GRA 19502

Master Thesis

Component of continuous assessment: Thesis Master of Science

Three Perspectives on the Cash Flow Sensitivity of Cash

Navn: Runhild Bjerkomp Soelberg

Start: 02.03.2017 09.00

Finish: 01.09.2017 12.00
Three Perspectives on the Cash Flow Sensitivity of Cash

Supervisor: Danielle Zhang

Master thesis

01.09.2017

This thesis is a part of the MSc programme at BI Norwegian Business School. The school takes no responsibility for the methods used, results found and conclusions drawn.
Content

FINANCIAL CONSTRAINTS IMPOSE GREATER CASH RETENTION 1

2. LITERATURE REVIEW ... 3

WHY DO FIRMS HOLD CASH? .. 3
HOW MUCH CASH SHOULD FIRMS HOLD? ... 3
DETERMINANTS OF FINANCING FRICCTIONS ... 5
CASH HOLDINGS IN FINANCIALLY CONstrained FIRMS 6
Cash holdings in private and public firms .. 6
Demand for cash and the financial crisis ... 7
MOVING FORWARD .. 7

3. SAMPLE AND DATA ... 8

DATA .. 8
DEFINITION OF VARIABLES .. 9
Endogenous variable ... 9
Exogenous variables ... 9
Variables used for sample split ... 10
SUMMARY STATISTICS .. 12

4. HYPOTHESES AND METHODOLOGY .. 14

HYPOTHESIS DEVELOPMENT ... 14
MODELS OF CASH HOLDINGS .. 15
The baseline model ... 15
The augmented model .. 16
Model modification for CCGR samples ... 17
Modelling qualitative differences .. 18

5. RESULTS ... 18

H1 ... 19
Firm classification .. 19
Cash holdings in financially constrained vs unconstrained firms 21
Fitting of the baseline regression model ... 22
Fitting of the augmented regression model ... 23
Hypothesis 1 – Preliminary findings ... 25

H2 ... 25
Sample selection and the matching process .. 26
Summary statistics of subsamples ... 29
Fitting of the baseline regression model ... 31
Fitting of the augmented regression model ... 33
Hypothesis 2 – Preliminary findings ... 36
Acknowledgements

First and foremost, I thank my supervisor, Danielle Zhang, for her inspiration, patience and brilliant advice. I also thank the Center for Corporate Governance Research for providing me with quality data; my friend, Sindre Lorenzen, for valuable Stata lessons; and finally, my precious family for always cheering me on.
Abstract

In this thesis, I analyze the effect of cash flows on changes in cash holdings. I compare the cash flow sensitivity of cash in financially constrained and unconstrained firms, and find that financially constrained firms have a positive and significant cash flow sensitivity of cash. I also investigate cash holdings before, during, and after the 2008 financial crisis. The results show that firms display an increased sensitivity of cash holdings to cash flow changes during the financial crisis. Finally, I study the difference in cash holdings and their sensitivity to cash flow changes in private and public firms and find that private firms have a greater cash flow sensitivity of cash than public firms do. Overall, my findings support the hypothesis that financially constrained firms have a positive cash flow sensitivity to cash.
Financial Constraints Impose Greater Cash Retention

In this thesis, I analyze the effect of cash flows on changes in cash holdings – the cash flow sensitivity of cash. I do so by fitting two regression models of cash holdings developed by Almeida et al. (2004) on three samples of financially constrained and financially unconstrained firms. I find that: First, financially constrained firms have a positive cash flow sensitivity of cash. Secondly, private firms save significantly more cash out of their cash flows. Thirdly, when firms expect financing frictions, they retain more cash. Overall, my results indicate that financial constraints impose greater cash retention. My thesis contributes to the existing literature by expanding the usage of the two cash holdings models and by providing insights into a rarely studied group of companies – private firms.

My research question is “Do financial constraints impose greater cash retention?” The question is interesting because studies show that firms hold a significant fraction of their total assets as cash, in spite of efficient-markets theories implying that firms should not need to, since funding is always available for profitable projects. In 2007, private, Norwegian, industrial firms, held 20% of their assets as cash while financially constrained firms had an average cash ratio over 30% (Ehling, 2010). Researchers have also found that private firms are at a disadvantage with respect to external financing and loan costs in particular. Funding of private firms is a central topic for the Norwegian economy in the as we are looking for “the new oil”, because innovation and jobs are mainly created in private firms.

The first hypothesis is that firms considered financially constrained have a positive and significant cash flow sensitivity of cash while unconstrained firms do not. To test the hypothesis, I use a baseline and an augmented model, developed by Almeida et al. (2004). I test the models on subsamples of financially constrained and financially unconstrained firms, defined by three criteria: payout ratio, size, and the KZ-index. My results are, in part, consistent with the findings of Almeida et al. (2004). I find that firms considered financially constrained have a positive and significant cash flow sensitivity of cash. However, the results with respect to unconstrained firms are inconclusive.
The second hypothesis is that private firms should have a greater cash flow sensitivity of cash than public firms do. The rationale is that private firms have less access to external financing compared to public firms and should therefore behave like financially constrained firms and retain more cash from their cash flows. Since the private firms generally have very different characteristics than the public firms, I create a subsample of private firms that match the public firms with respect to industry and size. I then compare the public firms to the matched private firms and to the full sample of private firms, using the baseline and augmented models from Almeida et al. (2004). The results show that both the private and the matched private firms have a positive and significant cash flow sensitivity of cash, while it is not significant for public firms. Thus, the findings support the hypothesis.

My third hypothesis is that firms should demonstrate a greater cash flow sensitivity of cash when expecting financial frictions. Again, I test the hypothesis using the baseline and augmented models from Almeida et al. (2004), this time with a dummy variable capturing the effect of the 2008 financial crisis. I find that both private and public firms increase their propensity to save cash out of cash flows in the 2007-2008 period. I.e., I find support for my hypothesis.

My thesis contributes to the literature in three ways. First, I provide a re-contextualization of the models of Almeida et al. (2004) by applying their framework to updated data on Norwegian, public firms. Secondly, I combine their baseline and augmented models with the research design from Gao et al. (2013) and find that the models reveal interesting differences in cash to cash flow sensitivities of private and public firms. Thirdly, I find results confirming their theory of increased cash retention as a response to macroeconomic shocks by testing their model on the 2008 financial crisis.

The remainder of my paper is organized as follows. A literature review is presented in Section 2. In Section 3, I describe the sample and data. My hypotheses and methodology is explained in Section 4, and the results are presented in Section 5. Finally, I conclude in Section 6.
2. Literature Review

Why Do Firms Hold Cash?

To examine the effect of cash flows on changes in cash holdings, it is necessary to know why firms hold cash. In the existing literature, several motives for holding cash are described:

1. The transactions-motive. The transactions-motive is the motive to hold a sufficient amount of cash to manage the day-to-day operations of the firm (Baumol, 1952; Keynes, 1936; Miller & Orr, 1966), e.g. being able to pay bills on time.

2. The precautionary-motive. Holding cash in the case of a contingency payment is an example of the precautionary-motive (Bates, Kahle, & Stulz, 2009; Keynes, 1936). Harford, Klasa, and Maxwell point out that firms use cash to hedge against refinancing risk (2014).

3. The speculative-motive. Speculating-motives for holding cash include holding cash to be able to take advantage of an unforeseen investment opportunity (Keynes, 1936).

4. The tax-motive. Firms who face repatriation taxes on foreign earnings, have an incentive to retain the earnings as cash abroad unless they have attractive investment opportunities (Fritz Foley, Hartzell, Titman, & Twite, 2007).

5. The agency motive. The agency motive for holding cash stems from a conflict of interest between shareholders and managers. The theory postulates that managers have an incentive to overinvest, e.g. to hire more employees than necessary or take on less profitable expansion projects, in order to increase their managerial status (Jensen, 1986). Thus, studies show that cash holdings are higher in countries where shareholder protection is low (Dittmar, Mahrt-Smith, & Servaes, 2003)

How Much Cash Should Firms Hold?

Having established why firms hold cash, the question is “How much cash should they hold?” Existing literature presents three main theories related to corporate capital structure and cash holdings: the trade-off theory, the pecking order theory and the free cash flow theory (Tahir, Alifiah, Arshad, & Saleem, 2016).
1. The trade-off theory suggests that a firm’s optimal level of cash holdings is defined by the marginal cost and the marginal benefit of holding liquid assets (Myers, 1984). The benefits relates to transactional- and precautionary-motives, while the costs stem from having to forgo a profitable investment in order to save cash (Keynes, 1936).

2. The pecking order theory proposes that firms prefer internal to external financing and debt to equity (Myers, 1984). Fazzari et al. (1988) mention several reasons for the lower cost of internal financing, e.g., transaction costs, financial distress costs and asymmetric information between management and new creditors or investors.

3. The free-cash-flow theory builds on agency theory arguments and infers that firms should avoid keeping excess cash when there is a conflict of interest between shareholders and management, as this will cause managers to overinvest (Jensen, 1986).

In his classical work, Keynes (1936) points out that there is no need to hold cash if it can be easily acquired at the time of necessity. Thus, the importance of a liquid balance sheet depends on a firm’s access to capital markets, and financial frictions should lead to liquidity management being a key issue for corporate policy.

Keynes’ theory is supported by the findings of Billett and Garfinkel (2004), who show that increased financial flexibility correlates with smaller fractions of cash and marketable securities on the balance sheet. Their results cohere with those of Almeida et al. (2004), who find that financially constrained firms have a disposition towards increasing their holdings of liquid assets as a response to positive cash flow shocks. This disposition is referred to as having a positive cash flow sensitivity of cash. However, there has also been found evidence of the contrary, i.e., that cash flows and cash retention is negatively related (Riddick & Whited, 2009).
Determinants of Financing Frictions

The payout ratio and similar measures are often used to determine which companies are considered financially constrained (Almeida et al., 2004; Campello, Graham, & Harvey, 2010; Fazzari et al., 1988). Dividend stickiness, i.e. firms’ reluctance to decrease dividends due to a negative signal effect (Brav, Graham, Harvey, & Michaely, 2005; Guttman, Kadan, & Kandel, 2010; Lintner, 1956), makes company payouts a good indicator of the expected prospects of the firm.

Firm size is another criteria used to define financially constrained firms (Almeida et al., 2004; Campello et al., 2010; Gilchrist & Himmelberg, 1995; Hadlock & Pierce, 2010; Mulligan, 1997). Although large firms often depend on substantial, long-term loans, they are often able to allocate capital internally in cases where smaller firms would have to seek external financing (Beck, Demirgüç-Kunt, & Maksimovic, 2005). One may therefore expect smaller firms to experience more financing frictions (Almeida et al., 2004).

Almeida et al. (2004) employ the KZ-index to distinguish between financially constrained and unconstrained firms. The index is developed from Kaplan and Zingales’ (1997) research and Almeida et al. (2004) use the results of Lamont, Polk and Saaá-Requejo (2001) to compute the index values. The index consists of a pool of five variables: cash holdings, cash flow, Q, dividends and leverage. The probability for a firm to be ranked as financially constrained according to the KZ-index is greater for firms that are highly levered, have higher values for Q, and which do not pay dividends. The probability is lower for firms that have high dividend payments, high retained earnings net of dividends, high cash flows and cash holdings, and that are not highly levered. However, Almeida et al. (2004) find that the firms considered financially constrained according to the KZ-index behave in line with expectations for unconstrained firms and vice versa. Other researchers criticize the KZ-index and recommend caution in interpreting the results of this measure (Hadlock & Pierce, 2010).
Cash Holdings in Financially Constrained Firms

According to the theory developed by Almeida et al. (2004), cash flows should have a positive and significant impact on changes in cash holdings in financially constrained firms. This relation is the main concern of their analysis. The researchers also control for size, due to economies of scale effects. Finally, they include Q, the ratio of market value of assets to book value of assets, as a proxy for future investment opportunities. They hypothesize that constrained firms should have a positive Q estimate, while the coefficient should be unsigned for unconstrained firms.

In their augmented model, Almeida et al. (2004) also include capital expenditures (capex), acquisitions, changes in noncash net working capital, and changes in short-term debt. Firms can use cash to pay for investments and acquisitions, thus the coefficients for capex and acquisitions are expected to be negative. Changes in net working capital is included because working capital may substitute cash (Opler, Pinkowitz, Stulz, & Williamson, 1999) or cash can be used to increase working capital (Fazzari & Petersen, 1993). Similarly, the firm can substitute short-term debt for cash or use it to increase cash reserves (Almeida et al., 2004).

Cash holdings in private and public firms

There are two conflicting explanations for the discrepancy in cash holdings between public and private firms. The first explanation is that firms with a greater cost of external capital, for instance due to information asymmetry between the company and its creditors, hold more cash (Fazzari et al., 1988; Myers, 1984). Saunders and Steffen (2011) find evidence of private firms having a disadvantage with respect to loan costs. Thus, private firms should hold more cash than public firms should, because private firms have less access to external financing. The second explanation is that firms with greater agency conflicts between shareholders and management hold more cash (Gleason, Greiner, & Kannan, 2017; Jensen, 1986). In their research from 2013, Gao et al. find that the agency costs of public firms are greater than the reduction in external financing costs, which leads to larger cash holdings in public firms.
Demand for cash and the financial crisis

Previous research has shown that the impact of financial constraints are not consistent over time (Lamont et al., 2001) and several scholars have found evidence of financial constraints being more severe during recessions (Gertler & Gilchrist, 1994; Gertler & Hubbard, 1988; Kashyap, Lamont, & Stein, 1994). Fazzari et al. (1988) emphasizes the importance of macroeconomic factors, as they find that changes in companies’ cash flows and liquidity correlates with fluctuations in the economy as a whole over the life of the company. Further, Almeida et al. (2004) find that financially constrained firms increase cash retention in response to macroeconomic shocks, while unconstrained firms do not.

Campello, Graham, and Harvey (2010) investigate the effect of the 2008 financial crisis on cash holdings in financially constrained and unconstrained firms. Their results show that financially constrained U.S. firms substantially reduce their cash deposits in the year after the crisis, while the cash levels of the unconstrained firms remained stable. A similar pattern was found for European firms (Campello et al., 2010).

Moving forward

Most previous studies on the topic of cash flow sensitivity of cash have been conducted using data on public, U.S. firms. Meanwhile, Norway differs from the U.S. in important areas. At the company level, Norwegian firms hold less cash and have a greater ratio of foreign sales to total sales than U.S. firms do. At the country level, apart from the obvious size difference, the two countries score differently on variables such as industry diversification and political stability (Fernandes & Gonenc, 2016). These differences motivates a study on the cash flow sensitivity of cash of Norwegian firms.

Furthermore, few studies have been done on private firms due to lack of quality data. Berzins and Bøhren (2009) suggest that inferences from research conducted on public firms may actually be invalid for private firms because differences in regulatory climate may impact firm behavior in aspects such as investments, financing and profitability. Thus, research on private firms is not only interesting, but necessary if we want to understand the behavior of private firms.
3. Sample and Data

Data

The first analysis is conducted using panel data from Datastream consisting of accounting variables and market value for all companies traded at the Oslo Stock Exchange in the period from 1992 to 2016. The data was retrieved the 20th of April 2017. The original dataset contains 11 316 firm-years. I exclude the 6 746 firm-years that have missing recordings of cash holdings because these observations will be irrelevant for the analyses. Further, I adhere to standard research practice and exclude financial and utilities firms from my sample as these companies often display distinctive characteristics with respect to cash holdings and capital structure (see for example (Gao et al., 2013; Harford et al., 2014; Opler et al., 1999). Following Almeida et al. (2004), I remove firm-years with asset growth or sales growth of more than 100% as these rates of change are not likely to sustain over time. Finally, I eliminate firm-years where the market value of assets is less than 1 000 000 NOK as this is the minimum amount of equity necessary to take a company public in Norway.

This procedure leaves me with a sample of 3 840 firm-years. To avoid the effect of rare events such as very large mergers and severe firm shocks as well as extreme outliers caused by recording or measurement mistakes, I winsorize all continuous variables at the 1% and 99% levels (Gao et al., 2013; Hovakimian & Titman, 2006; Quader & Abdullah, 2016).

The analyses comparing private and public companies and are conducted using data from the Centre for Corporate Governance Research (CCGR) at BI Norwegian Business School. The dataset includes all Norwegian private and public firms in the period from 2000 to 2015. There are 3 011 983 firm-years in total, of which 3 005 951 are observations of private firms and 6 032 are observations of public firms. Cleaning of the data is done following the same procedure as above, with some exceptions:

1. Since market value data is unavailable for most private firms; there is no lower limit of market value. Instead, only firms with positive total assets are included.
2. The data cleaning procedure above fails to remove some extreme outliers. To correct for these outliers, I winsorize the variables at the 2.5% and 97.5% levels. The same levels are used in a similar study by Gao et al. (2013).

After cleaning, the sample consists of 2,511,805 firm-years for private firms and 4,458 firm-years for public firms.

Definition of Variables

All continuous variables from both Datastream and CCGR are CPI adjusted to the 2016 level. The 2016 Norwegian CPI is retrieved from Statistics Norway (SSB). For references to ID numbers of the variables in Datastream and CCGR respectively, see APPENDIX A. The analyzed variables are described as follows.

Endogenous variable

To measure corporate cash holdings, I follow Almeida et al. (2004) and Gao et al. (2013) and define the endogenous variable \(\text{CashHoldings} \) as the ratio of cash and marketable securities to total assets. Since I am interested in the change in cash holdings, I use the first difference of the variable, i.e., \(\Delta \text{CashHoldings} \). The definition is the same in both the Datastream and CCGR dataset.

Exogenous variables

My exogenous variables are \(\text{CashFlow}, Q, \text{Size}, \text{Expenditures}, \text{Acquisitions}, \Delta \text{NWC}, \text{and} \Delta \text{ShortDebt} \). The definitions are mostly consistent with those of Almeida et al. (2004). There are cases where specification of the variables in the CCGR sample differ from the variables in the Datastream sample. In those cases, both specifications are described in the following list:

- \(\text{CashFlow} \) is the primary exogenous variable of interest. In my analysis, it is defined as the ratio of earnings before extraordinary items and dividends to total assets.
- \(Q \) (Tobin’s q) is measured as market value to book value of assets.
 - Since market value data is unavailable for the CCGR sample, \(Q \) is replaced by \(\text{InvOpp} \), when CCGR data is used. \(\text{InvOpp} \) is defined as capital expenditures (capex) scaled by property, plant and
equipment (Adam & Goyal, 2008), where capex is measured as the change in net property, plant, and equipment.

- **Size** is the natural log of total assets.
- **Expenditures** is capital expenditures scaled by total assets
 - Expenditures is measured as the change in net property, plant, and equipment scaled by total assets in the CCGR sample.
- **Acquisitions** is acquisitions scaled by total assets.
 - Acquisitions is unavailable in CCGR, thus, the variable is omitted.
- **ΔNWC** is defined as the first difference of the ratio of noncash net working capital to total assets.
- **ΔShortDebt** is the first difference of the ratio of short-term debt to total assets.

Variables used for sample split

To examine the difference between financially constrained and unconstrained firms with respect to the cash flow sensitivity of cash, I need to be able to distinguish between the two groups of firms. For this purpose, I use three schemes from Almeida et al. (2004): (1) payout ratio, (2) firm size, and (3) the KZ-index.

- **Scheme 1 – payout ratio**: I compute the payout ratio as the ratio of dividends to operating income and define, each year, the companies in the bottom three deciles as financially constrained, and the companies in the top three deciles as unconstrained.
- **Scheme 2 – firm size**: Firm size is simply measured as total assets. All companies are ranked by firm size annually. The companies in the bottom three deciles are considered financially constrained, while the companies in the top three deciles are considered unconstrained.
- **Scheme 3 - “KZ-index”**: The KZ-index stems from research by Kaplan and Zingales (1997). In line with Almeida et al. (2004), I will employ the results from Lamont, Polk, and Saaà-Requejo (2001) to compute the index:

\[
KZ_{\text{index}} = -1.002 \times \text{CashFlow} + 0.283 \times Q + 3.139 \times \text{Leverage} - 39.368 \times \text{Dividends} - 1.315 \times \text{CashHoldings}.
\]
For each of the sample years, all companies are ranked according to the KZ-index. The companies in the top three deciles are considered financially constrained, while the companies in the bottom three deciles are considered unconstrained.

The three schemes capture different aspects related to cash holdings. The payout ratio is expected to be higher for firms with good business prospects. This expectation is based on the negative-signal effect of decreasing dividend payouts. The negative-signal effect leads firms to be careful not to set the level of payouts too high. Therefore, a high payout ratio signals that a company expects to do well in the future. Since funding should be easily available at the time of necessity to firms with good prospects, firms with high payout ratios are expected to retain less cash.

Firm size is included to capture economies-of-scale effects. Large firms can benefit from the opportunity to allocate funds internally and they have easier access to external financing than small firms do. Thus, large firms should have less need for cash.

Finally, the KZ-index provides a holistic perspective by including several variables affecting firm behavior. Measured by the KZ-index, a firm is more likely to be defined as financially constrained if cash flows, dividends and cash holdings are low and if the firm is highly levered or has a high Q (market-to-book ratio). However, Almeida et al. (2004) find reversed results for this measure. I.e., firms considered financially constrained display insignificant cash flow sensitivity of cash, while the opposite is true for financially unconstrained firms. Thus, it is not clear what to expect from this classification scheme, yet it is included for completeness.

To study the effect of a macroeconomic shock on the cash flow sensitivity of cash, I take advantage of the opportunity to analyze cash holdings in the periods before, during, and after the 2008 financial crisis. I expect firms to display an increased cash flow sensitivity of cash in response to news about the financial crisis. To determine the time of the “announcement”, I look at the amount of newspaper
articles containing the word “finanskrise” (financial crisis) in Norwegian paper based and web based newspapers in the ATEKST database in the period from January 1 2006 to December 31 2009. The search reveals a clear spike in articles from the fall of 2007. Since I need at least two years of data to measure the change in cash holdings, I define the period from 2007 to 2008 as the time of announcement and name this period “during”. The period prior to 2007 is named “before”, and the period after 2008 is named “after”. In accordance with prior literature, I expect there to be a heightened cash flow sensitivity of cash in the “during” period (Almeida et al., 2004; Fazzari et al., 1988).

Summary Statistics

To provide an overview of the two samples and the variables, I present the summary statistics for the Datastream and CCGR samples in Table 1 and Table 2, respectively.

Table 1
Summary Statistics of the Datastream Sample

Table 1 displays summary statistics for the full sample from Datastream. All continuous variables are winsorized at the 1% and 99% levels.

Panel A: Summary statistics of CashHoldings

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Std. dev.</th>
<th>N. obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CashHoldings</td>
<td>0.168</td>
<td>0.102</td>
<td>0.187</td>
<td>3 840</td>
</tr>
</tbody>
</table>

Panel B: Summary statistics of dependent and independent variables

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Mean</th>
<th>Median</th>
<th>Std. dev.</th>
<th>N. obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔCashHoldings</td>
<td>-0.004</td>
<td>-0.001</td>
<td>0.096</td>
<td>3 049</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Mean</th>
<th>Median</th>
<th>Std. dev.</th>
<th>N. obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CashFlow</td>
<td>0.012</td>
<td>0.045</td>
<td>0.172</td>
<td>366</td>
</tr>
<tr>
<td>Q</td>
<td>1.012</td>
<td>0.566</td>
<td>1.377</td>
<td>3 357</td>
</tr>
<tr>
<td>Size</td>
<td>14,380</td>
<td>14,425</td>
<td>2,022</td>
<td>3 840</td>
</tr>
<tr>
<td>Expenditures</td>
<td>0.077</td>
<td>0.045</td>
<td>0.095</td>
<td>3 671</td>
</tr>
<tr>
<td>Acquisitions</td>
<td>0.008</td>
<td>0.000</td>
<td>0.029</td>
<td>2 683</td>
</tr>
<tr>
<td>ΔNWC</td>
<td>-0.021</td>
<td>-0.021</td>
<td>0.195</td>
<td>3 512</td>
</tr>
<tr>
<td>ΔShortdebt</td>
<td>0.077</td>
<td>0.045</td>
<td>0.115</td>
<td>3 639</td>
</tr>
</tbody>
</table>

Panel C: Summary statistics of variables used for sample split

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>Median</th>
<th>Std. dev.</th>
<th>N. obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payout ratio</td>
<td>-0.257</td>
<td>0.010</td>
<td>5.324</td>
<td>422</td>
</tr>
<tr>
<td>Firm size*</td>
<td>13 907 356</td>
<td>1 839 390</td>
<td>68 766 336</td>
<td>3 840</td>
</tr>
<tr>
<td>KZ-index*</td>
<td>12 014 270</td>
<td>3 782 837</td>
<td>31 205 523</td>
<td>340</td>
</tr>
</tbody>
</table>

* The variable is measured in units of 1 000.
In the Datastream sample the mean and median levels of \textit{CashHoldings}, i.e., the levels of cash scaled by total assets, are close to the findings in other analyses (Gao et al., 2013; Opler et al., 1999) and very close to the level of cash holdings in Sweden of 16.1\%, as reported in Quader and Abdullah (2016). The change in \textit{CashHoldings} is -0.4\% on average, while the median value is -0.1\%. These values differ from the findings of Gao et al. (2013) who find positive mean and median changes only. However, negative values of \textit{ΔCashHoldings} are found for Germany, France, and Japan in Riddick and Whited (2009). The summary statistics for the \textit{CashFlow} variable is comparable to similar studies (Gao et al., 2013). Note that the number of observations is small for this variable compared to the number of observations for the other variables. Investigating the sample, I find that the reason is that the number of firms with reported dividends is quite low. This feature may distort my results since I do not know whether missing observations on dividends mean that dividends are in fact zero. The same explanation applies to the payout ratio and KZ-index.

\begin{table}[h]
\centering
\caption{Summary Statistics of the CCGR Sample}
\begin{tabular}{lllll}
\hline
Panel A: Summary statistics of \textit{CashHoldings} & Mean & Median & Std. dev. & N. obs. \\
\hline
\textit{CashHoldings} & 0.277 & 0.153 & 0.303 & 2 437 649 \\
\hline
Panel B: Summary statistics of dependent and independent variables & Mean & Median & Std. dev. & N. obs. \\
\hline
Dependent variable & & & & \\
\textit{ΔCashHoldings} & 0.006 & 0.000 & 0.174 & 1 858 704 \\
Independent variables & & & & \\
\textit{CashFlow} & -0.025 & 0.022 & 0.300 & 2 437 649 \\
\textit{InvOpp} & 0.177 & 0.008 & 0.382 & 1 293 762 \\
\textit{Size} & 14.616 & 14.647 & 1.879 & 2 437 649 \\
\textit{Expenditures} & 0.021 & 0.000 & 0.076 & 1 858 704 \\
\textit{ΔNWC} & -0.014 & 0.000 & 0.030 & 1 858 704 \\
\textit{ΔShortdebt} & 0.015 & 0.000 & 0.263 & 1 858 704 \\
\hline
\end{tabular}
\end{table}

The summary statistics for the CCGR sample presented in Table 2, display that the \textit{CashHoldings} are much larger in this sample than in the Datastream sample. This difference is probably due to the fact that the CCGR sample consists mainly of private firms and that these have distinctive characteristics. The change in \textit{CashHoldings} is positive, which is in line with previous research. The mean
CashFlow is negative and much smaller than the positive median of 2.2%. It is also worth noting that the standard deviation is generally larger in the CCGR sample, probably due to a wider range of firm sizes.

4. Hypotheses and Methodology

Hypothesis development

Previous research describes the precautionary- and speculative-motives as two of the main reasons for firms to hold cash. The purpose is to have sufficient liquid assets to pay unanticipated costs and/or to be able to fund an unforeseen, yet profitable project. However, if a firm has unlimited access to external funding at the time of necessity, there is no need for the firm to hold cash. Thus, theory predicts that firms facing financial constraints should have a greater propensity to save cash out of cash flows than unconstrained firms do. I formulate my first hypothesis as follows:

H1: Financially constrained firms have a positive and significant cash flow sensitivity of cash, while financially unconstrained firms do not.

Further, private firms are expected to behave similarly to financially constrained firms with respect to cash retention because they have less access to external funding compared to public firms. I therefore hypothesize the following:

H2: Private firms have a positive and significant cash flow sensitivity of cash that is greater than that of public firms.

Finally, it has been shown that macroeconomic events, such as a recession or a change in federal interest rates, affects the availability of external funding to firms. The uncertainty related to such events should lead firms to save more cash for precautionary purposes. To examine this theory, I test the following hypothesis:

H3: Firms have a greater cash flow sensitivity of cash during a financial crisis.
Models of Cash Holdings

Following Almeida et al. (2004), I use their baseline and augmented models of cash holdings to investigate the cash flow sensitivity of cash in financially constrained firms. I estimate the models in Stata, using panel data regressions and controlling for firm fixed effects. I also control for heteroscedasticity using the Huber/White estimator.

The baseline model

The baseline model is a simple model, measuring the change in the independent variable, CashHoldings, as a function of three independent variables: CashFlow, Q, and Size. The model is designed to reflect the business decision of whether or not the firm should store cash “today” to facilitate future investments “tomorrow”.

$$
\Delta \text{CashHoldings}_{i,t} = \alpha_0 + \alpha_1 \text{CashFlow}_{i,t} + \alpha_2 Q_{i,t} + \alpha_3 \text{Size}_{i,t} + \epsilon_{i,t}
$$

Equation 1: Baseline model

$\Delta \text{CashHoldings}$ represents the change in liquid assets available to managers. It is the relation between $\Delta \text{CashHoldings}$ and CashFlow, that constitutes the emphasis of Almeida et al.’s (2004) theory. Therefore, the CashFlow variable is the main variable of interest. It measures the amount of cash available to save for future investments while its coefficient, α_1, represents the magnitude of the cash flow sensitivity of cash. The sensitivity is expected to be positive and significant for financially constrained firms, while unconstrained firms are expected to show no systematic cash to cash flow relation. Thus, a positive α_1 for constrained firms and an unsigned α_1 for unconstrained firms, would support the first hypothesis.

As the theory proposes that the change in cash holdings should be affected by future investment opportunities, Q is included as a proxy variable. Q is the market-to-book ratio of total assets and has been found to provide the highest information content relative to other measures of investment opportunities (Adam & Goyal, 2008). The Q coefficient, α_2, is expected to be unsigned for financially unconstrained firms as they can easily obtain external funding for their investments at the time of necessity. Financially constrained firms, however, may not have prospects of external funding and will need to save cash to be able to
take advantage of future investment opportunities. Consequently, in the presence of financial constraints, α_2 should be positive.

Finally, Size is the natural log of total assets. It is included in the model mainly to control for effects of economies-of-scale. The theory implies that large companies are equipped to funnel cash across the organization to its best use. Almeida et al. (2004) do not state expectations with regards to the sign of α_3 or the significance of Size, as it is not the focus of their study. However, it seems reasonable to expect a negative sign if firms are large.

The augmented model

Although a parsimonious model may be desirable, it is important to consider potential omitted variable bias. Therefore, I also employ Almeida et al.’s (2004) augmented model. The augmented model accounts for alternative uses as well as other sources of funds. Thus, in addition to the independent variables of the baseline model, the following variables are added: Expenditures, Acquisitions, ΔNWC, and $\Delta ShortDebt$. All of the new variables are scaled by total assets.

$$\Delta CashHoldings_{i,t} = \alpha_0 + \alpha_1 CashFlow_{i,t} + \alpha_2 Q_{i,t} + \alpha_3 Size_{i,t} + \alpha_4 Expenditures_{i,t} + \alpha_5 Acquisitions + \alpha_6 \Delta NWC_{i,t} + \alpha_7 \Delta ShortDebt_{i,t}$$

Equation 2: Augmented model

Expenditures and *Acquisitions* are included to account for the use of cash holdings to pay for capital expenditures and acquisitions, respectively. E.g., an increase in expenditures should cause a decrease of cash holdings if firms fund their expenditures with cash. Therefore, α_4 and α_5 are expected to have negative signs.

The augmented model includes the change in noncash net working capital, ΔNWC, because research has shown that working capital can be a substitute for cash (Opler et al., 1999). Conversely, firms may also use cash to increase working capital (Fazzari & Petersen, 1993). A similar rationale applies to the inclusion of the change in short-term debt, $\Delta ShortDebt$. I.e., firms can substitute short-term
debt for cash or use short-term debt to increase cash reserves (Almeida et al., 2004).

According to Almeida et al. (2004), one can expect the magnitude of the \(\text{CashFlow}\) coefficient to be greater in the augmented model compared to the baseline model, because the added variables make the model approach an accounting identity. However, the model does not constitute a perfect identity, thus the \(\text{CashFlow}\) coefficient should still be close to zero if a firm is considered financially unconstrained.

Model modification for CCGR samples

One of the challenges of private-firms research is the lack of market value data. Since both the baseline and augmented models rely on \(Q\), the market-to-book ratio; they cannot be used for comparison of cash to cash flow sensitivity in private and public firms without modification. Thus I have replaced it with \(\text{InvOpp}\) – the CAPEX/PPE ratio, which hopefully will capture some of the effects of future investment opportunities. The rationale is that firms who commit to maintenance of their assets, expect that their prospects are good. Thus, the baseline model will be estimated as follows:

\[
\Delta \text{CashHoldings}_{i,t} = \alpha_0 + \alpha_1 \text{CashFlow}_{i,t} + \alpha_2 \text{InvOpp}_{i,t} + \alpha_3 \text{Size}_{i,t} + \epsilon_{i,t}
\]

Equation 3: Modified baseline model

Due to lack of data, the \(\text{Acquisitions}\) variable is omitted from the augmented regression model when using CCGR samples. The modified model is therefore estimated as follows:

\[
\Delta \text{CashHoldings}_{i,t} = \alpha_0 + \alpha_1 \text{CashFlow}_{i,t} + \alpha_2 \text{InvOpp}_{i,t} + \alpha_3 \text{Size}_{i,t} + \alpha_4 \text{Expenditures}_{i,t} + \alpha_5 \Delta \text{NW}_{i,t} + \alpha_6 \Delta \text{ShortDebt}_{i,t}
\]

Equation 4: Modified augmented model
Modelling qualitative differences

To model differences in private and public firms, in matched private and public firms, and in firms in or not in a crisis period, I estimate the modified baseline and augmented models using dummy variables. I substitute “dummy” for the relevant variable in each case. All interaction terms are included in both models:

\[
\Delta \text{CashHoldings}_{i,t} = \alpha_0 + \alpha_1 \text{CashFlow}_{i,t} + \alpha_2 \text{InvOpp}_{i,t} + \alpha_3 \text{Size}_{i,t} \\
+ \alpha_4 \text{dummy} + \alpha_5 \text{CashFlow} \ast \text{dummy} \\
+ \alpha_6 \text{InvOpp} \ast \text{dummy} + \alpha_7 \text{Size} \ast \text{dummy} + \epsilon_{i,t}
\]

Equation 5: Modified baseline dummy model

\[
\Delta \text{CashHoldings}_{i,t} = \alpha_0 + \alpha_1 \text{CashFlow}_{i,t} + \alpha_2 \text{InvOpp}_{i,t} + \alpha_3 \text{Size}_{i,t} \\
+ \alpha_4 \text{Expenditures}_{i,t} + \alpha_5 \Delta \text{NW}_{C_{i,t}} + \alpha_6 \Delta \text{ShortDebt}_{i,t} + \alpha_7 \text{dummy} \\
+ \alpha_8 \text{CashFlow} \ast \text{dummy} + \alpha_9 \text{InvOpp} \ast \text{dummy} + \alpha_{10} \text{Size} \ast \text{dummy} \\
+ \alpha_{11} \text{Expenditures}_{i,t} \ast \text{dummy} + \alpha_{12} \Delta \text{NW}_{C_{i,t}} \ast \text{dummy} \\
+ \alpha_{13} \Delta \text{ShortDebt}_{i,t} \ast \text{dummy} + \epsilon_{i,t}
\]

Equation 6: Modified augmented dummy model

I use the following two dummy variables:

1. *public*, which equals one if a firm is public and zero otherwise,
2. *crisis*, which equals one if the year is 2007 or 2008 and zero otherwise.

5. Results

I have studied the sensitivity of cash to cash holdings testing the following three hypotheses:

H1: Financially constrained firms have a positive and significant cash flow sensitivity of cash, while financially unconstrained firms do not.

H2: Private firms have a positive and significant cash flow sensitivity of cash that is greater than that of public firms.

H3: Firms have a greater cash flow sensitivity of cash during a financial crisis.
Hypothesis 1

My first hypothesis is:

\[\text{H1: Financially constrained firms have a positive and significant cash flow sensitivity of cash, while financially unconstrained firms do not.} \]

I test this hypothesis by first dividing the public firms from the Datastream sample into subsamples of financially constrained and unconstrained firms according to three financial constraint criteria. Secondly, I summarize the CashHoldings variable for each subsample to display the difference between constrained and unconstrained firms. Thirdly, I fit the baseline model and the augmented model for each subsample.

Firm classification

I use three financial constraints criteria to distinguish between financially constrained and financially unconstrained firms: payout ratio, firm size, and the KZ-index. Table 3 presents the results of classifying firms as either constrained or unconstrained according to those criteria. It also displays the results of cross classifying the firms. For instance, there are 172 firm-years considered to be financially constrained according to the payout ratio criterion. Out of these, 37 firm-years are also constrained under the firm size criterion while 41 are considered unconstrained.
Table III

Cross-classification of Financial Constraint Criteria

Table 3 presents the number of firm-years categorized as financially constrained or unconstrained according to the three financial constraint criteria: payout ratio, firm size and KZ-index. Cross-classifications of the constraint types are also displayed. For visual purposes, the letter (A) represents financially constrained firms, while the letter (B) represents unconstrained firms.

<table>
<thead>
<tr>
<th>Financial Constraints Criteria</th>
<th>Payout ratio</th>
<th>Firm Size</th>
<th>KZ index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(A)</td>
<td>(A)</td>
</tr>
<tr>
<td>1. Payout ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrained firms (A)</td>
<td>172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unconstrained firms (B)</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Firm size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrained firms (A)</td>
<td>37 1149</td>
<td>41 78</td>
<td>108</td>
</tr>
<tr>
<td>Unconstrained firms (B)</td>
<td>134</td>
<td>1149</td>
<td>108</td>
</tr>
<tr>
<td>3. KZ-index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrained firms (A)</td>
<td>25 42 95 108</td>
<td>58 36 28 23</td>
<td>108</td>
</tr>
<tr>
<td>Unconstrained firms (B)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The number of firm-years ranked by the firm size criterion is substantially larger than the number of firm-years ranked by the other two criteria. This difference is caused by the fact that dividends are paid in only 12.7% of the cases, which directly affects the number of firm-years available for ranking by the payout ratio and KZ-index criteria.

There appears to be a positive relation between the subsamples generated by the firm size and payout ratio criteria. For example, out of the 1 149 constrained firm-years according to firm size, only one is considered unconstrained, while 37 are considered constrained under the payout ratio criterion. However, as can be seen from the table, the association is not consistent.

The firms-years ranked by the KZ-index seem to behave quite differently from those ranked by the other two criteria. For example, out of the 109 KZ-constrained firm-years, 96 were considered unconstrained and none were considered constrained under the firm size criterion. This tendency is consistent with the findings of Almeida et al. (2004).
Cash holdings in financially constrained vs unconstrained firms

To determine whether the firms considered financially constrained differ from those considered unconstrained with respect to cash holdings, I summarize the key statistics of \textit{CashHoldings} for each subsample. I also test for mean and median equality using t-tests and Wilcoxon’s ranksum tests, respectively. The results are presented in Table 4. The firms considered constrained under the payout ratio and firm size criteria have significantly larger mean cash holdings than the unconstrained firms. However, median cash holdings are not significantly different for constrained and unconstrained firms under the payout ratio criterion. Under both of the first two criteria, the standard deviation is greater for the constrained firms. This feature indicates that the constrained firms may constitute a more heterogenic group with respect to cash holdings. The results are reversed for the KZ-index, where the constrained firms hold significantly less cash than the unconstrained firms and the standard deviation is smaller for the constrained firms. This finding is consistent with the findings of Almeida et al. (2004)

<table>
<thead>
<tr>
<th>Financial Constraints Criteria</th>
<th>Mean</th>
<th>Median</th>
<th>Std. dev.</th>
<th>N. obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Payout ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrained firms (A)</td>
<td>0.168</td>
<td>0.083</td>
<td>0.210</td>
<td>172</td>
</tr>
<tr>
<td>Unconstrained firms (B)</td>
<td>0.124</td>
<td>0.098</td>
<td>0.134</td>
<td>134</td>
</tr>
<tr>
<td>p-value (A - B ≠ 0)</td>
<td>(0.037)**</td>
<td>(0.367)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Firm Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrained firms (A)</td>
<td>0.279</td>
<td>0.202</td>
<td>0.245</td>
<td>1149</td>
</tr>
<tr>
<td>Unconstrained firms (B)</td>
<td>0.099</td>
<td>0.078</td>
<td>0.086</td>
<td>1149</td>
</tr>
<tr>
<td>p-value (A - B ≠ 0)</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Kaplan-Zingales index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constrained firms (A)</td>
<td>0.108</td>
<td>0.104</td>
<td>0.074</td>
<td>108</td>
</tr>
<tr>
<td>Unconstrained firms (B)</td>
<td>0.182</td>
<td>0.108</td>
<td>0.194</td>
<td>108</td>
</tr>
<tr>
<td>p-value (A - B ≠ 0)</td>
<td>(0.000)***</td>
<td>(0.002)***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fitting of the baseline regression model

To find out if financially constrained firms do indeed have a positive cash flow sensitivity of cash, while unconstrained firms do not, I fit the baseline model of the cash flow sensitivity of cash for each of the subsamples of constrained and unconstrained firms. The results are presented in Table 5. If changes in cash holdings in financially constrained firms are sensitive to cash flows, the $CashFlow$ coefficient should be positive and significant for those subsamples. For the unconstrained firms, the $CashFlow$ coefficient should not be significantly different from zero, as the prediction is that the change in cash holdings for these firms are unrelated to cash flow shocks. The Q coefficient represents future investment opportunities and it is expected to be positive for constrained firms and close to zero for the unconstrained firms. The rationale is that the constrained firms need to save cash to be able to fund future investments, while unconstrained firms will get the necessary funding when they need it.

<table>
<thead>
<tr>
<th>Table V</th>
<th>The Baseline Regression Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5 displays the estimation results of the baseline regression model. The letter (A) is assigned to constrained firms and the letter (B) to unconstrained firms for visual purposes. The regressions are executed using fixed effects and the White-Huber estimator. P-values are presented in parentheses. Significance at the 10%, 5%, and 1% levels are indicated with *, **, and ***, respectively.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>1. Payout ratio</th>
<th>Financial Constraints Criteria</th>
<th>2. Firm Size</th>
<th>3. KZ-index</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Δ CashHoldings$</td>
<td>(A)</td>
<td>(B)</td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>$CashFlow$</td>
<td>0,158</td>
<td>0,284</td>
<td>0,186</td>
<td>0,253</td>
</tr>
<tr>
<td></td>
<td>(0,007)**</td>
<td>(0,102)</td>
<td>(0,047)**</td>
<td>(0,035)**</td>
</tr>
<tr>
<td>Q</td>
<td>0,040</td>
<td>0,009</td>
<td>0,063</td>
<td>-0,001</td>
</tr>
<tr>
<td></td>
<td>(0,029)**</td>
<td>(0,536)</td>
<td>(0,001)***</td>
<td>(0,918)</td>
</tr>
<tr>
<td>$Size$</td>
<td>-0,004</td>
<td>-0,025</td>
<td>0,062</td>
<td>-0,006</td>
</tr>
<tr>
<td></td>
<td>(0,839)</td>
<td>(0,161)</td>
<td>(0,138)</td>
<td>(0,544)</td>
</tr>
<tr>
<td>$Intercept$</td>
<td>0,047</td>
<td>0,367</td>
<td>-0,861</td>
<td>0,083</td>
</tr>
<tr>
<td></td>
<td>(0,866)</td>
<td>(0,197)</td>
<td>(0,127)</td>
<td>(0,608)</td>
</tr>
<tr>
<td>N. obs.</td>
<td>120</td>
<td>102</td>
<td>24</td>
<td>145</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0,12</td>
<td>0,16</td>
<td>0,68</td>
<td>0,06</td>
</tr>
</tbody>
</table>

As expected, the $CashFlow$ and Q are positive and significant for financially constrained firms under the payout ratio criterion, while none of the independent variables are significant for the unconstrained subsample. $Size$ is negative, but not significant at any of the usual significance levels.
Under the firm size criterion, CashFlow is significant at the 5% level for both constrained and unconstrained firms. The result is surprising, but further investigation of the data reveals that only a small fraction (10%) of the firms ranked by the firm size criterion pays dividends, leading to many missing data points in the CashFlow variable, which depends on dividends. By assuming that missing data on dividends in the years where other accounting data is reported means that the firm did not pay dividends, i.e. dividends = 0, the regression results reveal that neither the constrained nor the unconstrained firms have a positive cash flow sensitivity of cash under the firm size criterion. \(Q \), however, is positive and significant at the 1% level for constrained firms. It is also close to zero and insignificant for the unconstrained firms. This result indicates that smaller firms increase their cash savings when there appears to be future investment opportunities, while large firms do not.

The firms considered financially constrained under the KZ-index criterion, seem to behave similar to the unconstrained firms under the payout ratio criterion. Correspondingly, the KZ-index unconstrained firms appears to behave like constrained firms under the payout ratio criterion. The discovery is not unexpected given the summary statistics, which are also reversed. This result is also consistent with Almeida et al.’s (2004) findings.

Fitting of the augmented regression model

To account for alternative uses and sources of cash in a firm and to avoid omitting any significant variables, I also test the augmented model on each of my subsamples. The model adds four new variables to the regression: Expenditures, Acquisitions, \(\Delta NWC \), and \(\Delta ShortDebt \). The Expenditures and Acquisitions coefficients are expected to be negative for constrained firms and unsigned for unconstrained firms because the former will draw on their cash reserves to pay for these investments while unconstrained firms can obtain external funding. There are no a priori suggestions with respect to the sign of the \(\Delta NWC \) and \(\Delta ShortDebt \) coefficients because these two variables represent both alternative sources of funds and alternative usages of funds. The expectations for the CashFlow and \(Q \)
coefficients are the same as for the baseline model, i.e., they should both be positive and significant for constrained firms and insignificant for unconstrained firms. The results are displayed in Table 6.

| Table VI
| The Augmented Regression Model |

Table 6 displays the estimation results of the augmented regression model. The letter (A) is assigned to constrained firms and the letter (B) to unconstrained firms for visual purposes. The regressions are executed using fixed effects and the White-Huber estimator. P-values are presented in parentheses. Significance at the 10%, 5%, and 1% levels are indicated with *, **, and ***, respectively.

As expected, the constrained firms under the payout ratio criterion still have a positive and significant cash flow sensitivity of cash as well as a positive and significant coefficient for Q. It is also interesting to observe that positive changes in noncash net working capital and in short-term debt are significant and that they lead to a reduction in cash holdings. This observation is in line with a priori expectations and it is consistent with the notion that net working capital and short-term debt represent alternative usages of funds. Unconstrained firms do also appear to have significant cash flow sensitivity of cash. However, neither of the other independent variables are significant.

As expected, the constrained firms under the payout ratio criterion still have a positive and significant cash flow sensitivity of cash as well as a positive and significant coefficient for Q. It is also interesting to observe that positive changes in noncash net working capital and in short-term debt are significant and that they lead to a reduction in cash holdings. This observation is in line with a priori expectations and it is consistent with the notion that net working capital and short-term debt represent alternative usages of funds. Unconstrained firms do also appear to have significant cash flow sensitivity of cash. However, neither of the other independent variables are significant.
Under the firm size criterion, it appears that cash holdings of both constrained and unconstrained firms are sensitive to cash flow changes also in the augmented model. In addition, the sample of constrained firms is very small and there appears to be a problem with overfitting the model resulting in a very large adjusted R^2. The small sample size is due to many missing values of dividends resulting in few observations of the CashFlow variable. The issue of overfitting was resolved when I modified the sample so that only firms with data on CashFlow were included from the beginning. However, various attempts to reform the sample do not change the result of both constrained and unconstrained firms having significant cash flow sensitivities of cash.

In line with previous findings, the unconstrained firms under the KZ-index behave similarly to the expectations for constrained firms. I.e., the unconstrained KZ-index firms display a positive and significant cash flow sensitivity of cash, while Q and Expenditures also have the signs and significance expected from constrained firms. The KZ-index constrained firms, on the other hand, do not have a significant cash flow sensitivity of cash. The reversed behavior of the KZ-index firms is consistent with the findings of Almeida et al. (2004)

Hypothesis 1 – Preliminary findings

The first hypothesis is twofold: First, financially constrained firms should have a positive and significant cash flow sensitivity of cash. Secondly, financially unconstrained firms should not have a significant cash flow sensitivity of cash. My results support the first part of the hypothesis since constrained firms in four out of six cases display a positive and significant cash flow sensitivity of cash. The findings from studying unconstrained firms, however, are more ambiguous. There is some support for unconstrained firms not having a positive cash to cash flow sensitivity, however, the results are inconclusive, and therefore, this part of the hypothesis cannot be confirmed with certainty.

Hypothesis 2

My second hypothesis is:

H2: Private firms have a positive and significant cash flow sensitivity of cash that is greater than that of public firms.
To test this hypothesis, I first create three subsamples: public firms, private firms, and matched private firms, using data from CCGR. The sample of matched private firms consists of private firms in the same industry and of approximately the same size as the public firms. Secondly, I summarize all the variables by sample and compare the findings. Thirdly, I fit the baseline and augmented models for each subsample. Using a dummy variable capturing the effect of being a public firm, I also fit the two models to the full sample and to the combined sample of public and matched private firms.

Sample selection and the matching process

The full CCGR sample consists of all Norwegian private and public firms. I restrict private firms to limited liability companies only. Since the private and public firms differ substantially in size distribution, I create a subsample of matched private firms to better isolate the difference in cash flow sensitivity of cash stemming from being a private firm. As in Gao et al. (2013), I match each public firm to a private firm in same industry and of approximately the same size measured in total assets. To determine the industry, I use the 21 main categories of SSB’s industry classification, which is based on the NACE rev. 2 standard. For details, see (Appendix B). Conforming to standard practice on the field, I exclude financial and utilities firms.

To create the matched sample, I first find all private firms in the same industry as the public firm each year. Then, I compute the ratio of total assets of each private firm to the total assets of the corresponding public firm. I keep only the matches for which the ratio is between 0.8 and 0.12. I.e., the matched firm is not allowed to deviate more than 20% from the public firm with respect to total assets. At this point, each private firm appears several times in a year if it has been matched with multiple public firms. I want each private firm to appear only once each year. Thus, I compute the absolute value of the difference (delta) in total assets between the private and public firms and rank each private firm by delta each year. I keep only the observation for which the delta value is the lowest for each firm-year. Now, each private firm-year is unique. However, there are still multiple matches
for each public firm. For each public firm-year, I sort the matches by delta and keep only the match with the smallest value.

At this stage, I have the best-matching private firm for each public firm each year. However, the match changes from year to year. It would be unrealistic to have changing firms every year and I need some continuity of the firms to be able to compute differenced variables. I therefore keep the best matching private firm in the first year of data for each public firm until it exits the full data sample. If, one year, a matched private firm has exited the sample, I replace it with the best match for that year.

To display the results of the matching procedure, I have summarized the total assets variable for each subsample Table 7. The summary shows that the sample of all private firms differs significantly from the sample of public firms in both mean and median total assets. On average, the private firms’ total assets are only 2% of the average total assets of the public firms. Although the sample of matched private firms does not perfectly replicate the public-firms sample, it is much closer in terms of mean, median, and standard deviation of total assets. In fact, the mean total assets are not significantly different from the mean total assets of the public firms.

Table VII
Total Assets in Matched Samples

Table 7 presents summary statistics for total assets in the private, matched private and public subsamples. The mean and median total assets of the private and matched private firms’ are compared to the mean and median in the public firms using the t.test and Wilcoxon's ranksum tests. P-values are presented in parentheses. Significance at the 10%, 5%, and 1% levels are indicated with *, **, and ***, respectively.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Private firms</th>
<th>Matched private firms</th>
<th>Public firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>30 030 283</td>
<td>1 292 273 122</td>
<td>1 494 873 301</td>
</tr>
<tr>
<td>T-test</td>
<td>(0,000)***</td>
<td>(0,209)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2 289 000</td>
<td>150 744 992</td>
<td>204 714 000</td>
</tr>
<tr>
<td>Wilcoxon-test</td>
<td>(0,000)***</td>
<td>(0,000)***</td>
<td></td>
</tr>
<tr>
<td>Std. dev.</td>
<td>866 960 789</td>
<td>6 428 140 622</td>
<td>6 939 313 800</td>
</tr>
<tr>
<td>N. obs.</td>
<td>2 433 903</td>
<td>3 442</td>
<td>3 442</td>
</tr>
</tbody>
</table>
Matching firms with respect to industry is important because research shows that cash holdings vary systematically by industry (Gao et al., 2013). Thus, I want the matched sample to have the same distribution of firms with respect to industry. The fractional distribution of the full samples of private and public firms are displayed in Figure 1. It shows that the public firms sample is characterized by large fractions of firms in the C, H, J, and M industries. The private-firms sample, on the other hand, has the largest fractions of firms in the G, H, L, and M industries. (For an overview of the industry codes and names, see Appendix B.)

![Figure 1: Fractional distribution of firms by industry code in the private firms and public firms samples](image)

The results of the matching procedure with respect to industry are displayed in Figure 2. Since the matched private firms sometimes change their industry codes over the lifetime of the company, the distributions are not identical. However, the distribution of firms by industry in the matched private-firms sample is now much closer to the distribution in the public-firms sample.
Overall, the matching process results in a sample of private firms that matches the sample of public firms reasonably well. However, I will move forward testing all three samples. I.e., the full sample of private firms, the matched private-firms sample, and the public firms sample.

Summary statistics of subsamples

To further examine the similarities and differences between the samples, I have summarized the level of cash holdings and all the variables of both the baseline and augmented models. Given the large difference in both size and industry distribution between private and public firms, these two samples are expected to differ substantially. The samples of matched private firms and public firms, are also expected to differ. However, due to the matching process, the differences should stem from inherent factors, characteristic of each group, such as cost of external financing, regulatory climate, information asymmetry, and agency costs, that are not related to size or industry deviation.

The summary is presented in Table 8. Some of the variables differ from the original models’ variables. Due to lack of market value data, \(Q \), i.e., the market to book ratio, is replaced by \(InvOpp \), defined as the ratio of capital expenditures to
fixed, tangible assets. The *Acquisition* variable is omitted and the specification of *Expenditures* is slightly altered.

Table VIII
Summary Statistics

Table 8 displays summary statistics for the variables in the CCGR sample for all private firms, all private firms matched to a public firm, and all public firms. For each variable, the p-values of the t-test and Wilcoxon-test are presented below. ***, **, and * denotes that the variable’s mean (median) differ from the mean (median) of the sample of public firms at the 10%, 5%, and 1% levels, respectively. The variables are winsorized at the 2.5% and 97.5% levels.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Private firms</th>
<th>Matched private firms</th>
<th>Public firms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Std. dev.</td>
</tr>
<tr>
<td>Cash-Holdings</td>
<td>0.277</td>
<td>0.153</td>
<td>0.303</td>
</tr>
<tr>
<td></td>
<td>(0,000)***</td>
<td>(0,000)***</td>
<td></td>
</tr>
<tr>
<td>ΔCash-Holdings</td>
<td>0.006</td>
<td>0.000</td>
<td>0.174</td>
</tr>
<tr>
<td></td>
<td>(0,001)***</td>
<td>(0,000)***</td>
<td></td>
</tr>
<tr>
<td>CashFlow</td>
<td>-0.025</td>
<td>0.022</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td>(0,000)***</td>
<td>(0,000)***</td>
<td></td>
</tr>
<tr>
<td>InvOpp</td>
<td>0.177</td>
<td>0.008</td>
<td>0.382</td>
</tr>
<tr>
<td></td>
<td>(0,000)***</td>
<td>(0,000)***</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>14,611</td>
<td>14,644</td>
<td>1,876</td>
</tr>
<tr>
<td></td>
<td>(0,000)***</td>
<td>(0,000)***</td>
<td></td>
</tr>
<tr>
<td>Expenditures</td>
<td>0.021</td>
<td>0.000</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>(0,013)**</td>
<td>(0,000)***</td>
<td></td>
</tr>
<tr>
<td>ΔNWC</td>
<td>-0.014</td>
<td>0.000</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td>(0,622)</td>
<td>(0,018)**</td>
<td></td>
</tr>
<tr>
<td>ΔShort-Debt</td>
<td>0.015</td>
<td>0.000</td>
<td>0.263</td>
</tr>
<tr>
<td></td>
<td>(0,249)</td>
<td>(0,002)***</td>
<td></td>
</tr>
</tbody>
</table>

Consistent with the results of Gao et al. (2013), I find that private firms in general hold significantly more cash relative to total assets than public firms do. This result implies that the cost of external financing is greater for the average private firm than for the average public firm. For the sample of matched private firms, however, cash holdings are lower than cash holdings in public firms. The explanation may be that public firms suffer from greater information asymmetry between owners and managers, which results in greater agency costs in the form of excessive cash holdings. The full sample of private firms however, have a much larger cash ratio. Since the matched private firms are among the largest private firms, it is likely that these companies have lower costs of external financing than the numerous small, private firms do. Overall, most of the variables differ significantly between the samples.
Fitting of the baseline regression model

To test my hypothesis of private firms having a positive and significant cash flow sensitivity of cash greater than that of public firms, I begin by fitting the baseline model to the three subsamples of private, matched private, and public firms. If private firms’ changes in cash holdings are sensitive to cash flows, there should be a positive and significant coefficient for CashFlow in both the private firms and matched private firms samples. I expect a positive cash flow sensitivity of cash for the private and matched private firms as theory suggests that external financing is more costly for these firms. For public firms, I expect the CashFlow coefficient not to differ significantly from zero, as these firms should be able to obtain external funding at the time of necessity and not rely on cash savings. If the InvOpp variable succeeds in capturing future investment opportunities, I would expect a positive sign for all samples of private firms and a value close to zero for the public firms. However, this is a noisy proxy and the coefficient should therefore not be highlighted.

I also specify a model using a dummy variable, public, which equals one if a firm is public and zero otherwise. All interaction terms are included. The dummy variable model is then fitted for both the full sample of public and private firms and for the sample of public and matched private firms. Since I expect the cash flow sensitivity of cash in private firms to be higher than the sensitivity in public firms, the coefficient for the public*CashFlow interaction term should be negative and significant. The regression results are displayed in Table 9.
Table IX

The Baseline Regression Model

Table 10 displays the estimation results of the baseline regression model. The regressions are executed using fixed effects and the White-Huber estimator. All continuous variables are winsorized at the 2.5 and 97.5 levels. P-values are presented in parentheses. Significance at the 10%, 5%, and 1% levels are indicated with *, **, and ***, respectively.

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Private</th>
<th>Matched private</th>
<th>Public</th>
<th>Full sample</th>
<th>Matched private and public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ CashHoldings</td>
<td>0.075</td>
<td>0.053</td>
<td>-0.007</td>
<td>0.075</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>(0.000)***</td>
<td>(0.047)***</td>
<td>(0.730)</td>
<td>(0.000)***</td>
<td>(0.042)**</td>
</tr>
<tr>
<td>InvOpp</td>
<td>-0.071</td>
<td>-0.051</td>
<td>-0.022</td>
<td>-0.071</td>
<td>-0.051</td>
</tr>
<tr>
<td></td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td>(0.007)***</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>Size</td>
<td>0.006</td>
<td>0.016</td>
<td>0.004</td>
<td>0.005</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>(0.000)***</td>
<td>(0.317)</td>
<td>(0.769)</td>
<td>(0.000)***</td>
<td>(0.294)</td>
</tr>
<tr>
<td>public</td>
<td>-0.138</td>
<td>0.243</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.423)</td>
<td>(0.544)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public*CashFlow</td>
<td>-0.051</td>
<td>-0.057</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.008)***</td>
<td>(0.086)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public*InvOpp</td>
<td>0.043</td>
<td>0.025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)***</td>
<td>(0.117)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public*Size</td>
<td>0.006</td>
<td>-0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.501)</td>
<td>(0.549)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.071</td>
<td>-0.301</td>
</tr>
<tr>
<td></td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>N. obs.</td>
<td>1 291 725</td>
<td>2 291</td>
<td>2 037</td>
<td>1 293 762</td>
<td>4 122</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.04</td>
<td>0.03</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

As seen in Table 9, cash flows have a positive and significant impact on cash holdings in the private and matched private-firms subsamples, while the impact is insignificant in public firms. This is in line with a priori expectations and supports the hypothesis of private firms having a positive cash flow sensitivity of cash. For the full sample and for the combined sample of matched private and public firms, the CashFlow coefficient is also positive and significant. However, I am mainly interested in the public*CashFlow interaction term. The public*CashFlow coefficient is negative for both the full and the matched samples at the 1% and 10% levels respectively. This result indicates that the changes in cash holdings in public firms are less sensitive to cash flow changes compared to cash holdings in private firms, in fact the public*CashFlow coefficient completely counteracts the effect of cash flows on cash holdings for public firms in the matched sample.
The InvOpp coefficients are negative and significant for all samples. This indicates that it may not capture future investment opportunities, but rather some other relevant property of the changes in cash holdings. Given the definition, i.e., capital expenditures to fixed total assets; it is likely that it captures use of funds rather than investment opportunities.

The low values for adjusted R^2 indicate that the model explains only a small fraction of the total changes in cash holdings. However, the relation between the independent and dependent variables is still valid. Overall, the results support the second hypothesis, i.e., that private firms have a positive and significant cash flow sensitivity of cash, while public firms do not.

Fitting of the augmented regression model

I test the differences in cash flow sensitivity of cash in private and public firms also by fitting the augmented model. The intention is to avoid omitted variable bias. I therefore include variables that represent alternative uses and sources of funds. Additionally, I fit a dummy variable version of the model, similar to the dummy variable version of the baseline model to confirm whether the cash flow sensitivity of cash is significantly different for private and public firms.

The expectation for the CashFlow coefficient is the same as previously. I.e., it is expected to be positive and significant for private and matched private firms only. According to Almeida et al. (2004), one can expect the magnitude of the CashFlow coefficient to be greater in the augmented model compared to the baseline model. The Expenditures coefficient should be negative if firms use their cash reserves to pay for them. The signs for ΔNWC and $\Delta ShortDebt$ may be either positive or negative depending on whether firms substitute cash using working capital or short-term debt or whether they use cash to increase net working capital or repay debt. Given that public firms easily can obtain external funding when they need it, the coefficients for the added variables should be insignificant. Conversely, private firms are expected to have less access to external funding and should therefore have significant coefficients for each of the new variables.
Regarding the dummy version of the model, I am mainly interested in the public*Cash interaction term. I expect its coefficient to be negative, if private firms do indeed have a greater cash flow sensitivity of cash than public firms do. The results of fitting the augmented model is presented in Table 10.

Table X
The Augmented Regression Model

Table 10 displays the estimation results of the augmented regression model on the CCGR sample. The regressions are executed using fixed effects and the White-Huber estimator. All continuous variables are winsorized at the 2.5 and 97.5 levels. P-values are presented in parentheses. Significance at the 10%, 5%, and 1% levels are indicated with *, **, and ***, respectively.

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Private</th>
<th>Matched private</th>
<th>Public</th>
<th>Full sample</th>
<th>Matched private and public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ CashHoldings</td>
<td>0.131</td>
<td>0.093</td>
<td>-0.002</td>
<td>0.131</td>
<td>0.096</td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.001)***</td>
<td>(0.0024)</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td></td>
</tr>
<tr>
<td>CashFlow</td>
<td>-0.028</td>
<td>-0.020</td>
<td>-0.010</td>
<td>-0.028</td>
<td>-0.022</td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.116)</td>
<td>(0.275)</td>
<td>(0.000)***</td>
<td>(0.093)*</td>
<td></td>
</tr>
<tr>
<td>InvOpp</td>
<td>0.010</td>
<td>0.029</td>
<td>0.006</td>
<td>0.010</td>
<td>0.030</td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.023)**</td>
<td>(0.547)</td>
<td>(0.000)***</td>
<td>(0.019)**</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>-0.504</td>
<td>-0.289</td>
<td>-0.194</td>
<td>-0.504</td>
<td>-0.286</td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td>(0.009)**</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td></td>
</tr>
<tr>
<td>Expenditures</td>
<td>0.010</td>
<td>0.029</td>
<td>0.006</td>
<td>0.010</td>
<td>0.030</td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.023)**</td>
<td>(0.547)</td>
<td>(0.000)***</td>
<td>(0.019)**</td>
<td></td>
</tr>
<tr>
<td>ΔNWC</td>
<td>-0.642</td>
<td>-0.465</td>
<td>-0.299</td>
<td>-0.642</td>
<td>-0.464</td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td></td>
</tr>
<tr>
<td>ΔShortDebt</td>
<td>-0.555</td>
<td>-0.377</td>
<td>-0.256</td>
<td>-0.555</td>
<td>-0.376</td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td></td>
</tr>
<tr>
<td>public</td>
<td>-0.050</td>
<td>0.457</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.754)</td>
<td>(0.144)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public*CashFlow</td>
<td>-0.089</td>
<td>-0.097</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public*InvOpp</td>
<td>0.012</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.173)</td>
<td>(0.680)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public*Size</td>
<td>0.002</td>
<td>-0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.861)</td>
<td>(0.160)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public*Expenditures</td>
<td>0.329</td>
<td>0.117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.254)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public*ΔNWC</td>
<td>0.341</td>
<td>0.149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.023)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>public*ΔShortDebt</td>
<td>0.304</td>
<td>0.105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.128</td>
<td>-0.516</td>
<td>-0.115</td>
<td>-0.128</td>
<td>-0.551</td>
</tr>
<tr>
<td>(0.000)***</td>
<td>(0.027)**</td>
<td>(0.541)</td>
<td>(0.000)***</td>
<td>(0.019)**</td>
<td></td>
</tr>
<tr>
<td>N. obs.</td>
<td>1291725</td>
<td>2291</td>
<td>2037</td>
<td>1293762</td>
<td>4122</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.46</td>
<td>0.31</td>
<td>0.11</td>
<td>0.46</td>
<td>0.20</td>
</tr>
</tbody>
</table>
The results presented in Table 10, show that the private and matched private firms have a positive CashFlow coefficient that is significant at the 1% level. As anticipated, the magnitude of the coefficient is greater compared to the coefficient in the baseline model. The CashFlow coefficient is close to zero for the public firms, also in line with a priori expectations. In the dummy variable regressions, I find that the public\text{*}CashFlow coefficient is negative and highly significant in both the full sample and in the combined sample of matched private firms and public firms. For the matched sample, the magnitude of the public\text{*}CashFlow coefficient completely neutralizes the effect of cash flows on cash holdings for public firms.

The Expenditures, ΔNWC and ΔShortDebt coefficients are all negative. The negative signs for ΔNWC and ΔShortDebt imply that the variables represent alternative uses rather than alternative sources of funds. All three variables are significant at the 1% level in all samples. They were expected to be significant only for the private firms. However, the magnitude of their impact is smaller in the public-firms sample. This difference is also confirmed in the full sample regression, since the public\text{*}Expenditures, public\text{*}ΔNWC, and public\text{*}ΔShortDebt interaction terms are all positive and significant. The positive signs mean that the negative impact of Expenditures, ΔNWC, and ΔShortDebt on ΔCashHoldings is reduced for public firms. However, for the combined sample of matched private firms and public firms, only the public\text{*}ΔNWC interaction term is significant. Thus, public firms’ cash holdings are less sensitive to the negative effect of increased net working capital compared to the cash holdings of matched private firms, but the effects of capital expenditures and changes in short-term debt are not significantly different.

Finally, the augmented model appears to explain more of the changes in cash holdings than the baseline model does. The adjusted R^2 is higher for the samples of private and matched private firms compared to the sample of public firms. In addition, the adjusted R^2 is higher in the full sample of private and public firms than in the combined sample of matched private firms and public firms. This finding implies that the model explains more of the variation in cash holdings in private firms than in cash holdings in public firms. It also explains more of the
variation in private firms’ cash holdings than in the matched private firms’ cash holdings. Overall, the results from fitting the augmented regression model support the third hypothesis of private firms having a positive and significant cash flow sensitivity of cash, while public firms do not.

Hypothesis 2 – Preliminary findings

I find convincing support for the third hypothesis. Fitting both the baseline and augmented models to my samples, I find that private firms have a positive and significant cash flow sensitivity of cash, while the public firms do not. One could argue that private firms, on average, are much smaller, and operate in other industries than public firms do and that this is the reason for the differences. However, I control for differences in size and industry distribution, using a subsample of matched private firms and find that my results still hold for the matched sample.

The results imply that external financing is more costly for private firms than for public firms. The cost of external financing may also be the reason why private firms on average hold much more cash relative to total assets than public firms do. The cash holdings of the matched private firms, however, are significantly lower than the cash holdings of the public firms. This finding suggests that public firms may suffer from agency costs.

Hypothesis 3

My third hypothesis is:

H3: Firms have a greater cash flow sensitivity of cash during a financial crisis.

I test H3 by analyzing the effect of the 2008 financial crisis on the cash to cash flow sensitivities of both private and public firms. I use CCGR data and the baseline and augmented models. I first define the crisis period and then fit the baseline and augmented models to the samples of private and public firms.
Defining the crisis period

To examine the effect of the financial crisis on changes in cash holdings and in the cash flow sensitivity of cash, I need to define the crisis period. Since firms save cash for precautionary purposes, it is likely that they will save more cash when uncertainty about the availability of funds is greater. The first indications of a financial downturn came in 2007. A search in the ATEKST database of Norwegian newspapers reveals that there is a sharp increase in newspaper articles about the financial crisis in September 2007. The number of articles continues to increase throughout 2008. I therefore define years from 2007 to 2008 as the crisis period because one would expect firms to start saving cash out of cash flows as soon as they expect future financial difficulties.

Fitting the baseline and augmented models

To capture the effect of the financial crisis, I have included a dummy variable that equals one if the year is 2007 or 2008 and zero otherwise. All interaction terms are also included. In particular, I am interested in the interaction term between the crisis dummy and the CashFlow variable. If firms have a significantly greater cash flow sensitivity of cash during the financial crisis, the coefficient of this interaction term should be positive and significant. The results of fitting the regression models are presented in Table 11.
Table 11
The Financial Crisis

Table 11 displays the estimation results of the baseline and augmented regression models fitted for private and public firms, respectively. The regressions are executed using fixed effects and the White-Huber estimator. All continuous variables are winsorized at the 2.5 and 97.5 levels. P-values are presented in parentheses. Significance at the 10%, 5%, and 1% levels are indicated with *, **, and ***, respectively.

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Sample</th>
<th>Public firms</th>
<th>Private firms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline</td>
<td>Augmented</td>
</tr>
<tr>
<td>Δ CashHoldings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CashFlow</td>
<td>-0.019</td>
<td>-0.014</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>(0.332)</td>
<td>(0.498)</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>InvOpp</td>
<td>-0.023</td>
<td>-0.011</td>
<td>-0.072</td>
</tr>
<tr>
<td></td>
<td>(0.006)***</td>
<td>(0.209)</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>Size</td>
<td>0.008</td>
<td>0.011</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.589)</td>
<td>(0.295)</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>Expenditures</td>
<td>-0.182</td>
<td>-0.502</td>
<td>(0.010)**</td>
</tr>
<tr>
<td></td>
<td>(0.000)***</td>
<td>(0.000)***</td>
<td></td>
</tr>
<tr>
<td>ΔNWC</td>
<td>-0.302</td>
<td>-0.640</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>ΔShortDebt</td>
<td>-0.246</td>
<td>-0.553</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>crisis</td>
<td>0.131</td>
<td>0.239</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.589)</td>
<td>(0.321)</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>crisis*CashFlow</td>
<td>0.128</td>
<td>0.112</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>(0.008)***</td>
<td>(0.005)***</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>crisis*InvOpp</td>
<td>0.023</td>
<td>0.017</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.174)</td>
<td>(0.361)</td>
<td>(0.062)*</td>
</tr>
<tr>
<td>crisis*Size</td>
<td>0.008</td>
<td>-0.014</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.589)</td>
<td>(0.287)</td>
<td>(0.000)***</td>
</tr>
<tr>
<td>crisis*Expenditures</td>
<td>-0.114</td>
<td>-0.016</td>
<td>(0.592)</td>
</tr>
<tr>
<td>crisis*ΔNWC</td>
<td>-0.006</td>
<td>-0.019</td>
<td>(0.962)</td>
</tr>
<tr>
<td>crisis*ΔShortDebt</td>
<td>-0.149</td>
<td>-0.014</td>
<td>(0.243)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.200</td>
<td>-0.128</td>
<td>(0.294)</td>
</tr>
<tr>
<td>N. obs.</td>
<td>2,037</td>
<td>2,037</td>
<td>1,291,725</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.01</td>
<td>0.12</td>
<td>0.04</td>
</tr>
</tbody>
</table>
As Table 11 displays, the public firms do not have a positive, significant cash flow sensitivity of cash. In fact, the sign of the CashFlow coefficient is negative for public firms. Although the coefficient it is not significant, the negative sign is in line with previous research from Riddick and Whited (2009) who state that firms have a negative cash flow sensitivity of cash because positive cash flow shocks lead to investments that draws on the cash reserves and vice versa. The crisis*CashFlow coefficient, however, is positive and significant, which means that although, public firms do not generally save cash as a response to positive cash flow shocks, they do so during the financial crisis.

As before, the private firms have a positive and significant cash flow sensitivity of cash. However, the crisis*CashFlow coefficient is significantly positive also for the private firms. This finding implies that the private firms save even more cash out of cash flows during the financial crisis. The financial crisis appears to also increase the effect of Expenditures, ΔNWC, and ΔShortDebt on cash holdings in private firms.

Hypothesis 3 – Preliminary findings

I find support for the hypothesis that firms retain more cash out of cash flows during the financial crisis. The result applies to both private and public firms. My findings are in line with previous research on the cash flow sensitivity of cash and macroeconomic shocks (Almeida et al., 2004), and suggest that firms expecting financial constraints will retain a larger portion of the cash flow as cash on the balance sheet.

6. Conclusion

My research question is “Do financial constraints impose greater cash retention?” I analyze the question from three perspectives. First, I examine whether public firms considered financially constrained according to three different financial constraints criteria have positive cash flow sensitivities. I find that in most cases, they do. However, the results for firms considered financially unconstrained, are inconclusive. Secondly, I hypothesize that private firms have less access to external funding and they should therefore act like financially constrained firms and retain cash out of their cash flows, while public firms should not. I find
convincing support for this hypothesis. Even when I fit the models to a sample of private firms, similar to the public firms in size and industry, the private firms display a significant and positive cash flow sensitivity of cash. The public firms of this sample do not show such propensities. Thirdly, I test whether the cash flow sensitivity of cash is greater when uncertainty is high. I find that the cash to cash flow sensitivity of private firms increases significantly during the financial crisis. Interestingly, I find that public firms, which otherwise do not have significant cash flow sensitivities of cash, have a positive and significant sensitivity during this period. Thus, overall find support in favor of financial constraints imposing greater cash retention.

My study is important because private firms constitute a significant part of the economy, yet they are rarely studied since quality data is hard to find. Moreover, inferences from studies done on public firms may be invalid for private firms, due to differences in regulatory climate. In Norway, support and funding of private firms, is a hot topic as we are searching for “the new oil” in the aftermath of the oil crisis. Recent research shows that private firms generate two out of three new jobs. Thus, knowledge about financial constraints for these firms is important for government regulators in their efforts to facilitate growth and innovation.

For the entrepreneur, it is valuable to know that she may need to hold more cash than models created for public firms would imply, to compensate for restricted access to external financing. For the CEO of a public company, on the other hand, it is useful to understand that she may not have to hold large amounts of cash “just in case”, since funding is generally available at the time of necessity.
References

APPENDIX A – Variable IDs

Datastream variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depreciation</td>
<td>WC01148</td>
</tr>
<tr>
<td>Operating Income</td>
<td>WC01250</td>
</tr>
<tr>
<td>Net Income Before Extra Items/Preferred Dividends</td>
<td>WC01551</td>
</tr>
<tr>
<td>Cash</td>
<td>WC02003</td>
</tr>
<tr>
<td>Current Assets Total</td>
<td>WC02201</td>
</tr>
<tr>
<td>Total Assets</td>
<td>WC02999</td>
</tr>
<tr>
<td>Short Term Debt & Current Portion Of Long Term Debt</td>
<td>WC03051</td>
</tr>
<tr>
<td>Current Liabilities Total</td>
<td>WC03101</td>
</tr>
<tr>
<td>Total Debt</td>
<td>WC03255</td>
</tr>
<tr>
<td>Dividends</td>
<td>WC04052</td>
</tr>
<tr>
<td>Net Assets From Acquisitions</td>
<td>WC04355</td>
</tr>
<tr>
<td>Capital Expenditures (Additions To Fixed Assets)</td>
<td>WC04601</td>
</tr>
<tr>
<td>Market Capitalization</td>
<td>WC08001</td>
</tr>
</tbody>
</table>

CCGR Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Current Liabilities</td>
<td>item_109</td>
</tr>
<tr>
<td>Depreciation</td>
<td>item_15</td>
</tr>
<tr>
<td>Operating Income</td>
<td>item_19</td>
</tr>
<tr>
<td>Income before extraordinary items</td>
<td>item_35</td>
</tr>
<tr>
<td>Dividends</td>
<td>item_41</td>
</tr>
<tr>
<td>Total fixed assets (tangible)</td>
<td>item_51</td>
</tr>
<tr>
<td>Total fixed assets</td>
<td>item_63</td>
</tr>
<tr>
<td>Investments in listed companies</td>
<td>item_71</td>
</tr>
<tr>
<td>Investments in listed bonds</td>
<td>item_72</td>
</tr>
<tr>
<td>Investment in other traded financial instruments</td>
<td>item_73</td>
</tr>
<tr>
<td>Total investments</td>
<td>item_75</td>
</tr>
<tr>
<td>Cash and Cash Equivalents</td>
<td>item_76</td>
</tr>
<tr>
<td>Total current assets</td>
<td>item_78</td>
</tr>
<tr>
<td>Revenue</td>
<td>item_9</td>
</tr>
<tr>
<td>Total provisions</td>
<td>item_91</td>
</tr>
<tr>
<td>Total other long-term liabilities</td>
<td>item_98</td>
</tr>
<tr>
<td>Industry codes</td>
<td>item_50108</td>
</tr>
<tr>
<td>Enterprise type</td>
<td>item_6</td>
</tr>
</tbody>
</table>
APPENDIX B – Industry Code

Broad Structure of NACE Rev. 2/SSB industry categories

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Agriculture, forestry and fishing</td>
</tr>
<tr>
<td>B</td>
<td>Mining and quarrying</td>
</tr>
<tr>
<td>C</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>D</td>
<td>Electricity, gas, steam and air conditioning supply</td>
</tr>
<tr>
<td>E</td>
<td>Water supply; sewerage, waste management and remediation activities</td>
</tr>
<tr>
<td>F</td>
<td>Construction</td>
</tr>
<tr>
<td>G</td>
<td>Wholesale and retail trade; repair of motor vehicles and motorcyckles</td>
</tr>
<tr>
<td>H</td>
<td>Transportation and storage</td>
</tr>
<tr>
<td>I</td>
<td>Accommodation and food service activities</td>
</tr>
<tr>
<td>J</td>
<td>Information and communication</td>
</tr>
<tr>
<td>K</td>
<td>Financial and insurance activities</td>
</tr>
<tr>
<td>L</td>
<td>Real estate activities</td>
</tr>
<tr>
<td>M</td>
<td>Professional, scientific and technical activities</td>
</tr>
<tr>
<td>N</td>
<td>Administrative and support service activities</td>
</tr>
<tr>
<td>O</td>
<td>Public administration and defence; compulsory social security</td>
</tr>
<tr>
<td>P</td>
<td>Education</td>
</tr>
<tr>
<td>Q</td>
<td>Human health and social work activities</td>
</tr>
<tr>
<td>R</td>
<td>Arts, entertainment and recreation</td>
</tr>
<tr>
<td>S</td>
<td>Other service activities</td>
</tr>
<tr>
<td></td>
<td>Activities of households as employers; undifferentiated goods- and services-producing activities of households for own use</td>
</tr>
<tr>
<td>T</td>
<td>Activities of extraterritorial organisations and bodies</td>
</tr>
</tbody>
</table>
APPENDIX C – Stata Script

* SCRIPT DATA ANALYSIS

** This Stata script documents all the analyses provided in the thesis. For
* variable definitions, see the enclosed appendix. All tables are exported to
* Excel for further formatting.

* ANALYSES FOR H1

* Import, format and sort data

clear all
set more off, perm
use "Data\DataStream\DataStream full sample.dta"
* Define company ID (cid) as the panel variable
* and year (yr) as the time variable
*set cid yr
sort cid yr

* Data cleaning

* Drop financial and utilities firms
drop if industrycode == "G" //utilities firms
drop if industrycode == "K" //financial and insurance companies

* Drop firms where cash exceed total assets
drop if cash > totassets

* Generate the exogenous variable and drop observations for which it is missing
cap drop CashHoldings
gen CashHoldings = cash / totassets
drop if CashHoldings == .

* Drop firms where the market value is less than 1,000,000
drop if mcap < 1000 // market cap is reported in units of 1000 NGK

* Generate variables for asset growth and sales growth
gen assetgrowth = (totassets - L.totassets)/L.totassets * 100
gen salesgrowth = (sales - L.sales)/L.sales * 100

* Drop firms where asset growth exceeds 100%
drop if assetgrowth > 100 & assetgrowth !=.

* Drop firms where sales growth exceeds 100%
drop if salesgrowth > 100 & salesgrowth !=

* Generate variables

* Generate Model 1 (baseline model) variables
cap drop CashFlow Q.Size

gen CashFlow = (netinc + depr * (1-0.28) - div)/totassets
replace CashFlow = (netinc + depr * (1-0.27) - div)/totassets if yr >= 2014
* The corporate tax rate changed from 28% to 27% in 2014
gen Q = mcap / totassets
gen Size = ln(totassets)

* Generate Model 2 (augmented model) variables

cap drop Expenditures Acquisitions NWC ShortDebt
gen Expenditures = capex / totassets
gen Acquisitions = acq / totassets
gen NWC = (curassets - curliab - cash) / totassets
gen ShortDebt = shortdebt / totassets

* Winsorize all Variables to remove extreme outliers
winsor2 CashHoldings CashFlow Q Size Expenditures Acquisitions NWC ShortDebt ///
, cuts(1 99)
local vars CashHoldings CashFlow Q Size Expenditures Acquisitions NWC ShortDebt
foreach var of local vars |
replace `var' = `var' < .
|
****** Create financial constraint schemes ******
// Scheme 1 - payout ratio
* Define the payout ratio variable
cap drop payoutratio
gen payoutratio = div / opinc
* Compute the 30th and 70th percentiles
sort yr
by yr: egen scheme1p30 = pttile(payoutratio), p(30)
by yr: egen scheme1p70 = pttile(payoutratio), p(70)
* Define constrained and unconstrained firms according to the payout ratio
cap drop scheme6counter scheme1unconstr
gen scheme1constr = 0
replace scheme1constr = 1 if payoutratio <= scheme1p30 & payoutratio !=.
gen scheme1unconstr = 0
replace scheme1unconstr = 1 if payoutratio >= scheme1p70 & payoutratio !=.

// Scheme 2 - firm size
* Compute the 30th and 70th percentiles of total assets
sort yr
by yr: egen scheme2p30 = pttile(totassets), p(30)
by yr: egen scheme2p70 = pttile(totassets), p(70)
cap drop scheme2counter scheme2unconstr
* Define constrained and unconstrained firms according to total assets
gen scheme2constr = 0
replace scheme2constr = 1 if totassets <= scheme2p30 & totassets !=.
gen scheme2unconstr = 0
replace scheme2unconstr = 1 if totassets >= scheme2p70 & totassets !=.

// Scheme 3 - KZ-index [scheme $5 in Almeida et al. 2004]
* Define the Leverage and Dividends variables
cap drop Leverage Dividends
gen Leverage = totdebt
gen Dividends = div
* Generate the KZ-index
gen KZindex = -1.062*CashFlow + 0.283*Q + 3.139*Leverage ///
-39.368*Dividends - 1.315*CashHoldings
* Compute the 30th and 70th percentiles the KZ-Index
sort yr
by yr: egen scheme3p30 = pttile(KZindex), p(30)
by yr: egen scheme3p70 = pttile(KZindex), p(70)
* Define constrained and unconstrained firms according to the KZ-index
cap drop scheme3counter scheme3unconstr
gen scheme3constr = 0
replace scheme3constr = 1 if KZindex <= scheme3p30 & KZindex !=.
gen scheme3unconstr = 0
replace scheme3unconstr = 1 if KZindex >= scheme3p70 & KZindex !=.
sort cid yr
** control
cap drop control
local schemes scheme1 scheme2 scheme3
foreach scheme of local schemes {
 gen control_scheme = .
 replace control_scheme = 1 if scheme constr == 1 & scheme unconstr == 1
 count if control_scheme == 1
 replace scheme constr = 1 if control_scheme == 1
 replace scheme unconstr = 1 if control_scheme == 1
}

Summary statistics

local filename "Data\Output Files\Regressions.xlsx"

matrix summary = J(1,4,.)
matrix colnames summary = "Mean" "Median" "Std. Dev." "N, Obs."
matrix rownames summary = "CashHolding" "D CashHolding" "CashFlow" "Q" "Size" "Expenditures" "Acquisitions" "D NWC" "D ShortDebt" "PayoutRatio" "FirmSize" "X1-index"

local vars CashHolding d CashHolding CashFlow Q Size ///
Expenditures Acquisitions NWC ShortDebt ///
payoutratio totalassets X1Index
local i = 1
foreach var of local vars {
 qui summ var, d
 matrix matrix summary[1,1] = r(mean)
 matrix matrix summary[1,2] = r(p50)
 matrix matrix summary[1,3] = r(sd)
 matrix matrix summary[1,4] = r(N)
 local ++i
}
matrix list summary
putexcel set "filename", sheet (SumStats) modify
putexcel A1 = matrix(summary), names

**
Cross classification of constraint types
**
* Make Table 1: Cross Classification of Constraint Types

matrix crossclass = J(6,6,.)
matrix colnames crossclass = "1A" "1B" "2A" "2B" "3A" "3B"
matrix rownames crossclass = 1A 1B 2A 2B 3A 3B

qui count if scheme1 constr == 1
qui matrix crossclass[1,1] = r(N)
qui count if scheme2 unconstr == 1
qui matrix crossclass[2,2] = r(N)
qui count if scheme2 constr == 1
qui matrix crossclass[3,3] = r(N)
qui count if scheme3 unconstr == 1
qui matrix crossclass[4,4] = r(N)
qui count if scheme3 constr == 1
qui matrix crossclass[5,5] = r(N)
qui count if scheme unconstr == 1
qui matrix crossclass[6,6] = r(N)
qui count if scheme constr == 1
qui matrix crossclass[7,7] = r(N)
qui matrix crossclass[8,8] = r(N)
qui matrix crossclass[9,9] = r(N)
qui matrix crossclass[10,10] = r(N)
qui matrix crossclass[11,11] = r(N)
qui matrix crossclass[12,12] = r(N)
qui matrix crossclass[13,13] = r(N)
qui matrix crossclass[14,14] = r(N)
qui matrix crossclass[15,15] = r(N)
qui matrix crossclass[16,16] = r(N)
qui matrix crossclass[17,17] = r(N)
qui matrix crossclass[18,18] = r(N)
qui matrix crossclass[19,19] = r(N)
qui matrix crossclass[20,20] = r(N)
qui matrix crossclass[21,21] = r(N)
qui matrix crossclass[22,22] = r(N)
qui matrix crossclass[23,23] = r(N)
qui matrix crossclass[24,24] = r(N)
qui matrix crossclass[25,25] = r(N)
qui matrix crossclass[26,26] = r(N)
qui matrix crossclass[27,27] = r(N)
qui matrix crossclass[28,28] = r(N)
qui matrix crossclass[29,29] = r(N)
qui matrix crossclass[30,30] = r(N)
qui matrix crossclass[31,31] = r(N)
qui matrix crossclass[32,32] = r(N)
qui matrix crossclass[33,33] = r(N)
qui matrix crossclass[34,34] = r(N)
qui matrix crossclass[35,35] = r(N)
qui matrix crossclass[36,36] = r(N)

Page 48
qui count if scheme2unconstr == 1
qui matrix crossclass[4,4] = r(N)
qui count if scheme3const == 1 & scheme3unconst == 1
qui matrix crossclass[5,5] = r(N)
qui count if scheme2const == 1 & scheme2unconst == 1
qui matrix crossclass[6,6] = r(N)
qui matrix crossclass[6,4] = r(N)
qui matrix crossclass[6,5] = r(N)
qui count if scheme2unconst == 1 & scheme3unconst == 1
qui matrix crossclass[7,7] = r(N)

matrix list crossclass
putexcel set "filename", sheet (T1) modify
putexcel A1 = matrix(crossclass), names

**
** Summary Stats of CashHoldings under three [financial] constraints criteria **
**
* Generate group variables for each financial constraint scheme
foreach scheme of local schemes {
 gen `scheme' = ""
 replace `scheme' = "constrained" if `scheme'const == 1
 replace `scheme' = "unconstrained" if `scheme'unconst == 1
}

* Summarize CashHoldings for each scheme and group, and test mean and median
* equality
matrix output = J(9,4,.)
matrix colnames output = "Mean" "Median" "Std. Dev." "N. Obs."
matrix rownames output = 1A 1B prvalue 2A 2B prvalue 3A 3B prvalue
local schemes scheme1 scheme2 scheme3
local i = 0
foreach scheme of local schemes {
 local ++i
 qui summ CashHoldings if `scheme' == "constrained", d
 qui matrix output[i,1] = r(mean)
 qui matrix output[i,2] = r(p50)
 qui matrix output[i,3] = r(ed)
 qui matrix output[i,4] = r(N)
}
local ++i
qui summ CashHoldings if `scheme' == "unconstrained", d
qui matrix output[i,1] = r(mean)
qui matrix output[i,2] = r(p50)
qui matrix output[i,3] = r(ed)
qui matrix output[i,4] = r(N)
local ++i
qui ttest CashHoldings, by(`scheme')
qui ranksum CashHoldings, by(`scheme')
qui matrix output[i,2] = 1-normal(abs(1-r(z)))
}
mat list output
putexcel set "filename", sheet (T2) modify
putexcel A1 = matrix(output), names

**
Model 1 (baseline model) analyses
**
* Define Model 1
local yvar d.CashHoldings
local xvar CashFlow Q Size
* Use the Hausman test to confirm that a fixed effects model is appropriate

```
* matrix Hauman = J(6,1,1)
* matrix colnames Hauman = "chi-squared p-value"
* matrix rownames Hauman = scheme1constr scheme1unconstr ///
  scheme2constr scheme2unconstr ///
  scheme3constr scheme3unconstr
* local schemes scheme1constr scheme1unconstr scheme2constr scheme2unconstr ///
  scheme3constr scheme3unconstr
* local i = 1
* foreach scheme of local schemes {
  qui streg `yvar' `xvar' if `scheme'==1, re
  estimates store `scheme'random
  qui streg `yvar' `xvar' if `scheme'==1, fe
  estimates store `scheme'fixed
  qui hausman `scheme'fixed `scheme'random
  matrix Hauman[1',1] = r(p)
  local +1}
* matrix list Hauman
* (Result: Proceed with fixed effects models)
```

* Run the model 1 regression for all subsamples

```
* foreach scheme of local schemes {
  qui streg `yvar' `xvar' if `scheme'==1, fe r
  matrix M1['scheme'] = r(table)
  putexcel set "filename", sheet(M1['scheme']) modify
  putexcel B10 = matrix(M1['scheme'], names)
  putexcel B4=("Number of obs") C4=(_N)
  putexcel B5=("F") C5=(_F)
  putexcel B6=("Frob > F") C6=(F(df m, e(df r), e(F)))
  putexcel B7=("R-squared") C7=(e(c2))
  putexcel B8=("Adj R-squared") C8=(e(c2 a))
}
* (Define alternative baseline model, assuming missing div means no div)

cap drop div2 CF
* gen div2 = 0 if div == .
* gen CF = (netinc + depr * (1-0.28) - div2)/totassets
* replace CF = (netinc + depr *(1-0.27) - div2)/totassets if yr >= 2016
* local yvar d.CashHoldings
* local xvar CF Q Size
* local schemes scheme1constr scheme2unconstr
* foreach scheme of local schemes {
  qui streg `yvar' `xvar' if `scheme'==1, fe r
  matrix altM1['scheme'] = r(table)
  putexcel set "filename", sheet(altM1['scheme']) modify
  putexcel B10 = matrix(altM1['scheme'], names)
  putexcel B4=("Number of obs") C4=(_N)
  putexcel B5=("F") C5=(_F)
  putexcel B6=("Frob > F") C6=(F(df m, e(df r), e(F)))
  putexcel B7=("R-squared") C7=(e(c2))
  putexcel B8=("Adj R-squared") C8=(e(c2 a))
}
```

* Define Model 2 (augmented model) analyses

```
* Model 2 (augmented model) analyses
```

```
* local yvar d.CashHoldings
* local xvar CashFlow Q Size Expenditures Acquisitions d.NWC d.ShortDebt
```
* Run the model 2 regression for all subsamples
local schemes scheme1constr scheme2constr scheme2unconstr scheme3unconstr //
scheme3constr scheme3unconstr
}
foreach scheme of local schemes {
 qui stset 'xvar' 'xvar' if `scheme'==1, fe r
 matrix M2['scheme'] = r(table)
 putexcel set "filename", sheet(M2['scheme']) modify
 putexcel B10 = matrix(M2['scheme']'), names
 putexcel B4=("Number of obs") C4=(_n)
 putexcel B5=("R") C5=(_r(R))
 putexcel B6=("Prob > R") C6=(_r(p))
 putexcel B7="(Adjusted R
-squared)" C7=_r(R2adj)
 putexcel B8=("Adj R
-squared") C8=(_r(R2adj))
}
}

**
**** ANALYSES FOR M2
**
clear all
set more off, perm
use "Data\CCGR\A. CCGR AS and ASA, CPI adjusted, incl industry codes.dta"
set list id yr
sort id yr

**
** Data cleaning, full sample
**
drop if industrycode == "E" //utilities firms
drop if industrycode == "F" //financial and insurance companies
cap drop cash totassets CashHoldings
gen cash = (item 76 + item 71 + item 72 + item 73)
gen totassets = item 63 + item 78
drop if cash > totassets
drop if totassets < 0
gen CashHoldings = cash / totassets
drop if CashHoldings == .
drop if CashHoldings < 0

data "Data\CCGR\B. CCGR cleaned.dta", replace
** Create file of private firms only
use "Datas/COGR\COGR cleaned.dta"
keep if orgtype == "A3"
drop if industrycode == "*
keep cid yr industrycode totalassets orgtype
xtset cid yr
sort industrycode yr
save "Datas/COGR/COGR AS.dta", replace

** Create file of public firms only
use "Datas/COGR\COGR cleaned.dta"
keep if orgtype == "ASA"
drop if industrycode == "*
keep cid yr industrycode totalassets orgtype
xtset cid yr
sort industrycode yr
save "Datas/COGR/COGR ASA.dta", replace

** For each public firm, find all private firms with the same industry code in the same year
rename cid ASA cid // rename company identifier for public firms
rename totalassets ASA totalassets // rename the total assets variable
joinby industrycode yr using "Datas/COGR\COGR AS.dta" // find all matches
format %15.0g ASA totalassets
format %15.0g totalassets

** Keep only matched private firms with total assets +/- 20% relative to the public firm
cap drop ratio
gen ratio = totalassets/ASA totalassets
drop if ratio < 1/1.2 | ratio > 1.2
sort ASA cid yr

** Find the absolute value of the difference in total assets for all matches
gen delta = abs(totalassets - ASA totalassets)

** At this point, each private firm appears several times in a year if it has been matched with multiple public firms. I do not want any firm to appear more than once in a year. Therefore, I rank each private firm by delta each year, and keep the observation with the smallest delta.
sort cid yr delta
by cid yr (delta), sort: keep if _n == 1

** Now, I want to find the best match for each public firm each year. Thus, for each public firm I rank the matched private firms by delta each year and keep the match with the smallest delta.
by ASA cid yr (delta), sort: keep if _n == 1
drop ratio delta

* Save new file of best matches
save "Datas/COGR\COGR best matches.dta", replace

** Now, each public firm has one matched private firm each year. However, the matched companies may alter every year. This alteration will not allow me to capture potentially influential factors like firms' responses to macroeconomic changes. It will also make it difficult to conduct the analysis because at least two years of consecutive data is needed to construct the change in CashHoldings. Therefore, I use the best match for the first year of data for each public firm, and keep it until it exits the sample.

** Find the best matched private firm in the first year of data for each public firm
* Order matches (do not count missing values)
sort ASA cid yr
by ASA cid: gen match_1 = sum(!mi(_d))
* Drop years until the first match
527 drop if match_1 == 0
528 * The overall matched firm is the first found
529 by ASA_cid: gen final_match = cid[1]
530 format %12.0g final_match
531 * Save the final matched pairs in a new file
532 save "Data\CGGR\D. CGGR final matches.dta", replace
533 * Rename the identifier in the private firms sample and save a new file.
534 use "Data\CGGR\D. CGGR AS final.dta"
535 rename cid final_match
536 save "Data\CGGR\D. CGGR AS final.dta", replace
537 ** Check each year if the best match from the first year has exited the sample.
538 * If the matched private firm has exited the sample, replace it with the best
539 * match for that year.
540 use "Data\CGGR\D. CGGR final matches.dta"
541 local more 1
542 while `more' {
543 qui merge m:1 final_match yr ///
544 using "Data\CGGR\D. CGGR AS final.dta", keep(master match)
545 bsort ASA_cid (yr): gen has_exit = sum(_merge != 1) /// 3 == merged
546 replace has_exit = 1 if has_exit > 1
547 count if has_exit
548 if r(N) {
549 bsort ASA_cid has_exit (yr): replace final_match = cid[1] if has_exit
550 } else local more 0
551 drop merge has_exit
552 }
553 duplicates report final_match yr
554 duplicates tag final_match yr, gen(dup)
555 sort dup final_match yr
556 drop if dup > 0
557 rename cid best_match
558 save "Data\CGGR\D. CGGR matches.dta", replace
559 ** Create a file with all data on the matched, private firms
560 use "Data\CGGR\B. CGGR cleaned.dta"
561 keep if orctype == "ASA"
562 drop if industrycode == ""
563 xtset cid yr
564 rename cid final_match
565 merge m:1 final_match yr ///
566 using "Data\CGGR\D. CGGR final matches.dta", gen(ASAmatch) keep(match)
567 rename final_match cid
568 gen matched = "matched private"
569 save "Data\CGGR\E. CGGR AS matched.dta", replace
570 ** Create a file with all data on the matched, public firms
571 use "Data\CGGR\B. CGGR cleaned.dta"
572 keep if orctype == "ASA"
573 drop if industrycode == ""
574 xtset cid yr
575 rename cid ASA_cid
576 merge m:1 ASA_cid yr ///
577 using "Data\CGGR\D. CGGR final matches.dta", gen(ASAmatch) keep(match)
578 rename ASA_cid cid
579 gen matched = "matched public"
580 save "Data\CGGR\G. CGGR ASA matched.dta", replace
581 ** Combine data on both public and private matched firms in one file
582 append using "Data\CGGR\F. CGGR AS matched.dta"
583 xtset cid yr
584 sort cid yr
585 drop cp2016 _merge best_match match_1 final_match ///
586 ASAmatch ASA_cid ASAmatch
587 save "Data\CGGR\D. CGGR Final Matched Sample.dta", replace
** Make final full sample:**
use "Data\CCGR\R. CCGR cleaned.dta"
drop cpi2016_merge
drop if industrycode "-
merge mi: cid yr using "Data\CCGR\G. CCGR Final Matched Sample.dta"
xset cid yr
sort cid yr
save "Data\CCGR\K. CCGR Cleaned and Matched Final Full Sample.dta", replace

clear all
use "Data\CCGR\H. CCGR Cleaned and Matched Final Full Sample.dta"

********************************** Generate variables for Model 1 ****************************

* Generate underlying variables
cap drop depr div netinc
gen depr = - item 15 // Item 15 (depreciation) is reported as
// a negative number
gen div = - item 41 // Item 41 (dividends) is reported as
// a negative number

gen netinc = item 35
gen ppe = item 51
gen capex = d.ppe + depr

** Generate Model 1 [baseline model] variables
* [CashHoldings is already defined as cash/totassets]
cap drop CashFlow Size
gen CashFlow = netinc + depr * (1-0.28) - div/totassets
replace CashFlow = netinc + depr *(1-0.27) - div/totassets if yr >= 2014
gen InvOpp = capex/ppe
gen Size = in[totassets]

** Summarize
summ CashHoldings d.CashHoldings CashFlow InvOpp Size, d

** Winsorize
winsor2 CashHoldings CashFlow InvOpp Size, cuts(2.5 97.5) by(yr) suffix(_win)
local vars CashHoldings CashFlow InvOpp Size
foreach var of local vars |
replace var' = var'_win

********************************** Generate variables for Model 2 ****************************

* Generate underlying variables
cap drop currassets currlabilities capex
gen currassets = item 78
gen currlabilities = item 109

** Generate Model 2 variables
cap drop WNC ShortDebt Expenditures
gen HMC = (currassets - cash - currlabilities) / totassets
gen ShortDebt = currlabilities / totassets
gen Expenditures = capex / totassets

** Summarize
summarize WNC ShortDebt Expenditures, d

* Winsorize
winsor2 WNC ShortDebt Expenditures, cuts(2.5 97.5) by(yr) suffix(win)
local vars WNC ShortDebt Expenditures
foreach var of local vars |
replace var' = var'_win
```stata
save "Data\CCGR\1. CCGR Full Sample.dta", replace

* Full sample
matrix summary = J(6, 4, .)
matrix colnames summary = "Mean" "Median" "Std. Dev." "N. Obs."
matrix rownames summary = "CashHoldings" "D CashHoldings" "CashFlow" ///
"InvOpp" "Size" "Expenses" "D_NWC" "D_ShortDebt"
local filename "Data\Output files\Regressions.xlsx"
local i = 1
foreach var of local vars {
    qui summ `var', d
    matrix summary[`, `i', 1] = r(mean)
    matrix summary[`, `i', 2] = r(p50)
    matrix summary[`, `i', 3] = r(sd)
    matrix summary[`, `i', 4] = r(N)
    local i = `i' + 1
}

matrix list summary

putexcel A1 = matrix(summary), names

* matched sample = summary statistics and histograms
matrix assets = J(6, 3, .)
matrix colnames assets = "Private" "Matched private" "Public"
matrix rownames assets = "mean" "t-test" "median" "ranksum" "sd" "N"
qui sum totalassets if orgtype == "AS", d
qui matrix assets[1, 1] = r(mean)
qui matrix assets[1, 2] = r(p50)
qui matrix assets[1, 3] = r(sd)
qui matrix assets[4, 1] = r(N)
qui ttest totalassets, by(orgtype)
qui matrix assets[2, 1] = r(p)
qui ranksum totalassets, by(orgtype)
qui matrix assets[4, 1] = j(1, 1, abs(r(z)))
qui sum totalassets if orgtype == "matched private", d
qui matrix assets[1, 2] = r(mean)
qui matrix assets[3, 2] = r(p50)
qui matrix assets[5, 2] = r(sd)
qui matrix assets[6, 2] = r(N)
qui sum totalassets if orgtype == "matched public", d
qui matrix assets[1, 3] = r(mean)
qui matrix assets[3, 3] = r(p50)
qui matrix assets[5, 3] = r(sd)
qui matrix assets[6, 3] = r(N)
qui ttest totalassets, by(matched)
qui matrix assets[2, 2] = r(p)
qui ranksum totalassets, by(matched)
qui matrix assets[4, 2] = j(1, 1, abs(r(z)))

matrix list assets
```

local filename "Data\Output files\Regressions.xlsx"
putexcel A1 = matrix(assets), names
encode industrycode, generate(indcode)

hist indcode, by(ortype) discrete fraction gap(50) xlabel(1(1)19, valuclabel)
graph save Graph "Data\Output files\Histogram indcode all.png", replace
hist indcode, by(matched) discrete fraction gap(50) xlabel(1(1)19, valuclabel)
graph save Graph "Data\Output files\Histogram indcode matched.png", replace

* private, matched private, public
matrix summary_match = J(16,12,.)
matrix colnames summary_match = "mean priv" "median priv" "sd priv" "N priv"
 "mean match" "median match" "sd match" "N match"
 "mean pub" "median pub" "sd pub" "N pub"
matrix rnames summary_match = "CashHoldings" "Test" "D CashHoldings" "Test" "CashFlow" "Test" "InvOpp" "Test" "Size" "Test" "Expenditures" "Test" "D_NMC" "Test" "D ShortDebt" "Test"
cap drop d CashHoldings d NMC d ShortDebt
gen d CashHoldings = d.CashHoldings
gen d NMC = d.NMC
gen d ShortDebt = d.ShortDebt
local vars CashHoldings d CashHoldings CashFlow InvOpp Size Expenditures D NMC d ShortDebt
local i = 1
toreach var of local vars {
 qui summ `var' if ortype == "A3", d
 qui matrix summary_match[1,2] = r(p)
 qui matrix summary_match[1,3] = r(sd)
 qui matrix summary_match[1,4] = r(N)
 qui summ `var' if matched == "matched private", d
 qui matrix summary_match[1,5] = r(p)
 qui matrix summary_match[1,6] = r(sd)
 qui matrix summary_match[1,7] = r(N)
 qui summ `var' if matched == "matched public", d
 qui matrix summary_match[1,9] = r(p)
 qui matrix summary_match[1,10] = r(sd)
 qui matrix summary_match[1,11] = r(N)
 local ++
 qui test `var', by(ortype)
 qui matrix summary_match[1,1] = r(p)
 qui matrix summary_match[1,2] = 1-normal(abs(r(z)))
 qui test `var', by(matched)
 qui matrix summary_match[1,5] = r(p)
 qui ranksum `var', by(matched)
 qui matrix summary_match[1,6] = 1-normal(abs(r(z)))
}
local ++
matrix list summary_match
putexcel set "filename", sheet (SamplestatsCOCBsplit) modify
putexcel A1 = matrix(summary_match), names
..............................
........ Model 1 (baseline model) analyses
..............................
........* Baseline model ...
local yvar d.CashHoldings
local xvar CashFlow InvOpp Size

treg 'xvar' 'xvar' if orgtype == "ASA", fe r

putexcel set "filename", sheet(ASA_base) modify

matrix ASA_base = r(table)

putexcel B10 = matrix(ASA_base), names

putexcel B4="("Number of obs") C4=e(N)

putexcel B5="F" C5=e(F)

putexcel B6="(Prob > F") C6=ftail(e(df_ml), e(df_r), e(F))

putexcel B7="(R-squared)" C7=e(r2_d)

putexcel B8="(Adj R-squared)" C8=e(r2_a)

xtreg 'xvar' 'xvar' if matched == "matched private", fe r

putexcel set "matches", sheet(matched_base) modify

matrix matched_base = r(table)

putexcel B10 = matrix(matched_base), names

putexcel B4="("Number of obs") C4=e(N)

putexcel B5="F" C5=e(F)

putexcel B6="(Prob > F") C6=ftail(e(df_ml), e(df_r), e(F))

putexcel B7="(R-squared)" C7=e(r2_d)

putexcel B8="(Adj R-squared)" C8=e(r2_a)

xtreg 'xvar' 'xvar' if orgtype == "ASA", fe r

putexcel set "filename", sheet(ASA_base) modify

matrix ASA_base = r(table)

putexcel B10 = matrix(ASA_base), names

putexcel B4="("Number of obs") C4=e(N)

putexcel B5="F" C5=e(F)

putexcel B6="(Prob > F") C6=ftail(e(df_ml), e(df_r), e(F))

putexcel B7="(R-squared)" C7=e(r2_d)

putexcel B8="(Adj R-squared)" C8=e(r2_a)

* Baseline model -- public dummy -- full sample

gen public = (orgtype == "ASA")

local xvar d.CashHoldings

local xvar public CashFlow InvOpp Size //

local xvar 'xvar', fe r

putexcel set "filename", sheet(base dummy full) modify

matrix base dummy full = r(table)

putexcel B10 = matrix(base dummy full), names

putexcel B4="("Number of obs") C4=e(N)

putexcel B5="F" C5=e(F)

putexcel B6="(Prob > F") C6=ftail(e(df_ml), e(df_r), e(F))

putexcel B7="(R-squared)" C7=e(r2_d)

putexcel B8="(Adj R-squared)" C8=e(r2_a)

* Baseline model -- public dummy -- matched sample

replace public_m = 1 if matched == "matched public"

replace public_m = 0 if matched == "matched private"

local xvar d.CashHoldings

local xvar public c.CashFlow m.CashFlow InvOpp Size //

local xvar 'xvar', fe r

putexcel set "filename", sheet(base dummy match) modify

matrix base dummy match = r(table)

putexcel B10 = matrix(base dummy match), names

putexcel B4="("Number of obs") C4=e(N)

putexcel B5="F" C5=e(F)

putexcel B6="(Prob > F") C6=ftail(e(df_ml), e(df_r), e(F))

putexcel B7="(R-squared)" C7=e(r2_d)

putexcel B8="(Adj R-squared)" C8=e(r2_a)

Model 2 (augmented model analyses)

* Augmented model

local yvar d.CashHoldings
local xvar CashFlow InvOpp Size Expenditures d.NWC d.ShortDebt

treg `yvar' `xvar' if orctype == "AS", fe r
putexcel set "filename", sheet(AAug) modify
matrix AAug = r(table)
putchexcel B10 = matrix(AAug), names

putexcel B5="(Number of obs)" C5=e(N)
putchexcel B6="(Prob > F)" C6=t(df_m, e(df_r), e(F))
putchexcel B7="(R-squared)" C7=e(r2)
putchexcel B8="(Adj R-squared)" C8=e(r2 a)

treg `yvar' `xvar' if matched == "matched private", fe r
putexcel set "filename", sheet(matched_AAug) modify
matrix matched_AAug = r(table)
putchexcel B10 = matrix(matched_AAug), names

putexcel B5="(Number of obs)" C5=e(N)
putchexcel B6="(Prob > F)" C6=t(df_m, e(df_r), e(F))
putchexcel B7="(R-squared)" C7=e(r2)
putchexcel B8="(Adj R-squared)" C8=e(r2 a)

* Augmented model - public dummy - full sample

gen D NWC = d.NWC

treg `yvar' `xvar', fe r
putexcel set "filename", sheet(aug_dummy_full) modify
matrix aug dummy full = r(table)
putchexcel B10 = matrix(aug dummy full), names

putexcel B5="(Number of obs)" C5=e(N)
putchexcel B6="(Prob > F)" C6=t(df_m, e(df_r), e(F))
putchexcel B7="(R-squared)" C7=e(r2)
putchexcel B8="(Adj R-squared)" C8=e(r2 a)

* Augmented model - matched dummy - matched sample

local yvar d.CashHoldings
local xvar public CashFlow InvOpp Size Expenditures D NWC D ShortDebt

treg `yvar' `xvar', fe r
putexcel set "filename", sheet(aug dummy match) modify
matrix aug dummy match = r(table)
putchexcel B10 = matrix(aug dummy match), names

putexcel B5="(Number of obs)" C5=e(N)
putchexcel B6="(Prob > F)" C6=t(df_m, e(df_r), e(F))
putchexcel B7="(R-squared)" C7=e(r2)
putchexcel B8="(Adj R-squared)" C8=e(r2 a)
local filename "Data\Output files\Financial Crisis final.xlsx"

** Generate dummy variables for each period **

cap drop before during after
gen before = (yr < 2007) if !missing(yr)
gen crisis = (yr == 2007 | yr == 2008) if !missing(yr)
gen after = (yr > 2008) if !missing(yr)

** Test the baseline model for all periods separately **

local yvar `d.CashHoldings`
local xvar `c.Insolvency Size`

local periods before crisis after

foreach period of local periods{
 xtreg `yvar' `xvar' if `period' == 1 & orgtype == "ASA", fe r
 putexcel set "filename", sheet="base_period' _ASA" modify
 matrix base_period_ASA = r(table)
 putexcel B10 = matrix(base_period_ASA), names
 putexcel B4 = "(Number of obs)" C4 = e(N)
 putexcel B5 = "(F)" C5 = e(F)
 putexcel B6 = "(Prob > F)" C6 = e(Ftail(e(df_m), e(df_r), e(F)))
 putexcel B7 = "(R-squared)" C7 = e(r2)
 putexcel B8 = "(Adj R-squared)" C8 = e(r2
}

* Baseline model — crisis dummy - public and private *

local yvar `d.CashHoldings`
local xvar `c.Insolvency Size'

foreach period of local periods{
 xtreg `yvar' `xvar' if `period' == 1 & orgtype == "ASA", fe r
 putexcel set "filename", sheet=base_crisisASA modify
 matrix base_crisis ASA = r(table)
 putexcel B10 = matrix(base_crisisASA), names
 putexcel B4 = "(Number of obs)" C4 = e(N)
 putexcel B5 = "(F)" C5 = e(F)
 putexcel B6 = "(Prob > F)" C6 = e(Ftail(e(df_m), e(df_r), e(F)))
 putexcel B7 = "(R-squared)" C7 = e(r2)
 putexcel B8 = "(Adj R-squared)" C8 = e(r2
}

* Augmented model — crisis dummy - public and private *

dlocal yvar `d.CashHoldings`
local xvar crisis CashFlow Insolvency Size Expenditures D MNC D ShortDebt //
local xvar crisis CashFlow Insolvency Size Expenditures D MNC D ShortDebt //

foreach period of local periods{
 xtreg`yvar' `xvar' if `period' == 1 & orgtype == "ASA", fe r
 putexcel set "filename", sheet=aug_crisis ASA modify
 matrix aug_crisis ASA = r(table)
 putexcel B10 = matrix(aug_crisis ASA), names
 putexcel B4 = "(Number of obs)" C4 = e(N)
 putexcel B5 = "(F)" C5 = e(F)
 putexcel B6 = "(Prob > F)" C6 = e(Ftail(e(df_m), e(df_r), e(F)))
 putexcel B7 = "(R-squared)" C7 = e(r2)
 putexcel B8 = "(Adj R-squared)" C8 = e(r2
}