The Influence of Speckle Statistics on Contrast Metrics in Ultrasound Imaging

Stine M. Hverven*, Ole Marius Hoel Rindal*, Alfonso Rodriguez-Molares† and Andreas Austeng*

*Department of Informatics
University of Oslo
Oslo, Norway
Email: stinemhv@ifi.uio.no

†Department of Circulation and Medical Imaging
Norwegian University of Science and Technology
Trondheim, Norway

Abstract—Adaptive beamformers aim for improved resolution and contrast in the ultrasound images, and their performance is typically benchmarked using metrics such as contrast ratio (CR) and contrast-to-noise ratio (CNR). Using synthetic aperture Field II simulations, we show that certain beamformers alter speckle statistics and that this opens up for cherry picking of contrast metrics.

Keywords—Adaptive beamforming, Contrast metrics, Speckle statistics, Contrast-to-noise ratio, Ultrasound.

I. INTRODUCTION

Quality assessment of ultrasound images is difficult since image quality is subjective to the human observer. Nevertheless, image quality metrics are imperative when benchmarking different beamforming techniques. If we do not know how a beamformer alters an image, a quality metric might give an incorrect measurement of the actual image quality. Using the standard Delay-And-Sum (DAS) beamformer as a reference, we examine several adaptive beamformers presented in literature; Capons Minimum Variance (MV), Eigenspace Based Minimum Variance (EBMV), Coherence Factor (CF), Generalized Coherence Factor (GCF), Phase Coherence Factor (PCF) and Delay-Multiply-And-Sum (DMAS). We show that the speckle statistics for some of these adaptive beamformers are dependent on both scattering intensity and location of the region of interest, resulting in contradicting measurements of standard contrast metrics.

II. BACKGROUND

In this section we briefly introduce the theory for the following beamforming methods; DAS, MV, EBMV, CF, GCF, PCF and DMAS. We refer to [1] and [2] for full description of the implementation of the beamformers and the parameters used in this study.

A. Conventional Delay-And-Sum (DAS)

Conventional DAS for image pixel \([z, x]\) is defined as:

\[
S_{\text{DAS}}[z, x] = \sum_{m=0}^{M-1} w_my_m[z, x]
\]

(1)

where \(M\) is the number of elements, \(y_m[z, x]\) is the delayed signal received at element \(m\), and \(w_m\) is a predefined weight for element \(m\).

B. Minimum Variance Beamforming

Capon’s Minimum Variance (MV) beamformer calculates for each pixel a data dependent set of weights \(w^T = \{w_0, w_1, \ldots, w_{M-1}\}\) that minimizes power while maintaining unity gain in the steering direction [3]. The solution found with Lagrange multipliers turns out to be dependent on the spatial covariance matrix. The MV weights are used in the summation in (1).

The Eigenspace Based Minimum Variance (EBMV) beamformer is an extension of the MV beamformer which utilizes the eigenstructure of the covariance matrix to enhance performance [4]. The covariance matrix is eigendecomposed into a signal and noise subspace, and the conventional MV weights are projected onto the signal subspace.

C. Coherence Based Beamforming

The Coherence Factor (CF) beamformer calculates the ratio between coherent and incoherent energy across the aperture [5]. It is used as an adaptive weight to the DAS image [6].

The Generalized Coherence Factor (GCF) beamformer is an extension of CF which utilizes the Fourier-spectrum over the receive aperture of the delayed channel data [6]. The GCF is calculated as the ratio between the energy in a small angular sector around the direction of interest divided by the total energy of the Fourier-spectrum. It is also used as an adaptive weight to the DAS image.

The Phase Coherence Factor (PCF) beamformer [7] calculates for each pixel an adaptive weight based on the phase of the receive data. The weights are multiplied with the DAS image.

The Delay-Multiply-And-Sum (DMAS) [8] multiplies the delayed RF-signals using a "signed" square root. The sum of these signals is band-pass filtered around an "artificial second harmonic" signal before conventional envelope detection and log-compression of the signal results in the final image. It is not obvious that this is a "coherence based beamformer". However, it has been shown that "The DMAS enhances signal coherence and can be seen as an intermediate solution between the DAS beamformer and the coherence factor method" [9].

III. METHODS

Synthetic transmit aperture datasets were simulated in Field II [10][11] using a 128 element, \(\lambda\) pitch, linear array with 5 MHz center frequency (L11-4v). The simulated phantom
where \(\mu \) is the mean intensity value and \(\sigma \) is the variance of speckle region \(i \).

IV. Results

Images created with the DAS, MV, EBMV, CF, GCF, PCF and DMAS beamformers for the vertical speckle phantom are shown in Fig. 1a and images for the horizontal phantom are shown in Fig. 1b. To measure the speckle statistics for the different beamformers in Fig. 1, the normalized probability distribution function (PDF) of each speckle region was estimated. Fig. 2 shows the estimated PDFs of the horizontally oriented phantom shown in Fig. 1, together with the corresponding signal-to-noise ratio (SNR=\(\mu_1/\sigma \)). The estimated PDFs of the speckle region with high intensity is presented in Fig. 2a. The theoretical Rayleigh distribution for DAS, with SNR = 1.91 [15], is plotted for comparison. Fig. 2b presents the statistics of the low intensity speckle region.

Fig. 3 shows the estimated PDFs of the images after log-compression of the intensity values. Fig. 3a shows the vertical speckle phantom and Fig. 3b shows for the horizontal speckle phantom. In both plots the estimated PDFs of the high intensity regions are plotted with a dashed line. The SNR, measured from the envelope before log-compression, is indicated in the legend. Fig. 4 shows the CR and CNR measurements for both phantom orientations for the different beamformers.

V. Discussion

Fig. 1 shows the different beamformed images for our simulation with 30 dB intensity difference between the speckle regions and two phantom orientations. From the images, we notice how especially the CF and PCF images have higher variance than the DAS image. When the two speckle regions are side-by-side, i.e. horizontally oriented, the adaptive beamformers EBMV, CF and PCF seem to darken the low intensity speckle region in the transition between the two regions.

We can observe in Fig. 2a that DAS, MV, EBMV and GCF seem to approximately follow the theoretical Rayleigh distribution. The above beamformers have SNR values close to theoretical Rayleigh, i.e. SNR \(\approx 1.91 \), whereas the CF, PCF and DMAS beamformers have very different distributions and
Fig. 2. Estimated probability distributions (PDF) of the two speckle regions in the horizontal phantom orientation, shown for all beamformers. DAS is compared to its respective theoretical Rayleigh distribution.

Fig. 3. Estimated PDFs of the log-compressed images for each speckle region, shown for all beamformers. When the speckle regions are in horizontal orientation, the statistics of the low intensity region is altered compared to the high intensity region. However, for the horizontally oriented phantom there is a clear heavy left-tailed distributions for both phantom orientations. The CF, PCF and DMAS beamformers, which had adaptive beamformers have different distributions for the two regions. For the CF and PCF beamformers, the SNR was much lower than 1.91 in both cases.

Fig. 3 shows the estimated PDFs of the beamformed log-compressed images for both phantom orientations. When the speckle regions are orientated one on top of the other, i.e. vertical phantom orientation, the speckle statistics for each region within the same image are similar. However, when the speckle regions are horizontally oriented, several of the adaptive beamformers have different distributions for the two regions. The CF, PCF and DMAS beamformers, which had distributions far from theoretical Rayleigh in Fig. 2, have heavy left-tailed distributions for both phantom orientations. However, for the horizontally oriented phantom there is a clear difference between the low intensity region (solid line) and the
will not sufficiently address any possible spatial or intensity of an adaptive beamformer by only using one contrast metric. Benchmarking the performance should include varying the intensity dependency should include varying the intensity speckle statistics of the image data. Further investigation of ers are spatially and intensity dependent when altering the when compared to conventional DAS. Presenting only CR as a quality metric would not adequately the intensity variance, it is not sufficient to only present one contrast between the speckle regions while also increasing contrast enhancement can be due to alterations of the speckle beamformers have both increased the variance and the intensity compared to DAS. This is consistent with what we observe for the low intensity region with a second peak emerging at very low intensity.

This leads to the results presented in Fig. 4, where we show that a beamformer may have high CR and simultaneously low CNR compared to DAS. The CR measurements in Fig. 4b indicate that the CF, GCF, PCF and DMAS beamformers have much more heavy-tailed distributions for the low intensity region, which corresponds to increased variance. The DMAS beamformer has a deformed PDF for the low intensity region with a second peak emerging at very low intensity.

VI. Conclusions
We have shown that the effect of adaptive beamformers on the speckle statistics vary for different beamformers. The effect varies also with regard to spatial location of the speckle regions examined. When evaluating a beamformer’s performance in comparison to conventional DAS, both the contrast and contrast-to-noise metrics should be presented. Since an adaptive beamformer can alter the speckle statistics, it is imperative that a performance comparison also includes a statistical discussion.

REFERENCES