Productivity of health workers: the case of Tanzania

Global Forum on HRH
Bangkok, January 2011

Ottar Mæstad (CMI, Norway)
Aziza Mwisongo (NIMR, Tanzania)
What is productivity analysis?

- Measurement of outputs relative to inputs

\[
\frac{\text{Outputs}}{\text{Inputs}}
\]

- Outputs: Number of patients
- Inputs: Finances (or health workers, equipment etc.)
Why productivity analysis?

- Identify and learn from most productive units
- Allocate resources efficiently and equitably
 - Ex: Personnel from low to high productive units
 - Higher output?
 - More equal workload
Methods for benchmarking productivity

• Total Factor Productivity analysis (TFP)
 – Compare each facility to the best performing facility

• Data Envelopment Analysis (DEA)
 – Compare to high performing – but ”similar” – facilities
 • Similar size, similar input mix

• Stochastic Frontier Analysis (SFA)
 – Take into account possible measurement errors in your peers’ productivity levels
MAP project, Tanzania (2006-10):
Health worker Motivation, Availability and Performance

- 9 rural districts
- 126 health facilities
 - 99 with data on number of patients over time
Simple productivity analysis

• Input:
 – Number of health workers in the OPD

• Output:
 – Number of patients treated in the OPD

⇒ Productivity:
 – Patients pr health worker
Patients per health worker (per day)
Productivity levels – by health facility

- TFP analysis
- DEA analysis
- SFA analysis
Average productivity (and variation)

Variation: 5 - 95 percentile
Conclusions

• Low average productivity
 – A few facilities do much better than most of the others

• Large variation in productivity
What to do?

• Learn from high performers

• Allocate additional health workers to high productive units

• Fewer health workers at low productive units?
 – Not necessarily. Could imply close-down. Equity?
Recommendations

• Don’t do productivity analysis without **good data!!**

• Include **all outputs**
 – Delivery, vaccinations, OPD, etc.

• Use the **DEA approach**
 – More sensible than TFP analysis
 • Accounts for differences in the size of health facilities
 – Easier and more intuitive than SFA analysis
 • Easily deals with multiple inputs/outputs
 • Software freely available (e.g., DEAP)