Kartlegging av beitestatus i vinterbeiteområder for hjort på Søre Sunnmøre

Erling L. Meisinget, Øystein Brekkum & Martha Ebbesvik
Bioforsk Økologisk, Tingvoll
Tittel / Title:
Kartlegging av beitestatus i vinterbeiteområder for hjort på Søre-Sunnmøre

Forfatter(e) / Autor(s):
Erling L. Meisingset, Øystein Brekkum & Martha Ebbesvik

Dato / Date:
30.04.08

Rapport nr. / Report No.:
Nr 70/2008

ISBN-nr.:
978-82-17-00370-0

Tilgjengelig / Availability:
Åpen

Antall sider / Number of pages:
46

Antall vedlegg / Number of appendix:
2

Oppdragsgiver / Employer:
Sør-Sunnmøre hjorteviltutval

Kontaktperson / Contact person:
Roger Nedreklepp

Stikkord / Keywords:
Hjort, hjortebeite, beitefrekvens, Søre-Sunnmøre.
Red deer, grazing, grazing frequency, Norway

Fagområde / Field of work:
Økologisk

**Organic food and farming

Sammendrag**

Godkjent / Approved by:
Atle Wibe, forskningsleder

Prosjektleder / Project Leader:
Erling L. Meisingset
Forord

Vi takker Roger Meås for god hjelp under feltarbeidet og Peggy Haugnes for punching av data.

Vi vil takke Sør-Sunnmøre hjorteutval og de ulike kommunene for samarbeidet og håper at arbeidet kommer til nytte og blir brukt videre i forvaltninga i kommunene.
Innhold

1. Sammendrag .. 4
2. Innledning .. 7
 2.1 Bakgrunn og mål ... 7
 2.2 Hjortens diett og beitning ... 7
 2.3 Hjortebestanden ... 8
3. Metoder .. 10
 3.1 Studieområder .. 10
 3.2 Utvelgelse av studieområder .. 10
 3.3 Registreringsmetoder .. 12
 3.4 Statistisk analyse ... 13
4. Resultater ... 14
 4.1 Tilgjengelighet av beiteplanter .. 14
 4.1.1 Lyng ... 14
 4.1.2 Trær .. 14
 4.2 Tilgjengelig antall "beiteskudd" og dekningsgrad .. 15
 4.2.1 Lyng .. 15
 4.2.2 Trær .. 16
 4.3 Beitefrekvens .. 17
 4.3.1 Lyng .. 17
 4.3.2 Trær .. 19
5. Diskusjon ... 23
 5.1 Tilgjengelighet av aktuelle beiteplanter .. 23
 5.2 Beitefrekvens .. 24
 5.3 Definering av beitetrykk ... 25
 5.4 Beitetrykket på Søre-Sunnmøre .. 26
 5.5 Oppsummering ... 28
 5.6 Beskrivelse av og tilrådning i de enkelte undersøkelsesområdene 28
 5.6.1 Leinøya i Herøy kommune (blokk A) .. 28
 5.6.2 Tødenes-Larsnes-Myklebust i Sande kommune (blokk B) 29
 5.6.3 Ringstadal-Eiksund i Ulstein kommune (blokk C) 29
 5.6.4 Hovden-Liaset i Hareid kommune (blokk D) .. 30
 5.6.5 Bondalen i Ørsta kommune (blokk E) .. 31
 5.6.6 Årsedalen i Ørsta kommune (blokk F) ... 32
 5.6.7 Hovdebygda/Furene i Volda og Ørsta kommuner (blokk H) 32
 5.6.8 Austefjorden i Volda kommune (blokk I) ... 33
6. Referanser ... 35
7. Vedlegg .. 37
 7.1 Studieområder - kartoversikt .. 37
 7.2 Resultatoversikt på rutenivå ... 45
1. Sammendrag

Denne rapporten oppsummerer en beitekartlegging gjennomført i regi av Søre-Sunnmøre hjorteviltutval. Målet med undersøkelsen har vært å få en oversikt og tilstandsbeskrivelse på beitesituasjonen i sentrale overvintringslokaliteter for hjort i regionen. De fire kommunene Herøy, Sande, Ulstein, Hareid er typiske kystkommuner, mens Ørsta og Volda er kommuner med fjordlandskap og større innslag av fjell og høyereliggende områder.

Feltundersøkelsene ble lagt til områder som ble utpekt som vinterbeiteområder for hjort. Disse områdene ble satt som utgangspunkt for videre inndeling. Dette ble gjort ved at de utvalgte områdene inngikk som en del av et større område, og dette området ble betraktet som en "blokk" (som et "ensartet" undersøkelsesområde) i studiedesignet. På denne måten fikk man en fornuftig romlig skala på registreringene. Det ble lagt opp 8 undersøkelsesområder (kalt blokker) i de 6 kommunene. Blokkene ble videre inndelt i nummererte kilometersruter etter M-711 1:50000 serien, som videre grunnlag for registreringene. Blokkene inneheldet mellom 12-20 ruter. Registreringsflatene var sirkulære flater på 50 m². Fra 3 til 16 flater ble registrert for hver takseringslinje med et middel på 6,4 flate. Totalt ble det gjennomført registreringer på 274 flater. Innen hver flate ble det gjort registreringer på aktuelle beiteplanter for hjort. Alle tre opptil 1,80 m høyde ble registrert innen ruta. Det ble telt opp antall tilgjengelige beitekvister, og antall av disse som faktisk var blitt beita. På denne måten fikk man et uttrykk for både tilgjengelighet og beitetrykk på de ulike plantene. Registrering av lyng ble gjort innenfor ei 50x50 cm ruta innen hver flate. Alle faktiske beita skudd hos trær er ett uttrykk for akkumulert beiteuttak, siden det er vanskelig å skille hva som er siste års beiting mot tidligere års beiting. For lyng er beitinga er uttrykk for siste års beiting og uttaket gjelder for siste året (etter vekstsesongens slutt).

Tilgjengeligheten av aktuelle lyngarter varierer relativt mye. Blåbær var klart mest utbredt og ble funnet på 86 % av flatene. Blåbæra er med andre ord stor sett tilgjengelig i alle områder og habitat, selv om mengden kan variere betydelig. Tyttebær ble funnet på 31 % av flatene, røsslyng ble funnet på 21,5 % av alle flatene, Pors ble funnet i halvparten av blokkene og her igjen på 8,6 - 16,1 % av flatene. Blokkebær ble også funnet i 50 % av blokkene, og i de fire blokkene den ble funnet, bare på 2,3-5,7 % av flatene. De mest utbredte var trea var bjørk (og bjørkeskudd), eimer, furu, gråor, hassel og rogn. Totalt sett var ene mest utbredt og ble funnet i 75,9 % av flatene, mens rogn og bjørk ble funnet på henholdsvis 59,1 og 54,7 % av flatene. Furu og gran ble funnet på ca 20 % av flatene, men variasjonen var relativt stor mellom de ulike områdene. Gråor ble også funnet på om lag 25 % av flatene, men ble ikke funnet på noen flater i blokk A og B. Resten av treslagene ble funnet på mindre enn 10 % av flatene totalt sett, men tilgjengeligheten varierer mellom blokkene og kan i enkelte områder være viktige som beite.

Antall tilgjengelige beiteskudd var størst hos røsslyng og blåbær og minst hos tyttebær. Blåbær var tilgjengelig i et stort flertall av flatene, men mengden tilgjengelig varierer betydelig (figur 4a). Den var signifikant større i blokk A, E, F, H og I enn i blokk B, C og D. Vegetasjonstypene betyr en del for mengden blåbær på flatene; i vegetasjonstypen klassifisert som røsslyng var det mindre blåbær enn i de andre vegetasjonstypene. Tilgjengeligheten av skudd i beithøyde (0-180 cm) varierer vesentlig mellom de aktuelle treslagene. Blant de trærne som produserer flest skudd pr flate er furu og gran, mens det er stor spredning blant lauvtre. Antall beiteskudd av aktuelle trær er avhengig av flere faktorer. Antallet beiteskudd/kvister er forhåpentlig mellom blokkene som igjen har sammenheng med ulik sammensetning av vegetasjonen mellom de ulike områdene. Den viktigste faktoren for beitetilgangen på de ulike flatene var treslagssammensetning, sannsynligvis fordi de ulike treslagene produserer forskjellige skudd og har ulik voksemåte. På den enkelte flata var antall beiteskudd knytt til skogtype (mer i naturskog enn i kulturskog) og høyde på beitetrærne (mer jo høyere, opptil 180 cm). Økende dominerende trehøyde i det enkelte området påvirker mengden av beiteskudd negativt.
Beitefrekvensen varierer mellom de ulike lyngartene. Blåbær beites i størst grad og har signifikant høyere beitegrader enn de andre artene og i gjennomsnitt blir 48,5 % av de tilgjengelige skuddene beita. Beitefrekvensen for pors og blokkebær var lavere enn for blåbær, men signifikant høyere enn røsslyng og tyttebær. Frekvensen for pors og blokkebær var henholdsvis 30,1 og 24,3 %, men få observasjoner gjør at tallene er heftet med en vis usikkerhet. Røsslyng hadde en gjennomsnitt beitefrekvens på 6,9 % og tyttebær på 2,9 %. Hos alle lyngartene unntatt blåbær er det en del ekstreme verdier som drar opp gjennomsnittet, dermed blir medianverdiene (verdi nærmest midten av tallmaterialet) en del lavere enn gjennomsnittsverdiene. Dette tyder på en vesentlig variasjon i beitetrykk mellom ulike registreringsflater og ruter. Det var høyere beitefrekvens i vegetasjonstypen lågurt enn i de andre typene, men mellom ulike skogtype (lavvær eller barskog). Antall mokkhauger i ruta (en indeks på hjortens bruk av den gitte flata) viser en positiv sammenheng med beitefrekvensen, mens antall felte dyr for valdet registreringsruta ligger i ikke viser noen signifikant sammenheng. Beitefrekvensen av lyng er signifikant høyere i områder hvor husdyr går på beite.

Det er stor variasjon i beitefrekvensen mellom ulike treslag. Rogn har høyest beitefrekvens hvor 71,0 % av alle tilgjengelige skudd var beita. Bjørk som regnes som en middels preferert art hadde en beitefrekvens på 31,5, men det er verdt å merke seg av rot/stammeskudd av bjørk hadde en beitefrekvens på 53,9 % som var signifikant høyere enn skudd fra bjørkettea. Det samme mønsteret viser seg hos gråor hvor beitefrekvensen var 12,1 % i gjennomsnitt, mens for rot/stammeskudd av gråor var verdien 46,1. Furu og gran viste lav beitefrekvens, selv om barknag ble inkludert i utregninga. Verdiene er heftet med en vis usikkerhet. Beitetypet viser noen signifikant sammenheng mellom treslagene. Variasjonen i beitetypen dannes av ulike treslagene og ruter. Det er stor variasjon i hvor stor grad de ulike plantene var beita.

Resultatene tyder ikke på at det er skjedd vesentlige endringer i vegetasjonen over tid. Det er betydelig variasjon mellom områdene i beitefrekvensen, og det er en positiv sammenheng med beitetrykket. Beitefrukten er signifikant høyere i områder hvor husdyr går på beite. Beitefrukten varierer mellom de ulike artene i mengden som blir beita. Blåbær beites i størst grad og har signifikant høyere beiteprosent. Frekvensen for pors og blokkebær var henholdsvis 30,1 og 24,3 %, men få observasjoner gjør at tallene er heftet med en vis usikkerhet. Røsslyng hadde en gjennomsnitt beitefrekvens på 6,9 % og tyttebær på 2,9 %. Hos alle lyngartene unntatt blåbær er det en del ekstreme verdier som drar opp gjennomsnittet, dermed blir medianverdiene (verdi nærmest midten av tallmaterialet) en del lavere enn gjennomsnittsverdiene. Dette tyder på en vesentlig variasjon i beitetrykk mellom ulike registreringsflater og ruter. Det var høyere beitefrekvens i vegetasjonstypen lågurt enn i de andre typene, men mellom ulike skogtype (lavvær eller barskog). Antall mokkhauger i ruta (en indeks på hjortens bruk av den gitte flata) viser en positiv sammenheng med beitefrekvensen, mens antall felte dyr for valdet registreringsruta ligger i ikke viser noen signifikant sammenheng. Beitefrekvensen av lyng er signifikant høyere i områder hvor husdyr går på beite.

Resultatene tyder ikke på at det er skjedd vesentlige endringer i vegetasjonen over tid. Det er betydelig variasjon mellom områdene i beitefrekvensen, og det er en positiv sammenheng med beitetrykket. Beitefrukten er signifikant høyere i områder hvor husdyr går på beite. Beitefrukten varierer mellom de ulike artene i mengden som blir beita. Blåbær beites i størst grad og har signifikant høyere beiteprosent. Frekvensen for pors og blokkebær var henholdsvis 30,1 og 24,3 %, men få observasjoner gjør at tallene er heftet med en vis usikkerhet. Røsslyng hadde en gjennomsnitt beitefrekvens på 6,9 % og tyttebær på 2,9 %. Hos alle lyngartene unntatt blåbær er det en del ekstreme verdier som drar opp gjennomsnittet, dermed blir medianverdiene (verdi nærmest midten av tallmaterialet) en del lavere enn gjennomsnittsverdiene. Dette tyder på en vesentlig variasjon i beitetrykk mellom ulike registreringsflater og ruter. Det var høyere beitefrekvens i vegetasjonstypen lågurt enn i de andre typene, men mellom ulike skogtype (lavvær eller barskog). Antall mokkhauger i ruta (en indeks på hjortens bruk av den gitte flata) viser en positiv sammenheng med beitefrekvensen, mens antall felte dyr for valdet registreringsruta ligger i ikke viser noen signifikant sammenheng. Beitefrekvensen av lyng er signifikant høyere i områder hvor husdyr går på beite.

Våre resultater viser at det totalt sett at beitefrekvensen (eller beitetrykket) kan klassifiseres som (lett)moderat både på lyng og tre, men det er betydelig variasjon mellom områdene. Totalt sett hadde Leinøya i Herøy, Ringstadalen-Eiksund i Ulstein og Austefjord i Volda det laveste beitetrykket, mens Årsetdalen i Ørsta hadde det høyeste. Det er stor variasjon i hvor stor grad de ulike plantene var beita. Blåbær beites i størst grad og har signifikant høyere beiteprosent. Frekvensen for pors og blokkebær var henholdsvis 30,1 og 24,3 %, men få observasjoner gjør at tallene er heftet med en vis usikkerhet. Røsslyng hadde en gjennomsnitt beitefrekvens på 6,9 % og tyttebær på 2,9 %. Hos alle lyngartene unntatt blåbær er det en del ekstreme verdier som drar opp gjennomsnittet, dermed blir medianverdiene (verdi nærmest midten av tallmaterialet) en del lavere enn gjennomsnittsverdiene. Dette tyder på en vesentlig variasjon i beitetrykk mellom ulike registreringsflater og ruter. Det var høyere beitefrekvens i vegetasjonstypen lågurt enn i de andre typene, men mellom ulike skogtype (lavvær eller barskog). Antall mokkhauger i ruta (en indeks på hjortens bruk av den gitte flata) viser en positiv sammenheng med beitefrekvensen, mens antall felte dyr for valdet registreringsruta ligger i ikke viser noen signifikant sammenheng. Beitefrekvensen av lyng er signifikant høyere i områder hvor husdyr går på beite.
Analysene viser at beitefrekvensen er avhengig av habitatbruken til hjorten (målt som antall møkkhauger pr flate), men bare delvis av antall felte dyr pr arealenhet innenfor området. Beitefrekvensen er størst i de områdene hjorten prioritiserer å oppholde seg mye i, men det er også grunn til å tro at bestandstettheten i området også betyr mye selv om vi ikke fant entydige svar på dette. Det kan også tenkes at beitepåvirkningen er forskjellig for lyng og de ulike tresortene og at dette påvirker resultatene. Husdyrbeiting påvirker beitefrekvensen betydelig, og beitetrykket er betydelig høyere i områder hvor det går husdyr på beite. I flere av områdene er derfor husdyr en vesentlig konkurrent til hjorten, og beiting av husdyr i et område betyr mer for beitefrekvensen enn bestandstettheten av hjort.

For å klassifisere beitefrekvensen har vi valgt å definere av beitetrykk etter følgende skala (% av tilgjengelige beitekvister): Lyng: Lett < 30 %; (lett-)moderat 30-45 %; moderat(-høyt) 45-60 %; høyt > 60 %. Tre: Lett< 30 %; (lett-)moderat 30-45 %; moderat(-høyt) 45-60 %; høyt > 60 %.

Resultatene viser at beitepresset totalt sett er (lett-)moderat både på lyngen og på trærne. Det er imidlertid en del variasjon både mellom og innad i de ulike områdene. I enkelte områder er beitetrykket høyt både på lyng og trær. Beitetrykket er også veldig forskjellig mellom de ulike beiteartene. Dette har trolig sammenheng med smakeligheten på plantene og preferansen hos beitedyr. Blåbær viste en beitefrekvens på 48,5 % i gjennomsnitt, som vil si et moderat(-høyt) beitetrykk etter ovennevnte definisjoner og for blåbær var beitetrykket moderat i 6 av 8 områder. Variasjonen innad i områdene kan imidlertid være betydelig. For treartene er det også stor variasjon mellom artene. For rogn som er en høyt preferert art var beitefrekvensen 71 % i gjennomsnitt og beitetrykket klassifiseres som høyt i 7 av 8 områder. Dette er ikke overraskende siden man kan forvente at rogn blir prioritert så høyt at selv ved relativt lave tettheter av hjort (og andre beitedyr) vil beitefrekvensen være høy. Bjørk hadde en gjennomsnittlig beitefrekvens på 31,5 %, noe som tilsier et (lett-)moderat beitetrykk. Også for bjørk er det imidlertid en variasjon i beitetrykket mellom områdene. For de andre treartene er det også en god del variasjon, men generelt er det en sammenheng i beitetrykket mellom artene innenfor hver enkelt rute og område. Hvis man ser bort ifra roguna så er ikke beitetrykket på trea for høyt totalt sett.

Resultatene viser at beitetrykket totalt sett er (lett-)moderat i de undersøkte områdene, men det er en variasjon både mellom og innad i de undersøkte områdene. I tillegg er det stor variasjon mellom artene, og enkelte arter utsettes for et høyt beitepress flere steder. Totalt sett er det bare rogn som er utsatt for et høyt beitetrykk av de artene som finnes i et visst monn, men variasjonen er relativt stor mellom og innad i områdene. Enkelte områder er imidlertid utsatt for et så høyt beitetrykk på flere av beiteartene, at man kan forvente en endring i vegetasjonstrukturen og beiteproduksjonen både på sikt på disse lokale områdene. I de enkelte områdene kan det være fornuftig å redusere beitetrykket for å øke produksjonen av beite. Det er imidlertid en rekke faktorer som påvirker beiteproduksjonen og som har direkte effekt på tilgangen på vinterbeite for hjorten. Utviklingen i skogbilde (naturlige prosesser i skogssamfunnene) og driftsnivå i skogbruket vil skape viktige rammer for beiteproduksjonen og bæreevnen, sammen med den aktuelle bestandstettheten av hjort og husdyrbeiteregimene.
2. Innledning

2.1 Bakgrunn og mål
Hjortedyras beitegrunnlag har fått økende fokus de senere åra og fokuset har vært størst knyttet til elgens beite i ulike deler av Norge. Med økende bestander og økt bestandstetthet har hjortens beitegrunnlag og leveområder også fått økende fokus. Flere undersøkelser har påvist beiteskader på innmark og skog med til dels store lokale virkninger på grasavlinger og på grønskog av hjortens beiting (Meisingset & Krokstad 2000; Meisingset, Veiberg, & Langvatn 1997; Veiberg 2001). Det er hovedsakelig de naturlige prosessene og skogsdrift som påvirker plantesamfunnenes utvikling i utmarka, men intensiv beiting av hjort kan også påvirke utviklingen og produksjonen (Melis et al. 2006; Mysterud 2006). Sett fra forvaltningas side er det viktig å ha kunnskap om beitenes tilstand og å kunne følge utviklingen over tid. For å kunne forvalte hjorten og dens leveområder på en best mulig måte er det derfor viktig å ha relevant kunnskap om hjortens beitegrunnlag til enhver tid.

Denne rapporten oppsummerer en beitekartlegging gjennomført i regi av Søre-Sunnmøre hjorteviltutval. Hensikten har vært å utføre en kartlegging av viktige vinterbeiteområder for hjort i kommunene Ørsta, Volda, Hareid, Sande, Herøy og Ulstein. Målet med undersøkelsen har vært å få en oversikt og tilstandsbeskrivelse på beitesituasjonen i sentrale overvintringslokaliseter for hjort i regionen.

2.2 Hjortens diett og beiting
Hjorten klassifiseres som en "mellombeiter" (intermediær) og vi si at den gjerne har både grasvekster/urter og kvister/knopper på menyen (Hofmann 1985). Hjortens diett og valg av fødeplanter varierer imidlertid i løpet av året og etter hvilket habitat den lever i (Gebert & Verheyden-Tixier 2001). En oppsummering av undersøkelser på hjortens diett i Europa viser at totalt sett består 29 % av dietten av gras og starr/siv, 23,3 % av lyng (hovedsakelig blåbær og røsslyng), 19,1 % består av lauv og knopper/kvist av lauvtre, 7,7 % skudd og bark av bærlage og busker, 6,6 % urter, 4,7 % frukt og frø, 1,5 % bringebær, mens resten av dietten består av ulike andre planter/sopp. I Norge er sannsynligvis gras og grasaktige planter den viktigste næringskilden om våren og sommeren (Albon & Langvatn 1992; Langvatn & Hanley 1993; Mysterud 2000). Om høsten og vinteren er blåbærlyng ansett å være den viktigste enkel planta, men hjorten har en rekke andre plantearter i dietten (Albon & Langvatn 1992). Nyere undersøkelser tyder på at gras og innmarkbeite er en viktig faktor også om høsten og vinteren (Fredly 2006; Meisingset & Krokstad 2000; Meisingset et al. 1997; Mysterud et al. 2001), men "vedaktige" planter i utmarka er uansett viktige og vil vanligvis utgjøre en vesentlig del av dietten i denne perioden (Meisingset & Brekkum 2005).

Det er gjennomført få systematiske undersøkelser på hjortens direkte valg av beiteplanter i Norge (Mysterud 2000). De undersøkelserne som er gjort er gjennomført i ulike leveområder og årstider, og ved veldig forskjellige tettheter av hjort. Basert på tilgjengelige undersøkelser (Ahlen 1965; Albon & Langvatn 1992; Fredly 2006; Meisingset 2002; Meisingset & Brekkum 2005; Mysterud 2000) kan man likevel sette opp en overordna preferanseliste for hjorten i forhold til aktuelle "vedaktige” beiteplanter om vinteren:

Høyt preferert: Rogn, osc, salixarter og blåbærlyng,
Middels preferert: lønn, een, hegg, hassel, røsslyng og bjørk,
Lavt prioritert: grøn, furu, gråor og tyttebær.

Selv om disse undersøkelsene forteller noe om preferanseforholdet mellom artene, sier de lite om hva som er de viktigste beiteartene til hjorten sett i forhold til det totale energiinntaket om vinteren. Ei plante kan være høyt prioritert av hjorten, men kan finnes i begrensna omfang. Tilbudet i hjortens
oppholdsområder vil derfor sannsynligvis bety mye for diettsammensetningen i løpet året. Uansett tyder det på at blåbærling byr en nøkkelpflanse for hjorten, særlig vinterstid. Hjortens andel av blåbær i dietten er sannsynligvis høy, opp til 70 % i biotoper hvor blåbær er vanlig (Rolf Langvatn, upubl. matr.). Røslyng er klart lavere på prioriteringsslisten enn blåbæra, men utgjør sannsynligvis en betydelig andel av kosten mange steder på kysten.

Når man skal beskrive og følge utviklingen i vinterbeitefor hjorten er det best egna å følge vedaktige planter, selv om hjorten i løpet av vinteren sannsynligvis henter like mye av energien fra andre planter. For det første lever disse plantene over flere år, og for det andre er det relativt enkelt å avgjøre om de er beitet på eller ikke. For det tredje har hjorten ulik preferanse for de ulike artene og man kan på denne måten avgjøre om hvor langt ned på preferanselista hjorten går i det enkelte området.

2.3 Hjortebestanden

Søre-Sunnmøre har en stor hjortebestand og relativt sett en høy bestandstetthet sammenlignet med mange andre områder i Norge. De senere åra har det blitt felt 1300-1600 hjort i de 6 kommunene på Søre-Sunnmøre og antall hjort felt pr km² tellende areal ligger i hovedsak på 0,70-2,00 (figur 1). Det er likevel en god del variasjon mellom kommunene og det er videre en relativt stor variasjon mellom ulike vald og jaktfelt innad i kommunene. Gjennomsnitt felt antall felt hjort på vald/felt nivå i de undersøkte områdene var 1,96 felt pr km² tellende areal, mens variasjonen var fra 0 til 8,07.
Figur 1. Antall felt hjort pr km² tellende areal i de ulike kommunene (kilde: SSB).
3. Metoder

3.1 Studieområder
Feltundersøkelsene foregikk i 6 kommuner på Sør-Sunnmøre; Herøy, Sande, Ulstein, Hareid, Ørsta og Volda. Disse kommunene har et felles samarbeid i hjorteforvaltningen gjennom Søre-Sunnmøre hjortviltutval. De fire kommunene Herøy, Sande, Ulstein, Hareid er typiske kystkommuner, mens Ørsta og Volda er kommuner med fjordlandskap og større innslag av fjell og høyereiligende områder. I de to siste kommunene kan man derfor anta at det er store tilgjengelige områder for hjorten i løpet av sommerhalvåret, men tilgjengelig vinterbeiteareal er vesentlig mindre. I de fire kyst-/øykommunene vil mye av arealet være tilgjengelig hele året og slik sett vil man kunne forvente noe ulik arealutnyttning av hjorten gjennom året.

3.2 Utvelgelse av studieområder
Feltundersøkelsene ble lagt til områder som ble utpekt som vinterbeiteområder for hjort. Kommunene pekte ut de aktuelle områdene på bakgrunn av at disse områdene ansees som viktige beiteområder for hjorten i løpet av vinteren. Disse områdene ble satt som utgangspunkt for videre inndeling. Dette ble gjort ved at de utvalgte områdene inngikk som en del av et større område, og dette området ble betraktet som en "blokk" (som et "ensartet" undersøkelsesområde) i studiedesignet. Denne utvelgelsen er viktig for at man skal fange opp variasjon i potensielt beitetrykk og dermed unngå å registrere kun det der er antatt høyest beitetrykk. På denne måten får man også en fornuftig romlig skala på registreringene. Det ble lagt opp 8 undersøkelsesområder (kalt blokker) i de 6 kommunene (figur 2). Blokkene ble videre inndelt i nummererte kilometerstruer etter M-711 1:50000 serien (figur 3, se vedlegg, kap 7.1. for oversikt), som videre grunnlag for registreringene. Blokkene inneholdt mellom 12-20 ruter (tabell 1).

![Figur 2. Oversikt over utvalgte studieområder etter blokkinndeling.](image-url)
Figur 3. Blokk E - Bondalen i Ørsta kommune - med inndeling av ruter (kilometersruter i M-711 kartserien) for utvelgelse av feltregistreringer. Rosa prikker viser plassering av de ulike flatene som det ble gjennomført registreringer på.

Tabell 1. Områdene som ble undersøkt i de 6 kommunene etter inndeling i blokk, antall ruter undersøkt og antall plot/flater registrert til sammen i hvert område.

<table>
<thead>
<tr>
<th>Blokk</th>
<th>Område</th>
<th>Kommune</th>
<th>Antall</th>
<th>Antall</th>
<th>Antall</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Leinøya</td>
<td>Herøy</td>
<td>12</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>B</td>
<td>Tødenes-Larsnes-Myklebust</td>
<td>Sande</td>
<td>17</td>
<td>5</td>
<td>39</td>
</tr>
<tr>
<td>C</td>
<td>Ringstadalen-Eiksund</td>
<td>Ulstein</td>
<td>15</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>D</td>
<td>Hovden-Liaset</td>
<td>Hareid</td>
<td>16</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>E</td>
<td>Bondalen</td>
<td>Ørsta</td>
<td>20</td>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>F</td>
<td>Årsetdalen</td>
<td>Ørsta</td>
<td>19</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>H</td>
<td>Hovdebygda/Furene</td>
<td>Volda/Ørsta</td>
<td>13</td>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>I</td>
<td>Austefjorden</td>
<td>Volda</td>
<td>18</td>
<td>6</td>
<td>44</td>
</tr>
<tr>
<td>Alle</td>
<td>Alle</td>
<td>Alle</td>
<td>130</td>
<td>43</td>
<td>274</td>
</tr>
</tbody>
</table>
3.3 Registreringsmetoder

Ruter (kilometersrutene på M-711) for registrering innen blokk ble valgt tilfeldig (gjort før feltarbeidet) og antall valgte ruter for registrering innen hver blokk var 4-7 (tabell 1). Disse rutene var videre utgangspunktet for takseringslinjene (transsekt). Hvis rutene ble betraktet som helt uaktuelle å registrere på grunn av bebyggelse/annen infrastruktur, kulturbeite for husdyr og/eller utilgjengelighet/topografi ble "neste" tilfeldige rute valgt. Takseringslinjene ble lagt med utgangspunkt fra vei, dalbunn og/eller innsmarksareal utenom bebygde arealer. Linjene (rette linjer) ble lagt på tvers av høydegradienten, fra laveste til høyeste punkt over havet. Starten på takseringslinjene ble valgt tilfeldig (et tilfeldig tall mellom 0 og 999 sett fra et definert nullpunkt i ruta), og dette ble fulgt med mindre praktiske justeringer i felt. Flatene/plotene for vegetasjonsregistreringene ble lagt langs takseringslinjene med 20-200 m mellomrom. I praksis ble dette gjort ved å plotte avstandene (tilfeldig valgt på forhånd mellom 20 og 200 m) på en håndholdt GPS og så gå fra en flat til den neste. Avstanden fra utgangspunktet til den første registreringsflata ble valgt på samme måte.

Registreringsflatene var sirkulære flater på 50 m². Avstanden mellom flatene ble målt fra senter til senter på hver flat, med små praktiske justeringer. Arealet ble funnet ved å plassere en stav i senter på flaten. I denne var det feste en snor på 3,99 m for å måle ut fra senter til ytre kant. Fra 3 til 16 flaten ble registrert for hver takseringslinje med et middel på 6,4 flaten. Totalt ble det gjennomført registreringer på 274 flater (tabell 1).

I hver flaten ble det registrert hellingssgrad, retnin på hellingen, kronedekning (cover), tretthet av tre over 3 m høyde (antall tre), dominerende trehøyde, dominerende treslag, skogtype (kultur eller naturskog) og vegetationstypen (se tabell 2). I tillegg ble antall møkkhauger fra hjort registrert, og det ble registrert spor/beiting/møkk etter husdyr. Hver flat ble kartfestet ved hjelp av en håndholdt GPS.

Innen hver flat ble det gjort registreringer på aktuelle beiteplanter for hjort. Alle tre opptil 1,80 m høyde ble registrert innen ruta. Det ble telt opp antall tilgjengelige beitekvister, og antall av disse som faktisk var blitt beita. På denne måten kan man regne ut beiteprosent (antall beita kvister/antall tilgjengelige beitekvister) og tilgjengelighet av beiteplanter innen hver ruta av ulike arter. På denne måten vil man få et uttrykk for både tilgjengelighet og beitetrykk på de ulike plantene. Tresorter som ble registrert var: Alm, ask, bjørk, bjørkeskudd (rot- og stammeskudd som egen kategori), bringebær, furu, gran, gråor, gråor-skudd (rot- og stammen-skudd som egen kategori), hassel, hegg, lerk, lønn, nype, osp, rogn, salix og allerarter under ett) og svartor. Einer ble også registrert og ble klassifisert etter 4 beitegrader: 0=ingen beiting, 1=lett beiting (0-30 % av kvistmassen), 2=middels beiting (30-60 % av kvistmassen), 3=hard beiting (<60 % av kvistmassen eller død plante).

Registrering av lyng ble gjort innenfor ei 50x50 cm ruta innen hver flat. Ruta ble lagt til nærmeste forekomst av lyng målt fra senter av flaten. Antallet tilgjengelige beitekvister/skudd og faktisk antall beita kvister/skudd ble telt opp innen ruta. I tillegg ble dekningsgraden (% dekning av ruta) estimert og høyden på lyngen målt. Lyngarter som ble registrert var: Blokkebær, blåbær, pors, røyslyng, tyttebær og krekeling.

Alle faktiske beita skudd hos trær er ett uttrykk for akkumulert beiteuttak, siden det er vanskelig å skille hva som er siste års beiting mot tidligere års beiting. For lyng er beitinga et uttrykk for siste års beiting og uttaket gjelder for siste året (etter vekstsesongens slutt).

3.4 Statistisk analyse

Tilgjengelig beitemasse ble målt som antall beitekvister/beiteskudd i tilgjengelig høyde (0-180 cm), og i tillegg dekningsgrad for lyng. Beitefrekvens av både tre og lyng er forholdet mellom antall kvister som var beita og totalt antall kvister tilgjengelig. For de ulike treslaga ble dette talt opp og slått sammen for hele registreringsflata slik at man får en sum for hver flate. Det samme ble gjort for beregningen av beitefrekvensen på lyng. Einer ble behandlet for seg selv fordi klassifiseringen av beitegrad ikke direkte kan sammenlignes med den utregna beitefrekvensen.

Statistiske analyser ble utført i SPSS 16.0.1. for windows. Det ble brukt Generelle Lineære Modeller (GLM) for å analysere variasjon i tilgjengelighet og beitefrekvens. Faktorer som ble inkluderte i modellene er listet opp i tabell 2. Indekser av bestandstetthet og habitatbruk ble kun inkludert ved analyser av beitefrekvens.

Tabell 2. Variabler brukt i den statistiske behandlingen av materialet.

<table>
<thead>
<tr>
<th>Administrative variabler</th>
<th>Faktorer som beskriver habitat</th>
<th>Indekser av bestandstetthet og habitat bruk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommuner (n=6)</td>
<td>Vegetasjonstype (røsslyng, bærlyng, blåbær, gras, lågurt)</td>
<td>Lokal tetthet (antall hjort felt pr km²)</td>
</tr>
<tr>
<td>Blokk (n=8)</td>
<td>Skogtype (natur vs kulturskog)</td>
<td>Antall møkkhauger pr flate</td>
</tr>
<tr>
<td>Ruter (n=43)</td>
<td>Dominerende treslag (art, lauv vs barskog)</td>
<td>Husdyr (flata har vært utsatt for husdyrbeiting eller ikke)</td>
</tr>
<tr>
<td>Vald (n=27)</td>
<td>Trettetthet (antall tre høyere enn 3 m pr flate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dominerende trehøyde</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hellingsgrad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hellingsretning (Nord vs sør)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kronedekning</td>
<td></td>
</tr>
</tbody>
</table>
4. Resultater

4.1 Tilgjengelighet av beiteplanter

4.1.1 Lyng

Tilgjengeligheten av aktuelle lyngarter varierer relativt mye (tabell 3). Blåbær var klart mest utbredt og ble funnet på 86 % av flatene. Variasjonen mellom blokkene (områdene) var ikke veldig stor hvis man ser bort fra blokk A. Her ble blåbær funnet på 40 % av flatene, mens i de andre blokkene ble den funnet på 75-100 % av flatene. Blåbær er med andre ord stor sett tilgjengelig i alle områder og habitat, selv om mengden kan variere betydelig (se lengre ned). Tyttebær ble funnet på 31 % av flatene, med en variasjon fra 12,5-50,0 % mellom blokkene. Røsslyng ble funnet på totalt 21,5 % av alle flatene, men det var en veldig stor variasjon i tilgjengeligheten. I blokk A som er et typisk kystområde med lynghei var røsslyng tilstede på 75 % av flatene, mens i fjorddalene var de tilstede på relativt få flater. I blokk F ble det ikke registrert røsslyng i noen av flatene (tabell 3). Pors ble funnet i halvparten av blokkene og her igjen på 8,6 - 16,1 % av flatene. Blokkebær ble også funnet i 50 % av blokkene, og i de fire blokkene den ble funnet, bare på 2,3-5,7 % av flatene. Krekling ble registrert kun i blokk E.

Tabell 3. Tilgjengelighet av aktuelle lyngarter fordelt på de ulike blokkene (områdene).
Tilgjengelighet i prosent etter hvor mange flater hver enkelt art ble registrert.

<table>
<thead>
<tr>
<th>Art/Blokk</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>H</th>
<th>I</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blokkebær</td>
<td>0,0</td>
<td>2,6</td>
<td>0,0</td>
<td>0,0</td>
<td>5,7</td>
<td>0,0</td>
<td>4,2</td>
<td>2,3</td>
<td>2,2</td>
</tr>
<tr>
<td>Blåbær</td>
<td>40,0</td>
<td>79,5</td>
<td>75,8</td>
<td>83,9</td>
<td>97,1</td>
<td>100,0</td>
<td>95,8</td>
<td>93,2</td>
<td>85,8</td>
</tr>
<tr>
<td>Pors</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>16,1</td>
<td>8,6</td>
<td>0,0</td>
<td>12,5</td>
<td>13,6</td>
<td>7,3</td>
</tr>
<tr>
<td>Røsslyng</td>
<td>75,0</td>
<td>30,8</td>
<td>24,2</td>
<td>3,2</td>
<td>8,6</td>
<td>0,0</td>
<td>10,4</td>
<td>34,1</td>
<td>21,5</td>
</tr>
<tr>
<td>Tyttebær</td>
<td>50,0</td>
<td>23,1</td>
<td>27,3</td>
<td>22,6</td>
<td>34,3</td>
<td>16,7</td>
<td>12,5</td>
<td>63,6</td>
<td>31,0</td>
</tr>
<tr>
<td>Krekling</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,9</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,4</td>
<td></td>
</tr>
</tbody>
</table>

4.1.2 Trær

De mest utbredte var trea var bjørk (og bjørkeskudd), einer, furu, gran, gråor, hassel og rogn (tabell 4). Totalt sett var en eneste tilgjengelig og ble funnet i 75,9 % av flatene, men mellom blokkene varierer tallet mellom 51,6 -100 %. Rogn og bjørk ble funnet på henholdsvis 59,1 og 54,7 % av flatene. Bjørka var temmelig likt tilgjengelig mellom blokkene, mens bjørkeskudd (rot eller stammeskudd på større trær) ikke ble registrert på flatene i tre av blokkene. Tilgjengeligheten av rogn varierte og ble funnet på 15,0 - 81,3 % av flatene fordelt på de ulike blokkene. Furu ble funnet på 18,6 % av flatene, men variasjonen var relativt stor mellom de ulike områdene. Variasjonen er også stor for gran som totalt sett ble funnet på ca 25 % av flatene. Gråor ble også funnet på om lag 25 % av flatene, men ble ikke funnet på noen flater i blokk A og B. Hassel ble funnet på i overkant av 10 % av flatene (0 og 25 % av flatene fordelt etter blokk). Resten av treslagene ble funnet på mindre enn 10 % av flatene totalt sett, men tilgjengeligheten varierer mellom blokkene og kan i enkelte områder være viktige som beite (tabell 4).
Tabell 4. Tilgjengelighet av aktuelle treslag fordelt på de ulike blokkene (områdene).
Tilgjengelighet i prosent etter hvor mange flater hver enkelt art ble registrert.

<table>
<thead>
<tr>
<th>Art/Blokk</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>H</th>
<th>I</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alm</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>3,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,4</td>
</tr>
<tr>
<td>Ask</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>6,5</td>
<td>0,0</td>
<td>12,5</td>
<td>0,0</td>
<td>0,0</td>
<td>1,8</td>
</tr>
<tr>
<td>Bjørk</td>
<td>45,0</td>
<td>56,4</td>
<td>27,3</td>
<td>51,6</td>
<td>62,9</td>
<td>66,7</td>
<td>62,5</td>
<td>59,1</td>
<td>54,7</td>
</tr>
<tr>
<td>Bjørkeskudd</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>58,1</td>
<td>48,6</td>
<td>41,7</td>
<td>22,9</td>
<td>22,7</td>
<td>24,1</td>
</tr>
<tr>
<td>Bringebær</td>
<td>0,0</td>
<td>0,0</td>
<td>9,1</td>
<td>6,5</td>
<td>0,0</td>
<td>4,2</td>
<td>18,8</td>
<td>2,3</td>
<td>5,8</td>
</tr>
<tr>
<td>Einer</td>
<td>90,0</td>
<td>87,2</td>
<td>81,8</td>
<td>51,6</td>
<td>100,0</td>
<td>79,2</td>
<td>52,1</td>
<td>77,3</td>
<td>75,9</td>
</tr>
<tr>
<td>Furu</td>
<td>30,0</td>
<td>20,5</td>
<td>6,1</td>
<td>0,0</td>
<td>2,9</td>
<td>0,0</td>
<td>25,0</td>
<td>50,0</td>
<td>18,6</td>
</tr>
<tr>
<td>Gran</td>
<td>20,0</td>
<td>20,5</td>
<td>6,1</td>
<td>25,8</td>
<td>71,4</td>
<td>20,8</td>
<td>25,0</td>
<td>13,6</td>
<td>25,5</td>
</tr>
<tr>
<td>Gråor</td>
<td>0,0</td>
<td>0,0</td>
<td>27,3</td>
<td>9,7</td>
<td>48,6</td>
<td>62,5</td>
<td>35,4</td>
<td>18,2</td>
<td>25,2</td>
</tr>
<tr>
<td>Gråorskudd</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>11,4</td>
<td>41,7</td>
<td>2,1</td>
<td>2,3</td>
<td>5,8</td>
</tr>
<tr>
<td>Hassel</td>
<td>0,0</td>
<td>7,7</td>
<td>15,2</td>
<td>25,8</td>
<td>8,6</td>
<td>4,2</td>
<td>2,1</td>
<td>18,2</td>
<td>10,6</td>
</tr>
<tr>
<td>Hegg</td>
<td>0,0</td>
<td>0,0</td>
<td>6,1</td>
<td>0,0</td>
<td>8,6</td>
<td>0,0</td>
<td>25,0</td>
<td>2,3</td>
<td>6,6</td>
</tr>
<tr>
<td>Lerk</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>4,2</td>
<td>0,0</td>
<td>0,0</td>
<td>0,4</td>
</tr>
<tr>
<td>Lønn</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>8,6</td>
<td>0,0</td>
<td>33,3</td>
<td>0,0</td>
<td>6,9</td>
</tr>
<tr>
<td>Nype</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>9,7</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1,1</td>
</tr>
<tr>
<td>Osp</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>16,1</td>
<td>0,0</td>
<td>0,0</td>
<td>2,1</td>
<td>4,5</td>
<td>2,9</td>
</tr>
<tr>
<td>Rogn</td>
<td>15,0</td>
<td>53,8</td>
<td>36,4</td>
<td>58,1</td>
<td>60,0</td>
<td>66,7</td>
<td>81,3</td>
<td>72,7</td>
<td>59,1</td>
</tr>
<tr>
<td>Salixarter</td>
<td>15,0</td>
<td>2,6</td>
<td>3,0</td>
<td>12,9</td>
<td>5,7</td>
<td>8,3</td>
<td>6,3</td>
<td>9,1</td>
<td>7,3</td>
</tr>
<tr>
<td>Svartor</td>
<td>0,0</td>
<td>0,0</td>
<td>9,1</td>
<td>16,1</td>
<td>0,0</td>
<td>0,0</td>
<td>4,2</td>
<td>2,3</td>
<td>4,0</td>
</tr>
</tbody>
</table>

4.2 Tilgjengelig antall ”beiteskudd” og dekningsgrad

4.2.1 Lyng

Antall tilgjengelige beiteskudd var størst hos røsslyng og blåbær og minst hos tyttebær (figur 6a). Blåbær var som tidligere vist tilgjengelig i et stort flertall av flatene, men mengden tilgjengelig varierete betydelig (figur 4a). Den var signifikant større i blokk A, E, F, H og I enn i blokk B, C og D. I blokk A ble det registrert blåbær på vesentlig færre flater enn i de andre, men mengden blåbær i de flatene som hadde blåbær var omtrent som i blokk E, F, H og I. Vegetasjonstype betyr en del for mengden blåbær på flatene; i vegetasjonstypen klassifisert som røsslyng var det mindre blåbær enn i de andre vegetasjonstypene (figur 5a). Mengden blåbær (antall tilgjengelige beiteskudd) på den enkelte flata hadde også sammenheng med hellingsretning (mest på nordvendte flater), dekningsgraden av blåbær i ruta (mer med økende dekningsgrad) og på høyden av blåbærlengen (mer jo høyere lyngen var). Analysene viser imidlertid et samspill mellom blokk og vegetasjonstype som gjør at sammenhengene er relativt kompliserte. Dette har sannsynligvis sammenheng med at vegetasjonstypene har ulik produksjonsevne i de forskjellige områdene. Sammen med klimamessige (lokalklima) faktorer, utviklingsstadium på skogen og skogens struktur i de ulike områdene skaper dette en variasjon i produksjonen av ”beiteskudd” for hjorten.

Dekningsgraden av blåbær i rutene varierer mellom de ulike blokkene (områdene), og var minst i blokk A og B og størst i blokk H og I (figur 4b). Dekningsgraden var også forskjellig mellom ulike vegetasjonstyper og de var klart størst i blåbærtypen og signifikant større enn i de andre vegetasjonstypene (figur 5b). Dekningsgraden var også signifikant større i naturskog enn i kulturskog, og i positiv sammenheng med høyden på lyngen og antall skudd på plantene.
Figur 4. Gjennomsnittlig antall (med 95 % konfidensintervall) blåbærskudd tilgjengelig (a) og gjennomsnitt (med 95 % konfidensintervall) dekningsgrad (%) av blåbær (b) på flatene fordelt etter blokk.

Figur 5. Gjennomsnittlig antall (med 95 % konfidensintervall) blåbærskudd tilgjengelig (a) og dekningsgrad (med 95 % konfidensintervall) for blåbærlyng (b) på flatene fordelt etter habitat.

Tilgjengelig beiteskudd av røsslyng og tyttebær (pr flate) varierte ikke mellom blokkene, selv om det var stor forskjell på hvor mange av flatene som man fant dem på. For røsslyng var tilgjengeligheten knyttet til om det var natur eller kulturskog (lite røsslyng i plantskog) og til kronedekning (mest på åpne flater). Klart mest røsslyng var det i enkelte områder på kysten. Tyttebær var mest tilgjengelig i bratte og på skrinne flater (bærlyng og barskog). Dekningsgraden av tyttebær var størst i barskog (furu).

Blokkebær, pors og krekling ble funnet på for få flater for at en meningsfull analyse kunne gjennomføres.

4.2.2 Trær

Tilgjengeligheten av skudd i beitehøyde (0-180 cm) varierer vesentlig mellom de aktuelle treslagene (figur 6b). Blant de trærne som produserer flest skudd pr flate er furu og gran, mens det er stor spredning blant lauvtre. Antall beiteskudd av aktuelle trær er avhengig av flere faktorer. Antallet beiteskudd/kvister er forsjellige mellom blokkene som igjen har sammenheng med ulik sammensetning av vegetasjon mellom de ulike områdene (figur 7a). Den viktigste faktoren for beitetilgangen på de ulike flatene var treslagssammensetning, sannsynligvis fordi de ulike treslagene produserer forskjellig og har ulik voksemåte. På den enkelte flata var antall beiteskudd knyttet til skogtype (mer i naturskog enn i kulturskog) og høyde på beitetrærne (mer jo høyere, opptil 180 cm). Økende dominerende trehøyde i det enkelte området påvirker mengden av beiteskudd negativt.
Figur 6. Boxplot av totalt tilgjengelige skudd av lyng (a) og trær (b) på flatene hvor artene ble funnet. Den midterste streken viser median verdi, mens boksene viser 25 % kvartilene, strekene 75 % kvartilene og øvrige punkter er uteliggere med ekstreme verdier.

Figur 7. Gjennomsnitt antall beiteskudd (med 95 % konfidensintervall) av alle trær tilgjengelig (a) og gjennomsnitt antall beiteskudd (med 95 % konfidensintervall) av rogn på flatene fordelt etter blokk.

De ulike treslagene fordeler seg ulikt mellom områdene. For de artene vi kan analysere separat er det litt ulike faktorer som er viktige. Tilgjengeligheten av bjørkeskudd (som finnes stort sett overalt) er ikke forskjellig mellom områdene (blokkene), men er avhengig av voksestedet ved at kronedekning (mer skudd med mindre kronedekning), vegetasjonstype (størst i blåbær og lågurt habitat) og trehøyde (mer med økende høyde på bæterea inntil 180 cm) påvirker antallet beiteskudd. For rogn er det også noe variasjon i tilgjengelighet mellom områdene (blokkene, figur 7b), og i tillegg påvirkes antallet beitekvister av hellingsretning (mer i nordhelling) og av skogtype (mer i naturskog enn i kulturskog).

4.3 Beitefrekvens

4.3.1 Lyng

En modell som inkluderer alle lyngartene viser at beitefrekvensen varierer mellom de ulike lyngartene (figur 8a). Modellen, som inkluderer blokk og lyngart som forklarende faktor, hadde en forklaringsprosent på 55,2. Blåbær beites i størst grad og har signifikant høyere beitegrad enn de andre artene. I gjennomsnitt blir 48,5 % (n=236, median=47,1 %) av de tilgjengelige skuddene beita. Beitefrekvensen for pors og blokkebær var lavere enn for blåbær, men signifikant høyere enn røsslyng og tyttebær. Frekvensen for pors og blokkebær var henholdsvis 30,1 (n=20, median=26,5) og 24,3 % (n=6, median=16,0), men få observasjoner gjør at tallene er heftet med en viss usikkerhet. Røsslyng
hadde en gjennomsnitt beitefrekvens på 6,9 % (n=59, median=0,0) og tyttebær på 2,9 % (n=85, median=0,0). Hos alle lyngartene unntatt blåbær er det en del ekstreme verdier som drar opp gjennomsnittet, dermed blir medianverdiene (verdien nærmest midten av tallmaterialet) en del lavere enn gjennomsnittsverdiene. Dette tyder på en vesentlig variasjon i beitetrykk mellom ulike registreringsflater og ruter. At blåbær beites i størst grad var forventet og understreker betydningen av blåbær som en i viktig beitelys for hjorten, ikke minst når man ser på både tilgjengelighet og utbredelse av blåbæra. Se ellers vedlegg 7.2. for en detaljert resultatoversikt for beitefrekvens for alle lyngartene samla, fordelt etter rute og blokk.

For å undersøke hvilke faktorer som påvirker beitefrekvensen ble flere habitatbeskrivende faktorer og indekser for tetthet av hjortebestanden og habitatbruk inkludert (tabell 3). Denne modellen forklarer 62,5 % av variasjonen i beitefrekvens. Denne viser at det er en variasjon mellom blokkene i beitefrekvens (størst i blokk F og minst i blokk I og C, figur 8b). Det var høyere beitefrekvens i vegetasjonstypen lågurt enn i de andre typene, mens modellen ikke gir utslag for skogtype (lauv eller barskog). Antall mørkhauger i ruta (en indeks på hjortens bruk av den gitte flata) viser en positiv sammenheng med beitefrekvensen, mens antall felte dyr for valdet registreringsruta ligger i ikke viser noen signifikant sammenheng. Beitefrekvensen av lyng er signifikant høyere i områder hvor husdyr går på beite. De andre variablene viste ingen signifikant sammenheng med beitefrekvens på lyng.

For å undersøke spesifikt de ulike lyngartene ble disse analysert hver for seg i separate modeller (dvs blåbær og røsslyng). Modellen for blåbær gav en forklaringsprosent på 42,8, og viser en klar forskjell mellom blokkene i beitefrekvens (figur 9a). Beitefrekvensen var signifikant høyest i vegetasjonstypene blåbær og lågurt, og lavest i røsslyng. Husdyrbeiting fører til en signifikant høyere beitefrekvens, og det samme gjør antall registrerte mørkhauger. Beitefrekvensen på blåbæra viste ingen sammenheng med antall felt hjort innenfor valdet den enkelte registreringsruta tilhørte. Høyden på blåbærlåg viste en signifikant negativ sammenheng med beitefrekvensen, mens dekningsgraden viser en signifikant positiv sammenheng. Dette kan tyde på at hjorten velger ut blåbær der den finnes i godt monn, og at høyden på lyngen påvirker smakeligheten og dermed valget av beiteplanter hos dyra.

Den separate modellen for røsslyng forklarer bare 25,5 % av variasjonen, men viser at beitefrekvensen for røsslyng varierer mellom blokkene. I Blokk A og E finner man de klart høyeste verdiene (figur 9b). Også for røsslyng er det en sammenheng med beitefrekvensen og vegetasjonstypen, i lågurt (hvor det er lite røsslyng) og røsslyng (hvor det er mye røsslyng) er det en høyere beitefrekvens enn i bærlyng og blåbær klassifiserte vegetasjonstyper. Beitefrekvensen øker noe med økende dominerende trehøyde, og det er en negativ tendens med hellingsgrad. Beitefrekvensen av røsslyng på virkes klart av husdyrbeiting, og den øker med økende antall mørkhauger i flatene. Beitefrekvensen påvirkes imidlertid ikke signifikant av tetthet av bestanden (målt som antall felt dyr pr km²).

![Figur 8. Boxplot av beitefrekvens (a) for de ulike lyngartene. Den midtste streken viser median verdi, mens boksene viser 25 % kvartilene, strekene 75 % kvartilene og øvrige punkter er uteliggere med ekstreme verdier. 5(b) viser gjennomsnitt beitefrekvens for lyng (med 95 % konfidensintervall) fordelt etter blokk.](image-url)
4.3.2 Tre

Det er stor variasjon i beitefrekvensen mellom ulike treslag (figur 10). En statistisk modell som inkluderer blokk og treart forklarer 48,1 % av variasjonen av beitefrekvens. Rogn har høyest beitefrekvens hvor 71,0 % (n=157, median=75,0) av alle tilgjengelige skudd var beita. Bjørk som regnes som en middels preferert art hadde en beitefrekvens på 31,5 (n=123, median=29,2), men det er verdt å merke seg av rot/stammeskudd av bjørk (markert som bjørk1 i figur 10) hadde en beitefrekvens på 53,9 % (n=66, median=50,4) som var signifikant høyere enn skudd fra bjørketre. Det samme mønsteret viser seg hos gråor som regnes som en lavt prioritert beiteart. Beitefrekvensen hos gråor var 12,1 % i gjennomsnitt (n=67, median=9,6), mens for rot/stammeskudd av gråor var verdien 46,1 (=16, median=50,0). Furu (snitt 4,8; n=30, median=0,0) og gran (snitt 11,1; n=51, median=0,0) som finnes i et visst antall og i de fleste områdene viste lav beitefrekvens, selv om barknag ble inkludert i utregninga. Her ble gjennomsnittet dratt opp av noen få høye verdier, det vil si at man registrerte beiting i bare noen få tilfeller. Arter som ellers var relativt høyt prioritert var alm (snitt 40,0; n=1!) ask (snitt 56,4; n=5, median 58,9), salix (snitt 46,8; n=20, median 42,1), hegg (snitt 40,5; n=18, median 40,8). Blant mer middels prefererte arter kan regnes bringebær (snitt 33,5; n=16, median 31,7), hassel (snitt 37,4; n=28, median 33,1), osp (snitt 24,1; n=2, median 24,1), svartor (snitt 25,5; n=11, median 26,2), lann (snitt 29,5; n=19, median 22,5) og nype (snitt 36,3; n=3, median 41,2). For flere av disse artene var utvalget lite og derfor er verdiene heftet med en relativt stor usikkerhet.

Se ellers vedlegg 2 for en detaljert resultatoversikt for beitefrekvens for alle treartene samla fordelt etter rute og blokk.

Det var en tendens til at beitefrekvensen var høyere i sørveste hellinger, mens kroneskrone, dominerende trehøyde og hellingsgrad ikke viste noen signifikante sammenhenger med beitefrekvens.

Antall tre på flata viste en negativ sammenheng med beitefrekvensen. I motsetning til modellen for lyng så viser antall felte dyr pr vald (tetthet av hjort) en positivt signifikant sammenheng med beitefrekvensen og likedan for antall mørkhauger pr flate. Som for lyng var det en høyere beitefrekvens på flater som var eksponert for husdyrbeiting.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{beitefrekvens.png}
\caption{Boxplot av beitefrekvens for blåbær (a) og røsslyng (b) fordelt etter blokk. Den midterste streken viser median verdi, mens boksene viser 25 % kvartilene, strekene 75 % kvartilene og øvrige punkter er uteliggere med ekstreme verdier.}
\end{figure}
Figur 10. Boxplot av beitefrekvens (a) for de ulike lyngartene. Den midterste streken viser median verdi, mens boksene viser 25 % kvartilene, strekene 75 % kvartilene og øvrige punkter er uteliggere med ekstreme verdier.

Analyser av rogn (høyt preferert) og bjørk (middels preferert) ble kjørt videre i separate modeller for å se om beitefrekvensen var forskjellig mellom disse artene. Modellene gav en forklaringsprosent på henholdsvis 34,4 og 27,6. For rogn var det en forskjell i beitefrekvensen mellom blokkene (figur 12) og de laveste verdiene ble funnet i blokk D og I. Hvis man ser bort fra disse to områdene var det ingen signifikante forskjeller mellom blokkene. Beitefrekvensen var ikke forskjellig i ulike vegetasjonstyper, men var høyere i naturskog enn kulturskog. Beitefrekvensen økte signifikant med antall møkkhauger, men ikke med tetthet av antall dyr felt pr arealenhet. Om det var husdyrbeiting i området påvirket imidlertid beitefrekvensen positivt. For bjørk var det også en klar forskjell i beitefrekvensen mellom blokkene (figur 12), men ingen av de andre faktorene viste noen klar sammenheng med beitefrekvensen. Ingen av tetthetsindeksene viste heller noen sammenheng med beitefrekvensen på bjørk, og heller ikke om det var husdyrbeiting i området eller ikke.

Figur 11. Gjennomsnitt beitefrekvens (med 95 % konfidsensintervall) av tre fordelt etter blokk (a) og plot av beitefrekvens av tre pr flate i forhold til felt dyr pr tellende areal på valdsnivå (b). Trendlinje med 95 % konfidsensintervall er vist i figuren.
Figur 12. Boxplot av beitefrekvens av rogn (a) og bjørk (b) fordelt etter blokk. Den midterste streken viser median verdi, mens boksene viser 25 % kvartilene, strekene 75 % kvartilene og øvrige punkter er uteliggere med ekstreme verdier.

Einer måtte analyseres separat fordi den ble vurdert etter beitegrad og ikke som en direkte beitefrekvens. I blokk E, F og H var det høyeste beitegrad for einer mens det laveste finner vi i blokk B (figur 13). Resultatene vil si at i blokk B finner man spor (i snitt beitegrad=1 på hver 10. einerbusk) etter beiting på ca 10 % eenre, mens i blokk F var det beitet på alle eenere i snitt med en gjennomsnitt beitegrad på 1,4. Beitegraden er signifikant høyere i lågurt og blåbær enn i de andre vegetasjonstypene (figur 13b). De andre faktorene treslag, skogtype, eller husdyrbeiting gav ingen klare utslag. Imidlertid viste det seg at beitegraden var signifikant større ved økende avskytning pr tellende areal (figur 14a) og ved økende antall møkkhauger innenfor flata (figur 14b), og viser at økende tetthet av hjort fører til økt beiting på een.

Figur 13. Gjennomsnitt beitegrad (med 95 % konfidensintervall) på einer fordelt etter blokk (a) og vegetasjonstype (habitat) (b).
Figur 14. Plot av beitegrad på einer pr folte i forhold til felt hjort pr km² tellende areal på valdnivå (a) og antall møkkdunger pr flate (b). Trendlinjer med 95 % konfidensintervall er vist i figurene.
5. Diskusjon

5.1 Tilgjengelighet av aktuelle beiteplanter

Våre resultater viser at totalt sett var blåbærlyng den mest utbredte av lyngartene, men at det er forskjell mellom områdene i mengde tilgjengelig. Mengden (målt i antall skudd/beitekvister) blåbær er avhengig av vegetasjonstype og selv om våre resultater ikke avslører noen klare trender i forhold til tilgjengelighet med hensyn til skogens struktur og tetthet, så viser resultatene at det er mest blåbærlyng i nordvendte hellinger og i slakt terreng. Blåbæra er en halvskyggeplante og mengden tilgjengelig i ulike vegetasjonstyper er avhengig av skogens tetthet og struktur. Både i forhold til utbredelse, mengde og smakelighet er blåbæra sannsynligvis den klart viktigste lyngen for hjorten. Røsslyng finnes i betydelige mengder i noen områder, spesielt på kysten og i høyerelevlige arealer. Vårt utvalg av registreringsflater kan i tillegg ha bidratt til å underestimere den totalt tilgjengeligheten av røsslyng fordi de fleste flatene ble lagt til andre vegetasjonstyper enn de åpne røsslyngdominerte områdene. I de fleste områdene betyr den sannsynligvis relativt lite som beiteplanter for hjorten. Unntaket kan være i områder der det er sparsomt med blåbær og andre mer smakelige beitearter for hjorten.

Blant trea var bjørk, einer, furu, gran, gråor og rogn de mest utbredte og tilgjengelige artene, men de produserer høyst ulikt antall skudd pr flate. Selv om disse artene finnes i betydelig omfang i mange områder har de sannsynligvis variérerende betydning som beite for hjorten. Det er grunn til å tro at bjørk, einer og rogn er de viktigste treartene hvis man ser på kombinasjonen av hvor utbredt artene er, hvor mye de produserer (antall skudd) og smakeligheten på dem.

Våre resultater tyder ikke på at det er skjedd vesentlige endringer i vegetasjonssstrukturen på grunn av hjortens beiting i de undersøkte områdene i løpet av de senere årene. Tilgjengeligheten av de mest prefererte plantene er middel til høy i de fleste områdene. Selv om vi ikke kan måle endringer i vegetasjonen over tid i denne undersøkelsen er det ingen gode holdepunkter på at hjorten har skapt eller er i ferd med å skape endringer i vegetasjonens sammensetning og struktur i et regionalt
perspektiv. Enkelte lokale områder kan imidlertid være så hardt utnytta at dette kan føre til endringer på sikt (se lengre ned). Det er likevel grunn til å tro at det vil skje endringer i hjortens habitat i åra som kommer uavhengig av hjortens beiting. Ytterligere gjengroing, endringer i suksjesjonstrinn (hogstklasse) og hogst av kulturskog, sammen med beiteregime fra husdyr, vil føre til endringer i beiteproduksjonen i mange lokale områder. På en regional skala kan dette få en effekt selv om dette kan være vanskeligere å måle, og avhenger av den totale utnyttelsens av skogen som man legger opp til i åra framover.

5.2 Beitefrekvens

Beitefrekvensen av en gitt plantearbe påvirkes i stor grad av smakeligheten (Langvatn & Hanley 1993). Vår resultater viser at det totalt sett at beitefrekvensen (eller beitetrykket) kan klassifiseres som (lett)moderat både på lyng og tre, men det er betydelig variasjon mellom områdene (tabell 5). Totalt sett hadde Leinøya i Høøy, Ringstadal-Eiksund i Ulstein og Austefjord i Volda det laveste beitetrykket, mens Årsedalen i Ørsta hadde det høyeste. Det er stor variasjon i hvor stor grad de ulike plantene var beita. Rogn var hardest beita blant trea og blåbæra av lyngen (tabell 6). Det var også til dels betydelig variasjon mellom områdene (blokkene) i beitefrekvens både for den enkelte arten, men det var også en betydelig variasjon innad i områdene. Det vil si at det finnes vesentlig variasjon i beitefrekvens innenfor relativt korte avstander (se lengre ned for videre diskusjon og se kap 5.6 og vedlegg 7.2 for detaljansikt).

Resultatene gir ingen entydige svar på sammenhengen mellom beitefrekvensen og de habitatbeskrivende faktorene. Beitefrekvensen for lyng er knyttet til vegetasjonstype (høyere på gode boniter), mens dette ikke er tilfelle for de ulike treartene. Hellingsretning og tretetthet gir utslag på beitefrekvensen for trea, men ikke for lyngen. Verken dominerende treslag (lav og bøke), skogtype (natur eller kulturskog) dominerende trehøyde og hellingsgrad viste noen klare sammenhenger med beitefrekvensen. Selv om vi ikke måler og sammenligner direkte sammensetningen av ulike beitearter er det grunn til å tro at beitefrekvensen blir påvirket av sammensetningen av de ulike treslagene i de enkelte rutene innenfor områdene.

Vår analyser viser at beitefrekvensen er avhengig av habitatbruken til hjorten (målt som antall møkkhauger pr flate), men bare delvis av antall felte dyr pr arealenhet innenfor området. Det er opplagt at mer hjort fører til større beitetrykk totalt sett, men i hvor stor grad dette slår ut lokalt er litt mer komplisert. Beitefrekvensen er størst i de områdene hjorten prioriterer å oppholde seg meg i, men det er også grunn til å tro at bestandstettheten i området også betyr mye selv om vi ikke fant entydige svar på dette. Det kan også tenkes at beitepåvirkningen er forskjellig for lyng og de ulike tresortene og at dette påvirker resultatene. Husdyrbelting påvirker beitefrekvensen betydelig, og beitetrykket er betydelig høyere i områder hvor det går husdyr på beite. I flere av områdene er derfor husdyra en vesentlig konkurrent til hjorten, og belting av husdyr i et område betyr mer for beitefrekvensen enn bestandstettheten av hjort. I allefall gjelder det innenfor det tettettheten i hjortebestanden man har på Søre-Sunnmøre i dag. Studier i Skottland på ulike beitearts påvirkning av forskjellige beitehabitat viser at både sau og kveg har større påvirkning på beltingen enn hjorten, men ved økende hjortebestand så søker også dens påvirkningsgrad (Albon et al. 2007).

Det er flere faktorer som kan påvirke beitefrekvensen av både lyng og tre som vi ikke har sett på. Høyde over havet, avstand til inmark, tilgangen på ulike habitat og totalt beiteareal tilgjengelig innenfor et område er faktorer som er ikke inkludert i våre analyser. Dette får bli gjenstand for videre analyser ved en senere anledning. Det er likevel et generelt inntrykk at beitetrykket er størst i områder hvor store deler av tilgjengelig areal ikke "produserer" vinterbeite for hjorten, men som samtidig har andre viktige arealer for hjorten (eks store inmarksområder). Dette gjelder kanskje helst i områder med husdyrbelting i utmarka (i lavereliggende områder) og der vesentlige arealer er tilplantet med gran og hvor grana er mer enn 10-15 m høy (hogstklasse 3 og 4). Et godt eksempel er Årsedalen i Ørsta (blokk F) hvor store deler av utmarksareala ovenfor inmarka er plantet med gran. Totalt sett er arealene betydelige, men det blir produsert lite eller ingen beiteplanter for hjort på store deler av
området (foto 1). Dette fører gjerne til at hjorten benytter de områdene som faktisk produserer beite og dette fører til høyt beitetrykk på disse begrensa arealene.

Foto 1. Bilde av deler av Årsetdalen i Ørsta kommune.

5.3 Definering av beitetrykk

Sett i forhold til plantenes produksjon og overlevelse kan man definere et beitepress som lett (lavt), moderat eller høyt (se blant annet (Albon et al. 2007). En utfordring er å finne og avgjøre nivåene og å definere grensene for beitetrykket. (Holechek et al. 1999) har gjennom studier av mange ulike beiteprosjekter funnet at den enkleste og mest forståelige definisjonen er følgende: Høyt beitetrykk; utnyttning av en beiteplante i en grad hvor den ikke tillates å vedlikeholde seg selv (nedsett vekst og skuddproduksjon, mv); moderat beiteffekt; utnyttig i en grad hvor den tillates å vedlikeholde seg selv, men ikke øke produksjonen. Lett beiting defineres som utnyttig i en grad hvor den tillates å vedlikeholde seg selv og har mulighet til å øke produksjonen. Høyt beitetrykk indikerer en situasjon med overbeiting og over bærenevnen på lengre sikt, dvs beiteplantenes utbredelse, dekningsgrad og mengde ble redusert over tid.
En sammenstilling av mange beitestudier i grasøkosystemer fra Nord-Amerika antyder at et lett beitepress tilsier en utnyttelse av plantene i snitt på 32 %, moderat beiting i snitt 43 % og høyt beitetrykk i snitt 57 % (Holechek et al. 1999). De amerikanske studiene viser at over tid produserer plantene 20 % mindre beite enn utgangspunktet ved høyt beitepress, et moderat beitepress viser ingen endringer og ved et lavt beitepress økte beiteproduksjonen over tid med 8 %. I en studie fra Skottland definerer Albon et al. (2007) beitetrykket på blåbær og røsslyng som høyt når 66 % eller mer av skuddene var beitet, moderat når 33-66 % av skuddene var beitet og lett (lavt) når 33 % eller mindre av skuddene var beitet.

Ut i fra disse studiene og våre resultater velger vi en følgende definering av beitetrykk (% av tilgjengelige beitekvister):

Lyng: Lett < 30 %; (lett-)moderat 30-45 %; moderat(-høyt) 45-60 %; høyt > 60 %.

Tre: Lett< 30 %; (lett-)moderat 30-45 %; moderat(-høyt) 45-60 %; høyt > 60 %.

5.4 Beitetrykket på Søre-Sunnmøre

Er så beitefrekvensen eller beitetrykket for høyt på Søre-Sunnmøre? Resultatene viser at beitepresset totalt sett er (lett-)moderat både på lyngen (snitt beitefrekvens på 31,7 %) og på trærne (snitt beitefrekvens på 40,0 %). Det er imidlertid en del variasjon både mellom og innad i de ulike områdene (se tabell 5 for en skjematisk oversikt). I enkelte områder er beitetrykket høyt både på lyng og trær. Beitetrykket er også veldig forskjellig mellom de ulike beiteartene. Dette har trolig sammenheng med smakeligheten på plantene og preferansen hos beitedyra. Blåbær viste en beitefrekvens på 48,5 % i gjennomsnitt, som vil si et moderat(-høyt) beitetrykk etter ovennevnte definisjoner. Variasjonen mellom områdene var fra 29,9 % til 78,7 %, og for blåbær var beitetrykket moderat i 6 av 8 områder (tabell 6). Variasjonen innad i områdene kan imidlertid være betydelig, og kan variere fra moderat til høyt eller fra moderat til lavt. Resultatene kan derfor tyde på at beitetrykket på blåbær er så hardt i noen områder at det går ut over beiteproduksjonen og dekningsgraden på kort sikt, men det er mer ukjent om de langsiktige effektene. For de andre lyngartene var beitetrykket stor sett fra lett til moderat i alle områdene (røsslyng fra 0,0 % til 17,6 %; pors fra 11,7 % til 39,8 %; tyttebær fra 1,3 % til 15,0 %; blokkebær fra 1,9 % til 55,0 %).

Meisingset, Erling L., Brekkum, Øystein & Ebbesvik, Martha. Bioforsk Rapport 3 (70) 2008, 46 s.
For treartene er det også stor variasjon mellom artene. For rogn som er en høyt preferert art var beitefrekvensen 71 % i gjennomsnitt og beitetrykket klasifiseres som høyt i 7 av 8 områder (tabell 6). Dette er ikke overraskende siden man kan forvente at rogn blir prioritert så høyt at selv ved relativt lavt tetthet av hjort (og andre beitedyr) vil beitefrekvensen være høy. Bjørk hadde en gjenomsnittlig beitefrekvens på 31,5 %, noe som tilsier et (lett-)moderat beitetrykk. Også for bjørk er det imidlertid en variasjon i beitetrykket mellom områdene (tabell 6). For de andre treartene er det også en god del variasjon, men generelt er det en sammenheng i beitetrykket mellom artene innenfor hver enkelt rute og område. Hvis man ser bort i fra rogna så er ikke beitetrykket på trea for høyt, selv om det er områder som har høyt beitetrykk flere av treartene.

Tabell 5. Klassifisering av beitetrykk for lyng (alle arter) og tre (alle arter) fordelt etter område som ble undersøkt i de 6 kommunene på Søre-Sunnmøre. Beitetrykket (% av tilgjengelige beitekvister) er klasifisert etter følgende skala: Lett < 30 %; (lett-)moderat 30-45 %; moderat(-høyt) 45-60 %; høyt > 60 %.

<table>
<thead>
<tr>
<th>Blokk</th>
<th>Område</th>
<th>Kommune</th>
<th>Beitetrykk lyng</th>
<th>Beitetrykk tre</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Leinøya</td>
<td>Herøy</td>
<td>Lett</td>
<td>Lett</td>
</tr>
<tr>
<td>B</td>
<td>Tødenes-Larsnes-Myklebust</td>
<td>Sande</td>
<td>Lett</td>
<td>Moderat(-høyt)</td>
</tr>
<tr>
<td>C</td>
<td>Ringstadalen-Eiksund</td>
<td>Ulstein</td>
<td>Lett</td>
<td>(lett-)Moderat</td>
</tr>
<tr>
<td>D</td>
<td>Hovden-Liaset</td>
<td>Hareid</td>
<td>(lett-)Moderat</td>
<td>(lett-)Moderat</td>
</tr>
<tr>
<td>E</td>
<td>Bondalen</td>
<td>Ørsta</td>
<td>(lett-)Moderat</td>
<td>Moderat(-høyt)</td>
</tr>
<tr>
<td>F</td>
<td>Åssetdalen</td>
<td>Ørsta</td>
<td>Høyt</td>
<td>Moderat(-høyt)</td>
</tr>
<tr>
<td>H</td>
<td>Hovdebygda/Furene</td>
<td>Volda/Ørsta</td>
<td>Moderat(-høyt)</td>
<td>(lett-)Moderat</td>
</tr>
<tr>
<td>I</td>
<td>Austefjorden</td>
<td>Volda</td>
<td>Lett</td>
<td>(lett-)Moderat</td>
</tr>
<tr>
<td>Alle</td>
<td>Alle</td>
<td>Alle</td>
<td>Moderat(-høyt)</td>
<td>Høyt</td>
</tr>
</tbody>
</table>

Tabell 6. Klassifisering av beitetrykk for blåbær, rogn og bjørk og tre fordelt etter område som ble undersøkt i de 6 kommunene på Søre-Sunnmøre. Beitetrykket (% av tilgjengelige beitekvister) er klasifisert etter følgende skala: Lett < 30 %; (lett-)moderat 30-45 %; moderat(-høyt) 45-60 %; høyt > 60 %.

<table>
<thead>
<tr>
<th>Blokk</th>
<th>Område</th>
<th>Kommune</th>
<th>Beitetrykk blåbær</th>
<th>Beitetrykk rogn</th>
<th>Beitetrykk bjørk</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Leinøya</td>
<td>Herøy</td>
<td>Moderat(-høyt)</td>
<td>Høyt</td>
<td>(lett-)Moderat</td>
</tr>
<tr>
<td>B</td>
<td>Tødenes-Larsnes-Myklebust</td>
<td>Sande</td>
<td>Moderat(-høyt)</td>
<td>Høyt</td>
<td>Moderat(-høyt)</td>
</tr>
<tr>
<td>C</td>
<td>Ringstadalen-Eiksund</td>
<td>Ulstein</td>
<td>(lett-)Moderat</td>
<td>Høyt</td>
<td>(lett-)Moderat</td>
</tr>
<tr>
<td>D</td>
<td>Hovden-Liaset</td>
<td>Hareid</td>
<td>(lett-)Moderat</td>
<td>Moderat(-høyt)</td>
<td>Lett</td>
</tr>
<tr>
<td>E</td>
<td>Bondalen</td>
<td>Ørsta</td>
<td>Moderat(-høyt)</td>
<td>Høyt</td>
<td>Lett</td>
</tr>
<tr>
<td>F</td>
<td>Åssetdalen</td>
<td>Ørsta</td>
<td>Høyt</td>
<td>Høyt</td>
<td>Moderat(-høyt)</td>
</tr>
<tr>
<td>H</td>
<td>Hovdebygda/Furene</td>
<td>Volda/Ørsta</td>
<td>Moderat(-høyt)</td>
<td>Høyt</td>
<td>(lett-)Moderat</td>
</tr>
<tr>
<td>I</td>
<td>Austefjorden</td>
<td>Volda</td>
<td>Lett</td>
<td>Høyt</td>
<td>Lett</td>
</tr>
<tr>
<td>Alle</td>
<td>Alle</td>
<td>Alle</td>
<td>Moderat(-høyt)</td>
<td>Høyt</td>
<td>(lett-)Moderat</td>
</tr>
</tbody>
</table>
5.5 Oppsummering

Vi har i denne undersøkelsen gjort et utvalg av studieområder basert på den lokale kunnskapen i hver kommune om hvor hjorten har tilhold om vinteren og som er ansett som viktige vinterbiotoper for hjorten. Hvert område (kalt blokk) ble utvidet slik at de geografisk sett ville omfatte mer areal enn bare de sentrale vinteroppholdsområdene. Ut fra dette kunne man forvente at man fanget opp en bedre forståelse og et riktigere bilde av den totale beitesituasjonen enn viss undersøkelsene har vært konsentrert til bare de områdene med størst hjortebestand om vinteren. Denne "stratifiserte" måten å gjøre utvalget av undersøkelsesområder på, er likevel ikke helt tilfeldig og kan i seg selv føre til at vi har registrert et høyere beitetrykk enn det totalt sett er i disse kommunene. Ut fra målsettingen om at vi ville undersøke beitene i vinteroppholdsområder for hjorten, mener vi at utvalget av undersøkelsesområder var en god og valid måte å gjøre det på.

Resultatene viser at beitetrykket totalt sett er (lett)-moderat i de undersøkte områdene, men det er en variasjon både mellom og innad i de undersøkte områdene. I tillegg er det stor variasjon mellom artene, og enkelte arter utsettes for et høyt beitetrykk flere steder. Totalt sett er det bare rogn som er utsatt for et høyt beitetrykk av de artene som finnes i et visst monn, men variasjonen er relativt stor mellom og innad i områdene. Enkelte områder er imidlertid utsatt for et så høyt beitetrykk på flere av beiteartene, at man kan forvente en endring i vegetasjonsstrukturen og beiteproduksjonen både på kort og lang sikt på disse lokale områdene. I de enkelte områdene kan det være fornuftig å redusere beitetrykket for å øke produksjonen av beite.

Det er imidlertid en rekke faktorer som påvirker beiteproduksjonen og som har direkte effekt på tilgangen på vinterbeite for hjorten. Utviklingen i skogbilde (naturlige prosesser i skogsomfunnene) og driftsnivå i skogbruket vil skape viktige rammer for beiteproduksjonen og bæreevnen, sammen med den aktuelle bestandstotetheten av hjort og husdyrbeiteregime. En nærmere omtale av hvert enkelt område er gitt i kapittel 5.6.

5.6 Beskrivelse av og tilrådning i de enkelte undersøkelsesområdene

5.6.1 Leinøya i Herøy kommune (blokk A)

Av lyngartene ble blåbær, røsslyng og tyttebær registrert, og blant trea ble det funnet bjørk, eiker, furu, gran, rogn og selje (se tabell 4 og 5). Det er imidlertid ganske stor variasjon i tilgjengeligheten av de ulike beiteartene mellom rutene, og i rute 10 var det flest beitearter. Blåbær ble funnet på relativt sett få flater (40 %), mens røsslyng ble funnet på mange (75 %). Relativt lav tilgang på antall beiteskudd for de artene som var tilgjengelige, men variasjonen var stor mellom rutene. Relativt lav tilgang på antall beiteskudd totalt sett.

Beitetrykket ble totalt sett klassifisert som lett både på lyng og trær (tabell 6). Beitefrekvensen av både lyng og tre var størst i rute 3 og 11. Beitefrekvensen av blåbær var totalt 47,7 % og klassifiseres som moderat-(høyt), mens det var lett beitetrykk på tyttebær og røsslyng (beitefrekvensen var henholdsvis 2,9 og 12,9 %). Rogn viste en beitefrekvens på 72,2 % med liten variasjon mellom rutene og beitetrykket klassifiseres dermed som høyt. På bjørk og selje var det (lett)moderat beitetrykk (beitefrekvens på 32,5 og 31,5 %), mens det var et lett beitetrykk på furu (beitefrekvens 12,5 %). Det
ble ikke registrert beiting på gran (siktgran). På ene ble det registrert kun lett beiting, selv om tilgangen var relativt stor.

Tilrådninger/beskrivelse: Hjortens beiting er antatt å ha liten effekt på beiteproduksjonen totalt sett, selv om beitetrykket på rogna var hoyt og moderat(høyt) på blåbær. Dagens bestand av hjorten vurderes ikke for høy i forhold til beitepress og -grunnlag. Totalt sett er det lite areal på Leinøya (og i Herøya) og dermed er tilgjengeligheten på gode beitearealer og habitat for hjort på øya er imidlertid relativt sparsomt. En vesentlig økning av hjortebestanden vil kunne føre til betydelig økning i beitetrykk på de " gode" beitearealene og ha negativ effekt på sikt.

5.6.2 Tødenes-Larsnes-Myklebust i Sande kommune (blokk B)

Undersøkte ruter: 2, 7, 9, 10, og 15. Antall flater: 39.

Blåbær, røsslyng, tyttebær og blokkebær (i ei rute) ble funnet av lyng, og blant trea ble det funnet bjørk, eiker, furu, gran, hassel, rogna og selje (se tabell 4 og 5). Det er imidlertid noe variasjon i tilgjengeligheten av de ulike beiteartene mellom rutene. Det ble funnet flest beitearter i rute 7. Relativt sett middels (til høyt) tilgang på beiteskudd for de artene som var tilgjengelige, men variasjonen var stor mellom rutene.

Beitetrykket ble totalt sett klassifisert som lett på lyng og som moderat(-høyt) på trær (tabell 6). Beitefrekvensen av både lyng og tre var størst i rute 9, lavest i rute 10. Beitefrekvensen av blåbær var totalt 46,2 % og klassifiseres som moderat(høyt), mens det var lett beitetrykk på tyttebær og røsslyng (beitefrekvens var henholdsvis 3,1 og 2,1 %). Rogn viste en beitefrekvens på 77,7 % med noe variasjon mellom rutene og beitetrykket klassifiseres som høyt. Björka hadde en beitefrekvens på 49,5 % i snitt (klassifiseres som moderat(-høyt)) med en variasjon mellom rutene fra 16,7 % til 66,3 %. Dette var den høyeste registrerte beitefrekvensen på björk i hele undersøkelsen. På hassel og selje var det det (lettermoderat) beitetrykk (beitefrekvens på 31,8 og 35,8 %), men disse ble funnet bare i liten grad. Det var et lett beitetrykk på furu (beitefrekvens 1,8 %) og gran (beitefrekvens 13,0 %). For gran var det imidlertid ganske stor variasjon og i rute 10 på det registrert en god del beiting på gran, og som i stor grad trekker opp den gjennomsnittlige beitefrekvensen. På ene ble det i veldig liten grad påvist beiting. Høyeste beitegrad var i rute 15 med en gjennomsnitt beitegrad på 0,2.

5.6.3 Ringstadalen-Eiksund i Ulstein kommune (blokk C)

Undersøkte ruter: 2, 7, 9, 10, og 15. Antall flater: 33.

Blåbær, røsslyng og tyttebær ble funnet av lyng, og blant trea ble det funnet bjørk, bringebær, eiker, furu, gran, gråor, hassel, hegg, rogna, selje og svartor (se tabell 4 og 5). Det er imidlertid noe variasjon i tilgjengeligheten av de ulike beiteartene mellom rutene. Det ble funnet flest beitearter i rute 1 og 2. Relativt sett middels (til høyt) tilgang på beiteskudd for de artene som var tilgjengelige, men variasjonen var stor mellom rutene.

Beitetrykket ble totalt sett klassifisert som lett på lyng og som (lettermoderat) på trær (tabell 6). Beitefrekvensen av både lyng og tre var størst i rute 1 (og 2) ved Eiksund, lavest i rute 4 for lyng her ble det imidlertid ikke registrert blåbær) og i rute 11 (og 12) for trea. Beitetrykket av blåbær var i gjennomsnitt 32,0 % og klassifiseres som (lettermoderat, og var lavere i rutene i Ringstadalen (11 og 12) enn i rutene ved Eiksund (1 og 2). Det var lett beitetrykk røsslyng med
beitefrekvens på 8,1 %. På tyttebær ble det knapt registrert beiting. Rogn viste en gjennomsnitt beitefrekvens på 77,5 % og beitetrykket klassifiseres som høyt. Bjørka hadde en beitefrekvens på 42,6 % i snitt (klassifiseres som (lett-)moderat) med en variasjon mellom rutene fra 30,9 % til 53,6 %. På bringeør og selje var det (lett)moderat beitetrykk (beitefrekvens på 33,3 og 40,0 %), men disse ble funnet bare på noen få flater. Hegg var moderat(-høyt) beita (beitefrekvens 57,4 %), men ble bare funnet på to flater i rute 2. Det var ett litt beitetrykk på grær (beitefrekvens 16,2 %; med variasjon fra 0 til 28,4 %), hassel (beitefrekvens 29,1 %) og svartor (beitefrekvens 29,4 %). Det ble ikke registrert beiting på gran og furu. Selv om einer ble funnet på svært mange av flatene (81,8 %), var beitegraden bare 0,34 i gjennomsnitt (betyr at hver 3. einer var lett beita). Høyeste beitegrad var i rute 1 med en gjennomsnitt beitegrad på 1,0, og lavest i rute 12 hvor det ikke ble observert beiting på einer (selv om det var veldig mye einer tilgjengelig).

5.6.4 Hovden-Liaset i Hareid kommune (blokk D)
Blåbær, pors, røsslyng og tyttebær ble funnet av lyng, og blant trea ble det funnet alm, ask, bjørk (bjørkeskudd), bringeør, eier, gar, grær, hassel, hegg, nype, osp, rogn, selje og svartor (se tabell 4 og 5). Det er variasjon i tilgjengeligheten av de ulike beiteartene mellom rutene. Relativt sett middels tilgang på beiteskudd, med noe variasjon mellom rutene. Flest tilgjengelige beiteskudd (i snitt pr flate) var det i rute 11 og minst i rute 15 og 16.
Beitetrykket ble totalt sett klassifisert som (lett-)moderat både på lyng og trær (tabell 6). Beitefrekvensen på lyng var størst i rute 15 og 18, og på tre i rute 6 og 11. Lavest i rute 16 (få registreringer) og 6 for lyng, og i rute 15 og 16 for trea. Beitefrekvensen av blåbær var i gjennomsnitt 44,4 % og klassifiseres som (lett-)moderat, og bortsett fra rute 16 (lavt beitetrykk) lå beitefrekvensen omtrent ved gjennomsnittet. Pors hadde en beitefrekvens på 39,3 % i snitt, men ble bare funnet i rute 6, 11 og 15. Det ble knapt registrert beiting på tyttebær (beitefrekvens 4,3 %) og ingen beiting ble registrert på røsslyng (som ble funnet kun i ei rute). Rogn viste en gjennomsnitt beitefrekvens på 51,6 % og beitetrykket klassifiseres som moderat(-høyt). Dette var det laveste registrende beitetrykket på rogn for hele undersøkelsen. Bjørka hadde en gjennomsnitt beitefrekvens på 17,4 % i snitt, med en variasjon mellom rutene fra 0 % (rute 3 og 16) til 41,3 % (rute 6). Med andre ord så kan beitinga på bjørk klassifiseres som lett. Det ble imidlertid registrert moderat(-høyt) beitepress på rot/stammeskudd av bjørk (beitefrekvens 47,5 %) og det tydelig at disse har høyere smakelighet enn "vanlige" bjørkeskudd/kvister. Det ble ellers registrert ett moderat(-høyt) beitetrykk på ask (to registreringer) og selje. På alm (beitefrekvens 40,0 %), bringeør (beitefrekvens 40,0 %), og nype (beitefrekvens 36,3 %), var det (lett)moderat beitetrykk, mens på grær (beitefrekvens 12,2 %), gran (beitefrekvens 6,9 %), hassel (beitefrekvens 19,4 %) og svartor (beitefrekvens 13,8 %) kan beitinga totalt sett klassifiseres som lett. Beitegraden på einer var 0,34 i gjennomsnitt (betyr at hver 3. einer varlett beita). Det høyeste beitetrykket var i rute 11 med en gjennomsnitt beitegrad på 0,9, og lavest i rute 3 og 16 hvor det ikke ble observert beiting på einer.

Tilrådninger/beskrivelse: Hjortens beiting totalt sett er antatt å ha liten til moderat effekt på beiteproduksjonen totalt sett. Det var imidlertid en del variasjon i beiting på de forskjellige beiteartene, og det var ikke helt samsvar i beiteproduksjonen mellom rutene og beiteartene. Høyeste beitegrad var i rute 11 med en gjennomsnitt beitegrad på 0,9, og lavest i rute 3 og 16 hvor det ikke ble observert beiting på einer. Dagens bestand av hjorten vurderes
ikke for høy i forhold til beitetrykk og - grunnlag. En vesentlig økning av hjortebestanden vil kunne føre til betydelig økning i beitetrykk på de "gode" beitearealene og ha negativ effekt på beiteproduksjonen, men er avhengig av hvor en eventuell økning kommer. På en relativt stor del av flatene ble det registrert beiting av husdyr (sau) og dette har en meget klar effekt på beitefrekvensen på både lyng (blåbær) og tre. Det er med andre ord en konkurransesituasjon mellom sau og hjort på flere av beiteartene, og det ser ut at effekten av husdyr betyr mer enn hjortens beiting. En reduksjon i beiteningen av sau i disse områdene vil sannsynligvis ha relativt stor effekt på beitetilgangen for hjorten.

5.6.5 Bondalen i Ørsta kommune (blokk E)
Undersøkte ruter: 6, 8, 10, 12, 15 og 16. Antall flater: 35.

Blåbær, blokkebær, pors, røsslyng og tyttebær ble funnet av lyng, og blant trea ble det funnet bjørk (bjørkeskudd), einer, gran, grår (gråorskudd), hassel, hegg, lønn, rogn og selje (se tabell 4 og 5). Det er variasjon i tilgjengeligheten av de ulike beiteartene mellom rutene. Relativt sett middels tilgang på beiteskudd, med noe variasjon mellom rutene. Flest tilgjengelige beiteskudd (i snitt pr flate) var det i rute 15 (lyng) og rute 12 (tre) og minst i rute 10.

Beitetrykket ble totalt sett klassifisert som moderat(-høyt) både på lyng og trær (tabell 6). Beitefrekvensen på var størst i rute 10, hvor det var høyt beitetrykk både på lyng og tre (henholdsvis 86,1 og 66,2 %). Lavest beitetrykk var det i rute 6 hvor beitepresset kunne klassifiseres som lett både for lyng og tre (henholdsvis 18,6 og 27,3 %). Beitefrekvensen av blåbær var i gjennomsnitt 55,5 % og klassifiseres som moderat(-høyt) og i rute 10 og 15 var beitepresset høyt (beitefreqvens på 86,1 og 61,8 %). Pors hadde en beitefrekvens på 36,4 % i snitt, men ble bare funnet i rute 16. Det ble knapt registrert beiting på tyttebær (beitefreqvens 2,2 %), mens røsslyng hadde en beitefrekvens på 17,7 % (lett). Rogn viste en gjennomsnitt beitefrekvens på 77,3 % og beitetrykket klassifiseres som høyt. I rute 10 var alle tilgjengelige skudd av rogn beita, mens i rute 15 hadde den laveste beitefreqvensen på 39,2 %. Bjørk som hadde en gjennomsnitt beitefrekvens på "bare"18,5 % i snitt, altså kan beitinga på bjørk klassifiseres som lett. Grunnen kan være at mesteparten av bjørk av så høy at det er over hjortens rekkevidde. Det ble imidlertid registrert høyt beitetrykk på rot/stammeskudd av bjørk (beitefreqvens 67,5 %) og det tydelig at disse har høyere smakelighet enn "vanlige" bjørkeskudd/kvister. Det ble ellers registrert et høyt beiteprøykk på hassel (beitefreqvens 79,8 %), lønn (beitefreqvens 92,8 %; bare i rute 10) og selje (beitefreqvens 60,1 %; bare i rute 16). Moderat(-høyt) beitetrykk ble registrert på rot/stammeskudd av grår (beitefreqvens 48,2 %), hegg (beitefreqvens 48,6 %), mens beiteprøykket varlett på gran (beitefreqvens 18,2 %) og grår (beitefreqvens 15,4 %). Beitegraden på einer var 1,27 i gjennomsnitt (beitinga på snitt så er 10-15 % av barmmassen beita på alle einerne). Det høyeste beitetrykket var i rute 10 med en gjennomsnitt beitegrad på 2,6 (bortimot 50 % av barmmassen beita), og lavest i rute 16 med en beitegrad på 0,62.

Tilrådninger/beskrivelse: Hjortens beiting totalt sett er antatt å ha liten til moderat til stor effekt på beiteproduksjonen totalt sett. Det var imidlertid en del variasjon i det beitetrykk mellom rutene, og det høyeste beitetrykket ble funnet nederst i dalen. Dagens bestand av hjorten vurderes for høy i nedre deler av dalen, men må likevel sees i sammenheng med beiting av husdyr. En reduksjon av hjortebestanden (og husdyrbeitinga) vil være sannsynligvis nødvendig for å redusere beitetrykk og øke tilgangen på vinterbeite. På de flatene det ble registrert beiting av husdyr (sau og kveg) var det en høyere beitefrekvens på både lyng (blåbær) og tre, noe som i stor grad påvirker tilgangen av vinterbeite for hjort. I den ruta med høyeste beitetrykk (rute 10) var det beiting av sau og dette betyr sannsynligvis mer enn hjortens beiting. Det er likevel en positiv sammenheng med økende hjortebelte og beitefreqvensen, og effekten av hjortens beiting er større i husdyrområdene enn i områder uten husdyr (en slags "dobbel" beiteeffekt). Det er med andre ord en konkurransesituasjon mellom husdyr og hjort på flere av beiteartene. En reduksjon i beitingen av husdyr i disse områdene vil sannsynligvis ha stor effekt på beitetilgangen for hjorten.
5.6.6 Årsetdalen i Ørsta kommune (blokk F)
Blåbær og tyttebær ble funnet av lyng, og blant trea ble det funnet ask, bjørk (bjørkeskudd), bringebær, eier, gran, gråor (gråorskudd), hassel, lerke, rogn og selje (se tabell 4 og 5). Det er variasjon i tilgjengeligheten av de ulike beiteartene mellom rutene. Relativt sett middels tilgang på beiteskudd, med noe variasjon mellom rutene. Flest tilgjengelige beiteskudd (i snitt pr flate) var det i rute 16 og minst i rute 19.

Beitetrykket ble totalt sett klassifisert som høyt på lyng og trær moderat(-høyt) (tabell 6). Beitetrykket på lyng var størst i rute 8 (beitefrekvens 91,8 %; klassifisert som høyt) og for tre i rute 16 (beitefrekvens 91,8 %; klassifisert som moderat(-høyt)). Lavest beitepress var det i rute 16 for lyng og rute 8 for trea, hvor beipresset kunne klassifiseres som moderat(-høyt) for lyng og (lett-)moderat for tre (beitefrekvens var henholdsvis 45,7og 44,2 %). Beitefrekvensen av blåbær var i gjennomsnitt 78,7 % og i alle fire rutene klassifiseres beitetrykket på blåbær som høyt. Tyttebær hadde en beitefrekvens på 15,0 % (lett). Rogn viste en gjenomsnitt beitefrekvens på 78,7 % og beitetrykket klassifiseres som høyt i alle rutene. Bjørka hadde en gjenomsnitt beitefrekvens på 46,9 % i snitt, altså kan beitene på bjørk klassifiseres som moderat(-høyt). Her var det om lag samme beitetrykk på rot/stammskudd av bjørk (beitefrekvens 50,1 %). Det ble ellers registrert et høyt beitetrykk på selje (beitefrekvens 91,2 %) og ask (beitefrekvens 60,6 %), mens et moderat(-høyt) beitetrykk ble registrert på bringebær (beitefrekvens 50,0 %) og rot/stammskudd av gråor (beitefrekvens 46,6 %). Hassel hadde et (lett-)moderat beitetrykk (beitefrekvens 30,0 %), og beitetrykket var lett på gråor (beitefrekvens 8,3 %). Beitetrykket på vinterbeiteartene er lønnsomt å gå med, og det er mange muligheter for å redusere beitetrykket på vinterbeite. Beitelive av erindringer av granskog som i nåværende vekststadium ikke produserer relevant beite for hjorten. Høyst av gran vil sannsynligvis ha en positiv effekt på den totale beiteproduksjonen i området.

5.6.7 Hovdebygda/Furene i Volda og Ørsta kommuner (blokk H)
Blåbær og tyttebær ble funnet av lyng, og blant trea ble det funnet bjørk (bjørkeskudd), bringebær, eier, furu, gran, gråor (gråorskudd), hassel, hegg, lønn, rogn, selje og svartor (se tabell 4 og 5). Det er variasjon i tilgjengeligheten av de ulike beiteartene mellom rutene. Relativt sett middels til høy tilgang på beiteskudd, med noe variasjon mellom rutene. Flest tilgjengelige beiteskudd (i snitt pr flate) var det i rute 10 og 13 og minst i rute 4.

Beitetrykket ble totalt sett klassifisert som moderat(-høyt) på lyng og på trea (lett-)moderat (tabell 6). Beitetrykket var størst i rute 4 (lyng (bare blåbær ble funnet) beitefrekvens 99,1 %; tre beitefrekvens 94,6 %; klassifisert som høyt), hvor beitetrykket på vinterbeiteartene var veldig høyt. Denne ruta var det til dels sterk preg av husdyrbeiting, og årsaken til det veldig høye beitetrykket på blåbæra ligger nok her. Lavest beitepress var det i rute 9 for lyng og rute 4 for trea, hvor beitetrykket kunne klassifiseres som (lett-)moderat for lyng og lett for tre. Beitefrekvensen av blåbær var i gjennomsnitt 56,6 % og i rutene 2, 3 og 4 klassifiseres beitetrykket på blåbær som høyt. Blokkebær viste beitefrekvens på 55,1 % (moderat(-høyt)), men ble bare observert i rute 3. Pors hadde en beitetrykk
på (39,9 %) som tilsier (ledd-)moderat beitepress, mens tyttebær og røsslyng var lett beita (beitefrekvens på henholdsvis 6,5 % og 2,8 %).

Rogn viste en gjennomsnitt beitefrekvens på 72,7 % og beitetrykket klassifiseres som høyt 5 av 6 ruter. Bjørka hadde en gjennomsnitt beitefrekvens på 31,2 %, (ledd-)moderat, mens på rot/stammeskudd av bjørk var beitefrekvensen 65,0 % (høyt). Det ble ellers registrert et høyt beitetrykk på selje (beitefrekvens 62,9 %), et (ledd-)moderat beitepress på bringebær (beitefrekvens 30,6 %), hegg (beitefrekvens 36,2 %) og svartor (beitefrekvens 40,7 %). Beitetrykket var lett på furu (beifrekvens 1,8), gran (beitefrekvens 8,4 %), gråor (beitefrekvens 11,3 %) og lønn (beitefrekvens 17,6 %).

Beitegraden på ene var 1,1 i gjennomsnitt (betyr at 1 av 3 av alle eneierne har spor etter beiting). Det var stor variasjon i beitegraden og spesielt var rute 3 og 4 prega av hard beiting (beitegrad 2,6 og 2,8), mens i rute 13 var ble det knapt registrert beiting på ene.

Tilrådninger/beskrivelse: Hjortens beiting totalt sett er antatt å ha liten til moderat effekt på beiteproduksjonen totalt sett. Det var stor variasjon i det beitetrykk mellom rutene, og beitetrykket var vesentlig høyere i rute 2, 3 og 4 enn i de andre. Her har sannsynligvis hjortens beiting en moderat til stor effekt. Disse rutene var også påvirket av husdyrbeiting, som også har relativt stor betydning for beitetrykket. Dagens bestand av hjort vurderes for høy i forhold til det tilgjengelige beitearealet og beitetrykket på de viktige vinterbeiteartene i rute 2, 3 og 4, men ikke i de andre kartlagte rutene (9, 10 og 13). En reduksjon av hjortebestanden (og husdyrbeitinga) er mest belasta områdene vil være sannsynligvis nødvendig for å redusere beitepresset og øke tilgangen på vinterbeite på sikt.

5.6.8 Austefjorden i Volda kommune (blokk I)

Undersøkte ruter: 2, 4, 7, 12, 15 og 17. Antall flater: 44.

Blåbær, blokkebær, pors, røsslyng og tyttebær ble funnet av lyng, og blant trea ble det funnet bjørk (bjørkeskudd), bringebær, eneier, furu, gran, gråor (gråorskudd), hassel, hegg, lønn, osp, rogn, selje og svartor (se tabell 4 og 5). Det er variasjon i tilgjengeligheten av de ulike beitearten mellom rutene. Relativt sett middels til høy tilgang på beiteskudd, med noe variasjon mellom rutene. Flest tilgjengelige beiteskudd (i snitt pr flat) var det i rute 17 og minst i rute 7.

Beitetrykket ble totalt sett klassifisert som lett på lyng og (ledd-)moderat på trea (tabell 6). Beitetrykket var størst i rute 7 (lyng beitefrekvens 31,6 % (ledd-)moderat); tre beitefrekvens 45,2 %; klassifisert som moderat-(høyt), og minst i route 17 for lyng (lett; beitefrekvens 8,3%) og rute 12 for trea (lett; beitefrekvens 24,8 %). Beitefrekvensen av blåbær var i gjennomsnitt 29,9 %, og var størst i rute 7 (moderat-(høyt)) og minst i rute 17 (lett). De andre lyngartenene var bare lett beita i alle rutene som ble registrert.

Rogn viste en gjennomsnitt beitefrekvens på 64,8 % og beitetrykket klassifiseres som høyt 2 av 6 ruter. Bjørka hadde en gjennomsnitt beitefrekvens på 11,8 %; lett beiting, mens på rot/stammeskudd av bjørk var beitefrekvensen 33,8 %; (ledd-)moderat. Det ble ellers registrert et moderat-(høyt) beitetrykk på osp (beitefrekvens 48,2 %, kun en registrering), og et (ledd-)moderat beitepress på bringebær (beitefrekvens 30,0 %, kun en registrering), hassel (beitefrekvens 39,0 %), hegg (beitefrekvens 32,7, kun en registrering) og svartor (beitefrekvens 42,7 %). Beitetrykket var lett på furu (beitefrekvens 3,8), gråor (beitefrekvens 7,6 %) og selje (beitefrekvens 11,7 %), mens det ikke ble registrert beiting på gran. Beitegraden på eneier var 0,35 i gjennomsnitt (betyr at 1 av 3 av alle eneierne har spor etter beiting). Det var stor variasjon i beitegraden og var høyest i rute (beitegrad 1,7), mens i rute 2, 4, og 17 ble det knapt registrert beiting på ene.

Tilrådninger/beskrivelse: Hjortens beiting totalt sett er antatt å ha liten effekt på beiteproduksjonen totalt sett. Det var variasjon i det beitetrykk mellom rutene, og beitetrykket var høyere i rute 7 enn i de andre. Her har sannsynligvis hjortens beiting en moderat effekt. Husdyrbeiting ble kun registrert i rute 17, og selv om beitetrykket av lett i denne ruta så betyr husdyrbeitinga mer for beitefrekvensen enn hjorten. Dagens bestand av hjort vurderes ikke for høy i forhold til det tilgjengelige beitearealet og beitetrykket på de viktige vinterbeiteartene var totalt sett ikke for høyt i de kartlagte rutene.
6. Referanser

Fredly, Å. 2006, Sympatriske bestander av hjort og rådyr, valg av habitat og høstbeite, Universitetet for miljø- og biovitenskap, Institutt for naturforvaltning.

Tolvanen, A. 1994, "Differences in recovery between a deciduous and an ericaceous clonal dwarf shrub after simulated aboveground herbivory and belowground damage", *Canadian Journal of Botany-Revue Canadienne de Botanique*, vol. 72, no. 6, pp. 853-859.

Meisingset, Erling L., Brekkum, Øystein & Ebbesvik, Martha. Bioforsk Rapport 3 (70) 2008, 46 s.
7. Vedlegg

7.1 Studieområder - kartoversikt

Oversikt over alle blokkene - studieområdene - med nummererte ruter for kartlegging.

Blokk A. Leinøya i Herøy kommune. Undersøkte ruter: 1, 3, 10 og 11.
Blokk B. Tødenes - Larsnes - Myklebust i Sande kommune. Undersøkte ruter: 2, 7, 9, 10, og 15.
Blokk C. Ringstadalen - Eiksund i Ulstein kommune. Undersøkte ruter: 2, 7, 9, 10, og 15.
Blokk D. Hovden - Liaset i Hareid kommune. Undersøkte ruter: 1, 3, 6, 11, 15, 16 og 18.
Blokk E. Bondalen i Ørsta kommune. Undersøkte ruter: 6, 8, 10, 12, 15 og 16.
Blokk F. Åsetdalen i Ørsta kommune. Undersøkte ruter: 8, 11, 16 og 19.
Blokk H. Hovdebygda/Furene i Volda og Ørsta kommuner. Undersøkte ruter: 2, 3, 4, 9, 10 og 13.
Blokk I. Austefjorden i Volda kommune. Undersøkte ruter: 2, 4, 7, 12, 15 og 17.
7.2 Resultatoversikt på rutenivå

Beitefrekvens (antall beita kvister av totalt tilgjengelig) av lyng og tre fordelt etter blokk og rute.

<table>
<thead>
<tr>
<th>Blokk</th>
<th>Lyng</th>
<th>Rute</th>
<th>Skilt</th>
<th>N</th>
<th>Standard avvik</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1.479</td>
<td>7</td>
<td>0.3292</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0.5242</td>
<td>6</td>
<td>0.25224</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1.2126</td>
<td>14</td>
<td>0.10907</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.831</td>
<td>33</td>
<td>0.22903</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>0.3480</td>
<td>10</td>
<td>0.30437</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.6251</td>
<td>13</td>
<td>0.25643</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2.060</td>
<td>8</td>
<td>0.2593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.532</td>
<td>12</td>
<td>0.15291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.2098</td>
<td>10</td>
<td>0.20165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2.838</td>
<td>53</td>
<td>0.30663</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>0.3427</td>
<td>8</td>
<td>0.16547</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.3273</td>
<td>10</td>
<td>0.27642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.0200</td>
<td>7</td>
<td>0.05292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.1743</td>
<td>5</td>
<td>0.11478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.6049</td>
<td>42</td>
<td>0.22023</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>0.3029</td>
<td>4</td>
<td>0.24010</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.2054</td>
<td>11</td>
<td>0.18275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.2516</td>
<td>8</td>
<td>0.25674</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.5510</td>
<td>3</td>
<td>0.04520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.0000</td>
<td>1</td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.5273</td>
<td>8</td>
<td>0.16853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5.2488</td>
<td>39</td>
<td>0.24309</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>0.8860</td>
<td>11</td>
<td>0.19500</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.2687</td>
<td>8</td>
<td>0.27819</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.5612</td>
<td>4</td>
<td>0.13942</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.3702</td>
<td>8</td>
<td>0.27125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.5543</td>
<td>8</td>
<td>0.21929</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.3881</td>
<td>15</td>
<td>0.34238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3.8497</td>
<td>54</td>
<td>0.31230</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>0.9184</td>
<td>9</td>
<td>0.03850</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.7254</td>
<td>9</td>
<td>0.25663</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.4570</td>
<td>6</td>
<td>0.32996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.7330</td>
<td>10</td>
<td>0.14917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2.699</td>
<td>29</td>
<td>0.26478</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>0.5880</td>
<td>6</td>
<td>0.22689</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.7774</td>
<td>12</td>
<td>0.32895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.9095</td>
<td>3</td>
<td>0.01650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.3057</td>
<td>9</td>
<td>0.14660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.2225</td>
<td>26</td>
<td>0.03892</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.3433</td>
<td>9</td>
<td>0.37075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4.6244</td>
<td>65</td>
<td>0.35440</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>0.1112</td>
<td>21</td>
<td>0.16337</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2405</td>
<td>7</td>
<td>0.23653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.3164</td>
<td>10</td>
<td>0.24214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.1146</td>
<td>20</td>
<td>0.13938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.1777</td>
<td>21</td>
<td>0.21370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.0831</td>
<td>12</td>
<td>0.10040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.561</td>
<td>91</td>
<td>0.19138</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blokk</th>
<th>Tre</th>
<th>Rute</th>
<th>Skilt</th>
<th>N</th>
<th>Standard avvik</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0.0000</td>
<td>3</td>
<td>0.00000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3750</td>
<td>6</td>
<td>0.39033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.2632</td>
<td>16</td>
<td>0.23623</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.4563</td>
<td>4</td>
<td>0.24963</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.2715</td>
<td>25</td>
<td>0.26444</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>0.4884</td>
<td>13</td>
<td>0.35681</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.5301</td>
<td>12</td>
<td>0.32214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.5614</td>
<td>17</td>
<td>0.43187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.2715</td>
<td>15</td>
<td>0.26462</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.5631</td>
<td>6</td>
<td>0.31865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.4715</td>
<td>63</td>
<td>0.37023</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0.5375</td>
<td>18</td>
<td>0.29027</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.4017</td>
<td>10</td>
<td>0.29857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.3495</td>
<td>4</td>
<td>0.27609</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.2980</td>
<td>5</td>
<td>0.15867</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.5616</td>
<td>8</td>
<td>0.34629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.4329</td>
<td>45</td>
<td>0.29895</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0.2701</td>
<td>12</td>
<td>0.21577</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3662</td>
<td>14</td>
<td>0.26439</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.5525</td>
<td>8</td>
<td>0.12326</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.5073</td>
<td>14</td>
<td>0.28441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.1675</td>
<td>7</td>
<td>0.18879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.0111</td>
<td>5</td>
<td>0.26455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.3948</td>
<td>17</td>
<td>0.38188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.3564</td>
<td>78</td>
<td>0.29227</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>0.2732</td>
<td>14</td>
<td>0.20240</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.5668</td>
<td>8</td>
<td>0.32737</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.6221</td>
<td>20</td>
<td>0.38444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.4002</td>
<td>13</td>
<td>0.30689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.3681</td>
<td>14</td>
<td>0.18995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.4869</td>
<td>28</td>
<td>0.39933</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.4564</td>
<td>87</td>
<td>0.34351</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>0.4423</td>
<td>22</td>
<td>0.38438</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.4734</td>
<td>25</td>
<td>0.33744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.5063</td>
<td>9</td>
<td>0.39003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.4027</td>
<td>16</td>
<td>0.22963</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.4701</td>
<td>72</td>
<td>0.31005</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>0.3225</td>
<td>20</td>
<td>0.19133</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.6778</td>
<td>24</td>
<td>0.32449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.9465</td>
<td>8</td>
<td>0.07607</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.2978</td>
<td>38</td>
<td>0.20606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.3623</td>
<td>24</td>
<td>0.37073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.2562</td>
<td>38</td>
<td>0.33378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.3990</td>
<td>152</td>
<td>0.34133</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>0.2634</td>
<td>25</td>
<td>0.38249</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.2777</td>
<td>15</td>
<td>0.18681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.4521</td>
<td>15</td>
<td>0.28372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.2403</td>
<td>12</td>
<td>0.28298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.3369</td>
<td>14</td>
<td>0.19866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.3260</td>
<td>21</td>
<td>0.43895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.3141</td>
<td>102</td>
<td>0.31963</td>
<td></td>
</tr>
</tbody>
</table>
Beitegrad på einer fordelt etter ruter og blokk.

Rapport

Beitegrad for mean

<table>
<thead>
<tr>
<th>Block</th>
<th>Rute</th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>.3902</td>
<td>5</td>
<td>.25125</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.8500</td>
<td>4</td>
<td>.89997</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>.7733</td>
<td>5</td>
<td>.21233</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>.6667</td>
<td>3</td>
<td>.57735</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.4675</td>
<td>18</td>
<td>.52323</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>.0952</td>
<td>5</td>
<td>.14677</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>.0156</td>
<td>9</td>
<td>.04419</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>.1367</td>
<td>7</td>
<td>.29094</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>.0000</td>
<td>6</td>
<td>.00000</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>.2037</td>
<td>8</td>
<td>.27534</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.0936</td>
<td>34</td>
<td>.19980</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>.9930</td>
<td>7</td>
<td>.35603</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.5625</td>
<td>6</td>
<td>.65072</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>.4260</td>
<td>4</td>
<td>.13376</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>.1472</td>
<td>4</td>
<td>.10077</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>.0000</td>
<td>5</td>
<td>.00000</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.4823</td>
<td>27</td>
<td>.50530</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>.6333</td>
<td>2</td>
<td>.04714</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.0933</td>
<td>3</td>
<td>.14434</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>.0800</td>
<td>3</td>
<td>.08437</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>.0933</td>
<td>3</td>
<td>.14434</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>.0000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>.2981</td>
<td>3</td>
<td>.12914</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.3351</td>
<td>15</td>
<td>.49821</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>1.0400</td>
<td>5</td>
<td>.60095</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>.7000</td>
<td>4</td>
<td>.47610</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.5926</td>
<td>3</td>
<td>.72565</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.3000</td>
<td>10</td>
<td>.94988</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.1100</td>
<td>5</td>
<td>.85761</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1.2061</td>
<td>35</td>
<td>.97257</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>2.0000</td>
<td>2</td>
<td>1.41421</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>.8772</td>
<td>7</td>
<td>.88601</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>.6595</td>
<td>4</td>
<td>.40850</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1.8778</td>
<td>5</td>
<td>.10323</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1.3024</td>
<td>19</td>
<td>.92730</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>1.5000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.8260</td>
<td>2</td>
<td>.17678</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.8335</td>
<td>3</td>
<td>.25088</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>.3750</td>
<td>4</td>
<td>.47871</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.2222</td>
<td>9</td>
<td>.12214</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>.0403</td>
<td>5</td>
<td>.08507</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1.1197</td>
<td>25</td>
<td>1.16509</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>.0714</td>
<td>7</td>
<td>.15888</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>.2000</td>
<td>5</td>
<td>.44721</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.6567</td>
<td>2</td>
<td>.47140</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>.4869</td>
<td>5</td>
<td>.15127</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>.5067</td>
<td>8</td>
<td>.45016</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>.0238</td>
<td>7</td>
<td>.05299</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>.3491</td>
<td>34</td>
<td>.40683</td>
</tr>
</tbody>
</table>