Progress in Applied CFD – CFD2017
PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997. So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim. The conferences focuses on the application of CFD in the oil and gas industries, metal production, mineral processing, power generation, chemicals and other process industries. In addition pragmatic modelling concepts and bio-mechanical applications have become an important part of the conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the reviewers are included in the proceedings. 108 contributions were presented at the conference together with six keynote presentations. A majority of these contributions are presented by their manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts, all those who helped to promote the conference and all authors who have submitted scientific contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal Production and NanoSim.

Stein Tore Johansen & Jan Erik Olsen
Organizing committee:

Conference chairman: Prof. Stein Tore Johansen
Conference coordinator: Dr. Jan Erik Olsen
Dr. Bernhard Müller
Dr. Sigrid Karstad Dahl
Dr. Shahriar Amini
Dr. Ernst Meese
Dr. Josip Zoric
Dr. Jannike Solsvik
Dr. Peter Witt

Scientific committee:

Stein Tore Johansen, SINTEF/NTNU
Bernhard Müller, NTNU
Phil Schwarz, CSIRO
Akio Tomiyama, Kobe University
Hans Kuipers, Eindhoven University of Technology
Jinghai Li, Chinese Academy of Science
Markus Braun, Ansys
Simon Lo, CD-adapco
Patrick Segers, Universiteit Gent
Jiyuan Tu, RMIT
Jos Derksen, University of Aberdeen
Dmitry Eskin, Schlumberger-Doll Research
Pär Jönsson, KTH
Stefan Pirker, Johannes Kepler University
Josip Zoric, SINTEF
CONTENTS

PRAGMATIC MODELLING ... 9
On pragmatism in industrial modeling. Part III: Application to operational drilling 11
CFD modeling of dynamic emulsion stability .. 23
Modelling of interaction between turbines and terrain wakes using pragmatic approach 29

FLUIDIZED BED ... 37
Simulation of chemical looping combustion process in a double looping fluidized bed reactor with cu-based oxygen carriers ... 39
Extremely fast simulations of heat transfer in fluidized beds .. 47
Mass transfer phenomena in fluidized beds with horizontally immersed membranes 53
A Two-Fluid model study of hydrogen production via water gas shift in fluidized bed membrane reactors .. 63
Effect of lift force on dense gas-fluidized beds of non-spherical particles ... 71
Experimental and numerical investigation of a bubbling dense gas-solid fluidized bed 81
Direct numerical simulation of the effective drag in gas-liquid-solid systems ... 89
A Lagrangian-Eulerian hybrid model for the simulation of direct reduction of iron ore in fluidized beds .. 97
High temperature fluidization - influence of inter-particle forces on fluidization behavior 107
Verification of filtered two fluid models for reactive gas-solid flows ... 115

BIOMECHANICS ... 123
A computational framework involving CFD and data mining tools for analyzing disease in carotid artery .. 125
Investigating the numerical parameter space for a stenosed patient-specific internal carotid artery model .. 133
Velocity profiles in a 2D model of the left ventricular outflow tract, pathological case study using PIV and CFD modeling ... 139
Oscillatory flow and mass transport in a coronary artery .. 147
Patient specific numerical simulation of flow in the human upper airways for assessing the effect of nasal surgery .. 153
CFD simulations of turbulent flow in the human upper airways ... 163

OIL & GAS APPLICATIONS ... 169
Estimation of flow rates and parameters in two-phase stratified and slug flow by an ensemble Kalman filter ... 171
Direct numerical simulation of proppant transport in a narrow channel for hydraulic fracturing application ... 179
Multiphase direct numerical simulations (DNS) of oil-water flows through homogeneous porous rocks .. 185
CFD erosion modelling of blind tees ... 191
Shape factors inclusion in a one-dimensional, transient two-fluid model for stratified and slug flow simulations in pipes ... 201
Gas-liquid two-phase flow behavior in terrain-inclined pipelines for wet natural gas transportation ... 207
NUMERICS, METHODS & CODE DEVELOPMENT ... 213
Innovative computing for industrially-relevant multiphase flows 215
Development of GPU parallel multiphase flow solver for turbulent slurry flows in cyclone .. 223
Immersed boundary method for the compressible Navier–Stokes equations using high order summation-by-parts difference operators ... 233
Direct numerical simulation of coupled heat and mass transfer in fluid-solid systems 243
A simulation concept for generic simulation of multi-material flow, using staggered Cartesian grids .. 253
A cartesian cut-cell method, based on formal volume averaging of mass, momentum equations ... 265
SOFT: a framework for semantic interoperability of scientific software 273

POPULATION BALANCE ... 279
Combined multifluid-population balance method for polydisperse multiphase flows 281
A multifluid-PBE model for a slurry bubble column with bubble size dependent velocity, weight fractions and temperature .. 285
CFD simulation of the droplet size distribution of liquid-liquid emulsions in stirred tank reactors .. 295
Towards a CFD model for boiling flows: validation of QMOM predictions with TOPFLOW experiments .. 301
Numerical simulations of turbulent liquid-liquid dispersions with quadrature-based moment methods ... 309
Simulation of dispersion of immiscible fluids in a turbulent couette flow 317
Simulation of gas-liquid flows in separators - a Lagrangian approach 325
CFD modelling to predict mass transfer in pulsed sieve plate extraction columns 335

BREAKUP & COALESCENCE .. 343
Experimental and numerical study on single droplet breakage in turbulent flow 345
Improved collision modelling for liquid metal droplets in a copper slag cleaning process .. 355
Modelling of bubble dynamics in slag during its hot stage engineering 365
Controlled coalescence with local front reconstruction method 373

BUBBLY FLOWS ... 381
Modelling of fluid dynamics, mass transfer and chemical reaction in bubbly flows 383
Stochastic DSMC model for large scale dense bubbly flows ... 391
On the surfacing mechanism of bubble plumes from subsea gas release 399
Bubble generated turbulence in two fluid simulation of bubbly flow 405

HEAT TRANSFER .. 413
CFD-simulation of boiling in a heated pipe including flow pattern transitions using a multi-field concept ... 415
The pear-shaped fate of an ice melting front ... 423
Flow dynamics studies for flexible operation of continuous casters (flow flex cc) 431
An Euler-Euler model for gas-liquid flows in a coil wound heat exchanger 441

NON-NEWTONIAN FLOWS .. 449
Viscoelastic flow simulations in disordered porous media ... 451
Tire rubber extrudate swell simulation and verification with experiments 459
Front-tracking simulations of bubbles rising in non-Newtonian fluids 469
A 2D sediment bed morphodynamics model for turbulent, non-Newtonian, particle-loaded flows ... 479
METALLURGICAL APPLICATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental modelling of metallurgical processes</td>
<td>493</td>
</tr>
<tr>
<td>State of the art: macroscopic modelling approaches for the description of multiphysics phenomena within the electroslag remelting process</td>
<td>499</td>
</tr>
<tr>
<td>LES-VOF simulation of turbulent interfacial flow in the continuous casting mold</td>
<td>507</td>
</tr>
<tr>
<td>CFD-DEM modelling of blast furnace tapping</td>
<td>515</td>
</tr>
<tr>
<td>Multiphase flow modelling of furnace tapholes</td>
<td>521</td>
</tr>
<tr>
<td>Numerical predictions of the shape and size of the raceway zone in a blast furnace</td>
<td>531</td>
</tr>
<tr>
<td>Modelling and measurements in the aluminium industry - Where are the obstacles?</td>
<td>541</td>
</tr>
<tr>
<td>Modelling of chemical reactions in metallurgical processes</td>
<td>549</td>
</tr>
<tr>
<td>Using CFD analysis to optimise top submerged lance furnace geometries</td>
<td>555</td>
</tr>
<tr>
<td>Numerical analysis of the temperature distribution in a martensic stainless steel strip during hardening</td>
<td>565</td>
</tr>
<tr>
<td>Validation of a rapid slag viscosity measurement by CFD</td>
<td>575</td>
</tr>
<tr>
<td>Solidification modeling with user defined function in ANSYS Fluent</td>
<td>583</td>
</tr>
<tr>
<td>Cleaning of polycyclic aromatic hydrocarbons (PAH) obtained from ferroalloys plant</td>
<td>587</td>
</tr>
<tr>
<td>Granular flow described by fictitious fluids: a suitable methodology for process simulations</td>
<td>593</td>
</tr>
<tr>
<td>A multiscale numerical approach of the dripping slag in the coke bed zone of a pilot scale Si-Mn furnace</td>
<td>599</td>
</tr>
</tbody>
</table>

INDUSTRIAL APPLICATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of CFD as a design tool for a phosphoric acid plant cooling pond</td>
<td>607</td>
</tr>
<tr>
<td>Numerical evaluation of co-firing solid recovered fuel with petroleum coke in a cement rotary kiln: Influence of fuel moisture</td>
<td>613</td>
</tr>
<tr>
<td>Experimental and CFD investigation of fractal distributor on a novel plate and frame ion-exchanger</td>
<td>621</td>
</tr>
</tbody>
</table>

COMBUSTION

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD modeling of a commercial-size circle-draft biomass gasifier</td>
<td>631</td>
</tr>
<tr>
<td>Numerical study of coal particle gasification up to Reynolds numbers of 1000</td>
<td>641</td>
</tr>
<tr>
<td>Modelling combustion of pulverized coal and alternative carbon materials in the blast furnace raceway</td>
<td>647</td>
</tr>
<tr>
<td>Combustion chamber scaling for energy recovery from furnace process gas: waste to value</td>
<td>657</td>
</tr>
</tbody>
</table>

PACKED BED

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison of particle-resolved direct numerical simulation and 1D modelling of catalytic reactions in a packed bed</td>
<td>665</td>
</tr>
<tr>
<td>Numerical investigation of particle types influence on packed bed adsorber behaviour</td>
<td>667</td>
</tr>
<tr>
<td>CFD based study of dense medium drum separation processes</td>
<td>675</td>
</tr>
<tr>
<td>A multi-domain 1D particle-reactor model for packed bed reactor applications</td>
<td>683</td>
</tr>
</tbody>
</table>

SPECIES TRANSPORT & INTERFACES

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelling and numerical simulation of surface active species transport - reaction in welding processes</td>
<td>699</td>
</tr>
<tr>
<td>Multiscale approach to fully resolved boundary layers using adaptive grids</td>
<td>701</td>
</tr>
<tr>
<td>Implementation, demonstration and validation of a user-defined wall function for direct precipitation fouling in Ansys Fluent</td>
<td>709</td>
</tr>
<tr>
<td>Implementation, demonstration and validation of a user-defined wall function for direct precipitation fouling in Ansys Fluent</td>
<td>717</td>
</tr>
</tbody>
</table>
FREE SURFACE FLOW & WAVES ... 727
Unresolved CFD-DEM in environmental engineering: submarine slope stability and
other applications ... 729
Influence of the upstream cylinder and wave breaking point on the breaking wave
forces on the downstream cylinder ... 735
Recent developments for the computation of the necessary submergence of pump
intakes with free surfaces .. 743
Parallel multiphase flow software for solving the Navier-Stokes equations 752

PARTICLE METHODS ... 759
A numerical approach to model aggregate restructuring in shear flow using DEM in
Lattice-Boltzmann simulations ... 761
Adaptive coarse-graining for large-scale DEM simulations ... 773
Novel efficient hybrid-DEM collision integration scheme ... 779
Implementing the kinetic theory of granular flows into the Lagrangian
dense discrete phase model .. 785
Importance of the different fluid forces on particle dispersion in fluid phase
resonance mixers ... 791
Large scale modelling of bubble formation and growth in a supersaturated liquid 798

FUNDAMENTAL FLUID DYNAMICS ... 807
Flow past a yawed cylinder of finite length using a fictitious domain method 809
A numerical evaluation of the effect of the electro-magnetic force on bubble flow
in aluminium smelting process ... 819
A DNS study of droplet spreading and penetration on a porous medium 825
From linear to nonlinear: Transient growth in confined magnetohydrodynamic flows 831
NUMERICAL PREDICTIONS OF THE SHAPE AND SIZE OF THE RACEWAY ZONE IN A BLAST FURNACE

Dmitry SAFRONOV1*, Andreas RICHTER1†, Bernd MEYER1‡
1TU Bergakademie Freiberg, IEC, 09599 Freiberg, Germany

* E-mail: dmitry.safronov@vtc.tu-freiberg.de
† E-mail: a.richter@vtc.tu-freiberg.de
‡ E-mail: bernd.meyer@iec.tu-freiberg.de

ABSTRACT
A 3D transient numerical model has been developed to predict the shape and size of the raceway zone created by the force of the blast air injected through the tuyeres in the coke bed of a blast furnace. The model is based on the solution of conservation equations of both gas and solid phases as interpenetrating continua on an Eulerian-Eulerian frame of reference. A modified k-ε model has been adopted for gas phase turbulence including gas–coke turbulent interaction. The solid phase is characterized by the solid pressure, bulk viscosity and shear viscosity, which are evaluated by applying kinetic theory to granular flows. The influences of the air blast velocity, granular properties of the coke phase, and tuyere diameter on the shape and size of the raceway zone have been predicted by numerical simulations and described using semi-empirical relations. The effect of the cohesive zone on the raceway geometry is also taken into account. The trends of the derived results are compared with experimental data reported by various researchers with reasonable agreement.

Keywords: Process metallurgy, Ironmaking, Blast furnace, Raceway, CFD, Fluidized/packed beds, Granular flows.

NOMENCLATURE

Greek Symbols
α Volume fraction, —
β Momentum exchange coefficient, kg m$^{-3}$ s$^{-1}$
ε Turbulent energy dissipation, m2 s$^{-3}$ s$^{-1}$
Θ Granular temperature, K
μ Dynamic (shear) viscosity, Pas
ρ Density, kg m$^{-3}$
τ Stress tensor, Pa
ϕ Angle of internal friction, degree
ξ Bulk viscosity, Pas

Latin Symbols
C_d Drag coefficient, —
C_{d_t} Turbulent dispersion coefficient, —
C_V Added mass coefficient, —
D Depth, m
d Diameter, m
e Coefficient of restitution, —
F Volume-specific force, N m$^{-3}$
g0 Radial distribution function, —
H Height, m

\bar{g} Standard acceleration due to gravity, m s$^{-2}$
I Unit tensor, —
k Turbulent kinetic energy, J kg$^{-1}$
L Length, m
p Pressure, Pa
Re Reynolds number, —
\bar{R} Interphase momentum exchange, N m$^{-3}$
R_a Universal gas constant, J mol$^{-1}$ K$^{-1}$
S Cross-sectional area, m2
t Time, s
T Temperature, K
\bar{U} Velocity, m s$^{-1}$
V Volumetric flow, m3 s$^{-1}$
W Width, m

Sub/superscripts
0 Standard state
eff Effective value
g Gas phase
in Inlet
i Phase i
j Phase j
max Maximal value
rw Raceway
s Solid phase
t Turbulent
tuyere Tuyere

INTRODUCTION
The blast furnace (BF) that converts iron ore into molten iron is an important component in iron-steel making and a capital and energy intensive process. To maintain and improve the competitiveness of the blast furnace process, it is necessary to achieve a considerable decrease in the coke and total energy consumption for primary metal production along with minimization of environmental impacts. Injection of auxiliary fuels such as pulverized coal or oil has continuously made a considerable contribution toward reducing the requirement on expensive metallurgical coke in the last decades. The high coal injection rates and low coke rate is a common goal for reducing the cost of the hot metal production (Geerdes et al., 2015). However, for an efficient and stable operation of the blast furnace towards increased injection rates, one has to understand the different physical processes and recognize the key parameters governing the processes.
In a blast furnace, iron-bearing materials and coke with flux are charged in alternate layers into the top of the furnace, as shown in Fig. 1. Preheated air and fuel (gas, oil or pulverized coal) are injected at high velocity into the lower part of the furnace through tuyeres, forming a cavity known as a raceway. In this raceway zone the injected fuel and some of the coke descending from the top of the furnace are combusted and gasified (see Fig. 2). The shape and size of the raceway greatly affect the conversion of the coke and the injected fuel.

In the previous decades, tremendous work had been conducted to investigate the kinetics of raceway formation. The works related to the prediction of the raceway size and shape can be classified into experimental, analytical, semi-empirical, and numerical types. Analytical and semi-empirical studies have considered dimensional analysis (Szekely and Poveromo, 1975; VDE, 1976; Flint and Burgess, 1992; Ohno et al., 1994; Rajneesh et al., 2004; Singh et al., 2006; Gupta and Rudolph, 2006) or macroscopic mass and momentum balance above the raceway (Nomura, 1986) to find a correlation for the size of the raceway, which often was considered to be spherical or having other predefined simple geometrical shape. These works are often accompanied with experimental investigations of the raceway formation using simplified two- or three-dimensional physical models for determination of the modeling parameters.

Numerical works can in turn be classified into particle-resolved Discrete Element Modeling (DEM) and continuous Eulerian modeling. The literature shows that the DEM method has great potential but still has some significant challenges (Xu et al., 2000; Nogami et al., 2004; Yuu et al., 2005; Hellberg et al., 2005; Natsui et al., 2005). All DEM models are significantly simplified, either by scaling up particles for industrial-scale furnaces, or scaled-down furnace size for real-size particles. This simplification lowers the computational load by reducing the number of particles. The geometry is further reduced in size by using a slot or thin pie-slice instead of the full cylindrical blast furnace shape, again reducing the number of particles in the simulation due to the high demand on computational resources.

In this work a comprehensive Eulerian approach is selected to describe the gas–coke particle flow. Aoki et al. (Aoki et al., 1993) utilized the Eulerian approach to model the formation of raceway, but the authors neglected the effects of particles on gas phase turbulence in predicting the shape and size of the raceway zone. Mondal et al. (Mondal et al., 2005) investigated the impact of coke bed and blast rates on the raceway shape and size applying Euler-Euler approach to a simplified two-dimensional BF geometry. More recently Selvarasu et al. (Selvarasu et al., 2006, 2007) studied the raceway formation using geometry and operational parameters based on a real BF. However, no details on turbulent interaction between the gas and the solid phases can be found in the articles.

It has been recognized for many years that other blast furnace operation factors, such as the cohesive zone, arrangement of tuyeres and burden distribution also play an important role in the raceway formation and determine its size and shape. However, the effect of all those practical conditions on the raceway formation has not been studied very well. In order to improve our understanding of underlying physical processes, a three-dimensional Euler-Euler CFD model for simulation of the raceway formation process was developed. This work investigated the effect of tuyere geometry, air blast velocity, and coke particle size on the raceway formation. Possibilities to use the numerical predictions in real-time applications via reduced-order modeling approach are also discussed.

MODEL DESCRIPTION

Fig. 3 shows the geometry used in the simulations, which is based on the geometry of ArcelorMittal Eisenhüttenstadt BF 5A blast furnace. The computational domain consists of three tuyeres and includes the coke bed below the cohesive zone. The approximate shape and location of the cohesive zone is known from an analysis of vertical probing. The detailed size and shape of the deadman is dependent on the furnace inner profile and the shape and location of the cohesive zone.

Assumptions

The computational setup is based on the following basic assumptions:

- Coke particles are spheres of same size
• Particle collisions are considered as binary and inelastic
• Effect of fuel injection is not considered

Governing Equations

In the Eulerian approach, the different phases i are described mathematically as interpenetrating continua characterized by their volume fraction α_i. The volume fractions are assumed to be continuous functions of space and time and their sum is equal to one: $\sum \alpha_i = 1$. In this work two different phases are considered. The coke particles are represented by the solid granular phase and the blast air is referred as the gas phase. Momentum and continuity equations are obtained for each phase in terms of its volume fraction. The continuity equation for phase i is

$$\frac{\partial (\alpha_i \rho_i)}{\partial t} + \nabla \cdot (\alpha_i \rho_i \vec{U}_i) = 0.$$ \hspace{1cm} (1)

The momentum balance for phase i yields

$$\frac{\partial (\alpha_i \rho_i \vec{U}_i)}{\partial t} + \nabla \cdot (\alpha_i \rho_i \vec{U}_i \vec{U}_i) = -\alpha_i \nabla p_i + \nabla \cdot \bar{\tau}_i + \alpha_i \rho_i \bar{g} + \bar{R}_{ij} + \bar{F}_{d,i},$$ \hspace{1cm} (2)

where $\bar{\tau}_i$ is the stress-strain tensor for phase i

$$\bar{\tau}_i = \alpha_i \mu_i \left(\nabla \vec{U}_i + \nabla \vec{U}_i^T \right) + \alpha_i \left(\xi_i - \frac{2}{3} \mu_i \right) \nabla \cdot \vec{U}_i \vec{I},$$ \hspace{1cm} (3)

with μ_i and ξ_i as the shear and bulk viscosities of phase i.

The interphase momentum exchange term \bar{R}_{ij} describes the momentum transfer between the solid and the gas phase:

$$\bar{R}_{ij} = \beta \left(\vec{U}_g - \vec{U}_s \right), \quad \bar{R}_{eg} = \beta \left(\vec{U}_s - \vec{U}_g \right).$$ \hspace{1cm} (4)

The interphase momentum exchange coefficient β was calculated according to the Gidaspow model (Gidaspow et al., 1992), which is a combination of the Wen and Yu model (Wen and Yu, 1966) and the Ergun’s equation (Ergun, 1952).

For $\alpha_g > 0.8$ the fluid–solid exchange coefficient β is based on the drag force of the fluid acting on a single particle:

$$\beta = \frac{3}{4} \frac{C_{d,s} \alpha_g \rho_g}{d_s} \left| \vec{U}_s - \vec{U}_g \right| \alpha_g^{-2.65}.$$ \hspace{1cm} (5)

and if $\alpha_g \leq 0.8$, the exchange coefficient is described by Ergun’s equation for dense granular systems as

$$\beta = 150 \frac{\alpha_g \rho_g}{\alpha_g d_s^2} + 1.75 \frac{\rho_g \left| \vec{U}_s - \vec{U}_g \right|}{\alpha_g d_s}.$$ \hspace{1cm} (6)

The interphase drag coefficient $C_{d,s}$ in Eqn. (5) is given by

$$C_{d,s} = \frac{24}{Re_s} \left(1 + 0.15 Re_s^{0.687} \right),$$ \hspace{1cm} (7)

where the relative Reynolds number is defined as

$$Re_s = \frac{\rho_g d_s \left| \vec{U}_s - \vec{U}_g \right|}{\mu_g}.$$ \hspace{1cm} (8)

The turbulent dispersion force $\bar{F}_{d,i}$ in Eqn. (2) arises from averaging the interphase drag term \bar{R}_{ij}. For modeling of the turbulent dispersion force the formulation proposed by Lopez de Bertodano (de Bertodano, 1991) was used:

$$\bar{F}_{d,g} = -\frac{\bar{F}_{d,s}}{C_{d,s} \alpha_g \rho_g \bar{g} \alpha_s}, \quad C_{d,s} = 1$$ \hspace{1cm} (9)

The bulk viscosity of the gas phase is considered to be zero

$$\xi_g = 0$$ \hspace{1cm} (10)

and the effective dynamic viscosity (shear viscosity) is calculated from the molecular and turbulent viscosities as follows:

$$\mu_{eff,g} = \mu_g + \mu_{h,g}.$$ \hspace{1cm} (11)

The turbulent viscosity, $\mu_{h,g}$, is modeled by modified $k-\varepsilon$ closure equations for turbulence

$$\mu_{h,g} = \rho_g C_{\mu} \frac{k_g^2}{\epsilon_g},$$ \hspace{1cm} (12)

where the turbulent kinetic energy, k_g, and turbulent kinetic energy dissipation rate, ϵ_g, are determined from their respective conservation equations (13) and (14) considering the effect of solid particles.

$$\frac{\partial (\alpha_g \rho_g k_g)}{\partial t} + \nabla \cdot (\alpha_g \rho_g \vec{U}_g k_g) = \nabla \cdot (\alpha_g \mu_{eff,g} \nabla k_g) + \alpha_g G_{k,g} - \alpha_g \rho_g \epsilon_g + \beta \left(k_g - 2 \alpha_g \right).$$ \hspace{1cm} (13)

$$\frac{\partial (\alpha_g \rho_g \epsilon_g)}{\partial t} + \nabla \cdot (\alpha_g \rho_g \vec{U}_g \epsilon_g) =$$

$$\nabla \cdot \left(\alpha_g \mu_{eff,g} \nabla \epsilon_g \right) + \alpha_g \epsilon_g \left(C_{1e} G_{k,g} - C_{2e} \rho_g \epsilon_g \right) + \frac{C_{3e} \epsilon_g}{k_g} \beta \left(k_g - 2 \alpha_g \right).$$ \hspace{1cm} (14)
The term k_{sg} in Eqn. (13) is the production of turbulent kinetic energy in the gas phase. The last term in both the equations represents the influence of the dispersed phases (solid phase) on the continuous phase (Elgobashi and Abou, 1983). The constants for the k-ε model are (Launder and Spalding, 1972, 1974; Ferziger and Perić, 2002)

\[C_\mu = 0.09, \quad C_{1\varepsilon} = 1.44, \quad C_{2\varepsilon} = 1.92, \quad C_{3\varepsilon} = 1.2, \quad \sigma_k = 1.0, \quad \sigma_\varepsilon = 1.3. \]

(15)

The term k_{sg} in Eqn. (13) and (14) is the covariance of the velocities of the continuous phase and the solid phase (Simonin and Viollet, 1990) and is given by

\[k_{sg} = 2k_g \left(\frac{b + \eta_{sg}}{1 + \eta_{sg}} \right), \]

(16)

where the term b can be expressed as

\[b = (1 + CV) \left(\frac{\rho_s}{\rho_g} + CV \right)^{-1} \]

(17)

with $CV = 0.5$ as added-mass coefficient.

The term η_{sg} can be written as the ratio of the Lagrangian integral time scale and the characteristic particle relaxation time scale as

\[\eta_{sg} = \frac{\tau_{r,sg}}{\tau_{r,g}}. \]

(18)

The characteristic particle relaxation time scale connected with inertial effects acting on a dispersed phase is defined as

\[\tau_{r,sg} = \alpha_s \rho_s \beta^{-1} \left(\frac{\rho_s}{\rho_g} + CV \right). \]

(19)

The eddy particle interaction time is mainly affected by the crossing-trajectory effect (Csanady, 1963) and defined as

\[\tau_{r,sg} = \frac{\tau_{r,g}}{\sqrt{1 + C_B \xi^2}}, \]

(20)

where

\[\xi = \left| \bar{U}_{sg} \right| \tau_{r,g} \]

(21)

and

\[C_B = 1.8 - 1.35 \cos^2 \theta. \]

(22)

θ is the angle between the mean particle velocity \bar{U}_s and the mean relative velocity \bar{U}_{sg}.

The time scale of the energetic turbulent eddies appearing in Eqn. (20) is defined as

\[\tau_{r,g} = \frac{3}{2} C_\mu \frac{k_g}{\varepsilon_g}, \]

(23)

and the length scale of the turbulent eddies appearing in Eqn. (21) is given by

\[L_{r,g} = \sqrt{\frac{3}{2} C_\mu \frac{k_g^{3/2}}{\varepsilon_g}}. \]

(24)

The solid phase is characterized by the solid pressure, bulk viscosity and shear viscosity, which are evaluated by applying kinetic theory to granular flows. All the three quantities, namely, p_s, ξ_{ss}, and μ_s, arise from the momentum transport due to the movement and interaction (translation, collision, and friction) of coke particles.

The solids pressure represents the particle normal forces (Gidaspow, 1994; Gidaspow et al., 1992; Huilin et al., 2003; Ding and Gidaspow, 1990) and is composed of a kinetic term and a second term due to particle collisions:

\[p_s = \alpha_s \rho_s \Theta_s + 2 \rho_s (1 + e_{ss}) \alpha_s^2 g_{0,ss} \Theta_s, \]

(25)

where e_{ss} is the coefficient of restitution for particle collisions, Θ_s is the granular temperature, and $g_{0,ss}$ is the radial distribution function.

The distribution function $g_{0,ss}$ describes the transition from the “compressible” condition ($\alpha_s < \alpha_{s,max}$), where the spacing between the solid particles can continue to decrease, to the “incompressible” one, where no further decrease in the spacing is possible:

\[g_{0,ss} = \frac{3}{5} \left[1 - \left(\frac{\alpha_s}{\alpha_{s,max}} \right)^{1/3} \right]^{-1}, \]

(26)

where $\alpha_{s,max}$ is the packing limit for the solid phase.

The granular temperature Θ_s is proportional to the kinetic energy of the fluctuating particle motion. The energy transport equation for the solid granular phase in terms of granular temperature Θ_s derived from kinetic theory takes the form (Gidaspow et al., 1992; Ding and Gidaspow, 1990):

\[\frac{3}{2} \frac{\partial (\rho_s \alpha_s \Theta_s)}{\partial t} + \frac{3}{2} \nabla \cdot (p_s \alpha_s U_s \Theta_s) = \xi_s \cdot \nabla U_s + \nabla \cdot (k_{\Theta} \nabla \Theta_s) - \gamma_{\Theta_s} - 3 \beta \Theta_s, \]

(27)

where the first term on the right-hand side represents the generation of energy by the solid stress tensor, the second term represents the diffusion of energy, the third term represents the collisional dissipation of energy and the last term represents the exchange of kinetic energy from the solid phase to the gas phase.

The diffusion coefficient k_{Θ} and collisional dissipation of granular energy γ_{Θ_s} in Eqn. (27) can be expressed (Gidaspow et al., 1992; Huilin et al., 2003; Ding and Gidaspow, 1990) as

\[k_{\Theta} = \frac{150 \rho_s d_s \sqrt{\Theta_s / \pi}}{384 (1 + e_{ss}) g_{0,ss}} \left[1 + \frac{6}{5} g_{0,ss} \alpha_s (1 + e_{ss}) \right]^2 + 2 \alpha_s^2 \rho_s d_s g_{0,ss} (1 + e_{ss}) \left(\frac{\Theta_s}{\pi} \right)^{1/2}, \]

(28)

\[\gamma_{\Theta_s} = 3 \left(1 - e_{ss}^2 \right) g_{0,ss} \rho_s \alpha_s^2 \Theta_s \times \left[\frac{4}{J_s} \left(\frac{\Theta_s}{\pi} \right)^{1/2} - \nabla \cdot \bar{U}_s \right]. \]

(29)
Numerical Predictions of the Shape and Size of the Raceway Zone in a Blast Furnace/CFD 2017

dawson, 1990; Schaffer, 1987; Lun et al., 1984) as

\[
\mu_s = \frac{4}{5} \alpha_s d_s g_0 \alpha_s \left(1 + \epsilon_s \right) \left(\frac{\Theta_s}{\pi} \right)^{1/2} +
\]

collisional part

\[
\frac{10 \rho_s d_s \sqrt{\Theta_s}}{96 (1 + \epsilon_s) g_0 \alpha_s \left[1 + \frac{4}{5} g_0 \alpha_s \left(1 + \epsilon_s \right) \right]^2} +
\]

kinetic part

\[
\frac{p_s \sin \Theta_s}{2 \sqrt{I_{2D}}},
\]

frictional part

\[
\xi_s = \frac{4}{3} \alpha_s^2 \rho_s d_s g_0 \left(1 + \epsilon_s \right) \left(\frac{\Theta_s}{\pi} \right)^{1/2},
\]

where \(\phi_s \) is the angle of internal friction for the solid phase, \(p_s \) is the solid pressure, and \(I_{2D} \) is the second invariant of the deviatoric stress tensor.

CFD SETUP AND VALIDATION

The conservation equations for the gas and the solid phase were solved using an implicit Finite Volume Method (FVM). A coupling between the pressure and velocity was accomplished using the Phase Coupled SIMPLE (PC-SIMPLE) algorithm for the pressure–velocity coupling. The velocities are solved coupled by phases, but in a segregated fashion. Pressure and velocities are then corrected by solving a pressure correction equation to satisfy the continuity constraint. The space derivatives of the diffusion terms were discretized by a power law scheme, while the advection terms were corrected by a central differencing scheme. Symmetric boundary conditions were set to zero. In order to specify the pressure at the outlet and the axial gradients of all other variables were set to zero. In order to specify the pressure at the outlet of the computational domain, the effect of assumed burden distribution was modeled separately using the full BF inner profile and considering the pressure drop due to the cohesive zone measured by a vertical probing. Turbulent quantities \(k \) and \(\epsilon \) in the near-wall cells were prescribed from a logarithmic wall function. Symmetric boundary conditions (normal gradient is zero) were applied at the side walls. A no-slip condition was set at the wall for the gas phase calculations. The solid normal velocity was also set to zero at the wall. The burden properties used in the calculations are summarized in Table 1.

SIMULATION CONDITIONS

The various conditions for the parametric studies are shown in Table 3. These parameters are collected from an actual operation case.

RESULTS

Figs. 5 and 6 show the distribution of the volume fraction of the solid phase \(\alpha_s \) in the region near tuyeres. A macroscopically stable raceway is formed in front of the tuyere under the combined effect of the gas flow and the motion of the solid particles. The boundary of the raceway zone separating it from the coke bed is characterized by the lines of constant volume fraction which is equal to the initial volume fraction of solid, \(\alpha_o \). The raceway is characterized by a central high void region and circulating particle region near the raceway boundary. Although the boundary may show some fluctuation, the overall raceway size remains almost unchanged. The blast air incurs a relatively large momentum exchange with the solid phase in the radial direction and results in convecting the solid particles radially towards the furnace axis. Through the momentum exchange the air flow loses its kinetic energy and is predominantly moving upward as expected (see Fig. 7).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coke</th>
<th>Ore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size</td>
<td>38mm</td>
<td>38mm</td>
</tr>
<tr>
<td>Particle density</td>
<td>1100 kg m(^{-3})</td>
<td>4000 kg m(^{-3})</td>
</tr>
<tr>
<td>Volumetric fraction in</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>the burden above cohesive zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volumetric fraction in</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>the burden below cohesive zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear modulus</td>
<td>(10^7) Pa</td>
<td>(10^7) Pa</td>
</tr>
<tr>
<td>Coefficient of restitution</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Angle of internal friction</td>
<td>45°</td>
<td>45°</td>
</tr>
<tr>
<td>Packing limit (\alpha_s,)max (0.63</td>
<td>0.63</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Validation conditions

<table>
<thead>
<tr>
<th>Tuyere diameter</th>
<th>152mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coke particle size</td>
<td>41–49mm</td>
</tr>
<tr>
<td>Blast velocity</td>
<td>90–120 m s(^{-1})</td>
</tr>
<tr>
<td>Blast temperature</td>
<td>973 K</td>
</tr>
</tbody>
</table>

Figure 4: Comparison in the raceway depth \(L_{rw}\) between CFD simulation results and experimental data reported by Nomura (Nomura, 1986)
Table 3: Operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuyere diameter</td>
<td>123 mm</td>
</tr>
<tr>
<td>Tuyere angle</td>
<td>4°</td>
</tr>
<tr>
<td>Coke particle size</td>
<td>25–38 mm</td>
</tr>
<tr>
<td>Blast velocity</td>
<td>140–300 m/s</td>
</tr>
<tr>
<td>Blast temperature</td>
<td>1413 K</td>
</tr>
</tbody>
</table>

The velocity distribution inside the raceway is an important factor that decides the conversion behavior of the coke and injected fuels. Fig. 8 shows the streamlines of the gas phase inside the raceway and in the surrounding coke bed. At the top and bottom of the raceway near the wall of the furnace stagnation zones can be observed. Their existence can also be verified by some particle-resolved simulations (Hilton and Cleary, 2012). In the middle of the raceway a recirculation area is formed. This area defines the extent of the raceway and influences the residence time of the injected fuel particles.

The effect of the blast velocity is shown in Fig. 9, 10, and 11. The raceway size increases as the tuyere velocity rises. An increase in the gas velocity increases the momentum of the gas phase, which in turn causes a larger momentum exchange with the solid particles, moving them further away from the tuyere towards the center of the furnace. The raceway is larger for a higher tuyere velocity. It is also observed that the interaction between the different raceways increases with the increased tuyere velocity.

The effect of coke particle size is shown in Fig. 12. The results show that the raceway size increases as the coke size decreases, because smaller particles have larger specific surface area and gains stronger drag force from the gas flow with respect to their weight. This is in agreement with various experimental observations and correlations (Rajneesh et al., 2004; Gupta, 2005; Gupta and Rudolph, 2006), where it is observed that the raceway shape is inversely proportional

Figure 5: Spatial distribution of the granular phase volume fraction α_s for the inlet velocity $\vec{U}_{g,\text{in}} = 230 \text{ m/s}$ and the coke particle size $d_s = 0.038 \text{ m}$ (axial cross-section)

Figure 6: Spatial distribution of the granular phase volume fraction α_s for the inlet velocity $\vec{U}_{g,\text{in}} = 230 \text{ m/s}$ and the coke particle size $d_s = 0.038 \text{ m}$ (tuyere level)

Figure 7: Streamlines of the gas phase colored by the gas velocity $\vec{U}_g (\text{ m/s})$ and iso-surfaces of the granular phase volume fraction α_s (filled) for the inlet velocity $\vec{U}_{g,\text{in}} = 230 \text{ m/s}$ and the coke particle size $d_s = 0.038 \text{ m}$

Figure 8: Streamlines of the gas phase colored by the gas velocity $\vec{U}_g (\text{ m/s})$ for the inlet velocity $\vec{U}_{g,\text{in}} = 230 \text{ m/s}$ and the coke particle size $d_s = 0.038 \text{ m}$ (axial cross-section)
Numerical Predictions of the Shape and Size of the Raceway Zone in a Blast Furnace/CFD 2017

Numerous numerical studies (Nogami et al., 2004; Gupta and Rudolph, 2006; Selvarasu et al., 2006; Rangarajan et al., 2014) also confirm this observation.

Furthermore, an inspection of the coke velocities shown in Fig. 13 suggests that the formation of the raceway does not change the bed structure very much, i.e., the raceway is quite localized; particles in the bed can adjust themselves in response to the disturbance. Such a phenomenon has also been observed experimentally and was confirmed by numerical calculations using the DEM approach (Xu et al., 2000; Goto et al., 2002; Xu, 2003; Feng et al., 2003; Nogami et al., 2004; Yuu et al., 2005; Umekage et al., 2007; Zhu et al., 2011; Hilton and Cleary, 2012; Adema, 2014).

Numerical models for raceway formation are complex and computationally demanding. Although, they capture various aspects of process behavior in a multidimensional frame-
work, the approach is not suitable for real-time application due to its long computational time. In order to make process models amenable for real-time application, it becomes imperative to minimize the computational time significantly such that the real-time predictions can be made in synchronization with the plant operational data. For such applications, reduced-order models of the blast furnace processes need to be implemented in a real-time mode, which can be synchronized with the distributed control system (DCS) for an operating blast furnace. As discussed above, the reduced-order models for predicting raceway size and shape are primarily based on force and momentum balance and incorporate semi-empirical formalism to capture the process behavior without sacrificing the important phenomenology.

In this work the approach by Nomura (Nomura, 1986) was used. The predefined geometry of the raceway is described by using its depth, D_{rw}, width, W_{rw}, and height, H_{rw}, which are determined from a force balance formulated for two different points on the surface of the raceway boundary. The resulting correlation for the depth, width, and height of the raceway are

$$
\frac{D_{rw}}{D_{tuyere}} = C_1 \left[\rho_0 \left(\frac{V_{g,0}}{S_{tuyere}} \right)^2 \frac{p_0 T_g}{p T_0} \frac{1}{\bar{d}_s \rho_s} \right]^{C_2},
$$

$$
\frac{W_{rw}}{D_{tuyere}} = C_3 \left[\frac{D_{rw}}{D_{tuyere}} \right]^{C_4},
$$

$$
\frac{4H_{rw}^2 + D_{rw}^2}{H_{rw}} \frac{W_{rw}}{H_{rw}} D_{tuyere} = C_5 \left[\frac{D_{rw}}{D_{tuyere}} \right]^{C_6}.
$$

In the work of Nomura (Nomura, 1986) the model parameters C_1, C_2, ..., C_6 are determined by using a comprehensive set of experimental data including data from other researchers as well as own data for different industrial-scale BFs. In order to achieve better approximation for the BF geometry under consideration the model parameters can be redefined using numerical data discussed above. Figs. 14 and 15 show the resulting raceway dimensions as functions of the operational parameters for the newly defined set of model parameters. The new model parameters are summarized in Table 4.

Table 4: Model parameters for semi-empirical relations

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.8</td>
<td>0.275</td>
<td>0.45</td>
<td>1.34</td>
<td>1.4</td>
<td>2.18</td>
</tr>
</tbody>
</table>

CONCLUSION

The shape and size of the raceway zone of an industrial-scale blast furnace have been numerically predicted in the Eulerian-Eulerian frame of reference for different blast velocities and coke particle sizes. The major observations are:

- An increase in the blast velocity increases the size of the raceway zone and the interaction with the neighbor ones.
- Increasing the size of the coke particles leads to decreasing of the raceway zone mainly due to the different mass-to-surface ratio of the coke particles.
- The real-time prediction of the shape and size of the raceway zone can be implemented using semi-empirical models based on force balance.
ACKNOWLEDGEMENT

This research has been funded by ArcelorMittal Eisenhüttenstadt GmbH and ArcelorMittal Bremen GmbH. The authors gratefully acknowledge the financial support.

REFERENCES

