RBCs and DSGEs: The computational approach to business cycle theory and evidence

by Özer Karagedikli, Troy Matheson, Christie Smith and Shaun Vahey
Working papers fra Norges Bank kan bestilles over e-post:
tjenestetorget@norges-bank.no
eller ved henvendelse til:
Norges Bank, Abonnementsservice
Postboks 1179 Sentrum
0107 Oslo
Telefon 22 31 63 83, Telefaks 22 41 31 05

Fra 1999 og senere er publikasjonene tilgjengelige på www.norges-bank.no.

Working papers inneholder forskningsarbeider og utredninger som vanligvis ikke har fått sin endelige form. Hensikten er blant annet at forfatteren kan motta kommentarer fra kolleger og andre interesserte. Synspunkter og konklusjoner i arbeidene står for forfatternes regning.

Working papers from Norges Bank can be ordered by e-mail:
tjenestetorget@norges-bank.no
or from Norges Bank, Subscription service
P.O.Box. 1179 Sentrum
N-0107 Oslo, Norway.
Tel. +47 22 31 63 83, Fax. +47 22 41 31 05

Working papers from 1999 onwards are available on www.norges-bank.no

Norges Bank’s working papers present research projects and reports (not usually in their final form) and are intended inter alia to enable the author to benefit from the comments of colleagues and other interested parties. Views and conclusions expressed in working papers are the responsibility of the authors alone.

ISSN 0801-2504 (printed) 1502-8143 (online)
RBCs and DSGEs: The Computational Approach to Business Cycle Theory and Evidence

Özer Karagedikli
Bank of England

Troy Matheson
Reserve Bank of New Zealand

Christie Smith
Norges Bank

and

Shaun Vahey
Melbourne Business School, Norges Bank, and Reserve Bank of New Zealand

October 24, 2008

Abstract

Real Business Cycle (RBC) and Dynamic Stochastic General Equilibrium (DSGE) methods have become essential components of the macroeconomist’s toolkit. This literature review stresses recently developed techniques for computation and inference, providing a supplement to the Romer (2006) textbook, which stresses theoretical issues. Many computational aspects are illustrated with reference to the simple divisible labour RBC model. Code and US data to replicate the computations are provided on the Internet, together with a number of appendices providing background details.

JEL Codes: C11, C50, E30

Keywords: RBC, DSGE, Computation, Bayesian Analysis, Simulation

* Corresponding Author. Contact information: Economics Department, Reserve Bank of New Zealand, 2 The Terrace, PO Box 2498, Wellington; phone +64 4 471 3781 or +64 472 2029; fax +64 4 473 1209; email Troy.Matheson@rbnz.govt.nz.
1. Introduction

“Real business analysis now occupies a major position in the core curriculum of nearly every graduate program. At a recent National Bureau of Economic Research conference, a prominent Cambridge economist of the New Keynesian school described the RBC approach as the new orthodoxy of macroeconomics, without raising a challenge from the audience.”

King and Rebelo (1999, p 930)

This review examines the Real Business Cycle (RBC) and Dynamic Stochastic General Equilibrium (DSGE) methods for analysing business cycle behaviour that have become necessary tools for graduate-trained macroeconomists. The default Master’s level text, Romer (2006), provides an insightful characterisation of the RBC literature, based heavily on Campbell (1994). However, the Romer text says little about the computational side of the RBC literature, to the frustration of researchers interested in using the models for business cycle analysis.

This paper describes the computational steps commonly used by RBC practitioners. In particular, it stresses recently developed (often Bayesian) techniques for computation and inference. A number of computational issues are discussed in the context of the simple divisible labour RBC model, which is often used for pedagogical purposes. Code and US data to replicate the computations for this paper are provided on the Reserve Bank of New Zealand’s website – see Table 2 at the end of this paper. Our aim is to describe the empirical tools required by the reader of Romer (2006) to build DSGE models. The paper also provides numerous Internet links to helpful code for business cycle computation (in Table 1).

Section 2 provides a brief overview of RBC origins, including the contribution of Kydland and Prescott (1982). Section 3 presents a simple RBC model and considers solution methods. Section 4 examines how the model can be used to analyze the data by a variety of methods, including Bayesian estimation. Section 5 outlines several recent research agendas. Appendices to the discussion paper version of this paper provide details of background steps for our RBC example (see Table 2).
2. **An overview of RBC models**

The RBC approach is a flexible framework for quantitative business cycle analysis which owes much to the pioneering work by Kydland and Prescott (1982). Their research agenda proposed novel techniques to examine both the theory and empirics of fluctuations. Prescott (1986) provides a summary. Rebelo (2005) surveys the literature from a modern perspective, but does not focus on the computational issues that are the subject of this review.

Kydland and Prescott’s theoretical framework was based on the idea that the Neoclassical growth model could be used to study business cycles, following Brock (1974). Kydland and Prescott’s use of stochastic technology and rational expectations produced a model that adhered to the Lucas micro-foundations research agenda. Like Lucas (1972, 1973), agent behaviour in the RBC model was governed by the optimisation under uncertainty framework straight from the micro-economist’s toolbox. Elements of this approach were foreshadowed by Robertson (1915), who noted that technology disturbances “inventions” contributed to business cycles, and Frisch (1933), who studied business cycles within an optimising framework. Unfortunately, optimisation in the Neoclassical growth model yields non-linear behaviour, ruling out analytical solutions in general cases. The common approach is to linearise the model about the steady state of the system and consider an approximate solution. Researchers use computer programs such as GAUSS or MATLAB to solve and analyse these linearised systems.

The Kydland and Prescott (1982) approach to business cycle empirics became known as ‘calibration’. This involves choosing parameters on the basis of long-run data properties and judgment (sometimes guided by microeconomic evidence). Judicious parameter selection is computationally convenient given numerical solution methods.

More recently, many RBC practitioners have turned to Bayesian methods to allow for a range of parameter values and to check the empirical validity of models. The Bayesian distributions are often estimated by Monte Carlo Markov chain (MCMC) simulation techniques: by choosing suitable transition functions for Markov chains it can be shown that the posterior distribution of a model’s parameters coincides with the stationary distribution of the chain. Consequently, the posterior can be approximated by sampling from a suitably long realisation of the chain. (See Gelman, Carlin, Stern and Rubin (2003) and Koop (2003) for a discussion
of MCMC methods for Bayesian analysis.) However, these techniques are very computationally intensive: the chains may need to be iterated for a very long time to approximate the stationary distribution. Other methods for RBC inference, such as limited information methods and classical maximum likelihood estimation with full information, are also often burdensome because they require the researcher to solve the forward-looking systems and may require numerical optimisation techniques. In contrast to the impression left by Romer’s textbook, analysis with modern macroeconomic models requires computational techniques.

The Kydland-Prescott model has just one source of uncertainty (a technology disturbance). Many practitioners inferred that the early vintage RBC models were inconsistent with the sample data, and subsequent models increased considerably in complexity to cope with the criticisms that arose. By the late 1990s, the RBC literature produced models with, for example, multiple shocks, price rigidities, and monetary and fiscal policies. Since the term RBC was associated with real disturbances, the DSGE label became popular for these larger, computationally-demanding models with multiple disturbances.

It is worth mentioning that some models drawing on RBC techniques abstract from the micro-foundations initially at the heart of the RBC research agenda. RBC may indeed be “the new orthodoxy of macroeconomics” as King and Rebelo (1999) claim, but some DSGE models are more RBC than others. In particular, many of the models now incorporate the types of rigidities emphasised by the New Keynesian literature. With this point made, hereafter we simply use the term ‘DSGE’ to refer to an RBC model with multiple shocks.

3. A simple RBC model

The computational steps for theory and inference with RBC models are discussed below in relation to an explicit simple divisible labour example, encountered by many graduate students in studying (among others) King, Plosser and Rebelo (1988), Christiano and Eichenbaum (1992), Campbell (1994) and Romer (2006). Given the functional forms that are employed in our simple model, analytical solutions are achievable for the log-linear approximation. However, with less restrictive assumptions on functional forms, computational techniques will typically be required. Since the theoretical specification –
covered in detail by Campbell (1994) and Romer (2006) – will be familiar to most readers, a concise treatment will suffice.

We model a simple Walrasian economy subject to technological disturbances in discrete time. Following the literature, we make specific assumptions about the functional forms followed by preferences and constraints of the (here, but not necessarily) representative agent. These assumptions sometimes trouble students new to the RBC approach; the functional forms are unlikely to be exact. The ‘keep-it-simple’ approach owes something to the need for tractability. It also reflects the desire by RBC researchers to analyse the sample data by using incremental deviations from the well-understood Neoclassical growth model.

The perfectly competitive economy contains a representative household that maximizes utility given an initial stock of capital. The household simultaneously participates in the goods, capital and labour markets. The economy also contains a representative firm, which sells output produced from capital, labour and technology.

The representative firm has a constant returns-to-scale Cobb Douglas production function:

\[Y_t = (A_tN_t)^{\alpha} K_t^{1-\alpha} \]

(1)

where \(Y_t \) is output in time \(t \), \(A_t \) is technology, \(N_t \) is the number of labour hours worked, \(K_t \) is the capital stock, and \(0 < \alpha < 1 \). Capital accumulates according to:

\[K_{t+1} = (1 - \delta)K_t + Y_t - C_t \]

(2)

where \(\delta \) is the depreciation rate of the stock of capital, and \(C_t \) is consumption.

The household has log utility in consumption and power utility in leisure:

\[\sum_{i=0}^{\infty} \beta^i [\log(C_{t+i}) + \theta \left(\frac{(1 - N_{t+i})^{1-\gamma}}{1-\gamma} \right)] \]

(3)

where the elasticity of intertemporal substitution of leisure is \(\sigma \equiv 1/\gamma \) and \(\beta \) is the discount factor. The mechanism of intertemporal labour supply is similar to that of Lucas and Rapping
(1969) and labour is divisible. (Romer, 2006, p 210, discusses the indivisible labour case analysed by Hansen, 1985, and Rogerson, 1988.)

We define the gross rate of return on investment capital, R_{t+1}, to be the marginal product of capital plus undepreciated capital:

$$R_{t+1} \equiv (1-\alpha) \left(\frac{A_{t+1} N_{t+1}}{K_{t+1}} \right)^{\alpha} + (1-\delta).$$

(4)

We consider a social planner maximizing the expected utility of the representative individual by picking a path for consumption and leisure subject to the two constraints (1) and (2). Stokey and Lucas (1989) and Ljungqvist and Sargent (2004) discuss a dynamic programming approach and the Bellman’s equation. A simple introduction to intertemporal optimisation is provided in supplement A of Obstfeld and Rogoff (1997). Note that the unique solution to the social planner’s problem is the competitive equilibrium from the welfare theorems. Given the functional forms that have been assumed for preferences, the necessary first order conditions for the problem can be written:\(^3\)

$$C_{t-1} = \beta E_t[C_{t+1} R_{t+1}]$$

(5)

and

$$\theta(1-N_t)^{-\gamma} = \frac{W_t}{C_t} = \alpha \frac{A_t}{C_t} \left(\frac{K_t}{N_t} \right)^{1-\alpha}$$

(6)

where the marginal utility of leisure is set equal to the real wage W_t times the marginal utility of consumption. Given a competitive labour market, the real wage also equals the marginal product of labour. Note that equation (5) reflects the between-periods aspect of the problem, so that labour supply is dictated by intertemporal substitution.

Following Campbell (1994) and Romer (2006), we assume that in the (unique) steady state, technology, capital, output, and consumption all grow at the common constant rate, $G \equiv A_{t+1} A_t^{-1}$. The gross rate of return on capital is also constant in the steady state, denoted R. (We will consider the importance of this definition of the steady state below.)
The first order condition (5) becomes:

\[G = \beta R. \]

(7)

In logs (denoted by lower case letters):

\[g = \log(\beta) + r. \]

(8)

The definition of the return to capital (4) and the first-order condition (7) imply that the steady-state technology-capital ratio is constant:

\[
\frac{A}{K} \approx \left(\frac{G}{\beta} - (1 - \delta) \right)^{1/\alpha} \frac{1}{N} \approx \left(\frac{r + \delta}{1 - \alpha} \right)^{1/\alpha} \frac{1}{N}.
\]

(9)

with \(R \approx 1 + r \). The production function and the technology-capital ratio also imply a constant steady-state output-capital ratio:

\[
\frac{Y}{K} = \left(\frac{AN}{K} \right)^{\alpha} \approx \left(\frac{r + \delta}{1 - \alpha} \right).
\]

(10)

The steady-state consumption output ratio is:

\[
\frac{C}{Y} = \frac{C/K}{Y/K} \approx 1 - \frac{(1 - \alpha)(g + \delta)}{r + \delta}.
\]

(11)

Departures from the steady state can be modelled as a system of non-linear equations in the logs of technology, capital, output, labour and consumption. In some special cases, the model becomes linear. See, for example, McCallum (1989). Non-linear variants can be log-linearised using first-order Taylor series expansions around the steady state. The non-steady state behaviour of the resulting linear system approximates the original non-linear specification.

The first-order log-linearisation approximation can be inaccurate, especially when the economy is some distance from the steady state; see, for example, Den Haan and Marcet (1994). A number of researchers have considered higher order Taylor series approximations, including Collard and Juillard (2001) and Schmitt-Grohé and Uribe (2004a,b). Aruoba et al
(2006) describe less restrictive but typically more computationally burdensome approaches and horse-race a variety of methods. Fernández-Villaverde and Rubio-Ramírez (2006) provide a nice outline of their research agenda on estimating and analyzing non-linear and non-normal DSGE models. (Table 1 provides a link to Rubio-Ramírez’s webpage.) A particularly appealing feature of their particle filter approach is that general equilibrium models can be estimated allowing for parameter change (see the discussion in Section 5). Nevertheless, for consistency with the Romer (2006) representation of RBC modelling, in this paper we use the standard linear approximation procedure.

Appendix A (available on the Internet; see Table 2) provides details of the somewhat time-consuming log-linearisation of equations (1), (2), (4), (5), and (6) using first-order Taylor expansions around the steady state. The handy rules in Uhlig (1999) make the process less burdensome than working through Campbell (1994) suggests. This approach yields the following linear (in logs) system:

\[
y_t = \alpha(a_t + n_t) + (1 - \alpha)k_t,
\]

\[
k_{t+1} = \lambda_1 k_t + \lambda_2 a_t + n_t + (1 - \lambda_1 - \lambda_2)c_t
\]

\[
r_{t+1} = \lambda_3 (a_{t+1} + n_{t+1} - k_{t+1})
\]

\[
E_t \Delta c_{t+1} = \sigma \lambda_4 E_t [a_{t+1} + n_{t+1} - k_{t+1}]
\]

\[
n_t = \nu [(1 - \alpha)(k_t - n_t) + aa_t - c_t]
\]

where:

\[
\lambda_1 = \frac{1 + r}{1 + g}, \quad \lambda_2 = \frac{\alpha(r + \delta)}{(1 - \alpha)(1 + g)} , \quad \lambda_3 = \frac{\alpha(r + \delta)}{r + 1}, \quad \text{and} \quad \nu = \frac{(1 - N)}{N} \sigma.
\]

For simplicity, we omit all constants; the variables can be thought of as zero-mean deviations from the steady state growth path.

The log technology process follows:
where ϕ measures the persistence of technology shocks, $-1 < \phi < 1$, and ε_t is an idiosyncratic disturbance. For simplicity, the technology process specified in equation (17) rules out unit root behaviour that would cause the model to be non-stationary.

The ‘technology shocks’ label is controversial. In this highly abstract model, any disturbances that affect the supply side – other than changes in capital and labour – will be lumped together under the label ‘technology’. See Summers (1986) for a critique of the contribution of technology in early RBC models. King and Rebelo (1999) argue that the RBC research agenda requires resuscitation because one-shock models require implausibly large and frequent technology shocks.⁴

For consistency with the Romer (2006) treatment of RBCs, we de-trend the by defining a deterministic steady state. Many RBC researchers prefer not to linearise about a deterministic steady state; see, for example, Cogley and Nason (1995a,b). Fukač and Pagan (2008) review methods for de-trending models using a recent DSGE example.

Sims (2002) discusses conditions required to solve expectational difference equations, relating to the eigenvalues of the model. Note that there may be many solutions in complex DSGE models. In our simple example, we discard the explosive eigenvalue case since the competitive economy should have a unique solution. More complex models could give either
only explosive solutions (usually interpreted as a misspecified model), or many stable solutions (which might make sense with multiple equilibria, or sunspot equilibria).

For our simple model, the researcher can, like Campbell (1994), derive expressions for the dynamics of consumption, output, capital and labour conditional on the ‘deep’ parameters. In a multi-shock model, these derivations by hand would be extremely time consuming, and unnecessary given that the model properties could simply be simulated.

4. Data analysis

To solve the model by the methods described above, one requires values for the deep parameters (and hence the reduced-form parameters, the λ’s) which specify the log-linear system. The early RBC literature focused on ‘calibration’, rather than estimation, of these key parameters.

This controversial step is driven by three main concerns. First, identification of deep parameters in estimated large dynamic systems can be troublesome. Second, there is often a conceptual mismatch between the theoretical variables and their sample counterparts. (For example, what is the sample equivalent of the ‘rate of return on one period real government debt’ if bonds are denominated nominally in the sample data?) And third, in practice the classical estimation of macro models can be plagued by badly-behaved likelihoods – the researcher typically has very few business cycle fluctuations with which to estimate the highly abstract model.

Recent literature has focused more on estimation of the key parameters, often by Bayesian methods. The use of ‘off-model’ or ‘prior’ information allows the researcher to mitigate, but not eliminate, the first and third of these issues (we return to these matters in section 5). Not much can be done about conceptual mismatch in highly abstract aggregate models; the researcher simply hopes that the selected values of the parameters move the model closer to the data.

We start our review of empirical methods by describing a Bayesian full information approach, keeping our review closer to more recent literature, and move on to discuss other estimation-based procedures. Then we describe and contrast the calibration approach and what we term
‘Bayesian calibration’. The last of these deals with model uncertainty in a more formal way than calibration, but the full model is not estimated.

Bayesian estimation

Returning to our simple RBC model, there are a number of unknown parameters in equations (12)–(16), namely \((\alpha, \delta, \sigma, r, N, g)\), and the parameters of the technology process, \(\phi\) and the variance of \(\epsilon\), denoted \(\text{var}(\epsilon) = \sigma^2\). Since nearly all capital stock data are constructed by making assumptions about the rate of depreciation, most researchers fix \(\delta\) (at a quarterly rate of around two percent). The remaining parameters can be estimated.

To fix ideas without being too specific, consider a researcher wishing to estimate deep parameters of interest using additional ‘off-model’ information. The researcher’s priors encompass all the information that is not from the sample data. To implement the Bayesian approach, the researcher re-weights the likelihood using the ‘off-model’ priors and maximizes the re-weighted likelihood.

Since \(P(\text{Data})\) is simply a constant, Bayes’ rule implies that the posterior distribution over the parameters of model \(i\), \(\theta_i\), given the Data is proportional to the marginal likelihood, \(p(\text{Data} | \theta_i)\), multiplied by the prior, \(p(\theta_i)\),

\[
p(\theta_i | \text{Data}) \propto p(\text{Data} | \theta_i) p(\theta_i). \tag{18}
\]

Maximizing this re-weighted likelihood thus delivers the most likely values of the parameters given the data and the prior. In practice, the posterior mode for the parameters is often computed using the methods described by Schorfheide (2000):
1. Solve the linear rational expectations system
2. Use the Kalman filter to find the numerical values which maximise the sum of the likelihood and the prior.

Given that the shape of the posterior density is determined by the prior and the likelihood, the posterior density for each parameter can be constructed by using a Monte Carlo Markov chain, typically the Metropolis-Hastings (MH) algorithm.

Juillard’s (1996) DYNARE package allows Bayesian estimation along these lines using MATLAB. The researcher can input the model in linearised form or in levels, with some higher-order approximation methods as options. Appendix B (see Table 2) describes the results from the estimation of our simple RBC model using US data from 1959Q1 to 2006Q1. The DYNARE code and US data to replicate our results are provided on the website that accompanies this paper.

The main advantage of the Bayesian estimation approach is that the researcher can make (post-data) probabilistic statements about model parameters and related events of interest. To illustrate this, Figure 1 below displays the prior (lighter line) and posterior densities for the parameters ϕ and σ analysed in our simple RBC example. In each case, the posterior mode value is shown by the green dashed line. In the Romer (2006) textbook, the student is invited to explore the implications of different parameterizations of the model. But the student has no formal means to assess what values are reasonable, given the data. However, armed with the predictive densities for the parameters, the researcher can simulate the model at the parameter values which are supported by the data.

Figure 1
Example RBC prior and posterior densities
It is important to note that the posterior densities shown in Figure 1 are conditional on the priors for all the parameters, not just those for ϕ and σ. (Appendix B to this paper contains a complete list of the priors used for our analysis.) Some users find it difficult to specify priors since their specification require a great deal of information for each parameter: the type of distribution, the support for the distribution, the mean of the distribution and perhaps higher moments too. In practice, prior elicitation can be troublesome. In response, DSGE practitioners sometimes resort to justifying their priors for a particular parameter with reference to other studies, even though the earlier research may have utilized a different model. Parameter priors are also typically assumed to be independent, even though the parameters may not necessarily be so.

In practice, the researcher also has to grapple with two other contentious issues: uninformativeness and Markov chain convergence problems. The former often causes the results to exhibit prior sensitivity. Consider the right hand panel of Figure 1. The posterior density is pretty close to the prior density, often taken as a ‘warning indicator’ that the data are relatively uninformative about this parameter. In principle, prior sensitivity can be assessed by re-estimating the model using ‘reasonable’ (but not first choice) priors. Of course, there are many feasible prior densities. And the prior sensitivity for a specific parameter depends on the other priors in the system. So a thorough assessment carries a considerable computational burden.

A further worry is that a close match between the prior and the posterior of a particular parameter is neither necessary nor sufficient for prior sensitivity to be a problem. Canova and Sala (2006) discuss these and identification-related issues for DSGE modelling; see also, An and Schorfheide (2007), with discussion, rejoinder, plus GAUSS and MATLAB replication programs available from Schorfheide’s webpage (see Table 1 for a link). These uninformativeness problems occur with other types of modelling of course. Poirier (1998) provides a Bayesian perspective with examples based on different models. No doubt the DSGE literature will investigate more formal approaches to dealing with these issues in the future.

The second contentious issue is that chain convergence problems sometimes pollute reported posterior densities. Can the researcher be sure that Figure 1 is based on appropriate draws from the Markov chain? Ideally, the researcher should be convinced that the Markov chain
has iterated long enough for the sample of parameters at the end of the simulated chain to approximate the stationary (posterior) distribution with sufficient accuracy. There are, however, two problems. First, has the chain run for long enough so that the effects of initial conditions have dissipated (an issue of bias)? And second, is the sample of simulated parameters from the Markov chain large enough to ensure that the properties of the stationary distribution are adequately captured (an issue of variance)?

Cowles and Carlin (1996), Guihenneuc-Jouyaux et al (1998), and Brooks and Roberts (1999) survey convergence diagnostics in general. A common approach is to employ a variety diagnostics, including graphical representations of the Markov chains. Appendix C (see the associated website) shows how to implement a selection of diagnostics for our simple RBC model. (The DYNARE programs from the website accompanying this paper also supply some diagnostics.)

To summarise, although Bayesian estimation provides the researcher with formal tools to make probabilistic statements about parameter values (and other features of interest), there are drawbacks. Would noninformative priors – classical estimation – be a better option?

Arguably, noninformative priors misrepresent the researcher's knowledge. For example, most researchers have some view of what constitutes a likely number for the elasticity of intertemporal labour substitution. Nevertheless, there is a substantial literature using classical maximum likelihood methods which pre-dates the Bayesian approach. Kim and Pagan (1995) review the early literature. Hansen and Sargent (1980), Sargent (1989), Altug (1989), McGrattan (1994) and Ireland (2001) are key papers in the development of the approach. McGrattan’s webpage contains many useful programs (see Table 1 for a link). Convergence problems are also sometimes a practical difficulty with classical estimation, even for relatively simple DSGE models.

An alternative strand of the DSGE estimation literature has focused on limited information methods. These include minimum distance estimation based on the discrepancy between VAR and DSGE model impulse response functions, used for example by Rotemberg and Woodford (1997) and Christiano, Eichenbaum and Evans (2005). Christiano’s webpage provides the code necessary for replications (see Table 1 for an Internet link). Hall et al (2007) propose an information criterion approach to facilitate matching. Ruge-Murcia (2007) argues that limited
information methods are more reliable than either Bayesian or classical approaches to estimation of DSGE models in the presence of stochastic singularity. Measurement errors are typically added to the models to facilitate the implementation of Bayesian and classical full information methods; see also, Bierens (2007) on singularity.

Calibration

Until the late 1990s, calibration was the most popular method for empirical analysis with DSGE models. Romer (2006, p 208-209) provides an introduction to calibration. In a nutshell, the researcher picks plausible values for the parameters by looking at the data or referring to other empirical studies. Ideally this process should use features of the data other than those to be subsequently studied. The researcher simulates the model and examines additional properties of the model to assess its merits. For example, Kydland and Prescott (1982) employed the Neoclassical growth model calibrated on ‘great ratios’, etc. and used the model to explore business cycle phenomena. Typically, the researcher compares the variance (or covariance) of the simulated data with equivalent sample statistics.

In the early literature, calibration was sometimes argued to be concerned with ‘measurement’ rather than ‘inference’. The exchange between Kydland and Prescott (1995), Hansen and Heckman (1996) and Sims (1996) captures nicely the 1990s debate about empirical methods. King and Rebelo (1999) also note the differences between calibration and traditional econometric methods. Cooley (1997) argues that estimation is actually complementary, since the former can help guide calibration choices. Cooley also emphasizes the bidirectional interplay between measurement and theory.

From a Bayesian perspective, picking plausible model parameters raises many of the issues encountered in prior mean elicitation. But where a Bayesian would pick the combination of parameter values that reflect off-model beliefs, a calibrator would select a set of parameters that matches the sample data (albeit, not the same features intended to be studied with the calibrated model). In this sense, the Bayesian counterpart to calibrated values is a set of parameter values comprising (some measure of) the centre of the posterior density for each parameter. Papers in the calibration tradition typically justify the selected parameters with reference to the model and the sample data.
Notice that the pedagogical paper by Campbell (1994) understates considerably the attention given to parameter selection in the literature. Cooley and Prescott (1995) provide a more typical treatment. Many parameters are selected by matching the balanced growth path of the model to the long-run sample features (e.g. sample averages). Some calibrators refer to earlier papers; others use microeconometric evidence in calibration. In contrast, technology parameters are matched to the Solow residual (which captures total factor productivity). This step requires the researcher to carry out a growth accounting exercise; see Romer (2006, p 29-31 and 298).

Returning to our simple RBC example, the posterior means shown in Figure 1 (others are reported in appendix B) are very close to the calibrated values selected by Campbell (1994), which we used to determine the prior means. (Campbell calibrates a subset of the parameters considered in our Bayesian estimation example; we used off-model judgment to complete the prior specification.) There is little evidence to suggest that Campbell’s preferred parameters are implausible, given the data and our prior specification.

Once the parameters have been chosen, the model can be solved and simulated. For researchers interested in experimenting with various calibrations in well-known models, Uhlig’s DYNAMO package, see Table 1 for the link, provides menu-driven MS-WINDOWS compatible software.

A controversial issue in the calibration literature is how to evaluate the resulting model. The early RBC literature judged model performance from the ability to match particular ‘stylised facts’ of the sample data. In particular, Prescott (1986) stressed that the one-shock RBC model produced a variance for real output not much smaller than in the detrended sample data. Early practitioners used the Hodrick and Prescott (HP) (1997) filter to extract a smooth non-linear trend from the sample data. Prescott (1986) argued that the HP filter resembles an approximate high-pass filter designed to eliminate stochastic components with periodicities greater than thirty-two quarters. Harvey and Jaeger (1993) and Cogley and Nason (1995a) note the sensitivity of the sample data characteristics to the filtering technique. Canova (1998a) and Burnside (1998) provide differing perspectives on the controversy surrounding HP filtering in the 1990s. The academic tension regarding filtering was sufficient for Canova to be labelled “a skunk in a rose garden”; see Canova (1998b, p 534). Fukač and Pagan (2008) discuss the implications of filtering with reference to more recent DSGE models.
The covariance statistics discussed in early vintage RBC models are just one measure of model fit. An influential paper by Cogley and Nason (1995b) shows that several well-known models from the early 1990s fail to reproduce the persistence and depth of business cycle fluctuations. A common interpretation is that the early models required more disturbances and frictions to match the data. (We return to this issue in the subsequent section.)

Another criticism of calibration is that although the parameters are selected with model uncertainty in mind, very little sensitivity analysis appeared in the published papers. Kim and Pagan (1995) discuss this in detail. A number of researchers responded by formalising the contribution of model uncertainty by using Bayesian Monte Carlo techniques for calibration: a Bayesian calibration. Notice that this is distinct from the Bayesian estimation approach described above – there is no posterior simulation. So issues about the informativeness of the data, which often blight Bayesian estimation of DSGE models, do not arise. Instead, the researcher generates (a large number of) draws from the priors – prior simulation – and solves the model for each draw. A good early reference is DeJong et al (1996); a more recent example is Nason and Rogers (2006).

Bayesian calibration practitioners often assess model performance by estimating less restrictive models, such as Bayesian vector autoregressions (BVARs), on the data simulated from the model and the sample. Geweke (2007) discusses the relationship with posterior odds comparisons for DSGE models relative to the reference model. The BACC package developed by Geweke and co-authors can be used with MATLAB and GAUSS to conduct prior simulation (see Table 1) and to carry out Bayesian estimation in a wide range of reduced-form specifications.

5. Some DSGE research agendas

In the final section of this paper, we give a sense of the direction of DSGE modelling by describing some (very broadly defined) research agendas, stressing computational issues.

More elaborate models

The early RBC models, with just one source of disturbance, were very parsimonious. A common perception was that the early models were too abstract for analysis of many economic issues. Subsequent models have been used to conduct experiments with multiple
shocks, heterogeneous agents, wage and price rigidities, and monetary and fiscal policies. The
literature review in Cooley (1995) describes in detail many of the different aspects of this
research initiative during the 1990s.

Rather than attempt a comprehensive review of the diverse strands of this research agenda, we
limit our discussion to DSGE models for monetary policy analysis. Chari and Kehoe (1999)
provide an overview of the late 1990s’ optimal monetary (and fiscal) policy literature. Smets
and Wouters (2007) summarise the more recent monetary policy related literature which,
following Taylor (1993), has emphasized monetary policy rules that ‘often’ perform ‘well’,
policy tools.

Smets and Wouters’ own research design is summarised on the webpage listed in Table 1; see,
also Sims (2007b) for a critique. Smets and Wouters’ ambitious agenda involves the
construction of considerably larger models than those in Schorfheide (2000), but they utilize a
similar Bayesian estimation strategy. There are similar initiatives to build ‘medium-sized’
models for monetary policy analysis at the International Monetary Fund (see Bayoumi et al,
2004), the Bank of Canada (Murchison and Rennison, 2006), Sveriges Riksbank (Adolfson et
al, 2007), the Norges Bank (Brubakk et al, 2006), the Reserve Bank of New Zealand and at
other central banks. The rubric NOEM, New Open Economy Models, is sometimes used to
describe open economy DSGE models, typically with New Keynesian elements. Examples
include Lubik and Schorfheide (2005, 2007), and Justiniano and Preston (2008). Other
interesting avenues include the introduction of fiscal policy, eg Schmitt-Grohé and Uribe
(2004a,b), and the consideration of profound parameter uncertainty within the DSGE

A brief description of the Smets-Wouters (2003) model gives a feel for the scale, and
illustrates some of the common features, of Bayesian DSGE models used for policy purposes.
Their model has three agents: households, firms and the central bank. The policymaker sets
the short term interest rate in response to deviations of output from its flexible price level
(potential output) and inflation from its target rate. There are both nominal and real frictions:
monopolistic competition, sticky wages and prices, partial indexation of prices and wages,
 cost adjustment in capital accumulation, habit formation and variable capital utilisation. The
eight disturbances are to general technology, labour supply, preferences, investment-specific
technology, government consumption, price mark-ups, wage mark-ups, the equity premium, interest rates, and the inflation target.

The search for richer dynamics has also focused on the labour market (for example, Lubik and Krause, 2006, 2007), and the microfoundations of money (for example Lagos and Wright, 2005). In both cases, the new generation aims to recast some of the ad hoc elements in current DSGE models within an optimising framework. These features seem likely to be incorporated in large-scale macro models in the future.

Fit assessment with DSGE models

The fit of DSGE models has played an important part in the development of the literature. The early papers by Kydland and Prescott focus on matching the variances and covariances of key macroeconomic aggregates. Cogley and Nason (1995b) drew attention to the limited internal propagation mechanisms within 1990s’ vintage models by comparing the impulse response functions from a structural VAR and autocorrelation functions estimated on model-generated and US sample data. (Appendix D to this paper on the Internet discusses the fit of our simple example RBC model.) Watson (1993) provides a tool for assessing the fit of DSGE models related to the familiar R^2 statistic. More recently, Fukač and Pagan (2008) propose limited information techniques as supplements to measures of system fit.

A popular new tool for DSGE fit assessment comes from Del Negro and Schorfheide (2004a,b). They estimate a structural vector autoregression using priors based on a simple three equation New Keynesian DSGE model. (GAUSS code for replication can be obtained from Schorfheide’s webpage; see Table 1.) The intuition behind their approach is that the theoretical model can generate synthetic data. And then a VAR can be estimated on sample and synthetic data, controlling the ratio of simulated and sample data with a ‘tightness’ hyper-parameter; see also Ingram and Whiteman (1994).

In practice, the hybrid DSGE-VAR is estimated by Bayesian methods. Del Negro and Schorfheide note that for their US data the resulting hybrid model betters the out-of-sample forecasting performance of their simple VAR. Lees, Matheson and Smith (2007) consider a NOEM variant on New Zealand data. Subsequent work by Del Negro *et al* (2007) reinterprets the tightness hyper-parameter as a measure of in-sample fit of the DSGE model, which could be used to guide DSGE model builders. Alternatively, Bayesian posterior odds rank candidate
models; see Rabanal and Rubio-Ramírez (2005) and the small open economy application by Matheson (2006). Both Sims (2007a) and Del Negro and Schorfheide (2006) argue that posterior odds can overstate the difference in fit between candidate models within a sparse model space.

A common feature of many assessments of fit is that a constant parameter VAR is used as a benchmark. This choice can create difficulties however. For example, under certain conditions a DSGE model does not have a reduced form VAR representation; see Fernández-Villaverde et al (2007), Chari et al (2007b), and Christiano and Davis (2006). Another problem is that constant parameters may not be a very good restriction (a point considered further below).

Forecasting performance is often used to assess model fit, but by this metric it is not obvious that an unrestricted VAR should be used as a benchmark against which to assess DSGE models. Kilian (2007) notes the superior predictive properties of Bayesian VARs and factor models (among other techniques); see also the reply by Del Negro et al (2007). Since factor models have also been shown to have relative good forecasting performance, Giannone et al (2006) argue that they provide a natural benchmark for DSGE validation. Boivin and Giannoni (2006) suggest that DSGE models should use factor model representations to aid measurement of the imperfectly observed theoretical variables.

Consideration of structural breaks

Since a number of papers in the Bayesian VAR literature argue that the Great Inflation and Great Moderation are distinct US regimes (see, for example, Sims and Zha, 2006, and Cogley and Sargent, 2005), it is troubling that most DSGE models maintain the assumption of no structural change. Most existing DSGE models cannot handle expectations of parameter change. Reflecting the desire of researchers to replicate the business cycle characteristics of the recent US data, this area is already receiving a great deal of attention.

One strand of the research examines the impact of switches in policymaking regimes. For example, Lubik and Schorfheide (2004) and Lubik and Surico (2008) split the sample under consideration into sub-samples and consider DSGE parameters for each sub-sample. The forward-looking agents form expectations as if they did not expect the parameters to change. An alternative approach, influenced by the work of Svensson and Williams (2007), uses

Analysis of historical episodes

Prescott (2002) makes the case for using the Neoclassical growth model as a lens to analyse historical episodes. Although many recent papers examining modern business cycle behaviour have utilized Bayesian methods, most of the existing papers in this field do not. Given that analyses of historical episodes are often based on a very small number of observations, it would seem that Bayesian methods are particularly well suited to the task.

Some notable analyses of historical episodes utilise a deterministic growth model. Prominent examples include Cooley and Ohanian (1997), who analyse post World War II economic growth in the UK and the legacy of Keynes, the analysis of the Korean war by Ohanian (1997), and the accounts of the Great Depression from Cole and Ohanian (2002, 2004). Pensieroso (2007) surveys the causes of the Great Depression in the RBC literature. The survey encompasses deterministic models and discusses the macroeconomic implications in detail. Here we focus more on distinguishing between the empirical methodologies.

Chari *et al* (2002, 2007a) take a classical maximum likelihood approach to estimating a DSGE model of the US Depression. Chari *et al* (2007a) argue that their prototype DSGE model, with time varying efficiency, labour and investment wedges should be used as a complement to growth accounting to provide a starting point for analysis of historical episodes. That is, as a precursor to a more complete DSGE analysis. Chari *et al* (2007b) argue that structural VARs are ill-suited to this task; Christiano and Davis (2006) take the opposite view, drawing attention to model uncertainty issues in the classical estimation approach.
adopted by Chari et al (2007a). Subsequent work in this area will doubtless extend to more formal treatments of model uncertainty in the analysis of historical episodes.

6. Conclusions

This review has examined the tools required by the reader of Romer (2006) to build modern DSGE models. Whereas the textbook treatment in Romer (2006) characterises the RBC literature, this supplementary review has examined the computational issues commonly encountered by model builders, as well as providing insight into the future of DSGE research. The simple divisible labour RBC model has been used to illustrate a number of computational issues; code and US data have been provided to aid replication and further study. A number of popular research agendas have been described which, in addition to illustrating the computational subtleties of modern DSGE research, highlight the diverse methods for inference used by DSGE practitioners.

Acknowledgements

This paper was initiated while all the authors were members of the Economics Department of the Reserve Bank of New Zealand. We thank Les Oxley, two anonymous referees, and colleagues at the Reserve Bank of New Zealand for valuable comments. We are particularly greatful to V.V. Chari, Jim Nason, Juan Rubio-Ramirez, John Williams, Thomas Lubik, Adrian Pagan and Larry Christiano for discussions during their visits to the Reserve Bank.

Endnotes

1. The highly influential Lucas (1976) critique suggested that the empirical failures of modified IS-LM models, such as Mundell (1968) and Fleming (1962), stemmed from the absence of micro-foundations. Sims (1980) showed that the ad hoc nature of identification in their empirical counterparts made the parameter estimates unreliable.

2. The Christiano and Eichenbaum (1992) model has technology and government expenditure shocks; we abstract from the latter.

3. We are presuming that the shock process for technology takes the form given in equation (17).

4. King and Rebelo (1999) point to procyclical capacity utilisation as a way of reconciling the one-shock model with the data. Long and Plosser (1983) offer an alternative way to build multi-shock models, exploiting disaggregate shocks. For simplicity we do not follow this approach in our example. As noted earlier, most DSGE researchers prefer a multi-shock specification.

5. Juillard (1996) provides the MATLAB- and GAUSS-based DYNARE package, which automates first and second order log-linearisation if required; see Table 1 for the DYNARE webpage address.
References

Tables

Table 1
Sources of useful code

<table>
<thead>
<tr>
<th>Source</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACC</td>
<td>http://www2.cirano.qc.ca/~bacc/</td>
</tr>
<tr>
<td>DYNARE</td>
<td>http://www.cephremap.cnrs.fr/dynare/</td>
</tr>
<tr>
<td>IRIS</td>
<td>http://www.iris-toolbox.com/</td>
</tr>
<tr>
<td>QM RBC</td>
<td>http://dge.repec.org/</td>
</tr>
<tr>
<td>R software</td>
<td>http://www.r-project.org/</td>
</tr>
<tr>
<td>Christiano</td>
<td>http://faculty.wcas.northwestern.edu/~lchrist/</td>
</tr>
<tr>
<td>Fernández-Villaverde</td>
<td>http://www.econ.upenn.edu/~jesusfv/companion.htm</td>
</tr>
<tr>
<td>LeSage</td>
<td>http://www.spatial-econometrics.com/</td>
</tr>
<tr>
<td>McGrattan</td>
<td>http://ideas.repec.org/e/pmc46.html</td>
</tr>
<tr>
<td>Schorfheide</td>
<td>http://www.econ.upenn.edu/~schorf/research.htm</td>
</tr>
<tr>
<td>Sims</td>
<td>http://www.princeton.edu/~sims/</td>
</tr>
<tr>
<td>Smets</td>
<td>http://www.ecb.int/home/html/researcher_swm_en.html</td>
</tr>
<tr>
<td>Söderlind</td>
<td>http://home.tiscalinet.ch/paulsoderlind</td>
</tr>
<tr>
<td>Uhlig</td>
<td>http://www2.wiwi.hu-berlin.de/institute/wpol/html/toolkit.htm</td>
</tr>
</tbody>
</table>

Table 2
Files to replicate results are available at:
The appendices are contained in an earlier version of this paper:

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Program zip file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solving for dynamics</td>
<td>(No applicable software files)</td>
</tr>
<tr>
<td>Bayesian estimation of model</td>
<td>Replication.zip</td>
</tr>
<tr>
<td>Markov chain diagnostics</td>
<td>McmcConvergence.zip</td>
</tr>
<tr>
<td>Assessing model fit</td>
<td>Replication.zip (simulate.m)</td>
</tr>
<tr>
<td>Year</td>
<td>Author(s)</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>2005/1</td>
<td>Q. Farooq Akram</td>
</tr>
<tr>
<td>2005/2</td>
<td>Q. Farooq Akram, Øyvind Eitrheim and Lucio Sarno</td>
</tr>
<tr>
<td>2005/3</td>
<td>Carl Andreas Claussen and Øistein Røisland</td>
</tr>
<tr>
<td>2005/4</td>
<td>Øistein Røisland</td>
</tr>
<tr>
<td>2005/5</td>
<td>Ragna Alstadheim</td>
</tr>
<tr>
<td>2005/6</td>
<td>Tommy Sveen and Lutz Weinke</td>
</tr>
<tr>
<td>2005/7</td>
<td>Bjørn-Roger Wilhelmsen and Andrea Zaghini</td>
</tr>
<tr>
<td>2005/8</td>
<td>Moshe Kim, Eirik Gaard Kristiansen and Bent Vale</td>
</tr>
<tr>
<td>2005/9</td>
<td>Q. Farooq Akram, Gunnar Bårdsen and Øyvind Eitrheim</td>
</tr>
<tr>
<td>2005/10</td>
<td>Eirik Gard Kristiansen</td>
</tr>
<tr>
<td>2005/11</td>
<td>Hilde C. Bjørnland</td>
</tr>
<tr>
<td>2005/12</td>
<td>Q. Farooq Akram, Dagfinn Rime and Lucio Sarno</td>
</tr>
<tr>
<td>2005/14</td>
<td>Julien Garnier and Bjørn-Roger Wilhelmsen</td>
</tr>
<tr>
<td>2005/15</td>
<td>Egil Matsen</td>
</tr>
<tr>
<td>2005/16</td>
<td>Hilde C. Bjørnland</td>
</tr>
<tr>
<td>2006/1</td>
<td>Gunnar Bårdsen, Kjersti-Gro Lindquist and Dimitrios P. Tsomocos</td>
</tr>
</tbody>
</table>
2006/2 Hilde C. Bjørnland, Leif Brubakk and Anne Sofie Jore
Forecasting inflation with an uncertain output gap
Economics Department, 37 p

2006/3 Ragna Alstadheim and Dale Henderson
Price-level determinacy, lower bounds on the nominal interest rate, and liquidity traps
Research Department, 34 p

2006/4 Tommy Sveen and Lutz Weinke
Firm-specific capital and welfare
Research Department, 34 p

2006/5 Jan F. Qvigstad
When does an interest rate path „look good“? Criteria for an appropriate future interest rate path
Norges Bank Monetary Policy, 20 p

2006/6 Tommy Sveen and Lutz Weinke
Firm-specific capital, nominal rigidities, and the Taylor principle
Research Department, 23 p

2006/7 Q. Farooq Akram and Øyvind Eitrheim
Flexible inflation targeting and financial stability: Is it enough to stabilise inflation and output?
Research Department, 29 p

2006/8 Q. Farooq Akram, Gunnar Bårdsen and Kjersti-Gro Lindquist
Pursuing financial stability under an inflation-targeting regime
Research Department, 29 p

2006/9 Yuliya Demyanyk, Charlotte Ostergaard and Bent E. Sørensen
U.S. banking deregulation, small businesses, and interstate insurance of personal income
Research Department, 57 p

2006/10 Q. Farooq Akram, Yakov Ben-Haim and Øyvind Eitrheim
Managing uncertainty through robust-satisficing monetary policy
Research Department, 33 p

2006/11 Gisle James Natvik:
Government spending and the Taylor principle
Research Department, 41 p

2006/12 Kjell Bjørn Nordal:
Banks’ optimal implementation strategies for a risk sensitive regulatory capital rule: a real options and signalling approach
Research Department, 36 p

2006/13 Q. Farooq Akram and Ragnar Nymoen
Model selection for monetary policy analysis – importance of empirical validity
Research Department, 37 p

2007/1 Steinar Holden and Fredrik Wulfsberg
Are real wages rigid downwards?
Research Department, 44 p

2007/2 Dagfinn Rime, Lucio Sarno and Elvira Sojli
Exchange rate forecasting, order flow and macroeconomic information
Research Department, 43 p

2007/3 Lorán Chollete, Randi Næs and Johannes A. Skjeltorp
What captures liquidity risk? A comparison of trade and order based liquidity factors
Research Department, 45 p

2007/4 Moshe Kim, Eirik Gaard Kristiansen and Bent Vale
Life-cycle patterns of interest rate markups in small firm finance
Research Department, 42 p

2007/5 Francesco Furlanetto and Martin Seneca
Rule-of-thumb consumers, productivity and hours
Research Department, 41 p

2007/6 Yakov Ben-Haim, Q. Farooq Akram and Øyvind Eitrheim
Monetary policy under uncertainty: Min-max vs robust-satisficing strategies
Research Department, 28 p
2007/7 Carl Andreas Claussen and Øistein Røisland
Aggregating judgments on dependent variables: an (im)possibility result
Research Department, 17 p

2007/8 Randi Næs, Johannes Skjeltorp og Bernt Arne Ødegaard
Hvilke faktorer driver kursutviklingen på Oslo Børs?
Forskningsavdelingen, 68 s

2007/9 Knut Are Astveit and Tørres G. Trovik
Nowcasting Norwegian GDP: The role of asset prices in a small open economy
Research Department, 29 p

2007/10 Hilde C. Bjørnland, Kai Leitemo and Junior Maith
Estimating the natural rates in a simple new Keynesian framework
Economics Department, 33 p

2007/11 Randi Næs and Bernt Arne Ødegaard
Liquidity and asset pricing: Evidence on the role of investor holding period
Research Department, 31 p

2007/12 Ida Wolden Bache
Assessing estimates of the exchange rate pass-through
Research Department, 60 p

2007/13 Q. Farooq Akram
What horizon for targeting inflation?
Research Department, 45 p

2007/14 Q. Farooq Akram, Yakov Ben-Haim and Øyvind Eitrheim
Robust-satisficing monetary policy under parameter uncertainty
Research Department, 33 p

2007/15 Ida Wolden Bache and Bjørn E. Naug
Estimating New Keynesian import price models
Research Department, 40 p

2008/1 Anne Sofie Jore, James Mitchell and Shaun P. Vahey
Combining forecast densities from VARs with uncertain instabilities
Economics Department, 26 p

2008/2 Henrik Andersen
Failure prediction of Norwegian banks: A logit approach
Financial Markets Department, 49 p

2008/3 Lorán Chollete, Randi Næs and Johannes A. Skjeltorp
The risk components of liquidity
Research Department, 28 p

2008/4 Hilde C. Bjørnland and Kai Leitemo
Identifying the interdependence between US monetary policy and the stock market
Economics Department, 28 p

2008/5 Christian Kascha and Karel Mertens
Business cycle analysis and VARMA models
Research Department, 40 p

2008/6 Alan S. Blinder
On the design of Monetary policy committees
Norges Bank Monetary Policy, 22 p

2008/7 Francesco Furlanetto
Does monetary policy react to asset prices? Some international evidence
Research Department, 44 p

2008/8 Christian Huurman, Francesco Ravazzolo and Chen Zhou
The power of weather. Some empirical evidence on predicting day-ahead power prices through weather forecasts
Research Department, 28 p

2008/9 Randi Næs, Johannes A. Skjeltorp and Bernt Arne Ødegaard
Liquidity at the Oslo Stock Exchange
Research Department, 49 p

2008/10 Francesco Furlanetto and Martin Seneca
Fiscal shocks and real rigidities
Research Department, 41 p
2008/11 Randi Næs, Johannes A. Skjeltorp and Bernt Arne Ødegaard
Liquidity and the business cycle
Research Department, 45 p

2008/12 Q. Farooq Akram
Commodity prices, interest rates and the dollar
Research Department, 33 p

2008/13 Henrik Andersen, Sighbjørn Atle Berg and Eilev S. Jansen
The dynamics of operating income in the Norwegian banking sector
Financial Markets Department, 27 p

2008/14 Lars Fredrik Øksendal
Monetary policy under the gold standard – examining the case of Norway, 1893-1914
Norges Bank’s bicentenary project, 103 p

2008/15 Hilde C. Bjørnland and Jørn I. Halvorsen
How does monetary policy respond to exchange rate movements? New international evidence
Research Department, 45 p

2008/16 Hilde C. Bjørnland
Oil price shocks and stock market booms in an oil exporting country
Research Department, 37 p

2008/17 Özer Karagedikli, Troy Matheson, Christie Smith and Shaun Vahey
RBCs and DSGEs: The computational approach to business cycle theory and evidence
Research Department, 36 p
KEYWORDS:
RBC
DSGE
Computation
Bayesian analysis
Simulation