CONSTRUCTING ELLIPTIC CURVES WITH GIVEN WEIL PAIRING

HUGUES VERDURE

Abstract. We give a parametrization of the set of isomorphism classes of triples \((E, P, Q)\) where \(E\) is an elliptic curve and \(P, Q\) are rational \(l\)-torsion points with given Weil pairing, when \(l = 5, 7\). When the base field is finite, we also investigate the cardinality of this set.

1. Introduction and notation

Let \(E\) be an elliptic curve defined over a field \(K\). Let \(l \geq 3\) be a prime number which is relatively prime to the characteristic of the field \(K\). We assume that \(K\) has a primitive \(l\)-th root of unity \(\zeta_l\). We also assume that \(E\) has a rational \(l\)-torsion point. In [3], we give a method for finding a criterion that distinguishes whether or not all the \(l\)-torsion points are rational. We also make this criterion explicit in the cases \(l = 3, 5\) and \(7\).

In the present paper, we shall give an explicit parametrization of the set \(W_l(K)\) of isomorphism classes of triples \((E, P, Q)\) where \(E\) is an elliptic curve defined over \(K\), \(P\) and \(Q\) are rational \(l\)-torsion points on \(E\) such that the Weil pairing \(e_l(P, Q) = \zeta_l\), in the cases \(l = 5\) and \(l = 7\). When \(K\) is a finite field, we shall be able to give the cardinality of this set.

The paper is organized in the following way: in the next section, we shall give the general method for finding the parametrization, while we shall make everything explicit in the two next sections, which will deal with \(l = 5\) and \(l = 7\) respectively. The interested reader may find two MAGMA files ([5, 6]) that have the parametrization.

We will freely use the results from [3]. The notation will be the one from [2]. This is the detailed version of the article [4].

2. The method

We assume that \(l \geq 5\). Using the Tate normal form, we can parametrize the set \(Y_1(l)(K)\) of isomorphism classes of pairs \((E, P)\) where \(E\) is an elliptic curve defined over \(K\) and \(P \in E[l]\). The set \(Y_1(l)(K)\) can be given as a (singular) curve

\[
C_l : f(b, c) = 0
\]

2000 Mathematics Subject Classification. Primary 14H52, Secondary 12E05.

Key words and phrases. Elliptic Curve, Weil pairing.
where we remove a finite number of points that would correspond to curves with discriminant 0. We denote by $C^*_l(\mathbb{K})$ the curve without these points. The parametrization is then given by

$$\pi : C^*_l(\mathbb{K}) \longrightarrow Y_1(l)(\mathbb{K})$$

$$(b, c) \mapsto [E_{b,c}, P]$$

where

$$E_{b,c} : y^2 + (1 - c)xy - by = x^3 - bx^2$$

and

$$P = (0, 0).$$

Remark 1. The equation of C_l is in fact $\psi_l(0) = 0$, where $\psi_l(x)$ is the l-th division polynomial of the curve $y^2 + (1 - c)xy - by = x^3 - bx^2$ defined over $\mathbb{K}(b,c)$. The bad points that have to be removed are those which satisfy

$$\Delta = 16b^5 - 8b^4c^2 - 20b^4c + b^4 + 3b^3c^3 + 3b^3c^2 - b^3c = 0.$$

Our criterium was a function $R_1 \in \mathbb{K}(C_l)$ never vanishing on $Y_1(l)(\mathbb{K})$ such that

$$E_{b,c}[l] \subset E_{b,c}(\mathbb{K}) \iff R_1(b,c) \in \mathbb{K}[l].$$

The function R_1 was found by considering the points Q such that $e_l(P,Q) = \zeta_l$. This function R_1 can be expressed as $R_1 = \frac{g}{h}$ where g, h are polynomials in two variables B, C and coefficients in \mathbb{K}.

We can define the curve

$$X_l : \begin{cases} g(B,C) - U^j h(B,C) = 0 \\ f(B,C) = 0 \end{cases}.$$

It is obvious to see that we have a point on this curve if and only if the corresponding curve has full rational l-torsion. When we work on the function field $\mathbb{K}(X_l)$, the polynomial $\varphi_{l,1}$ necessarily splits. Let x_Q be one of the roots (x_Q can be expressed as a function of b, c, u, and y_Q the corresponding y-coordinate (y_Q can expressed as a function of x_Q, and thus of b, c, u.) of the point $Q = (x_Q, y_Q)$ such that $e_l(P,Q) = \zeta_l$. This gives our parametrization:

$$\phi : X^*_l(\mathbb{K}) \longrightarrow \mathbb{W}_l(\mathbb{K})$$

$$(b, c, u) \mapsto [(E_{b,c}, P, Q)].$$

where X^*_l is the curve X_l without the bad points.

Remark 2. For any point $(b, c, u) \in X^*_l(\mathbb{K})$, there are $l - 1$ other points, namely $(b, c, \zeta^i u)$, $1 \leq i \leq l - 1$, which correspond to the $l - 1$ other points R such that $e_l(P,R) = \zeta_l$.

3. The case \(l = 5 \)

3.1. Parametrization. In this case, we can replace \(C_5(\mathbb{K}) \) by \(\mathbb{K} \) using the bijection

\[
\begin{align*}
\mathbb{K} & \rightarrow C_5(\mathbb{K}) \\
t & \mapsto (t, t)
\end{align*}
\]

The function \(R_1 \) is \(R_1 = \frac{t - \alpha_5}{t - \beta_5} \) with \(\alpha_5 = 8 + 5\zeta_5 + 5\zeta_5^3 \) and \(\beta_5 = 3 - 5\zeta_5 - 5\zeta_5^4 \).

This gives the curve

\[
X_5 : (T - \alpha_5) - U^5(T - \beta_5) = 0.
\]

Here, the bad points correspond to \(t = \alpha_5, t = \beta_5 \) and \(t = 0 \). Working with MAGMA, we find that

\[
x_Q = \frac{n_x}{dx} \quad \text{and} \quad y_Q = \frac{n_y}{dy}
\]

with

\[
\begin{align*}
n_x &= (-3\zeta_5^3 - 3\zeta_5^2 - 5)u^4 - (2\zeta_5^3 + \zeta_5^2 + \zeta_5 + 2)u^3 - \zeta_5^3 u^2 \\
 &\quad + (\zeta_5^3 + 2\zeta_5^2 + \zeta_5)u - 3\zeta_5^2 - 5\zeta_5 - 3 \\
d_x &= u^4 + (2\zeta_5^3 + \zeta_5^2 + \zeta_5 + 2)u^3 + (2\zeta_5 + 2\zeta_5 + 2)u^2 + (\zeta_5^3 - \zeta_5^2 + \zeta_5)u + \zeta_5 \\
n_y &= -(13\zeta_5^3 + 13\zeta_5^2 + 21)u^7 - (11\zeta_5^3 + \zeta_5^2 + 6\zeta_5 + 8)u^6 - (5\zeta_5^3 + 4\zeta_5 + 3)u^5 \\
 &\quad - (2\zeta_5^3 - \zeta_5^2 + \zeta_5 - 2)u^4 + (3\zeta_5^3 + 6\zeta_5^2 + 4\zeta_5 + 2)u^3 \\
 &\quad + (\zeta_5^3 - 6\zeta_5^2 - 11\zeta_5 - 7)u^2 - (11\zeta_5^3 + 8\zeta_5^2 - 5\zeta_5 - 10)u \\
 &\quad + (13\zeta_5^3 + 21\zeta_5^2 + 13\zeta_5) \\
d_y &= u^7 + (3\zeta_5^3 + \zeta_5^2 + 2\zeta_5 + 2)u^6 + (\zeta_5^3 - 2\zeta_5^2 + 3\zeta_5 - 1)u^5 \\
 &\quad - (4\zeta_5^3 + 3\zeta_5^2 + 2\zeta_5 + 6)u^4 - (4\zeta_5^3 - 2\zeta_5^2 + 2\zeta_5 + 1)u^3 \\
 &\quad + (\zeta_5^3 + 2\zeta_5^2 - 2\zeta_5 + 3)u^2 + (3\zeta_5^3 + \zeta_5^2 + \zeta_5 + 2)u - \zeta_5^2
\end{align*}
\]

3.2. A brief study of the curve \(X_5 \). The projective closure \(\overline{X_5} \) of \(X_5 \) is given by the equation

\[
\overline{X_5} : (T - \alpha_5 V) V^5 - U^5(T - \beta_5 V)
\]

in \(\mathbb{P}^2(\mathbb{K}) \). This is a curve of degree 6 with a unique ordinary singularity of order \(m_\infty = 5 \) at the point \(S_\infty = [1 : 0 : 0] \). The genus of \(\overline{X_5} \) is thus

\[
g = \binom{d - 1}{2} - \binom{m_\infty}{2} = 0.
\]

Since it has a rational point, it is birationnaly equivalent to \(\mathbb{P}^1(\mathbb{K}) \).
Remark 3. It is possible to define a nonsingular model \tilde{X}_5 in $\mathbb{P}^4(K)$ for X_5. It is given by

$$
\tilde{X}_5 : \begin{cases}
\alpha_5 Z_2 Z_4^4 - \beta_5 Z_3 Z_5^4 - Z_4^5 - Z_5^5 = 0 \\
\beta_5 Z_1^3 Z_3 - Z_1^4 Z_5 - \alpha_5 Z_2^2 Z_3^2 + Z_2^2 Z_3 Z_5 = 0 \\
-\beta_5 Z_1 Z_3 Z_5^2 + Z_1 Z_5^3 + \alpha_5 Z_2^2 Z_4^2 - Z_2 Z_4^3 = 0 \\
-\beta_5 Z_1^2 Z_3 + Z_1^2 Z_5 + \alpha_5 Z_1^3 Z_4 - Z_1^2 Z_4 = 0 \\
Z_1 Z_2 - Z_3^2 = 0 \\
Z_1 Z_4 - Z_3 Z_5 = 0 \\
Z_2 Z_5 - Z_3 Z_4 = 0
\end{cases}
$$

The bijection between the regular points of X_5 and the points of \tilde{X}_5 with Z_1, Z_2, Z_3 not all equal to 0 is given by

3.3. Cardinality of $W_5(F_q)$. From the equation of X_5, we see that the curve can be parametrized by the variable U, and this gives us the cardinality of $W_5(F_q)$ in a straightforward way. We just have to remove from F_q the values of U that lead to bad points. Those are

- $u = 0$ (leads to $t = \alpha_5$),
- $u = \zeta^i, 1 \leq i \leq 5$,
- $u = \zeta^i(1 + \zeta^5 - \zeta^3), 1 \leq i \leq 5$ (leads to $t = 0$),

that is 11 points. We get then the following proposition:

Proposition 1. Let F_q be a finite field with q elements, with $q \equiv 1 (mod 5)$. Then

$$\#W_5(F_q) = q - 11.$$
with

\[n_x = (28\zeta_7^5 + 6\zeta_7^4 + 18\zeta_7^3 + 18\zeta_7^2 + 6\zeta_7 + 28)t^2u^9 \\
+ (13\zeta_7^5 + 13\zeta_7^4 + 21\zeta_7^3 - 3\zeta_7 + 21)t^2u^8 \\
- (6\zeta_7^5 - 9\zeta_7^4 + 14\zeta_7^3 - 9\zeta_7^2 + 6\zeta_7)t^2u^7 \\
- (31\zeta_7^5 + 26\zeta_7^4 + 11\zeta_7^3 + 11\zeta_7 + 26)t^2u^6 \\
- (12\zeta_7^5 + 4\zeta_7^4 + 4\zeta_7^3 + 12\zeta_7^2 + 10)t^2u^5 \\
- (15\zeta_7^5 - 11\zeta_7^4 + 27\zeta_7^3 - 11\zeta_7 + 15)t^2u^4 \\
+ (12\zeta_7^5 - 12\zeta_7^4 + 12\zeta_7^3 + \zeta_7 + 1)t^2u^3 \\
- (4\zeta_7^5 + 15\zeta_7^4 + 5\zeta_7^3 + 5\zeta_7^2 + 15\zeta_7 + 4)t^2u^2 \\
- (5\zeta_7^5 + 4\zeta_7^4 - 3\zeta_7^2 + 9\zeta_7 + 2)t^2u \\
- (2\zeta_7^5 + 5\zeta_7^4 + 6\zeta_7^3 + 5\zeta_7^2 + 2\zeta_7)t \\
- (404\zeta_7^5 + 80\zeta_7^4 + 260\zeta_7^3 + 260\zeta_7^2 + 80\zeta_7 + 404)tu^9 \\
- (164\zeta_7^5 + 164\zeta_7^4 + 296\zeta_7^2 - 74\zeta_7 + 296)tu^8 \\
+ (77\zeta_7^5 - 60\zeta_7^4 + 109\zeta_7^3 - 60\zeta_7^2 + 77\zeta_7)tu^7 \\
+ (262\zeta_7^5 + 208\zeta_7^4 + 95\zeta_7^2 + 95\zeta_7 + 208)tu^6 \\
+ (47\zeta_7^5 + 18\zeta_7^4 + 18\zeta_7^3 + 47\zeta_7^2 + 52)tu^5 \\
+ (22\zeta_7^5 - 18\zeta_7^4 + 34\zeta_7^3 - 18\zeta_7 + 22)tu^4 \\
+ (12\zeta_7^5 - 19\zeta_7^4 + 12\zeta_7^3 - 6\zeta_7 - 6)tu^3 \\
+ (9\zeta_7^5 + 19\zeta_7^4 - 5\zeta_7^3 - 5\zeta_7^2 + 19\zeta_7 + 9)tu^2 \\
+ (23\zeta_7^5 + 23\zeta_7^4 - 10\zeta_7^2 - 6\zeta_7 - 10)tu \\
+ (15\zeta_7^5 + 35\zeta_7^4 + 44\zeta_7^3 + 35\zeta_7^2 + 15\zeta_7)t \\
+ (1474\zeta_7^5 + 292\zeta_7^4 + 948\zeta_7^3 + 948\zeta_7^2 + 292\zeta_7 + 1474)u^9 \\
+ (600\zeta_7^5 + 600\zeta_7^4 + 1081\zeta_7^2 - 267\zeta_7 + 1081)u^8 \\
- (67\zeta_7^5 - 54\zeta_7^4 + 97\zeta_7^3 - 54\zeta_7^2 + 67\zeta_7)u^7 \\
- (206\zeta_7^5 + 166\zeta_7^3 + 74\zeta_7^2 + 74\zeta_7 + 166)u^6 \\
- (40\zeta_7^5 + 18\zeta_7^4 + 18\zeta_7^3 + 40\zeta_7^2 + 52)u^5 \\
- (8\zeta_7^4 - 4\zeta_7^3 + 6\zeta_7^2 - 4\zeta_7 + 8)u^4 \\
- (2\zeta_7^5 + 12\zeta_7^4 + 2\zeta_7^3 + 6\zeta_7 + 6)u^3 \\
- (8\zeta_7^5 + 14\zeta_7^4 + 4\zeta_7^3 + 4\zeta_7^2 + 14\zeta_7 + 8)u^2 \\
- (4\zeta_7^5 + 4\zeta_7^4 + 5\zeta_7^2 + 11\zeta_7 + 5)u \\
+ 3\zeta_7^5 + 6\zeta_7^4 + 7\zeta_7^2 + 6\zeta_7 + 3\zeta_7 \\
\]

\[d_x = 7u(u - \zeta_7)(u - \zeta_7^2)^2(u - \zeta_7^4) \]
\[n_y = (734\zeta_7^5 - 79\zeta_7^4 + 652\zeta_7^3 + 148\zeta_7^2 + 325\zeta_7 + 510)t^2u^{18} \\
+ (511\zeta_7^5 + 87\zeta_7^4 + 342\zeta_7^3 + 307\zeta_7^2 + 113\zeta_7 + 498)t^2u^{17} \\
+ (156\zeta_7^5 + 153\zeta_7^4 + 9\zeta_7^3 + 269\zeta_7^2 - 61\zeta_7 + 278)t^2u^{16} \\
+ (47\zeta_7^5 + 1022\zeta_7^3 - 777\zeta_7^2 + 1488\zeta_7 - 798\zeta_7 + 1058)t^2u^{15} \\
- (735\zeta_7^5 + 38\zeta_7^4 + 561\zeta_7^3 + 290\zeta_7^2 + 252\zeta_7 + 608)t^2u^{14} \\
- (2309\zeta_7^5 + 782\zeta_7^4 + 1243\zeta_7^3 + 1914\zeta_7^2 + 240\zeta_7 + 2584)t^2u^{13} \\
- (1049\zeta_7^5 + 761\zeta_7^4 + 284\zeta_7^3 + 1480\zeta_7^2 - 187\zeta_7 + 1611)t^2u^{12} \\
+ (535\zeta_7^5 - 295\zeta_7^4 + 624\zeta_7^3 - 243\zeta_7^2 + 405\zeta_7 + 36)t^2u^{11} \\
+ (2108\zeta_7^5 - 403\zeta_7^4 + 1979\zeta_7^3 + 174\zeta_7^2 + 1067\zeta_7 + 1271)t^2u^{10} \\
+ (599\zeta_7^5 + 389\zeta_7^4 + 153\zeta_7^3 + 495\zeta_7^2 - 76\zeta_7 + 773)t^2u^9 \\
+(355\zeta_7^5 + 828\zeta_7^4 - 144\zeta_7^3 + 766\zeta_7^2 - 408\zeta_7 + 627)t^2u^8 \\
+(95\zeta_7^5 + 645\zeta_7^4 + 124\zeta_7^3 + 661\zeta_7^2 - 226\zeta_7 + 74)t^2u^7 \\
- (190\zeta_7^5 - 292\zeta_7^4 - 508\zeta_7^3 - 501\zeta_7^2 - 338\zeta_7 + 13)t^2u^6 \\
- (421\zeta_7^5 + 219\zeta_7^4 - 186\zeta_7^3 - 500\zeta_7^2 - 646\zeta_7 - 190)t^2u^5 \\
- (485\zeta_7^5 + 900\zeta_7^4 + 737\zeta_7^3 + 248\zeta_7^2 - 201\zeta_7 - 189)t^2u^4 \\
- (218\zeta_7^5 + 664\zeta_7^4 + 900\zeta_7^3 + 824\zeta_7^2 + 494\zeta_7 + 152)t^2u^3 \\
+ (78\zeta_7^5 + 95\zeta_7^4 - 113\zeta_7^3 - 274\zeta_7^2 - 157\zeta_7 - 22)t^2u^2 \\
- (10\zeta_7^5 - 61\zeta_7^4 + 10\zeta_7^3 - 177\zeta_7^2 + 177)t^2u \\
- (50\zeta_7^5 + 117\zeta_7^4 + 151\zeta_7^3 + 126\zeta_7^2 + 61\zeta_7 + 5)t^2 \\
- (10714\zeta_7^5 - 1150\zeta_7^4 + 9514\zeta_7^3 + 2162\zeta_7^2 + 4746\zeta_7 + 7442)tu^{18} \\
- (7470\zeta_7^5 + 1262\zeta_7^4 + 4978\zeta_7^3 + 4490\zeta_7^2 + 1654\zeta_7 + 7252)tu^{17} \\
- (2510\zeta_7^5 + 807\zeta_7^4 + 1364\zeta_7^3 + 2064\zeta_7^2 + 247\zeta_7 + 2819)tu^{16} \\
- (2090\zeta_7^5 + 12569\zeta_7^4 - 8404\zeta_7^3 + 18912\zeta_7^2 - 9336\zeta_7 + 14243)tu^{15} \\
+ (9131\zeta_7^5 + 360\zeta_7^4 + 7032\zeta_7^3 + 3764\zeta_7^2 + 2968\zeta_7 + 7675)tu^{14} \\
+(14417\zeta_7^5 + 4460\zeta_7^4 + 8020\zeta_7^3 + 11566\zeta_7^2 + 1588\zeta_7 + 15984)tu^{13} \\
+(13395\zeta_7^5 + 6455\zeta_7^4 + 5633\zeta_7^3 + 14149\zeta_7^2 - 351\zeta_7 + 17223)tu^{12} \\
- (2480\zeta_7^5 - 2223\zeta_7^4 + 3759\zeta_7^3 - 2394\zeta_7^2 + 2661\zeta_7 - 369)tu^{11} \\
- (9262\zeta_7^5 - 2399\zeta_7^4 + 9359\zeta_7^3 - 225\zeta_7 + 5240\zeta_7 + 4946)tu^{10} \\
- (3985\zeta_7^5 + 968\zeta_7^4 + 2566\zeta_7^3 + 2499\zeta_7^2 + 795\zeta_7 + 3970)tu^9 \\
- (478\zeta_7^5 + 1181\zeta_7^4 - 298\zeta_7^3 + 1619\zeta_7^2 - 479\zeta_7 + 1373)tu^8 \\
+ (264\zeta_7^5 - 313\zeta_7^4 + 564\zeta_7^3 - 449\zeta_7^2 + 566\zeta_7 - 213)tu^7 \\
+ (136\zeta_7^5 - 295\zeta_7^4 - 229\zeta_7^3 - 198\zeta_7^2 + 225\zeta_7 + 235)tu^6 \\
+ (325\zeta_7^5 - 85\zeta_7^4 - 684\zeta_7^3 - 1017\zeta_7^2 - 923\zeta_7 - 269)tu^5 \\
+ (797\zeta_7^5 + 1380\zeta_7^4 + 1023\zeta_7^3 + 111\zeta_7^2 - 531\zeta_7 - 424)tu^4 \\
+ (317\zeta_7^5 + 872\zeta_7^4 + 1107\zeta_7^3 + 933\zeta_7^2 + 524\zeta_7 + 144)tu^3 \]
\(+(125\zeta_7^5 - 185\zeta_7^4 - 431\zeta_7^3 - 631\zeta_7^2 - 820\zeta_7 - 561)tu^2\\n+(755\zeta_7^5 + 961\zeta_7^4 + 755\zeta_7^3 - 897\zeta_7 - 897)tu\\n+(356\zeta_7^5 + 835\zeta_7^4 + 1077\zeta_7^3 + 899\zeta_7^2 + 435\zeta_7 + 35)t\\n+(39084\zeta_7^5 - 4195\zeta_7^4 + 34707\zeta_7^3 + 7887\zeta_7^2 + 17313\zeta_7 + 27148)u^{18}\\n+(27249\zeta_7^5 + 4604\zeta_7^4 + 18160\zeta_7^3 + 16378\zeta_7^2 + 6033\zeta_7 + 26456)u^{17}\\n+(10001\zeta_7^5 - 2002\zeta_7^4 + 9626\zeta_7^3 + 676\zeta_7^2 + 5175\zeta_7 + 6018)u^{16}\\n+(12782\zeta_7^5 + 37512\zeta_7^4 - 19830\zeta_7^3 + 58767\zeta_7^2 - 25519\zeta_7 + 47761)u^{15}\\n-(33314\zeta_7^5 + 36999\zeta_7^4 + 23746\zeta_7^3 + 17233\zeta_7^2 + 8918\zeta_7 + 30414)u^{14}\\n-(23117\zeta_7^5 + 9120\zeta_7^4 + 11237\zeta_7^3 + 21425\zeta_7^2 + 939\zeta_7 + 27647)u^{13}\\n-(44383\zeta_7^5 + 14923\zeta_7^4 + 23648\zeta_7^3 + 37427\zeta_7^2 + 3886\zeta_7 + 50530)u^{12}\\n+(1132\zeta_7^5 - 7240\zeta_7^4 + 6723\zeta_7^3 - 10095\zeta_7^2 + 6218\zeta_7 - 6392)u^{11}\\n+(9738\zeta_7^5 - 2662\zeta_7^4 + 9983\zeta_7^3 - 386\zeta_7^2 + 5650\zeta_7 + 5114)u^{10}\\n+(3669\zeta_7^5 + 435\zeta_7^4 + 2635\zeta_7^3 + 1877\zeta_7^2 + 1031\zeta_7 + 3367)u^9\\n+(270\zeta_7^5 + 493\zeta_7^4 - 144\zeta_7^3 + 719\zeta_7^2 - 238\zeta_7 + 668)u^8\\n-(64\zeta_7^5 - 133\zeta_7^4 + 145\zeta_7^3 - 231\zeta_7^2 + 169\zeta_7 - 125)u^7\\n-(109\zeta_7^5 + 92\zeta_7^4 + 131\zeta_7^3 + 37\zeta_7^2 + 139\zeta_7 - 11)u^6\\n-(11\zeta_7^5 + 71\zeta_7^4 + 166\zeta_7^3 + 205\zeta_7^2 + 230\zeta_7 + 136)u^5\\n+(160\zeta_7^5 + 165\zeta_7^4 + 122\zeta_7^3 + 52\zeta_7^2 - 109\zeta_7 - 176)u^4\\n+(57\zeta_7^5 + 116\zeta_7^4 + 179\zeta_7^3 + 178\zeta_7^2 + 77\zeta_7 - 14)u^3\\n+(50\zeta_7^5 + 97\zeta_7^4 - 11\zeta_7^3 - 103\zeta_7^2 - 32\zeta_7 + 23)u^2\\n+(178\zeta_7^5 + 313\zeta_7^4 + 178\zeta_7^3 - 17\zeta_7 - 17)u\\n+(58\zeta_7^5 + 136\zeta_7^4 + 175\zeta_7^3 + 146\zeta_7^2 + 71\zeta_7 + 6)u^0\\n\)

\(d_u = u^{14} - (\zeta_7^5 + 2\zeta_7^4 + 3\zeta_7^3 + 4\zeta_7^2 + 2\zeta_7 + 1)u^{13}\\n+(4\zeta_7^5 + \zeta_7^4 - 2\zeta_7^3 - 6\zeta_7^2 - 7\zeta_7 - 3)u^{12}\\n+(7\zeta_7^5 + 14\zeta_7^4 + 10\zeta_7^3 + 2\zeta_7^2 - 4\zeta_7 - 7)u^{11}\\n+(10\zeta_7^5 + 21\zeta_7^4 + 31\zeta_7^3 + 25\zeta_7^2 + 15\zeta_7 + 4)u^{10}\\n-(6\zeta_7^5 - 7\zeta_7^4 - 20\zeta_7^3 - 32\zeta_7^2 - 26\zeta_7 - 13)u^9\\n-(14\zeta_7^5 + 20\zeta_7^4 + 7\zeta_7^3 - 7\zeta_7^2 - 21\zeta_7 - 14)u^8\\n-(14\zeta_7^5 + 28\zeta_7^4 + 35\zeta_7^3 + 21\zeta_7^2 + 7\zeta_7 - 6)u^7\\n-(6\zeta_7^5 + 19\zeta_7^4 + 32\zeta_7^3 + 38\zeta_7^2 + 26\zeta_7 + 13)u^6\\n+(10\zeta_7^5 + 6\zeta_7^4 - 5\zeta_7^3 - 15\zeta_7^2 - 21\zeta_7 - 11)u^5\\n+(7\zeta_7^5 + 14\zeta_7^4 + 11\zeta_7^3 + 5\zeta_7^2 - 3\zeta_7 - 7)u^4\\n+(4\zeta_7^5 + 7\zeta_7^4 + 11\zeta_7^3 + 10\zeta_7^2 + 6\zeta_7 + 3)u^3\\n-(\zeta_7^5 - 3\zeta_7^4 - 2\zeta_7 - 1)u^2 - \zeta_7^4 u.
\)
4.2. A brief study of the curve X_7. The projective closure \overline{X}_7 of X_7 is given by

$$\overline{X}_7 : (T - \alpha_7 V)(T - \beta_7 V)^2 V^7 - U^7(T - \gamma_7 V)^3.$$

This is a curve of degree 10 with 3 singular points which are all rational:

- the point $S_{\infty_1} = [1 : 0 : 0]$, is ordinary, of multiplicity $m_{\infty_1} = 7$. When we blow it up, we get 7 rational points lying above it,
- the point $S_{\infty_2} = [0 : 1 : 0]$ is not ordinary of multiplicity $m_{\infty_2,0} = 3$. We need to blow it up 3 times in order to resolve the singularity. In doing so, we get 1 point over it on every blowing-up, which are respectively of multiplicity $m_{\infty_2,1} = m_{\infty_2,2} = 3$ and $m_{\infty_2,3} = 1$. Note that all the blown-up points are rational,
- the point $S_1 = [\beta_7 : 0 : 1]$ is not ordinary of multiplicity $m_{1,0} = 2$. We need to blow it up 3 times in order to resolve the singularity. In doing so, we get 1 point over it on every blowing-up, which are respectively of multiplicity $m_{1,1} = m_{1,2} = 2$ and $m_{1,3} = 1$. Note that all the blown-up points are rational.

The genus of \overline{X}_7 is thus

$$g = \left(\frac{10 - 1}{2} \right) - \left(\frac{m_{\infty_1}}{2} \right) - \sum_{i=0}^{3} \left(\frac{m_{1,i}}{2} \right) - \sum_{i=0}^{3} \left(\frac{m_{\infty_2,1}}{2} \right) = 3.$$

4.3. Cardinaility of $\mathcal{F}_7(\mathbb{F}_q)$. If \tilde{X}_7 is a nonsingular model of \overline{X}_7, then we know that \tilde{X}_7 is also of genus 3. If $\mathbb{K} = \mathbb{F}_q$ is a finite field with q elements, then Weil’s theorem implies that

$$\left| \#\tilde{X}_7(\mathbb{F}_q) - (q + 1) \right| \leq 2g\sqrt{q} = 6\sqrt{q}.$$

Now, we know that

$$\#\tilde{X}_7 - \#\overline{X}_7(\mathbb{F}_q)$$

is given by the number of \mathbb{F}_q-rational of \tilde{X}_7 points lying over the singular points of \overline{X}_7 minus the number of rational singularities of $\overline{X}_7(\mathbb{F}_q)$. In our case, we have 7 rational points lying above S_{∞_1}, 1 over S_{∞_2} and 1 over S_1. Thus,

$$\#\tilde{X}_7 - \#\overline{X}_7(\mathbb{F}_q) = 9 - 3 = 6.$$

We also know that

$$\#\overline{X}_7(\mathbb{F}_q) - \#X_7(\mathbb{F}_q) = 2$$

which is the number of added rational points added in the projective closure. Finally,

$$\#X_7(\mathbb{F}_q) - \#\mathcal{W}_7(\mathbb{F}_q)$$

is given by the number of rational bad points on $X_7(\mathbb{F}_q)$. Those are

- the point $(\alpha_7, 0)$,
- the point $(\beta_7, 0)$,
- the points $(0, (1 - \zeta_7^2 + \zeta_7^4)i), 0 \leq i \leq 6,$
• and the points $(1, (1 + \zeta_7 + \zeta_7^2 - \zeta_7^4 - \zeta_7^5)\zeta_i^7), 0 \leq i \leq 6$.

and thus

$$\#X_7(\mathbb{F}_q) - \#\mathcal{W}_7(\mathbb{F}_q) = 16.$$

We get therefore the following proposition:

Proposition 2. Let \mathbb{F}_q be a finite field with q elements, with $q \equiv 1 \pmod{7}$. Then

$$|\#\mathcal{W}_7(\mathbb{F}_q) - (q - 23)| \leq 6\sqrt{q}.$$

Remark 4. This is the best possible bound, since there is equality up and down for $\mathbb{F}_q = \mathbb{F}_{13^2}$ and $\mathbb{F}_q = \mathbb{F}_{13^4}$.

Remark 5. Using the Zeta function of the curve X_7, we can even find the following result for finite fields of characteristic 2 and 3:

$$\#\mathcal{W}_7(\mathbb{F}_{2^{29^n}}) = 729^n - 23 - 6(-27)^n$$
and

$$\#\mathcal{W}_7(\mathbb{F}_{8^n}) = 8^n - 23 - 3(\alpha_1^n + \alpha_2^n)$$

where $\alpha_1, \alpha_2 \in \mathbb{C}$ are the roots of the polynomial $8T^2 + 5T + 1$.

5. Acknowledgments

This work was partially supported by Grant-in-Aid for Scientific Research (B)18340005, Japan Society for the Promotion of Science.

This work was done while visiting Institute of Mathematics and Statistics, University of Tromsø, Norway.

References

Department of Mathematics, Faculty of Education, Bergen University College,
PB 7030, 5020 Bergen, Norway

E-mail address: Hugues.Verdure@hib.no