Er,Yb:GdAl$_3$(BO$_3$)$_4$ Laser Passively Q-switched by MBE-grown Cr:ZnS Thin Films

K.N. Gorbachenya1, V.E. Kisel1, A.S. Yasukevich1, N. Tolstik2, E. Karhu2, V. Furtula2, E. Sorokin3, V.V. Maltsev1, N.I. Leonyuk1, A. Galinis3, T. Lipinskas3, U. Gibson4, I.T. Sorokina2, and N.V. Kuleshov1

1. Center for Physics Materials and Technologies, Belarusian National Technical University, 65/17 Nezavisimosti Ave., Minsk, Belarus
2. Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway
3. Photonics Institute, Vienna University of Technology, Gassaustrasse 27/387, A-1040 Vienna, Austria
4. Department of Crystallography and Crystal Chemistry, Moscow State University, 119992 GSP-2 Moscow
5. UAB «Optogama», Mokslinka str. 2A, 08412, Vilnius, Lithuania

Q-switched erbium lasers emitting in the 1.5-1.6 μm spectral region are widely used in laser rangefinders and LIBS systems. These applications require compact and low-cost sources of laser pulses with high output power. Passive Q-switching is one of the most simple and reliable methods to achieve the abovementioned requirements. Er,Yb:GdAl$_3$(BO$_3$)$_4$ (Er,Yb:GdAB) crystal was shown to be an efficient laser material for the 1.5-1.6 μm spectral range [1]. Recently a passively Q-switched Er,Yb:GdAB laser was demonstrated with Co$^{2+}$:MgAl$_2$O$_4$, graphene and SWCNT saturable absorbers [2-4]. Here we report Er,Yb:GdAB laser passively Q-switched by using of MBE-grown Cr:ZnS thin films.

Thin films of Cr-doped ZnS were deposited using the high purity materials (99.999% purity) in the UHV MBE deposition system at base pressure of ~4x10$^{-9}$ Torr and thermal evaporation. As a result high-quality polycrystalline films transparent through the visible and infrared regions were obtained. Film thickness was kept in the range of 2 to 10 μm with Cr content varied from 0.01 to 3 at.%. The Er(1 at.%),Yb(11 at.%):GdAB crystal was obtained by dippened seeded high-temperature solution growth. The laser cavity consisted of pump mirror (PM) (R>99.5% at 1522 nm and T>95% at 976 nm) deposited onto external side of the 1.0-mm-thick active element (AE) and a flat output coupler (OC) with transmission of 9% at 1522 nm. As a saturable absorber (SA) – 8.8-μm-thick Cr(0.11 at.%):ZnS film with initial transmission of 98.4% at 1522 nm deposited on a 1-mm-thick sapphire substrate was used. The minimal geometrical cavity length was 4 mm, that was limited by the design of the active element cooling system. The setup for laser experiments is schematically shown in Fig. 1. Stable passively Q-switched mode of laser operation was obtained with maximum average output power of 0.39 W at 1522 nm and TEM$_{00}$ mode (M2<1.5) spatial profile of the output beam. Laser pulses with energy of 9.2 μJ and duration of 8 ns were obtained at a repetition rate of 42 kHz when the incident pump power was 5 W. The oscilloscope traces of single Q-switched pulse and corresponding pulse train are shown in Fig. 2.

In conclusion, passively Q-switched Er,Yb:GdAB laser with MBE-grown Cr:ZnS thin film saturable absorber was demonstrated for the first time to our knowledge. Optimization of the Cr$^{2+}$ concentration and film thickness will result in better laser performance. Moreover, important technological aspect is that MBE growth technique allows deposition of the Cr:ZnS saturable absorber film directly onto the active crystal, thus demonstrating approach to fully integrated microchip laser emitting in the 1.5-1.6 μm spectral region.

References