % EPL in the lean group
22 % EPL in the obese group | Obesity is an independent risk factor for early pregnancy loss |
| Wang JX 2001 | Retrospective | 376 PCOS women of 1018 infertile women | 25 % EPL in PCOS | High risk of EPL in PCOS could be due to obesity |
| Craig LB 2002 | Prospective | 74 RPL vs. 74 controls
Age, race, BMI matched | Fasting insulin and HOMA-IR higher in the RPL group | Increased prevalence of IR in RPL patients |

IR = Insulin resistance
NIR = Non-Insulin Resistant
HOMA-IR = Homeostasis Model Assessment – Insulin Resistance
RPL = Recurrent Pregnancy Loss
<table>
<thead>
<tr>
<th>Name of first author and year of publication</th>
<th>Study design</th>
<th>Participants</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holte J 1998</td>
<td>Retrospective / prospective</td>
<td>34 former GDM vs. 36 earlier normal pregnancies 4.5 years after index pregnancy</td>
<td>GDM: 41% PCO Controls: 3% PCO</td>
<td>High prevalence of PCO among former GDM patients GDM + PCO: 50% PIH, Higher BMI, higher androgens</td>
</tr>
<tr>
<td>Anttila L 1998</td>
<td>Retrospective</td>
<td>31 former GDM vs. 31 earlier normal pregnant women age and weight matched 6-16 months after delivery</td>
<td>GDM: 45% PCO Controls: 7% PCO</td>
<td>Women with PCO had high risk for GDM</td>
</tr>
<tr>
<td>Kousta E 2000</td>
<td>Postpartum follow up</td>
<td>91 former GDM 73 normo-glycemic controls Twins included</td>
<td>20 and 29 months post partum GDM: 52% PCO vs. 27% controls ↑ BMI + W/H ratio ↑ Fasting insulin</td>
<td>High incidence of PCO among GDM patients</td>
</tr>
<tr>
<td>Koivunen R 2001</td>
<td>Case control</td>
<td>33 former GDM 48 age and parity matched controls</td>
<td>GDM: 40% PCO Controls: 17% PCO</td>
<td>Women with previous GDM have often PCOS and are more insulin resistant</td>
</tr>
</tbody>
</table>

BMI = Body Mass Index
GDM = Gestational Diabetes Mellitus
PIH = Pregnancy Induced Hypertension
OGTT = Oral Glucose Tolerance test
Table 7. PCOS and gestational diabetes mellitus

<table>
<thead>
<tr>
<th>Name of first author and year of publication</th>
<th>Study design</th>
<th>Participants</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wortsman J 1991</td>
<td>Retrospective</td>
<td>53 PCOS women 2306 general pregnancies Maternal age and ponderal index similar</td>
<td>PCOS: 7.5% GDM Controls: 6.6% GDM Macrosomia similar</td>
<td>No increased risk for GDM in PCOS women</td>
</tr>
<tr>
<td>Lanzone A 1995</td>
<td>Prospective</td>
<td>12 PCOS 12 healthy controls</td>
<td>Increased insulin secretion during pregnancy in PCOS</td>
<td>Increased risk for GDM in PCOS women</td>
</tr>
<tr>
<td>Urman B 1997</td>
<td>Retrospective</td>
<td>47 PCOS 100 healthy controls Slim population</td>
<td>PCOS: 13% GDM Controls: 2% GDM</td>
<td>Increased risk of GDM and hypertensive disorder in pregnant PCOS women</td>
</tr>
<tr>
<td>Radon PA 1999</td>
<td>Retrospective cohort</td>
<td>22 PCOS 66 age and weight matched normal controls. Not matched for parity</td>
<td>PCOS: 41% GDM OR:22 ↑ pre-eclampsia OR:15 ↑ compl. deliv. OR:5.5</td>
<td>Women with PCOS have increased risk for GDM, pre-eclampsia and delivery complications</td>
</tr>
<tr>
<td>Fridström M 1999</td>
<td>Case-control</td>
<td>33 PCOS 66 Fertility treated women Similar weight. Twin pregnancies included</td>
<td>GDM similar in PCOS, controls and other infertile women</td>
<td>No difference in blood glucose levels</td>
</tr>
<tr>
<td>Vollenhoven B 2000</td>
<td>Case-control</td>
<td>60 PCOS 17 hypogonadism 12 unexplained infertility 60 BMI, age and race matched controls</td>
<td>GDM similar in PCOS, controls and other infertile women</td>
<td>No difference in prevalence of GDM in PCOS vs. age, BMI and race matched controls</td>
</tr>
<tr>
<td>Mikola M 2001</td>
<td>Retrospective</td>
<td>80 PCOS women with 99 pregnancies 737 controls</td>
<td>PCOS: 20% GDM Controls: 9% GDM</td>
<td>Increased risk of GDM in PCOS women (Explained largely by increased BMI)</td>
</tr>
<tr>
<td>Bjorck S 2002</td>
<td>Retrospective</td>
<td>29 NIR PCOS 23 IR PCOS compared to 355 women who received AR</td>
<td>PCOS: 7.7% GDM AR: 0.6% GDM</td>
<td>GDM is increased in PCOS pregnancies</td>
</tr>
<tr>
<td>Glueck CJ 2002</td>
<td>Retrospective</td>
<td>72 PCOS pregnancies (obese women) No controls</td>
<td>31% GDM</td>
<td>High rate of GDM in PCOS women</td>
</tr>
<tr>
<td>Sir-Peterman T 2002</td>
<td>Prospective</td>
<td>20 PCOS 26 Controls with singleton pregnancies</td>
<td>PCOS: 15% GDM Controls: 0%</td>
<td>High rate of GDM in PCOS women</td>
</tr>
<tr>
<td>Türhan NO 2003</td>
<td>Retrospective</td>
<td>38 PCOS 136 Non-PCOS (random selection)</td>
<td>Main predictor for GDM is BMI >25 kg/m²</td>
<td>High IGT among PCOS women is related to obesity</td>
</tr>
<tr>
<td>Name of first author and publication year</td>
<td>Study design</td>
<td>Participants</td>
<td>Results</td>
<td>Conclusions</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Diamant YZ 1982</td>
<td>Retrospective</td>
<td>33 PCOS with 70 pregnancies 39 anovulatory women with 71 pregnancies 1000 normal pregnant primipara</td>
<td>PCOS: 28.5% PE Anovulatory: 16.5% PE Controls: 11% PE</td>
<td>Higher prevalence of PE in PCOS</td>
</tr>
<tr>
<td>Gjønnæs H 1989</td>
<td>Retrospective</td>
<td>69 PCOS after LOD No controls</td>
<td>Perinatal mortality: 9% PE: 13% GDM: 8% Preterm (< 32 weeks): 10%</td>
<td>The high prevalence of PE and GDM is related to high BMI</td>
</tr>
<tr>
<td>Urman B 1997</td>
<td>Retrospective</td>
<td>47 PCOS 100 healthy slim controls</td>
<td>PCOS: 25% PIH Controls: 8% PIH</td>
<td>Increased risk of PIH in PCOS women Difference between lean PCOS and lean controls</td>
</tr>
<tr>
<td>De Vries 1998</td>
<td>Retrospective</td>
<td>81 PCOS pregnancies 81 age and parity matched controls</td>
<td>PCOS: 26% PIH, 14% PE Controls: 25% PIH, 2% PE Similar BMI</td>
<td>PCOS women are at higher risk of PE</td>
</tr>
<tr>
<td>Fridstrøm M 1999</td>
<td>Retrospective</td>
<td>33 PCOS 66 No-PCOS Twins included</td>
<td>↑ risk of hypertension in the III. trimester</td>
<td>Increased risk of PIH in PCOS women</td>
</tr>
<tr>
<td>Kashyap S 2000</td>
<td>Retrospective</td>
<td>22 PCOS 27 infertile controls Singleton</td>
<td>PCOS: 32% PIH Controls: 3.7% PIH Age, BMI, parity similar</td>
<td>Increased risk of PIH in PCOS</td>
</tr>
<tr>
<td>Mikola M 2001</td>
<td>Retrospective</td>
<td>80 PCOS with 99 pregnancies 737 controls</td>
<td>PCOS: 4% PE Controls: 2% PE</td>
<td>PE and prematurity not associated with PCOS</td>
</tr>
<tr>
<td>Bjercke S 2002</td>
<td>Retrospective</td>
<td>29 NIR PCOS 23 IR PCOS singleton pregnancies 355 AR women</td>
<td>PCOS: 13% PE (IR: 22%, and NIR: 7%) AR-controls: 7% PE</td>
<td>Higher incidence of PE in IR-PCOS compared to NIR-PCOS and controls</td>
</tr>
<tr>
<td>Sir-Peterman T 2002</td>
<td>Prospective</td>
<td>20 PCOS 26 Singleton controls</td>
<td>PCOS: 10% PE Controls: 0% PE</td>
<td>High rate of PE in PCOS</td>
</tr>
<tr>
<td>Haakova L 2003</td>
<td>Retrospective</td>
<td>66 PCOS 66 age and weight matched controls Singleton and multiple gestations mixed</td>
<td>No difference between the groups</td>
<td>PCOS not associated with high risk of PE</td>
</tr>
</tbody>
</table>

LOD = Laparoscopic ovarian drilling IR = Insulin Resistant PE = Pre-eclampsia PIH = Pregnancy Induced Hypertension NIR = Non Insulin Resistant AR = Assisted Reproduction
Table 9. PCOS and preterm delivery

<table>
<thead>
<tr>
<th>Name of first author and year of publication</th>
<th>Study design</th>
<th>Participants</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gjønnæss H 1989</td>
<td>Retrospective</td>
<td>69 PCOS after LOD</td>
<td>Preterm: < 32 weeks: 10% Perinatal mortality: >16 weeks: 7.3%</td>
<td>High prevalence of preterm delivery.</td>
</tr>
<tr>
<td>Mikola M 2001</td>
<td>Retrospective and twins</td>
<td>80 PCOS women with 99 pregnancies 737 controls</td>
<td>PCOS: Controls: 10% preterm In singleton pregnancies</td>
<td>No significant difference in preterm</td>
</tr>
<tr>
<td>Jakubowicz DJ 2002</td>
<td>Retrospective</td>
<td>18 PCOS no metformin 62 PCOS + metformin</td>
<td>PCOS no metformin: 33% preterm PCOS + metformin: 15% preterm</td>
<td>High incidence of preterm delivery (<37 weeks) in PCOS</td>
</tr>
<tr>
<td>Bjercke S 2002</td>
<td>Retrospective?</td>
<td>29 NIR PCOS 23 IR PCOS singleton 355 AR women</td>
<td>PCOS: AR-controls: 23% preterm 15% preterm</td>
<td>High incidence of preterm delivery (<37 weeks) in PCOS</td>
</tr>
<tr>
<td>Haakova L 2003</td>
<td>Retrospective</td>
<td>66 PCOS 66 age and weight matched controls</td>
<td>Same gestational age in PCOS and controls if only singletons were studied</td>
<td>No difference in length of gestation in singleton pregnancies</td>
</tr>
<tr>
<td>Glueck CJ 2004</td>
<td>Prospective</td>
<td>90 PCOS women with 97 pregnancies. Metformin treatment in pregnancy. 252 Healthy controls</td>
<td>PCOS: Controls: 20% preterm 10% preterm</td>
<td>Increased risk for preterm delivery (<37 weeks) in PCOS</td>
</tr>
</tbody>
</table>

LOD = Laparoscopic Ovarian Drilling
AR = Assisted Reproduction
NIR = Non Insulin Resistant
IR = Insulin Resistant
Table 10. Animal and in vitro studies on metformin effects in pregnancy

<table>
<thead>
<tr>
<th>Name of the first author and year of publication</th>
<th>Study design</th>
<th>Subjects</th>
<th>Metformin dose and treatment period</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen Y 1961</td>
<td>Laboratory study</td>
<td>Mouse</td>
<td>Radio-labeled metformin</td>
<td>Not available</td>
<td>No visible radioactivity in the fetus after 1 and 4 hours. The placenta was radioactively marked</td>
</tr>
<tr>
<td>Tuchman-Duplessis H Mercier-Parot L 1961</td>
<td>Laboratory study</td>
<td>Rat</td>
<td>500 – 1000 mg/kg (10-20 x human therapeutic dose)</td>
<td>Less than 0.5% major malformations</td>
<td>Metformin is not teratogenic</td>
</tr>
<tr>
<td>Denno KM 1994</td>
<td>Laboratory study In vitro</td>
<td>Mouse embryo culture</td>
<td>0.15-1.8 mg/ml metformin solution 30 hours of culture</td>
<td>No alterations of embryonic growth, no major malformations. Delayed closure of neural tube</td>
<td>Metformin is not teratogenic</td>
</tr>
<tr>
<td>Bedaiwy MA 2001</td>
<td>Laboratory study In vitro</td>
<td>Two-cell mouse embryos</td>
<td>5-100 µg/ml, 72 hours of culture</td>
<td>Normal embryonic development at 5 folds higher doses than the maximum clinical dose recommended for humans</td>
<td>Metformin is not teratogenic. No direct toxic effect on mouse embryo development.</td>
</tr>
</tbody>
</table>

Table 11. Studies on diabetic women treated with metformin in pregnancy

<table>
<thead>
<tr>
<th>Name of first author and year of publication</th>
<th>Study design</th>
<th>Participants</th>
<th>Metformin dose and treatment period</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cited in Stowers JM and Clark TM 1975</td>
<td>Analysis method: Pignard 1962</td>
<td>Amniotic fluid from two women</td>
<td>850 mg daily and 500 mg daily</td>
<td>75µg/100 mL and 90µg/100 mL metformin</td>
<td>Metformin passes the placenta</td>
</tr>
<tr>
<td>Stowers JM and Sutherland HW 1975</td>
<td>Retrospective</td>
<td>5 women with diabetes</td>
<td>1000 – 3000 mg daily Mean 40 days before delivery</td>
<td>All babies survived</td>
<td>Metformin is not teratogenic</td>
</tr>
<tr>
<td>Pedersen J Mølstedt-Pedersen L 1975</td>
<td>Retrospective</td>
<td>15 women with GDM</td>
<td>1500 mg daily Entire pregnancy Mostly in III. trimester</td>
<td>Perinatal mortality in the metformin treated group similar to the total diabetic population</td>
<td>Metformin is not teratogenic No evidence of adverse effect of metformin in mother or child</td>
</tr>
<tr>
<td>Coetzee EJ 1979</td>
<td>Retrospective</td>
<td>33 women with diabetes type-2 and GDM</td>
<td>1500 – 3000 mg daily in the II. and III. trimester</td>
<td>2 perinatal deaths (one malformation and one prematurity)</td>
<td>Lower mortality and morbidity in the metformin treated group compared to no treatment or insulin treatment groups</td>
</tr>
<tr>
<td>Coetzee EJ 1984</td>
<td>Retrospective</td>
<td>21 women with diabetes type-2</td>
<td>1000 – 3000 mg daily in the I. trimester</td>
<td>1 minor congenital abnormality</td>
<td>Metformin is not teratogenic No difference in perinatal mortality and morbidity in diabetic women who received metformin during the first trimester and those who did not</td>
</tr>
<tr>
<td>Piacquadio K 1991</td>
<td>Observational</td>
<td>One woman with diabetes type-2</td>
<td>Dose unknown I.trimester</td>
<td>Healthy baby</td>
<td>Metformin is not teratogenic</td>
</tr>
<tr>
<td>Hellmuth E 1993</td>
<td>Retrospective</td>
<td>7 women with diabetes type-2</td>
<td>1000 - 2000 mg daily 5-39 weeks treatment</td>
<td>No congenital malformations</td>
<td>Metformin is not teratogenic</td>
</tr>
<tr>
<td>Sarlis NJ 1998</td>
<td>Case report</td>
<td>One hyper-androgenic patient</td>
<td>1000 mg daily From weeks 14 - 30</td>
<td>Decreased maternal total testosterone level</td>
<td>Metformin is not teratogenic No malformations or other adverse effects</td>
</tr>
<tr>
<td>Hellmuth E 2000</td>
<td>Retrospective Not randomized</td>
<td>50 women with diabetes type-2 or GDM Compared with 42 insulin treated women</td>
<td>Accumulated dose: 1,5 – 507 g. Gestational weeks 13-40</td>
<td>Metformin group: 31% PE 12% PM Insulin group: 10% PE 1.3% PM</td>
<td>Prevalence of pre-eclampsia and perinatal mortality higher in the metformin group</td>
</tr>
</tbody>
</table>

PE = Pre-eclampsia
PM = Perinatal Mortality
GDM = Gestational Diabetes Mellitus
Table 12. Studies on PCOS women according to metformin use in pregnancy

<table>
<thead>
<tr>
<th>Name of first author and year of publication</th>
<th>Study design</th>
<th>Participants</th>
<th>Metformin dose and treatment period</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jakubowicz DJ 2002</td>
<td>Retrospective</td>
<td>65 PCOS women 68 pregnancies 32 PCOS women - no treatment</td>
<td>1000 - 2000 mg daily Before conception and throughout pregnancy</td>
<td>1 achondrodysplasia (inherited disorder)</td>
<td>Metformin is not teratogenic</td>
</tr>
<tr>
<td>Glüeck CJ 2004</td>
<td>Prospective</td>
<td>126 PCOS women 151 pregnancies</td>
<td>1500 – 2550 mg daily Before conception and throughout pregnancy</td>
<td>1 sacrococcygeal teratoma 1 tethered spinal cord</td>
<td>Metformin is not teratogenic. No negative effect on birth size or psychomotor development during the first 18 month of life</td>
</tr>
<tr>
<td>Group</td>
<td>Inclusion</td>
<td>Change to week 19</td>
<td>Change to week 32</td>
<td>Change to week 36</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean (SD)</td>
<td>N</td>
<td>Mean (SD)</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Elecsys 2010 + RIA</td>
</tr>
<tr>
<td>Androstenedione (nmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>21</td>
<td>23.4 (16.6)</td>
<td>18.2 (12.1)</td>
<td>21</td>
<td>-0.5 (16.6)</td>
</tr>
<tr>
<td>Metformin</td>
<td>17</td>
<td>20.0 (5.8)</td>
<td>14.3 (6.2)</td>
<td>17</td>
<td>1.6 (5.7)</td>
</tr>
<tr>
<td>Testosterone (nmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>21</td>
<td>4.2 (2.6)</td>
<td>4.4 (2.9)</td>
<td>21</td>
<td>-1.0 (2.4)</td>
</tr>
<tr>
<td>Metformin</td>
<td>17</td>
<td>3.7 (1.5)</td>
<td>3.5 (1.8)</td>
<td>17</td>
<td>-0.8 (1.1)</td>
</tr>
<tr>
<td>Free Testosterone Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>21</td>
<td>4.3 (3.8)</td>
<td>4.0 (2.8)</td>
<td>21</td>
<td>-3.0 (3.4)</td>
</tr>
<tr>
<td>Metformin</td>
<td>17</td>
<td>3.7 (2.6)</td>
<td>3.2 (2.2)</td>
<td>17</td>
<td>-2.7 (2.5)</td>
</tr>
</tbody>
</table>
XXIV References

1. Vallisneri A. Storia della generazione dell’uomo e dell’animale. 1721.

21. van Santbrink EJ, Hop WC, Fauser BC. Classification of normogonadotropic infertility: polycystic ovaries diagnosed by ultrasound versus endocrine characteristics of polycystic ovary syndrome.

42. Legro RS, Bentley-Lewis R, Driscoll D, Wang SC, Dunaif A. Insulin resistance in the sisters of women with polycystic ovary syndrome: association with

67. Willis DS, Watson H, Mason HD, Galea R, Brincat M, Franks S. Premature response to luteinizing hormone of granulosa cells from anovulatory women with

68. Plymate SR, Matej LA, Jones RE, Friedl KE. Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. J Clin Endocrinol Metab 1988; 67(3):460-464.

miscarriage rate during pregnancy in women with polycystic ovary syndrome. Metabolism 1999; 48(12):1589-1595.

144. Dokras A, Spaczynski RZ, Behrman HR, Duleba AJ. Testosterone levels in pregnant women correlate with the insulin response during the glucose tolerance test. Fertil Steril 2003; 79(3):492-497.

155. Ebner F, Sørgel F. Expert report on clinical documentation. 1997; Metformin "Weifa".

Paper I - IV
Paper I and II are not included due to copyright issues.
Placental passage of metformin in women with polycystic ovary syndrome

Metformin passes the placenta. Fetal serum levels are comparable with maternal values. (Fertil Steril® 2005; 83:1575–8. ©2005 by American Society for Reproductive Medicine.)

The biguanide derivative metformin is an oral hypoglycemic drug used in type 2 diabetes. It improves glucose tolerance mainly by decreasing hepatic glucose production and by increasing insulin sensitivity. Metformin is a highly water-soluble drug. It is not metabolized and is eliminated through the kidneys by tubular secretion (1–3). The recognition that metformin induces ovulation in many women with polycystic ovary syndrome (PCOS) (4, 5) has resulted in more or less controlled use of metformin in the first trimester, although it is not licensed for use in pregnancy.

Recent studies indicate that metformin might reduce pregnancy complications such as gestational diabetes and premature delivery in women with PCOS (6–8). As the incidence of type 2 diabetes increases also in the younger age groups, metformin will probably be more extensively used in pregnant women in the future. The effect of metformin on the fetus is essentially unknown. However, teratogenic effects have not been reported in humans (8–10).

Data on the passage of metformin across the placenta are few and contradictory. A study in rodents suggested no placental passage of metformin (11); in humans, placental glucose uptake seems unaffected by metformin (12).

In a recent report, metformin was detected in umbilical cord blood at delivery (13). However, in that small study, arterial and venous umbilical cord blood were not analyzed separately and it is unclear whether the maternal venous blood samples were obtained at delivery or earlier during pregnancy. Moreover, as the maternal venous and the cord blood samples were not obtained at the same time interval relative to the last dose intake of metformin, the study design is inappropriate to provide a precise quantitative estimate of the transplacental passage of the drug.

The aim of our study was to investigate to what extent metformin passes to the fetus in women with PCOS. Because metformin may induce lactic acidosis, we also investigated if metformin affected the acid–base status of the newborn.

The study population has been described in detail elsewhere (8). In brief, 18 pregnant women with PCOS were treated with metformin, 850 mg twice daily. The women started treatment between gestational weeks 5 and 12 (on average, at gestational week 8) and continued the medication until delivery. One woman withdrew within 2 weeks after inclusion because of motivation failure. The remaining 17 women completed the study. One woman gave birth in an ambulance without any possibilities for blood sampling, and blood samples from another one were missing for administrative reasons. Thus, the results are presented for a total of 15 women.

All participants received written and individual-verbal diet and lifestyle counseling at their inclusion to the study in early pregnancy. Thereafter, treatment with metformin (metformin, 425-mg capsules; Weifa AS, Oslo, Norway) was initiated. All participants used 850 mg, once daily, during the first week and 850 mg, twice daily (1700 mg/day), for the rest of the study period. Three of the 15 women used a reduced dosage (850 mg/day) because of gastrointestinal side effects. Written informed consent was obtained from each patient before inclusion in the study, and the declaration of Helsinki was followed throughout the study. The Committee for Medical Research Ethics of Health Region IV, Norway, and The Norwegian Medicines Agency approved the study.

Blood samples from an antecubital vein of the mother and the umbilical artery and umbilical vein were separately drawn within 1 hour after delivery. Blood samples were centrifuged at room temperature within 30 minutes, and the serum was stored (8 to 36 months) at −70°C until analysis. Immediately after delivery, the pH, base excess (BE), \(P_{O_2} \), and \(P_{CO_2} \) were measured in the umbilical artery blood using a Rapidlab 248pH/Blood Gas Analyzer (Bayer Corp., Tarrytown, NY) with reagents and calibrators supplied by the manufacturer.

Metformin in serum was analyzed by a liquid chromatography–mass spectrometry method. In brief, metformin was precipitated from serum according to the procedure of Zhang et al. (14) with the modifications of Chen et al. (15). The mass spectrometric analysis was performed on an Agilent 1100 LC-MSD single quadrupole instrument (Agilent Technologies, Palo Alto, CA). Metformin and the
TABLE 1

Metformin concentrations in maternal and umbilical cord blood in women with polycystic ovary syndrome treated with metformin (850 mg, twice daily).

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Last drug intake before sampling (hours)</th>
<th>Maternal serum concentration (µmol/L)</th>
<th>Umbilical vein serum concentration (µmol/L)</th>
<th>Umbilical artery serum concentration (µmol/L)</th>
<th>pH in umbilical artery blood</th>
<th>Base excess in umbilical artery blood (mmol/L)</th>
<th>Po2 in umbilical artery blood (kPa)</th>
<th>Pc02 in umbilical artery blood (kPa)</th>
<th>APGAR score at 1, 5, and 10 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>13.73</td>
<td>12.54</td>
<td>11.94</td>
<td>7.04</td>
<td>−7.5</td>
<td>1.09</td>
<td>11.72</td>
<td>7, 9, 10</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>0.68</td>
<td>2.31</td>
<td>2.81</td>
<td>7.25</td>
<td>−4.2</td>
<td>2.37</td>
<td>7.10</td>
<td>9, 10</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>2.80</td>
<td>3.96</td>
<td>5.02</td>
<td>7.25</td>
<td>−4.5</td>
<td>2.79</td>
<td>7.02</td>
<td>9, 10</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>1.59</td>
<td>1.96</td>
<td>2.06</td>
<td>missing</td>
<td>missing</td>
<td>1.45</td>
<td>6.52</td>
<td>9, 10</td>
</tr>
<tr>
<td>5a</td>
<td>17</td>
<td>1.90</td>
<td>2.92</td>
<td>3.25</td>
<td>7.34</td>
<td>−0.1</td>
<td>2.46</td>
<td>6.95</td>
<td>8, 10</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>0.86</td>
<td>2.81</td>
<td>3.21</td>
<td>7.24</td>
<td>−5.7</td>
<td>2.49</td>
<td>7.24</td>
<td>9, 10</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>2.02</td>
<td>3.24</td>
<td>3.16</td>
<td>7.30</td>
<td>−0.2</td>
<td>2.49</td>
<td>7.24</td>
<td>9, 10</td>
</tr>
<tr>
<td>8a</td>
<td>32</td>
<td>2.08</td>
<td>0.21</td>
<td>0.26</td>
<td>7.33</td>
<td>−3.2</td>
<td>2.94</td>
<td>5.89</td>
<td>9, 10</td>
</tr>
<tr>
<td>9</td>
<td>unknown</td>
<td>3.60</td>
<td>5.92</td>
<td>6.47</td>
<td>7.26</td>
<td>−8.7</td>
<td>3.61</td>
<td>5.54</td>
<td>9, 10</td>
</tr>
<tr>
<td>10</td>
<td>unknown</td>
<td>6.29</td>
<td>5.30</td>
<td>4.76</td>
<td>missing</td>
<td>missing</td>
<td>missing</td>
<td>missing</td>
<td>10, 10, 10</td>
</tr>
<tr>
<td>11</td>
<td>unknown</td>
<td>0.64</td>
<td>1.83</td>
<td>1.36</td>
<td>7.28</td>
<td>−9.8</td>
<td>2.35</td>
<td>4.88</td>
<td>9, 10</td>
</tr>
<tr>
<td>12</td>
<td>unknown</td>
<td>4.32</td>
<td>7.84</td>
<td>6.81</td>
<td>missing</td>
<td>missing</td>
<td>missing</td>
<td>missing</td>
<td>4, 7, 8</td>
</tr>
<tr>
<td>13</td>
<td>unknown</td>
<td>0.05</td>
<td>1.25</td>
<td>1.55</td>
<td>7.27</td>
<td>missing</td>
<td>missing</td>
<td>missing</td>
<td>9, 10, 10</td>
</tr>
<tr>
<td>14</td>
<td>>48</td>
<td>0.00b</td>
<td>0.00b</td>
<td>0.00b</td>
<td>7.28</td>
<td>0.3</td>
<td>0.63</td>
<td>8.03</td>
<td>9, 10</td>
</tr>
<tr>
<td>15a</td>
<td>>48</td>
<td>0.00b</td>
<td>0.00b</td>
<td>0.00b</td>
<td>7.27</td>
<td>−13.7</td>
<td>3.93</td>
<td>3.56</td>
<td>9, 10</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>1.50</td>
<td>2.81</td>
<td>3.16</td>
<td>7.27</td>
<td>−4.5</td>
<td>2.46</td>
<td>6.95</td>
<td>9, 10</td>
</tr>
</tbody>
</table>

Median (IQR)^e

| | (0.50; 3.60) | (1.25; 5.30)^c | (1.36; 5.02)^d | (7.25; 7.30) | (−8.7; −0.2) | (1.45; 2.94) | (5.54; 7.24) |

a Metformin dose: 850 mg daily.

b Below the limit of detection of the method.

c Metformin concentration in umbilical vein versus maternal serum: \(P = .017 \).

d Metformin concentration in umbilical artery versus maternal serum: \(P = .033 \).

e Interquartile range.

Fertility and Sterility

internal standard diphenhydramine were monitored at m/z 130.1 and 256.2, respectively, using electrospray positive ionization. Unknown samples were analyzed together with quality control samples and calibrators covering a range from 0.05 (limit of detection) to 50 μmol/L.

All statistical procedures were performed using the SPSS version 11.0 for Windows (SPSS Inc., Chicago, IL). For comparative statistics, Wilcoxon’s test and Spearman’s rank correlation test were used, as the data were not normally distributed. Consequently, data are presented as medians and interquartile ranges. P<.05 was considered statistically significant.

Metformin concentrations were detectable in 13 of the 15 maternal serum samples, ranging from 13.78 μmol/L 4 hours after drug intake, to 0.08 μmol/L 32 hours after last drug intake. Except for two patients (patients 1 and 10), metformin was detected in both umbilical vein and umbilical artery in higher concentrations than in maternal serum (Table 1). Metformin concentrations in both the umbilical vein (P=.017) and the artery (P=.033) were higher than metformin levels in maternal venous blood. Maternal metformin concentrations were significantly correlated to metformin levels in the umbilical vein (R²=0.96, P<.001) and umbilical artery (R²=0.90, P<.001). Concentrations in the umbilical artery and umbilical vein were close to equal (see Table 1). The pH, BE, P O2, and P CO2 in umbilical artery and umbilical vein were close to equal (see Table 1). The pH, BE, P O2, and P CO2 in umbilical artery blood did not statistically significantly correlate to the metformin concentration in maternal serum or umbilical artery or umbilical vein serum.

The present finding, that a significant amount of metformin passes to the fetus, supports the results of Hague et al. (13). However, contrary to that study, we found that the metformin concentrations in both umbilical vein and vein serum were roughly the same as in maternal serum. The reason for the discrepancy between these studies is that in the study by Hague et al. (13) the maternal venous blood samples were obtained 4.5 hours after the intake of the last metformin dose whereas umbilical cord blood was obtained 10 hours after intake of the last metformin dose. In contrast, in our study, all blood samples were obtained simultaneously. Given the short elimination half-life of metformin (1.5 to 4.5 hours), a delay in umbilical blood sampling relative to maternal venous blood sampling will erroneously underestimate the transplacental passage of metformin.

Our results indicate that metformin passes freely through the placenta and that the fetus is exposed to higher concentrations of metformin than the mother. The knowledge on metformin metabolism in the fetus is scarce. In adults, metformin is eliminated by renal tubular secretion. Hence, one may speculate that in the fetus some of the metformin is excreted to the amniotic fluid (16) and reabsorbed to the fetal circulation by swallowing. Metformin is then eliminated from the fetus by passage through the placenta into the maternal circulation.

This would explain our findings of higher fetal metformin concentrations in all but two fetuses as compared with the maternal levels. The two latter cases represent the two mothers with the highest metformin concentrations, most likely due to a short time interval from metformin intake. The fact that the fetus seems to be exposed to higher concentrations than the mother for a substantial part of a dose interval is noteworthy. It indicates that longitudinal studies on the effect of metformin exposure in pregnancy should be conducted in the offspring into adult age. Also, the incidence of metabolic syndrome should be investigated in these individuals.

In conclusion, the results from the present study indicate that metformin freely passes the placenta and that the fetuses are exposed to therapeutic concentrations. Although no teratogenic effects are reported for metformin, and metformin does not seem to influence pH levels in umbilical artery blood, we nevertheless consider long-term follow-up to be mandatory in these infants.

Eszter Vanky, M.D.a
Kolbjørn Zahlsen, M.Sc.b
Olav Spigset, M.D., Ph.D.b
Sven Magnus Carlsen, M.D., Ph.D.c

a Department of Obstetrics and Gynaecology, and
b Department of Clinical Pharmacology, St. Olavs Hospital, University Hospital of Trondheim; and
c Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway

REFERENCES

Running title:

Metformin effect on CRP in PCOS pregnancies.
The beneficial effect of metformin on pregnancy outcome in PCOS women is not associated with major changes in CRP or indices of coagulation.

E. Vanky¹ MD, K. Å. Salvesen¹ MD PhD, H. Hjorth-Hansen² MD PhD, K. S. Bjerve³ MD PhD, S. M. Carlsen⁴ MD PhD.

¹Department of Obstetrics and Gynaecology, ²Department of Haematology and ³Department of Clinical Chemistry, St. Olavs Hospital, University Hospital of Trondheim and ⁴Institute of Community Medicine and General Practice, Norwegian University of Science and Technology, Trondheim, Norway

Corresponding author:

Eszter Vanky

Department of Obstetrics and Gynaecology

St. Olavs Hospital, University Hospital of Trondheim

Olav Kyrres g. 17

N-7006 Trondheim, Norway

Phone +47 73868967

Fax +47 73867602 E-mail: eszter.vanky@medisin.ntnu.no
Capsule:

The preventive effect of metformin on pregnancy complications in PCOS women seems not to be associated with major changes of CRP levels or indices of coagulation factors and fibrinolysis.
Abstract

Objective: To investigate a possible effect of metformin on C-reactive protein levels and indices of coagulation factors and fibrinolysis in pregnant women with polycystic ovary syndrome.

Design: Randomised double blind placebo-controlled study.

Setting: University hospital.

Patient(s): Forty pregnant women with polycystic ovary syndrome followed through pregnancy.

Intervention(s): All patients received diet and lifestyle counselling and were randomised to either metformin 850 mg twice daily or placebo. Outcome measures were serum levels of C-reactive protein and indices of coagulation factors and fibrinolysis.

Result(s): In women with polycystic ovary syndrome, C-reactive protein levels as well as D-dimer, antithrombin III, activated protein C resistance and activated partial thromboplastin time were unaffected by metformin treatment throughout pregnancy. Protein C levels increased slightly in the metformin group compared to the placebo group.

Conclusions: Metformin treatment of pregnant women with polycystic ovary syndrome seems to prevent pregnancy complications but this effect is unlikely to be associated with major changes of CRP levels or indices of coagulation or fibrinolysis.

Key words: coagulation factors / C-reactive protein / metformin / PCOS
Women with polycystic ovary syndrome (PCOS) have increased risk for spontaneous abortion (1-6) and pregnancy complications, such as gestational diabetes mellitus (7-10), preterm delivery (3;9;11;12) and preeclampsia (11;13;14). Recently, we reported that metformin treatment throughout pregnancy prevented pregnancy complications in PCOS women. However, the preventive effect of metformin was not explained by changes in androgen levels as we hypothesized (4).

Polycystic ovary syndrome (PCOS) has been associated with an increased risk for cardiovascular disease (15-17) and a 3 fold increased risk of postmenopausal hypertension (18). As many as forty percent of women with PCOS may have impaired glucose tolerance or type 2 diabetes (19;20). C-reactive protein (CRP) is a sensitive indicator of systemic inflammation (21). Studies show that chronic low-grade inflammation, as measured by CRP, is strongly predictive for the development of cardiovascular disease and type-2 diabetes (22-26). Several studies demonstrate elevated CRP levels in PCOS women compared to healthy controls (27-30), although also one negative study has been published (31). Morin-Papunen found that metformin reduced CRP levels in non-pregnant PCOS women (32).

First trimester CRP levels are increased among women who subsequently develop gestational diabetes mellitus, preeclampsia and fetal growth restriction (33-37). The effect of metformin on CRP levels in pregnant PCOS women has not been reported.

PCOS women have impaired fibrinolytic capacity, which may partially explain an increased risk for deep venous thrombosis (38). Thrombosis of the placenta is sometimes the cause of placental insufficiency and fetal demise (39). Velazquez et al. found that metformin treatment reduced plasminogen activator inhibitor-1 (PAI-1) in non-pregnant women with
PCOS (40). Thus, a possible effect of metformin on indices of coagulation or fibrinolysis could help to explain the preventive effect of metformin against pregnancy complications.

We hypothesized that metformin could influence CRP levels and/or indices of coagulation and fibrinolysis. Serum from a previously reported prospective randomized trial was used to investigate if coagulation and fibrinolysis indices could hint possible mechanisms of action of metformin in PCOS pregnancies (4).
MATERIALS AND METHODS

From October 2000 to March 2003, 40 pregnant women with PCOS were recruited from the gynaecological and the infertility outpatient clinic at The University Hospital of Trondheim. The women were included in a prospective, randomised, placebo controlled trial with the aim to study the effect of metformin treatment on androgen levels and pregnancy complications PCOS women (4). Inclusion criteria in the trial were: 1) diagnosis of PCOS before the actual pregnancy, 2) age 18 to 40 years, 3) gestational age between five and twelve weeks, and 4) a singleton viable fetus judged by ultrasonography. The diagnosis of PCOS was based on the presence of polycystic ovaries (nine or more sub-capsular follicles with a diameter of 3-8 mm) verified by transvaginal ultrasonography. Furthermore, at least one of the following five criteria had to be present: testosterone > 2.5 nmol/l, sex hormone binding globulin (SHBG) < 30 nmol/l, fasting insulin C-peptide > 1.0 nmol/l, oligo-amenorrhea (length of menstrual cycle > 35 days or less than ten periods per year), or hirsutism (judged clinically as male pattern growth of body hair). The study population have been described in detail previously (4). All women in the study fulfilled the “Revised 2003 consensus” on diagnostic criteria for PCOS (41).

All participants signed a written informed consent before inclusion. The Regional Committee for Medical Research Ethics and The Norwegian Medicines Agency approved the study. The declaration of Helsinki was followed throughout the study.

At the time of inclusion (≤ gestational week 12) and later at gestational weeks 19, 32 and 36, venous blood samples were drawn from an antecubital vein, between 8:00 and 11:00 a.m. after an overnight fast. Blood samples for CRP analysis, were centrifuged at room temperature within 30 minutes and stored at –70°C until analysis (6-28 months). Coagulation factors were analysed subsequently on the day of sampling.
Study protocol

All participants received individual, verbal and written diet and lifestyle counselling at inclusion. Eighteen women were randomised to metformin medication and twenty-two to placebo. Randomisation was performed in blocks of ten and women were stratified according to whether or not they used metformin at conception.

At conception eleven women in the placebo group and eight in the metformin group used metformin. Seven of the women who used metformin at conception (five in the placebo group and two in the metformin group), continued to use it until a few days before inclusion. All women had a “wash out” period of at least two days before inclusion. The randomised groups were balanced with respect to maternal age, body mass index (BMI), and gestational age at the time of inclusion, apart from diastolic blood pressure which was higher in the metformin group(4).

The women in the study group received two capsules of metformin 425 mg (metformin hydrochloride, Metformin®, Weifa AS, Oslo, Norway) twice daily, and the control group received identical placebo capsules. All participants used two capsules once daily during the first week and two capsules twice daily for the rest of the study period. In addition, they all received 1 mg of folate daily, and one daily multivitamin tablet. Two women, one in each group, withdrew within two weeks after inclusion. The remaining 38 women completed the study.

Assays

CRP was analysed on a Roche/Hitachi 902 analyzer using a Tina-quant CRP high sensitive assay (Mannheim, Germany). D-dimer and antithrombin III were analysed on a Hitachi 917 instrument by the Tina-quant (Roche Diagnostics) and Coamatic 400 reagents (Chromogenics AB, Mölndal, Sweden), respectively. Activated partial thromboplastin time (APTT), activated protein C resistance (APC resistance) and protein C were analysed on a Trombolyzer
instrument from Behnk Elektronik using reagents from Nycomed Pharma AS (Oslo, Norway),
Coatest APC-resistance V-S reagents (Chromogenics) and Coamatic Protein C reagents
(Chromogenics), respectively. Protein S was analysed by enzyme-linked immunosorbent
assay (ELISA) method with Coaliza reagents (Chromogenics).

Statistical Analysis
All statistical procedures were performed using the SPSS version 11.0 for Windows (SPSS
Inc., Chicago, Illinois, USA). Values are reported as medians and inter quartile ranges (IQR).
To evaluate the difference between the study groups, we used general linear model for
repeated measures on log transformed values to overcome the effect of uneven distribution.
For patient characteristics mean values and standard deviations are given and two-tailed T-test
for independent samples were used. For correlation analyses we used Spaerman’s rho.
RESULTS

At inclusion, the placebo group and metformin group were equal regarding age (28.3 ± 3.7 years vs. 28.9 ± 4.8 years, \(p = 0.7\)), BMI (29.3 ± 8.0 kg/m\(^2\) vs. 32.1 ± 6.1 kg/m\(^2\), \(p = 0.2\)), gestational age (55 ± 17 days vs. 59 ± 14 days, \(p = 0.4\)), and systolic blood pressure (117 ± 16 mmHg vs. 120 ± 14 mmHg, \(p = 0.5\)). However, diastolic blood pressure was lower in the placebo group (72 ± 10 mmHg vs. 78 ± 9 mmHg, \(p = 0.05\)). At conception 50% of the women in the placebo group and 44% in the metformin group used metformin (\(p = 0.8\)).

At inclusion, and throughout the study, CRP levels were equal in the two groups (Table 1). General linear model for repeated measures of CRP through pregnancy did not show tendency to differences between the groups (\(p = 0.51\)). CRP correlated to BMI at inclusion (\(R^2 = 0.41\); \(p < 0.001\)), at gestational week 19 (\(R^2 = 0.36\); \(p = 0.001\)), at gestational week 32 (\(R^2 = 0.22\); \(p = 0.005\)) and at gestational week 36 (\(R^2 = 0.15\); \(p = 0.02\)).

Compared to the placebo group, protein C increased slightly in the metformin group (\(p = 0.04\)). Metformin did not affect other measured coagulation and fibrinolytic factors during pregnancy.
DISCUSSION

In a previous report, from the same study population we, reported that metformin reduced pregnancy complications among PCOS women, while androgens, SHBG and body mass index were unaffected through pregnancy (4). The present study is of limited size, but it is performed on a well-characterized population in a prospective, controlled design. To our best knowledge this is the first study to report on CRP levels and coagulation parameters through pregnancy in metformin treated PCOS patients.

CRP is a surrogate marker for inflammation and is associated with poor outcome in both cardiovascular diseases and a variety of obstetric conditions (24;25;33;37;42;43). Furthermore, CRP is elevated in PCOS and other aspects of the metabolic syndrome (27-29). We therefore hypothesized that metformin might reduce CRP levels in pregnant PCOS women, but we found no such effect in the present study. This is surprising since Morin-Papunen found that metformin decreased CRP levels in non-pregnant PCOS women (32). Metformin treatment in that study was however compared to ethinyl estradiol (35 µg) cyproterone acetate (2 mg) and not placebo, and the study participants were not pregnant. In PCOS women elevated CRP levels associated with adiposity, and weight loss resulted in reduced CRP in non-pregnant PCOS women (32). Thus, one possible explanation for the lack of association between CRP levels and metformin in the present study might be that metformin influence pregnant and non-pregnant women differently. There is also a possibility for type 2 statistical errors in studies with small numbers of participants. However, the present study indicates that prevention of pregnancy complications in PCOS women by metformin is not mediated by a major effect on inflammation, as measured by CRP.

Decreased fibrinolysis has been observed in non-pregnant PCOS women (38). In the present study, we observed an effect of metformin on protein C. Increased Protein C levels would, at least theoretically, indicate a positive effect of metformin on coagulation. We do,
however, not think that this is an important factor in the action of metformin, since the size of the difference is relatively small and protein C levels were within the normal range in the both groups.

We also studied thrombophilic factors and in keeping with the study by Tsanadis we found no increased incidence of thrombophilia (44). This is in contrast to a study by Velazquez among non-pregnant women with PCOS (45). She found an effect of metformin treatment on fibrinolysis measured by PAI-1, indicating that metformin increases fibrinolysis. More sensitive assessments of fibrinolytic capacity were not performed in our study. Measurements of D-dimer are however, sensitive enough to detect improved fibrinolysis in non-pregnant PCOS women on low-calorie diet (46).

There is an increasing body of evidence that metformin may have a preventive effect on pregnancy complications. Its possible mechanism of action is, however, still not understood. Neither inflammation, as measured by CRP, nor disturbances in coagulation or fibrinolysis seem to explain the beneficial effect of metformin. Other, still unveiled, mechanisms are probably involved. Well-designed, large-scale studies are needed both to confirm the positive effect of metformin on pregnancy complications and to clarify the mechanisms that might be involved.
Acknowledgements

The Norwegian Women's Public Health Association (Norske kvinners sanitetsforening) supported the study. Metformin was supplied free of charge, by Weifa A/S, Oslo, Norway.
REFERENCES

40. Velazquez EM, Mendoza SG, Wang P, Glueck CJ. Metformin therapy is associated with a decrease in plasma plasminogen activator inhibitor-1, lipoprotein(a), and immunoreactive insulin levels in patients with the polycystic ovary syndrome. Metabolism 1997;46:454-7.

Table 1. CRP and indices of coagulation factors and fibrinolysis in pregnant PCOS women according to treatment group.

<table>
<thead>
<tr>
<th>Group</th>
<th>CRP mg/L</th>
<th>Inclusion</th>
<th>Week 19</th>
<th>Week 32</th>
<th>Week 36</th>
<th>P- value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Median</td>
<td>IQR</td>
<td>N</td>
<td>Median</td>
</tr>
<tr>
<td>Placebo</td>
<td>21</td>
<td>5.7</td>
<td>2.4 – 9.4</td>
<td>21</td>
<td>7.6</td>
<td>3.4 – 12.3</td>
</tr>
<tr>
<td>Metformin</td>
<td>16</td>
<td>4.1</td>
<td>1.1 – 10.2</td>
<td>16</td>
<td>7.2</td>
<td>2.9 – 17.0</td>
</tr>
<tr>
<td>APTT (seconds)</td>
<td></td>
<td>Placebo</td>
<td>19</td>
<td>25</td>
<td>23 - 27</td>
<td>18</td>
</tr>
<tr>
<td>D-dimer (mg/L)</td>
<td>Placebo</td>
<td>20</td>
<td>0.30</td>
<td>0.22 – 0.48</td>
<td>19</td>
<td>0.40</td>
</tr>
<tr>
<td>Metformin</td>
<td>17</td>
<td>0.20</td>
<td>0.20 - 0.30</td>
<td>16</td>
<td>0.40</td>
<td>0.30 – 0.50</td>
</tr>
<tr>
<td>Antitrombine III (%)</td>
<td>Placebo</td>
<td>20</td>
<td>102</td>
<td>90 - 112</td>
<td>19</td>
<td>98</td>
</tr>
<tr>
<td>Metformin</td>
<td>17</td>
<td>102</td>
<td>89 - 108</td>
<td>16</td>
<td>104</td>
<td>90 - 107</td>
</tr>
<tr>
<td>APC resistance</td>
<td>Placebo</td>
<td>20</td>
<td>1.01</td>
<td>0.97 - 1.06</td>
<td>19</td>
<td>0.98</td>
</tr>
<tr>
<td>Metformin</td>
<td>17</td>
<td>1.03</td>
<td>1.00 – 1.04</td>
<td>16</td>
<td>1.01</td>
<td>0.97 – 1.09</td>
</tr>
<tr>
<td>Protein C (%)</td>
<td>Placebo</td>
<td>22</td>
<td>106</td>
<td>96 - 117</td>
<td>20</td>
<td>117</td>
</tr>
<tr>
<td>Metformin</td>
<td>18</td>
<td>108</td>
<td>102 – 130</td>
<td>16</td>
<td>128</td>
<td>108 - 130</td>
</tr>
<tr>
<td>Protein S (%)</td>
<td>Placebo</td>
<td>22</td>
<td>76</td>
<td>50 - 96</td>
<td>20</td>
<td>61</td>
</tr>
<tr>
<td>Metformin</td>
<td>17</td>
<td>87</td>
<td>65 - 112</td>
<td>14</td>
<td>60</td>
<td>56 - 72</td>
</tr>
</tbody>
</table>

a p value for general linear model for repeated measures on log transformed values