


5.2 Flowline

Figure 5.15: Mass flow of liquid at the outlet for 6% choke opening.

After observing that the models are fitted reasonably well around the critical valve
opening, the value of z is set far away from this value at z = 0.3, and the systems are
compared once again.

Figure 5.16: Pressure at the low point for 30% choke opening.
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Figure 5.17: Pressure at the top of the riser for 30% choke opening.

Figure 5.18: Mass flow of liquid at the outlet for 30% choke opening.
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In the previous figures in this section, comparisons around various constant valve open-
ings have been conducted. In order to say more about the similarity between the two mod-
els, the step response is compared. For each of the three plots below, the models have been
simulated for 10000 seconds with input z = 0.04. After 10000 seconds, the valve opening
is changed to z = 0.042.

Figure 5.19: Step response of the pressure at the top of the riser.

Figure 5.20: Step response of the pressure at the bottom of the riser.
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Figure 5.21: Step response of the mass flow out of the outlet.
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The parameters used in the Modelica flowline model when performing these simula-
tions can be found in the following table.

Table 5.4: Simulation parameters Modelica flowline model

Parameter description Symbol Value Unit
Liquid density ρl 832.2 [kg/m3]
Water density ρw 1000 [kg/m3]
Feed pipe inclination θ 1 [◦]
Radius of pipeline r1 0.06 [m]
Radius of riser r2 0.05 [m]
Length of upstream pipe L1 4300 [m]
Length of riser L2 300 [m]
Length of horizontal top section L3 100 [m]
Pipeline temperature Tp 335 [K]
Riser temperature Tr 298.3 [K]
Molar mass of gas Mg 0.023 [kg/kmol]
Separator pressure p0 50.1·105 [Pa]
Dynamic viscosity µ 1.426·10−4 [Pa s]
Roughness of pipe ε 2.8·10−5 [m]
Mass flow gas in ωg,in 0.36 [kg/s]
Mass flow liquid in ωl,in 8.64 [kg/s]
Tuning parameter Kh 0.7400 [-]
Tuning parameter Kg 0.0547 [-]
Tuning parameter Ko 0.1232 [-]
Tuning parameter Kpc 0.0112 [-]
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5.2.2 State Estimation
After fitting the flowline models, the next step in order to create feedback control is to
implement state estimation. This is done based on the work in [1], where the following
measurements were assumed available in the flowline; the pressure at the inlet of the flow-
line pin, the pressure at the low point of the flowline plp, the pressure at the top of the
riser pr,t and the mass flow of oil, gas, and water out of the flowline. This is illustrated in
Figure 5.22. It should be noted that the pipeline is not strictly horizontal in this case, as
explained in section 4.2 and 4.4.

Figure 5.22: Illustration of the available measurements in the flowline.

Based on the available measurements shown in the figure above, both a Unscented
Kalman Filter and an Extended Kalman Filter were implemented. The Extended Kalman
Filter proved to be more robust, at the Unscented Kalman Filter tended to enter infeasible
regions of the flowline models for state values close to zero.

In the following figures the Extended Kalman Filter has been applied to the OLGA
model using the Modelica model for predictions. The comparisons between the measured
value in OLGA and the estimated value from the Extended Kalman Filter are shown in the
figures below. This is done for the pressure at the low point in the riser plp, the pressure at
the top of the riser ptp and the mass flow of liquid at the outlet of the flowline ωl,out.
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5.2 Flowline

Figure 5.23: Comparison between the pressure at the top of the riser in the OLGA simulation and
the estimated value from the EKF.

Figure 5.24: Comparison between the pressure at the bottom of the riser in the OLGA simulation
and the estimated value from the EKF
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Figure 5.25: Comparison between the mass flow of liquid at the outlet of the flowline in the OLGA
simulation and the estimated value from the EKF.
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5.2.3 Development of NMPC for the flowline model
In the previous sections in this chapter, the results from model fitting and state estimation
are shown. These components form an important part of the Output feedback NMPC-
controller, as can be seen in Chapter 2, from Figure 2.2. In this section, the results achieved
using this as a basis for optimization is presented. First, the results from steady state
optimization on the system will be presented, before open loop dynamic optimization is
tested. At last the findings from implementing and testing the NMPC are shown.

The steady state optimization problem given in (4.15) was solved using the values
from Table 5.4 as system parameters. This gave the solution u = 0.397, mgp = 1172.32
kg, mgr = 54.3748 kg and mlr = 1770.59 kg, which is used as a reference point in the
dynamic optimization problem.

As mentioned above, the steady state solution was used as a reference point when the
dynamic optimization problem (4.16) was solved. In order to assess the performance of the
open loop solution, the Model was run with valve opening z = 0.02 until it reached steady
state. Then an optimal control solution of (4.16) was found, and applied to the model. The
following plots show the resulting behaviour when the optimal control solution is applied
to the Modelica model, with a time horizon of 20000 seconds.

Figure 5.26: The figure shows how the mass of gas in the pipeline compared to the set reference
value.
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Figure 5.27: The figure shows how the mass of gas in the riser compared to the set reference value.

Figure 5.28: The figure shows how the mass of liquid in the pipeline compared to the set reference
value.
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Figure 5.29: The figure shows how the mass of liquid in the riser compared to the set reference
value.

Figure 5.30: The figure shows the solution of the dynamic optimization problem that was applied
to the system.
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Further, the OLGA flowline model is simulated with the same input z = 0.02 un-
til steady state, before the same control is applied to this system. The resulting system
behaviour is shown in the figures below.

Figure 5.31: The figure shows the pressures in the OLGA model, and how they change when the
open loop optimal control solution is applied after 10000 seconds.

Figure 5.32: The figure shows the flow of oil out of the OLGA model, and how it changes when the
open loop optimal control solution is applied after 10000 seconds.
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5.2 Flowline

After testing the open loop control solutions for the system, the next step is to close
the loop, using the state estimator in order to implement an Output Feedback NMPC as
illustrated in Section 2.2.4. After many attempts, this was found to be infeasible during the
time horizon of this master thesis, due to large difficulties when solving dynamic optimiza-
tion problems in JModelica.org. The circumstances revolving this issue will be discussed
in the next chapter.
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Chapter 6
Discussion of results and
implementation

6.1 Well

6.1.1 Behaviour of the OLGA well model
The first graphical presentation in the previous chapter was plots of the OLGA well model
behaviour at two different operating points, with ugl = 0.5 kg/s and ugl = 0.1 kg/s, for
for both pressure and flow. In Figure 5.1 and 5.3, the pressures and the flows are shown
for ugl = 0.5 kg/s. From these figures it is clear that the system reaches a stable operating
point.

Further, Figure 5.2 and 5.4, show the same parameters for another operating point
where ugl = 0.1 kg/s, which means that there is significantly less lift-gas injected into
the well. This value was chosen for ugl, as it clearly shows how the system reach an
unstable operating point, where the casing-heading phenomenon described in Section 4.1
is present. The presence of this effect is common in gas-lift wells, and supports the validity
of the OLGA model.

6.1.2 Fitting the OLGA well model with the Modelica well model
As the results in the previous section gave reason to assume validity of the OLGA model,
the Modelica model presented in 4.1, was compared and adapted to the OLGA model.
A natural starting point when fitting the models, was to look at a stable operating point,
which was found for ugl = 0.5 kg/s in the previous section. The comparison of the two
models after attempted fitting is illustrated for pressures and flows in Figure 5.5 and 5.6.
The comparison was done by simulating the OLGA well model to steady state for ugl
providing the steady state parameters from OLGA as a starting point for the Modelica
model, and comparing the difference between the resulting steady state parameters for the
two models.
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As the Modelica model was fed with the steady state parameters from OLGA, one
would expect the Modelica parameters to stay constant if the models were tuned perfectly,
but from the figures it can then be seen that the Modelica well model variables move away
from the starting points, before they reach a significantly different steady state value than
the OLGA well model.

In Section 5.1.1 it was described how the model equations were changed, in order to fit
the Modelica well model better to the OLGA well model. However, these changes did not
affect the assumptions the model was based on, and the pressures are still calculated with
no regard to friction. As model changes had to be done in order to reach similar pressures
in the tubing for both models, it seems clear that the pressure calculations in the Modelica
model are too inaccurate. This is not unexpected, as the Modelica model does not consider
friction when modelling the pressure and flow in the well and introduction of friction in
the model could very well cause the same pressure difference, as the one constructed by
altering the model in this thesis.

6.2 Flowline

6.2.1 Behaviour and fitting of the OLGA flowline model with the Mod-
elica model

In the simulation chapter under section 5.2.1, the results from fitting the flowline model in
Modelica to the flowline model in OLGA was presented. The plots that were given in this
section gives information about the models behaviour.

The first three figures shows three key parameters for the Modelica model compared to
the OLGA model for a choke opening of 5 %. From these we see that both the amplitudes
and the frequencies seems to correspond very good. The next three figures shows the same
three parameters, but for a choke opening of 4 %. From these figures it becomes clear that
there is a small deviation between the steady state values from the OLGA flowline model
and the Modelica flowline model, but that they still are quite similar. Thereafter the choke
opening is altered to 6 % and again the same parameters for the models are compared.
From these figures the amplitudes still seem to correspond well, but the deviation in fre-
quency has increased. While the previous figures show the behaviour of the system for
choke opening values in the same area as where the model was tuned, the three plots in
Figure 5.16-5.18 shows the behaviour when the choke opening is set to 30%. From these
figures one can see that the amplitudes still match very well, but that the deviation in fre-
quency now is significant. Based on these observations it becomes clear that the Modelica
model is very well fitted to the OLGA model, and that it captures all the relevant dynamics
of the system, but that the frequency dependence becomes poorer when the choke opening
is far away from the value at which it was tuned.

As mentioned in the simulation chapter the system step response where also studied.
This is shown in Figure 5.19-5.21. From these figures one can see that step responses are
very similar, which supports the claim that the models are very well fitted.
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6.2.2 State estimation
In Section 5.2.2 in the Simulations chapter, the output of the Extended Kalman Filter
and the values of the simulated system in OLGA are compared. It can be seen from the
figures 5.23-5.25 that the EKF tracks the measured pressures perfectly, but that there is a
deviation between the estimated mass flow out of the system and the actual mass flow out
of the system. This indicates either that the tuning of the EKF is not optimal, or that the
number of measurements are insufficient in order to get good estimations from the system.
Based on the results in the previous section, the models seems to be fitted well enough to
allow for successful state estimation, especially around the operating point z = 0.05.

6.2.3 Development of NMPC for the flowline model
When developing an NMPC for the flowline model, many problems arose in association
with different parts of the JModelica.org platform. Locating and handling these problems
proved to be very time consuming. One of the reasons for this, is that JModelica.org still
is in an early state in the development process both when it comes to robustness and when
it comes to interaction with the user in form of error messages.

The first problem was encountered when importing the models from Modelica and
Optimica into the JModelica.org framework, as this lead to a series of errors which proved
hard to track. The main reason for this, is that the JModelica.org platform consist of many
different tools which earlier was mentioned to be an advantage, but that also makes it very
hard to locate the error. After spending a substantial amount of time debugging this, the
cause of the errors where found to be that JModelica.org does not support importing user
defined functions from Modelica, and also that it does not support certain mathematical
functions such as log10. This was solved by hard coding all user defined functions used in
the Modelica model, replacing log10(x) with log2(x)

log2(10) and inserting approximations for all
maximization functions in the model, using the approximation presented in Section 4.5. In
order to reproduce the behaviour of the models when simulating them from JModelica.org
and from Modelica, the parameter ε defined in (4.13) had to be set no larger than ε = 0.01.

Based on the conclusions made in [3], single shooting was chosen as the optimal con-
trol method, and this was implemented in JModelica.org. This optimal control method
proved not to be very robust at all. Numerous error messages concerning problems eval-
uating the gradients of the objective function and the constraints were received. Some of
these problems were traced back to the approximation of the max functions, as the inte-
grators used in JModelica.org were sometimes unable to evaluate the values of part of the
gradient, where these expressions were present.

In search of a solution to the problem explained above, a thorough review of the im-
plementation of dynamic optimization using JModelica.org in [3] was preformed.

From this review it was found that the same approximation to the maximization func-
tions, as used in this thesis was applied, but with ε =

√
0.1 ≈ 0.316. As explained earlier,

ε could not be set higher than 0.01 in order to simulate the behaviour of the flowline model
in this thesis, but it was possible in [3], as a simpler flowline model was used.

As a result of the problems explained above, the testing of methods for NMPC and
the comparison of these with alternative optimization based strategies has been severely
limited.
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When testing the developed dynamic optimization algorithm for various objective
functions and constraints, it was found that the errors from evaluating the gradients were
less frequent when the objective function only consisted of differential states and inputs.
Therefore, the algebraic variables of the flowline system were not included in the objec-
tive function. As the goal of the optimization often is to maximize the oil flow, and as
ωout is a algebraic variable, this is disadvantageous. In order to work around this, a static
optimization problem maximizing liquid flow out of the flowline was solved as explained
in the beginning of Section 5.2.3.

Figure 5.26 - 5.30 show the behaviour of the Modelica flowline system when applying
open-loop optimization in order to get to the optimal steady state value. From these figures
we can see that the state variables converge to the reference value, without any notable
oscillations or instabilities. In Figure 5.31 and 5.32, it can be seen that this is also the case
when the same open-loop optimization is applied to the OLGA flowline system. Based
on these figures, it seems that the flowline Modelica model is applicable for controlling
the OLGA flowline model, which was expected as the behaviour of the two models was
shown to be very similar in Section 5.2.1.

6.3 Further Work
With the implementation problems described in the previous section fresh in mind, it be-
comes obvious that a thorough analysis of the errors in JModelica.org must be conducted.
This would be the natural starting point when continuing the work presented in this thesis.
Due to the severity of the implementation issues found in this thesis, there will also be
a need to make a further assessment of whether JModelica.org is a suitable platform for
implementation of NMPC.

In this thesis it is also found that it might be valuable to develop the well model in
Modelica so that it takes regard to friction.

Another point for further work will be to connect and analyze the well and flowline
models in OLGA in order to gain a better understanding of how these models interacts.

If the problems in JModelica.org are assessed and handled, a complete implementation
of NMPC can be tested on the complete system. Further, this can be compared to other
optimization based strategies such as steady state optimization.
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Chapter 7
Conclusion

In this thesis models for wells and flowlines has been instantiated in OLGA, and simple
dynamic models inspired by [3] and [9] have been fit to these OLGA models. It was
found that the simple dynamic well model did not give a good representation of the more
complex model in OLGA, and the lack of regard to friction in the tubing was pointed out
at the main reason behind this. For the simple dynamic flowline model it was found that is
can be tuned to fit the more complex OLGA model very well for a set operating point, but
that it will deviate when moving far away from this point.

Further state estimation using an Extended Kalman Filter was performed on the flow-
line model, based on measurements proposed in [1]. Here it was found that the state
estimates are fairly accurate, but some deviations are present, therefore the addition of
more measurements to the system is recommended.

Based on the fitting of models and implementation of state estimation for the flowline
system, methods for NMPC was attempted implemented using the JModelica.org environ-
ment. This implementation was troubled with many bugs, and lack off robustness in the
interface between the various implementation tools used is assumed to play a large role
here.
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Appendix A
Flowline

A.1 Pipeline-Riser model
The average liquid volume fraction in the pipeline is estimated based on the the approxi-
mation that the liquid volume fraction at the inlet is equal to the liquid volume distribution
in the pipeline, and is given in the following equation

ᾱlp
∼=

ρ̄gpωl,in

ρ̄g1ωl,in + ρlωg,in
. (A.1)

The density of the gas in the pipeline ρ̄gp is given by the mass of gas in the pipeline mgp

and the volume available for the gas Vp −mlp/ρl.

ρ̄gp =
mgp

Vp −mlp/ρl
(A.2)

ṁgp = ωg,in − ωg,lp (A.3a)
ṁlp = ωl,in − ωl,lp (A.3b)
ṁgr = ωg,lp − ωg,out (A.3c)
ṁlr = ωl,lp − ωl,out (A.3d)

ᾱl1
∼=

ρ̄g1ωl,in

ρ̄g1ωl,in + ρlωg,in
(A.4)

ρ̄g1 =
mgp

V1 −mlp/ρl
(A.5)
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ωmix,out = Kpcf(z)
√
ρt(p2 − p0) (A.6)

ωl,out = αlm,tωmix,out (A.7)

ωg,out = (1− αlm,t)ωmix,out (A.8)

h̄1 = Khhcᾱl1 (A.9)

h1 = h̄1 +

(
ml1 − ρlV1ᾱl1

πr2
1(1− ᾱl1)ρl

)
sin(θ) (A.10)

Vg1 = V1 −ml1/rhol (A.11)

ρg1 =
mg1

Vg1
(A.12)

p1 =
ρg1RT1

Mg
(A.13)

∆pfp =
ᾱl1λpρlŪ

2
sl,inl1

4r1
(A.14)

λp = 0.0056 + 0.5Re−0.32
p (A.15)

Ūsl,in =
ωl,in

πr2
1ρl

(A.16)

A.1.1 Riser Model
V2 = πr2

2(l2 + l3) (A.17)

Vg2 = V2 −ml2/ρl (A.18)

ρg2 =
mg2

Vg2
(A.19)

p2 =
ρg2RT2

Mg
(A.20)

ᾱl2 =
ml2

V2ρl
(A.21)

ρ̄m =
mg2 +ml2

V2
(A.22)
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∆Pfr =
ᾱl2λrρ̄mŪ

2
m(l2 + l3)

4r2
(A.23)

λr = 0.0056 + 0.5Re−0.032
r (A.24)

Rer =
2ρ̄mŪmr2

µ
(A.25)

Ūm = Ūsl2 + Ūsg2 (A.26)

Ūsl2 =
ωl,in

ρlπr2
2

(A.27)

Ūsg2 =
ωg,in

ρg2πr2
2

(A.28)

A.1.2 Gas Flow model at the low-point
ωg,lp = 0, h1 ≥ hc (A.29)

ωg,lp = KgAg

√
ρg1∆pg, hspace5pth1 < hc (A.30)

∆pg = p1 −∆pfp − p2 − ρ̄mgl2 −∆pfr. (A.31)

ωl,lp = KlAl

√
ρl∆pl (A.32)

∆pl = p1 −∆pfp+ ρlgh1 − p2 − ρ̄mgl2 −∆pfr (A.33)

Ag
∼= πr2

1

(
hc − h1

hc

)2

, h1 < hc (A.34)

Al
∼= πr2

1 −Ag (A.35)

αlm,t =
αl,tρl

αl,tρl + (1− αl,tρg2)
(A.36)

ρt = αl,tρl + (1− αl,t)ρg2 (A.37)

ᾱl2 =
αl,lp + αl,t

2
(A.38)

αl,lp =
Al

πr2
1

(A.39)

αl,t = 2ᾱl2 − αl,lp =
2ml2

V2ρl
− Al

πr2
1

(A.40)
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