Nonlinear State and Parameter Estimation using Discrete-Time Double Kalman Filter

Mohammad Abdollahpourı ∗ Mark Haring ∗∗ Tor Arne Johansen ∗∗ Gergely Takács ∗ Boris Rohaľ-Ilkiv ∗

∗ Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, 812 31 Bratislava, Slovakia (e-mail: mohammad.abdollahpourı@stuba.sk), ∗∗ Center for Autonomous Marine Operations and Systems (NTNU-AMOS), Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.

Abstract: Dealing with nonlinear dynamics in conventional estimation methods like the extended Kalman filter (EKF) is challenging, since they are not guaranteed to have global convergence, and their instability can arise by selecting a poor initial guess. Recently, a double Kalman filter (DKF) has been proposed, where two stages of estimation are considered using cascade stability theory in the continuous time domain. The first stage guarantees global convergence through the use of a globally valid linear time-varying model transformation, but leads to sub-optimal accuracy in the presence of noise. The global model transformation is applicable to a class of nonlinear systems, where its state can be explicitly derived through a mapping of previous measurements and disturbances. Furthermore, the second stage compensates the lost performance using the estimate from the first stage via local linearization. Here, we derive the stability analysis of this globally convergent method in discrete time using a Lyapunov approach. Different Kalman filters are compared via simulation to validate the benefit of using DKF for nonlinear state and parameter estimation.

1. INTRODUCTION

The Kalman filter (KF) as an optimal (minimum variance) state estimation method is proven to be globally exponentially stable for uniformly completely observable (UCO) linear time varying (LTV) systems with white input and output disturbances (Jazwinski, 2007). The extended Kalman filter (EKF) is a modified KF for nonlinear dynamics which has enormously influenced the state estimation of real life applications (Gelb, 1974; Simon, 2010). However, this widely used estimator lacks a global stability guarantee; state and parameter estimates may diverge because of a poor initial guess or its dependency on system trajectory. This drawback is argued to initiate from the inherent feedback in its linearization, where the estimate from a poor initial guess is utilized as the linearization point. Divergence of the EKF has been reported by Perea et al. (2007); Haseltine and Rawlings (2005); Lee and West (2010); Ficocelli and Janabi (2001).

A two stage state estimation approach has been recently developed by Johansen and Fossen (2016a). One of its variants, the double Kalman filter (DKF), has been analyzed in the continuous-time domain (Johansen and Fossen, 2016b) and further has been applied to a position estimation using pseudo-range measurements (Johansen et al., 2016). The first stage of DKF employs a technique which eliminates the nonlinearities of the system through the use of a globally valid linear time-varying model transformation, but leads to sub-optimal accuracy in the presence of noise. The global model transformation is applicable to a class of nonlinear systems, where its state can be explicitly derived through a mapping of previous measurements and disturbances. Furthermore, the second stage compensates the lost performance using the estimate from the first stage via local linearization. Here, we derive the stability analysis of this globally convergent method in discrete time using a Lyapunov approach. Different Kalman filters are compared via simulation to validate the benefit of using DKF for nonlinear state and parameter estimation.

* The authors gratefully acknowledge the contribution of the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 607957 (TEMPO); the financial contribution of the STU Grant Scheme for the Support of Excellent Teams of Young Researchers, the Slovak Research and Development Agency (APVV) under the contract APVV-14-0399; the support of the Scientific Grant Agency (VEGA) of the Ministry of Education, Science, Research and Sport of the Slovak Republic under the contract 1/0144/15; the Research Council of Norway with project no. 250725, Statoil, DNV GL and Sintef through the Centers of Excellence funding scheme, project no. 223254 - Centre for Autonomous Marine Operations and Systems (NTNU-AMOS); and the support of EEA Grant no. SK06-II-01-004
main (Sira-Ramírez and Agrawal, 2004). Under the same topic, an immersion method with or without feedback is proposed by Levine and Marino (1986) to transform a class of nonlinear systems to linear systems. Necessary and sufficient conditions for linearizing transformations up to output injection are discussed by Besançon (1999); Hammouri and Gauthier (1992). Furthermore, conditions for a coordinate transformation to observer canonical form are presented by Califano et al. (2009).

This paper first discusses the transformation of a nonlinear system into a LTV system in Section 2. Next, Section 3 introduces the equations of the DKF in discrete time. A stability analysis of the DKF in discrete time is presented in Section 4. The stability analysis is derived utilizing a Lyapunov approach, where it is proven that the DKF is uniformly globally asymptotically stable using stability theory for discrete-time cascaded systems. Furthermore, in Section 5 different numerical examples validate the advantage of the DKF over the EKF that uses its last estimate as linearization point. Finally, this paper is concluded in Section 6.

Finally we define some useful definitions. A function \(\alpha : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) is in class \(\mathcal{K} \), if it is continuous, strictly increasing and \(\alpha(0) = 0 \). Furthermore, \(\alpha \in \mathcal{K}_\infty \) if it is unbounded. A function \(\beta : \mathbb{R}^n \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) is of class \(\mathcal{KL} \) if \(\beta(\cdot, k) \in \mathcal{K} \) for all \(k \geq 0 \), and if \(\beta(\cdot, \cdot) \) is continuous, strictly decreasing and \(\lim_{k \to 0} \beta(x,k) = 0 \) for all \(x > 0 \). Diagonal matrix is denoted by \(\text{diag} \).

2. MODEL TRANSFORMATION

This section provides the definitions and assumptions needed for applying a linearizing model transformation based on difference flatness. Let the nonlinear dynamics be described as follows

\[
\begin{align*}
x_{k+1} &= f(x_k, \dot{y}_k), \quad (1a) \\
y_k &= h(x_k, \dot{v}_k), \quad (1b)
\end{align*}
\]

where the nonlinear dynamics is denoted by \(f(\cdot) : \mathbb{R}^n \times \mathbb{R}^q \to \mathbb{R}^n \) and the nonlinear output function is expressed as \(h(\cdot) : \mathbb{R}^n \times \mathbb{R}^r \to \mathbb{R}^p \). Furthermore, \(x \in \mathbb{R}^n \) is the state vector, \(y \in \mathbb{R}^p \) is the output, \(\psi \in \mathbb{R}^q \) is the input disturbance and \(\dot{\psi} \in \mathbb{R}^r \) denotes the output disturbance. The time index is denoted by \(k \). Although \(f(\cdot) \) and \(h(\cdot) \) are known functions, the state \(x_k \) and the disturbances \(\dot{y}_k \) and \(\dot{v}_k \) are unknown. The output \(y_k \) is obtained via measurement and is therefore known.

Definition 2.1. (Loria and Nešić, 2002) A nonlinear system of the form (1) is uniformly globally asymptotically stable (UGAS) if there exists a function \(\beta \in \mathcal{KL} \) such that

\[
\|x_k\| \leq \beta(\|x_0\|, k - k_0)
\]

for all \(x_0 \in \mathbb{R}^n \) and all \(k \geq k_0 \geq 0 \).

Definition 2.2. (Loria and Nešić, 2002) A nonlinear system of the form (1) is uniformly globally bounded (UGB) if there exist a function \(k \in \mathcal{K}_\infty \) and a constant \(c \in \mathbb{R}_{\geq 0} \) such that

\[
\|x_k\| \leq k(\|x_0\|) + c
\]

for all \(x_0 \in \mathbb{R}^n \) and all \(k \geq k_0 \geq 0 \).

We make the following assumptions regarding system (1).

Assumption 1. The nonlinear functions \(f(\cdot) \) and \(h(\cdot) \) are twice continuously differentiable.

Assumption 2. The state \(x_k \) is uniformly bounded.

Assumption 3. There exists a known map \(\psi(\cdot) : \mathbb{R}^{pd} \times \mathbb{R}^{q(d-1)} \times \mathbb{R}^r \to \mathbb{R}^n \) and a positive integer \(d \) such that the state of (1) can be written as

\[
x_k = \psi(Y_k^d, W_{k-1}^d, V_k^d),
\]

where \(Y_k^d = \{ y_1, \ldots, y_k \} \), \(W_{k-1}^d = \{ \dot{y}_1, \ldots, \dot{y}_{k-1} \} \) and \(V_k^d = \{ \dot{v}_1, \ldots, \dot{v}_k \} \), with \(k = d - 1 + 1 \).

Remark 2.3. Assumption 3 implies that system (1) is difference flat (Sira-Ramírez and Castro-Linares, 2000), with flat outputs \(Y_k^d, W_{k-1}^d \) and \(V_k^d \). It is worth mentioning the fact that \(\psi \) is not necessarily unique. Moreover, it follows from Assumption 3 that the current state \(x_k \) can be uniquely determined from a number of current and past output measurements \(Y_k^d \) and disturbances \(W_{k-1}^d \) and \(V_k^d \), which implies observability of system (1) in some sense.

Using Assumption 3, the nonlinear system (1) can be globally transformed into a LTV system of the form

\[
\begin{align*}
x_{k+1} &= f(0,0) + F_k x_k + u_k, \quad (2a) \\
y_k &= h(0,0) + F_k x_k + v_k,
\end{align*}
\]

where the matrices \(F_k \) and \(H_k \) are known, and where the new input and output disturbances, denoted by \(u_k \) and \(v_k \) respectively, are uniformly zero (i.e., zero for all \(k \)) if \(\dot{u}_k \) and \(\dot{v}_k \) are uniformly zero. The transformation from (1) to (2) is not unique. One possible choice for \(F_k \) and \(H_k \) is

\[
\begin{align*}
F_k &= \int_0^1 \frac{\partial f}{\partial x}(s\psi(Y_k^d, 0, 0), 0)ds, \\
H_k &= \int_0^1 \frac{\partial h}{\partial x}(s\psi(Y_k^d, 0, 0), 0)ds.
\end{align*}
\]

The matrices \(F_k \) in (3) and \(H_k \) in (4) are known because \(f, h, \psi \) and \(Y_k^d \) are known. The corresponding disturbances are given by

\[
\begin{align*}
w_k &= \int_0^1 \left(\frac{\partial f}{\partial x}(s x_k, 0) - \frac{\partial f}{\partial x}(\psi(Y_k^d, 0, 0), 0) \right) ds x_k \\
&\quad + f(x_k, \dot{y}_k) - f(x_k, 0), \\
v_k &= \int_0^1 \left(\frac{\partial h}{\partial x}(s x_k, 0) - \frac{\partial h}{\partial x}(\psi(Y_k^d, 0, 0), 0) \right) ds x_k \\
&\quad + h(x_k, \dot{v}_k) - h(x_k, 0),
\end{align*}
\]

where we note that \(\int_0^1 \frac{\partial f}{\partial x}(sx_k, 0)ds \) is zero. Substituting \(x_k = \psi(Y_k^d, 0, 0) \) in (5) and (6), it is easy to see that \(w_k \) and \(v_k \) are uniformly zero if \(\dot{u}_k \) and \(\dot{v}_k \) are uniformly zero.

Example. Consider the nonlinear system

\[
\begin{align*}
x_{k+1,1} &= x_{k,1}(1 + \dot{w}_k) + x_{k,2}, \\
x_{k+1,2} &= -x_{k,1} x_{k,2}^2, \\
y_k &= x_{k,1} + \dot{v}_k.
\end{align*}
\]

Let \(\delta_k := y_k - \dot{v}_k \) such that \(x_{k,1} = \delta_k \). From the first system equation, we obtain \(x_{k-1,2} = \delta_k - \delta_k - 1(1 + \dot{w}_k - 1) \). Substituting this in the second system equation yields \(x_{k,2} = -\delta_k(\delta_k - \delta_k - 1(1 + \dot{w}_k - 1))2 \). Hence, we can define \(\psi \) in Assumption 3 as

\[
\psi(Y_{k-1}^d, W_{k-1}^d) = -\delta_k(\delta_k - \delta_k - 1(1 + \dot{w}_k - 1))2.
\]
Using the map ψ, the nonlinear system can be written as a LTV system of the form (2), with $f(0,0) = 0$, $h(0,0) = 0$ and

$$F_k = \begin{bmatrix} 1 - \frac{1}{2} y_k^2 (y_k - y_{k-1})^2 & 0 \\ \frac{1}{2} z_k y_k (y_k - y_{k-1}) \end{bmatrix},$$

$$H_k = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

as in (3) and (4). We note that this linearizing transformation is not unique because the use of any matrix F_k that satisfies

$$F_k = \begin{bmatrix} 1 - \frac{1}{2} y_k^2 (y_k - y_{k-1})^2 & 0 \\ \frac{1}{2} z_k y_k (y_k - y_{k-1}) \end{bmatrix}$$

for some $\zeta \in \mathbb{R}$ results in a LTV system for which w_k and v_k are uniformly zero if \hat{w}_k and \hat{v}_k are uniformly zero.

Remark 2.4. The DKF in the next section can be applied to any nonlinear system (1) as long as it can be globally transformed into a LTV system. It is not strictly necessary that this transformation is based on difference flatness. Alternative methods to transform a nonlinear system into a LTV system are mentioned in Section 1.

3. DOUBLE KALMAN FILTERING

There are two stages of Kalman filtering in the DKF; see Fig. 1. The first stage of DKF utilizes the transformed LTV system for sub-optimal estimation and is called an auxiliary Kalman filter (AKF). This Kalman filter is acting as an auxiliary estimation to provide an operating point for the second stage. In the second stage, a linearized Kalman filter (LKF) improves the estimation quality using the results of AKF. This approach has been analyzed for continuous time domain by Johansen and Fossen (2016b). Here, we present the DKF in discrete time.

![Fig. 1. Schematic of DKF in discrete time](image)

Before we introduce the DKF formulation, let us define the notion of uniform complete observability for LTV systems.

Definition 3.1. A LTV system of the form (2) is uniformly completely observable (UCO) if there exist constants $c_1, c_2 \in \mathbb{R}_{>0}$ and a positive integer N such that

$$c_1 I \leq \sum_{i=k}^{k+N-1} \Phi^T(i,k) H^T_k \Phi(i,k) \leq c_2 I$$

for all $k \geq 0$, where the transition matrix is defined as

$$\Phi(i,k) = F_{i-1} F_{i-2} \cdots F_k, \quad \forall i > k, \quad \Phi(k,k) = I.$$

The AKF estimates the state of the LTV system in (2). We assume the following.

Assumption 4. The LTV system in (2) is UCO.

The correction step of the AKF is formulated as

$$\hat{K}_k = P_{k|k-1} H^T_k (H_k P_{k|k-1} H^T_k + R_k)^{-1},$$

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + \hat{K}_k (y_k - h(0,0) - H_k \hat{x}_{k|k-1}),$$

$$P_{k|k} = (I - \hat{K}_k H_k) P_{k|k-1},$$

with initial conditions $\hat{x}_{0|0} = \hat{F}_{0|0} = \hat{P}_{0|0}^T > 0$, where $\hat{K}_k = \hat{R}_k^T > 0$ is a tuning matrix and \hat{R}_k is the Kalman gain. The state estimate is propagated to the next step using the equations

$$\hat{x}_{k+1|k} = f(0,0) + F_k \hat{x}_{k|k},$$

$$\hat{P}_{k+1|k} = F_k P_{k|k} F_k^T + Q_k,$$

where $Q_k = Q_k^T > 0$ is a tuning matrix. The tuning matrices \hat{R}_k and Q_{k} are chosen such that

$$c_{R1} \| \hat{R}_k \| \leq c_{R2} I,$$

$$c_{Q1} \| \hat{Q}_k \| \leq c_{Q2} I$$

for all $k \geq 0$ and some constants $c_{R1}, c_{R2}, c_{Q1}, c_{Q2} \in \mathbb{R}_{>0}$.

Remark 3.2. If the disturbances \hat{w}_k and \hat{v}_k in (1) are stochastic processes, the gain matrices Q_k and R_k can be chosen to be equal to the covariance matrices of the disturbances w_k and v_k in (2), respectively. However, the transformation from the nonlinear system in (1) to the LTV system in (2) makes it difficult to relate the stochastic properties of \hat{w}_k and \hat{v}_k to the stochastic properties of w_k and v_k. Moreover, the transformation can lead to estimation biases and nonlinear sensitivities due to correlations between the state and the disturbances. Hence, although setting the values of Q_k and R_k to the covariances of \hat{w}_k and \hat{v}_k often serves as a good starting point for the tuning of Q_k and R_k, calculating the covariances of w_k and v_k may be difficult and additional tuning may be required. This motivates the need for the second stageKF, where the disturbances can usually be accommodated better.

For the second stage of the DKF, we linearize the nonlinear system in (1) about the state estimate $\hat{x}_{k|k}$ of the first stage of the DKF, which gives

$$x_{k+1} = f(\hat{x}_{k|k},0) + A_k (x_k - \hat{x}_{k|k}) + Q_k \hat{w}_k,$$

$$y_k = h(\hat{x}_{k|k},0) + C_k (x_k - \hat{x}_{k|k}) + R_k \hat{v}_k,$$

with

$$A_k = \frac{\partial f}{\partial x}(\hat{x}_{k|k},0), \quad C_k = \frac{\partial h}{\partial x}(\hat{x}_{k|k},0).$$

where $Q_k = [Q_{k,1}, \ldots, Q_{k,n}]^T$ and $R_k = [R_{k,1}, \ldots, R_{k,n}]^T$ are the higher order remainder terms due to linearization and from (Folland, 1990)

$$Q_{k,i} = (x_k - \hat{x}_{k|k})^T \int_0^1 (1-s) \frac{\partial^2 f_i}{\partial x^2 T}(s x_{k} + (1-s) \hat{x}_{k|k},0) ds (x_k - \hat{x}_{k|k}),$$

$$R_{j,k} = (x_k - \hat{x}_{k|k})^T \int_0^1 (1-s) \frac{\partial^2 h_i}{\partial x^2 T}(s x_{k} + (1-s) \hat{x}_{k|k},0) ds (x_k - \hat{x}_{k|k})$$

for all $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, p\}$, where f_i is the ith element of f and h_j is the jth element of h, and where the disturbances \hat{w}_k and \hat{v}_k are defined as

$$\hat{w}_k = f(x_k, \hat{v}_k) - f(x_k,0),$$

$$\hat{v}_k = h(x_k, \hat{v}_k) - h(x_k,0).$$

Similar to w_k and v_k in (2), we note that \hat{w}_k in (12) and \hat{v}_k in (13) are uniformly zero if \hat{w}_k and \hat{v}_k are uniformly zero.

Assumption 5. The LTV system in (9) is UCO.
The LKF formulation about $\hat{x}_{k|k}$ as an operating point is

$$
\dot{\hat{x}}_{k|k-1} = \hat{x}_{k|k-1} - x_k, \quad \hat{x}_{k|k} = \hat{x}_{k|k-1} - x_k. \tag{18}
$$

The difference equations of the corresponding error system of the LKF under nominal conditions follow from (9), (14) and (15):

$$
\hat{x}_{k|k} = (I - \hat{K}_k C_k) \hat{x}_{k|k-1} + \hat{K}_k R_k, \tag{21a}
$$

$$
\hat{x}_{k+1|k} = A_k \hat{x}_{k|k} - Q_k, \tag{21b}
$$

where we note that the disturbances w_k and v_k are uniformly zero because \hat{w}_k and \hat{v}_k are uniformly zero, as shown in Section 3. Remainder terms Q_k and R_k depends on the estimation error of the AKF.

Proposition 4.2. Under Assumptions 1-4, there exist constants c_{R_k}, c_{R_k} such that

$$
\|Q_k\| \leq c_{Q_k} \|\hat{x}_{k|k}\|^2, \quad \|R_k\| \leq c_{Q_k} \|\hat{x}_{k|k}\|^2, \quad \forall k \geq 0.
$$

Proof. From (10), (11) and (18), it follows that

$$
Q_{i,j,k} = \hat{x}_{k|k} T \int_0^1 (1 - s) \frac{\partial^2 f_i}{\partial x \partial x}(x_k + (1 - s)\hat{x}_{k|k}, 0) ds \hat{x}_{k|k}, \tag{22}
$$

$$
R_{j,k} = \hat{x}_{k|k} T \int_0^1 (1 - s) \frac{\partial^2 h_j}{\partial x \partial x}(x_k + (1 - s)\hat{x}_{k|k}, 0) ds \hat{x}_{k|k}, \tag{23}
$$

for $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, p\}$. From Lemma 4.1 and Assumption 2, it follows that the state x_k and the error \hat{x}_k are uniformly bounded. Moreover, Assumption 1 implies that the Hessians of the functions h and f are continuous. Therefore, there exist constants c_{Q_k}, c_{Q_k} such that

$$
\left\| \frac{\partial^2 f_i}{\partial x \partial x}(x_k + (1 - s)\hat{x}_{k|k}, 0) \right\| \leq \frac{2c_q}{\sqrt{n}}, \tag{24}
$$

$$
\left\| \frac{\partial^2 h_j}{\partial x \partial x}(x_k + (1 - s)\hat{x}_{k|k}, 0) \right\| \leq \frac{2c_r}{\sqrt{p}}, \tag{25}
$$

for all $k \geq 0$, $i \in \{1, \ldots, n\}$, $j \in \{1, \ldots, p\}$ and $s \in [0, 1]$. The proposition follows from (22)-(25).

The combined error dynamics of the AKF in (19) and the LKF in (21) can be regarded as a cascaded system, where the estimation error of the AKF enters the error system of the LKF via the remainder terms Q_k and R_k. If the estimation error of the AKF is zero, then the remainder terms are zero (see Proposition 4.2), the error system of the LKF in (21) reduces to

$$
\hat{x}_{k|k} = (I - \hat{K}_k C_k) \hat{x}_{k|k-1} + \hat{K}_k R_k, \tag{26a}
$$

$$
\hat{x}_{k+1|k} = A_k \hat{x}_{k|k} - Q_k, \tag{26b}
$$

and we obtain the following result.

Lemma 4.3. Under Assumptions 1-5, the (reduced) nominal error system of the LKF in (26) is UGAS.

Proof. See Jazwinski (2007, Theorem 7.4).

Since the estimation error of the AKF has converged to zero, the estimation error of the LKF converges to zero. To prove that the cascaded nominal error system in (19) and (21) is UGAS, it is sufficient to show in addition that the state of the cascaded nominal error system is UGB; see Loria and Nešić (2002). The following lemma proves that the cascaded nominal error system of the DKF in (19) and (21) is UGB under the assumptions in this work.

Lemma 4.4. Under Assumptions 1-5, the cascaded nominal error system of the DKF in (19) and (21) is UGB.

Proof. Lemma 4.1 directly implies that the error system of the AKF in (19) is UGB because it is UGAS. Therefore,
the estimation error \(\hat{x}_k \) of the AKF is uniformly bounded for any initial condition. To prove that the error system of the LKF in (21) is UBG if \(\hat{x}_k \) is uniformly bounded, we introduce the Lyapunov function candidate

\[
V_k = \hat{x}_{k|k-1}^T \hat{P}_{k|k-1}^{-1} \hat{x}_{k|k-1}.
\]

(27)

Under Assumption 5, it can be shown with a similar line of reasoning as in the proofs of Jazwinski (2007, Lemmas 7.1-7.2), that there exist constants \(c_{p_1}, c_{p_2} \in \mathbb{R}_{>0} \) and a positive integer \(N \) such that

\[
c_{p_2} I \preceq \hat{P}_{k|k-1} \preceq c_{p_2} I,
\]

(28)

for all \(k \geq N \). This implies that \(V_k \) can be bounded by

\[
\frac{1}{c_{p_2}} \| \hat{x}_{k|k-1} \|^2 \leq V_k \leq \frac{1}{c_{p_1}} \| \hat{x}_{k|k-1} \|^2,
\]

(29)

for all \(k \geq N \). From (14), (15), (21), (27) and the matrix inversion lemma, we obtain

\[
V_{k+1} \leq V_k + \hat{Q}_k^T \hat{Q}_k + \sum_{i=1}^N \hat{C}^T_k \hat{R}_k^{-1} \hat{R}_k \hat{C}_k \hat{x}_{k|k-1} + \hat{R}_k^{-1} \hat{C}_k \hat{x}_{k|k-1} - \hat{R}_k^{-1} \hat{R}_k \hat{C}_k \hat{x}_{k|k-1} \leq V_k + N \rho_0 \| \hat{x}_{k|k-1} \| + N \rho_0 \| \hat{x}_{k|k-1} \|
\]

(30)

similar to the proof of Jazwinski (2007, Theorem 7.4). From (30) and Young’s inequality, it follows that

\[
V_{k+1} \leq V_k - \frac{1}{2} \hat{C}^T_k \hat{C}_k \hat{x}_{k|k-1} + \hat{R}_k^{-1} \hat{R}_k \hat{C}_k \hat{x}_{k|k-1} + \hat{Q}_k^T \hat{Q}_k \hat{x}_{k|k-1} + 2 \rho_0 \| \hat{x}_{k|k-1} \|
\]

(31)

From Proposition 4.2 and the bounds on \(\hat{R}_k \) in (16) and \(\hat{Q}_k \) in (17), we obtain that for any uniformly bounded solution of (19), there exist constants \(\rho_0, \rho_R \in \mathbb{R}_{>0} \) such that

\[
2 \rho_0 \| \hat{x}_{k|k-1} \| \leq \rho_0 \rho_R \| \hat{x}_{k|k-1} \| \leq \rho_0 \rho_R \| \hat{x}_{k|k-1} \|
\]

(32)

for all \(k \geq 0 \). By recursively using (32), we get

\[
V_{k+N} \leq V_k - \rho_0 \rho_0 \sum_{i=k}^{k+N-1} \hat{x}_{i|i-1}^T C_i \hat{x}_{i|i-1} + N \rho_0 + N \rho_R
\]

(33)

for any positive integer \(N \). From (21), we have

\[
\hat{x}_{i|i-1} = \Psi(i,k)\hat{x}_{k|k-1} + \sum_{j=i}^{i-1} \Psi(i,j+1) \left(A_j \hat{K}_j \hat{R}_j - Q_j \right)
\]

(34)

for all \(i \geq k \), where \(\Psi(i,k) \) is \(G_{i-1} G_{i-2} \cdots G_k \) for all \(i \geq k \), with \(G_j = A_j \left(I - \hat{K}_j C_j \right) \) for all \(j \geq k \), and \(\Psi(k,k) = I \). From (34), Young’s inequality and the boundedness of \(A_k, C_k, \hat{K}_k, \hat{R}_k \) and \(Q_k \), we obtain that there exists a constant \(\rho_0 \in \mathbb{R}_{>0} \) such that

\[
-\sum_{i=k}^{k+N-1} \hat{x}_{i|i-1}^T C_i \hat{x}_{i|i-1} \leq \frac{\rho_0}{\rho_0}
\]

(35)

Because it follows from Assumption 5 and Anderson and Moore (1981, Lemma 3.1) that

\[
\sum_{i=k}^{k+N-1} \Psi(i,k)^T C_i \hat{x}_{i|k-1} \geq c_0 I
\]

(36)

for some constant \(c_0 \in \mathbb{R}_{>0} \) and a sufficiently large integer \(N \), we obtain from (29), (33), (35) and (36) that

\[
V_{k+N} \leq \left(1 - \frac{c_0 \rho_0 \rho_0}{2} \right) V_k + N \rho_0 + N \rho_R + \rho_0
\]

(37)

for all \(k \geq N \). By recursively applying (37), we obtain that

\[
V_{k_0+N} \leq V_{k_0} + \left(1 - \frac{c_0 \rho_0 \rho_0}{2} \right) V_{k_0} + N \rho_0 + N \rho_R + \rho_0
\]

(38)

for all \(k_0 \geq N \) and all nonnegative integers \(i \). From (29) and (38), it follows that

\[
\| \hat{x}_{k_0+N|k_0+N-1} \| \leq \sqrt{\frac{c_0 \rho_0 \rho_0}{c_0 \rho_0 \rho_0}} \| \hat{x}_{k_0|k_0-1} \|
\]

(39)

for all \(k_0 \geq N \) and all nonnegative integers \(i \). Because the boundedness of \(A_k, C_k, \hat{K}_k, \hat{R}_k \) and \(Q_k \) implies that \(\hat{x}_{k|k-1} \) remains bounded for all \(0 \leq k \leq 2N \) under arbitrary initial conditions, we conclude from (39) that the error system of the LKF in (21) is UBG. Hence, the cascaded system in (19) and (21) is UBG.

By combining Lemmas 4.1, 4.3 and 4.4, we obtain the following result.

Theorem 4.5. Under Assumptions 1-5, the cascaded nonlinear error system of the DKF in (19) and (21) is UGAS.

Proof. The proof follows directly from Lemmas 4.1, 4.3 and 4.4 and Loria and Nešić (2002, Theorem 3). \(\square \)

Theorem 4.5 implies that the state estimate \(\hat{x}_{k|k} \) provided by the DKF globally converges to the state \(x_k \) of the nonlinear system in (1) under nominal conditions if the given assumptions hold.

5. NUMERICAL EXAMPLES

In this section, two different nonlinear systems are considered. The first example involves an inherent nonlinearity in the dynamics. The second example has linear dynamics, although, parameter estimation casts as a nonlinear system. The estimation results using the DKF and the EKF are compared.

5.1 Nonlinearity in dynamics

Consider the nominal nonlinear dynamics of the Van der Pol oscillator

\[
\dot{x}_1 = x_2 + w_1, \quad \dot{x}_2 = (1 - x_1^2)x_2 - x_1 + w_2, \quad y = x_1 + v
\]

that can be discretized using Euler’s method with sampling time \(T_s = 0.01 \) as

\[
x_{k+1} = x_k + T_s x_{k+2} + T_s w_{k+1}, \quad y_k = x_k + v_k
\]

(40)

\[
x_{k+1,1} = x_{k+1,2} + T_s ((1 - x_{k+1,2}^2)x_{k+1,2} - x_{k+1,1} + w_{k+2}), \quad y_k = x_{k+1,1} + v_k
\]

(40b)

where the states are \(x_{k+1,1} \) and \(x_{k+1,2} \). The disturbances \(w_k \) and \(v_k \) are modeled as Gaussian white noise with variances \(diag[0.001, 0.001] \) and 0.1, respectively.

DKF design: The model (40) corresponds to Assumption 3 that allows us to use the measurement \(y_k \) to transform the nominal nonlinear dynamics to a LTV model with
should be noted that the main benefit of the DKF over the EKF is its global convergence and any optimality analysis is outside the scope of this study.

5.2 Nonlinear augmented parameter estimation problem

In this example, a linear model for a vibration system is discretized using Euler’s method with the sampling period T_s as follows

\[
x_{k+1,1} = x_{k,1} + T_s(x_{k,2} + w_{k,1}), \quad y_k = x_{k,1} + v_k,
\]

\[
x_{k+1,2} = T_s(a x_{k,1} + b x_{k,2} + u_k + w_{k,2}),
\]

where a and b are unknown parameters, u_k is the excitation signal, and the states are denoted by $x_{k,1}$ and $x_{k,2}$. By assuming the parameters constant over a sampling period, one can augment them into the system ($x_{k,3} := a$ and $x_{k,4} := b$) for estimation purposes. So, the nonlinear model for parameter estimation is

\[
x_{k+1,1} = x_{k,1} + T_s(x_{k,2} + w_{k,1}), \quad (41a)
\]

\[
x_{k+1,2} = T_s(x_{k,3} x_{k,1} + x_{k,4} x_{k,2} + u_k + w_{k,2}), \quad (41b)
\]

\[
x_{k+1,3} = x_{k,1}, \quad x_{k+1,4} = x_{k,2}, \quad y_k = x_{k,1} + v_k. \quad (41c)
\]

For the AKF design, the multiplicative nonlinearity can be removed under nominal conditions (i.e. $w_{k,1} = u_k = v_k = 0$). For $w_{k,1} = u_k = v_k = 0$, we obtain from (41) that $T_s x_{k-1} - y_k = y_{k-j+1} - y_{k-j}$ and $x_{k,1} = y_j$, for all $j \in \{0,1,\ldots,k\}$. We need to calculate $x_{k,2}$ based on previous measurements to formulate a causal model for the AKF. So, rewriting the dynamics backward in time gives

\[
T_s x_{k-2,j} = y_k - y_{k-2} = a T_s^2 y_{k-3} + b T_s (y_{k-2} - y_{k-3})
\]

\[
T_s x_{k-1,j} = y_k - y_{k-1} = a T_s^2 y_{k-2} + b T_s (y_{k-1} - y_{k-2})
\]

where $a = x_{k,3}$ and $b = x_{k,4}$ are functions of y_{k-j+1}:

\[
a = \frac{y_{k-3} - y_{k-1} + y_{k-1}^2}{T_s}, \quad b = \frac{y_{k-3} - y_{k-2} - y_{k-2}^2}{T_s}.
\]

Hence, $x_{k,2} = a T_s x_{k-1,j} + b(y_k - y_{k-1}) =: \phi(Y_{k-3}^4)$. Therefore, the nonlinear model in (41) can be transformed to the LTV model

\[
x_{k+1} = \begin{bmatrix} 1 & T_s & 0 & 0 \\ 0 & 0 & T_s & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_k \end{bmatrix} + \begin{bmatrix} T_s \\ T_s \\ 0 \\ 0 \end{bmatrix} u_k, \quad (42a)
\]

under nominal conditions. The DKF and the EKF are applied to estimate the parameters a and b, where (41) is linearized to obtain the LKF and the EKF, and where (42) is used for the AKF. The disturbance w_k and v_k are assumed to be Gaussian white noise with variances $diag[10^{-4}, 10^{-4}]$ and 0.01, respectively. The tuning matrices of the EKF and the LKF are chosen accordingly as $Q_k = diag[10^{-4}, 10^{-4}, 10, 10]$ and $R_k = 0.01$ to obtain the best performance, while the ones for AKF are slightly different: $Q_k = diag[10^{-3}, 10^{-3}, 10^4, 10^2]$ and $R_k = 0.01$.

Simulation results are presented in Fig. 3, where two scenarios are compared like in the previous example. In Fig. 3 (a), the second parameter estimate (denoted by \hat{x}_2) of the AKF shows a bias that is due to the neglected disturbances, which is compensated for by the LKF. Finally, in Fig. 3 (b) it is illustrated that a wrong...
Furthermore, simulation results validate the stability of the discrete-time domain. Since the so-called DKF uses an erroneous linearization point for the EKF. Consequently, the estimates diverge to wrong values, although the initial covariance matrix has been updated accordingly. On the other hand, the DKF converges to the right value even though it uses the same initialization.

6. CONCLUSION

This paper summarizes the nominal error stability analysis of a two stage estimation method for nonlinear systems in the discrete-time domain. Since the so-called DKF uses an equivalent LTV model in its first stage, global convergence is achieved. Sufficient conditions for uniformly globally equivalent LTV model in its first stage, global convergence of a two stage estimation method for nonlinear systems in the discrete-time domain.

REFERENCES