Open Patellar Tendon Tenotomy, Debridement, and Repair Technique Augmented With Platelet-Rich Plasma for Recalcitrant Patellar Tendinopathy

Bradley M. Kruckeberg, B.A., Jorge Chahla, M.D., Marcio B. Ferrari, M.D., George Sanchez, B.S., Gilbert Moatshe, M.D., and Robert F. LaPrade, M.D., Ph.D.

Abstract: Patellar tendinopathy is a disabling condition that frequently affects the athletic population, especially athletes undergoing repetitive impact forces as a result of jumping and landing activities. Most cases are initially treated conservatively, but if symptoms persist, surgical treatment is warranted. Options for surgical treatment include both arthroscopic and open techniques. The purpose of this Technical Note is to detail our open patellar tendon tenotomy, debridement, and repair technique augmented with platelet-rich plasma.

Patellar tendinopathy is a frequent pathology that affects up to 14% of the athletic population, with some cases being particularly disabling because of symptomatology, prolonged rehabilitation, and the recalcitrant nature of the condition. Histologically, patellar tendinopathy has been described as microscopic tears in combination with evidence of a failed healing response. This is more evident at the distal aspect of the patella, although it can be seen at any location of the tendon. In addition, pseudocyst formation, disappearance of the tidemark, and fibrocartilage broadening and metaplasia can occur.

Once known as an inflammatory pathology, it is now widely accepted as a degenerative disease of the patellar tendon.

Typically, a trial of conservative treatment lasting 3 to 6 months is preferred. A combination of conservative methods is used, including activity modification, relative rest (which is preferred over immobilization, given that inactivity may lead to further tendon and muscle atrophy), nonsteroidal anti-inflammatory drugs, eccentric exercises, and cryotherapy. Recently, biological approaches have been described as coadjuvant or sole treatments, including prolotherapy, platelet-rich plasma (PRP), and progenitor...
cell inoculation to the diseased tendon. When nonoperative management fails or symptoms are not tolerable by the patient, a surgical approach is necessary.

Both arthroscopic and open techniques for treatment of this degenerative disease have been previously described. However, no consensus currently exists on the preferred approach. Arthroscopically, debridement of the retropatellar tissues at the site of the attachment of the patellar tendon and partial resection of the distal pole of the patella can be performed. Previously described open surgical techniques include partial removal of the affected patellar tendon; opening of the paratenon; drilling of the distal patellar pole; and tenotomy, debridement, and repair. Because the latter is the most widely accepted form of treatment, the purpose of this Technical Note is to describe our preferred approach for an open patellar tendon tenotomy, debridement, and repair technique augmented with PRP for treatment of recalcitrant patellar tendinopathy.

Patellar Tendinopathy Classification

Blazina et al. described the most widely accepted classification of patellar tendinopathy. The degenerative disease has 4 phases: phase I is pain only after the activity; phase II, pain or discomfort during the activity that does not interfere with sports participation; phase III, pain both during and after participation that interferes with competition; and phase IV, complete tendon disruption.

Operative Indications

Surgical treatment is often warranted for patients with tendinopathy refractory to conservative treatment, resulting in persistent symptoms. When surgical treatment is indicated, both arthroscopic and open techniques have been used. The most widely used approach for open surgical treatment is the approach described in this Technical Note, which involves debridement of the affected tissue.
Patient Positioning and Anesthesia

The patient is placed in the supine position with the injured leg in a leg holder (Mizuho OSI, Union City, CA), with the nonsurgical leg flexed, abducted, and held in an abduction holder (Birkova Products, Gothenburg, NE) (Video 1). A well-padded thigh tourniquet (ATS 4000 Automatic Tourniquet System; Zimmer, Sävedalen, Sweden) is subsequently placed on the upper thigh of the operative leg to ensure a bloodless field.

Surgical Technique

A midline skin incision centered on the patellar tendon is performed (Video 1, Fig 1). Sharp dissection is undertaken down to the paratenon. Dissection is then performed medially and laterally to expose the whole patellar tendon. For optimal placement of the incision, a ruler is used to measure the width of the patellar tendon. Moreover, axial-view magnetic resonance imaging scans are used to identify the portion of degenerated tendon. Afterward, the midpoint of the degenerative tendon is marked with a surgical pen (Fig 2). A longitudinal incision along the tendon fibers is performed with a No. 15 blade in the area of partial detachment and tendinopathy based on the axial images on preoperative magnetic resonance imaging. The necrotic area of the tendon is debrided (Fig 3), and a rongeur is used to decorticate the distal pole of the patella to arrive at fresh bone. Moreover, decortication of the distal pole enhances the healing potential of the tendon attachment after debridement.

A No. 5 FiberWire (Arthrex, Naples, FL) is whipstitched along the medial and lateral aspects of the patellar tendon (Fig 4). After this, an anterior cruciate ligament guide (Arthrex) is used to complete the repair by drilling an eyelet pin twice from the distal patellar pole to the proximal pole (Fig 5). The lateral limb of the

Fig 4. After complete excision of the degenerative tissue from the left knee, a No. 5 FiberWire is whipstitched along the medial and lateral sides of the patellar tendon, beginning at the proximal aspect of the lateral half of the tendon (A) and finishing at the proximal aspect of the medial half of the tendon (B). The distance between each suture is approximately 2 mm. The asterisks indicate the patella.

Fig 5. After the dissection of the degenerated tissue and whipstitching of each half of the remaining tendon in the left knee, an anterior cruciate ligament guide is used. A Beath pin is drilled from the distal patellar pole proximally toward the quadriceps tendon. Care should be taken to avoid bone spikes at the entrance and exit of the tunnels to avoid cutting the sutures during knee flexion.
repair is then brought to the medial eyelet pin track. After this, the medial portion of the FiberWire suture is taken through the lateral eyelet pin track (Fig 6).

A diagnostic arthroscopy is performed by use of standard anterolateral and anteromedial portals. The menisci and cartilage are evaluated. The fluid is then withdrawn from the joint. With the knee flexed to 90°, the FiberWire sutures are tied at the proximal pole of the patella. The repair is then evaluated. After this, the knee is extended and a PRP membrane (Greyledge Technologies, Vail, CO) is placed under the tendon to stimulate further healing and a larger growth factor response (Fig 7). The patellar tendon is then sealed with No. 2 OrthoCord sutures (DePuy Synthes, West Chester, PA). After verification that the seal is watertight, PRP (Greyledge Technologies) is injected at the repair area to maximize the healing response (Fig 8). Specifically, leukocyte-rich PRP is recommended for this augmentation.

After PRP injection, the paratenon is closed. The deep tissue layer is then closed with No. 0 and No. 2-0 Vicryl (Ethicon, Somerville, NJ). The tourniquet is deflated and hemostasis control obtained. The skin layer is then closed with Monocryl (Ethicon). Once closure is complete, Steri-Strips (3M, St Paul, MN) and a sterile dressing are applied. The pearls and pitfalls of this technique are listed in Table 1, and the advantages and disadvantages are listed in Table 2.

Postoperative Rehabilitation

The limb is placed in a knee immobilizer in full extension for 6 to 8 weeks. Toe-touch weight bearing is allowed for the first 6 weeks after surgery. Range of motion from 0° to 90° is permitted during the first 2 weeks, with a gradual increase as tolerated after

Fig 6. After whipstitching and tunnel placement in the left knee, both ends of the suture are passed through the tunnels. Then, with the knee flexed to 90°, the sutures are tied at the proximal pole of the patella. Care should be taken to avoid bone spikes at the entrance and exit of the tunnels to avoid cutting the sutures during knee flexion. The asterisk indicates the patella.

Fig 7. (A, B) To improve the healing potential at the site of the initial incision, a platelet-rich plasma (PRP) clot (or membrane) (Greyledge Technologies) is inserted at the site of the tenotomy in the left knee. After clot insertion, the tendon and paratenon are sealed with No. 2 OrthoCord sutures. The asterisks indicate the patella.
2 weeks. The immobilizer is taken off during range-of-motion exercises. However, straight-leg raises are performed with the knee immobilizer worn. At 6 weeks, use of the knee immobilizer is discontinued and partial protective weight bearing is initiated. At this point, the patient is instructed to use crutches. The patient is weaned from using crutches once he or she is able to ambulate without a limp. Squats and lunges should be avoided during the first 16 weeks after surgery to allow for ample healing time.

Discussion

This Technical Note describes our preferred surgical technique for treatment of insertional patellar tendinopathy in patients who did not respond to initial conservative treatment. Given that this degenerative disease is highly symptomatic and typically seen in young, active patients, the correct treatment of choice is key to alleviate anterior knee pain and reduce the probability of progression toward a more debilitating condition.

Patellar tendinopathy is most commonly seen in athletes in combination with swelling, pain, and decreased athletic performance. Although it may ultimately limit performance in various sports, it is especially restrictive in activities with excessive jumping, landing, and cutting. If left untreated for a prolonged period, the symptoms may be severe with considerable pain and warrant surgical treatment to allow for return to sports. However, even with improvement in symptoms after surgery, many patients may not be able to return to the same level of sport activities.

Several techniques have been described as alternative options to treat this pathology, including minimally invasive treatments such as a local steroidal injection.

Table 1. Pearls and Pitfalls

<table>
<thead>
<tr>
<th>Pearls</th>
<th>Pitfalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>An anterior cruciate ligament guide should be used to ensure optimal transpatellar suture placement.</td>
<td>Incomplete excision of degenerative patellar tendon tissue may result in recurrence of patellar tendinopathy.</td>
</tr>
<tr>
<td>The sutures should be secured with the knee at 90° of flexion to avoid overtightening the repair or postoperative stiffness.</td>
<td>Inaccurate placement of tunnels may lead to patellar fracture or cartilage damage.</td>
</tr>
<tr>
<td>No squats or lunges should be performed during the initial 16 weeks after surgery to maintain an intact repair.</td>
<td>Tying sutures with the knee in extension may result in postoperative complications including loss of flexion and failure of the repair.</td>
</tr>
</tbody>
</table>

Table 2. Advantages and Disadvantages

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling of tunnels and decortication of the distal patellar pole increases healing potential and maximize the strength of reattachment.</td>
<td>If the technique is performed incorrectly, patellar cartilage damage is possible.</td>
</tr>
<tr>
<td>Application of platelet-rich plasma increases healing potential and the number of growth factors.</td>
<td>Whipstitches on the medial and lateral borders of the patella may compromise blood supply.</td>
</tr>
<tr>
<td>Securing the crossing sutures at the proximal pole of the patella strengthens the repair.</td>
<td></td>
</tr>
</tbody>
</table>
and sclerosing treatment; each is associated with positive treatment outcomes. For severe and recalcitrant cases, open or arthroscopic procedures have been reported as effective treatment options. Regardless of the surgical technique undertaken, excision of all macroscopic degenerated tissue is emphasized. Moreover, decortication at the distal pole of the patella has been previously described to maximize healing potential. Marcheggiani Muccioli et al. evaluated open and arthroscopic techniques previously described for treatment of chronic patellar tendinopathy. No statistically significant differences were found regarding return to sports and surgical success rates between the arthroscopic and open procedures after review of 21 studies.

Another possible treatment, which can be performed in isolation or as an adjunct to open or arthroscopic surgical treatment, is PRP injection. The application of PRP has been associated with tendon healing and remodeling as a result of growth factors that lead to matrix production and heightened tenocyte activity. Several studies have shown symptomatic improvement and/or evidence of improvement on imaging in patients with patellar insertional tendinopathy after application of PRP. Furthermore, a recent meta-analysis of randomized controlled clinical trials showed that leukocyte-rich PRP improves outcomes for patients with tendinopathy. Leukocytes are considered beneficial in the chronic setting because of their capacity to reset the healing process by promoting an inflammatory reaction. Our technique combines the excision of the degenerated tendon tissue along with decortication of the distal pole of the patella and application of leukocyte-rich PRP. Furthermore, the use of arthroscopy in our procedure allows for a thorough evaluation of the proximal insertion of the patellar tendon and patellar cartilage and evaluation and possible treatment of any concomitant pathology.

In conclusion, in accordance with positive clinical outcomes reported in the literature, we recommend our described technique for treatment of patellar tendinopathy. Nevertheless, future long-term studies with large sample sizes are needed to further assess the efficacy of this procedure.

References

20. Cook JL, Khan KM, Harcourt PR, Grant M, Young DA, Bonar SF. A cross sectional study of 100 athletes with...