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Problem Description
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Abstract

Today’s way of life includes increasing amounts of information, and therefore han-
dling and processing of information. Almost everything you do involves some sort
of a computer somewhere, and many businesses have implemented comprehensive
computer systems into their corporative structure, to serve both employees and
customers.

But if a new service is introduced to the users, or a new group of users are
introduced to an existing service, how do you know if the performance will be
satisfying?

To deal with such questions, a method called The Scalability Assessment Method
(SAM) has been developed. The Scalability Assessment Method is a general pro-
cedure for evaluating the scalability of a system architecture. Other projects have
applied SAM to real reference systems, and their results have shown that SAM is a
method that can be trusted to give credible predictions.

Until recently, dedicated software tools that support the SAM method have been
absent, and the researchers have been using i.a. spreadsheets in an ad hoc approach
to the problems. Therefore, a SAM software package is in development.

The SAM Engine (SAMe) is a Java program developed in this project, with an
intuitive user interface that is enabling a non-expert user to apply the method on
a desired architecture. This report documents the development of the prototype
SAM Engine (SAMe), and how the program supports the SAM method.

Keywords: Performance evaluation, scalability, simulation, Structure
and Performance, SAM.
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Chapter 1

Introduction

1.1 Title

SAM Engine: Model-based Framework for Scalability Assessment

1.2 Problem definition

A method for assessing scalability of distributed systems (SAM) has been explored
by several recent master projects at IDI([FL03], [RM05]). It is now proposed to
develop a prototype supporting framework for SAM. Desirable capabilities include:

• scaling paths with strict, non-uniform or differential scaling

• alternative definitions of operating point

• customisable user interface for simple ”what-if” questions

• static and dynamic models which can reflect successive stages of different
transactions

• assessing the impact of alternative frameworks for measurement experiments,
with respect to the emulation of a large number of different users, and the
corresponding synthetic database model

• interface for updating and tracking model parameters derived from measure-
ment

In the autumn project[Hol05], a preliminary study was conducted using the
simulation language DESMO/J[Des] and measurement data from the KBM/KPM
system (by courtesy of EDB Business Partner). It is planned to use this or similar
data as a test case for the framework. The method of investigation will be to
construct a prototype SAM engine which supports some of the above features. The
first task will be to prioritise these features.

1.3 Motivation

Today’s way of life includes more and more information, and therefore handling
and processing of information. This handling and processing is increasingly often
handed over to computers. Almost everything you do involves some sort of a com-
puter somewhere, and many businesses have implemented comprehensive computer
systems into their corporative structure, to serve both employees and customers.

1



1.3. MOTIVATION CHAPTER 1. INTRODUCTION

A trend these days is to make services available through internet, to increase
availability and popularity. This would mean that a varying number of users will
produce load on the computers at any time of day, and still expect constant, good
quality of service, no matter how many other users there are in the system.

But if a new service is introduced to the users, or a new group of users are intro-
duced to an existing service, how do you know if the performance will be satisfying?
The need for capacity planning is obvious [MAD04]. To set up a user test for such
a service would be infeasible, because then you could need a considerable amount
of people sitting around and testing at the same time. A better solution is to use
some kind of load generator and measure the performance of the system. However,
both methods have a great disadvantage if you discover that the performance is not
good enough. Because then you have the question: What kind of a system do I
need to provide the users with the quality of service they demand? Of course, you
can just buy a huge amount of computers that is guaranteed to meet the needs, but
that is usually not an option because of budgets.

To deal with such questions, a method called The Scalability Assessment Method
has been developed [Hug99, Hug05]. From now on called SAM, the method estab-
lishes a reference system, which is the system as it currently is configured. Then
it explores different ways to increase the system capacity, and what impact the
changes has on performance. In the end, you will be given a scaled-up system that
will handle a specified number of users.

Until recently, dedicated software tools that support the SAM method have been
absent, and the researchers have been using i.a. spreadsheets in an ad hoc approach
to the problems. Therefore, a SAM software package is in development. The package
will include several software modules, which each will support a part of the SAM
method. My task is to develop a module that ties the other modules together, and
guides the researcher towards a solution. A certain degree of automation is also
essential, as the search for the answer could involve a lot of iterations.

In addition, it is too easy for software developers to make mistakes when thinking
about performance issues. Even the simplest formulas can cause serious errors if
not every detail is correct. And there is surely enough detail to get caught up in.
Our experience is that many developers disregard the performance issues, because
of the complexity. One of the goals for the SAM software package, is to abstract
away the more complex issues and make it easy for a non-expert user to evaluate
scenarios for simple what if-scenarios.

Companies that deliver performance-critical services will probably be the group
that takes the most interest in this kind of software, but hopefully others will find
it useful too.

2



Chapter 2

Project Plan

2.1 Original project plan

The original plan was made in the period from project start, to February 3rd. The
blocks of time scheduled per task was estimated on the basis of experience from
previous system engineering projects. The Gantt-diagram is shown in Figure B.1
in Appendix B.

Planning and preparing This phase consists of making a project plan, estimat-
ing time usage, creating a report template, and settle on a problem definition.

Requirements and design This phase is where requirements are worked out and
agreed on. A detailed design is also made, according to the requirements.

Implementation This phase is where the program is actually made, with coding
and continuous unit testing.

Testing The testing in this phase is on a high level, and is concluded with a user
test.

Delivery Two preliminary drafts for a report are made to get feedback and read
correction, before the final Master’s Thesis is submitted June 16th.

2.2 Revised project plan April 26th

However, the phase ”requirements and design” required a lot more time than esti-
mated. This may be due to the fact that this is a research project, not just a plain
development project like the projects mentioned in Section 2.1. As the requirements
specification and the design document evolved, new requirements and design issues
which had be taken into account appeared, and the phase needed to be extended.
Because this project should develop a prototype, the design needed to be correct,
so others could extend the prototype to a complete version. The Gantt-diagram is
shown in Figure B.2 in Appendix B.

2.3 Revised project plan May 23rd

The testing brought out some new design issues, and some extra days was needed to
implement the requested changes and test the changes again. That led to the delay
of making a first draft, and subsequent tasks. The final Gantt-diagram is shown in
Figure B.3 in Appendix B.

3



2.3. REVISED PROJECT PLAN MAY 23RD CHAPTER 2. PROJECT PLAN
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Chapter 3

Theory

This chapter will give a brief insight to the theory behind this project.

3.1 Scalability

The scalability of a system architecture is a property that can be thought of in
several ways. This report will only focus on the scalability in terms of physical
resource usage.

A system architecture is considered to be scalable over a particular set of
requirements if the physical resource usage per unit of capacity remains
roughly constant. [BH04]

In this context, a dimension of scalability can be seen as a certain hardware
capacity. According to [BH04, RM05], the three dimensions are:

Processing capacity:
Processing capacity is the rate of which a certain task is performed, defined
for the whole system or subsystems or both. This can be both speed of a
CPU, or speed of a disk, or other.

Storage capacity:
Storage capacity is the amount of storage at some level, e.g. the actual size
in GB of a disk, or size of a cache at a CPU.

Connectivity:
Connectivity is the number of physical or logical connection points between
components.

One might want to know how a system will perform if one add an extra node,
add extra memory or insert a better CPU. [BH04] describes two different kinds of
goals:

Speed-up
The objective with speed-up is to achieve a shorter execution time, when the
amount of work remains the same. The size of the system increases, e.g. you
double the CPU speed, but not the work. The boost is dependent on which
part of the software that benefits most from the speed-up.

Scale-up
The objective with scale-up is to make your system cope with increased load,
without increasing response times. The size of the system increases as well as
the load, e.g. the number of users are doubled and you add an extra node.

5



3.2. THE SCALABILITY ASSESSMENT METHOD CHAPTER 3. THEORY

There are two aspects of scaling in a scale-up process. The scaling within one
dimension, and the scaling along all dimensions.([BH04])

Strict and differential scaling:
When you change the system by the same factor in all dimensions, the scal-
ing is considered to be strict. If you scale by a different factor in different
dimension, the scaling is considered to be differential.

Uniform and non-uniform scaling:
The scaling is uniform if all subsystems are changed by the same factor within
one dimension. If they are changed by different factors, it is called non-uniform
scaling.

In relation with simulation, [Hug05] describes some more concepts that may
need an explanation:

Work is the actual operations, the services requested by the user.

Load is the frequency, the quantity, of invocations of the work.

Workload is then the product of work and load.

Operating Point is an appropriate workload for a node configuration regarding
response time, utilisation and throughput

3.2 The Scalability Assessment Method

This description of the Scalability Assessment Method is based on [Hug99]. The
Scalability Assessment Method (SAM) is a generic approach for analyzing the pro-
cessing load scalability of a particular system. A general procedure description is
summarized below.

1. Define baseline for scalability analysis
First you need to determine the reference workload, a baseline node config-
uration and the operating point. Then define the work as a normalised, or
possibly a worst-case if desirable, mix of the services available in the system.

2. Model the scale baseline
Define a dynamic model relating processing capacity to properties of the base-
line configuration, e.g. hardware specifications. Using a combination of stan-
dard performance evaluation techniques and measurement, you can parame-
terize the model. Different techniques are appropriate, depending on design
stage and development method. In general, both a static and an dynamic
model will be required. Perform controlled measurements where possible,
both to determine capacity at the operating point, and also to get resource
usage data per unit of throughput.

3. Explore scalability
In this step we analyze how the system capacity is affected by increasing the
relative system size under a chosen scale-invariant. This analysis will discover
if the scale-invariant is maintained, and if so, the processing function at the
operating point will scale identically. For this analysis, a static model is
required. Decompose the service demand parameters, and map them onto the
properties of the software and hardware components. A modification analysis
is then applied to the baseline model parameters, to make a projection on
capacity of the scaled-up system under the scale-invariants. This analysis
has to capture any non-linear effect, not due to congestion at the hardware
devices.

6



CHAPTER 3. THEORY 3.3. SCALING OPTIONS

4. Explore robustness
Use the model to carry out further modification analysis with varying work-
load. The robustness of the architecture is determined by the degree of vari-
ance allowed to the workload without losing scalability.

5. Explore effects of technology change
Factor in the effect of expected technology change over the timescale. This is
done by yet another modification analysis of the model parameters. Financial
considerations may be taken, by considering only technology changes within
the same cost range.

3.3 Scaling options

The SAM method has a hierarchical approach to analysing and scaling [Hug06a].
There are many paths for scaling the system, and the choices can be described as
a scaling tree as showed in Figure 3.1. According to [BH04] there are usually two
ways of increasing capacity at a certain level:

Replication is adding a number of copies of an existing component at some level
in the system to the architecture, so that the workload is distributed evenly on
the components giving the same services. E.g. buying an extra Web Server,
or an extra disk.

Upgrade is achieved by a change of internal capacity at a component at some
level, so that the component can give an improved service. E.g. increasing
the clock speed of a CPU.

Figure 3.1 shows the four levels of the scaling tree, and the possible scaling
paths. It is based on [BH04], but has been extended after some discussions within
the Performance Group at IDI.

Figure 3.1: The upgrade tree of scaling options.

• Level I System: The system at the highest level cannot be replicated itself,
the intension is always to upgrade the system.

• Level II Subsystem: A subsystem can be replicated by adding an identical
subsystem at the same level, or upgraded by an inferior change, which is
determined at the next level. Replication might not always be feasible either
because of constraints at a higher level.

7



3.3. SCALING OPTIONS CHAPTER 3. THEORY

• Level III Devices: A device can be replicated by adding an identical device
at the same level, or upgraded by an inferior change, which is determined
at the next level. Replication might not always be feasible either because of
constraints at a higher level. Replicating a CPU at this level is rather unusual,
as that would typically be a cluster.

• Level IV Primitives: This is the bottom level, one cannot go any deeper than
this. Upgrade will not always be feasible, depending on the modelling detail,
because the component at this level could be a logic gate, which might not
be upgradable. Replication might not always be feasible either because of
constraints at a higher level, but is also an option here.

8



Chapter 4

Requirements

4.1 Use cases

This section will through textual use cases describe the most important interactions
the user will be having with the application. The use cases will go through the
most important scenarios for the user, which are the steps in the SAM procedure
as described in Section 4.2. The procedure of assessing scalability consists of two
phases, establishing the reference scale point, and exploring the scale path. These
main functions of the application can be summarized in Figure 4.1. Each of these
use cases are described in detail on the following pages.

9



4.1. USE CASES CHAPTER 4. REQUIREMENTS

Figure 4.1: Use cases showing overall system usage

10



CHAPTER 4. REQUIREMENTS 4.1. USE CASES

4.1.1 Acquire baseline.

This is the first step in the SAM procedure. The hierarchic structure of the system
to be assessed is entered into the program, with subsystems and their hardware de-
vices. The components and their relevant specifications are fetched from a database
of real devices. As shown in Figure 4.1 there is only one role, so that anyone who
wants can use the program. This use case is shown in Table 4.1.

Use case name Acquire baseline configuration and architec-
ture.

ID: 1

Basic course of events:

1. The subsystems are entered into a table.

2. The linking of the subsystems is determined by
choosing children.

3. A list of the system parts is created and ex-
ported.

4. A list of real devices are fetched from the
database.

5. The hardware devices of the subsystems are
chosen from the list.

6. The linking of the hardware devices is deter-
mined by choosing children.

7. The relevant specifications for the hardware de-
vices are registered.

8. The user presses ”OK”.

Alternative paths:
Exception paths:

Table 4.1: Acquire baseline configuration and architecture.
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4.1.2 Acquire requirements.

This is the second step in the SAM procedure. Important performance and scale
parameters are entered into the program. This use case is shown in Table 4.2.

Use case name Acquire performance requirements and choice
of operating point.

ID: 2

Basic course of events:

1. The vector components of the requirement r is
entered into the program.

2. The type of operating point is chosen.

3. The numerical value of the operating
point(OP) is entered into the program.

4. The user presses ”OK”.

Alternative paths:
Exception paths:

Table 4.2: Acquire performance requirements and choice of operating point.
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4.1.3 Check baseline.

This is the third step in the SAM procedure. Important performance and scale
parameters are entered into the program. This use case is shown in Table 4.3.

Use case name Check baseline model, and explore load sen-
sitivity.

ID: 3

Basic course of events:

1. Based on the information entered in use case
1, an SP model is made.

2. The SP tool calculates devolved work and saves
them in a file.

3. SAMe reads the file.

4. Storage mappings are completed, and service
demands are computed.

5. The user chooses to use simulation for calcu-
lating the load at the operating point (OP).

6. The system runs iterative calculations until the
OP is reached.

7. The load and information about the load sen-
sitivity is displayed to the user.

8. The user presses ”OK”.

Alternative paths:

5.a The user chooses to use an MVA algorithm mod-
ule for calculating the load at the operating point
(OP).
8.a The user changes the calculating method and
runs new calculations.
8.b The user changes the OP and runs new calcula-
tions.

Exception paths:

Table 4.3: Check baseline model, and explore load sensitivity.
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4.1.4 Acquire constraints.

This is the fourth step in the SAM procedure. Architectural constraints, e.g. maxi-
mum number of disks at a server, are entered here. This use case is shown in Table
4.4.

Use case name Acquire architectural constraints.
ID: 4

Basic course of events:

1. The list of subsystems is presented to the user.

2. The user chooses a subsystem.

3. The user enters an architectural constraint for
the chosen subsystem.

4. Repeat 2 and 3 if desired.

5. The user presses ”OK”.

Alternative paths:
Exception paths:

Table 4.4: Acquire architectural constraints.
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4.1.5 Initialise search.

This is the fifth step in the SAM procedure. The first search on the scaling path is
initialised here. This use case is shown in Table 4.5.

Use case name Initialise search.
ID: 5

Basic course of events:

1. The relative system size increase k is set to be
equivalent to the required relative system ca-
pacity increase r.

2. New service demands are calculated based on
the factor k.

3. The user chooses to use simulation for calcu-
lating the load at the operating point (OP).

4. The system runs iterative calculations until the
OP is reached.

5. The gain g is computed by dividing the new
load by the baseline load.

6. The gain is displayed in a plain way.

7. The user presses ”OK”.

Alternative paths:

2.a Load dependent effects exist, and the SP model
is reevaluated.
3.a The user chooses to use an MVA algorithm mod-
ule for calculating the load at the operating point
(OP).
7.a The user changes the calculating method and
runs new calculations.

Exception paths:

Table 4.5: Initialise search.
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4.1.6 Compare result g vs. r.

This is the sixth step in the SAM procedure. The gain g in performance resulted by
the increase k in system size is compared to the required increase in performance r.
This use case is shown in Table 4.6.

Use case name Compare result g vs. r.
ID: 6

Basic course of events:

1. The previous and the new load, the gain g, and
the requirement r is displayed to the user.

2. A visual representation of the difference be-
tween g and r is displayed.

3. The user chooses to adjust the scale factors by
pressing ”Tune uniformly”.

Alternative paths:

3.a The user chooses to adjust the scale factors by
pressing ”Tune non-uniformly”.
3.b The scale up is complete and the user presses
”Done”.

Exception paths:

Table 4.6: Compare result g vs. r.
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4.1.7 Uniform tuning.

This is the seventh step in the SAM procedure. The scale factors at the components
are adjusted uniformly to better fulfill the requirement. This use case is shown in
Table 4.7.

Use case name Uniform tuning per dimension.
ID: 7

Basic course of events:

1. The program presents the system components
with their present scale factors in the desired
dimension.

2. The program displays the gain with the present
scale factors in the desired dimension.

3. The user adjusts the scale factor in this dimen-
sion.

4. Repeat from 1 for each dimension.

5. The user presses ”Compute”.

6. Step 9 is executed.

Alternative paths:
Exception paths:

Table 4.7: Uniform tuning per dimension.
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4.1.8 Non-uniform tuning.

This is the eight step in the SAM procedure. The scale factors at the components
are adjusted non-uniformly to better fulfill the requirement. This use case is shown
in Table 4.8.

Use case name Non-uniform tuning per dimension.
ID: 8

Basic course of events:

1. The program presents the system components
with their present scale factors in the desired
dimension.

2. The program displays the gain with the present
scale factors in the desired dimension.

3. The user chooses a component to scale.

4. The user adjusts the scale factor for the com-
ponent in this dimension.

5. Repeat from 3 for all components that shall be
scaled.

6. Repeat from 1 for each dimension.

7. The user presses ”Compute”.

8. Step 9 is executed.

Alternative paths:
Exception paths:

Table 4.8: Non-uniform tuning per dimension.
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4.1.9 Use simulation or MVA.

This is the ninth step in the SAM procedure. A simulation model or an MVA al-
gorithm is used to calculate the load at the operating point(OP). The calculations
will be iterative searches with different load. An important issue is to minimize the
number of iterations. This use case is shown in Table 4.9.

Use case name Use simulation or MVA algorithm iteratively
to evaluate the new configuration.

ID: 9

Basic course of events:

1. The user chooses to use simulation for calcu-
lating the load at the operating point (OP).

2. The system runs iterative calculations until the
OP is reached.

3. The gain g is computed by dividing the new
load by the baseline load.

4. The gain is displayed in a plain way.

5. The user presses ”OK”.

Alternative paths:

1.a Load dependent effects exist, and the SP model
is reevaluated.
1.b The user chooses to use an MVA algorithm mod-
ule for calculating the load at the operating point
(OP).
5.a The user changes the calculating method and
runs new calculations.

Exception paths:

Table 4.9: Use simulation or MVA algorithm iteratively to evaluate the new config-
uration.
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4.1.10 Display final configuration.

This is the tenth step in the SAM procedure. The final results of the scale-up is
displayed. This use case is shown in Table 4.10.

Use case name Display final configuration with g and r.
ID: 10

Basic course of events:

1. The final system configuration is displayed.

2. The final gain g is displayed.

3. The requirement r is displayed.

4. Any differences between g and r are displayed
graphically.

Alternative paths:
Exception paths:

Table 4.10: Display final configuration with g and r.
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4.2 The SAMe procedure

The SAM procedure below is based on [Hug99] and [Hug06b], but has been de-
veloped to more detail after thorough research and discussion in the Performance
Group at NTNU.

1. Acquire baseline configuration and architecture.

2. Acquire performance requirements and choice of operating point.

3. Check baseline model, and explore load sensitivity.

4. Acquire architectural constraints.

5. Initialise search.

6. Compare result g vs. r

7. Uniform tuning per dimension.

8. Non-uniform tuning per dimension.

9. Use simulation or MVA algorithm iteratively to evaluate the new configura-
tion.

10. Display final configuration with g and r.

This is a general design requirement, and serves as a basis for the rest of the
requirements. The steps are described in more detail below.

1. Acquire baseline configuration and architecture.

(a) The baseline model and configuration is entered into the GUI of SAMe.
First enter the configuration at level I, then at level II, and then at level
III. The model could be read from a file created by SP Light.

(b) Real components are chosen from the resource database, and their rele-
vant specifications are registered by SAMe.

2. Acquire performance requirements and choice of operating point.

(a) The requirement r (a vector) is entered into the GUI of SAMe.

(b) The desired operating point is entered into the GUI of SAMe. This could
be a level of utilisation at a bottleneck device.

3. Check baseline model, and explore load sensitivity.

(a) Service demands are calculated.

(b) SAMe runs simulations until the operating point is reached. Or the load
could be calculated using an MVA algorithm ([MAD94]).

(c) The baseline load is registered by SAMe.

(d) SAMe displays the results to the user.

4. Acquire architectural constraints.

(a) Register possible architectural constraints in the system. These con-
straints will be checked every time an upgrade or replication is made.

5. Initialise search.

(a) k is set to r
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(b) If load dependent effects are present, the SP model is reevaluated, and
new service demands are calculated.

(c) SIMSAM simulations are executed with the new configuration until the
operating point is reached. Or the load could be calculated using an
MVA algorithm.

(d) The new load is registered by SAMe.

(e) The gain g is computed by dividing the new load by the baseline load.

6. Compare result g vs. r

(a) The gain g is compared to the requirement r. The difference is displayed
clearly for the user.

(b) If the gain is satisfactory, go to step 10, else proceed to step 7.

7. Uniform tuning per dimension.

(a) The k is adjusted uniformly in each of the three dimensions, processing,
storage and connectivity, so that the gain g will more likely fulfill the
requirement r.

(b) The adjustment could be upgrade or replication of components.

8. Non-uniform tuning per dimension.

(a) The k is adjusted non-uniformly in each of the three dimensions, pro-
cessing, storage and connectivity, so that the gain g will more likely not
exceed the requirement r more than desired for each subsystem.

(b) The adjustment could be upgrading or downsizing, or replicating or re-
moving of components.

(c) This step involves that real components are chosen from the resource
database, and their relevant specifications are registered by SAMe.

9. Use simulation or an MVA algorithm iteratively to evaluate the new configu-
ration.

(a) If load dependent effects exists or the workmix has changed, the SP model
is reevaluated, and new service demands are calculated. Else skip this
step.

(b) Decide whether to use simulation or the MVA algorithm. If MVA, go to
step 9d.

(c) SIMSAM reads the file with the resources and their service demands,
and simulations are executed until the operating point for the current
configuration is reached. Go to step 9e.

(d) The MVA algorithm is used to calculate the load at the operating point
for the current configuration.

(e) The new load is registered by SAMe.

(f) The gain g is computed by dividing the new load by the previous load.

(g) Return to step 6.

10. Display final configuration with g and r.

(a) The final configuration of the system is displayed.

(b) The gain g and the requirement r are displayed so that the differences
are clear to the user.
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4.3 Functional requirements

The functional requirements will define what functionality is demanded of the SAM
engine (SAMe) program, and are based on [Hug06b]. The sections are divided in
logically different components of the application:

• Requirements for SAMe

• Requirements for the GUI

• Requirements for subsystems

• Requirements for primitives

• Requirements for computations

4.3.1 Requirements for SAMe

This section defines the requirements for the program as a whole, and not a specific
part of the software. They describe what top level functionality that must be
supported by SAMe.

F1 The SAMe program must support the SAM procedure as described in Section
4.2.

F2 SAMe must have a connection to a database.

F3 SAMe must have a connection to an SP tool.

F4 The user must be able to save a scalability assessment study.

F5 The user must be able to load a scalability assessment study.

F6 The user must be able to reset a scalability assessment study back to baseline.

F7 SAMe must have an interface to the subsystem repository.

F8 SAMe must be able to import subsystems from the repository.

F9 The system modeled in SAMe must have a tree structure.

F10 SAMe must contain a list of all the subsystems in the system.

F11 SAMe must contain a list of all the primitives in the system.

F12 SAMe must be able to export a list of all the components in the system.

4.3.2 Requirements for the GUI

This section defines the requirements for the graphical user interface. They describe
how the GUI shall show information, and support user interaction.

F13 The user must be able to enter the three vector components of the requirement
r.

F14 The user must be able to enter the numerical value of the operating point(OP).

F15 The user must be able to choose the type of the OP.

F16 The user must be able to choose the method for calculating the load at the OP.

F17 The user must be able to change the type and value of the OP.
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F18 The user must be able to choose whether to upgrade or replicate a system
component.

F19 SAMe must display a graph describing the load sensitivity in a given interval
around the OP.

F20 SAMe must display a graph comparing the relative system capacity increase g,
and the requirement.

F21 After comparing g and r, the user must be able to choose to continue the scal-
ability assessment, or to end it.

F22 When the scalability assessment is finished, SAMe must display the final con-
figuration of the system, and a graphical comparison between the final gain g
and the requirement r.

4.3.3 Requirements for subsystems

This section defines the requirements for the part of the solution called a subsystem.
A subsystem is a node in the system tree, that is allowed to have children. It could
model e.g. a server.

F23 The subsystems must have a identification number(ID).

F24 The subsystems must have a name.

F25 The subsystems must have a list of child subsystems.

F26 The subsystems must have a list of primitives.

F27 The subsystems must be able to have architectural constraints.

F28 The user must be able to choose a subsystem and enter any architectural con-
straints.

F29 It must be possible to replicate subsystems.

F30 It must be possible to change the specifications of the subsystems after they
have been created in the system.

4.3.4 Requirements for primitives

This section defines the requirements for the part of the solution called a primitive.
A primitive is a leaf node in the system tree, that is not allowed to have children.
It could model e.g. a cpu.

F31 The primitives must have a identification number(ID).

F32 The primitives must have a name.

F33 The primitives must have a description.

F34 The primitives must have devolved work.

F35 The primitives must have a speed.

F36 The primitives must have a storage size.

F37 The primitives must have a connectivity.

F38 The primitives must get their data from a database.
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F39 It must be possible to replicate primitives.

F40 Primitives must have a replication factor property.

F41 It must be possible to upgrade primitives.

F42 The primitives must have a scale factor property for each dimension.

F43 It must be possible to change the specifications of the primitives after they have
been created in the system.

F44 SAMe must read devolved work from the SP tool, and calculate service demands
for the primitives.

4.3.5 Requirements for computations

This section defines the requirements for the computations made by SAMe. The
computations will be supported by a simulation framework, or other solutions.

F45 SAMe must be able to use a simulation framework to calculate the gain.

F46 The user must be able to uniformly adjust the scale factors for the subsystems
in the three dimensions: processing, storage and connectivity.

F47 The user must be able to non-uniformly adjust the scale factors for the primitives
in the three dimensions: processing, storage and connectivity.

F48 While in the process of adjusting the scale factors for the system, the user must
at any time be able to compute the gain g and compare it with the requirement.

F49 SAMe must have the possibility to use a heuristic that automatically adjusts
the scale factors to meet the requirement in an optimal way.

F50 SAMe must write to a log everything an action is performed.

F51 A log record must consist of which action was performed, and which parameters
were used in the action.

F52 SAMe must save every scaling action that is made, so that it will be possible to
go back to an earlier choice and try a different scaling path.

F53 SAMe must be able to compute the gain, which is the relative system capacity
increase, in each of the dimensions.

F54 The operating point (OP) must be either utilisation, response time or Kleinrock
saturation point.
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Chapter 5

Design

A correct and thorough design is imperative for a project in system engineering.
Together with a complementary requirements specification (Chapter 4), a thought-
through design builds a necessary foundation for the implementation of the program.
The design in this project is especially important, because the purpose is that
others will continue the development of the SAM engine (SAMe) after this project
is finished.

5.1 Technical choices

Here the technical choices of the project are explained and justified. In any project,
time is a critical factor and as far as possible known technical solutions should be
used, instead of using critical time learning a new programming tool.

5.1.1 Java

In the beginning of the project, it was decided to create a new software module
from scratch, and the chosen programming language to accomplish this was Java
5.0. It is important that users notice this, because a lot of features in version 5.0 is
not compatible with earlier versions of Java. However, the improvements in 5.0 are
good enough to justify the choice.

This section tries to justify the choice of programming language. There exist
several reasons why Java was selected before C++, MS.NET or any other language,
but the three most important are as follows:

• Existing knowledge and experience with Java

• Java has classes for designing graphical user interfaces (GUI)

• Platform independence

Existing knowledge of the programming language

The experience level with Java as an implementation tool was clearly higher than
other languages. This fact had a very high weight when programming language
was selected. Implementing in another language would not have been an impossible
task, but it would cost a lot of time to learn it, and would really be a waste of time
in this project. There was no demands concerning the selection of programming
tools as long as it did not concern functionality, and there is nothing within this
project that can not be done with Java.
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GUI

A considerable amount of the planned application will be GUI and Java has a
extensive API for designing what is needed of graphical user interfaces, through
Java Foundation Classes (JFC). Also, building GUIs with Java enables a lot of
reuse which is time-saving and an important part of object-oriented design.

Platform independence

Java programs can be run on any platform, so there will be no special platform
demand for the user. This is important, because there is no limited or known group
of users for SAMe, and therefore no assumptions can be made about what platform
SAMe will be run on in the future. The best solution is to prepare for everything.

5.1.2 Design Pattern - MVC paradigm

It is highly desirable to increase the ease of development as well as ensuring a high
degree of extensibility when developing the software of this project. Patterns are a
solution to well-known programming problems. The Model-View-Controller[MVC]
paradigm separates the components of the program into three different categories:
Model, view and controller, as seen Figure 5.1. By doing this it increases the clarity
of design and also makes it easier to change modules without having to change other
modules.

For this reason the Model-View-Controller paradigm was selected to build upon
when constructing the application.

Figure 5.1: Basic Model-View-Controller relationship, from [MVC]

MVC components overview The MVC architecture consists of the model, the
view and the controller.

Model The model is the core of the application that maintains the state and
data that the application represents. When significant changes occur in
the model it notifies observers (Typically a view) that updates all the
changes.
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If one needs to model two groups of unrelated data and functionality,
two separate models are created.

View The view is the user interface which displays information about the
model to the user. Any object that needs information about the model
needs to be a registered view with the model.
A viewport typically has a one to one correspondence with a display
surface and knows how to render to it. A viewport attaches to a model
and renders its contents to the display surface. In addition when the
model changes the view port automatically redraws the affected part of
the image to reflect those changes.

Controller The controller is the user interface presented to the user to ma-
nipulate the applications data. A controller accepts input from the user
and instructs the model and view port to perform actions based on that
input. In effect, the controller is responsible for mapping end-user action
to application response. For example, if the user clicks the mouse button
or chooses a menu item, the controller is responsible for determining how
the application should respond.

Summary of MVC Figure 5.1 shows the basic lines of communication among
the model, viewport and controller. In this figure, the model points to the
viewport, which allows it to send the viewport notifications of change. Of
course, the model’s viewport pointer is only a base class pointer; the model
should know nothing about the kind of viewport that observe it. By contrast,
the viewport knows exactly what kind of model it observes. The viewport also
has a strongly-typed pointer to the model, allowing it to call any of the model’s
functions. In addition, the viewport also has a pointer to the controller, but it
should not call functions in the controller aside from those defined in the base
class. The reason is you may want to swap out one controller for another,
so you’ll need to keep the dependencies minimal. The controller has pointers
to both the model and the viewport and knows the type of both. Since the
controller defines the behavior of the modules, it must know the type of both
the model and the view port in order to translate user input into application
response.

Advantages of the MVC paradigm Here some of the advantages of the MVC
architecture are explained.

• Clarity of design

The public methods in the model stand as an API for all the commands
available to manipulate its data and state. By looking at the model’s public
method list, it is easy to understand how to control the model’s behavior.
When designing the application, this trait makes the entire program easier to
implement and maintain.

• Multiple views

The application can display the state of the model in a variety of ways, and
create/design them in a scalable, modular way. As an example one could
think of a html page presenting a model as one view, and a Java SWING
application based on the same data is another view.

• Efficient modularity
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The components can be swapped in and out as the user or programmer desires,
also the model. Changes to one aspect of the program aren’t coupled to other
aspects, eliminating many nasty debugging situations. Also, development of
the various components can progress in parallel once the interface between
the components is clearly defined.

Java and MVC Java GUI components implements some sort of MVC. For exam-
ple a JList component graphically represents the model (ListModel) to the
user as data in the JList. The Controller takes care of mouse and keyboard
events generated when the user selects an element in the list.

The Java programming language provides support for the Model-View-Controller
architecture with two classes.

• Observer

Any object that wishes to be notified when the state of another object changes.

• Observable

Any object whose state may be of interest, and in whom another object may
register an interest.

These two classes can be used to implement much more than just the Model-
View-Controller architecture. They are suitable for any system wherein ob-
jects need to be automatically notified of changes that occur in other objects.
The model often is a subtype of Observable and the view implements Ob-
server. These two classes handle the automatic notification function of the
Model-View-Controller architecture. They provide the mechanism by which
the views can be automatically notified of changes in the model. Object ref-
erences to the model in both the controller and the view allow access to data
in the model.

5.1.3 Development environment

The choice of development environment fell on Eclipse ([Ecl]). Eclipse is an IDE and
framework for Java, and a number of other structured languages. It is also an open
source project. Eclipse has effective features like code completion and displaying of
errors as you type, as well as a wide range of plug-ins.

The diagrams in this report will be drawn in Microsoft Visio 10.0, which has
support for i.a. UML diagrams.
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5.2 Flow diagrams

This section describes the flow in the program, and shows how the user is guided
through the different steps in the SAM procedure (Section 4.2).

First, a Customer Behaviour Management Graph (CBMG) is shown in Figure
5.2. This graph describes the possible paths the user can take when using the
program. It is useful for exploring how a user would navigate in the system. See
[MA01] for more information about CBMG.

Figure 5.2: Customer Behaviour Management Graph for the SAMe program.
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The diagram seen in Figure 5.3 is an Action Port Model (APM) for SAMe. APM
is a conceptual workflow modelling language. It is used to make a process diagram,
that describes some interesting information for each task: What is done, which roles
are involved and both software and physical resources used. See [Car98] for more
information about APM.

Figure 5.3: APM diagram for the SAMe program.
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5.3 Static structure diagrams

The static structure diagrams are part of the Unified Modelling Language (UML),
and is describing connections and associations between software units [FS00]. See
[UML] for more information about UML.

Figure 5.4 is a package diagram for SAMe. It shows the packages and who they
communicate with.

Figure 5.4: Package diagram for the SAMe program.

Figure 5.5 is a class diagram for SAMe. It shows the essential classes, and how
the structure of the software is, regarding associations and quantity. The classes for
the graphical user interfaces (GUI) is summarised in the class SAMeGUI, because
including all the GUI classes would just decrease readability of the diagram, and the
information value of the class diagram is the same without them. Class diagrams
are very useful for planning and describing which classes are needed, and important
attributes and methods.

5.3.1 Class descriptions

Here follows a description of each class in the class diagram (Figure 5.5) and their
most important attributes and methods.

Start

This class contains the main method, and starts the program in a new thread when
the system is ready for it.

SAMeGUI

This is really an abstraction for all the GUI classes in SAMe. They show informa-
tion, and handle all interaction with the user. There are many GUI classes, and
including them in the diagram would decrease readability.

System

This class is a very important class, that contains important information. The
requirements are stored here along with the operating point. The system also has
a pointer to the root subsystem.
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It’s central methods are getAllPrimitives and recoverSystemState. The first cre-
ates a list of all the primitives in the tree below a given subsystem. The latter
sets the root to be a different subsystem, after the user has chosen to return to a
previously saved point in the scalability study.

Tuner

This class takes care of the tuning. It’s methods tuneUniform and tuneNonUniform
tries to upgrade or replicate the given component(s) with the given parameters. If
not all components could be upgraded or replicated, a list of those who could not
is returned.

Every time a tuning is performed, a log record is made by the method writeToLog
that says what scaling operation was executed.

Log

This class contains the rootLogPost, and the point where a new post is inserted.
The method addLogPost adds a new post to the previousLogPost.

LogPost

This class contains the data for a log record. parent and children are the tree
structure pointers, action is a String saying what was done in this tuning execution,
and systemState is the root subsystem as it was before the tuning.

Component

This is an interface that defines the two methods clone and makeTree. These meth-
ods are necessary for the two classes SubSystem and Primitive. They implement
the Component interface because the parameters in the methods in this interface
can be instances of both classes.

SubSystem

A SubSystem is a component in the system architecture that contains other compo-
nents. This class implements the interface Component described above, and extends
DefaultMutableTreenode which is a Java class. This is because the system hierarchy
is defined as a tree, and with that inheritance SubSystems can be organised in trees
as well.

The SubSystems has an architectural constraint maxReplication which limits the
number of copies that can be made of this SubSystem. The method clone creates
a new identical copy of the given SubSystem, and is used in the method replicate
which creates a given number of replications if allowed.

Primitive

A Primitive is a component in the system architecture that cannot be decomposed
into other components. This class implements the interface Component described
above, and extends DefaultMutableTreenode which is a Java class. This is because
the system hierarchy is defined as a tree, and with that inheritance Primitives can
be organised in trees as well.

The Primitives has an attribute replication which says the number of copies
that are made of this Primitive. The method clone creates a new identical copy of
the given Primitive, while the method replicate increases the replication attribute
if allowed. The Primitives also has a number of attributes describing the capacity

34



CHAPTER 5. DESIGN 5.3. STATIC STRUCTURE DIAGRAMS

of the primitive, and devolvedWork which describes the amount of work performed
at the Primitive.

SAMeFileReader

This class provides the method readSPModel, that reads a file with a specified format
(described in Appendix A). The filename is an attribute to make testing easy, but
could be a file chosen by the user in the future.

DatabaseHandler

This class communicates with the database containing all the primitive components.
It creates a newConnection that requires a jdbc driver and a database path.

getNextUpgradeFactor returns the closest upgrade factor to the given desired
upgrade factor in the given dimension for a primitive component, by searching the
database for a suitable component in the same category.

getMaxUpgradeFactor returns the greatest upgrade factor in the given dimension
for a primitive component, by searching the database for the component in the same
category with the greatest capacity.

getDeviceData returns all the attributes contained in the database for a primitive
component.

GainCalculator

This class calculates the gain in each of the three dimensions, by executing the
methods calculateGainProcessing, calculateGainStorage and calculateGainConnec-
tivity after a tuning operation has been performed. The two last methods is a
simple division of new capacity by baseline capacity. But the first involves a num-
ber of simulations or MVA iterations to calculateLoadAtOP before dividing it by
the baseline load.

SimulatorModel

This class is the main simulator class, which contains all the resources in the queue
network model, and their distributions of service demands. The method init ini-
tialises the resources, and doInitialSchedules starts the simulation.

SAMResource

This class extends the Desmo-J ([Des]) class Res, which has the methods provide
and takeBack. At the time, nothing new is added in this class, but it is extended
to ease future development.

Source

This class creates a User and schedules it to start when ready through the method
eventRoutine.

User

This class is a process in the queue network, that executes the method lifeCycle
and then stops. Inside this method, the process uses resources in a given order and
for a given time. If a resource is not available, the process waits in a queue until
the resource is ready.
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Figure 5.5: Class diagram for the SAMe program.
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5.4 Sequence diagrams

The sequence diagrams are also part of the Unified Modelling Language (UML), and
are describing communication between objects. They are very useful for detailed
planning and describing of procedure calls and interaction between objects.

Figure 5.6 shows a sequence diagram for how SAMe calculates the gain in the
processing dimension. There are a number of simulation iterations until the operat-
ing point is reached, but the simulation is described in a separate diagram (Figure
5.7). After a simulation iteration is finished, the bottleneck utilisation is compared
to the operating point (OP). If isOPReached returns false, adjustLoad gives a linear
estimation of a load that will make it return true, and a new simulation is started.

Figure 5.6: Sequence diagram for calculating the gain.
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The simulation is an important part of SAMe. A simulation model creates a
number of sources, who creates a user each. The users remains inside the lifeCy-
cle until the simulation is finished. There they compete for resources with other
users. A user issues a provide message to a resource, and waits until the resource
is available. After a predetermined (exponentially distributed) time, the user sends
takeBack to the resource, and releases it. Figure 5.7 shows the sequence of the
interactions in the simulation.

Figure 5.7: Sequence diagram for the simulation.
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Upgrade of a primitive is a procedure that retrieves the closest upgrade factor
from the database, and sets an attribute in the primitive object. If there is no
component that can satisfy the request, an UpgradeFactorException is returned.
Figure 5.8 shows the sequence of the communication.

Figure 5.8: Sequence diagram for upgrading a primitive component.

Figure 5.9 shows the sequence of procedures that is involved when a primitive
is replicated. Every primitive has an attribute limiting the number of allowed
replications, that is checked. If the limit is reached, a ReplicationFactorException
is returned.

Figure 5.9: Sequence diagram for replicating a primitive component.
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The sequence of interactions that are executed when a uniform upgrade of a
subsystem with primitive children is performed, is shown in Figure 5.10. The cal-
culation of the gain is described in a separate diagram.

Figure 5.10: Sequence diagram for upgrading a subsystem with primitive children.
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Replication of a subsystem with primitive children is a recursive procedure, be-
cause the structure is a tree. The clone method is called on every child of the
replicated subsystem, as shown in Figure 5.11. The calculation of the gain is de-
scribed in a separate diagram.

Figure 5.11: Sequence diagram for replicating a subsystem with primitive children.
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5.5 User interfaces

The SAMe prototype is supposed to have a graphical user interface, so that it will
be easy to use. A number of sketches is drawn up front to create a discussion about
appearance and human-computer interaction. This section presents the proposed
user interfaces for SAMe, and relates them to the procedure in Section 4.2.

First are the windows where the system architecture is acquired, as described in
step 1 of the SAM procedure. They are shown in Figure 5.12.

Figure 5.12: Design for the system setup user interface.
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Figure 5.13 shows the window where the requirements are acquired, along with
the operating point (OP), as described in step 2 of the SAM procedure.

Figure 5.13: Design for the requirement parameters user interface.

Figure 5.14 shows the window where the baseline load is calculated, as described
in step 3 of the SAM procedure. After the baseline load is calculated, the search
can be initialised by pressing the ”Initialise search”-button, as described in step 5
of the SAM procedure.

Figure 5.14: Design for the check baseline user interface.

Figure 5.15 shows the window where the calculation options are presented. It
should be possible to decrease or increase the calculation accuracy, depending on
the purpose of the scalability study. The operating point can also be changed here.

Figure 5.15: Design for the calculation options user interface.
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The tuning interface is shown in Figure 5.16, where the App node is selected in
the system tree. The system can have at most 8 App nodes, and with the one node
already existing, the number of replications left is 7. The ”max uniform upgrade”
field displays the lowest ”max upgrade factor”for the primitives below in the subtree,
for this dimension. A non-uniform upgrade at this level will not produce any result,
since the chosen treenode is not a primitive.

Figure 5.16: Design for the tuning user interface.

In Figure 5.17, the AppCPU node is selected in the system tree. The AppCPU
can at most be replicated 6 times, and with the factor two replication already
performed, the number of replications left is 4. The ”max upgrade” field displays
the highest upgrade factor retrieved from the database for the current primitive
category and dimension. A uniform and non-uniform upgrade at this level will
produce the same result, since the chosen treenode is a primitive and does not have
children.

Figure 5.17: Design for the tuning user interface.
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The upgrade dialog window is shown in Figure 5.18. The user enters the desired
upgrade factor, presses ”calculate”, and so starts the calculation of the gain. Which
component that is upgraded is determined by the selected node in the system tree.

Figure 5.18: Design for the upgrade user interface.

The replication dialog window is shown in Figure 5.19. The user enters the
desired replication factor, presses ”calculate”, and so starts the calculation of the
gain. Which component that is replicated is determined by the selected node in the
system tree.

Figure 5.19: Design for the replication user interface.
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Figure 5.20 shows the user interface where a graphical comparison between the
gain an requirement is displayed. The final system configuration is also displayed.
The user can choose to exit, save, tune more, or view the log.

Figure 5.20: Design for the comparing user interface.

Figure 5.21 shows the user interface where the log is displayed. The user can
select a node in the tree that symbolises a tune action, and restore the system to
the state it was in before that tuning was performed.

Figure 5.21: Design for the log user interface.
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Chapter 6

Implementation

This chapter describes details about the implementation of the SAM Engine proto-
type (SAMe). Important parts of the program, like the connection to other modules
in the SAM software package are explained below. In the end, some features that
are not complete are looked at.

6.1 The database

SAMe creates a connection to a database, to retrieve the specifications for primitive
components. This could of course be any kind of database, but the testing has been
using a MySQL database created solely for this purpose.

The primitives in the database have an integer field ”type”. This field indicates
what category the component can be upgraded within, i.e. a primitive cannot be
upgraded to a component with a different value of ”type” in the database. The
decision of what category a component belongs to is left to the database manager,
and is not editable in SAMe. Components with different instruction architectures
should typically be in different categories, so the database manager ought to have
a detailed knowledge of primitives and their compatibility. Also, there can be an
unlimited number of categories, and an unlimited number of components within a
category.

A tool for putting components into the database should be very simple to make.
To help the user putting the components in the right category, a separate table
”categories” that consists of the category integer and category name could be made.
Then a simple index comparison would create a named category list to choose from,
and abstract away the category number.

Technical details

• The database is accessible through a PHP-interface at https://www.itea.
ntnu.no/mysql/

• The username is: ”anderh master”

• The database is: ”anderh master”

• The password is: ”1234”

• The jdbc driver is: ”org.gjt.mm.mysql.Driver”which is provided with the pro-
totype.
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• The database path is: ”jdbc:mysql://mysql.stud.ntnu.no/anderh master” but
it is uncertain how long this database will exist after the user ”anderh” has
left NTNU.

6.2 The connection to SP Light

SP Light is a program developed in a student project, see [Løv04] and [spl] for
more information. It is an important part of the SAM software package, and SAMe
is meant to communicate with SP Light in some way, because the calculations in
SAMe needs some other calculations done in SP Light.

After some thought and discussion, it was decided that the currency of Structure
and Performance (SP) is devolved work. Initially it was supposed to be service
demand, but that would mean duplicate work being done.

In the end, a final list of data that should be transferred between SP Light and
SAMe was settled on. The model made in SP Light should be the only one made,
and SAMe should read the model with its components and their data.

Because there was no defined output from SP Light at the time, the interchange
format was determined in this project and passed on the maintainers of SP Light.
They will make SP Light output the necessary data in the summer of 2006.

The possibilities for communication between SAMe and SP Light are many, but
the solution had to be simple, because of time constraints. Therefore, writing and
reading a formatted file became the solution as shown in Figure 6.1. The format
is shown in Appendix A, and is a prefix traversal of the system tree. XML was
of course a serious option, but that would require more time than was available,
and could be a future extension if desired. Though XML was an inspiration for the
format, it is much more simple and depends on the file being correctly formatted.

Figure 6.1: Communication between SP Light and SAMe.

6.3 The tuning

This section describes how the tuning is implemented in SAMe, at an appropriate
level of detail. The tuning is either upgrade or replicate, as explained in Section
3.3.

6.3.1 Upgrading

Subsystems
Whether the upgrading of a subsystem is uniform or non-uniform depends on
the chosen level in the system hierarchy, but in practice in SAMe, the scaling
mode will be implicit.

If a subsystem is chosen for upgrade, the scaling is uniform. All the primitive
components in the subtree rooted by the chosen subsystem is attempted up-
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graded by the given factor in the given dimension. If any primitives could not
be upgraded, the user will be notified.

Primitives
Upgrading a primitive is always non-uniform, because a primitive cannot be
decomposed further.

If a primitive is chosen for upgrade, its upgrade factor in the chosen dimension
will be adjusted to the upgrade factor returned by getNextUpgradeFactor in
DatabaseHandler. The upgrade factors in the other two dimensions are not
changed. If the primitive could not be upgraded, the user will be notified.

6.3.2 Replicating

Subsystems
Replicating a subsystem is a process that creates a given number of com-
pletely similar subsystem copies with all the belonging children. The copies
are inserted as children of the parent of the replicated node, as seen in Figure
6.2.

Figure 6.2: Result of replicating a subsystem.

All subsystems have an attribute maxReplication that limits the number of
replications allowed of that type of subsystem. This is controlled by an idnum-
ber given to each type of subsystem. The idnumber is copied to all replicated
subsystems. When a replication is requested, SAMe counts the number of
subsystems with the given idnumber, and if that number, plus the requested
number of replications, is less than or equal to maxReplication, replicating is
executed. If the subsystem could not be replicated, the user will be notified.

Primitives
Replicating a primitive in SAMe is a very simple procedure, that needs some
thinking to understand why it is correct. When evaluating an architecture,
it is important to look for bottlenecks that are hampering the performance.
The devices that are examined are categorised by their duties. If a device
is replicated by inserting a similar device, or an internal doubling of load
capacity, these two devices will still be performing the same duties, and will
be considered one unit when looking for bottlenecks in the architecture.

Thus, the procedure is to increase the replication attribute in the primitive
with the requested number (if not exceeding the maxReplication). If repli-
cation is X after the procedure, X users will be allowed inside the primitive
simultaneously when simulating.

6.3.3 Limitations

There are three main limitations in SAMe relating to the tuning.

1. It is not possible to select more than one component in the system, i.e. only
one component can be upgraded non-uniformly or replicated at the time.
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2. It is not possible to both upgrade and replicate a component in the the same
action. SAMe will calculate the gain after upgrading before one can replicate,
and vice versa.

3. There is no interaction between the three dimensions. Even though processing,
storage and connectivity might have implications for each other, these effects
have not been investigated.

6.4 The simulation

The simulation framework used in SAMe is the SIMSAM simulator framework,
which is described in [Hol05]. It is a Java discrete event simulator built with
DESMO-J [Des] especially for the SAM method. Simulation is used to calculate
the load at the operating point and the gain in the processing dimension, as de-
scribed in Figure 5.6 and Figure 5.7 in Section 5.4.

Although the SIMSAM simulator in [Hol05] assumed a J2EE architecture (Ap-
plication server, Web server, DB server as in Figure 6.3), the SIMSAM simulation
module in SAMe has been generalised to adapt any architecture. As long as it can
be represented as a tree, it can be modeled and simulated.

Figure 6.3: The J2EE four-tier architecture.

The Primitives in the system model are used to create SAMResources with
names, service demands and replications. The names are used for feedback to the
user, the devolved work for the Primitives are converted to service demands, and
the replication factors for the Primitives determines the number of slots in the
SAMResources.

First an initial run with 10 users is executed, and the bottleneck utilisation is
then used to estimate how many users that will be enough to reach the operating
point. New iterations with adjusted load are executed until the utilisation is close
enough to the operating point.

An objection to simulation is that is takes some time to run. But it is worth
mentioning that it will run faster on a faster computer, and it exploits multiple
threading, so if the simulations are run on a fast, multi-CPU computer, the runtime
would decrease substantially.

In [Hol05] it was shown that simulation in SIMSAM can give realistic results
compared to measurement on the reference system. The same test scenario has been
carried out in SAMe, and the results are still the same as in [Hol05]. This shows
that the integration of SIMSAM into SAMe has been successful.

So the SIMSAM simulator is a trustworthy component of the SAMe prototype,
and that is important since no other method for calculating the gain is implemented
in SAMe so far.
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Chapter 7

The result

7.1 Report

This report is documenting the development of the SAM procedure and its soft-
ware tool the SAM Engine. The report has been written in Eclipse[Ecl] using
LATEXformatting for good appearance. An effort has been made to give all and the
best information in an understandable way, so that every kind of reader may find
the contents interesting and useful.

We hope that this report will be of great help in a possible further development
of the SAM Engine.

7.2 SAM Engine

A SAM Engine prototype has been implemented in Java2SE5.0[Java] with a con-
nection to a MySQL database[MyS]. As a curiosity it can be mentioned that the
development has resulted in a total of 3800 lines of code. The program and all
required files are attached separately.

Two screenshots from SAMe are shown and explained in Appendix C. These
screenshots shows the user interfaces for the most central user interactions.

A runnable program, and source code are among the attachments to this report,
and they are a part of the Master’s Thesis. Details about attached files are given
in Appendix E.

We hope that the SAM Engine will be of great use to people performing scala-
bility assessment studies.

7.2.1 Requirements fulfilment

Table 7.1 shows to what degree the functional requirements from Section 4.3 are
fulfilled. The ranking is on a scale from 1 to 5, where 1 means not at all fulfilled,
and 5 means completely fulfilled.

As the project went along, some requirements had to be given less priority
because of time constraints on the development of the SAMe prototype. That is
the reason for most of the requirements that have not been completely fulfilled, i.a.
three types of operating point, and saving projects. Other requirements, like dealing
with load dependent effects and displaying load sensitivity, we have not been sure
how to implement.

Looking at the ranking results, it is clear that SAMe has covered a great deal
of the requirements. An average fulfilment ranking of 4.1 is very good, and it can
be concluded that the SAMe prototype is technically a success, although the most
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important requirement F1 needs a further investigation. A validation of requirement
F1 is given in Section 8.1.

Number Requirement Fulfilment
F1 The SAMe program must support the SAM procedure. 4
F2 SAMe must have a connection to a database. 5
F3 SAMe must have a connection to an SP tool. 4
F4 The user must be able to save a scalability assessment study. 1
F5 The user must be able to load a scalability assessment study. 1
F6 Reset a scalability assessment study back to baseline. 3
F7 SAMe must have an interface to the subsystem repository. 1
F8 SAMe must be able to import subsystems from the repository. 3
F9 The system modeled in SAMe must have a tree structure. 5
F10 SAMe must contain a list of all the subsystems in the system. 5
F11 SAMe must contain a list of all the subsystems in the system. 5
F12 Export a list of all the components in the system. 1
F13 Enter the three vector components of the requirement r. 5
F14 Enter the numerical value of the operating point(OP). 5
F15 The user must be able to choose the type of the OP. 5
F16 Choose the method for calculating the load at the OP. 5
F17 The user must be able to change the type and value of the OP. 3
F18 Choose whether to upgrade or replicate a system component. 5
F19 Graph describing the load sensitivity in a given interval. 1
F20 Display a graph comparing the gain, and the requirement. 1
F21 Choose to continue the scalability assessment, or to end it. 5
F22 Display the final configuration, the gain and the requirement. 4
F23 The subsystems must have a identification number(ID). 5
F24 The subsystems must have a name. 5
F25 The subsystems must have a list of child subsystems. 5
F26 The subsystems must have a list of primitives. 5
F27 The subsystems must be able to have architectural constraints. 4
F28 Choose a subsystem and enter any architectural constraints. 4
F29 It must be possible to replicate subsystems. 5
F30 Change the specifications of the subsystems. 2
F31 The primitives must have a identification number(ID). 5
F32 The primitives must have a name. 5
F33 The primitives must have a description. 5
F34 The primitives must have devolved work. 5
F35 The primitives must have a speed. 5
F36 The primitives must have a storage size. 5
F37 The primitives must have a connectivity. 5
F38 The primitives must get their data from a database. 5
F39 It must be possible to replicate primitives. 5
F40 Primitives must have a replication factor property. 5
F41 It must be possible to upgrade primitives. 5
F42 The primitives must have a scale factor for each dimension. 5
F43 Change the specifications of the primitives. 2
F44 Read devolved work from an SP tool, and calculate SD. 5
F45 Use a simulation framework to calculate the gain. 5
F46 Uniformly adjust the scale factors for the subsystems. 5
F47 Non-uniformly adjust the scale factors for the primitives. 5

Continued on next page.
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Table 7.1 – continued from previous page
Number Requirement Fulfilment

F48 Compute the gain g and compare it with the requirement r. 4
F49 Use a heuristic that adjusts the scale factors in an optimal way. 1
F50 SAMe must write to a log everything an action is performed. 5
F51 A log record must consist of an action, and it’s parameters. 5
F52 Save every scaling action, and try a different scaling path. 4
F53 Compute the gain in each of the dimensions. 5
F54 OP is: utilisation, response time or Kleinrock saturation point. 3

Table 7.1: Degree of fulfilment of requirements

7.2.2 Verification

To verify that the SAM Engine produces correct results, it was decided to use the
same test as in [Hol05], which originated from [RM05].

The test involves a reference system that is simulated, scaled up, and simulated
again. The architecture consists of three servers, each with a cpu and disk. In
addition it was calculated a ”User think time”, where the user would not apply load
on the servers. The architecture is shown in Figure 7.1.

Figure 7.1: The architecture from the test.

It is important to know that SAMe can support any architecture, not just the
one in this test. But since the test case from [Hol05] was the most comprehensive,
with measurements on the real system, it was decided to be used. However, this test
only tests the capabilities in the processing dimension. The simulation currently
does not involve storage or connectivity.

Each of the devices in the system has a service demand, derived from measure-
ments in [RM05], and the service demands are used as parameters in the simulation.
The baseline parameters are shown in Table D.1 in Appendix D.

The test proceeds like this:

• The baseline configuration is acquired and simulated

• The CPUs are upgraded by a factor of 2

• The new configuration is simulated again

• The gain is calculated

The means for calculating the gain is the load at the operating point(OP), which
in the SAMe prototype is utilisation at the bottleneck component.
Gain = scaled−upLoad

baselineLoad
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One thing is different from the test in [Hol05] though, there are currently no
load dependent effects in SAMe, as discussed in Section 8.2. So the load will not
be the same. But since both the baseline and the scaled-up version are calculated
without such effects, the gain should usually not be affected too much. There will
of course be some variance if the load dependent effects are non-linear.

The problem with the test case is that the system was heavily affected by non-
linear load dependent effects. The source was identified as garbage collection,
and it hampered the performance of the system. Measurements in [RM05] give
a capacity increase of only 1.4 when using utilisation as OP, while simulations in
SAMe give an increase of 1.9 at the same OP. [Hol05] included the non-linear ef-
fect (GCCPUUtilization(n) = 0, 09× n1.810) found in [RM05] in the simulation with
success. Just to prove that SAMe can produce the same results, it was included in
the source code of SAMe as well. But because that would destroy the generality of
SAMe, it was removed after the testing was finished.

The test with SAMe including the garbage collection gave a gain of 1.5, which
is close enough to the measured gain of 1.4 to assure the capability of SAMe.

This test scenario will be used as an example to evaluate the ten steps of the
SAM procedure in Section 8.1.

7.2.3 Possible improvements

These improvements are suggestions for features that could be implemented in the
future.

Integrating with an MVA algorithm

A reason for integrating an MVA algorithm([MAD94]) into SAMe is that the sim-
ulation is rather slow, and an MVA implementation will solve the queuing network
much faster.

One solution that strengthens the speed argument, is to use a faster program-
ming language than Java. There is an implementation of the MVA algorithm i C,
that is available under the GPL licence[SF]. It can be found on [Che]. This could
be integrated with SAMe by using the Java Native Interface(JNI)[Mic] which is a
native programming interface that is part of the Java SDK. JNI lets Java code use
code and code libraries written in other languages, such as C and C++, and allows
you to call Java code from within native code.

There is also an MVA algorithm already implemented in Java, which could be
integrated with SAMe. The source code and demo can be found on [MVA].

Almost completed features

• Navigation in SAMe
It could be made possible to navigate differently in SAMe than it is now,
maybe go back and e.g. change the requirements. That is an easy extension,
all the windows are reusable.

• Editing components while tuning
When in the tuning interface, it could be possible to edit component prop-
erties. The component properties windows from step 1 are reusable for this
feature.

• Calculation options
An options window has been made, but not integrated yet. The required work
is to reflect the chosen options in the datamodel.
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• Logging and going back
A procedure for logging the scaling actions has been made, but there is cur-
rently no interface for viewing the log and going back. The system tree is
reusable for this log system.

Other improvements

• Inheriting scale factors in all dimensions
The tuning is currently adjusting scale factors for exclusively one dimension
at the time. This could be changed by returning the scale properties for all
three dimensions from the database when tuning.

• Other types of operating point
Implementing response time and Kleinrock saturation point[RM05] as oper-
ating points increases the usefulness of SAMe.

• Saving and loading projects
A scalability assessment project could be saved and loaded as XML([XML]).

• Saving and importing sub-trees from repository
A repository of subsystems could be made, either as a database or as XML.

• Multiclass transactions
If the components received a vector of devolved work, SAMe could be adjusted
to calculate multiclass transactions. The SIMSAM simulator would need some
small changes, but an implementation of MVA would also support multiclass.

• Load sensitivity
Displaying the load sensitivity in some way could be done by calculating util-
isation/response time for a given interval around the load at the OP.

• Graphical display
There are several open source Java packages that supports graphs, and some
can be found at [Javb].

• Better feedback
More detailed and visible feedback during simulation could increase the user’s
understanding of the simulation.

• Icons
Showing different icons in the tree for subsystems and primitives is simple,
just find some suitable images.
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Chapter 8

Evaluation

The SAM method is described in Section 3.2 and in more detail in Section 4.2.
The SAM engine (SAMe) prototype is described in Chapters 4, 5 and 6. But how
well does SAMe follow the SAM method? It is not so important that the prototype
works, if it doesn’t implement the SAM method. But how can one prove that SAMe
actually does that? A step by step validation of the SAM procedure in Section 4.2
will give a clear indication. The test from Section 7.2.2 is used as a walk-through
example, to clarify what can and can’t be done.

8.1 Validating the ten steps

This section gives an evaluation of how the ten steps are implemented in SAMe. A
step is implemented either completely, partially or not at all.

Step 1: Acquire baseline configuration and architecture
The baseline configuration is modeled in SAMe, either manually or by read-
ing a model from file. The model read from file can be altered too. The
specifications for the primitive components are chosen from a database.

This step is completely implemented.

Step 2: Acquire performance requirements and choice of operating point

The requirement in each of the three dimensions, and the choice of operating
point is entered in SAMe. The requirements can be equal or different for each
dimension. The drawback in this step is that only utilisation is implemented
as operating point. There was not enough time to implement other types of
operating points. The example did not have specific requirements, so they
were set to 1. Neither did the example involve the storage or connectivity di-
mension, but the dimensions does not affect each other in SAMe, so it didn’t
matter here.

This step is completely implemented.

Step 3: Check baseline model, and explore load sensitivity
The baseline model is simulated, and the load is displayed to the user. The
load sensitivity is not explored however, because there was no clear procedure
for how it was supposed to be explored and displayed. However, one can
interpret the output information from the simulation to be information about
the load sensitivity. The output shows the load and bottleneck utilisation for
each iteration, and by looking at the increases in utilisation compared to the
increases in load, one can get an indication of the load sensitivity.
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This step is partially implemented.

Step 4: Acquire architectural constraints
In step 1, when modelling the system, the constraint ”max number of replica-
tions” is put into the components. But there might be other constraints in the
architecture, that are not included in the model. There is no support at the
time for registering other constraints, or changing the constraints after step
1. The reason for that is uncertainty of what other constraints might include,
and a shortage of time. Since the example did not specify ”max number of
replications”, it was set to 5, so it would not cause any problems.

This step is partially implemented.

Step 5: Initialise search
After the baseline load is calculated, it is possible to initialise the search. The
system is attempted upgraded uniformly by the requirement factor in each
dimension, and then the gain is calculated. If not all components could be
upgraded, the user is notified. The example did not have specific requirements,
so they were set to 1. This resulted in the baseline system beeing simulated
again, without any changes.

This step is completely implemented.

Step 6: Compare result g vs. r
After the gain has been calculated, the requirement and the gain for the
current chosen dimension is shown in separate but adjacent fields. This makes
the comparison easy, even though it is not graphical. But it is really not a
clear step in the procedure, and the comparison is for only one dimension at
the time. There was not enough time to implement this step completely.

This step is partially implemented.

Step 7: Uniform tuning per dimension
It is fully possible to tune a subsystem uniformly (tuning a primitive uni-
formly would not make sense). If upgrade is chosen, the relative increase in
capacity for all the children is attempted set to the given factor in the selected
dimension. If replication is selected, the subsystem is attempted replicated by
the given factor. The example did not involve uniform tuning.

This step is completely implemented.

Step 8: Non-uniform tuning per dimension
Non-uniform tuning in SAMe includes upgrading and replicating of primitives,
as defined in the procedure, but it is not possible to remove components after
the model has been created. That could be a simple but useful extension, if
the system has grown larger than necessary, but there was not enough time
to implement this step completely. The example involved upgrading all the
three CPUs in the system by a factor of 2. That was possible, because there
was available in the database a component in the same category with double
the processing speed. (Put there for the example)

This step is partially implemented.

Step 9: Use simulation or MVA algorithm iteratively
Only simulation is implemented in the SAMe prototype, and not MVA. But
the simulation is used iteratively to calculate the load at the OP and thus
the gain in the processing dimension. The OP was 0.6 in the example, and
that was used to calculate the load and thus gain in the processing dimension.
The calulation of the gain in the storage and connectivity dimensions is not
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using simulation, SAMe just retrieves the component from the database that
best matches the upgrade, and sets the gain to: Gain = scaled−upCapacity

baselineCapacity .
As mentioned in Section 6.3.3, SAMe does not treat interactions between the
dimensions.

The greatest drawback in this step is that there is no integrated handling of
load dependent effects. A new SP model has to be made with new devolved
work, and then read into SAMe and scaled again. A discussion of this issue
is given in Section 8.2.

Both integrating an MVA algorithm and handling load dependent effects are
quite complex tasks, and required more time than was available.

This step is partially implemented.

Step 10: Display final configuration with g and r
There is no separate step for displaying the final configuration and gain in
the prototype. However, the system and the gain are displayed continuously
in the tuning window, and the user can decide at any time when to end the
scalability study. But there is unfortunately no functionality for saving and
loading studies at the time. There was not enough time to implement this
step completely.

This step is partially implemented.

8.2 SAMe and SP boundaries

SAMe and SP Light are both important parts of the SAM software package, but
because their use is so interconnected, it is important to separate the tasks assigned
to each program.

SP is a way of constructing a static model of a system and distributing load to
components in the system, and the currency used to describe the load is devolved
work [Hug88]. Devolved work is the main information that is transferred from SP
Light to SAMe. In SAMe the devolved work is converted to service demand (SD),
and used in simulation (and in MVA if implemented). Then there won’t be duplicate
calculations of service time or service demand.

An important approach to the scalability assessment is the hierarchical approach.
It requires that devolved work is stored for intermediate levels in the system. This
way, it is up to the user what detail level he/she wants to investigate. If only the
server level is investigated, the servers can be modeled with devolved work, and
the assessment is performed without further decomposition. This opens for great
opportunities in reusability, when previously explored standard subsystems with
performance properties can be imported into the model.

A drawback with the current version of the SAMe prototype concerns the han-
dling of load dependent effects. If these effects are linear, they would be relatively
easy to deal with, but often the load dependent effects are non-linear, like garbage
collection in Java. And then there is no way of representing the load dependent
effects in SP Light, because it is a static model which is constructed on the basis of a
given load. The way SP Light and SAMe are today, handling of load dependent ef-
fects requires that the SP model is reevaluated for every scaling action that increases
the load capacity of the system. This is very cumbersome and time-consuming.

What the function for the load dependent effect is, is discovered through em-
pirical studies and measurement, and will usually be different from architecture to
architecture and study to study. Therefore, the function can not be determined
and cemented in the source code of SAMe. But SAMe should clearly be the one to
handle the load dependent effects, as it is SAMe that uses simulation (and MVA)
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to calculate the gain for the evolving system. In [Hol05] a non-linear function for
garbage collection in Java was implemented into the simulator, and an amount of SD
relating to garbage collection was added to the regular SD for a CPU. That function
was obviously a good estimate, since the SIMSAM simulation results were better
that the MVA results. It shows that a realistic function for load dependent effects
can be implemented into SAMe with success. A suggested solution is described in
Section 9.2.

8.3 The guidance

Because the users of SAMe most likely will be people with different backgrounds and
different knowledge about SAM, it is useful with a workflow in SAMe that guides
the user through the processes in the SAM procedure(Section 4.2). The navigation
allowed in the SAMe prototype is shown in Figure 5.2 in Section 5.2. It is meant
to be guiding, not enforcing.

There is a partially determined path from start to finish, and information is pre-
sented in a way that should guide the user to making the most profitable decisions.
Especially the first five steps of the procedure are part of a determined path.

In the tuning phases however, the freedom of scaling options is given to the
user. But information about the system, the gain and the scaling properties of all
components is always visible. This information should be of good assistance while
performing a scalability study in SAMe.

8.4 Conclusion

This conclusion will evaluate the project, and whether the main goal for the proto-
type has been accomplished: The support for the SAM method

Section 8.1 looked at the degree of completion for the ten steps. A summary is
given in Table 8.1.

Step Degree of completion
Step 1 Completely
Step 2 Completely
Step 3 Partially
Step 4 Partially
Step 5 Completely
Step 6 Partially
Step 7 Completely
Step 8 Partially
Step 9 Partially
Step 10 Partially

Table 8.1: Summary of step completion

It shows that all ten steps are implemented to a certain degree, and most of the
absent parts are minor and not critical. Because this version of SAMe is a proto-
type, the focus was on creating the essential functionality, and therefore a limited
amount of time was prioritised on implementation. The most critical drawback is
the handling of load dependent effects, as discussed in Section 8.2, but a solution
to that is suggested in Section 9.2.

The steps were evaluated by applying the method to an example. The example
was not a large and detailed one, regarding modelling detail and scaling operations,
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but good enough to test that the SAMe prototype works and supports the main
functionality of the SAM method.

A purpose for making a tool like the SAM engine, is to be able to test whether the
SAM method is practically feasible for real systems. The first step was to develop
the static modeling tool (SP Light), and now a tool for exploring the dynamic
model has been made(SAMe). The SAM method is still evolving, new challenges
and solutions emerge continuously, and the research is still in progress. Only future
work and use will decide if the method is indeed feasible, but the results so far
indicate that it will be an important part of scalability and performance evaluation.
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Chapter 9

Further work

These sections are suggestions for further work in this direction of scalability as-
sessment.

9.1 Other aspects with scalability

There might be reasons for not building a system the way the SAM method suggests
as the best. Obviously, the availability of components will limit the system, but we
found that the following two other factors could often play a role.

9.1.1 Economy

Many companies would not afford the optimal solution, because budgets limit their
capability of investments in computer hardware. And then one might say that
it is not an optimal solution, unless it takes cost into account. The SAM engine
prototype does not involve economic issues in the scalability assessment method.
But a most likely popular feature from commercial users’ viewpoint, would be to
have a cost requirement as well as the performance requirement.

This would require that the current prices of computer components are included
in the database, and of course regularly updated. A simple algorithm could then
tell if it is cheaper to upgrade or replicate. If an overall cost requirement is given,
the program could indicate what the user can build with that amount of money.

9.1.2 Power

As computers increase in capacity, their power consumption increases too. Thus,
there might be a constraint on power supply, both internally in the system and
to the system externally. A lack of power supply to components may decrease
performance considerably.

The SAM engine prototype does not deal with power supply, but it could be very
interesting to include it as a dimension to the scaling. E.g.: It could be that the
electric installation in the rooms containing the computers are old and not scaled
for the kind of power consumption a scaled-up system would cause, and therefore
the external power supply needs to be scaled up as well.
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9.2 Dealing with load dependent effects

As discussed in Section 8.2, the current handling of load dependent effects in SAMe
and SP Light is inadequate. Therefore a feature for adding such effects to compo-
nents in the system could be developed. Here is a suggestion for a solution.

The user could select a component that is affected by load dependent effects,
and then would be presented a choice of a set of standard functions like:

• a× nx

• a× xn

where n is the load. The user would then enter a and x, and the function will be
added to the chosen component.

Successful integration of load dependent effects into the performance calculation
of SAMe would substantially increase the usefulness of the whole SAM software
package, because of the increased correctness of the calculations.

9.3 Interaction between dimensions

The SAM engine treats each of the three dimension as separate paths, without any
influence on each other. We believe that in reality there are effects that originate
from interaction between dimensions.

• Processing vs. Connectivity

• Storage vs. Processing

• Connectivity vs. Storage

These effects needs to be investigated and made concrete.
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Appendix A

SP model file format

The tree structure is listed in prefix notation, and the columns contains the following
space separated information:

• The first column determines the type of component to be inserted, either 0 of
1. 0=subsystem and 1=primitive. Or it causes a navigation in the tree, either
< or >. < navigates a level down, and > navigates a level up in the tree.

• The second column is the name of the component.

• The third column is not the same for the two types

– Subsystems: This is the number of maximum replications allowed.

– Primitives: This is the devolved work.

• The fourth column is just for primitives. It determines the replication factor
(integer) for the component, i.e. the number of components.

----Begin example:----

0 System 1
<
0 AppServer 4
<
1 AppCPU 43.71 1
1 AppDisk 28.12 2
>
0 WebServer 5
<
1 WebCPU 40.71 1
1 WebDisk 20.12 1
>
1 UserThink 812 99999
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Appendix B

Gantt-diagrams

Here are the three Gantt-diagrams described in Chapter 2. They are constructed
using the tool Microsoft Project 10.0
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Appendix C

Screenshots from SAMe

This section shows and describes some screenshots from the finished prototype, seen
in Figures C.1 and C.2. Compared to the designed user interfaces in Section 5.5,
they are quite similar.

Figure C.1 shows the window where the baseline configuration is acquired. This
can be done manually by inserting one component at the time, or by reading a
model from a file (or both). This file will be created by SP Light on the basis of
an SP model. The properties of the components are determined by pressing the
”Properties” buttons.

Figure C.2 shows the window where the tuning is performed. The system struc-
ture is displayed to the left, and the properties for the selected component are
displayed to the right. The dimension can be changed, and the gain is displayed
beneath the requirement. The selected component can be upgraded or replicated
by pressing the ”Upgrade” or ”Replicate” button.
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Appendix D

Test data

The data in Table D.1 shows the parameters used in the test of SAMe.

Resource Service demand
App CPU 9,208s
App Disk 0,172s
KBM CPU 3,507s
KBM Disk 1,679s
FD CPU 2,520s
FD Disk 0,031s
Think time 812,00s

Table D.1: Parameters for the baseline system
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Appendix E

Attached files

The following files are attached with this report, and are a part of the Master’s
Thesis:

• Start.bat - The file that starts the SAM Engine program, with a terminal
window

• SAMe.jar - Runnable Java program. Requires that JavaSE5.0 are installed.

• DB.sql - The database script

• input.txt - The file containing an SP model

• SAMe.zip - All the source code in a zipped file for convenience

Use Start.bat for starting the program, but make sure the database is available.
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[MA01] Daniel A. Menascé and Virgilio A. F. Almeida. Capacity Planning for
Web Services: metrics, models, and methods. Prentice Hall, 2001.

[MAD94] Daniel A. Menasce;, Virgilio A. F. Almeida, and Larry W. Dowdy. Capac-
ity planning and performance modeling: from mainframes to client-server
systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[MAD04] Daniel A. Menasce, Virgilio A. F. Almeida, and Larry W. Dowdy. Per-
formance by Design: Computer Capacity Planning By Example. Prentice
Hall PTR, 2004.

[Mic] Sun Microsystems. The Java Native Interface. http://java.sun.com/
j2se/1.5.0/docs/guide/jni/index.html Last visited 2006-03.

[MVA] Implementation of the MVA algorithm in Java (Open source). http:
//sysmod.icb.uni-due.de/index.php?id=19 Last visited 2006-05.

[MVC] Java blueprints: Model-View-Controller. http://java.sun.com/
blueprints/patterns/MVC-detailed.html Last visited 2006-06.

[MyS] MySQL AB. http://www.mysql.com/ Last visited 2006-06.

[RM05] Erik Rød and Erlend Mongstad. Model-driven measurement of a bank
system. Master’s thesis, NTNU, 2005.

[SF] Free Software Foundation. GNU Public Licence. http://www.gnu.org/
copyleft/gpl.html Last visited 2006-03.

[spl] SP light. http://splight.idi.ntnu.no Last visited 2006-06.

[UML] Unified Modeling Language. http://www.uml.org Last visited 2006-05.

[XML] Extensible Markup Language. http://www.w3.org/XML/ Last visited
2006-06.

80

http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html
http://sysmod.icb.uni-due.de/index.php?id=19
http://sysmod.icb.uni-due.de/index.php?id=19
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://www.mysql.com/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://splight.idi.ntnu.no
http://www.uml.org
http://www.w3.org/XML/

