














tively. Reduction of the protein concentration measured as A280
over time showed that the LPMO domain (CjLPMO10Acd)
binds weakly and slowly to �- and �-chitin and not to cellulose
(Fig. 6A). The CBM5 (Fig. 6B) showed strong binding to the two
chitin substrates and weak binding to the cellulose substrates
(Avicel and filter paper). The data for the C-terminal domain
showed even stronger binding, with 90% of the binding to both
�- and �-chitin within 15 min of incubation (Fig. 6C). Also, this
domain seemed more specific than the CBM5 because no bind-
ing to cellulose was observed. All in all, the data indicate that the
C-terminal domain is a novel chitin-binding module, which has
been given the family name CBM73 by the curators of CAZy.
To obtain further insight into the binding of the CBMs, binding
dissociation constants (Kd) and binding capacities (Bmax) were
determined (Fig. 6D) using �-chitin as a substrate. The Kd and
Bmax values obtained were 5.3 �M and 4.8 �mol/g �-chitin for
the CBM5 module and 4.3 �M and 6.4 �mol/g �-chitin for the
CBM73 module. These values are in the same range as dissoci-
ation constants and binding capacities reported for other CBMs
(39, 70, 71).

CjLPMO10A Is a Chitin-targeting LPMO—Chromato-
graphic and mass spectrometry analysis of soluble products
generated upon incubation of CjLPMO10A with a range of
polysaccharide substrates (cellulose, mannans, xyloglucan,
xylans, starch, soluble chito-oligosaccharides, and chitin)
revealed activity toward �- and �-chitin (see below), whereas
activity toward other substrates was not detected (results not
shown). The products detected upon incubation with chitin
were chito-oligosaccharide aldonic acids (i.e. products oxidized
at the C1 carbon), ranging in degree of polymerization from
three (DP3) to eight (DP8), with DP6 being the most abundant
product after 24 h of incubation (Fig. 7). Product profiles were
similar for �- and �-chitin. The full-length enzyme produced
significantly higher amounts of product than the truncated

enzyme (CjLPMO10Acd) on both �- and �-chitin, indicating
that one or both of the additional domains (CBM5 and the
C-terminal domain) are important for the efficiency of the
enzyme.

CjLPMO10A Acts in Synergy with an Endochitinase—Syn-
ergy experiments showed that the degradation of �-chitin by
S. marcescens endochitinase (SmChi18C) was substantially
increased in the presence of either full-length or truncated
CjLPMO10A (Fig. 8A). The level of synergy obtained was equal
for both CjLPMO10A variants. In both cases, after 24 h 19.2 and
5.0% of the chitin were solubilized in the presence and absence
of the LPMO, respectively. In the absence of a chitinase,
CjLPMO10A and CjLPMO10Acd dissolved 5.2 and 1.4% of the
chitin after 24 h of incubation, respectively. Quantification
of solubilized oxidized products showed that the two
CjLPMO10A variants are equally active when SmChi18C is
present in the reaction mixture (Fig. 8B). In the absence of the
chitinase, the full-length LPMO showed higher activity,
whereas the truncated LPMO variant appeared unaffected
except for the final sampling time point of the reaction (Fig. 8B).
The data thus show that, in the absence of a chitinase, the activ-
ity of the truncated variant (CjLPMO10Acd) ceases earlier com-
pared with the full-length enzyme (Fig. 8B).

The quantity of soluble products formed by full-length and
truncated CjLPMO10A was then compared with the quantity
of oxidized products remaining bound to the insoluble chitin
fraction. After incubation of the enzyme with the substrate for
24 h, essentially all products generated by the full-length
enzyme were soluble, whereas �75% of the products formed by
the truncated enzyme remained in the insoluble fraction of the
substrate (Fig. 8C).

CjLPMO10A Is Required for Efficient Utilization of Insoluble
Chitinous Substrates—Growth analysis was performed on wild
type C. japonicus and gene disruption mutants of CjLPMO10A

FIGURE 6. Binding of the CjLPMO10A domains to chitin and cellulose. A–C show binding of the catalytic LPMO domain (A), the CBM5 domain (B), and the
C-terminal domain (C) to chitin and cellulose substrates. The percentage of free protein was determined by measuring the reduction in protein concentration
(A280) over time, in the absence of an electron donor. The experiments were carried out at 22 °C using 10 mg/ml substrate (�-chitin, �-chitin, Avicel, or filter
paper) in 50 mM sodium phosphate buffer, pH 7.0. D, plots of binding data for the CBM5 (f) and the C-terminal (CBM73) domain (�) incubated with �-chitin.
Pbound corresponds to bound protein (�mol/g substrate), and Pfree corresponds to non-bound protein (�M). Each point represents the average of values
obtained in three independent experiments.
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and CjLPMO10B. Wild type and mutant strains all grew well in
defined media that had either glucose or GlcNAc as a sole car-
bon source (Fig. 9, A and B). However, when grown on insoluble
chitin substrates, the CjLPMO10A mutant showed a reproduc-
ible growth defect on �-chitin leading to an �2-fold slower
growth rate compared with the wild type strain (Fig. 9C). The
CjLPMO10B mutant also showed a slight growth defect. A
mutant with a defect in the type II secretion system (general
secretory protein) was completely unable to grow using insolu-
ble chitinous substrates (Fig. 9, C and D). The type II secretion
system has been shown to be the sole mechanism responsible
for secretion of carbohydrate-active enzymes into the environ-
ment by C. japonicus (60). Thus, growth of the general secretory
protein mutant reflects chitin-independent growth of C.
japonicus, which, as expected, did not occur. When grown
on an unprocessed chitinous substrate, crab shells, the
CjLPMO10A mutation led to an extended lag phase of about
100 h, whereas the growth rate was only slightly reduced (Fig.
9D).

Discussion

C. japonicus is a well studied plant cell wall-degrading bacte-
rium possessing an extensive portfolio of carbohydrate-active
enzymes targeting cellulose and other complex plant cell wall
polysaccharides (60, 72, 73). However, the genome also con-
tains a system for chitin utilization that has not been studied
previously. Apart from the chitin-oxidizing CjLPMO10A
described here, the putative chitinolytic machinery includes
four GH18 chitinases, one GH19 chitinase, two GH20 N-acetyl-
�-hexosaminidases, and one GH46 chitosanase (72). Indeed,
our results demonstrate that the bacterium can grow on both
pure chitin and an environmentally relevant chitinous sub-
strate (crab shell). The growth data largely corroborate the
enzymology for the two LPMOs produced by C. japonicus,
showing that CjLPMO10B is specific for cellulose, and
CjLPMO10A is specific for chitin. The growth data show that
the absence of CjLPMO10A prevents C. japonicus from
degrading chitin efficiently, although it is still able to reach
growth levels obtained by the wild type. This suggests that the
complement of chitinases harbored by the bacterium is able to
degrade the insoluble substrate, although not as effectively as in
the presence of LPMO activity. This arrangement mirrors the
enzyme synergy observed for cellulose degradation by the bac-
terium, where the cellulose-active LPMO, CjLPMO10B, was
indicated to be important for efficient cellulose utilization (36).
Somewhat surprisingly, the CjLPMO10B mutant showed
reduced growth on chitin, albeit to a much lesser extent than
the CjLPMO10A mutant. We do not currently have an expla-
nation for this observation, which may be taken to suggest the
presence of previously undiscovered LPMO functionalities.

The ability of C. japonicus to grow on crab shells is not sur-
prising because these shells represent a growth medium rich in
protein and carbohydrates (chitin). The crab exoskeleton is con-
structed of a rigid composite material containing protein-
coated �-chitin fibers embedded in a CaCO3 matrix. In the
absence of transcriptomic or proteomic data, it is not possible
to determine whether it was the protein or the chitin (or both)
that was used as a carbon/nitrogen source in the growth ex-
periment depicted in Fig. 9D. Nevertheless, the 100-h lag in
growth observed for the CjLPMO10A mutant indicates that
CjLPMO10A has a role in rendering the substrate accessible for
the bacterium. It is tempting to speculate that the LPMOs are
important in the initial growth phase where the concentration
of chitinases is low and the LPMO-chitinase synergy is required
to solubilize enough substrate to sustain growth.

Since the discovery of LPMOs in 2010 (1), several studies
have been published that describe the biochemical and bio-
physical aspects of these enzymes (4 – 6, 8, 13, 14, 18, 41, 42).
CjLPMO10A is interesting because it represents a chitinolytic
enzyme in the uncharacterized chitin-degrading machinery of
C. japonicus, and also because its amino acid sequence is sub-
stantially different compared with other LPMO10s studied
(Fig. 1) (62). Structurally, the overall fold and shape of
CjLPMO10A are similar to other LPMO structures, but the
pattern of residues on the substrate-binding surface is different.
In general terms, the binding surface seems to represent a
“hybrid” of the surfaces of known chitin-active and known cel-

FIGURE 7. Activity of full-length and truncated CjLPMO10A. A, chromato-
graphic analysis of oxidized chito-oligosaccharides from degradation reac-
tions containing 10 mg/ml �-chitin (top chromatograms) or �-chitin (middle
chromatograms) after 24 h of incubation with full-length (solid lines) or trun-
cated (dotted lines) CjLPMO10A, with standards for oxidized chito-tetraose
(DP4ox) and chito-pentaose (DP5ox). B, MALDI-TOF MS analysis of products
generated by the full-length LPMO acting on �-chitin. Prior to the analysis,
the samples were saturated with sodium, to simplify the spectra. For each
oligomeric product, two major adducts are observed: [DP4 – 8ox � Na]� and
[DP4�8ox�H � 2Na]�. All the reactions were carried out in 20 mM Bistris
propane buffer, pH 7.2, with 0.5 �M Cu2�-saturated LPMO and 1 mM ascor-
bate as external electron donor.
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lulose-active LPMO10s. The surface also seems to be more
extended, in particular through a glutamate (Glu-56) that is far
from the active site (Fig. 3B). Also, CjLPMO10A has a cavity in
the non-conserved protrusion of the substrate-binding surface
(Fig. 3), which is unlike any other LPMO structure published.
Other chitin-active LPMO10s have a similarly sized cavity in
close proximity to the active site that has been proposed to
accommodate O2 (41) or an acetyl group of a GlcNAc (15) dur-
ing LPMO catalysis. This active site cavity is not present in
cellulose-targeting LPMO10s, where a positively charged side
chain (arginine or histidine) fills the space represented by
the cavity (Fig. 4A) (15). Interestingly, this is also the case for

CjLPMO10A, where Arg-197 and, to a lesser extent, Asp-202
and Glu-205 fill the cavity (Figs. 3 and 4). This is another feature
rendering the extended active site architecture of CjLPMO10A
more similar to that of LPMO10s that are active on cellulose.
The hybrid character of CjLPMO10A is also visible in the
alignment of sequence fragments surrounding the catalytic
center shown in Fig. 4; Arg-197 and Glu-205 in CjLPMO10A
are common to cellulose-active LPMO10s, whereas Gln-78
and Thr-133 are common to chitin-active LPMOs. Further-
more, the EPR signature of CjLPMO10A is more similar to
the cellulose-active LPMO10s (like ScLPMO10C) than to
chitin-active LPMO10s (like SmLPMO10A). The specificity of

FIGURE 8. Synergy between CjLPMO10A and the SmChi18C endochitinase in the degradation of �-chitin. A and B show quantification of GlcNAc and
chitobionic acid (GlcNAcGlcNAc1A), respectively, obtained after chitobiase digestion of soluble products from the degradation of 10 mg/ml �-chitin. C, peak
areas for chitobionic acid from solubilized material only (gray) and from the complete reaction mixture (black) products after degradation of 2 mg/ml �-chitin
using full-length or truncated CjLPMO10A. The total oxidized sugar content was measured after full solubilization of the LPMO-pretreated chitin substrate by
the S. marcescens chitinases Chi18A, Chi18C, and chitobiase (CHB). All reactions were carried out at 37 °C in Bistris propane buffer, pH 7.2, in triplicate with 0.5
�M Cu2�-saturated LPMO and/or 0.5 �M SmChi18C and in the presence of 1 mM ascorbate as external electron donor.

FIGURE 9. Growth of C. japonicus wild type and mutants on various substrates. Wild type and mutant strains were grown in MOPS defined medium with
glucose (A), N-acetylglucosamine (B), squid pen �-chitin (C), or unprocessed crab shell (�-chitin) (D) as the sole carbon source. Measurement of growth used
optical density (OD) at 600 nm. All experiments were run in biological triplicate with error bars showing standard deviation. Strains presented are wild type
(closed circles), general secretory protein mutant (closed squares), CjLPMO10A mutant (open diamonds), and CjLPMO10B (open inverted triangles).
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CjLPMO10A toward chitin (and not cellulose) is intriguing,
and further studies of this enzyme may eventually allow a
deeper insight into the determinants for LPMO substrate spec-
ificity. Interestingly, comparison of CjLPMO10A with the
recently published AA10 structure of viral origin (68) revealed
an intriguing similarity between the catalytic centers and sub-
strate-binding surfaces of these enzymes (Fig. 4, C and D), even
though the overall sequence similarity is low (27% sequence
identity). The viral AA10s are essential for viral penetration of
the chitinous insect gut peritrophic matrix (that contains
�-chitin), which enables infection by virus particles (68).

An interesting property of CjLPMO10A is the presence of
two CBMs, a common CBM5 chitin-binding module and a pre-
viously uncharacterized C-terminal domain (Fig. 1A). The
present results clearly show that the C-terminal domain is a
chitin-specific CBM, which has founded the CBM73 family in
CAZy. Homologues of CBM73 are present in chitinases from
other bacteria from the phylum of Proteobacteria, including
three of the four C. japonicus GH18 chitinases as well as several
Vibrio sp. chitinases. Despite low sequence similarity to the
CBM5 family, conserved substrate-binding aromatic amino
acids of the CBM5s align remarkably well with similar residues
in the CBM73s (Fig. 2). This indicates that the mechanism of
substrate binding may be similar to the CBM5s and the
CBM73s. It should be noted, however, that the presence of two
additional cysteines, two additional aromatic residues, and
multiple glycines (Fig. 2) may endow the CBM73 with proper-
ties that are different from CBM5s. Indeed, the two domains
showed differences in the binding studies with �-chitin (Fig.
6D), and in contrast to the CBM5, the CBM73 did not bind to
cellulose. A deeper investigation of the CBM73s is needed to
unravel their structure and the mechanism of substrate inter-
action and to unravel the degree of functional similarity and
complementarity vis-á-vis the CBM5.

Fig. 8B shows that the presence of the CBMs in CjLPMO10A
has a major effect on the solubilization of oxidized products by
the LPMO. Solubilization ceases much earlier for the truncated
variant than for the full-length enzyme. Because release of sol-
uble oxidized products normally requires two cleavages in the
same chitin chain, one possible explanation for the observed
differences is that the CBMs target the LPMO to similar regions
of the substrate, resulting in lytic events in a limited area, i.e.
with a high chance of hitting the same chain twice. For the
truncated variant, a higher fraction of oxidized chain ends
remains attached to the insoluble substrate (Fig. 8C). However,
overall, the truncated variant is clearly less active than the full-
length enzyme. Therefore, a more probable explanation for the
observed differences is that the CBMs enable the LPMO to bind
productively to regions of the substrate that are inaccessible for
the LPMO domain alone. This explanation is compatible with
the binding data showing that the catalytic module alone binds
more weakly to chitin than the full-length enzyme (Fig. 6).

Most interestingly, although the presence or absence of the
CBMs has a clear effect on LPMO functionality (binding affinity
and oxidative activity) when acting alone, the CBMs did not
influence the strong synergy obtained when combining
CjLPMO10A with an endochitinase in chitin solubilization
experiments (Fig. 8A). One possible explanation is that the

amount of LPMO added was saturating and that the activity
difference between the two variants thus became invisible in
terms of overall substrate solubilization (Fig. 8A; note that both
enzymes are endo-acting). Importantly, Fig. 8B shows that in
the presence of the chitinase the LPMO variants catalyzed sim-
ilar degrees of substrate oxidation (in contrast to what was
observed for the LPMO variants acting alone). Assuming that
the LPMO cannot bind productively to a substrate surface that
already has been oxidized by the same LPMO, an attractive
explanation for these observations is that after LPMO action,
the chitinase removes chitin chains in the oxidized region of the
substrate. By doing so, the chitinase could uncover new binding
surfaces for the LPMOs that may be equally accessible to both
LPMO variants. Thus, it may be that the LPMO and the endo-
acting chitinase work closely together, removing the substrate
layer by layer by their combined action. Such a scenario would
add a new dimension to our perception of how LPMOs and
GHs collaborate.

In conclusion, we have shown that C. japonicus is able to
metabolize chitin in both its pure and native form. The ability of
the bacterium to grow efficiently on this recalcitrant substrate
is dependent on the presence of the chitin-specific LPMO,
CjLPMO10A, an enzyme with an unusual sequence and active
site architecture compared with other chitin-active LPMO10s.
The presence of two CBMs coupled to the LPMO catalytic
domain enables the enzyme to bind tightly to chitin and likely
enables the enzyme to access substrate regions that are not
accessible for the catalytic domain only.
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