Vyncke Stijn

Process Tomometric Data Fusion with Multimodal Sensor Suite in Multiphase flow studies
The objective of the thesis is to propose simple tests on raw electrical measurements, using electrical capacitance tomography in order to assess the prevailing flow regime in the test section. This information regarding the flow patterns is useful in itself in many scientific and technological applications: it can be used in computational fluid dynamics (CFD) for fine-tuning the input parameters, increasing safety on site by providing information about dangerous flow patterns such as slug. In electrical tomography, the reconstruction of an image from the electrical measurements is greatly enhanced when one can postulate what approximately the test area looks like in real time (i.e. flow patterns). By using the raw data coming from the sensor, we avoided the image processing and proposed criteria for different flow patterns. Fang and Cumberbatch have proposed to analyse the eigenvalues of the capacitance data matrix in order to identify core annular or stratified flows. They argue that the analysis of eigenvalues collapses the amount of data to be processed and has the advantage that the analysis is rotationally invariant. Their study has been completely based on numerical simulations of the response of an electrical capacitance tomography (ECT) sensor. Based on their work, we have considered the analysis of eigenvalues of the capacitance matrix but obtained the test criteria based on experimental data, gathered during measurement sessions. We have focused on flow regimes occurring in horizontal pipes. Our tests somewhat differ from Fang and Cumberbatch. One criterion differentiates intermittent flows (plug and slug) form static flows (stratified, wavy and annular) based on the standard deviation of the time series set of the capacitance measurements. They argue that the analysis of eigenvalues collapses the amount of data to be processed and has the advantage that the analysis is rotationally invariant. Their study has been completely based on numerical simulations of the response of an electrical capacitance tomography (ECT) sensor. Based on their work, we have considered the analysis of eigenvalues of the capacitance matrix but obtained the test criteria based on experimental data, gathered during measurement sessions. We have focused on flow regimes occurring in horizontal pipes. Our tests somewhat differ from Fang and Cumberbatch. One criterion differentiates intermittent flows (plug and slug) form static flows (stratified, wavy and annular) based on the standard deviation of the time series set of the capacitance measurements. The second criterion differentiates annular flows from layered flows (stratified and wavy). For intermittent flows, we have found another criterion using the gamma-ray sensor. A Fast Fourier Transform (FFT) was applied to the time series. This gave us the frequency of plugs and slugs. With this criterion, we can identify intermittent flows.
Abstract
The objective of the thesis is to propose simple tests on raw electrical measurements, using electrical capacitance tomography in order to assess the prevailing flow regime in the test section.
This information regarding the flow patterns is useful in itself in many scientific applications: it can be used in computing fluid dynamics (CFD) for fine-tuning the input parameters, increasing safety on site by providing information about dangerous flow patterns such as slug. In electrical tomography, the reconstruction of an image from the electrical measurements is greatly enhanced when one can postulate what approximately the test area looks like in real time (i.e. flow patterns). By using the raw data coming from the sensor, we avoided the image processing and proposed criteria for different flow patterns.
Fang and Cumberbatch have proposed to analyse the eigenvalues of the capacitance data matrix in order to identify core annular or stratified flows. They argue that the analysis of eigenvalues collapses the amount of data to be processed and has the advantage that the analysis is rotationally invariant. Their study has been completely based on numerical simulations of the response of an electrical capacitance tomography (ECT) sensor. Based on their work, we have considered the analysis of eigenvalues of the capacitance matrix but obtained the test criteria based on experimental data, gathered during measurement sessions. We have focused on flow regimes occurring in horizontal pipes. Our tests somewhat differ from Fang and Cumberbatch. One criterion differentiates intermittent flows (plug and slug) form static flows (stratified, wavy and annular) based on the standard deviation of the time series set of the capacitance measurements. The second criterion differentiates annular flows from layered flows (stratified and wavy). For intermittent flows, we found another criterion using the gamma-ray sensor. A Fast Fourier Transform (FFT) was applied on the time series. This gave us the frequency of plugs and slug. Due to this criterion, we can identify intermittent flows.
Contents

1. Introduction .. 8

2. Multimodal process tomometry .. 9
 2.1. Introduction .. 9
 2.2. Concept of tomography .. 9
 2.3. Tomographic sensors .. 10
 2.3.1. Electrical capacitance tomography ... 11
 2.4. Gamma-ray densitometry ... 12

3. Flow regimes in multiphase flow .. 13
 3.1. Introduction ... 13
 3.2. Multiphase flow patterns .. 13
 3.2.1. Flow regime maps ... 15
 3.2.2. Forming mechanisms of different flow regimes .. 15
 3.2.3. Flow pattern classifications ... 16
 3.2.4. Different types of flow patterns ... 17

4. Experimental set-up of the multiphase flow rig .. 19
 4.1. Multiphase flow facility ... 19
 4.2. Description of the tiltable pipe for two-phase flow .. 20
 4.2.1. Sensors used for flow pattern characterization .. 21
 4.2.1.1. Tomographic sensor .. 21
 4.2.1.2. Gamma-ray sensor .. 22
 4.3. Programs for data logging and analysis ... 23
 4.3.1. Program for data gathering using tomographic system -ECT32v2 23
 4.3.2. Program for data logging and steering of the multiphase rig in LabVIEW ... 23

5. Data acquisition at different conditions of flow ... 24

6. Data analysis of the capacitance measurements .. 25
 6.1. Electric capacitance tomographic data .. 25
 6.1.1. Sensor data protocol .. 25
 6.1.1.1. Absolute capacitance file generation ... 25
 6.1.1.2. Normalized capacitance file generation .. 26
 6.1.2. Processing of the ASCII files .. 27
 6.2. The 12x12 capacitance matrix ... 27
6.2.1. Calculating diagonal term ... 28
6.3. Compressing the 12x12x6000 matrix... 29
6.3.1. Eigenvalues of the capacitance matrix... 29
6.4. MATLAB code for data analysis... 30
6.4.1. Calibration, multiple inputs and zero matrix building 30
6.4.2. Reading the data, making the matrices and calculating the eigenvalues. ... 31

7. Characterization of flow regimes .. 33
7.1. Intermittent flows... 34
7.1.1. Criteria for intermittent flows using eigenvalues 35
7.1.2. Criteria for intermittent flows using gamma-ray data............................ 35
7.2. Annular and Wavy/Stratified flows.. 37
7.3. Success/fail test of the algorithm... 40

8. Flow regime mapping ... 43
8.1. Data export from Excel to MATLAB... 43
8.2. Mapping of flow regimes ... 44
8.2.1. Mapping all measurements without flow pattern identification............... 44
8.2.2. Mapping the flow regimes ... 45

9. Conclusion and future work ... 48
9.1. Conclusion... 48
9.2. Future work... 50
Foreword
This thesis assumes basic knowledge of MATLAB. This is used in the chapters were the analysis of the data is discussed and the mapping of the results.
I would like to thank Antoine Dupré for his help with this thesis, Fredrik Hansen for his help with performing the experiments and Saba Mylvaganam for his advice, help and positive spirit. In addition, I would like to thank my girlfriend, friends, family in Belgium and my Norwegian family for their support.

<Porsgrunn, Norway/10.06.2016>
<Stijn Vyncke>
1. Introduction

In this thesis, the goal is to propose simple tests for identifying certain types of multiphase flow patterns. The knowledge of the type of flow pattern can be useful in many different applications.

One application could be to make operations safer. In pipelines, a flow pattern called slug can occur. A characteristic of a slug is that it has irregular flows. Liquid accumulates in the pipe and in some cases fill the pipe totally, flows through the pipe and eventually the level in the pipe is low again. This happens in a cyclic behavior. One of the results can be that vibrations occur which can cause severe problems for the whole operation. If a simple test can reveal the flow pattern, actions can be taken in order to prevent the potential problems (e.g. damages to equipment of the process, high level of liquid in multiphase flow separators, floods).

After this introduction, in Chapter 2, 3, 4 and 5, the following topics are discussed: tomography, flow regimes in multiphase flow, the experimental set-up used for the experiments and the data acquisition. This will provide the reader with some general knowledge about the topic.

The Chapters 6, 7 and 8 will describe the methods used to analyze the raw capacitance data, the characterization of the flow regimes and the mapping of the flow regimes using the criteria found for the different flow regimes.
2. Multimodal process tomometry

2.1. Introduction

In this chapter, the tomographic measurement system is described. An enumeration is made of the different types of tomographic sensors and the technique for the electrical capacitance tomography (ECT) is illustrated. In addition, a brief description of gamma-ray densitometry is given.

2.2. Concept of tomography

Industrial process flows consists of complex mixtures of different components. These components can occur in different state of matter: gas, liquid and solid. When the process flows are being controlled and monitored, process tomography gives the operators a real-time flow estimation. This gives the operator a tool to monitor and control flow behavior. This is done mostly non-intrusively using process tomographic systems. The data, coming from the tomographic systems, gives valuable data for:

- Visualization
- Monitoring
- Mathematical model verifications
- Computational fluid dynamics

Due to the complexity of the multiphase process flows, there has been development of tomographic systems, which use multiple electrical properties for generating real-time images. Hence the name, multimodal tomographic systems [Marashdeh et al., 2007].
2.3. Tomographic sensors

There are many different types of tomographic sensors used in process tomography. These include ionizing radiation (e.g. X-ray and gamma-ray), optical, positron emission (PET), magnetic resonance imaging (MRI), acoustic, electrical (capacitive, conductive and inductive) and microwave sensors. Due to the different physics involved, there are some sensors more suited for specific work that others. Each of the sensors has its advantages and disadvantages. The objects or processes under investigation will determine which sensors is the most reliable for that specific purpose.

The tomographic techniques that use electrical properties have been extensively studied. There are three different type of techniques:

1. Electrical capacitance tomography (ECT)
2. Electromagnetic tomography (EMT)
3. Electrical resistance tomography (ERT)

One main disadvantage emerges with using electrical techniques. The spatial resolution of the image achieved through these techniques is moderate. The reason behind this is the absence of a direct narrow path between the electrodes [Ismail et al., 2005].
2.3.1. Electrical capacitance tomography

This technique derives from imaging industrial processes that contain dielectric materials. The ECT sensor will give the same capacitance measurement if the distribution of the dielectric material in the pipe is not changing. Once the distribution changes, the sensor will display different capacitance measurements.

Figure 2-2: Twin plane ECT sensor mounted in the multiphase flow rig located in the process hall at USN, Porsgrunn.

The sensor, that takes these capacitance measurements, is a multi-electrode sensor. The most common setup is an ECT sensor with either 8 or 12 electrodes. These electrodes are mounted on the outside of the pipe.

Figure 2-3: Schematic representation of an 8-electrode ECT-sensor [Ismail et al., 2005]

There is a non-linear relationship between the measurements and the permittivity distribution. Therefore, when the measurements are used to reconstruct the image, it requires a complicated algorithm. One of the main advantages the ECT-sensor offers is that it is non-intrusive and non-invasive. This mean that the flow in the pipe is not disturbed in any way by the sensor.
Other advantages of this technique are no radiation, rapid response and sensor withstands high temperatures and moderate pressure. [Ismail et al., 2005]

2.4. **Gamma-ray densitometry**

With densitometry, the goal is to determine the density of a certain substance, preferably online with nonintrusive sensors. In this study, gamma-rays are sent through the sample and its absorption is used in estimating the density. Here, absorption means any physical interaction between the radiation and the material that reduces the intensity of the incident radiation while penetrating the sample [Schlieper G, 2000].

![Gamma-ray sensor mounted in the multiphase flow rig in the process hall.](image)

Figure 2-4: Gamma-ray sensor mounted in the multiphase flow rig in the process hall.
3. Flow regimes in multiphase flow

3.1. Introduction

When dealing with multiphase flows, there are some design difficulties in planning the layout of the pipelines used. Process mechanisms, energy transfer rates, mass and momentum are sensitive towards the geometric distribution or topology of the components within the flow. The understanding of this complex phenomenon is quite challenging. The next chapter discusses the geometric distribution or flow patterns in horizontal pipes. [Brennen C. E, 2005]

3.2. Multiphase flow patterns

Usually, the identification of the flow patterns happens by visual inspection. Sometimes, the conditions in the pipe make it impossible to do a visual inspection. For instance, if the forces in the pipe are too high, it is possible that a transparent piece of the pipe will become a weak spot and the pipe will break there. This results in the pipe not having any transparent section. To determine which flow patterns is present in the pipe different methods can be used (e.g. gamma-ray densitometry, electrical capacitance tomography). Furthermore, if the identification is done visually, the interpretation can differ from person to person. Very often, the pipe sections are not accessible for process personnel. The characteristics of the different patterns depend on various parameters. One of the parameters is the distribution of fluid phases in space and time. These can change over time and are usually uncontrollable for the operator.

The main goal is to determine how the flow pattern is affected by different parameters such as component volume fluxes, pipe angle and fluid properties (i.e. density, viscosity, surface tension). Many studies have focused on horizontal pipes. Typically, a flow regime map displays the results (Figure 3-1). Different areas of the map present different flow patterns. Where they show up in the map relates to the component flow rates. The flow rates, used in the flow regime map, depend on the author of that map, e.g. volume fluxes, mass fluxes, momentum fluxes or other similar quantities.

The transition region in the flow regime map shown in Figure 3-1 between the different types determine where the flow patterns will change.
The flow regime becomes unstable when it reaches the region. The instability will continue until the formation of another flow pattern. The range in which two flow regimes changes into each other varies and is hard to predict. The boundaries are rather a vaguely defined transition zone than a line. Therefore, the multiphase flow regimes change smoothly into each other rather than rapid changes, which would indicate sharp boundaries. The dashed lines in Figure 3-1 display the transition zones [NFOGM, 2005].

![Flow Regime Map](image)

Figure 3-1: Example of a flow regime map for a horizontal pipe. Hatched regions: observed boundaries zones, continuous lines: theoretically predicted boundaries. [Brennen C. E., 2005]
3.2.1. Flow regime maps

A problem that occurs with flow regime maps is that they are only valid for a specific pipe, pressure and a specific multiphase flow (i.e. water-air, water-oil). Once one of these parameters change the flow regime map is no longer the same. The transition zones will move around depending on an increase or decrease of the pipe and pressure or switch of the multiphase flow. [NFOGM, 2005]

3.2.2. Forming mechanisms of different flow regimes

The components of the mechanism playing an important role in determining which flow pattern develops in the pipe are [NFOGM, 2005]:

- Transient effects: these effects are the result of changing system boundary conditions; e.g., opening and closing valves.
- Geometry and terrain effects: when the pipe changes geometry or has bends, the flow pattern will be affected. This effect can have severe implications in downstream of sea-lines. The flow regimes generated by these effects can go on for several kilometers; e.g., severe riser slugging.
- If none of the above effects is present, the flow rates, fluid properties, pipe diameter and inclination determine the flow pattern. These flow patterns will occur in horizontal pipes. All the flow patterns combined, formed in these conditions, are called hydrodynamic flow patterns. These patterns are fully developed because they are generated in a horizontal pipe and there is no other external effect that can influence the pattern. In this thesis, the hydrodynamic flow patterns are the ones that will be discussed.
3.2.3. Flow pattern classifications

The main characteristic of a multiphase flow pattern is the way in which the liquids and gasses distribution happens along the pipes axial and radial directions. Every flow regime is a member of one three main groups of flow types or a combination of them. The three groups are:

- Dispersed flow: the distribution of the phase is uniform in radial and axial direction; e.g., bubble and mist flow.
- Separated flow: here, the distribution is non-continuous in the radial direction. In the axial direction, the distribution is continuous; e.g., stratified and annular.
- Intermittent flow: non-continuous distribution in the axial direction. Due to this kind of distribution, the flow shows unsteady behavior; e.g., elongated bubble, also known as a plug flow, and slug flow.

There is another way of classifying multiphase flow. This classification uses Gas Volume Fractions (GVF). This method is relevant to multiphase flow metering but irrelevant for this thesis because the aim is to determine the flow pattern, and not the gas volume fractions of the flow. Therefore, the GVF classification is irrelevant [NFOGM, 2005].
3.2.4. Different types of flow patterns

Figure 3-2: Flow regimes for air/water mixture in a horizontal pipe. G is for gaseous phase, L for liquid phase [Brennen C. E., 2005]

Seven different types of flow regimes can occur in horizontal pipes. In Figure 3-2, all different types are sketches. The different flow patterns are listed in Table 3-1.
Table 3-1: Description of the different flow patterns found in horizontal pipes from our experimental studies and [Brennen C. E., 2005].

<table>
<thead>
<tr>
<th>Flow Pattern</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble</td>
<td>The pipe is filled with clear water for the most part. The bubbles will appear in the top of the pipe.</td>
</tr>
<tr>
<td>Slug</td>
<td>With slug flow there is an accumulation of water in the pipe that (most of the time) reaches the top of the pipe. There are bubbles in this accumulation.</td>
</tr>
<tr>
<td>Plug</td>
<td>Plug is more or less the same as slug. The difference is that in the accumulation, there are very few bubbles and they are not dispersed.</td>
</tr>
<tr>
<td>Annular</td>
<td>The walls of the pipe are covered with a layer of liquid phase. In the middle of the pipe, water is dispersed in the gas phase. This is because centrifugal forces pushed the most dense phase (water) outwards.</td>
</tr>
<tr>
<td>Stratified</td>
<td>Liquid phase at the bottom of the pipe, gas phase on top. The interface between the two phases is flat. The reason behind this is that gravity is separating the phases by difference of density.</td>
</tr>
<tr>
<td>Disperse</td>
<td>Fine bubbles (liquid phase) are dispersed in the gas phase</td>
</tr>
<tr>
<td>Wavy</td>
<td>Same as stratified but interface is wavy.</td>
</tr>
</tbody>
</table>
4. Experimental set-up of the multiphase flow rig

4.1. Multiphase flow facility

The rig used for experiments consists of many parts. The main components are the horizontal pipe, pumps and separators. A diagram of the rig is displayed in Figure 4-1.

![Diagram of the multiphase flow facility](image)

Figure 4-1: Piping and Instrumentation Diagram (PID) of the multiphase flow facility at USN [Pradeep et al., 2014]

The experiments are performed at ambient temperature and room pressure. The two types of liquid that can be used for experiments are distilled water (T101 in Figure 4-1), which might have some contamination, and Exxsol D60 (T100 in Figure 4-1), a transparent mineral oil. These liquids are stored in separate tanks. From there, different pumps transport the liquid to the horizontal pipe. The type of pump used will depend on the volumetric flow rate that is required. The operating ranges of the different pumps are displayed in Table 4-1.
Table 4-1: Pump specifications for different pumps in the flow loop. The specific pump can be found in the diagram using the pump number. [Hansen et al., 2011]

<table>
<thead>
<tr>
<th>Pump number</th>
<th>Type</th>
<th>Flow rate (L/min)</th>
<th>Fluid flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>P100</td>
<td>Positive displacement</td>
<td>80-428</td>
<td>Oil</td>
</tr>
<tr>
<td>P101</td>
<td>Positive displacement</td>
<td>80-542</td>
<td>Water</td>
</tr>
<tr>
<td>P102</td>
<td>Centrifugal</td>
<td>1.74-13.9</td>
<td>Water/Oil</td>
</tr>
<tr>
<td>P103</td>
<td>Positive displacement</td>
<td>0.158-1.5</td>
<td>Water/Oil</td>
</tr>
<tr>
<td>P104</td>
<td>Positive displacement</td>
<td>0.455-4.2</td>
<td>Water/Oil</td>
</tr>
</tbody>
</table>

The oil and water enter the pipe at the same spot. The air is injected a little bit further. The air is originated from compressed air tanks. A valve controls the outlet of air. The different flow rates of the liquids and air are measured with Coriolis meters [Pradeep et al., 2014].

4.2. Description of the tiltable pipe for two-phase flow

The two-phase mixture is injected into the 15 m long horizontal pipe in which the flow pattern develops. The liquid mixes with the air at the beginning of the pipe. The angle of the pipe can be adjusted to study the behavior of the flow patterns with different inclinations. The angles of the pipe can be: 10, 6, 5, 3 and 1. The angle can be applied in negative or positive direction.
In the flow loop, there is a Plexiglas transparent section, situated 10 m from the beginning of the pipe. This section is useful for high-speed camera recordings and visual observations of the different flow patterns. If there is a need for visual validation afterward, the high-speed camera will provide the necessary information. A normal recording is also used as validation. The ECT sensor and gamma-ray sensor are installed behind the transparent section [Pradeep et al., 2014]. In Table 4-2, the dimensions of the pipe are given.

Table 4-2: Pipe dimensions in the vicinity of the tomographic systems [Hansen et al., 2011]

<table>
<thead>
<tr>
<th></th>
<th>Approx. 15m</th>
<th>56 mm</th>
<th>65 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner Diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer Diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.1. Sensors used for flow pattern characterization

4.2.1.1. Tomographic sensor

The sensor that is used for gathering the electrical capacitance data is an ECT sensor (Figure 2-2). It is a dual plane sensor with an internal diameter of 56 mm. The sensor has 12 electrodes per plane. It operates at an AC electrical field frequency of 1MHz and acquires 100 frames per second.
The 12 electrodes are each 12.7 mm wide and 85 mm long. They are positioned on the outer diameter of the wall made of dielectric material. [Pradeep et al., 2014]

![Diagram of ECT sensor](image)

Figure 4-3: Measurement principle of ECT sensor. Electrode 1 is excited with \(V_s \) and other electrodes are earthed. [Pradeep et al., 2014]

The capacitance measurements will be taken between two electrodes \(i \) and \(j \). On electrode \(i \), the source electrode, an electric potential is applied while electrode \(j \), the detector electrode, is kept earthed. The resulting electric charge in electrode \(j \) is measured. Every electrode is held at zero potential while one is given an excitation. The one that is given the excitation will change so that every electrode will be the source electrode for one frame. Due to the symmetric nature of the measurements \((C_{ij} = C_{ji})\), there are 66 independent measurements in a frame for a 12-electrode sensor. These 66 measurements are mutual capacitance measurements for specific pairs of electrodes [Fang and Cumberbatch, 2004].

4.2.1.2. **Gamma-ray sensor**

The density is measured with this sensor (Figure 2-4). It is also a non-intrusive sensor. The data gathered from this sensor can also be helpful for determining the flow pattern. The gamma-ray sensor is not suited for distinguishing non-intermittent flows but it helps with distinguishing intermittent against other flows. This data is used to characterize the flow-associated parameters (slug frequency, amplitude...) [Johansen, 2015].
4.3. Programs for data logging and analysis

4.3.1. Program for data gathering using tomographic system - ECT32v2

For gathering data from the ECT sensor, the program ECT32v2 is used. With this program, the data, coming from the sensor, will be stored in binary .bcp files. This type of file needs to be converted into ASCII files for further processing with MATLAB. The ECT32v2 also gives real-time tomographic images of the inside of the pipe during the experiments.

4.3.2. Program for data logging and steering of the multiphase rig in LabVIEW

The multiphase flow loop is controlled with LabVIEW. In the interface, valves and pumps can be operated and the desired flow rates of the phases can be changed here. The measurement taken by the pressure sensors and flow rate sensors will be stored in .txt files. The files are generated synchronously with the ECT data (60 seconds). The flow rates and pressures are logged every second. The gamma-ray sensors data can be viewed in a LabVIEW interface as well. There is a real-time graphic of the density/time. These measurements will be stored in `.xlsx` files and are used for additional information on the types of flow patterns. The rate at which the measurements are taken is 20Hz.
5. Data acquisition at different conditions of flow

In Annex 2, the experiment settings and different types of collectible data are displayed. If the data is gathered for that experiment, the color code is green. Otherwise, it will be red. The data for a particular flow condition can be retrieved by looking for the sample number or the run number.

The flow regime map that is used to predict which flow pattern would be generated is shown in Figure 5-1. Note that this flow regime map is for a horizontal pipe with a diameter of 56mm. The pipe used in the multiphase flow rig is 56mm, so the transition lines will be slightly shifted. This is also used as a guideline to design the experiments sessions. From this map, an indication can be found of the parameters to study certain transitions.

![Flow regime map](image)

Figure 5-1: Flow regime map for a horizontal 50 mm pipe, air and water 20°C, based on [Mandhane et al., 1974]

The bubbly flow at the top of the flow regime map in Figure 5-1 will not be studied because the rig cannot be operated safely at high water flow rates necessary for this.
6. Data analysis of the capacitance measurements

Further analysis is done after all the data is gathered. In the next paragraphs, the analysis of the raw data is explained. The analysis uses the programs ECT32v2 and MATLAB.

6.1. Electric capacitance tomographic data

6.1.1. Sensor data protocol

During the experiments, the data gathered by the ECT sensor is saved in .bcp files. These files need to be converted with the ECT32v2 software. With this software, ASCII files can be generated and these files will be used for further analysis. There are two different type of ASCII files: absolute capacitance files (’.aac’) and normalized capacitance files (’.anc’). In the latter, the capacitances are normalized with the calibration measurements of reference media (pipe full of water and pipe full of air). Two models can be used for this normalization: the series or the parallel model. In this thesis, the parallel normalization model is used. The effect of the geometric setup of the sensor is expected to be reduced by these normalizations [Fang and Cumberbatch, 2005] [Marashdeh et al., 2007].

6.1.1.1. Absolute capacitance file generation

In Figure 6-1, the interface for generating ASCII files is shown. Some parameters need to be changed every time other files are generated:

1. In the Data sources box the .bcp files that will be converted need to be selected as the Capacitance file. Browse to the location of the file. Also, select the calibration file air_water60l.cal in the Calibration box.
2. Next, select the name and the place of the output file in the Output box.
3. Select the Absolute Capacitance radio button in the Converted data type box. In this box, select the desired plane: Plane 1 or Plane 2.
4. Disabled the Include File Comments.
5. If all of the previous steps are done, click Save and the ASCII file will be generated.
6.1.1.2. Normalized capacitance file generation

In Figure 6-2, the interface for generating `.anc` files is shown. The steps to generate the files are almost similar for `.aac` files (See 6.1.1.1). The differences are:

- The calibration file in the Data sources box must not be selected.
- The radio button for Normalized Capacitance in the Converted data type box needs to be selected.

After these two steps, the `.anc` files can be generated the same ways as `.aac` files are generated.

![Figure 6-2: Screen capture of ASCII output `.anc` file generation](image)
6.1.2. Processing of the ASCII files

The generated ASCII files need to be processed. These files contain 6000 tomographic data sets that are collected over a period of 60 seconds. This means that the ECT sensor acquires 100 frames per second. One set of data consists of 66 mutual capacitance measurements (see 4.2.1.1). The totality of these sets of tomographic data will be called a time series.

6.2. The 12x12 capacitance matrix

Each frame of the time series that is acquired by the ECT sensor will be converted to a 12x12 matrix for further processing.

Table 6-1: Normalized capacitance data from the second plane of the ECT sensor run 001.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.056</td>
<td>1.069</td>
<td>1.016</td>
<td>1.080</td>
<td>1.159</td>
<td>1.045</td>
<td>1.017</td>
<td>1.026</td>
<td>1.040</td>
<td>1.041</td>
<td>1.256</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.090</td>
<td>1.010</td>
<td>1.066</td>
<td>1.147</td>
<td>1.033</td>
<td>1.004</td>
<td>1.010</td>
<td>1.022</td>
<td>1.022</td>
<td>1.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.071</td>
<td>1.110</td>
<td>1.187</td>
<td>1.067</td>
<td>1.033</td>
<td>1.039</td>
<td>1.051</td>
<td>1.048</td>
<td>1.073</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.098</td>
<td>1.153</td>
<td>1.028</td>
<td>0.996</td>
<td>1.000</td>
<td>1.009</td>
<td>1.008</td>
<td>1.029</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.355</td>
<td>1.098</td>
<td>1.058</td>
<td>1.055</td>
<td>1.064</td>
<td>1.058</td>
<td>1.083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.347</td>
<td>1.160</td>
<td>1.153</td>
<td>1.154</td>
<td>1.152</td>
<td>1.171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.077</td>
<td>1.050</td>
<td>1.051</td>
<td>1.047</td>
<td>1.063</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.041</td>
<td>1.031</td>
<td>1.022</td>
<td>1.036</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.064</td>
<td>1.034</td>
<td>1.047</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.077</td>
<td>1.062</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.100</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

The data in Table 6-1 will be received from the ASCII-files after generating them. This is only one frame. The total files contains 6000 of these data sets.

The first step in the conversion is to mirror the values along the diagonal term. This is possible because the capacitance measurements are symmetric, meaning that the capacitance measurement between electrode 1 and 12 is the same as the capacitance measurement between 12 and 1. The mirroring is done by a MATLAB code (Annex 3) and is discussed later in this chapter.
Table 6.2: Normalized capacitance data from run001. The initial data is mirrored around the diagonal term.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.056</td>
<td>1.069</td>
<td>1.016</td>
<td>1.080</td>
<td>1.159</td>
<td>1.045</td>
<td>1.017</td>
<td>1.026</td>
<td>1.040</td>
<td>1.041</td>
<td>1.256</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.090</td>
<td>1.010</td>
<td>1.066</td>
<td>1.147</td>
<td>1.033</td>
<td>1.004</td>
<td>1.010</td>
<td>1.022</td>
<td>1.022</td>
<td>1.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.071</td>
<td>1.110</td>
<td>1.187</td>
<td>1.067</td>
<td>1.033</td>
<td>1.039</td>
<td>1.051</td>
<td>1.048</td>
<td>1.073</td>
<td>1.046</td>
<td>1.041</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.098</td>
<td>1.153</td>
<td>1.028</td>
<td>0.996</td>
<td>1.000</td>
<td>1.009</td>
<td>1.008</td>
<td>1.029</td>
<td></td>
<td>1.073</td>
<td>1.022</td>
<td>1.040</td>
</tr>
<tr>
<td>8</td>
<td>1.355</td>
<td>1.098</td>
<td>1.058</td>
<td>1.055</td>
<td>1.064</td>
<td>1.058</td>
<td>1.083</td>
<td></td>
<td>1.029</td>
<td>1.048</td>
<td>1.022</td>
<td>1.026</td>
</tr>
<tr>
<td>7</td>
<td>1.347</td>
<td>1.160</td>
<td>1.153</td>
<td>1.154</td>
<td>1.152</td>
<td>1.171</td>
<td></td>
<td>1.083</td>
<td>1.008</td>
<td>1.051</td>
<td>1.010</td>
<td>1.017</td>
</tr>
<tr>
<td>6</td>
<td>1.077</td>
<td>1.050</td>
<td>1.051</td>
<td>1.047</td>
<td>1.063</td>
<td></td>
<td>1.171</td>
<td>1.058</td>
<td>1.009</td>
<td>1.039</td>
<td>1.004</td>
<td>1.045</td>
</tr>
<tr>
<td>5</td>
<td>1.041</td>
<td>1.031</td>
<td>1.022</td>
<td>1.036</td>
<td></td>
<td>1.063</td>
<td>1.152</td>
<td>1.064</td>
<td>1.000</td>
<td>1.033</td>
<td>1.033</td>
<td>1.159</td>
</tr>
<tr>
<td>4</td>
<td>1.064</td>
<td>1.034</td>
<td>1.047</td>
<td></td>
<td>1.036</td>
<td>1.047</td>
<td>1.154</td>
<td>1.055</td>
<td>0.996</td>
<td>1.067</td>
<td>1.147</td>
<td>1.080</td>
</tr>
<tr>
<td>3</td>
<td>1.077</td>
<td>1.062</td>
<td></td>
<td>1.047</td>
<td>1.022</td>
<td>1.051</td>
<td>1.153</td>
<td>1.058</td>
<td>1.028</td>
<td>1.187</td>
<td>1.066</td>
<td>1.016</td>
</tr>
<tr>
<td>2</td>
<td>1.100</td>
<td></td>
<td>1.062</td>
<td>1.034</td>
<td>1.031</td>
<td>1.050</td>
<td>1.160</td>
<td>1.098</td>
<td>1.153</td>
<td>1.110</td>
<td>1.010</td>
<td>1.069</td>
</tr>
<tr>
<td>1</td>
<td>1.100</td>
<td>1.077</td>
<td>1.064</td>
<td>1.041</td>
<td>1.077</td>
<td>1.347</td>
<td>1.355</td>
<td>1.098</td>
<td>1.071</td>
<td>1.090</td>
<td>1.056</td>
<td></td>
</tr>
</tbody>
</table>

The capacitance data is mirrored around the diagonal term. This results in a 12x12 matrix with the diagonal term empty. This diagonal term needs to be calculated.

6.2.1. Calculating diagonal term

The diagonal term represents the self-capacitance of the electrode that is excited at that point in time. Self-capacitance is the amount of electric charge that must be added to an isolated conductor to raise its electric potential by one unit. This characteristic needs to be calculated for each electrode and is done with formula (6.1).

\[
C_{i,i} = -\sum_{j \neq i} C_{i,j} \tag{6.1}
\]

The sum of all non-diagonal terms on each line is taken. The diagonal term will be calculated using MATLAB. Then, the matrix will be calibrated using the calibration vectors of water and air. After the calculation, the capacitance matrix \(C \) is complete and will have the following form:

\[
C = \begin{pmatrix}
C_{1,1} & \cdots & C_{1,12} \\
\vdots & \ddots & \vdots \\
C_{12,1} & \cdots & C_{12,12}
\end{pmatrix} \tag{6.2}
\]

This is described by [Fang and Cumberbatch, 2005].
6.3. Compressing the 12x12x6000 matrix

The matrix calculated in 6.2 is a matrix for one frame. In the time series, there are 6000 frames and that results in 6000 matrices. This makes that the time series consist of a 12x12x6000 matrix. This series is represented by formula (6-3) where N = 6000.

\[
C = \begin{pmatrix}
C_{1,1}[n] & \cdots & C_{1,12}[n] \\
\vdots & \ddots & \vdots \\
C_{12,1}[n] & \cdots & C_{12,12}[n]
\end{pmatrix}, \quad n = 1, 2, \ldots, N \tag{6-3}
\]

The matrix needs to be condensed for further analysis. This is done by calculating the mean (6-4) and standard deviation (SD) (6-5) capacitance matrices.

\[
C_{\text{mean}} = \begin{pmatrix}
\text{mean}(C_{1,1}[n]) & \cdots & \text{mean}(C_{1,12}[n]) \\
\vdots & \ddots & \vdots \\
\text{mean}(C_{12,1}[n]) & \cdots & \text{mean}(C_{12,12}[n])
\end{pmatrix} \tag{6-4}
\]

\[
C_{\text{SD}} = \begin{pmatrix}
\text{SD}(C_{1,1}[n]) & \cdots & \text{SD}(C_{1,12}[n]) \\
\vdots & \ddots & \vdots \\
\text{SD}(C_{12,1}[n]) & \cdots & \text{SD}(C_{12,12}[n])
\end{pmatrix} \tag{6-5}
\]

The mean and the standard deviation operators are calculated using respectively formulas (6-6) and (6-7).

\[
\text{mean}(x[n]) = \frac{1}{N} \sum_{n=1}^{N} x[n] \tag{6-6}
\]

\[
\text{SD}(x[n]) = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (x[n] - \text{mean}(x[n]))^2} \tag{6-7}
\]

6.3.1. Eigenvalues of the capacitance matrix

Next, the eigenvalues are calculated. The eigenvalues of the mean and standard deviation matrices are worked out using MATLAB. The eigenvalues are represented in a 12-element array. The algorithm, to see which flow pattern is present in the pipe, will be applied on the eigenvalues of the mean and standard deviation matrices.

The eigenvalues that will be calculated from these matrices will be rotationally invariant. That means that the sensors can be rotated without changing the eigenvalues. [Fang and Cumberbatch, 2005]

With this analysis procedure, a 12x12x6000 matrix is condensed into two 12-element arrays: eigenvalues of mean matrix and eigenvalues of standard deviation matrix. The eigenvalues will be used for characterizing the flow regimes.
6.4. MATLAB code for data analysis

The calculations, described in the previous paragraphs of this chapter, are done with the MATLAB code ECTMeasurementAnalysis (Annex 3). This code can process multiple ‘.anc’ and ‘.aac’ files in one run.

6.4.1. Calibration, multiple inputs and zero matrix building

In the first part of the code, two calibration vectors are shown. Before executing the code, the right calibration vector must be ‘uncommented’. This depends on the type of ASCII file used. If the files are ‘.anc’ files, the normalized calibration vector needs to be used. These lines of code can be found in Annex 3.

After this, the multiple files directory will be used. This will locate all the files with the correct file type. This type of file needs to be changed the type of file that will be used. It needs to be the same as the calibration vector file type. Otherwise, errors will occur.

```matlab
number_of_electrode=12;
%% Multiple input
files = dir('*.anc');
%% Eigenvalues_SD matrix
Eigenvalues_SD_matrix=zeros(length(files),number_of_electrode);
%% Eigenvalues_mean matrix
Eigenvalues_mean_matrix=zeros(length(files),number_of_electrode);
```

Figure 6-3: Multiple files directory load and building of the eigenvalue matrices for all the eigenvalue vectors of the different runs

Two zero matrices are created in Figure 6-3. The number of columns and rows will depend on the number of electrodes and the number of files that will be processed. Therefore, the number of electrodes used in the specific sensor must be known. The experiments in this thesis are all done with a sensor consisting of 12 electrodes.
6.4.2. Reading the data, making the matrices and calculating the eigenvalues.

The data from the ASCII files are imported into MATLAB using the textscan command. For the full code, see Annex 3. All of the 6000 capacitance measurements are combined in a 66000x11 matrix. The measurements, as shown in Table 6-1, have a triangular form. In the 66000x11, every element without a value will be assigned with [NaN] so that every element exists.

Table 6-3: Two sets of the 6000 capacitance data processed by the MATLAB code. This is a part of the 66000x11 matrix, called matrix1 in the MATLAB code.

<table>
<thead>
<tr>
<th></th>
<th>0.607</th>
<th>-0.025</th>
<th>0.03</th>
<th>0.009</th>
<th>-0.004</th>
<th>0.012</th>
<th>0.014</th>
<th>0.03</th>
<th>0.012</th>
<th>0.072</th>
<th>NaN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.465</td>
<td>0.02</td>
<td>0.022</td>
<td>-0.015</td>
<td>-0.016</td>
<td>0.02</td>
<td>0</td>
<td>-0.027</td>
<td>0.011</td>
<td>0.026</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>0.449</td>
<td>-0.012</td>
<td>0.007</td>
<td>-0.027</td>
<td>-0.008</td>
<td>0.017</td>
<td>-0.015</td>
<td>0.027</td>
<td>0.009</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>0.415</td>
<td>0.009</td>
<td>0.037</td>
<td>-0.031</td>
<td>0.055</td>
<td>0.011</td>
<td>-0.017</td>
<td>-0.019</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>0.674</td>
<td>0.014</td>
<td>-0.034</td>
<td>0.044</td>
<td>0.002</td>
<td>0.034</td>
<td>-0.031</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>0.717</td>
<td>-0.005</td>
<td>0.001</td>
<td>0.023</td>
<td>-0.013</td>
<td>-0.013</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>0.73</td>
<td>0.049</td>
<td>0.068</td>
<td>0.005</td>
<td>-0.024</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>1.346</td>
<td>0.992</td>
<td>0.579</td>
<td>0.091</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>1.368</td>
<td>1.356</td>
<td>0.341</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>1.347</td>
<td>0.55</td>
<td>NaN</td>
</tr>
<tr>
<td>1.339</td>
<td>NaN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.608</th>
<th>-0.025</th>
<th>0.03</th>
<th>0.009</th>
<th>-0.004</th>
<th>0.012</th>
<th>0.018</th>
<th>0.037</th>
<th>0.022</th>
<th>0.079</th>
<th>1,351</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.464</td>
<td>0.02</td>
<td>0.022</td>
<td>-0.015</td>
<td>-0.016</td>
<td>0.02</td>
<td>0.001</td>
<td>-0.025</td>
<td>0.012</td>
<td>0.024</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>-0.012</td>
<td>0.007</td>
<td>-0.027</td>
<td>-0.008</td>
<td>0.018</td>
<td>-0.014</td>
<td>0.028</td>
<td>0.007</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>0.416</td>
<td>0.009</td>
<td>0.037</td>
<td>-0.031</td>
<td>0.056</td>
<td>0.013</td>
<td>-0.016</td>
<td>-0.021</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>0.682</td>
<td>0.014</td>
<td>-0.034</td>
<td>0.046</td>
<td>0.003</td>
<td>0.036</td>
<td>-0.032</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>0.721</td>
<td>-0.006</td>
<td>0.003</td>
<td>0.025</td>
<td>-0.01</td>
<td>-0.013</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>0.725</td>
<td>0.062</td>
<td>0.077</td>
<td>0.014</td>
<td>-0.021</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>1.346</td>
<td>1.126</td>
<td>0.71</td>
<td>0.165</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>1.368</td>
<td>1.356</td>
<td>0.535</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>1.347</td>
<td>0.807</td>
<td>NaN</td>
</tr>
<tr>
<td>1.339</td>
<td>NaN</td>
</tr>
</tbody>
</table>

The matrix generated by the MATLAB code is called matrix1.

The next step is to convert the 66000x11 matrix into the 12x12x6000 matrix. In the first line of code, shown in Figure 6-4, the zero matrix is created.
Figure 6-4: Generation of 12x12x6000 matrix including the calculation of the diagonal term and the calibration

In the first part of the code, the capacitance data is mirrored around the diagonal term. The diagonal term is calculated in the second half of the code (see %diagonal term in Figure 6-4) and after that is done, the calibration is applied. Then the 12x12x6000 matrix is complete.

```
matrix=zeros(12,12,N);
for i=[1:12]
    for j=[i+1:12]
        matrix(1:11,:)=[matrix(1:11,:)+(N-1)*i,j-1];
        matrix(j,1,:)=[matrix(i,j,:)];
    end
end
for k=[1:N]
    matrix(:,k)=[matrix(:,k)-diag(sum(matrix(:,k),2)); %diagonal term
    matrix(:,k)=[matrix(:,k)-calibration_air]./(calibration_water calibration_air); %calibration
end
```

Figure 6-5: Calculating the mean matrix, standard deviation matrix and their eigenvalues. These values will be written into the zero matrices created in the first part of the code (6.4.1)

The mean matrix, matrix_mean, and the standard deviation matrix, matrix_SD, are calculated using the 12x12x6000 matrix. This results in 12x12 matrices. From these matrices, the eigenvalues are calculated and transposed. Now the eigenvalues are written in the zero matrices, Eigenvalues_mean_matrix and Eigenvalues_SD_matrix. In the last line of the code, the two matrices are put beside each other so that on one line of the matrix the mean eigenvalues and the standard deviation values are displayed for one run.

This calculation will repeat until every file in a specific folder is done. Then the matrix Eigenvalues_CopyMeanRE contains all the eigenvalues of the mean and standard deviation matrix of every run. This matrix will be copied to Excel for further analyzing.
7. Characterization of flow regimes

The eigenvalues that are calculated will be used for the characterization of the different flow regimes. The eigenvalues are copied from MATLAB into an Excel sheet (see Annex 4). This is more convenient to make different plots and give the values a color code. In the next paragraphs, the algorithm used to determine the flow pattern is discussed. The criteria are found by trial and error. First, we attempt to identify a significant parameter for a given type of flow pattern. When the parameter is found, the threshold would be fine-tuned until the best results are obtained, Figure 7-1.

![Eigenvalue graph of standard deviation matrices. Green represents stratified and wavy flows, orange represents annular flow and blue represents slug and plug flows.](image)

The 12th eigenvalues of the standard deviation matrices varies significantly for different types of flow patterns. The blue lines, intermittent flows, have a much higher value than the other ones. This parameter was then chosen to identify the intermittent flows and the threshold was set at 1.5 (see dashed line in Figure 7-1). Afterward, the threshold was fine-tuned to have better results.
Figure 7-2: Eigenvalue graph of mean matrices. Green represents stratified and wavy flows, orange represents annular flow and blue represents slug and plug flows.

7.1. Intermittent flows

The first criterion used in the algorithm is to determine if the flow is an intermittent flow. This is a group of flow patterns that include plug and slug flows (see 3.2.3). The algorithm uses the 12^{th} eigenvalue form the C_{sd} matrix. In addition, the gamma-ray sensor can be used to determine this type of flows.
7.1.1. Criteria for intermittent flows using eigenvalues

![Eigenvalues of the standard deviation matrix of measurements 7, 12, 20. Data taken from `.anc` plane 2](image)

In Figure 7-3, three series of eigenvalues are displayed. One set is taken from a plug flow (measurement 20), the other from an annular flow (measurement 12) and the last one from a stratified flow (measurement 7).

It is clear that there is a significant difference between the values of the 12th eigenvalue. The value for the plug in this example is near five. The reason for the high value of the standard deviation is the great amplitude fluctuations in the signals.

\[\text{FlowPattern} = \text{Intermittent if } 12^{th} \text{ Eigenvalue of SD} > 1.15 \] \hspace{1cm} (7-1)

The algorithm will help determining whether the flow pattern is intermittent or not. The first criterion for the intermittent flow was set at 1.5. After comparing the result from the algorithm and the observations, we have decided to lower the value. The value 1.15 gives the best results. The criterion to separate plug from slug flows is not yet found.

7.1.2. Criteria for intermittent flows using gamma-ray data.

The gamma-ray sensor takes density measurements. These can be used to determine if a flow is intermittent.
In Figure 7-4, some density measurements are plotted. The blue line represents run 20 and is a plug flow, the orange line is run 30 and it shows the density measurements of an annular flow. In the graph, it is clear that the density measurements for the plug flow have many peaks. The peaks represent the plugs that flow through the pipes. If the plug passed the sensor, the level in the pipe will decrease, as shown by the density measurements. The annular flow has a lower density and does not have the peaks the plug flow has. Because an annular flow has a continuous distribution in the axial direction (see 3.2.3). For further analyzing, a FFT is applied on the time series data for density from the gamma ray measurements.
Figure 7-5: FFT of the density chart in Figure 7-4. Blue is plug flow, orange is annular flow.

Figure 7-5 shows the chart for the second to 256th frequencies coming out of the FFT. The dominance of low frequencies over the high frequencies seems to characterize intermittent flow (e.g. run 20 illustrated in Figure 7-5). As a result, in order to determine if the flow is an intermittent flow, the following parameter is used

$$\text{Ratio}_{\text{FFT}} = \frac{\sum_{1}^{110} y_{freq}}{\sum_{257}^{256} y_{freq}}$$

(7-2)

The ratio of the sums of the frequencies values is calculated. The sum is taken of the second until the one hundred and tenth-frequency value. This sum is then divided by the sum of the following 145 values. The following threshold is proposed:

$$\text{Flow pattern} = \text{intermittent flow if Ratio}_{\text{FFT}} > 2$$

(7-3)

7.2. Annular and Wavy/Stratified flows

For the annular and wavy/stratified flow patterns, the data from the ECT sensor is used. The gamma-ray sensor data do not give enough information for the identification of the flow patterns. The difference between the flow patterns are very often of geometric nature, which can be obtained using tomographic systems.
The criterion for identification of annular flow regime is based on the ratio of the 11^{th} eigenvalue with the 1^{st} eigenvalue of the mean matrix. The eigenvalue vector is sorted from the smallest to the largest, as seen in Figure 7-3.

$$\zeta = -\frac{(11^{th} \text{Eigenvalue of Mean Matrix})}{(1^{st} \text{Eigenvalue of Mean Matrix})} \quad (7-4)$$

Typically, the transition from stratified or wavy to annular flow is not a sharp boundary but more a transition area. Therefore, the parameter ζ will gradually increase. In order to set the threshold value, the video recordings of different runs were analyzed. If the top of the pipe were wetted, the flow pattern would be considered annular.

![Figure 7-6: Transition from stratified or wavy to annular. The water touches the top of the pipe in the right circle.](image)

In Figure 7-6, the transition is schematically shown. In the left circle, the water is starting to be pressed onto the wall of the pipe. The circle in the middle shows that the water is becoming a thin layer around the whole pipe but it does not yet touch the top of the pipe. The water touches the top of the pipe in the last circle. The last circle is considered annular, the other two are not. The parameter threshold for annular flow is found to be around $\zeta_{\text{thresh}} = 0.20$.

Note that intermittent flows usually would be mistaken as annular flows using this criterion, but since the criterion for identification of intermittent flows is tested first, this confusion can be avoided.

In the algorithm, if the flow pattern is neither intermittent nor annular, it is classified as a wavy/stratified flow. A criterion for this flow patterns has not been found yet.
Table 7-1: The criteria found for the different flow patterns and their formulas

<table>
<thead>
<tr>
<th>Flow regime</th>
<th>Criterion</th>
<th>Flow regime map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermittent (ECT sensor)</td>
<td>12^{th} eigenvalue of $SD > 1.15$</td>
<td></td>
</tr>
<tr>
<td>Intermittent (gamma-ray sensor)</td>
<td>$Ratio_{FFT} = \frac{\sum_{111}^{256} y_{freq}}{\sum_{111}^{256} y_{freq}}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Ratio_{FFT} > 2$</td>
<td></td>
</tr>
<tr>
<td>Annular (ECT sensor)</td>
<td>$\zeta = - \frac{11^{th} \text{Eigenvalue of Mean Matrix}}{1^{th} \text{Eigenvalue of Mean Matrix}}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\zeta_{thresh} > 2$</td>
<td></td>
</tr>
</tbody>
</table>
7.3. **Success/fail test of the algorithm.**

During the experiments, observations were made for the actual flow pattern. This was done by filming the transparent section of the pipe (see Figure 4-2) and by visual inspection. After the calculations are done and the algorithms have determined which flow pattern the flow was, a comparison is made between the observed flow pattern and the determined flow pattern. In this test, FFT test using gamma-ray signals is left out.

Table 7-2: Success/fail test table, the measurements done with horizontal pipe and inclined pipe are separated.

<table>
<thead>
<tr>
<th></th>
<th>Normalized Plane 1</th>
<th>Normalized Plane 2</th>
<th>Absolute Plane 1</th>
<th>Absolute Plane 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>137</td>
<td>137</td>
<td>137</td>
<td>137</td>
</tr>
<tr>
<td>Wrong FP</td>
<td>35</td>
<td>15</td>
<td>49</td>
<td>26</td>
</tr>
<tr>
<td>Percentage Wrong</td>
<td>25,5%</td>
<td>10,9%</td>
<td>35,8%</td>
<td>19,0%</td>
</tr>
<tr>
<td>Straight Pipe</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>Wrong FP</td>
<td>27</td>
<td>7</td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>Percentage Wrong</td>
<td>21,7%</td>
<td>6,1%</td>
<td>31,3%</td>
<td>15,7%</td>
</tr>
<tr>
<td>Angled Pipe</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Wrong FP</td>
<td>8</td>
<td>8</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Percentage Wrong</td>
<td>36,4%</td>
<td>36,4%</td>
<td>59,1%</td>
<td>36,4%</td>
</tr>
</tbody>
</table>

From Table 7-2, one can conclude that the best results are derived from the data out of the normalized plane 2 measurements. A possible reason for this is that, during the experiments bubbles were present in the front of the sensor. This was visible on the tomographic image of plane one in the ECT32v2 software. Therefore, data from plane 1 includes bubbles, which possibly influenced the measurements. In addition, it shows that the highest percentage of wrong flow patterns is found with inclined pipes.
In those experiments, the flow patterns did not behave as suspected, with high amplitude waves difficult to attribute to intermittent flows or wavy flows. Additionally, the criteria have been derived from sets of experiments not including measurements with inclined pipes. This needs further investigation.

Furthermore, the wrong identification of the flow pattern for the horizontal pipes are usually flows that are near or in a transition area between two flow patterns. I.e. run 43 is determined to be an annular flow. In the visual observation, the flow pattern is determined to be a wavy flow. In run 44, the flow is determined to be an annular flow and was recognized as an annular flow. The difference between run 43 and 44 is that in run 44 the airflow rate was 0.2 kg/min higher than in run 43. Therefore, it is difficult to say if the observer made a wrong identification of the flow pattern or the algorithm did not work as desired. The transition between some of the flow patterns is very difficult to observe because it takes place in a transition area and is not a rapid shift between two flow patterns. It gradually changes (see Figure 3-1). Despite the intrinsic difficulty to draw a line between the different zones on the flow regime map that is obtained by the measurements (Figure 7-6), the similarity between the transition zones in the flow regime map generated, corresponds to the one found in the literature (Figure 5-1, for slightly smaller pipe diameter. 50mm). Because the diameters are not the same, it is expected that the transitions will shift for higher air and water velocities.
Figure 7-7: Flow regime map with the flow pattern identification of a horizontal 56 mm pipe. The points on the plot with red circle around are the flow patterns that are false, according to the success fail test. The generation of this map is explained in Chapter 8. Based on analyzing 115 different measurements performed on the multiphase rig.
8. Flow regime mapping

The results from the flow pattern algorithm (Chapter 7) will be used for making a flow regime map of the experiments performed. In the next paragraphs, the MATLAB code FlowRegimeMapping.m used for making the mapping is explained. Full code is found in Annex 5.

8.1. Data export from Excel to MATLAB

The data that will be used is imported from an Excel file. In the Excel file, a specific tab is made for the measurements taken with a horizontal pipe. This is important because the measurement from horizontal pipes cannot be mixed with measurements from inclined pipes.

```matlab
%% Get data out of the excel file
Measurements = xlsread('Flow_regime_identification.xlsx','horizontal_pipe');
```

Figure 8-1: MATLAB code for importing data out of Excel sheets

In the code that is presented in Figure 8-1 the name of the Excel file can be change according to which file is needed. The values that are used come from the normalized eigenvalues in plane 2. (Chapter 6 for explanation)

Once the Excel-sheet is imported in MATLAB, the desired column will be selected. This is done using the following code.

```matlab
%% Mapping with PP results
figure
Intermittent = Measurements(1:end,4);
Annular = Measurements(1:end,5);
StratWavy = Measurements(1:end,6);
SuccessorFail = Measurements(1:end,7);
Flow_rates=Measurements(1:end,1:2);
```

Figure 8-2: Importing the desired columns into a vector

The columns containing the 0 and 1 values, coming from the flow pattern algorithm are stored into columns with specific names. The flow rates and the success/fail test result are stored.
8.2. Mapping of flow regimes

After the different datasets are imported, they can be used for mapping the flow regimes. The MATLAB code makes two plots. One from all the measurements taken without distinguishing which flow pattern it is and the other one with the distinction.

8.2.1. Mapping all measurements without flow pattern identification

With this scatterplot, all the measurements taken with the horizontal pipe are plotted using the following code:

```matlab
%% Mapping All Measurements
Water = Measurements(1:end,1);
Air = Measurements(1:end,2);
figure
scatter(Air,Water);
grid on
set(gca,'xscale','log');
set(gca,'yscale','log');
title('Measurements taken with Multiphase flow rig Air & Water Straight Pipe');
xlabel('Air Flow Rate [kg/min]'); % x-axis label
ylabel('Water Flow Rate [kg/min]'); % y-axis label
axis([0.05 5 1 200]);
```

Figure 8-3: MATLAB code for scatterplot all measurements

The scatterplots have logarithmic scale in the two axes. The two axes both have a determined length. This is done so all the mapping generated will have a similar look.
Figure 8-4: Mapping of all measurements taken with horizontal pipe.

In this plot, some measurements are not presented properly, because they have the same values of air and water velocity. The points overlap and there is no indication of the double point. This problem has not been solved yet. This plot can be helpful to decide in which region more measurements needs to be taken. In addition, this plot can be made before the measurements are taken. This will perhaps help to design experiment sessions.

8.2.2. Mapping the flow regimes

The next mapping will be a flow regime map. This mapping will have the same points as the one shown in Figure 8-5. The difference will be a number of different colors and symbols to represent the flow pattern or a group of flow patterns. As of now, the algorithms splits the flow patterns into three different groups: intermittent flow (Plug and slugs), annular, stratified/wavy. The algorithm used in the Excel sheets determine which flow pattern it is. For giving the different points in the scatterplot the right coded color and symbols, these values are used. They are imported and stored into the vectors Intermittent, Annular and StratWavy (Figure 8-2).
The values of the flow rates and the success or fail test are stored as well. The assignment and plotting of the different points is done by following MATLAB code.

```
for i_index=1:length(Flow_rates)
    selectedRow = i_index;
    if Intermittent(selectedRow,1) == 1;
        scatter(Flow_rates(selectedRow,2),Flow_rates(selectedRow,1),'^','b','filled')
    elseif Annular(selectedRow,1) == 0;
        scatter(Flow_rates(selectedRow,2),Flow_rates(selectedRow,1),40,Annular(selectedRow,1),'filled','o'
    elseif StratWavy(selectedRow,1) == 1;
        scatter(Flow_rates(selectedRow,2),Flow_rates(selectedRow,1),'o','g')
    end
hold on
if SuccessorFail(selectedRow,1) == 1;
    scatter(Flow_rates(selectedRow,2),Flow_rates(selectedRow,1),20,'o','s')
end
hold on
```

Figure 8-5: Assigning the flow patterns and plotting the different points in flow regime map

In the MATLAB code, presented in Figure 8-5, the code will determine which flow pattern it is by searching for the columns that possesses a value equal to 1. Then the values of the velocities are plotted with a specific color and symbol code. The result is shown in Figure 8-6.
Figure 8-6: Flow regime map with flow pattern identification of horizontal pipe 56 mm, based on 115 experiments runs in the multiphase rig.

The legend in the plot explains which symbol is which flow pattern. If this flow regime map is compared with Figure 5-1, the imaginary lines between the different regions Intermittent, Annular and StratWavy have the same shape as the lines presented in this flow regime map given in [Mandhane et al., 1974], the straight line between StratWavy and SlugPlug for low air flow rate, the parabolic line between StratWavy and SlugPlug for medium air flow rate and the declining straight line between StratWavy and Annular. The color of the annular points of the flow regime map gradually change. The meaning behind this is that the blue annular points are the least annular flows. The ‘annularity’ of the flow gradually increases if the air flow rate is increased. The points on the mapping will go from blue (low annularity) to red (high annularity), according to Figure 7-6.

In Figure 8-6, five red circles are present. This is derived from the success/fail test of the flow pattern identification. This means that if a point in the map is red circled, the flow pattern that is observed varies from the flow pattern calculated with the algorithm. These points will need to be studied further. Also notice that in Table 6-2 there are seven wrong flow patterns found and in the mapping only five. This is because 4 runs that have wrong flow patterns are the same: run111/127 and run 112/run126.
9. Conclusion and future work

9.1. Conclusion

All the experiments performed use a horizontal pipe combined with water and air as the two different phases. The raw data, gathered from these experiments, needs to be processed in order to analyze it. There are a couple of different data sets gathered: the ECT sensor data, gamma-ray sensor data, flow rates and differential pressure sensor data. The ECT sensor data will be processed using following steps:

\[\text{FlowPattern} = \text{Intermittent if } 12^{th} \text{ Eigenvalue of } SD \geq 1.15\]

Another criterion is found by applying a FFT on the gamma-ray sensor data.

\[\text{Ratio}_{FFT} = \frac{\sum_{11}^{256} y_{freq}}{\sum_{111}^{256} y_{freq}}\]

The ratio of the sums of the frequency values is calculated. The sum is taken of the second until the one hundred and tenth-frequency value. This sum is then divided by the sum of the following 145 values. If the ratio is bigger than two, the flow pattern will be identified as an intermittent flow.

The third criterion that came out of the analysis is a criterion for annular flow. This uses eigenvalues of the mean matrix.

.bcp files coming from ECT sensor
Conversion into ASCII files: normalized and absolute capacitance files
Processing the capacitance files into two 12x12 matrices of the mean and standard deviation of the capacitance measurements
Calculating the eigenvalues of the mean and standard deviation matrices
\[
\zeta = -\frac{(11^{th} \text{Eigenvalue of Mean Matrix})}{(1^{st} \text{Eigenvalue of Mean Matrix})}
\]

If \(\zeta \) is bigger equal to or bigger than 0.2, the flow will be an annular flow. Note that intermittent flows usually would be confused with annular flows with this criterion. However, since the criterion for identification of intermittent flows is tested first, they can be discarded.

With these criteria, the fast recognition of flow patterns is possible. A criterion for wavy and stratified flows has not been found yet. Nevertheless, as in the experiments, if only three type of low patterns (intermittent, annular, strat/wavy) are examined, only two criteria are needed.

The algorithm for flow recognition can be used to obtain flow regime maps, specific for a given flow rig. In this project, a large number of measurements have been analyzed with varying input mass flow rates and obtained the following flow regime map.

![Flow Regime Map](image)

Figure 9-1: Mandhane map [Mandhane et al., 1974] on the left and the flow regime map generated for flow rig at USN, Porsgrunn on the right

There is a slight but noticeable difference with the Mandhane map (Figure 9-1 on the left), so the reader will realize the potential of such flow regime identification techniques for generating flow regime maps specific for a given installation.

The transition criterion between the different flow patterns are not found in this thesis. It is hard to determine when a specific flow pattern starts to transition into another one.
In this thesis, some experiments are taken with an inclined pipe. The algorithm was tested on the data sets but the result were not promising. The success/fail rate of the flow pattern was high.

9.2. Future work

- Finding the transition criteria for the different flow patterns.
- Validating the criteria with different sensors and pipe diameters.
- Studying the behavior of flow patterns in angled pipes and trying to fine-tune the criteria to give better results.
- Combining the analyzing method and flow pattern criteria to get a direct recognition of the flow pattern out of the sensors. Also, combine the criteria, coming from the ECT data and gamma-ray data, for intermittent flows.
- Perform similar test with other modalities, i.e. ERT, EIT etc.
References/bibliography

List of tables and figures

Figures

Figure 2-1: Twin plane tomographic measurement system of a multiphase flow [Ismail et al., 2005].
Figure 2-2: Twin plane ECT sensor mounted in the multiphase flow rig located in the process hall at USN, Porsgrunn.
Figure 2-3: Schematic representation of an 8-electrode ECT-sensor [Ismail et al., 2005]
Figure 2-4: Gamma-ray sensor mounted in the multiphase flow rig in the process hall.
Figure 3-1: Example of a flow regime map for a horizontal pipe. Hatched regions: observed boundaries zones, continuous lines: theoretically predicted boundaries. [Brennen C. E., 2005]
Figure 3-2: Flow regimes for air/water mixture in a horizontal pipe. G is for gaseous phase, L for liquid phase [Brennen C. E., 2005]
Figure 4-1: Piping and Instrumentation Diagram (PID) of the multiphase flow facility at USN [Pradeep et al., 2014]
Figure 4-2: Test section with sensor placements as part of the titled pipe with multiphase flow. Transparent section for high-speed camera base studies and visual observations, multimodal tomographic systems at the far right of the pipe. [Pradeep et al., 2014].
Figure 4-3: Measurement principle of ECT sensor. Electrode 1 is excited with V_s and other electrodes are earthed. [Pradeep et al., 2014]
Figure 5-1: Flow regime map for a horizontal 50 mm pipe, air and water 20°C, based on [Mandhane et al., 1974]
Figure 6-1: Screen capture from ASCII output `.aac` file generation
Figure 6-2: Screen capture of ASCII output `.anc` file generation
Figure 6-3: Multiple files directory load and building of the eigenvalue matrices for all the eigenvalue vectors of the different runs
Figure 6-4: Generation of 12x12x6000 matrix including the calculation of the diagonal term and the calibration
Figure 6-5: Calculating the mean matrix, standard deviation matrix and their eigenvalues. These values will be written into the zero matrices created in the first part of the code (6.4.1)

Figure 7-1: Eigenvalue graph of standard deviation matrices. Green represents stratified and wavy flows, orange represents annular flow and blue represents slug and plug flows.

Figure 7-2: Eigenvalue graph of mean matrices. Green represents stratified and wavy flows, orange represents annular flow and blue represents slug and plug flows.

Figure 7-3: Eigenvalues of the standard deviation matrix of measurements 7, 12, 20. Data taken from ‘.anc’ plane 2

Figure 7-4: Density chart of run 20 and 30. Blue line is plug flow run 20, orange is an annular flow run 30.

Figure 7-5: FFT of the density chart in Figure 7-4. Blue is plug flow, orange is annular flow.

Figure 7-6: Transition from stratified or wavy to annular. The water touches the top of the pipe in the right circle.

Figure 7-7: Flow regime map with the flow pattern identification of a horizontal 56 mm pipe. The points on the plot with red circle around are the flow patterns that are false, according to the success fail test. The generation of this map is explained in Chapter 8. Based on analyzing 115 different measurements performed on the multiphase rig.

Figure 8-1: MATLAB code for importing data out of Excel sheets

Figure 8-2: Importing the desired columns into a vector

Figure 8-3: MATLAB code for scatterplot all measurements

Figure 8-4: Mapping of all measurements taken with horizontal pipe

Figure 8-5: Assigning the flow patterns and plotting the different points in flow regime map

Figure 8-6: Flow regime map with flow pattern identification of horizontal pipe 56 mm, based on 115 experiments runs in the multiphase rig.

Figure 9-1: Mandhane map [Mandhane et al., 1974] on the left and the flow regime map generated for flow rig at USN, Porsgrunn
Tables

Table 3-1: Description of the different flow patterns found in horizontal pipes from our experimental studies and [Brennen C. E., 2005].
Table 4-1: Pump specifications for different pumps in the flow loop. The specific pump can be found in the diagram using the pump number. [Hansen et al., 2011]
Table 4-2: Pipe dimensions in the vicinity of the tomographic systems [Hansen et al., 2011]
Table 6-1: Normalized capacitance data from the second plane of the ECT sensor run 001.
Table 6-2: Normalized capacitance data from run001. The initial data is mirrored around the diagonal term.
Table 6-3: Two sets of the 6000 capacitance data processed by the MATLAB code. This is a part of the 66000x11 matrix, called matrix1 in the MATLAB code.
Table 7-1: The criteria found for the different flow patterns and their formulas
Table 7-2: Success/fail test table, the measurements done with horizontal pipe and inclined pipe are separated.
Annexes

Annex 1: <Master thesis description.>

Campus Porsgrunn/Faculty of Technology
Department of Electrical Engineering, IT and Cybernetics

FMH 606 Master's Thesis

Title: Process Tomometric Data Fusion with Multimodal Sensor Suite in Multiphase flow studies

USN supervisor: Saba Mylvaganam, Kjell Joar Alme (only on need basis),

External partner: Professor Geir Elseth, STATOIL / PhD Research Fellow Antoine DUPRE, CEA Cadarache, Institut Fresnel (France)

Task description:

Focus in this project is the multimodal tomometry (ECTm and ERTm) in studying various features of multi-phase flow, but bypassing image processing and incorporating time series data from high-speed camera, gamma meter and some conventional sensors. This means that the focus will be on exploiting patterns in the actual time series of raw data from the array of multimodal sensors or their other mathematical properties. Considerable work has been done earlier at USN. The present thesis should strive to add value to existing results and findings achieved particularly by students and staff at USN. Real times processing of time series, data mining approach, wavelets, and matrix methods are some keywords associated with this project. The goals for the present thesis project are the following:

1. Survey of multimodal process tomometry with focus on its application to multi-phase flow
2. Understanding and describing the basic features of the process multimodal systems in the Sensor Lab at TUC including the programs developed by TUCs collaborators and PhD students.
3. Generating data sets using multi-phase flow rigs at TUC and analysing them for flow regime, bubble and slug studies
4. Online data acquisition and processing with multi-modal sensor suite
5. A brief survey of flow regimes in multiphase flow in tabular form with own sketches and at least some own photos/videos using TUC flow rigs.
6. Analysis of data with focus on slug and bubble characterization and means of studying wavy flow
7. Characterization of plug vs slug flow
8. Criteria for identification of transition from stratified to wavy flow. Validation with high speed camera
9. Mapping of the flow regimes for the USN flow rig, with gradual transitions based on criteria found in (8)
10. Submitting a report using the guidelines and template of USN with systematically archived data sets and software
Task background:

Multimodal sensor suites for multiphase flow is found increasingly in the oil and gas & process industries. TUC has the latest equipment on multimodal and capacitance based tomography. Recently, a modern Gamma ray based measurement system has been added to the sensor suite on the multiphase flow rig. There will be close collaboration with manufacturers of process tomographic equipment in the UK. Currently, USN is conducting a measurement campaign in collaboration with University of Stavanger.

Student category:

This work is suitable for both SCE/PEM students with some interest in mathematical techniques. As the work entails continuous lab work and program development, students need to be at USN throughout the term. It is mandatory that students have weekly meeting with at least one the supervisors in the lab.

Practical arrangements:

Necessary hardware and software will be provided by USN. Work will be performed in Sensor Lab and Process Hall where the multiphase flow facilities are available. However, possible interaction with process tomography research groups in Norway and abroad is also envisaged. Students need to familiarise themselves with the earlier work done at USN and USNs collaborators in the field. Some data sets from real industrial measurements may be available in the final stages of the thesis work.

Signatures:

Student (date and signature): Stijn Vyncke
12.02.2016

Supervisor (date and signature):
12.02.2016
Annex 2: <All measurements taken during sessions, colour code green means data represented for that column is taken, red means it is not taken>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Water Flow Rate</th>
<th>Air Flow rate</th>
<th>Flow regime</th>
<th>ECT</th>
<th>Process parameters</th>
<th>Gamma</th>
<th>High-Speed Camera</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>80</td>
<td>0</td>
<td>Full</td>
<td>1_01</td>
<td>05.02.2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>80</td>
<td>0,15</td>
<td>Plug</td>
<td>1_02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>12</td>
<td>4</td>
<td>Annular</td>
<td>1_03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>12</td>
<td>2</td>
<td>Wavy</td>
<td>1_04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>12</td>
<td>1</td>
<td>Wavy</td>
<td>1_05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>12</td>
<td>0,1</td>
<td>Stratified</td>
<td>1_06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td>12</td>
<td>0,15</td>
<td>Stratified</td>
<td>2_01</td>
<td>10.02.2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td>12</td>
<td>0,3</td>
<td>Stratified</td>
<td>2_02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#9</td>
<td>12</td>
<td>0,75</td>
<td>Wavy</td>
<td>2_03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>12</td>
<td>1</td>
<td>Wavy</td>
<td>2_04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#11</td>
<td>12</td>
<td>2</td>
<td>Wavy</td>
<td>2_05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#12</td>
<td>12</td>
<td>3</td>
<td>Annular</td>
<td>2_06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#13</td>
<td>12</td>
<td>4</td>
<td>Annular</td>
<td>2_07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#14</td>
<td>12</td>
<td>5</td>
<td>Annular</td>
<td>2_08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#15</td>
<td>15</td>
<td>0,15</td>
<td>Stratified</td>
<td>2_09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#16</td>
<td>35</td>
<td>0,1</td>
<td>Plug</td>
<td>2_10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#17</td>
<td>50</td>
<td>0,1</td>
<td>Plug</td>
<td>2_11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#18</td>
<td>150</td>
<td>0,1</td>
<td>Plug</td>
<td>2_12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#19</td>
<td>80</td>
<td>0,1</td>
<td>Plug</td>
<td>3_01</td>
<td>17.02.2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#20</td>
<td>80</td>
<td>0,15</td>
<td>Plug</td>
<td>3_02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#21</td>
<td>80</td>
<td>0,2</td>
<td>Slug</td>
<td>3_03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#22</td>
<td>80</td>
<td>0,25</td>
<td>Slug</td>
<td>3_04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#23</td>
<td>80</td>
<td>0,3</td>
<td>Slug</td>
<td>3_05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#24</td>
<td>30</td>
<td>0,1</td>
<td>Plug</td>
<td>3_07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#25</td>
<td>30</td>
<td>0,2</td>
<td>Plug</td>
<td>3_08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#26</td>
<td>30</td>
<td>0,3</td>
<td>Slug</td>
<td>3_09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#27</td>
<td>30</td>
<td>0,4</td>
<td>Slug</td>
<td>3_10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#28</td>
<td>15</td>
<td>2</td>
<td>Wavy</td>
<td>3_11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#29</td>
<td>15</td>
<td>2,2</td>
<td>Annular</td>
<td>3_12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>15</td>
<td>2,4</td>
<td>Annular</td>
<td>3_13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#31</td>
<td>15</td>
<td>2,6</td>
<td>Annular</td>
<td>3_14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#32</td>
<td>15</td>
<td>2,8</td>
<td>Annular</td>
<td>3_15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#33</td>
<td>15</td>
<td>3</td>
<td>Annular</td>
<td>3_16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#34</td>
<td>12</td>
<td>3</td>
<td>Annular</td>
<td>3_17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#35</td>
<td>12</td>
<td>2,8</td>
<td>Annular</td>
<td>3_18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#36</td>
<td>12</td>
<td>2,6</td>
<td>Annular</td>
<td>3_19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#37</td>
<td>12</td>
<td>2,4</td>
<td>Annular</td>
<td>3_20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Water Flow Rate</td>
<td>Air Flow rate</td>
<td>Flow regime</td>
<td>ECT</td>
<td>Process parameters</td>
<td>Gamma</td>
<td>High-Speed Camera</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----</td>
<td>-------------------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>#38</td>
<td>12</td>
<td>2,2</td>
<td>Wavy</td>
<td>3_21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#39</td>
<td>12</td>
<td>2</td>
<td>Wavy</td>
<td>3_22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>10</td>
<td>2</td>
<td>Wavy</td>
<td>4_01</td>
<td>18.02.2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#41</td>
<td>10</td>
<td>2,2</td>
<td>Wavy</td>
<td>4_02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#42</td>
<td>10</td>
<td>2,4</td>
<td>Wavy</td>
<td>4_03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#43</td>
<td>10</td>
<td>2,6</td>
<td>Wavy</td>
<td>4_04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#44</td>
<td>10</td>
<td>2,8</td>
<td>Annular</td>
<td>4_05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#45</td>
<td>10</td>
<td>3</td>
<td>Annular</td>
<td>4_06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#46</td>
<td>10</td>
<td>3,2</td>
<td>Annular</td>
<td>4_07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#47</td>
<td>10</td>
<td>3,4</td>
<td>Annular</td>
<td>4_08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#48</td>
<td>3</td>
<td>3,4</td>
<td>Annular</td>
<td>4_09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#49</td>
<td>3</td>
<td>5</td>
<td>Annular</td>
<td>4_10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>3</td>
<td>1,5</td>
<td>Wavy</td>
<td>4_11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#51</td>
<td>3</td>
<td>0,5</td>
<td>Stratified</td>
<td>4_12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#52</td>
<td>5</td>
<td>0,5</td>
<td>Stratified</td>
<td>4_13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#53</td>
<td>10</td>
<td>0,4</td>
<td>Stratified</td>
<td>5_01</td>
<td>26.02.2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#54</td>
<td>10</td>
<td>0,5</td>
<td>Stratified</td>
<td>5_02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#55</td>
<td>10</td>
<td>0,6</td>
<td>Wavy</td>
<td>5_03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#56</td>
<td>10</td>
<td>0,7</td>
<td>Wavy</td>
<td>5_04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#57</td>
<td>10</td>
<td>0,8</td>
<td>Wavy</td>
<td>5_05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#58</td>
<td>6</td>
<td>0,4</td>
<td>Stratified</td>
<td>5_06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#59</td>
<td>6</td>
<td>0,5</td>
<td>Stratified</td>
<td>5_07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#60</td>
<td>6</td>
<td>0,6</td>
<td>Stratified</td>
<td>5_08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#61</td>
<td>6</td>
<td>0,7</td>
<td>Wavy</td>
<td>5_09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#62</td>
<td>6</td>
<td>0,8</td>
<td>Wavy</td>
<td>5_10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#63</td>
<td>6</td>
<td>0,9</td>
<td>Wavy</td>
<td>5_11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#64</td>
<td>6</td>
<td>1</td>
<td>Wavy</td>
<td>5_12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#65</td>
<td>30</td>
<td>0,3</td>
<td>Plug</td>
<td>5_13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#66</td>
<td>25</td>
<td>0,3</td>
<td>Plug</td>
<td>5_14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#67</td>
<td>20</td>
<td>0,3</td>
<td>Plug</td>
<td>5_15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#68</td>
<td>19</td>
<td>0,3</td>
<td>Wavy</td>
<td>5_16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#69</td>
<td>20</td>
<td>0,1</td>
<td>Stratified</td>
<td>5_17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#70</td>
<td>23</td>
<td>0,1</td>
<td>Stratified</td>
<td>5_18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#71</td>
<td>25</td>
<td>0,1</td>
<td>Stratified</td>
<td>5_19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#72</td>
<td>27,5</td>
<td>0,1</td>
<td>Plug</td>
<td>5_20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#73</td>
<td>27,5</td>
<td>0,1</td>
<td>Slug</td>
<td>6_1</td>
<td>04.03.2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#74</td>
<td>25</td>
<td>0,1</td>
<td>Slug</td>
<td>6_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#75</td>
<td>23</td>
<td>0,1</td>
<td>Slug</td>
<td>6_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#76</td>
<td>15</td>
<td>0,1</td>
<td>Slug</td>
<td>6_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#77</td>
<td>12</td>
<td>0,1</td>
<td>Slug</td>
<td>6_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#78</td>
<td>12</td>
<td>0,3</td>
<td>Slug</td>
<td>6_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Water Flow Rate</td>
<td>Air Flow rate</td>
<td>Flow regime</td>
<td>ECT</td>
<td>Process parameters</td>
<td>Gamma</td>
<td>High-Speed Camera</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----</td>
<td>--------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>#79</td>
<td>12</td>
<td>1,5</td>
<td>Slug</td>
<td>6_7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#80</td>
<td>12</td>
<td>1,7</td>
<td>Annular</td>
<td>6_8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#81</td>
<td>12</td>
<td>1,9</td>
<td>Annular</td>
<td>6_9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#82</td>
<td>12</td>
<td>2,2</td>
<td>Annular</td>
<td>6_10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#83</td>
<td>12</td>
<td>2,5</td>
<td>Annular</td>
<td>6_11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#84</td>
<td>12</td>
<td>3</td>
<td>Annular</td>
<td>6_12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#85</td>
<td>30</td>
<td>0,1</td>
<td>Wavy</td>
<td>6_13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#86</td>
<td>30</td>
<td>1</td>
<td>Wavy</td>
<td>6_14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#87</td>
<td>30</td>
<td>1,5</td>
<td>Wavy</td>
<td>6_15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#88</td>
<td>30</td>
<td>2</td>
<td>Slug</td>
<td>6_16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#89</td>
<td>30</td>
<td>2,5</td>
<td>Slug</td>
<td>6_17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#90</td>
<td>30</td>
<td>3</td>
<td>Slug</td>
<td>6_18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#91</td>
<td>50</td>
<td>0,1</td>
<td>Plug</td>
<td>7_1</td>
<td>14.03.2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#92</td>
<td>50</td>
<td>0,15</td>
<td>Plug</td>
<td>7_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#93</td>
<td>50</td>
<td>0,22</td>
<td>Slug</td>
<td>7_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#94</td>
<td>50</td>
<td>0,3</td>
<td>Slug</td>
<td>7_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#95</td>
<td>50</td>
<td>0,5</td>
<td>Slug</td>
<td>7_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#96</td>
<td>50</td>
<td>1</td>
<td>Slug</td>
<td>7_6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#97</td>
<td>50</td>
<td>1,5</td>
<td>Slug</td>
<td>7_7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#98</td>
<td>15</td>
<td>0,3</td>
<td>Wavy</td>
<td>7_8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#99</td>
<td>15</td>
<td>0,5</td>
<td>Wavy</td>
<td>7_9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>15</td>
<td>0,7</td>
<td>Slug</td>
<td>7_10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#101</td>
<td>15</td>
<td>0,9</td>
<td>Slug</td>
<td>7_11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#102</td>
<td>15</td>
<td>1,1</td>
<td>Wavy</td>
<td>7_12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#103</td>
<td>15</td>
<td>1,3</td>
<td>Wavy</td>
<td>7_13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#104</td>
<td>15</td>
<td>1,5</td>
<td>Wavy</td>
<td>7_14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#105</td>
<td>15</td>
<td>2</td>
<td>Wavy</td>
<td>7_15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#106</td>
<td>15</td>
<td>2,5</td>
<td>Annular</td>
<td>7_16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#107</td>
<td>15</td>
<td>3,5</td>
<td>Annular</td>
<td>7_17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#108</td>
<td>20</td>
<td>3,5</td>
<td>Annular</td>
<td>7_18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#109</td>
<td>20</td>
<td>2,5</td>
<td>Annular</td>
<td>7_19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#110</td>
<td>20</td>
<td>2</td>
<td>Annular</td>
<td>7_20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#111</td>
<td>20</td>
<td>1,5</td>
<td>Annular</td>
<td>7_21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#112</td>
<td>20</td>
<td>1,3</td>
<td>Annular</td>
<td>7_22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#113</td>
<td>20</td>
<td>1,1</td>
<td>Slug</td>
<td>7_23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#114</td>
<td>20</td>
<td>0,9</td>
<td>Slug</td>
<td>7_24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#115</td>
<td>20</td>
<td>0,7</td>
<td>Slug</td>
<td>7_25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#116</td>
<td>20</td>
<td>0,5</td>
<td>Slug</td>
<td>7_26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#117</td>
<td>20</td>
<td>0,3</td>
<td>Slug</td>
<td>7_27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#118</td>
<td>80</td>
<td>0,2</td>
<td>Slug</td>
<td>8_1</td>
<td>05.04.2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#119</td>
<td>19</td>
<td>0,3</td>
<td>Wavy</td>
<td>8_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#120</td>
<td>20</td>
<td>0,3</td>
<td>Wavy</td>
<td>8_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Water Flow Rate</td>
<td>Air Flow rate</td>
<td>Flow regime</td>
<td>ECT</td>
<td>Process parameters</td>
<td>Gamma</td>
<td>High-Speed Camera</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----</td>
<td>-------------------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>#121</td>
<td>20</td>
<td>0.3</td>
<td>Wavy</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#122</td>
<td>20</td>
<td>0.4</td>
<td>Slug</td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#123</td>
<td>20</td>
<td>0.7</td>
<td>Slug</td>
<td>8.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#124</td>
<td>20</td>
<td>0.9</td>
<td>Slug</td>
<td>8.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#125</td>
<td>20</td>
<td>1.1</td>
<td>Slug</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#126</td>
<td>20</td>
<td>1.3</td>
<td>Annular</td>
<td>8.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#127</td>
<td>20</td>
<td>1.5</td>
<td>Annular</td>
<td>8.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#128</td>
<td>20</td>
<td>2</td>
<td>Annular</td>
<td>8.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#129</td>
<td>15</td>
<td>3</td>
<td>Annular</td>
<td>8.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#130</td>
<td>15</td>
<td>2.4</td>
<td>Annular</td>
<td>8.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#131</td>
<td>15</td>
<td>0.7</td>
<td>Slug</td>
<td>8.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#132</td>
<td>15</td>
<td>0.3</td>
<td>Wavy</td>
<td>8.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#133</td>
<td>12</td>
<td>2.4</td>
<td>Annular</td>
<td>8.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#134</td>
<td>12</td>
<td>1.5</td>
<td>Slug</td>
<td>8.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#135</td>
<td>30</td>
<td>2</td>
<td>Slug</td>
<td>8.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#136</td>
<td>30</td>
<td>2.5</td>
<td>Slug</td>
<td>8.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#137</td>
<td>30</td>
<td>3</td>
<td>Slug</td>
<td>8.20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annex 3: <MATLAB code for analysing the data coming from the ECT sensors ASCII files. This generates the different matrices and calculates the eigenvalues of those matrices. This MATLAB code is saved as ECTMeasurementAnalysis.m>

clear all;clc

%% READ DATA, BUILD MATRIX
%%% absolute measurements (aac files)
%--
filename='run01.aac';
sigma;
% calibration_air=[-7437.90160500001 1335.20949933334 743.137373333329 452.341148333332 436.337711666669 455.154606666652 505.979474999986 481.232186666647 406.355843333323 352.605391666659 451.41049999991 588.803050000067 681.020000000017];
sigma;
%--
%clear all;clc

%%% absolute measurements (aac files)
%--
filename='run01.aac';
% calibration_water=[-5740.61120500007 1104.930158333342 578.206006666639 481.232186666647 406.355843333323 352.605391666659 357.763081666664 384.640628333341 451.41049999991 588.803050000067 681.020000000017;1104.930158333342];
sigma;
% calibration_air=[-7437.90160500001 1335.20949933334 743.137373333329 452.341148333332 436.337711666669 455.154606666652 505.979474999986 481.232186666647 406.355843333323 352.605391666659 451.41049999991 588.803050000067 681.020000000017];
sigma;
%--
clear all;clc
number_of_electrode=12;
% Multiple input
files = dir('*.*');
% Eigenvalues_SD matrix
Eigenvalues_SD_matrix=zeros(length(files),number_of_electrode);
% Eigenvalues_mean matrix
Eigenvalues_mean_matrix=zeros(length(files),number_of_electrode);
% for i_files=1:length(files)
 fprintf('Running file %s\n',files(i_files).name)
```matlab
fileID = fopen(files(i_files).name); data = textscan(fileID,'%f %f
%f %f %f %f %f %f %f %f %f %f %f %f'); fclose(fileID);
N=length(data{1,1})/11;
matrix1=horzcat([data{1,1}],[data{1,2};[nan]], [data{1,3};[nan]],[data{1,4};[nan]], [data{1,5};[nan]], [data{1,6};[nan]], [data{1,7};[nan]], [data{1,8};[nan]], [data{1,9};[nan]], [data{1,10};[nan]], [data{1,11};[nan]]);
matrix=zeros(12,12,N);
for i=[1:12]
    for j=[i+1:12]
        matrix(i,j,:)=matrix1(i:11:i+(N-1)*11,j-i);
        matrix(j,i,:)=matrix(i,j,:);
    end
end
for k=[1:N]
    matrix(:,:,k)=matrix(:,:,k)-diag(sum(matrix(:,:,k),2));
    %diagonal term
    matrix(:,:,k)=(matrix(:,:,k)-calibration_air)./(calibration_water-calibration_air);
end
matrix_mean=mean(matrix,3);
eigenvalues_mean=transpose(eig(matrix_mean));
matrix_SD=std(matrix,0,3);
eigenvalues_SD=transpose(eig(matrix_SD));

Eigenvalues_SD_matrix(i_files,:)=eigenvalues_SD;
Eigenvalues_mean_matrix(i_files,:)=eigenvalues_mean;
Eigenvalues_CopyMeanRE = horzcat(Eigenvalues_mean_matrix,
Eigenvalues_SD_matrix);  %copy excel
end
```
Annex 4: < Eigenvalues calculating using MATLAB code in Annex 3. The first table are the eigenvalues of the mean matrix. The second are from the standard deviation matrix.>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.085 0.071 0.049 0.025 0.007 0.004 0.020 0.024 0.035 0.050 0.096 11.72556 869</td>
</tr>
<tr>
<td>2</td>
<td>0.781 0.640 0.524 0.477 0.448 0.254 0.040 0.397 0.799 1.596 7.081661 216</td>
</tr>
<tr>
<td>3</td>
<td>1.430 1.231 0.712 0.578 0.152 0.063 0.541 0.570 1.000 1.462 3.964613 468</td>
</tr>
<tr>
<td>4</td>
<td>1.051 0.980 0.255 0.107 0.056 0.011 0.094 0.102 0.143 0.417 4.661234 3</td>
</tr>
<tr>
<td>5</td>
<td>0.899 0.860 0.694 0.081 0.069 0.014 0.028 0.062 0.104 0.131 5.520028 648</td>
</tr>
<tr>
<td>6</td>
<td>0.940 0.750 0.587 0.554 0.031 0.016 0.010 0.021 0.054 0.286 6.964043 921</td>
</tr>
<tr>
<td>7</td>
<td>0.815 0.755 0.590 0.549 0.070 0.041 0.006 0.045 0.086 0.184 7.138680 405</td>
</tr>
<tr>
<td>8</td>
<td>0.880 0.749 0.586 0.544 0.045 0.020 0.002 0.030 0.065 0.230 6.985641 333</td>
</tr>
<tr>
<td>9</td>
<td>1.040 0.832 0.662 0.067 0.045 0.028 0.008 0.065 0.077 0.288 5.930062 797</td>
</tr>
<tr>
<td>10</td>
<td>0.921 0.838 0.642 0.089 0.068 0.018 0.032 0.066 0.101 0.122 5.501772 913</td>
</tr>
<tr>
<td>11</td>
<td>1.041 0.997 0.260 0.073 0.033 0.007 0.059 0.075 0.137 0.453 4.623827 81</td>
</tr>
<tr>
<td>12</td>
<td>1.316 1.102 0.473 0.347 0.143 0.019 0.290 0.365 0.534 1.139 4.201241 099</td>
</tr>
<tr>
<td>13</td>
<td>1.439 1.245 0.602 0.151 0.065 0.568 0.597 1.046 1.487 3.934391 489</td>
</tr>
<tr>
<td>#</td>
<td>1,522 03</td>
</tr>
<tr>
<td>#15</td>
<td>0,859 71</td>
</tr>
<tr>
<td>#16</td>
<td>0,633 91</td>
</tr>
<tr>
<td>#17</td>
<td>0,600 99</td>
</tr>
<tr>
<td>#18</td>
<td>0,761 57</td>
</tr>
<tr>
<td>#19</td>
<td>0,687 57</td>
</tr>
<tr>
<td>#20</td>
<td>0,792 9</td>
</tr>
<tr>
<td>#21</td>
<td>0,808 02</td>
</tr>
<tr>
<td>#22</td>
<td>0,745 1</td>
</tr>
<tr>
<td>#23</td>
<td>0,786 58</td>
</tr>
<tr>
<td>#24</td>
<td>0,765 34</td>
</tr>
<tr>
<td>#25</td>
<td>0,797 24</td>
</tr>
<tr>
<td>#26</td>
<td>0,835 95</td>
</tr>
<tr>
<td>#27</td>
<td>0,811 68</td>
</tr>
<tr>
<td>#28</td>
<td>1,131 05</td>
</tr>
<tr>
<td>#29</td>
<td>1,128 19</td>
</tr>
<tr>
<td>#30</td>
<td>1,162</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>74</td>
</tr>
<tr>
<td>#31</td>
<td>1,180</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>#32</td>
<td>1,227</td>
</tr>
<tr>
<td></td>
<td>08</td>
</tr>
<tr>
<td>#33</td>
<td>1,260</td>
</tr>
<tr>
<td></td>
<td>94</td>
</tr>
<tr>
<td>#34</td>
<td>1,305</td>
</tr>
<tr>
<td></td>
<td>61</td>
</tr>
<tr>
<td>#35</td>
<td>1,250</td>
</tr>
<tr>
<td></td>
<td>66</td>
</tr>
<tr>
<td>#36</td>
<td>1,194</td>
</tr>
<tr>
<td></td>
<td>59</td>
</tr>
<tr>
<td>#37</td>
<td>1,130</td>
</tr>
<tr>
<td></td>
<td>68</td>
</tr>
<tr>
<td>#38</td>
<td>1,082</td>
</tr>
<tr>
<td></td>
<td>79</td>
</tr>
<tr>
<td>#39</td>
<td>1,051</td>
</tr>
<tr>
<td></td>
<td>88</td>
</tr>
<tr>
<td>#40</td>
<td>1,042</td>
</tr>
<tr>
<td></td>
<td>19</td>
</tr>
<tr>
<td>#41</td>
<td>1,114</td>
</tr>
<tr>
<td></td>
<td>47</td>
</tr>
<tr>
<td>#42</td>
<td>1,179</td>
</tr>
<tr>
<td></td>
<td>79</td>
</tr>
<tr>
<td>#43</td>
<td>1,238</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td>#44</td>
<td>1,282</td>
</tr>
<tr>
<td></td>
<td>68</td>
</tr>
<tr>
<td>#45</td>
<td>1,336</td>
</tr>
<tr>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>#46</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>1,375</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>#47</td>
<td>1,400</td>
</tr>
<tr>
<td></td>
<td>01</td>
</tr>
<tr>
<td>#48</td>
<td>1,343</td>
</tr>
<tr>
<td></td>
<td>31</td>
</tr>
<tr>
<td>#49</td>
<td>1,580</td>
</tr>
<tr>
<td></td>
<td>59</td>
</tr>
<tr>
<td>#50</td>
<td>1,062</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td>#51</td>
<td>1,169</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
<tr>
<td>#52</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>31</td>
</tr>
<tr>
<td>#53</td>
<td>1,090</td>
</tr>
<tr>
<td></td>
<td>71</td>
</tr>
<tr>
<td>#54</td>
<td>1,075</td>
</tr>
<tr>
<td></td>
<td>53</td>
</tr>
<tr>
<td>#55</td>
<td>1,057</td>
</tr>
<tr>
<td></td>
<td>94</td>
</tr>
<tr>
<td>#56</td>
<td>1,051</td>
</tr>
<tr>
<td></td>
<td>63</td>
</tr>
<tr>
<td>#57</td>
<td>1,031</td>
</tr>
<tr>
<td></td>
<td>88</td>
</tr>
<tr>
<td>#58</td>
<td>1,024</td>
</tr>
<tr>
<td></td>
<td>32</td>
</tr>
<tr>
<td>#59</td>
<td>1,024</td>
</tr>
<tr>
<td></td>
<td>83</td>
</tr>
<tr>
<td>#60</td>
<td>1,029</td>
</tr>
<tr>
<td></td>
<td>63</td>
</tr>
<tr>
<td>#61</td>
<td>1,028</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>

#75	1.024 35
#74	0.992 48
#73	0.932 74
#72	0.774 38
#71	0.728 07
#70	0.011 36
#69	0.002 8
#68	7,589 05
#67	0.004 17
#66	0.005 34
#65	0.039 34
#64	0.117 38
#63	5,507135 49
#62	5,526236 94
#61	- 762
#60	- 763
#59	- 764
#58	- 765
#57	- 766
#56	- 767
#55	- 768
#54	- 769
#53	- 770
#52	- 771
#51	- 772
#50	- 773
#49	- 774
#48	- 775
#47	- 776
#46	- 777
#45	- 778
#44	- 779
#43	- 780
#42	- 781
#41	- 782
#40	- 783
#39	- 784
#38	- 785
#37	- 786
#36	- 787
#35	- 788
#34	- 789
#33	- 790
#32	- 791
#31	- 792
#30	- 793
#29	- 794
#28	- 795
#27	- 796
#26	- 797
#25	- 798
#24	- 799
#23	- 800
#22	- 801
#21	- 802
#20	- 803
#19	- 804
#18	- 805
#17	- 806
#16	- 807
#15	- 808
#14	- 809
#13	- 810
#12	- 811
#11	- 812
#10	- 813
#9	- 814
#8	- 815
#7	- 816
#6	- 817
#5	- 818
#4	- 819
#3	- 820
#2	- 821
#1	- 822

Summary:

The table above contains various data points, likely from a scientific or statistical study. Each cell represents a specific measurement or value, with columns and rows indicating different categories or variables. The values range from small numbers (e.g., 0.002) to larger numbers (e.g., 5,526236). The table is structured in a way that suggests it is derived from a larger data set, possibly for analysis or comparison purposes. The precise nature of the data is not evident from the table alone, but it appears to be related to some form of measurement or experimental result.
	#78		#79		#80		#81		#82		#83		#84		#85		#86		#87		#88		#89		#90		#91		#92		#93																																																																																																																																																																		
	0,889	0,828	0,746	0,642	0,563	0,320	0,129	0,195	0,428	0,760	0,983	4,870247	1,137	0,884	0,791	0,738	0,694	0,355	0,182	0,309	0,514	0,944	1,021	5,110629	1,179	0,892	0,775	0,728	0,617	0,311	0,156	0,314	0,466	0,833	0,963	5,080559	1,167	0,982	0,777	0,672	0,558	0,253	0,127	0,321	0,451	0,777	0,988	4,829007	1,184	1,030	0,783	0,645	0,471	0,218	0,092	0,312	0,413	0,673	0,996	4,746572	1,225	1,099	0,795	0,632	0,192	0,075	0,092	0,343	0,418	0,676	1,086	4,608058	1,295	1,175	0,818	0,662	0,192	0,075	0,092	0,431	0,494	0,822	1,260	4,339582	0,985	0,871	0,727	0,689	0,068	0,051	0,006	0,022	0,065	0,105	0,123	5,475683	1,028	0,866	0,727	0,686	0,006	0,003	0,000	0,003	0,004	0,044	0,137	5,45813	1,061	0,794	0,729	0,586	0,007	0,003	0,000	0,002	0,012	0,055	0,280	5,359696	1,211	0,888	0,781	0,717	0,400	0,220	0,091	0,253	0,337	0,567	0,881	5,187778	1,238	1,000	0,783	0,735	0,531	0,263	0,120	0,349	0,435	0,763	1,068	5,035394	1,260	1,103	0,813	0,762	0,613	0,273	0,151	0,421	0,504	0,932	1,244	4,895862	0,624	0,595	0,522	0,465	0,445	0,345	0,352	0,242	0,313	0,621	1,278	7,654625	0,752	0,656	0,558	0,531	0,503	0,431	0,215	0,019	0,313	0,621	1,278	6,806524	0,784	0,724	0,620	0,590	0,568	0,469	0,180	0,065	0,385	0,665	1,274	6,046397	0,700
---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---																																																																																																																																																																			
#94	0.781	0.717	0.630	0.616	0.590	0.505	0.223	0.072	0.381	0.700	1.219	5.940636																																																																																																																																																																																					
	1	02	41	51	56	88	44	166	174	37	294	292																																																																																																																																																																																					
#95	0.820	0.747	0.659	0.640	0.618	0.518	0.235	0.078	0.396	0.732	1.065	5.844283																																																																																																																																																																																					
	11	27	62	2	98	59	21	779	272	627	823	949																																																																																																																																																																																					
#96	0.962	0.883	0.747	0.730	0.679	0.475	0.264	0.187	0.483	0.959	1.067	5.701674																																																																																																																																																																																					
	81	75	24	51	8	34	91	328	776	649	408	042																																																																																																																																																																																					
#97	1.109	0.999	0.812	0.750	0.686	0.472	0.280	0.301	0.535	1.130	1.157	5.679914																																																																																																																																																																																					
	42	34	64	37	63	41	21	117	202	561	106	452																																																																																																																																																																																					
#98	0.865	0.664	0.616	0.554	0.506	0.131	0.044	0.004	0.026	0.046	0.118	7.603595																																																																																																																																																																																					
	17	27	37	77	81	61	22	805	237	094	455																																																																																																																																																																																						
#99	0.811	0.750	0.628	0.593	0.359	0.173	0.115	0.016	0.125	0.208	0.233	6.683109																																																																																																																																																																																					
	16	65	55	89	61	86	04	899	514	448	976	148																																																																																																																																																																																					
#100	0.846	0.805	0.679	0.664	0.299	0.236	0.085	0.052	0.197	0.355	0.379	5.836619																																																																																																																																																																																					
	98	26	38	91	43	98	98	112	582	12	336	945																																																																																																																																																																																					
#101	0.886	0.821	0.707	0.677	0.327	0.275	0.105	0.058	0.225	0.388	0.417	5.597081																																																																																																																																																																																					
	93	49	8	35	19	54	54	107	355	606	978	524																																																																																																																																																																																					
#102	0.921	0.821	0.711	0.655	0.182	0.143	-	0.066	0.126	0.223	0.255	5.561920																																																																																																																																																																																					
	75	93	97	87	49	49	49	477	537	073	628	695																																																																																																																																																																																					
#103	1.019	0.806	0.721	0.607	0.150	0.095	0.040	0.090	0.114	0.185	0.284	5.433381																																																																																																																																																																																					
	47	46	53	16	58	77	77	943	89	648	632	061																																																																																																																																																																																					
#104	1.082	0.808	0.729	0.561	0.068	0.037	0.008	0.052	0.073	0.094	0.298	5.301961																																																																																																																																																																																					
	77	54	53	23	48	6	6	846	537	32	977	032																																																																																																																																																																																					
#105	1.127	0.922	0.766	0.494	0.125	0.073	0.004	0.109	0.135	0.188	0.586	4.897921																																																																																																																																																																																					
	99	95	38	73	4	3	3	292	258	031	195	937																																																																																																																																																																																					
#106	1.181	1.063	0.795	0.534	0.283	0.134	0.029	0.224	0.280	0.418	0.931	4.621053																																																																																																																																																																																					
	18	85	8	67	43	4	15	609	576	857	582	145																																																																																																																																																																																					
#107	1.321	1.225	0.825	0.714	0.571	0.192	0.082	0.482	0.531	0.923	1.346	4.282283																																																																																																																																																																																					
	26	56	66	92	42	93	93	739	788	977	693	519																																																																																																																																																																																					
#108	1.282	1.277	0.838	0.802	0.692	0.236	0.139	0.538	0.603	1.107	1.427	4.473820																																																																																																																																																																																					
	91	29	02	48	65	61	61	866	7	458	89	704																																																																																																																																																																																					
#109	1.224	1.033	0.781	0.691	0.455	0.227	0.077	0.326	0.400	0.649	1.039	4.854073																																																																																																																																																																																					
	36	33	82	41	8	65	65	644	104	9	867	146																																																																																																																																																																																					
#110	-	-	-	-	-	-	-	-	-	1,176	16	0,883	54	0,756	34	0,703	37	0,314	77	0,165	87	0,069	35	0,206	131	0,285	786	0,439	943	0,787	824	5,127250	838																																																																																																																																																																
#111	-	-	-	-	-	-	-	-	-	1,058	29	0,804	37	0,747	39	0,718	01	0,257	39	0,152	04	0,071	57	0,151	866	0,212	55	0,344	891	0,566	101	5,405915	243																																																																																																																																																																
#112	-	-	-	-	-	-	-	-	-	0,990	15	0,825	49	0,716	92	0,699	56	0,271	18	0,170	36	0,079	145	0,196	545	0,337	788	0,474	314	83	5,557838	551																																																																																																																																																																	
#113	-	-	-	-	-	-	-	-	-	0,949	8	0,825	59	0,710	31	0,689	73	0,505	06	0,343	179	0,139	229	0,330	549	0,615	54	0,665	183	5,578297	351																																																																																																																																																																		
#114	-	-	-	-	-	-	-	-	-	0,944	8	0,791	52	0,707	58	0,631	483	0,352	06	0,167	101	0,313	681	0,580	989	0,624	668	94	5,497047	564																																																																																																																																																																			
#115	-	-	-	-	-	-	-	-	-	0,911	8	0,813	98	0,702	67	0,616	16	0,426	36	0,355	145	0,064	0,06	805	0,508	328	0,558	287	5,571591	475																																																																																																																																																																			
#116	-	-	-	-	-	-	-	-	-	0,888	8	0,806	67	0,692	16	0,609	67	0,364	36	0,298	122	0,056	0,238	735	0,422	95	0,549	883	0,591566	072																																																																																																																																																																			
#117	-	-	-	-	-	-	-	-	-	0,724	8	0,680	16	0,560	71	0,528	4	0,408	72	0,191	36	0,122	0,054	0,199	0,072	172	0,258	062	0,243	7,452812	69																																																																																																																																																																		
#118	-	-	-	-	-	-	-	-	-	0,772	8	0,685	44	0,651	16	0,572	6	0,532	13	0,501	68	0,073	0,440	831	0,831	99	1,612	844	799	6,445308	178																																																																																																																																																																		
#119	-	-	-	-	-	-	-	-	-	0,738	8	-0,701	4	0,548	29	0,531	4	0,482	29	0,305	4	0,013	0,002	188	0,009	0,056	602	0,097	78	8,101738	596																																																																																																																																																																		
#120	-	-	-	-	-	-	-	-	-	0,739	8	0,671	4	0,547	8	0,528	63	0,478	61	0,265	41	-0,078	0,052	0,086	962	0,139	698	0,013	96	6,037497	276																																																																																																																																																																		
#121	-	-	-	-	-	-	-	-	-	0,739	8	0,667	4	0,551	4	0,529	11	0,481	11	0,248	76	0,126	0,056	0,147	0,042	21	0,174	35	489	7,980744	372																																																																																																																																																																		
#122	-	-	-	-	-	-	-	-	-	0,777	8	0,737	8	0,621	92	0,598	79	0,342	79	0,273	66	0,141	0,009	0,182	0,365	0,437	46	0,182	853	0,437	133	6,384221	051																																																																																																																																																																
#123	-	-	-	-	-	-	-	-	-	0,861	8	0,820	98	0,695	98	0,659	47	0,466	47	0,392	47	0,158	0,060	0,312	0,537	0,607	125	0,949	428	0,059	6,655674	586																																																																																																																																																																	
#124	-	-	-	-	-	-	-	-	-	0,967	9	0,810	77	0,709	86	0,657	81	0,538	06	0,388	69	0,183	0,105	0,356	0,663	0,701	669	0,006	494	0,721090	198																																																																																																																																																																		
#125	-	-	-	-	-	-	-	-	-	0,933	9	0,805	43	0,704	68	0,678	45	0,431	11	0,299	22	0,149	0,124	0,284	0,527	0,577	281	0,806	999	0,577	964	5,579600	888																																																																																																																																																																
#126	-	1,000	0,832	-	0,720	0,262	-	0,164	0,077	0,141	0,185	0,339	0,495	5,558839																																																																																																																																																																																			
	38		42	17		7	77	15	5	414	312	914	722	535																																																																																																																																																																																			
#127	-	1,058	0,808	-	0,731	0,145	-	0,092	0,024	0,080	0,124	0,229	0,494	5,453983																																																																																																																																																																																			
	45		78	04		04	03	51	2	9	891	043	541	329																																																																																																																																																																																			
#128	-	1,168	0,894	-	0,760	0,329	-	0,187	0,061	0,225	0,290	0,457	0,799	5,102522																																																																																																																																																																																			
	33		23	02		76	35	88		662	595	797	903	345																																																																																																																																																																																			
#129	-	1,260	1,149	-	0,812	0,434	-	0,181	0,050	0,352	0,420	0,664	1,171	4,406711																																																																																																																																																																																			
	03		96	7		69	89	62		547	416	771	832	97																																																																																																																																																																																			
#130	-	1,166	1,044	-	0,793	0,223	-	0,116	0,018	0,186	0,229	0,354	0,881	4,649707																																																																																																																																																																																			
	45		97	56		78	78	63		215	635	789	569	748																																																																																																																																																																																			
#131	-	0,841	0,814	-	0,683	0,313	-	0,125	0,084	0,047	0,220	0,369	0,399	5,827012																																																																																																																																																																																			
	66		69	1		59	85	85		715	325	347	647	914																																																																																																																																																																																			
#132	-	0,855	0,665	-	0,615	0,509	-	0,114	0,055	0,047	0,220	0,369	0,399	7,588960																																																																																																																																																																																			
	58		84	62		56	88	85		0,011	0,036	0,514	0,117	803																																																																																																																																																																																			
#133	-	1,130	1,015	-	0,809	0,120	-	0,062	-0,007	0,109	0,135	0,232	0,725	4,425232																																																																																																																																																																																			
	57		12	57		54	68	68		801	408	232	477	484																																																																																																																																																																																			
#134	-	1,071	0,881	-	0,777	0,634	-	0,334	0,159	0,288	0,488	0,869	0,976	4,970853																																																																																																																																																																																			
	46		69	14		16	68	68		17	104	59	069																																																																																																																																																																																				
#135	-	1,225	0,900	-	0,785	0,487	-	0,258	0,114	0,287	0,394	0,680	0,939	5,162016																																																																																																																																																																																			
	05		5	81		62	02	16		171	891	795	087																																																																																																																																																																																				
#136	-	1,225	0,990	-	0,777	0,476	-	0,241	0,108	0,315	0,403	0,695	1,035	5,036181																																																																																																																																																																																			
	5		94	18		75	99	84		058	743	978	721																																																																																																																																																																																				
#137	-	1,260	1,107	-	0,815	0,639	-	0,279	0,157	0,434	0,522	0,962	1,259	4,883081																																																																																																																																																																																			
	28		52	88		64	73	83		53	098	672	716																																																																																																																																																																																				

<p>| | | Sample | | | | | | | | | | | | |
| | | SD | | | | | | | | | | | | |
| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| #1 | 0,024| 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | -2,8E-05 | 0,000 | 0,000 | 0,000 | 0,000 | 0,002 | 0,032688 |
| | 73 | 54 | 51 | 39 | 14 | 179 | 846 | 971 | 071 | 823 |
| #2 | 0,975| 0,314 | 0,184 | 0,096 | 0,011 | 0,038 | 0,058 | 0,080 | 0,157 | 0,232 | 0,264 | 0,09897 | 2 |</p>
<table>
<thead>
<tr>
<th></th>
<th>0.383</th>
<th>0.371</th>
<th>0.119</th>
<th>0.093</th>
<th>0.038</th>
<th>0.009</th>
<th>0.040</th>
<th>0.105</th>
<th>0.129</th>
<th>0.173</th>
<th>0.217</th>
<th>0.718891</th>
</tr>
</thead>
<tbody>
<tr>
<td>#3</td>
<td>0.45</td>
<td>0.38</td>
<td>0.37</td>
<td>0.31</td>
<td>0.13</td>
<td>0.013</td>
<td>0.494</td>
<td>0.451</td>
<td>0.294</td>
<td>0.971</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.398</td>
<td>0.276</td>
<td>0.057</td>
<td>0.015</td>
<td>0.009</td>
<td>0.003</td>
<td>0.007</td>
<td>0.019</td>
<td>0.040</td>
<td>0.059</td>
<td>0.226</td>
<td>0.698767</td>
</tr>
<tr>
<td>#4</td>
<td>0.36</td>
<td>0.057</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.004</td>
<td>0.017</td>
<td>0.017</td>
<td>0.059</td>
<td>0.125</td>
<td>0.498188</td>
</tr>
<tr>
<td></td>
<td>0.216</td>
<td>0.003</td>
<td>0.001</td>
<td>0.034</td>
<td>0.000</td>
<td>0.255</td>
<td>0.001</td>
<td>0.007</td>
<td>0.008</td>
<td>0.009</td>
<td>0.049</td>
<td>0.234987</td>
</tr>
<tr>
<td>#5</td>
<td>0.048</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.023</td>
<td>0.181074</td>
</tr>
<tr>
<td></td>
<td>0.048</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.022</td>
<td>0.023</td>
<td>0.025</td>
<td>0.107</td>
<td>0.544978</td>
</tr>
<tr>
<td>#6</td>
<td>0.056</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.010</td>
<td>0.011</td>
<td>0.012</td>
<td>0.063</td>
<td>0.356124</td>
</tr>
<tr>
<td></td>
<td>0.056</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.011</td>
<td>0.017</td>
<td>0.018</td>
<td>0.064</td>
<td>0.141</td>
<td>0.527078</td>
</tr>
<tr>
<td>#7</td>
<td>0.060</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.004</td>
<td>0.006</td>
<td>0.111</td>
<td>0.264</td>
<td>0.773449</td>
</tr>
<tr>
<td></td>
<td>0.060</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.006</td>
<td>0.029</td>
<td>0.104</td>
<td>0.136</td>
<td>0.181</td>
<td>0.746575</td>
</tr>
<tr>
<td>#8</td>
<td>0.060</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.010</td>
<td>0.038</td>
<td>0.042</td>
<td>0.060</td>
<td>0.236</td>
<td>0.736164</td>
</tr>
<tr>
<td></td>
<td>0.060</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.011</td>
<td>0.032</td>
<td>0.067</td>
<td>0.107</td>
<td>0.773449</td>
<td></td>
</tr>
<tr>
<td>#9</td>
<td>0.060</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.011</td>
<td>0.032</td>
<td>0.067</td>
<td>0.111</td>
<td>0.264</td>
<td>0.773449</td>
</tr>
<tr>
<td></td>
<td>0.060</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.011</td>
<td>0.032</td>
<td>0.067</td>
<td>0.111</td>
<td>0.264</td>
<td>0.773449</td>
</tr>
<tr>
<td>#10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>#11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>#12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>#13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>#14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>#15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>#16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>#17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>#18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>#19</td>
<td>1,164</td>
<td>-</td>
<td>0,358</td>
<td>0,017</td>
<td>0,072</td>
<td>0,022</td>
<td>0,059</td>
<td>0,068</td>
<td>0,098</td>
<td>0,122</td>
<td>0,194</td>
<td>0,270</td>
</tr>
<tr>
<td>#20</td>
<td>1,029</td>
<td>-</td>
<td>0,373</td>
<td>0,180</td>
<td>0,096</td>
<td>0,018</td>
<td>0,056</td>
<td>0,087</td>
<td>0,111</td>
<td>0,151</td>
<td>0,251</td>
<td>0,287</td>
</tr>
<tr>
<td>#21</td>
<td>0,996</td>
<td>-</td>
<td>0,329</td>
<td>0,161</td>
<td>0,076</td>
<td>0,036</td>
<td>0,059</td>
<td>0,103</td>
<td>0,125</td>
<td>0,144</td>
<td>0,239</td>
<td>0,260</td>
</tr>
<tr>
<td>#22</td>
<td>0,987</td>
<td>-</td>
<td>0,229</td>
<td>0,088</td>
<td>0,060</td>
<td>0,035</td>
<td>0,059</td>
<td>0,098</td>
<td>0,123</td>
<td>0,131</td>
<td>0,147</td>
<td>0,188</td>
</tr>
<tr>
<td>#23</td>
<td>0,952</td>
<td>-</td>
<td>0,205</td>
<td>0,080</td>
<td>0,065</td>
<td>0,022</td>
<td>0,056</td>
<td>0,094</td>
<td>0,112</td>
<td>0,130</td>
<td>0,150</td>
<td>0,185</td>
</tr>
<tr>
<td>#24</td>
<td>0,554</td>
<td>-</td>
<td>0,194</td>
<td>0,060</td>
<td>0,024</td>
<td>0,009</td>
<td>0,009</td>
<td>0,008</td>
<td>0,025</td>
<td>0,028</td>
<td>0,089</td>
<td>0,119</td>
</tr>
<tr>
<td>#25</td>
<td>0,941</td>
<td>-</td>
<td>0,194</td>
<td>0,040</td>
<td>0,000</td>
<td>0,011</td>
<td>0,012</td>
<td>0,038</td>
<td>0,048</td>
<td>0,089</td>
<td>0,098</td>
<td>0,226</td>
</tr>
<tr>
<td>#26</td>
<td>0,777</td>
<td>-</td>
<td>0,121</td>
<td>0,033</td>
<td>0,021</td>
<td>0,005</td>
<td>0,017</td>
<td>0,051</td>
<td>0,070</td>
<td>0,081</td>
<td>0,143</td>
<td>0,151</td>
</tr>
<tr>
<td>#27</td>
<td>0,960</td>
<td>-</td>
<td>0,155</td>
<td>0,070</td>
<td>0,042</td>
<td>-5,7E-06</td>
<td>0,016</td>
<td>0,075</td>
<td>0,079</td>
<td>0,097</td>
<td>0,137</td>
<td>0,261</td>
</tr>
<tr>
<td>#28</td>
<td>0,453</td>
<td>-</td>
<td>0,227</td>
<td>0,119</td>
<td>0,042</td>
<td>0,009</td>
<td>0,024</td>
<td>0,046</td>
<td>0,061</td>
<td>0,091</td>
<td>0,215</td>
<td>0,811883</td>
</tr>
<tr>
<td>#29</td>
<td>0,476</td>
<td>-</td>
<td>0,276</td>
<td>0,118</td>
<td>0,020</td>
<td>0,003</td>
<td>0,012</td>
<td>0,027</td>
<td>0,053</td>
<td>0,095</td>
<td>0,251</td>
<td>0,862185</td>
</tr>
<tr>
<td>#30</td>
<td>0,456</td>
<td>-</td>
<td>0,314</td>
<td>0,152</td>
<td>0,085</td>
<td>0,011</td>
<td>0,028</td>
<td>0,059</td>
<td>0,113</td>
<td>0,149</td>
<td>0,269</td>
<td>0,872179</td>
</tr>
<tr>
<td>#31</td>
<td>0,455</td>
<td>-</td>
<td>0,324</td>
<td>0,125</td>
<td>0,064</td>
<td>0,007</td>
<td>0,032</td>
<td>0,060</td>
<td>0,122</td>
<td>0,273</td>
<td>0,283</td>
<td>0,856717</td>
</tr>
<tr>
<td>#32</td>
<td>0,461</td>
<td>-</td>
<td>0,366</td>
<td>0,157</td>
<td>0,112</td>
<td>0,011</td>
<td>0,040</td>
<td>0,071</td>
<td>0,145</td>
<td>0,177</td>
<td>0,281</td>
<td>0,893508</td>
</tr>
<tr>
<td>#33</td>
<td>0,449</td>
<td>-</td>
<td>0,374</td>
<td>0,135</td>
<td>0,097</td>
<td>0,012</td>
<td>0,035</td>
<td>0,075</td>
<td>0,136</td>
<td>0,159</td>
<td>0,272</td>
<td>0,863356</td>
</tr>
<tr>
<td>#34</td>
<td>0,400</td>
<td>-</td>
<td>0,383</td>
<td>0,088</td>
<td>0,052</td>
<td>0,010</td>
<td>0,025</td>
<td>0,061</td>
<td>0,092</td>
<td>0,098</td>
<td>0,263</td>
<td>0,779817</td>
</tr>
<tr>
<td>#35</td>
<td>.414</td>
<td>.385</td>
<td>.095</td>
<td>.048</td>
<td>.034</td>
<td>.008</td>
<td>.027</td>
<td>.056</td>
<td>.088</td>
<td>.097</td>
<td>.283</td>
<td>.802768</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>24</td>
<td>68</td>
<td>86</td>
<td>61</td>
<td>995</td>
<td>721</td>
<td>938</td>
<td>632</td>
<td>103</td>
<td>497</td>
<td>553</td>
</tr>
<tr>
<td>#36</td>
<td>.417</td>
<td>.376</td>
<td>.079</td>
<td>.032</td>
<td>.032</td>
<td>.013</td>
<td>.015</td>
<td>.045</td>
<td>.070</td>
<td>.080</td>
<td>.288</td>
<td>.798552</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>46</td>
<td>5</td>
<td>81</td>
<td>02</td>
<td>491</td>
<td>145</td>
<td>397</td>
<td>862</td>
<td>054</td>
<td>209</td>
<td>532</td>
</tr>
<tr>
<td>#37</td>
<td>.422</td>
<td>.357</td>
<td>.075</td>
<td>.032</td>
<td>.013</td>
<td>.006</td>
<td>.012</td>
<td>.037</td>
<td>.052</td>
<td>.078</td>
<td>.280</td>
<td>.793405</td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>73</td>
<td>22</td>
<td>36</td>
<td>555</td>
<td>055</td>
<td>681</td>
<td>405</td>
<td>867</td>
<td>236</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>#38</td>
<td>.424</td>
<td>.326</td>
<td>.096</td>
<td>.037</td>
<td>.020</td>
<td>.008</td>
<td>.015</td>
<td>.039</td>
<td>.066</td>
<td>.095</td>
<td>.263</td>
<td>.787560</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>1</td>
<td>85</td>
<td>57</td>
<td>079</td>
<td>533</td>
<td>571</td>
<td>918</td>
<td>316</td>
<td>537</td>
<td>023</td>
<td></td>
</tr>
<tr>
<td>#39</td>
<td>.423</td>
<td>.282</td>
<td>.061</td>
<td>.009</td>
<td>.006</td>
<td>.002</td>
<td>.005</td>
<td>.013</td>
<td>.041</td>
<td>.060</td>
<td>.233</td>
<td>.739471</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>61</td>
<td>33</td>
<td>01</td>
<td>05</td>
<td>526</td>
<td>596</td>
<td>407</td>
<td>533</td>
<td>59</td>
<td>55</td>
<td>873</td>
</tr>
<tr>
<td>#40</td>
<td>.350</td>
<td>.299</td>
<td>.019</td>
<td>.004</td>
<td>.001</td>
<td>.000</td>
<td>.001</td>
<td>.006</td>
<td>.027</td>
<td>.042</td>
<td>.218</td>
<td>.633026</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>95</td>
<td>17</td>
<td>26</td>
<td>59</td>
<td>893</td>
<td>783</td>
<td>38</td>
<td>501</td>
<td>361</td>
<td>471</td>
<td>246</td>
</tr>
<tr>
<td>#41</td>
<td>.354</td>
<td>.322</td>
<td>.026</td>
<td>.010</td>
<td>.001</td>
<td>.000</td>
<td>.002</td>
<td>.013</td>
<td>.030</td>
<td>.048</td>
<td>.230</td>
<td>.659517</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>4</td>
<td>47</td>
<td>26</td>
<td>51</td>
<td>915</td>
<td>604</td>
<td>875</td>
<td>992</td>
<td>531</td>
<td>493</td>
<td>24</td>
</tr>
<tr>
<td>#42</td>
<td>.385</td>
<td>.351</td>
<td>.038</td>
<td>.016</td>
<td>.005</td>
<td>.000</td>
<td>.012</td>
<td>.020</td>
<td>.041</td>
<td>.058</td>
<td>.260</td>
<td>.711709</td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>17</td>
<td>25</td>
<td>84</td>
<td>51</td>
<td>721</td>
<td>463</td>
<td>224</td>
<td>191</td>
<td>594</td>
<td>811</td>
<td></td>
</tr>
<tr>
<td>#43</td>
<td>.407</td>
<td>.371</td>
<td>.044</td>
<td>.023</td>
<td>.018</td>
<td>.003</td>
<td>.018</td>
<td>.032</td>
<td>.049</td>
<td>.066</td>
<td>.278</td>
<td>.751271</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>85</td>
<td>23</td>
<td>18</td>
<td>37</td>
<td>025</td>
<td>89</td>
<td>991</td>
<td>776</td>
<td>081</td>
<td>686</td>
<td>407</td>
</tr>
<tr>
<td>#44</td>
<td>.400</td>
<td>.365</td>
<td>.049</td>
<td>.029</td>
<td>.025</td>
<td>.012</td>
<td>.015</td>
<td>.044</td>
<td>.050</td>
<td>.075</td>
<td>.272</td>
<td>.725821</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>74</td>
<td>48</td>
<td>15</td>
<td>14</td>
<td>823</td>
<td>439</td>
<td>918</td>
<td>977</td>
<td>579</td>
<td>017</td>
<td>419</td>
</tr>
<tr>
<td>#45</td>
<td>.398</td>
<td>.371</td>
<td>.057</td>
<td>.034</td>
<td>.027</td>
<td>.010</td>
<td>.020</td>
<td>.046</td>
<td>.062</td>
<td>.098</td>
<td>.255</td>
<td>.738426</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>49</td>
<td>27</td>
<td>77</td>
<td>98</td>
<td>765</td>
<td>483</td>
<td>304</td>
<td>643</td>
<td>855</td>
<td>569</td>
<td>983</td>
</tr>
<tr>
<td>#46</td>
<td>.385</td>
<td>.372</td>
<td>.106</td>
<td>.077</td>
<td>.039</td>
<td>.012</td>
<td>.039</td>
<td>.096</td>
<td>.102</td>
<td>.128</td>
<td>.242</td>
<td>.738503</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>48</td>
<td>61</td>
<td>61</td>
<td>69</td>
<td>244</td>
<td>359</td>
<td>263</td>
<td>454</td>
<td>134</td>
<td>394</td>
<td>123</td>
</tr>
<tr>
<td>#47</td>
<td>.376</td>
<td>.350</td>
<td>.092</td>
<td>.066</td>
<td>.029</td>
<td>.008</td>
<td>.031</td>
<td>.083</td>
<td>.090</td>
<td>.127</td>
<td>.232</td>
<td>.687491</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>99</td>
<td>72</td>
<td>75</td>
<td>73</td>
<td>531</td>
<td>229</td>
<td>207</td>
<td>726</td>
<td>619</td>
<td>72</td>
<td>921</td>
</tr>
<tr>
<td>#48</td>
<td>.230</td>
<td>.199</td>
<td>.056</td>
<td>.018</td>
<td>.008</td>
<td>.003</td>
<td>.007</td>
<td>.011</td>
<td>.025</td>
<td>.069</td>
<td>.169</td>
<td>.401442</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>29</td>
<td>56</td>
<td>51</td>
<td>91</td>
<td>282</td>
<td>1</td>
<td>083</td>
<td>728</td>
<td>316</td>
<td>498</td>
<td></td>
</tr>
<tr>
<td>#49</td>
<td>.221</td>
<td>.184</td>
<td>.076</td>
<td>.052</td>
<td>.028</td>
<td>.006</td>
<td>.015</td>
<td>.037</td>
<td>.066</td>
<td>.101</td>
<td>.204</td>
<td>.306296</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>14</td>
<td>29</td>
<td>79</td>
<td>62</td>
<td>069</td>
<td>958</td>
<td>092</td>
<td>465</td>
<td>602</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>.444</td>
<td>.176</td>
<td>.005</td>
<td>.003</td>
<td>.001</td>
<td>.000</td>
<td>.002</td>
<td>.004</td>
<td>.007</td>
<td>.030</td>
<td>.234</td>
<td>.572792</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>18</td>
<td>53</td>
<td>49</td>
<td>49</td>
<td>789</td>
<td>966</td>
<td>337</td>
<td>879</td>
<td>9</td>
<td>682</td>
<td>583</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>#67</td>
<td></td>
<td>-</td>
<td>0,241</td>
<td>-</td>
<td>0,143</td>
<td>-</td>
<td>0,069</td>
<td>-</td>
<td>0,057</td>
<td>-</td>
<td>0,005</td>
<td>0,081</td>
</tr>
<tr>
<td></td>
<td>1,070</td>
<td>-</td>
<td>0,131</td>
<td>0,143</td>
<td>0,91</td>
<td>0,005</td>
<td>0,141</td>
<td>0,499</td>
<td>0,995</td>
<td>0,248</td>
<td>0,999</td>
<td>0,435</td>
</tr>
<tr>
<td>#68</td>
<td>-</td>
<td>0,312</td>
<td>-</td>
<td>0,095</td>
<td>-</td>
<td>0,002</td>
<td>-</td>
<td>0,001</td>
<td>-</td>
<td>0,003</td>
<td>0,013</td>
<td>0,019</td>
</tr>
<tr>
<td></td>
<td>0,312</td>
<td>-</td>
<td>0,131</td>
<td>0,131</td>
<td>0,07</td>
<td>0,001</td>
<td>0,135</td>
<td>0,733</td>
<td>0,064</td>
<td>0,008</td>
<td>0,75</td>
<td>335</td>
</tr>
<tr>
<td>#69</td>
<td>-</td>
<td>0,053</td>
<td>-</td>
<td>0,011</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
<td>0,001</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>0,053</td>
<td>-</td>
<td>0,063</td>
<td>0,063</td>
<td>0,07</td>
<td>0,000</td>
<td>0,135</td>
<td>0,733</td>
<td>0,175</td>
<td>0,283</td>
<td>0,515</td>
<td>427</td>
</tr>
<tr>
<td>#70</td>
<td>-</td>
<td>0,130</td>
<td>-</td>
<td>0,004</td>
<td>-</td>
<td>0,001</td>
<td>-</td>
<td>9,96E-05</td>
<td>-</td>
<td>0,002</td>
<td>0,006</td>
<td>0,006</td>
</tr>
<tr>
<td></td>
<td>0,130</td>
<td>-</td>
<td>0,063</td>
<td>0,063</td>
<td>0,07</td>
<td>0,000</td>
<td>0,325</td>
<td>0,722</td>
<td>0,169</td>
<td>0,246</td>
<td>0,495</td>
<td>0,06</td>
</tr>
<tr>
<td>#71</td>
<td>-</td>
<td>0,263</td>
<td>-</td>
<td>0,036</td>
<td>-</td>
<td>0,002</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
<td>0,003</td>
<td>0,014</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>0,263</td>
<td>-</td>
<td>0,131</td>
<td>0,131</td>
<td>0,13</td>
<td>0,000</td>
<td>0,772</td>
<td>0,155</td>
<td>0,033</td>
<td>0,489</td>
<td>0,816</td>
<td>0,622</td>
</tr>
<tr>
<td>#72</td>
<td>-</td>
<td>0,674</td>
<td>-</td>
<td>0,146</td>
<td>-</td>
<td>0,025</td>
<td>-</td>
<td>0,016</td>
<td>-</td>
<td>0,012</td>
<td>0,021</td>
<td>0,031</td>
</tr>
<tr>
<td></td>
<td>0,674</td>
<td>-</td>
<td>0,163</td>
<td>0,163</td>
<td>0,16</td>
<td>0,016</td>
<td>0,929</td>
<td>0,929</td>
<td>0,976</td>
<td>0,429</td>
<td>0,352</td>
<td>861</td>
</tr>
<tr>
<td>#73</td>
<td>-</td>
<td>1,067</td>
<td>-</td>
<td>0,340</td>
<td>-</td>
<td>0,182</td>
<td>-</td>
<td>0,072</td>
<td>-</td>
<td>0,055</td>
<td>0,102</td>
<td>0,115</td>
</tr>
<tr>
<td></td>
<td>1,067</td>
<td>-</td>
<td>0,163</td>
<td>0,163</td>
<td>0,16</td>
<td>0,072</td>
<td>0,891</td>
<td>0,891</td>
<td>0,838</td>
<td>0,712</td>
<td>0,424</td>
<td>126</td>
</tr>
<tr>
<td>#74</td>
<td>-</td>
<td>1,064</td>
<td>-</td>
<td>0,336</td>
<td>-</td>
<td>0,172</td>
<td>-</td>
<td>0,061</td>
<td>-</td>
<td>0,061</td>
<td>0,106</td>
<td>0,119</td>
</tr>
<tr>
<td></td>
<td>1,064</td>
<td>-</td>
<td>0,163</td>
<td>0,163</td>
<td>0,16</td>
<td>0,061</td>
<td>0,925</td>
<td>0,925</td>
<td>0,963</td>
<td>0,859</td>
<td>0,86</td>
<td>539</td>
</tr>
<tr>
<td>#75</td>
<td>-</td>
<td>1,049</td>
<td>-</td>
<td>0,290</td>
<td>-</td>
<td>0,136</td>
<td>-</td>
<td>0,056</td>
<td>-</td>
<td>0,056</td>
<td>0,108</td>
<td>0,120</td>
</tr>
<tr>
<td></td>
<td>1,049</td>
<td>-</td>
<td>0,109</td>
<td>0,109</td>
<td>0,11</td>
<td>0,056</td>
<td>0,326</td>
<td>0,326</td>
<td>0,368</td>
<td>0,681</td>
<td>0,808</td>
<td>937</td>
</tr>
<tr>
<td>#76</td>
<td>-</td>
<td>1,041</td>
<td>-</td>
<td>0,276</td>
<td>-</td>
<td>0,127</td>
<td>-</td>
<td>0,055</td>
<td>-</td>
<td>0,055</td>
<td>0,106</td>
<td>0,117</td>
</tr>
<tr>
<td></td>
<td>1,041</td>
<td>-</td>
<td>0,109</td>
<td>0,109</td>
<td>0,11</td>
<td>0,055</td>
<td>0,703</td>
<td>0,703</td>
<td>0,638</td>
<td>0,86</td>
<td>434</td>
<td>91</td>
</tr>
<tr>
<td>#77</td>
<td>-</td>
<td>0,544</td>
<td>-</td>
<td>0,055</td>
<td>-</td>
<td>0,050</td>
<td>-</td>
<td>0,043</td>
<td>-</td>
<td>0,011</td>
<td>0,007</td>
<td>0,046</td>
</tr>
<tr>
<td></td>
<td>0,544</td>
<td>-</td>
<td>0,109</td>
<td>0,109</td>
<td>0,11</td>
<td>0,050</td>
<td>0,18</td>
<td>0,18</td>
<td>0,41</td>
<td>0,789</td>
<td>0,787</td>
<td>999</td>
</tr>
<tr>
<td>#78</td>
<td>-</td>
<td>0,044</td>
<td>-</td>
<td>0,336</td>
<td>-</td>
<td>0,262</td>
<td>-</td>
<td>0,065</td>
<td>-</td>
<td>0,034</td>
<td>0,039</td>
<td>0,095</td>
</tr>
<tr>
<td></td>
<td>0,544</td>
<td>-</td>
<td>0,109</td>
<td>0,109</td>
<td>0,11</td>
<td>0,209</td>
<td>0,27</td>
<td>0,262</td>
<td>0,91</td>
<td>0,351</td>
<td>0,405</td>
<td>239</td>
</tr>
<tr>
<td>#79</td>
<td>-</td>
<td>0,543</td>
<td>-</td>
<td>0,033</td>
<td>-</td>
<td>0,199</td>
<td>-</td>
<td>0,007</td>
<td>-</td>
<td>0,003</td>
<td>0,040</td>
<td>0,086</td>
</tr>
<tr>
<td></td>
<td>0,543</td>
<td>-</td>
<td>0,109</td>
<td>0,109</td>
<td>0,11</td>
<td>0,199</td>
<td>0,27</td>
<td>0,58</td>
<td>0,58</td>
<td>0,192</td>
<td>0,82</td>
<td>676</td>
</tr>
<tr>
<td>#80</td>
<td>-</td>
<td>0,483</td>
<td>-</td>
<td>0,359</td>
<td>-</td>
<td>0,205</td>
<td>-</td>
<td>0,010</td>
<td>-</td>
<td>0,005</td>
<td>0,039</td>
<td>0,104</td>
</tr>
<tr>
<td></td>
<td>0,483</td>
<td>-</td>
<td>0,109</td>
<td>0,109</td>
<td>0,11</td>
<td>0,205</td>
<td>0,47</td>
<td>0,49</td>
<td>0,49</td>
<td>0,391</td>
<td>0,26</td>
<td>0,26</td>
</tr>
<tr>
<td>#81</td>
<td>-</td>
<td>0,469</td>
<td>-</td>
<td>0,350</td>
<td>-</td>
<td>0,170</td>
<td>-</td>
<td>0,011</td>
<td>-</td>
<td>0,019</td>
<td>0,047</td>
<td>0,105</td>
</tr>
<tr>
<td></td>
<td>0,469</td>
<td>-</td>
<td>0,109</td>
<td>0,109</td>
<td>0,11</td>
<td>0,170</td>
<td>0,27</td>
<td>0,27</td>
<td>0,27</td>
<td>0,223</td>
<td>0,725</td>
<td>0,725</td>
</tr>
<tr>
<td>#82</td>
<td>-</td>
<td>0,044</td>
<td>-</td>
<td>0,350</td>
<td>-</td>
<td>0,170</td>
<td>-</td>
<td>0,011</td>
<td>-</td>
<td>0,019</td>
<td>0,047</td>
<td>0,105</td>
</tr>
<tr>
<td>#83</td>
<td>0,442</td>
<td>-</td>
<td>0,345</td>
<td>-</td>
<td>0,192</td>
<td>-</td>
<td>0,152</td>
<td>-</td>
<td>0,099</td>
<td>-</td>
<td>0,019</td>
<td>0,043</td>
</tr>
<tr>
<td>#84</td>
<td>0,477</td>
<td>-</td>
<td>0,399</td>
<td>-</td>
<td>0,139</td>
<td>-</td>
<td>0,108</td>
<td>-</td>
<td>0,058</td>
<td>-</td>
<td>0,016</td>
<td>0,043</td>
</tr>
<tr>
<td>#85</td>
<td>0,071</td>
<td>-</td>
<td>0,036</td>
<td>-</td>
<td>0,001</td>
<td>-</td>
<td>0,001</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
<td>0,001</td>
<td>0,001</td>
</tr>
<tr>
<td>#86</td>
<td>0,105</td>
<td>-</td>
<td>0,042</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
<td>1,64E-05</td>
<td>0,000</td>
</tr>
<tr>
<td>#87</td>
<td>0,406</td>
<td>-</td>
<td>0,248</td>
<td>-</td>
<td>0,007</td>
<td>-</td>
<td>0,001</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
<td>-5,9E-05</td>
<td>0,003</td>
</tr>
<tr>
<td>#88</td>
<td>0,491</td>
<td>-</td>
<td>0,337</td>
<td>-</td>
<td>0,160</td>
<td>-</td>
<td>0,098</td>
<td>-</td>
<td>0,010</td>
<td>-</td>
<td>0,006</td>
<td>0,047</td>
</tr>
<tr>
<td>#89</td>
<td>0,509</td>
<td>-</td>
<td>0,358</td>
<td>-</td>
<td>0,195</td>
<td>-</td>
<td>0,152</td>
<td>-</td>
<td>0,046</td>
<td>-</td>
<td>0,003</td>
<td>0,048</td>
</tr>
<tr>
<td>#90</td>
<td>0,505</td>
<td>-</td>
<td>0,384</td>
<td>-</td>
<td>0,184</td>
<td>-</td>
<td>0,139</td>
<td>-</td>
<td>0,056</td>
<td>-</td>
<td>0,004</td>
<td>0,045</td>
</tr>
<tr>
<td>#91</td>
<td>0,966</td>
<td>-</td>
<td>0,215</td>
<td>-</td>
<td>0,109</td>
<td>-</td>
<td>0,061</td>
<td>-</td>
<td>0,020</td>
<td>-</td>
<td>0,020</td>
<td>0,042</td>
</tr>
<tr>
<td>#92</td>
<td>0,885</td>
<td>-</td>
<td>0,243</td>
<td>-</td>
<td>0,144</td>
<td>-</td>
<td>0,085</td>
<td>-</td>
<td>0,003</td>
<td>-</td>
<td>0,003</td>
<td>0,040</td>
</tr>
<tr>
<td>#93</td>
<td>0,923</td>
<td>-</td>
<td>0,165</td>
<td>-</td>
<td>0,049</td>
<td>-</td>
<td>0,030</td>
<td>-</td>
<td>0,013</td>
<td>-</td>
<td>0,013</td>
<td>0,043</td>
</tr>
<tr>
<td>#94</td>
<td>0,866</td>
<td>-</td>
<td>0,106</td>
<td>-</td>
<td>0,030</td>
<td>-</td>
<td>0,008</td>
<td>-</td>
<td>0,003</td>
<td>-</td>
<td>0,010</td>
<td>0,056</td>
</tr>
<tr>
<td>#95</td>
<td>0,813</td>
<td>-</td>
<td>0,147</td>
<td>-</td>
<td>0,073</td>
<td>-</td>
<td>0,040</td>
<td>-</td>
<td>0,005</td>
<td>-</td>
<td>0,007</td>
<td>0,076</td>
</tr>
<tr>
<td>#96</td>
<td>0,738</td>
<td>-</td>
<td>0,241</td>
<td>-</td>
<td>0,181</td>
<td>-</td>
<td>0,128</td>
<td>-</td>
<td>0,081</td>
<td>-</td>
<td>0,093</td>
<td>0,109</td>
</tr>
<tr>
<td>#97</td>
<td>0,630</td>
<td>-</td>
<td>0,297</td>
<td>-</td>
<td>0,235</td>
<td>-</td>
<td>0,156</td>
<td>-</td>
<td>0,110</td>
<td>-</td>
<td>0,082</td>
<td>0,082</td>
</tr>
<tr>
<td>#98</td>
<td>0,169</td>
<td>-</td>
<td>0,013</td>
<td>-</td>
<td>0,001</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
<td>0,000</td>
<td>-</td>
<td>0,000</td>
<td>0,007</td>
</tr>
<tr>
<td>#112</td>
<td>0.350</td>
<td>0.310</td>
<td>0.260</td>
<td>0.210</td>
<td>0.160</td>
<td>0.110</td>
<td>0.060</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.550</td>
<td>0.510</td>
<td>0.470</td>
<td>0.430</td>
<td>0.390</td>
<td>0.350</td>
<td>0.310</td>
<td>0.270</td>
<td>0.230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.490</td>
<td>0.450</td>
<td>0.410</td>
<td>0.370</td>
<td>0.330</td>
<td>0.290</td>
<td>0.250</td>
<td>0.210</td>
<td>0.170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.430</td>
<td>0.390</td>
<td>0.350</td>
<td>0.310</td>
<td>0.270</td>
<td>0.230</td>
<td>0.190</td>
<td>0.150</td>
<td>0.110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.390</td>
<td>0.350</td>
<td>0.310</td>
<td>0.270</td>
<td>0.230</td>
<td>0.190</td>
<td>0.150</td>
<td>0.110</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.350</td>
<td>0.310</td>
<td>0.270</td>
<td>0.230</td>
<td>0.190</td>
<td>0.150</td>
<td>0.110</td>
<td>0.070</td>
<td>0.030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.310</td>
<td>0.270</td>
<td>0.230</td>
<td>0.190</td>
<td>0.150</td>
<td>0.110</td>
<td>0.070</td>
<td>0.030</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.270</td>
<td>0.230</td>
<td>0.190</td>
<td>0.150</td>
<td>0.110</td>
<td>0.070</td>
<td>0.030</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.230</td>
<td>0.190</td>
<td>0.150</td>
<td>0.110</td>
<td>0.070</td>
<td>0.030</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.190</td>
<td>0.150</td>
<td>0.110</td>
<td>0.070</td>
<td>0.030</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.150</td>
<td>0.110</td>
<td>0.070</td>
<td>0.030</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.110</td>
<td>0.070</td>
<td>0.030</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.070</td>
<td>0.030</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.030</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#114 | 0.351 | 0.310 | 0.260 | 0.210 | 0.160 | 0.110 | 0.060 | 0.010 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.351</td>
<td>0.310</td>
<td>0.260</td>
<td>0.210</td>
<td>0.160</td>
<td>0.110</td>
<td>0.060</td>
<td>0.010</td>
<td>0.000</td>
</tr>
<tr>
<td>0.310</td>
<td>0.260</td>
<td>0.210</td>
<td>0.160</td>
<td>0.110</td>
<td>0.060</td>
<td>0.010</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.260</td>
<td>0.210</td>
<td>0.160</td>
<td>0.110</td>
<td>0.060</td>
<td>0.010</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.210</td>
<td>0.160</td>
<td>0.110</td>
<td>0.060</td>
<td>0.010</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.160</td>
<td>0.110</td>
<td>0.060</td>
<td>0.010</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.110</td>
<td>0.060</td>
<td>0.010</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.060</td>
<td>0.010</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.010</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#115</td>
<td>0.752</td>
<td>0.195</td>
<td>0.165</td>
<td>0.142</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.039</td>
<td>0.021</td>
<td>0.016</td>
<td>0.002</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>936</td>
<td>84</td>
<td>107</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#116</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#117</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#118</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#119</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#120</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#121</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#122</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#123</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#124</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#125</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#126</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#127</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#128</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#129</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#130</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>-</td>
<td>0.071</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.452</td>
<td>84</td>
<td>0.174</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#131</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,005</td>
<td>0,044</td>
</tr>
<tr>
<td></td>
<td>0,783</td>
<td>0,296</td>
<td>0,183</td>
<td>0,134</td>
<td>0,007</td>
<td>0,044</td>
<td>0,389</td>
<td>0,666</td>
</tr>
<tr>
<td>#132</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,000</td>
<td>0,003</td>
</tr>
<tr>
<td></td>
<td>0,196</td>
<td>0,017</td>
<td>0,002</td>
<td>0,001</td>
<td>0,013</td>
<td>0,005</td>
<td>0,791</td>
<td>0,889</td>
</tr>
<tr>
<td>#133</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,005</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>0,421</td>
<td>0,360</td>
<td>0,080</td>
<td>0,033</td>
<td>0,014</td>
<td>0,005</td>
<td>0,223</td>
<td>0,727</td>
</tr>
<tr>
<td>#134</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,047</td>
<td>0,098</td>
</tr>
<tr>
<td></td>
<td>0,565</td>
<td>0,347</td>
<td>0,242</td>
<td>0,196</td>
<td>0,111</td>
<td>0,024</td>
<td>0,589</td>
<td>0,886</td>
</tr>
<tr>
<td>#135</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,003</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td>0,510</td>
<td>0,325</td>
<td>0,199</td>
<td>0,175</td>
<td>0,014</td>
<td>0,003</td>
<td>0,327</td>
<td>0,65</td>
</tr>
<tr>
<td>#136</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,003</td>
<td>0,005</td>
</tr>
<tr>
<td></td>
<td>0,512</td>
<td>0,353</td>
<td>0,167</td>
<td>0,108</td>
<td>0,036</td>
<td>0,003</td>
<td>0,712</td>
<td>0,494</td>
</tr>
<tr>
<td>#137</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,004</td>
<td>0,013</td>
</tr>
<tr>
<td></td>
<td>0,512</td>
<td>0,382</td>
<td>0,178</td>
<td>0,135</td>
<td>0,059</td>
<td>0,002</td>
<td>0,045</td>
<td>0,113</td>
</tr>
</tbody>
</table>

82
Annex 5: < MATLAB code for making the flow regime map out with the result coming from the flow pattern recognition algorithm. This code is saved as FlowRegimeMapping.m >

```matlab
clc;
clear all;
%%%% Graph for the measurements taken
% Get data out the excel file
Measurements = xlsread('Flow_regime_identification.xlsx','horizontal_pipe');
% Mapping All Measurements
Water = Measurements(1:end,1);
Air = Measurements(1:end,2);
figure
scatter(Air,Water);
grid on
set(gca,'xscale','log');
set(gca,'yscale','log');
title('Measurements taken with Multiphase flow rig Air & Water Straight Pipe');
xlabel('Air Flow Rate [kg/min]'); % x-axis label
ylabel('Water Flow Rate [kg/min]') % y-axis label
axis([0.05 5 1 200]);

%%%% Mapping with FP results
figure
Intermittent = Measurements(1:end,4);
Annular = Measurements(1:end,5);
StratWavy = Measurements(1:end,6);
SuccessorFail = Measurements(1:end,7);
Flow_rates=Measurements(1:end,1:2);
for i_index=1:length(Flow_rates)
    selectedRow = i_index;
    if Intermittent(selectedRow,1) == 1;
        scatter(Flow_rates(selectedRow,2),Flow_rates(selectedRow,1),'^','b','filled')
    elseif Annular(selectedRow,1) ~= 0;
        scatter(Flow_rates(selectedRow,2),Flow_rates(selectedRow,1),40,Annular(selectedRow,1),'^','filled','o')
    elseif StratWavy(selectedRow,1) == 1;
        scatter(Flow_rates(selectedRow,2),Flow_rates(selectedRow,1),'s','g')
    end
    hold on
    if SuccessorFail(selectedRow,1) == 1;
        scatter(Flow_rates(selectedRow,2),Flow_rates(selectedRow,1),80,'o','r')
    end
end
hold on
%%%% Make up of the plot
grid on
set(gca,'xscale','log');
set(gca,'yscale','log');
title('Flow Regime Map 56mm Air & Water Straight Pipe');
xlabel('Air Flow Rate [kg/min]'); % x-axis label
ylabel('Water Flow Rate [kg/min]') % y-axis label
axis([0.05 5 1 200]);
```

legend('Intermittent', 'Annular', 'StratWavy',
'Location', 'eastoutside');