The combination of glycosaminoglycans and fibrous proteins improves cell proliferation and early differentiation of bovine primary skeletal muscle cells.

Sissel Beate Rønning
Mona Elisabeth Pedersen
Petter Vejle Andersen
Kristin Hollung

Nofima AS, Pb 210, NO-1431 Ås, Norway

*Corresponding author. Tel.: +47 64 97 01 42; fax: +47 64 97 03 33.

Abstract
Primary muscle cell model systems from farm animals are widely used to acquire knowledge about muscle development, muscle pathologies, overweight issues and tissue regeneration. The morphological properties of a bovine primary muscle cell model system, in addition to cell proliferation and differentiation features, were characterized using immunocytochemistry, western blotting and real-time PCR. We observed a reorganization of the Golgi complex in differentiated cells. The Golgi complex transformed to a highly fragmented network of small stacks of cisternae positioned throughout the myotubes as well as around the nucleus. Different extracellular matrix (ECM) components were used as surface coatings in order to improve cell culture conditions. Our experiments demonstrated improved proliferation and early differentiation for cells grown on surface coatings containing a mixture of both glycosaminoglycans (GAGs) and fibrous proteins. We suggest that GAGs and fibrous proteins mixed together into a composite biomaterial can mimic a natural ECM, and this could improve myogenesis for in vitro cell cultures.

Abbreviations: ECM (extracellular matrix); GAGs (glycosaminoglycans); MRF (myogenic regulatory transcription factor); PG (proteoglycan)

Keywords: Extracellular matrix; Glycosaminoglycans; Bovine primary skeletal muscle cells; Proliferation; Differentiation; Myogenesis

1 Introduction
Currently primary cell model systems from skeletal muscle cells exist for several farm animals, including pig (Perruchot et al., 2012; Wilschut et al., 2010), sheep (Wu et al., 2012), dog (Zhu et al., 2010), and turkey (Velleman et al., 2000), as well as in rodents (summarized in Yablonka-Reuveni and Day, 2011). In addition myogenic cell lines have contributed to important insight into the skeletal muscle biology, and the C2C12 mouse cell line is the most commonly used model for myogenesis. It is, however, important to recognize that these cell lines deviate from freshly isolated muscle cells (Langelaan et al., 2011; Yablonka-Reuveni and Day, 2011). Likewise, differences are also observed between primary cell model systems from different species. The neural cell adhesion marker (NCAM) is expressed in proliferating human and rat cells (Boldrin et al., 2010), but not in mice muscle cells (Capkovic et al., 2008). Cattle are evolutionary closer to humans than rodents, and the entire bovine genome is fully sequenced in order to provide an important supplement for human medical research (Tellam et al., 2009). To establish and characterize a bovine primary cell model system is thus desirable to acquire information about muscle development.

Muscle stem cells will upon injury, exercise or disease receive molecular triggers that enable the cells to undergo myogenesis i.e. the formation of muscle tissue. The muscle stem cells are, in adults, quiescent cells that upon activation develop into myoblasts. The myoblasts will continue proliferating as long as growth factors are accessible. When the growth factors are depleted the myoblasts will exit the cell cycle and begin the process of differentiation. During differentiation membrane glycoproteins mediate alignment of the myoblasts. Eventually the myoblasts fuse and form the multinucleated myotubes unique to muscle tissue. Activation of muscle stem cells into myoblasts, proliferation and differentiation involves the upregulation of myogenic regulatory transcription factors (MRFs). These include myogenic determination factor 1 (MyoD) and myogenin (Yablonka-Reuveni and Day, 2011). MyoD serves as the master transcription factor required to regulate genes associated with myogenesis, and it is commonly known to represent one of the earliest stages of myogenesis. As a downstream target of MyoD, myogenin regulates the transition from myoblasts into myotubes, and is often used as a marker for myogenic differentiation (Yablonka-Reuveni and Day, 2011).
myotubes. Once the cells have fused into myotubes, there is an increase in the expression of structural proteins such as desmin (Yablonka-Reuveni and Jay, 2011).

The development of skeletal muscles in vivo is obviously much more complicated and tightly regulated than myoblast differentiation and fusion in vitro. Muscle growth is governed by its micro-environment, consisting of e.g. surrounding cells, vascular system and the extracellular matrix (ECM) (reviewed in Thorsteinsdottir et al., 2011). The most basic role of ECM is to provide a supportive scaffold for cells, promoting cell aggregation and migration. The ECM is, however, far from just a biological scaffold (although recognized as this for decades). The ECM can directly influence cell behavior through ECM-specific receptors on the cell surface, and indirectly by sequestering and storing soluble growth factors which are then presented at the cell surface at relevant times. In this way ECM provides mechanical support, but also signals to the interior of the cell, affecting a variety of cellular responses. The ECM is composed of two main classes of macromolecules: proteoglycans (PGs) and fibrous proteins (Frantz et al., 2010). PGs are proteins with glycosaminoglycan (GAG) chains covalently attached to the core protein. The GAG chains on the protein core are unbranched polysaccharide chains composed of repeating disaccharide units that can be divided into different subtypes (sulfated or non-sulfated GAGs) (Schaefer and Schaefer, 2010). PGs have an enormous molecular diversity due to the various combinations of protein cores in combinations with one or more GAG chains of different subtypes. The importance of PGs and GAGs in muscle differentiation has previously been demonstrated, in which inhibition of PG synthesis strongly inhibited the differentiation process (Oses and Brandon, 2002). Collagen is the most abundant fibrous protein, and constitutes ~30% of the total protein mass of a multicellular animal (Frantz et al., 2010). Laminin, entactin, fibronectin and tenascins are other proteins that constitute the ECM (Thorsteinsdottir et al., 2011). In vitro, various ECM components of the muscle tissue influence the muscle cell behavior (Boonen et al., 2009; Wilschut et al., 2010). Muscle cells grown on laminin-coated substrates resulted in more and thinner myotubes compared with myotubes on collagen type IV and matrigel coating (Boonen et al., 2009) and an improved myogenic differentiation (Wilschut et al., 2010). Since these differences can be both species (Boonen et al., 2009), and cell type dependent (Macfie et al., 2007), it is important to examine how ECM components influence in vitro bovine primary muscle cells.

In the present study the aim was to investigate if a combination of GAGs and ECM proteins could improve bovine primary muscle cell growth and myogenesis.

2 Materials and methods

2.1 Antibodies

Rabbit anti-MyoD and goat anti-myogenin (G-20) were from Santa Cruz Biotechnologies Inc. (Santa Cruz, CA, USA), and rabbit anti-desmin was from Abcam (Cambridge, UK). Mouse anti-NCAM (5.1H11) was from Developmental Studies Hybridoma Bank (Iowa city, IA, USA). Mouse anti-TE7 and mouse anti-myogenin (MAB3876) were from Millipore (Billerica, MA, USA). Mouse anti-a-tubulin was from Sigma-Aldrich (St. Louis, Sigma-Aldrich, St.Louis, MO, USA). Alexa 647-conjugated donkey anti-goat was from Invitrogen (Carlsbad, CA, USA). Alexa 488-conjugated and DyLight 549-conjugated mouse anti-rabbit were from Jackson ImmunoResearch Laboratories Inc. (West Grove, PA, USA). Cy5-conjugated goat anti-rabbit and Cy-3-conjugated goat anti-mouse were from GE Healthcare (Chalfont St Giles, UK), CellLight™ Golgi-GFP *BacMam 2.0*, *BacMam 2.0* DAPI and Alexa 488, Alexa 488 Phalloidin were from Molecular probes (Invitrogen, Carlsbad, CA, USA).

2.2 Bovine primary skeletal muscle cell isolation

Bovine primary skeletal muscle cells were isolated as described (Gaster et al., 2001a, 2001b) with minor modifications. In brief, small muscle pieces (~1 g) from Longissimus thoracis were digested for 1 h with 70 rpm shaking in 10 ml DMEM with 0.72 mg/ml collagenase. Cells were further dissociated from the tissue with 0.05% trypsin/EDTA for 25 min before addition of 10% FBS to stop trypsinisation. This step was repeated three times, and the harvested cells were pooled. For the removal of fast-adhering fibroblast cells from the primary cell cultures, the cells were placed in uncoated cell flasks for 1 h at 37°C. This allowed the fibroblast cells to adhere to the plastic. The non-adhering cells were then collected and further seeded onto 25 cm² coated culture flasks coated with ECL as described below. The isolated cells were proliferated, split into 75 cm² coated culture flasks, and then stored in DMSO in liquid nitrogen until further use. All experiments were performed in 2nd or 3rd passage.

2.3 GAG preparation

Previously characterized GAG extracts were prepared as described (Tinghag et al., 2005). Briefly, 75 g muscle from cod fillets was incubated for 4 days at 37 °C in 0.05 M Tris-HCl Tris-HCl pH 7.4 with 0.005 M cysteine-HCl cysteine-HCl and 25 mg papain (Papainase EC 3.4.22.2 from papaya latex, Sigma-Aldrich Chemie GmbH, Steinheim, Germany). Sample to liquid ratio was 3:2 and more papain was added after 48 h to a total of 50 mg. After enzymatic digestion samples were centrifuged and subjected to DEAE ion-exchange chromatography. PolyPrep columns (Bio-Rad Laboratories, Hercules, CA, USA) were packed with 3 ml DEAE Sephacel ion-exchange medium (Amersham Pharmacia Biotech, Uppsala, Sweden). Columns were equilibrated using 4 M urea in 0.05 M Tris-HCl Tris-HCl pH 8 and washed using 12 ml 4 M urea added 0.01 NaCl in 0.05 M Tris-HCl Tris-HCl pH 8. GAG-containing fractions were eluted using 1.5 M NaCl in 0.05 M Tris-HCl Tris-HCl pH 8. GAGs were precipitated in 70% ethanol ON at -20 °C followed by centrifugation. The pellets were resuspended in distilled water and the precipitation was repeated twice. The GAG composition was determined by enzymatic degradation and ion-exchange chromatography as described (Tinghag et al., 2005). The results showed that the pellet contained 25% chondroitin sulfate/dermatan sulfate/sulfated dermatan sulfate, 3% keratan sulfate/galactosulfate and 43% heparan sulfate. This implies that 71% of the isolated GAG is composed of sulfated polysaccharide GAG chains while 29% of the dry-matter could not be identified.

2.4 Cell culture and treatment

Tissue culture coverslips (Menzel-Gläser, Braunschweig, Germany), 8- and 24-well plates (BD Falcon, Franklin Lakes, NJ, USA), and cell culture flasks (VWR, West Chester, PA, USA) were coated with 1 µl/cm² of the following coating solutions:
1 mg/ml laminin (Mouse laminin-nidogen complex, Millipore), 3 mg/ml collagen (Type I collagen from bovine skin, Sigma-Aldrich), 2 mg/ml GAGs, 1 mg/ml anticle-laminin-collagen (ECL) (Millipore), a mix of ECL (0.5 mg/ml)+GAGs (1 mg/ml), or a mix of ECL (0.5 mg/ml)+heparan sulphate (1 mg/ml) heparan sulphate from bovine kidney, Sigma-Aldrich) Sigma-Aldrich) for a minimum of 4 h at room temperature. Subsequently the coating solutions were removed and the coated surfaces were washed twice with PBS. The early experiments performed in this study were performed on laminin coatings, but were replaced with ECL during the later experiments as a standard. The primary cells were grown in Dulbecco’s modified Eagles’s medium (DMEM) with 1 glutamine-glutamine (2 mM), 2% FBS, 2% Ultroser G, P/S (10 000:10 000 units/ml), and Amphotericin B (250 µg/ml) until 70-80% confluence (the cells underwent proliferation for 3 days). Cell proliferation was quantified using a Countess™ automated cell counter (Invitrogen, Carlsbad, CA, USA). The cells were then washed with PBS and placed in differentiation medium (DMEM, 2% FBS, P/S, Amphotericin B, and 25 pmol insulin) to induce myogenesis. The proliferation and differentiation media were changed every 2-3 days during cell isolation and the experiments. To examine the Golgi complex, proliferating cells were transduced with 3 µL CellLight™CellLight® Golgi® marker, and differentiated for three days before immunocytochemistry.

2.5 Western blotting
Proliferating and differentiating cell cultures were washed twice with PBS, before addition of lysis buffer (10 mM Tris, pH 6.8, 5 mM EDTA, 50 mM NaF, 30 mM sodium pyrophosphate, 2% (w/v) sodium dodecyl sulfate (SDS), containing AEBSF and phosphatase cocktail inhibitor II). Cell debris was removed by centrifugation at 15,000 × g for 10 min, and the cleared lysate was subjected to SDS-Page gel electrophoresis. Following electrophoresis, the proteins were transferred onto nitrocellulose membranes using an iBlot Gel Transfer Device (Invitrogen). All membranes were blocked with 2% Enhanced Chemiluminescence Advanced blocking agent (GE Healthcare) in TBS-tween for 1 h at RT. Primary and secondary antibodies were diluted in 0.5% blocking agent and incubated for 1.5 h at RT (or ON at 4 °C) with gentle shaking. Membranes were washed 3 × 10 min with TBS-tween after both incubations. Proteins were scanned and visualized using Ettan DIGE Imager (GE Healthcare), and the images were analyzed by ImageQuant TL software (GE Healthcare).

2.6 RNA isolation and real-time PCR
Proliferating and differentiating cell cultures were washed twice with PBS, and subsequently placed in Trizol reagent (Life Technologies, Carlsbad, CA, USA), and further purified by RNeasy mini kit including a DNase treatment (Qiagen, Hilden, Germany). RNA concentration and purity was measured using a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA). cDNA was generated from ∼200 ng mRNA using TaqMan® Reverse Transcription Reagents (Invitrogen) according to the manufacturer’s protocol. The cDNA was subjected to real-time PCR analysis using an ABI Prism 7700 Sequence Detection system (Applied Biosystems, Carlsbad, CA, USA). The real-time PCR reaction volume of 25 µl contained 1 µl template cDNA, 0.2 µM of each primer, 0.1 µM probe, 1.25 units Taq DNA polymerase (AmpliqGold, Applied Biosystems), 0.3 units uracil N-glycosylase (AmpErase UNG, Applied Biosystems), 0.2 mM dATP, dCTP, dGTP (Applied Biosystems) and 0.4 mM dUTP (Applied Biosystems), 5 mM MgCl2, and 1 × TBA buffer (Applied Biosystems). The cycling profile was as follows: an initial decontamination step for 2 min at 50 °C to allow optimal UNG enzymatic activity, followed by a denaturation step of 10 min at 95 °C, followed by 40 repeats of 15 s denaturation at 95 °C and 60 s synthesis at 60 °C. The sequences of primers and probes, the amplicon length and sequence accession numbers used are listed in Table 1. Gene expression of the samples was normalized against β-actin and TATA, and ΔCt was calculated. The results using TATA and β-actin were similar (Fig. S1), and therefore only β-actin was chosen for further analyses. PCR efficiency and melting point analysis were performed on all targets. Comparison of the relative gene expression between proliferating (day 0) and differentiating cells (day 3) was derived by using the comparative ΔCt method. In short, values are generated by subtracting ΔCt values between two samples and this gives a ΔΔCt value. The relative gene expression is then calculated by the formula 2ΔΔCt. The efficiency of each set of primers was always higher than 96%. The real-time PCR was performed in technical triplicates on at least three independent experiments seeded out in duplicates.

Table 1 List of primers and probes used for quantitative real-time PCR.

<table>
<thead>
<tr>
<th>Primers and probes</th>
<th>Sequence</th>
<th>Amplicon size</th>
<th>GeneBank acc. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference gene probes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Actin forward</td>
<td>CTGGGCACTCAGAAACTA</td>
<td>83 bp</td>
<td>NM_173979</td>
</tr>
<tr>
<td>β-Actin reverse</td>
<td>GCACCCTTGGGCGGATAGAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Actin probe</td>
<td>ATTCATCATGAAAGTGGACGACATCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TATA forward</td>
<td>CGTTTGTGCGTGTTACTGAG</td>
<td>73 bp</td>
<td>NM_001075742</td>
</tr>
<tr>
<td>TATA reverse</td>
<td>CCATCTCCACAGAATGGAATATCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TATA probe</td>
<td>ATAAAGAGGCCGCGCACCACGTGCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myogenic markers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MyoD forward: CCACAAGATTCCCTTAAGTG (87 bp) NM_001040478
MyoD reverse: AGTTCTTCTGCTCTCTACCT
MyoD probe: ACCACTCTCTCCCAAAGGCGCGTTTAAA
Desmin forward: GCTGAAAGAAGAAGCGGAGAAC (68 bp) b NM_001081575
Desmin reverse: GAGCTAGAGTGGCTGCATCCA
Desmin probe: ATTTGGCTGCCTTCCGAGCCG
Myogenin forward: CCCTACAGACGCCCACAATC (70 bp) EF636458
Myogenin reverse: AGCGACATCCTCCACTGTGAT
Myogenin probe: CACTCCCTCACCCTCCATCGTGGACA

* All sequences were examined for specificity using BLAST.

* An intron is present in the genomic desmin sequence.

2.7 Immunocytochemistry and fluorescence microscopy

Cells were grown on coated coverslips (Assistent, Sondheim/Rhön, Germany), washed in PBS and fixed in 2% PFA (Reidel-de Haën, Seelze, Germany) for 15 min. The cells were washed three times in PBS, permeabilized using 0.1% Triton X-100 in PBS and incubated with 5% milk for 30 min before incubation with the primary antibody for 1 h. Subsequent incubation with secondary antibodies was performed for 30 min before mounting using Dako fluorescent mounting medium (Glostrup, Denmark). The cells were examined by fluorescence microscopy analysis (ZEISS Axio Observer Z1 microscope), and images were processed using Adobe Photoshop CS3. To quantify NCAM±/NCAM+/− and TE7±/TE7− myoblasts, immunostained cells were counted manually. The pictures were chosen randomly from at least three regions from each well to ensure a non-biased quantification. Fusion index was calculated based on scoring of at least four randomly chosen regions with nuclei and myotubes stained. For each region the number of nuclei incorporated in myotubes and the total number of nuclei was scored. The fusion index (FI) was calculated as the percentage of total nuclei incorporated in myotubes.

2.8 Statistical analysis

Statistical analysis was performed using a two-tailed, unpaired Student's t-test. P-values ≤0.05 were considered statistically significant and are indicated in each figure.

3 Results

3.1 Isolation and characterization of bovine primary muscle cells isolated from Longissimus thoracis

Bovine primary skeletal muscle cells isolated from Longissimus thoracis demonstrated a typical morphology (triangle shaped) after 5 days, growing as an even layer of single cells (Fig. 1A). After 7 days the cells grew denser, aligned to each other, and changed into larger square-shaped cells. The muscle cells underwent proliferation with a doubling time of approximately 2.2 days (Fig. 1B). When the cells reached a density of 80–90% confluence, the cells started to fuse into multinucleated myotubes (Fig. 1C). A small portion of the isolated cells displayed a different morphology, growing in clusters with a spindle-shaped fibroblastic morphology (data not shown). We therefore investigated the presence of fibroblasts using the fibroblast marker TE7. Immunofluorescence microscopy experiments in myoblast cell cultures showed a small proportion (approximately 10%) positive for TE7 (Fig. 1D). These findings were confirmed with immunofluorescence analyses of the myogenic satellite cell marker, NCAM, which displayed that a small portion of the cells were negative for NCAM (approximately 10%).
MRFs such as MyoD and myogenin, as well as filament proteins such as desmin, are important for proliferation and differentiation. Immunofluorescence staining showed that almost all the proliferating cells expressed MyoD (Fig. 2A). During the first day of differentiation, myogenic cells showed increased myogenin expression, which is an early myogenic regulator (Fig. 2B), indicating that differentiation was taking place. The expression level of desmin was detectable, but low in proliferating cells, and increased in differentiated cells (Fig. 2C). We investigated the protein level of MyoD, myogenin and desmin in proliferating cells (day 0) and differentiating cells (day 3) (Fig. 2D). The expression of MyoD persisted during the differentiation. The protein expression of desmin, on the other hand, increased significantly after three days. These findings were consistent with the relative mRNA expression, showing an increase in markers throughout the differentiation process (Fig. S2). We were unable to detect myogenin protein expression by western blotting although we tried two different antibodies that previously had worked well on immunofluorescence.
To investigate the organization of the Golgi complex in bovine muscle cells we transduced proliferating cells with GFP-tagged CellLight® Golgi marker. We observed that in proliferating cells the Golgi complex displayed a classic organization, with a stack of flattened cisternae next to the nucleus (Fig. 3A). During differentiation, however, the complex transformed to a highly fragmented network of small stacks of cisternae positioned throughout the myotubes as well as around the nucleus (Fig. 3B).
Re-organization of the Golgi complex during differentiation. Proliferating cells were transduced with a GFP-tagged CellLight®—Golgi—Golgi marker (green), differentiated for three days and fixed with 2% PFA before nuclei were stained with DAPI (blue).
3.2 Glycosaminoglycans in combination with extracellular matrix proteins influence proliferation and differentiation

To investigate the effects different combinations of ECM proteins have on bovine skeletal muscle cells, we cultured the isolated cells on various surfaces coated either with GAGs, single protein coatings (laminin or collagen), combined protein coating (ECL) or complex ECM surface coating (ECL+GAGs). We observed a distinct proliferation pattern between the different surface coatings during the first day after seeding. The muscle cells cultured on ECL and ECL+GAGs clearly grew faster compared to cells cultured on single-protein coatings (Fig. 4A and B). After 2–3 days of cultivation the cells had reached 80–90% confluence, and underwent differentiation. Complex, multinucleated myotubes were observed after three days in differentiation media for cells grown on composite ECL coatings (Fig. 5A). The process was faster in cells grown on complex surface coatings as the fusion index is significantly higher after three days (Fig. 5B), and the myotubes observed after three days were more complex and displayed a more branched morphology compared with cells grown on single protein coatings or GAGs. After five days we observed similar complex, branched myotubes also in cells cultured on single protein surface coatings and GAGs (data not shown), and no differences were observed in the fusion index between the surface coatings.

A

![Collagen](image1.png)

![Laminin](image2.png)
Fig. 4 Surface coatings influence the proliferation of myoblast cells. (A) Cell morphology and confluence of proliferating cells after 1 day of proliferation, grown on different surface coatings as indicated. Scale bar 5 µM. (B) Cell proliferation presented as the total cell count value. Each data point represents the average cell number in a single well of a 6-well plate. All wells were counted twice.
The morphology of differentiating cells at one, three and five days was determined by immunocytochemical labeling of desmin followed by fluorescence microscopy analysis (Fig. 6). Desmin displayed an intracellular localization pattern, visible in early and late differentiating cells, but was barely detectable in proliferating cells. The differentiation was rapid for cells grown on complex ECM coatings, and the formation of large, multinuclear myotubes was evident already at day three. For cells grown on laminin and collagen on the other hand, the myotubes observed were smaller and thinner. The differences between the surface coatings were prominent in early phases of differentiation, while they were not as apparent in late phases as cells grown on single layer coatings apparently caught up with the cells grown on complex ECM.

![Fusion index graph](image)

Fig. 5 Surface coatings influence the early differentiation of myoblast cells. (A) Cell morphology and confluence of muscle cells after 3 days in differentiation media on different surface coatings as indicated. Arrows indicate complex multinucleated myotubes. Scale bar 5 µM. (B) Fusion index was calculated based on scoring of at least four randomly chosen regions with nuclei and myotubes stained. For each region the number of nuclei incorporated in myotubes and the total number of nuclei were scored. The fusion index (FI) was calculated as the percentage of total nuclei incorporated in myotubes. Asterisks denote significant differences between surface coatings compared with collagen (*p<0.05, **p<0.001). n.s. means not significant.
Microscopy analyses and quantitative assays showed that cells proliferated faster, and differentiated earlier on complex surface coatings (i.e. results from Figs. 4–6). We therefore investigated the gene expression of MRFs and desmin in cells grown on various surface coatings at 0 and 3 days of differentiation (Fig. 6). Although not significant, the general trend is an increase in gene expression of all the myogenic markers during differentiation. More interestingly is that the expression levels were highly sensitive to the surface coating. The gene expression of all markers was highest for the complex surface coating containing both GAGs and proteins (ECL+GAGs), particularly for myogenin (Fig. 7). A similar trend was observed with a combination of ECL and heparan sulfate (Fig. S3).

Discussion

Fig. 6 Desmin staining of myotubes on different surface coatings after 1, 3 or 5 days in differentiation medium. Differentiating cells were fixed with 2% PFA and immunostained with rabbit anti-Desmin, followed by DyLight 549-conjugated mouse anti-rabbit (yellow) before fluorescence microscopy analysis. Nuclei were stained with DAPI (blue). Scale bar 20 µM. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Microscopy analyses and quantitative assays showed that cells proliferated faster, and differentiated earlier on complex surface coatings (i.e. results from Figs. 4–6). We therefore investigated the gene expression of MRFs and desmin in cells grown on various surface coatings at 0 and 3 days of differentiation (Fig. 6). Although not significant, the general trend is an increase in gene expression of all the myogenic markers during differentiation. More interestingly is that the expression levels were highly sensitive to the surface coating. The gene expression of all markers was highest for the complex surface coating containing both GAGs and proteins (ECL+GAGs), particularly for myogenin (Fig. 7). A similar trend was observed with a combination of ECL and heparan sulfate (Fig. S3).

Fig. 7 The relative gene expression of myogenic markers during differentiation varied among the surface coatings. Bars show the relative mRNA expression of myogenic markers in differentiating cells compared to proliferating cells. The data are presented as the average mean of at least three independent experiments performed in technical triplicates, ±SD. Asterisks denote significant differences between surface coatings compared with proliferating cells grown on collagen coating (*p<0.05, **p<0.01, ***p<0.001).

4 Discussion
We have described a primary muscle cell model system from bovine Longissimus thoracis muscle and demonstrated that proliferation and differentiation of these primary cells in culture appear to be regulated in a similar way as cells from humans and other model organisms. This is a readily available and attractive in vitro model system to study bovine muscle. The system may also be used as a supplement in human medical research, as cattle are evolutionary closer to humans than rodents and the bovine genome is fully sequenced (Tellam et al., 2009). For some purposes it is desirable to perform many analyses on the same set of cells. Then bovine primary muscle cells could be a good choice, as the muscles are large and thus it is easy to obtain a large stock of cells. Differences between donors are a major concern when using human primary muscle cell cultures (McIntyre et al., 2004; Henry et al., 1995). We did not observe differences between samples collected from different animals; however all our cell cultures are isolated from animals of the same age, gender and breed.

When cells are seeded onto the flat surfaces in 2D cultures, cells adhere to multiple attachment points and this may result in fusion of randomly aligned myoblasts, which in turn leads to the formation of branching myotubes. This is a feature uncharacteristic of in vivo muscle fibers, and has been observed by us and others (such as Allen et al., 1997; Langelaan et al., 2011; Vellman et al., 2000). Experiments with porcine primary cells showed that the morphology of the myoblasts during the first days of culturing differed according to the surface coating (Allen et al., 1997). We did not observe any differences in morphology of proliferating cells between the different surface coatings. The proliferation rate, however, differed among the various surface coatings. We observed in our cell model system significant differences between the surface coatings, and interestingly the complex ECM coating consisting of both proteins and GAGs (ECL+GAGs) was the surface coating with highest proliferation and differentiation rate. The cells grew faster and differentiated earlier. The differences between the surface coatings were prominent in early phases of differentiation, while they were not as apparent in late phases when cells grown on single component coatings apparently caught up with the cells grown on complex ECM. Reported effects on how protein surface coatings influence proliferation rates varies. The proliferation rate in primary muscle cells from mice was higher for cells grown on surfaces that resembled the physiological elasticity of muscle cells. Proliferation was, on the other hand, not influenced by protein coating in these experiments (Langelaan et al., 2011). Proliferation can be stimulated by different laminin isoforms, and this can be cell-type dependent (i.e. skeletal and smooth muscle cells respond differently) (Lu et al., 2001). Macfelda and colleagues discovered that different double-coatings gave different results, either increased or decreased proliferation rate (Lu et al., 2001). The reason for these discrepancies regarding proliferation and surface coating is not clear.

Our experiments demonstrated improved proliferation and early differentiation for cells grown on complex surface coatings containing a mixture of GAGs and fibrous proteins (ECL). Normal myogenesis is dependent on the presence of ECM, both through the direct interactions of ECM molecules and membrane proteins, but also through the modulation of growth factors. Proteoglycans (PGs) are macromolecules with GAG chains attached to the core. The PGs, especially the heparan sulfate PGs, are important in muscle for maintaining muscle structure, regenerating, growth and development (Cornelison et al., 2004). Inhibition of PG synthesis inhibits the process of skeletal muscle differentiation. It has also been shown that the GAG composition changes in myoblasts from proliferation to differentiation. The expression and importance of GAGs and PGs in myogenesis are known, yet their biological function with regard to muscle development is not fully understood. It has been demonstrated that several growth factor activities are upregulated by PGs (Villena and Brandan, 2004). Conversely, some GAG–growth factor interactions can also downregulate their activity. (Fhenou et al., 2008). Increase in calcium concentrations might be another possible explanation to why GAGs improve bovine myoblast proliferation and differentiation. Artificial GAGs applied to pre-fusing myoblasts induced transient increase in calcium concentrations, and any mechanism that increases intracellular calcium is expected to trigger myoblast differentiation (Marlety et al., 2010). An interesting observation in our study is that neither GAGs alone, nor ECL alone, did influence early myogenesis significantly. The combination of GAGs with fibrous proteins, however, improved proliferation and early differentiation. Differential binding and presentation of the serum-contained growth factors to the complex coating in the mixture compared to GAGs alone may affect proliferation and differentiation. We have not investigated this possibility in the described experiments. Early studies of heparan sulfate and dermatan sulfate show that these GAGs have high affinities for laminin, and that heparin modulates laminin polymerization in vitro (Parthasarathy et al., 1998; Yurchenco et al., 1990). Similarly, PGs interact with collagen in specific locations in order to maintain the structure and organization of the ECM (Gillies and Lieber, 2011). Hence the binding of GAGs to fibrous proteins such as laminin and collagen contributes to the formation of a functional ECM meshwork. We have not measured the binding efficiency of GAGs to the surface of coverslips and plastic plates. Thus we cannot rule out whether the results with GAG alone do not resemble the effect of uncoated surfaces. In addition, we have used very high concentrations of GAGs in our experiments, and so our artificial ECM does not resemble the physiological in vivo ECM composition. Still, our experiments suggest that GAGs and fibrous proteins mixed together into a composite biomaterial potentially can mimic a natural ECM with natural GAG–ECM interactions, and this could potentially improve cell proliferation and differentiation in in vitro cell cultures. Muscle-derived fibroblasts are the principal cell type that may contaminate myoblast preparations, and can potentially dominate the cell cultures (Allen et al., 1997). We took advantage of the more rapid attachment of fibroblasts in order to enrich for myoblasts (Allen et al., 1997), and managed to obtain a high purity of myoblasts in the isolated cell cultures (i.e. more than 90% of the cells were negative for TE7 which is a marker for fibroblasts in vitro). The components of the ECM influence the fibroblasts and myoblasts differently, and we used either laminin or a composite surface coating containing entactin, laminin and collagen IV. This helps to enrich the myoblast fraction as myoblasts show a higher affinity for collagen IV/laminin-coated surfaces than for collagen I/fibronectin-coated surfaces, the latter is preferred by fibroblasts (Kuhl et al., 1988). NCAM was the first marker used to identify human muscle satellite cells, and this marker is expressed in satellite cells, myoblasts, myotubes and muscle fibers during development (Boldrin et al., 2010). This marker is expressed in proliferating human and rat muscle cells, but is not a reliable marker in mice muscle cells; mice muscle cells express NCAM only when they have become committed to differentiation (Capkovic et al., 2008). We observed that NCAM is expressed in proliferating cells from bovine muscle. The fraction of NCAM positive and TE7 negative populations was in sum approximately 100% suggesting that the expression of these proteins was mutually exclusive. Desmin is another well used marker for the identification of myoblasts and myotubes. Desmin is abundantly expressed in the cytoplasm of skeletal muscle cells, and interconnects and anchors mature fibers to the plasma membrane (Yablonka-Reuveni and Day, 2011). Desmin is expressed in both rat and porcine myoblasts and myotubes, and is often used as a myoblast marker (Allen et al., 1991; Wilschut et al., 2010).
The expression of desmin in myoblasts, however, seems to vary among different species. We observed in our experiments that desmin expression was barely detectable by immunostaining in myoblasts, while the expression increased dramatically during differentiation (more than tenfold). This is in line with previous observations where 98% of rat myoblasts were desmin-positive, while only 14% of bovine myoblasts were desmin-positive (Allen et al., 1991). We believe that desmin is more suitable as a marker for differentiation rather than myoblast proliferation in bovine cell cultures. Another characteristic feature that we observed during the skeletal muscle differentiation was a reorganization of the Golgi complex. The Golgi complex was situated around the microtubule organizing center in proliferating cells, in series of closely associated flattened membrane stacks. During differentiation the Golgi complex transformed to a highly fragmented network of small stacks of cisternae positioned throughout the myotubes as well as around the nucleus/ER. Many structural reorganization events take place during myogenesis, including reorganization of centrosomes, microtubules, the Golgi complex and ER exit sites (Lu et al., 2001; Zaal et al., 2011). However, the mechanisms of these changes and their functional implications are still poorly understood. The reorganization of the Golgi complex observed in the bovine cells is in line with previous observations performed in rodents, and could provide an interesting model system for further studies.

We thank Grethe Enersen for technical support, Monica G. Tingbø and Eva Veieth-Kent for comments on the manuscript. This work was supported by grants from the Fund for Research Levy on Agricultural Products in Norway and the Norwegian Research Council (203697/O99).

Acknowledgments
We thank Grethe Enersen for technical support, Monica G. Tingbø and Eva Veieth-Kent for comments on the manuscript. This work was supported by grants from the Fund for Research Levy on Agricultural Products in Norway and the Norwegian Research Council (203697/O99).

Appendix A. Supporting information
Supplementary data associated with this article can be found in the online version at doi:10.1016/j.diff.2013.06.006.

References

Gillies P. (Please insert a line shift before the Reference starting With Henry RR, Abrams etc)

McN (When adding the new references to the reference list, the formatting of the following references was not correct anymore, and the author is not able to correct this directly in the text). E., Halse, R., Yeaman, S.J. and Walker, M., Cultured muscle cells from insulin-resistant type 2 diabetes patients have impaired insulin, but normal 5-aminoo-4-imidazolecarbonamide riboside-stimulated, glucose uptake, *Journal of Clinical Endocrinol Metabolism* 2004, 89 (7): p. 3440–8. (Please insert a line shift to separate the Reference starting With Osses N.) Osses N. and Brandon E., ECM is required for skeletal muscle differentiation independently of muscle regulatory factor expression, *American Journal of Physiology: Cell Physiology and Cell Physiology* 282, 2002, C383–C394.

Appendix A. Supporting information

Fig. S1 The relative gene expression of myogenic markers after 2, 4 and 6 days of differentiation. Bars show the relative mRNA expression of myogenic markers in differentiating cells compared to proliferating cells. The data are presented as the average mean of at least three independent experiments performed in technical triplicates, ±SD. Asterisks denote significant differences between differentiated cells compared to proliferating cells (*p<0.05).

Multimedia Component 1

Fig. S2 Comparison of the relative gene expression of myogenic markers calculated with either β-actin (A) or TATA (B). Bars show the relative mRNA expression of myogenic markers in differentiating cells compared to proliferating cells, the single protein coating Laminin and the complex surface coating ECL+GAGs. The reference genes TATA and β-actin are both acceptable for normalization. The data are presented as the average mean of at least two independent experiments performed in technical triplicates, ±SD.

Multimedia Component 2

Fig. S3 The relative gene expression of myogenic markers during differentiation was higher on cells grown on culture plates coated with ECL in combination with commercial heparan sulfate (HS) compared to ECL alone. Bars show the relative mRNA expression of myogenic markers in differentiating cells compared to proliferating cells. The data are presented as the average mean of at least three independent experiments performed in technical triplicates, ±SD.

Multimedia Component 3

Highlights

- Glycosaminoglycans in combination with extracellular matrix proteins improved cell proliferation and early differentiation.
- The Golgi complex was re-organized during differentiation.
- The level of MyoD persisted during differentiation, while the level of myogenin and desmin increased.

Queries and Answers

Query:

Please confirm that given names and surnames have been identified correctly and are presented in the desired order.

Answer: ok

Query:

The references given here are cited in the text but are missing from the reference list. Please make the list complete or remove the references from the text.

Answer: The two references are now included properly in the text, and has been added to the reference list. Please mind the formatting in the reference list after including the two references. The author was not able to...
The two references are now included properly in the text, and have been added to the reference list. Please mind the formatting in the reference list after including the two references. The author was not able to correct the formatting.

Query:

Please provide the year for Zhu et al.

Answer: The year for Zhu et al is 2010. This has been added in the text and reference list.

Query:

Figs. 1–3 and 6 have been submitted as color images; however, the captions have been reworded to ensure that they are meaningful when your article is reproduced both in color and in black and white. Please check and correct if necessary.

Answer: The captions have been checked, and are OK.