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Evaluating a Stochastic Programming Based
Bidding Model for a Multireservoir System
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Abstract—Hydropower producers need to schedule when to
release water from reservoirs, and participate in wholesale
electricity markets where the day-ahead production is physically
traded. A mixed-integer linear stochastic model for bid opti-
mization and short-term production allocation is developed and
tested through a simulation procedure implemented for a complex
real-life river system. The stochastic bid model sees uncertainty
in both spot market prices and inflow to the reservoirs. The
same simulation procedure is also implemented for a practice-
based deterministic heuristic method similar to what is currently
used for bid determination in the industry, and the results are
compared. The stochastic approach gives improvements in terms
of higher obtained average price and higher total value than the
deterministic alternative. It also performs well in terms of start-
up costs. In the presence of river flow travel delay the practice-
based method is even more outperformed by the stochastic model.

Index Terms—Bidding, Electricity markets, Hydro Scheduling,
Price taker, Simulation, Stochastic programming, Reservoirs

NOMENCLATURE

The notation used throughout the paper is stated below.

Sets
c ∈ C Index for all cuts C for computation of the

water value
e ∈ E Index for different runs E of the deterministic

model
h ∈ H Index for all hours in the short-term models

and all weeks in the seasonal model, H
i ∈ I Index for all bid points in I
j ∈ J Index for all turbines J in the system
n ∈ N Index for known points on production curves

with N breakpoints
r ∈ R Index for all reservoirs and belonging stations,

R, in the system
s ∈ S Index for scenarios all S

Parameters
Arc The dual varaiable for reservoir r in cut c

[e/m3]
CB

kr Connection matrix for water courses for bypass
between reservoir k and r

CP
kr Connection matrix for water courses for

production discharge between reservoir k and r
CS

kr Connection matrix for water courses for spill
between reservoir k and r

Fc Future profits for cut c [e]
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G Penalty for up and down ramping [e]
ιrh Inflow to reservoir r in hour h [m3]. For

stochastic model: ιsrh
Lrc Initial storage level in reservoir r used to

generate cut c [m3]
LMin
r The minimum reservoir level at reservoir r [m3]

LMax
r The maximum reservoir level at reservoir r [m3]

PAvr
h For seasonal model: Weekly average spot price

for week h [e]
Pi Price at bid point i [e/MWh]
πs For stochastic model: Probability of scenario s
ρh Spot price realization in hour h. For stochastic

model: ρsh [e/MWh]
Sj Start-up cost for turbine j [e]
Tkr River flow travel time from reservoir k to

reservoir r [Hours]
V B,Min
r The minimum amount of bypass from station r

[m3]
V B,Max
r The maximum amount of bypass from station r

[m3]
Vjn Known point for discharge on the production

curve for turbine j [m3]
VMin
j The minimum discharge for turbine j

[MW]
VMax
j The maximum discharge for turbine j

[MW]
Wjn Known point for power on the production

curve for turbine j [MW]
WMin

j The minimum production capacity for turbine j
[MW]

WMax
j The maximum production capacity for turbine j

[MW]

Continuous variables

lrh Reservoir level at reservoir r in hour h [m3]
m Water value [e]
vrh Water discharged at station r in hour h [m3]
vBrh Water discharged as bypass at station r in hour h

[m3]
vSrh Water discharged as spill at station r in hour h

[m3]
vjh The water discharged from turbine j in hour h

[m3]
wrh Power produced at station r in hour h [MW]
wjh The power produced by turbine j in hour h

[MW]
xih For stochastic model only: The cumulative bid

volume for bid point i in hour h [MW]
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yh Committed volume in hour h [MW]
z+h Up ramping in hour h [MW]
z−h Down ramping in hour h [MW]

Binary variables
djh If turbine j has changed state in hour h
ujh On/off-state of turbine j in hour h

I. INTRODUCTION

MOST generating companies participate in wholesale
electricity markets, of which the day-ahead market is

the most important since it is here the largest volumes are
traded. The day-ahead market facilitates trading of the next
day’s expected production via two-sided auctions in which
producers and consumers submit their price-quantity bids.
The determination of optimal bids in power markets is a
complicated task that has to be undertaken every day. At the
time of bidding, not only are the day-ahead prices uncertain,
but also inflow to the reservoirs and the development of
electricity prices over a longer time horizon. A system of
hydro storage plants with multiple reservoirs has a complex
and time-varying cost structure and requires a coordinated
water release strategy as discharge from upstream reservoirs
influences the downstream reservoir levels. The short-term
hydropower scheduling problem therefore involves decisions
on what to bid in the market for tomorrow and then how to
allocate production to individual stations and turbines once
the day-ahead market price and inflow is realized. The first
of the aforementioned tasks is often referred to as the bidding
problem, while the second is termed the problem of optimal
dispatch or production allocation. The focus of this paper
is on testing the performance of a stochastic-programming
based approach for solving the bidding problem, and how this
compares to methods currently being used in the industry. The
implemented stochastic method extends [?], as both day-head
prices and inflow to the reservoirs is considered stochastic.

What to bid in the market for tomorrow is currently de-
termined by a multi scenario deterministic heuristic method
by many producers. A forecasted price profile, i.e. a vector
of 24 hourly prices, is scaled by a set of weights and the
resulting price scenarios are used as input to a deterministic
optimization model that determines the production volumes.
For each bidding hour and scenario, the corresponding price
and scenario-optimal production is used as the bid to be
submitted to the market operator. In Scandinavia, the Short-
term Hydro Operation Planning (SHOP) model [?], [?], is used
as a decision support tool in the aforementioned way. In this
paper, this method is referred to as the deterministic method
or practice-based method, and represents the current industry
standard for Nordic producers.

A number of authors have contributed to the state of
knowledge about how to optimally bid in wholesale electricity
auctions. Concentrating on situations without market power,
we note that [?], [?] and [?] are early contributors from the
point of view of thermal producers, retailers and hydropower
producers, respectively. Based on the idea of fixing price
points before bid optimization, introduced by [?], [?] develop
a hydropower bidding model with stochastic prices. [?] also

use a stochastic programming approach with price uncertainty,
considering flow travel delay effects. [?] show that statistical
properties of the intermittent wind power are core elements in
determining good bids for such generation sources. [?] con-
sider bidding in a market-wide equilibrium analysis taking into
account the combinatorial aspects that arise when matching
failure-prone generation capacity to load duration curves. An
important recent contribution is [?], who extend [?] using a
two-scale multistage approach, allowing for the analysis of
intraday market bidding as well as day-ahead bidding. Such
multimarket aspects are also discussed in [?], [?], [?].

We add to this knowledge by an out of sample rolling
horizon simulation-based evaluation of the two alternatives.We
simulate the use of both methods in a setting that is made
as close to the current operating situation as possible, in an
attempt to showcase the practical value of stochastic program-
ming. As a secondary contribution, the stochastic model is
implemented for a complex river system with river flow delays,
whose effect is also evaluated. Third, our approach is unique
in that the scenarios we use for both spot prices and inflow
come from fundamental (bottom up) models that are used in
practice, as opposed to e.g. time series approaches employed
in [?], [?]. Fourth, the interplay with longer-term scheduling in
the form of water values is represented in a way that extends
approaches in the bidding literature; we formulate and solve
a separate optimization model for this purpose.

The layout of this paper is as follows; first, the three
different optimization models used in the simulation procedure
are given with relevant explanations in Section ??-??, namely
the model for bid optimization, production allocation and
seasonal scheduling. Then the flow chart of the entire test
procedure is presented in Section ??. In the case study of
Section ??, the simulation procedure is implemented for a
complex Norwegian reservoir system owned by Agder Energi,
and the results from this are shown in section ??. Finally, some
concluding remarks are presented in Section ??.

II. BID OPTIMIZATION

The formulation of the bid model is first presented in
a deterministic formulation and then expanded to allow for
uncertainty and other moderations necessary for the stochastic
model. Both formulations have a horizon of up to seven days
depending on how many days are left until the water values
are updated, as will be further explained in section ??. The
set of hours, H , hence contains up to 168 hours.

A. Deterministic formulation

Hydropower production is constrained by the generation
capacity and the efficiency of the installed turbines, and the
amount and value of available water. In addition, the producer
incurs losses due to start-up of turbines mainly because of
wear on equipment. Capacity is bid into the day-ahead market,
and when the market clears, producers are notified of their
committed volumes. To cover the obligations from the spot
market, a producer also has the option of participating in
the intraday market. The intraday market facilitates trading
closer to the operating hour and can hence be used to mitigate
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some of the eventual imbalance between actual production
and committed spot market volume. Participating in sequential
electricity markets may be profitable for the producer [?],
[?], but the transmission system operator declares a rule that
expected generation is offered in the day-ahead market [?], so
that the power system is planned in balance. In our formula-
tion, the use of the balancing market is always penalized and
not modeled in detail, as the optimization of the bids to the
day-ahead market is the main emphasis.

For the production system, each turbine j has bounds on
mimimum and maximum capacity for volume produced and
volume discharged, as stated by eq. (??) and (??).

ujhW
min
j ≤ wjh ≤ ujhWmax

j , j ∈ J, h ∈ H (1)

ujhV
min
j ≤ vjh ≤ ujhV max

j , j ∈ J, h ∈ H (2)

The binary variable ujh has value 1 if turbine j is running
in hour h. The variables wjh and vjh are the production
and discharge volume for turbine j in hour h. How much
power a turbine generates, wjh, from one unit of water
discharged, vjh, depends on the efficiency of the turbines and
generators installed in the station. Generally, this is a non-
linear relationship due to dependency on both water head and
discharge level [?]. To keep the model linear, head effects are
disregarded in the optimization, and the production functions
are approximated by piecewise linear functions as in eq. (??).

wjh ≤
vjh − Vjn−1ujh
Vjn − Vjn−1

(Wjn −Wjn−1) +Wjn−1ujh,

j ∈ J, h ∈ H,n ∈ N (3)

where for each turbine j, Vjn and Wjn are known points
for volume discharged and power produced and wjh is the
produced volume corresponding to the discharged volume vjh
in hour h. The volume of power produced is found by linear
interpolation between the known points on the production
curve for each turbine. To speed up calculations, the binary
variable ujh is included to make sure that the production
functions are not valid when production is turned off. For each
station r, the sum of the power produced from all turbines in
the station is the total production for that station, and the sum
of all water released through each turbine in a station is the
total discharge for that station, as in eq. (??) and (??).

wrh =
∑

j∈J(R)

wjh, h ∈ H, r ∈ R (4)

vrh =
∑

j∈J(R)

vjh, h ∈ H, r ∈ R (5)

There are other forms of discharge from a reservoir than
production discharge, such as bypass or spill. Bypass is
controlled flow of water leaving the reservoir not used for
production. Some reservoirs have bypass restrictions so that
the river does not run dry or flood, as stated by eq. (??).
Spill is uncontrolled water flow from a reservoir and happens
when the reservoir is full. We formulate bypass and spill as
separate variables as these may have different water courses
and it is also of particular interest to see how the stochastic

and deterministic method compare to each other in terms of
spillage.

V B,min
r ≤ vBhr ≤ V B,max

r , h ∈ H, r ∈ R (6)

The reservoirs r are modeled with bounds on minimum and
maximum storage level as stated by eq. (??) and a reservoir
balance connecting discharge and inflow to the change in
storage level, eq. (??).

Lmin
r ≤ lrh ≤ Lmax

r , h ∈ H, r ∈ R (7)

The storage level at the end of any hour is the reservoir level at
the start of the hour minus the discharge used for production,
bypass and spill, plus inflow and water released from upstream
reservoirs flowing in to the reservoir. The water released from
upstream reservoirs arrives at the current reservoir after a
given river flow travel time. Travel time means that hours
are more dependent on each other and hence the degree of
freedom when making bid or production allocation decisions
is reduced. At the end of the short-term horizon, water that
is released from upstream reservoirs, but that has not reached
the downstream reservoirs, is valued by water value cuts (see
section ??) of the reservoir to which it is headed. Travel
time in the watercourse from the upstream reservoir k to the
downstream reservoir r is denoted by Tkr, but for reasons
of clarity, the subscripts are neglected in eq (??). Inflow is
denoted ιrh. The reservoir topology is represented by the
connection matrices Ckr for production discharge, bypass and
spill, and the entities in the matrices have value 1 if there is
a direct water way between reservoir k and reservoir r.

lhr − lh−1r − ιrh + vhr + vBhr + vShr−∑
k∈R

(vh−Tk ∗ CP
kr + vBh−Tk ∗ CB

kr + vSh−Tk ∗ CS
kr) = 0,

s ∈ S, r ∈ R, h ∈ H (8)

Start-up costs are included and the binary variable ujh for
each turbine has value 1 if the turbine is running and zero
otherwise. If a turbine is started up from one hour to the next,
a binary variable, djh gets value 1 according to eq. (??).

djh ≥ ujh − ujh−1, j ∈ J, h ∈ H (9)

The water value is the marginal opportunity cost of water
in the reservoirs, and hence the resource cost of power
generation. The water value is a non-linear function of future
development depending on market prices and inflow, and has
to be approximated to keep the formulation of the bid model
linear. The water value function is thus constrained by linear
cuts generated by information from a seasonal model covered
in Section ??. The cuts are on the form of eq. (??) where
Fc is the future profits for cut c, Arc is the dual variable for
reservoir r in cut c, Lrc is the storage level in reservoir r used
in cut c and lrh is the storage level at the end of the week
when h = H . Finally, m is the value of the water left in the
reservoirs at the end of the current week.

m ≤ Fc −
∑
r∈R

Arc(Lrc − lrh), c ∈ C (10)
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The objective of the bid optimization model is to maximize
the profit from selling power in the day-ahead market. The
profit is the revenue from spot market sales less the start-up
costs. We assume price-taking behaviour, since the producer
in our case are relatively small, as are most hydropower
producers in the Nordic area. The value of saving water for
the future is taken into consideration by the water value. The
objective function of the bid optimization model is shown is
eq. (??).

max
∑
h∈H

ρhyh +m−
∑
h∈H

∑
j∈J

Sjdhj (11)

In the deterministic formulation, the committed volume yh
is simply the sum of the production volumes for all stations,
as in eq. (??).

yh =
∑
r∈R

wrh, h ∈ H (12)

The deterministic formulation presented so far is in fact
a model for optimal dispatch, and does not have any de-
termination of the market bids. To generate a bid matrix,
the dispatch model is run for different input prices and the
optimal production volumes for the first 24 hours of each run
is combined into a matrix for the coming operating day. The
input prices are created by weighting a forecasted price profile
by a set of weights so that the expected uncertainty of future
prices is covered. For an example of such weights, see Table
??. The bid matrix must adhere to the market rules which
state that the bid volume must be increasing for increasing
bid prices. Hence, a restriction is added to the consecutive
runs of the deterministic model, imposing the bid volume of a
run with a higher input price to be higher than the bid volume
for the previous, lower-priced run. If the deterministic model
is run with the input price profiles in increasing order, then
the committed volume yh in run e has to be larger than the
committed volume in run e− 1, as stated by eq. (??), except
for the first run where no previous value is known.

yeh ≥ ye−1h , e ∈ E, h ∈ H (13)

This heuristic method for creating the bid matrix may lead to
suboptimal results, since an non-physical restriction is imposed
on the dispatch model.

B. Stochastic formulation

The modeling of the production system in the stochastic
model follows the same eq. (??)–(??) as the deterministic
model, but the decisions on production and discharge are
dependent on the uncertain market price and inflow, ρsh
and ιsh. Hence every variable presented so far is in the
stochastic formulation also dependent on scenario s in addition
to whatever indices they may already be defined for. In the
Nomenclature, all variables are presented for the deterministic
setting for easier reading, but the stochastic model requires
them to be indexed by s as well.

In addition, the stochastic model also has a representation
of the bids and how the committed volume is calculated from
the bids submitted to the market. Both the volumes to bid and

the prices at which to bid for could in fact be determined in an
optimization, but this would lead to a non-linear formulation.
To keep linearity, price points are fixed in advance and we
optimize only the volume corresponding to each of the fixed
prices as explained in [?]. After the market is cleared and
the spot price ρsh is known, the committed volume, ysh, is
found by interpolation between neighboring points, (Pi, xih)
and (Pi−1, xi−1h), as stated by eq. (??).

ysh =
ρsh − Pi−1

Pi − Pi−1
xih +

Pi − ρsh
Pi − Pi−1

xi−1h,

Pi−1 ≤ ρsh ≤ Pi, h ∈ H, i ∈ I (14)

Due to the rules of how to submit bids in the spot market,
the bids have to represent monotone increasing curves, and an
additional constraint on the bid volumes, eq. (??), is necessary.

xhi ≤ xhi+1, h ∈ H, i ∈ I \ |I| (15)

The committed volume has to be covered by the producer’s
own generation or by use of the balancing market where the
producer can sell or buy its imbalances, so that the volume
balance eq. (??) is fulfilled. Use of the balancing market is
penalized (see [?], [?]) by the stochastic model, as can be
seen in the objective function in eq. (??), where R is the
penalty cost. The value of the penalty cost is set higher than
the highest price in the balancing market for the time period
where the simulation in the case study period is performed, to
avoid bidding strategies where capacity is withheld from the
spot market in order to trade in the balancing market.∑

r∈R
wsrh − ysh + z+sh − z−sh = 0, s ∈ S, h ∈ H (16)

The objective of the stochastic bid optimization is formu-
lated as a probability weighted sum over all scenarios, stated
by eq. (??).

max
∑
s∈S

πs

(∑
h∈H

ρshysh +ms

−G
∑
h∈H

(z+sh + z−sh)−
∑
h∈H

∑
j∈J

Sjdshj

)
(17)

The stochastic formulation determines the optimal bid vol-
umes, xih, for every hour of the coming operating day for
each of the fixed price points, and hence the bid matrix is a
direct output from the model.

III. PRODUCTION ALLOCATION

After the bid matrix is sent to the market operator and the
market is cleared, the producers are notified of their committed
volume for each hour of the following operating day. This
production is allocated to individual stations and turbines by a
production allocation optimization model. It is akin to SHOP
or to [?], but a simplified version is implemented to fit our
case study. Our production allocation model is a deterministic
mixed integer linear program that takes in the now realized
market price and the inflow forecast for the following day.
The inflow is considered known in accordance with current
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industry practice, although it in principle still uncertainty. The
production allocation model has a time horizon of one day and
is based on the same equations as the deterministic bid model,
eq (??)–(??). The set of hours H thus contains the 24 hours of
the coming operating day. The objective is to choose the unit
commitment schedule that generates the committed volume
with the minimum cost due to start-ups, use of balancing
market and loss of water value.

The production allocation model uses the same linear repre-
sentation of the production functions as the bid optimization,
(??), and hence head effects are not accounted for. To vali-
date the resulting production schedule, non-linear scheduling
refinements (such as in [?]) are undertaken after the allocation
of production for the stations where head effects are present.
Thus, head effects are accounted for in the simulation, but not
in the optimizations.

IV. SEASONAL SCHEDULING

A seasonal model is developed for the simulation procedure
is used to find the value of water left in the reservoirs at
the end of each week. According to current practice in the
industry, the seasonal model has a time step of one week and
hence the value of water is updated once a week. The value
of water is a convex function of the current reservoir levels
and also depends on the time of year and the expected future
development of prices and inflow. In our linear formulation of
the short-term models, i.e. the bidding problem and production
allocation, this function has to be approximated by linear cuts.
Information needed to generate these cuts is obtained from an
optimization model that schedules the production of available
resources over the seasonal time horizon of 6-18 months.

The seasonal model implemented for the simulation proce-
dure is based on the same equations as the deterministic bid
optimization model, eqs. (??) - (??), with modifications due
to the longer time horizon and the fact that it is assumed that
all power can be sold at the average spot market price. The
time horizon is changed to 6 months, and the time step is
now aggregated to one week, so every decision is made on a
weekly basis, not hourly as for the short-term models.

The model involves no bidding and no balancing market,
and the objective function is changed to

max
∑
h∈H

PAvr
h yh −

∑
h∈H

∑
j∈J

Sjdhj (18)

where ρAvr
h is the weekly average electricity price. The

seasonal model can hence be explained as finding the opti-
mal production schedule on a weekly basis when generation
is constrained by production functions, reservoir balances
and generation capacities. The multireservoir system needs
a coordinated scheduling strategy where water is saved and
discharged from the different reservoirs to best utilize the
resources over time, and the cuts generated reflect the cost
of using the water in each reservoir given its interaction with
the total system.

The cuts are based on the objective function value and the
dual variables of the reservoir balances in the seasonal model,
as in (??). The objective function is a measure of the potential

Scenario generator

Scenario tree

SCENRED

Creating tree input Bid Optimization

Deterministic price 
and inflow

Seasonal SchedulingWater value

Production Allocation

Bid Matrix

Results

Realized price and 
inflow

Simulation Juvatn
Levels

Water flow

Levels
Water flow

Levels

Water value

Reservoir management
State of turbines

Discharge, bypass, spill
Production
Imbalance

Profits

3060 Scenarios

15-20 Scenarios

Fig. 1. Flow chart for the simulation procedure. The bid optimization is at
core. Other optimization models include seasonal scheduling and production
allocation

future profits over the seasonal time horizon based on the
current reservoir level, and the dual variables are the marginal
increase in profits if one more unit of water were available to
the producer and hence represent the scarcity cost of water.
The seasonal model is run for different values of weekly initial
reservoir level and each run generates information for one cut.
The reservoir levels are chosen based on different weekly
production patterns and values for inflow. For instance, an
extreme change in storage level over the week could stem
from a production pattern were all units are run at maximum
capacity and inflow is low, leaving a smaller reservoir level
at the end of the week than at the start. Another extreme is
found when all production is turned off, and inflow is large.
We use 9 combinations of production patterns and inflow, so
that the cuts span over all possible values of the storage level
at the end of the current week.

V. SIMULATION PROCEDURE

The simulation procedure is presented in the flow chart
in Fig. ??. For each day, the algorithm starts by generating
suitable input in the form of a scenario tree for price and
inflow for the stochastic bid model and a forecasted price
profile and inflow expectation for the deterministic bid model.
The stochastic input is generated by sampling of individual
scenarios for price and inflow, which are then sent through
a tree construction and reduction algorithm (Scenred) [?].
The price and inflow scenarios are obtained from power
market analysts and from in-house forecasting processes. The
deterministic method only uses one forecasted price profile as
input, and this forecast is scaled to yield several individual
scenarios for different runs of the deterministic model. The
bid models also need the value of water as input, and this is
obtained by using information on dual variables and objective
function from the seasonal scheduling, which are used to
generate the cuts shown in (??).

When all suitable input is generated, the bid optimization is
run to generate bids for the following day. The stochastic bid
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model has a time horizon of up to seven days, depending on
how many days are left in the week before the seasonal model
is run and the water values are updated. The deterministic
model also has a seven-day horizon. From both the stochastic
and deterministic model, only the bid decisions for the first
day are used since this is the only information that is actually
sent to the market operator. The bid models generate optimal
decisions on what volumes to bid for each price point in
each hour of the following operating day, which is sent to the
market operator as a bid matrix. When the market clears, the
committed volume for the producer is found by interpolation
between the two neighboring price points on each side of the
realized market price.

The committed volume has to be supplied by the producer’s
own generation or by buying power in the balancing market.
Production is allocated according to the amount and cost
of available water by the optimal schedule found by the
production allocation model, which is run every day after the
spot market is cleared and the price is revealed.

As a final step in the simulation procedure the resulting
production plan is tested by detailed calculations and schedul-
ing refinements that account for head effects at the reservoirs
where these are present. This is done to make sure that the
results are actually implementable for the real-life situation.
The detailed calculations are named ”Simulation Juvatn” in
the flow chart in Fig. ??, since for the case study of section
??, head effects are only present at one reservoir, namely
Juvatn. The reservoir levels and the amount of water in the
watercourses at the end of each operating day are sent as input
for the bid model for the next day, and the entire simulation
procedure, from scenario generation to calculations for head
effects, is repeated. Every seventh day the current reservoir
levels are also sent to the seasonal model, and this is run in
order to update the water values for the coming week.

VI. CASE STUDY

The above simulation procedure is implemented for Man-
dalsvassdraget, which is a cascaded, Norwegian reservoir
system located in the NO2-area and owned by Agder Energi
that participates in the pool-based day-ahead market at Nord
Pool Spot. The simulation is carried out over a period of
seven weeks from 16 August 2012 to 30 September 2012.
This specific period is chosen due to availability of data.
Data for inflow is obtained from Agder Energi and data
for price is obtained from SKM Market Predictor AS (a
power market analysis company that develops and supplies
price forecasts to the power industry). The inflow scenarios
used in the stochastic model is Agder Energi’s historical
forecasted ensemble scenarios used at the time of operations,
and the price scenarios are developed by SKM particularly
for the purpose of this paper and are based on scenarios
of fundamental events that affect the day-ahead market price
such as electricity consumption or transmission to or from
connected areas. The prices and inflow used by the seasonal
model, which has a time horizon of 34 weeks, is taken as the

Fig. 2. Scenario tree structure used as input to the bid optimization. Spot
prices and reservoir inflows are the stochastic variables

historical weekly average price and inflow1 from 12 August
2012 to 1 April 2013 obtained from Nord Pool and Agder
Energi, respectively. Hence the simulation period for use of
the short-term model cover the first seven weeks of the 34
week seasonal horizon.

For the stochastic model, the input is generated by sampling
60 price scenarios and 51 inflow scenarios for each day.
These are combined together in a tree structure that represents
the information flow of the problem. The tree structure has
hourly time steps and daily branching. The first three days are
modeled with uncertain prices and inflow where the parameters
gradually become known through the scenario tree. When the
prices for the third day are revealed, all prices and inflow for
the remaining days of the week also get known. Having three
stages in the tree is a choice made due to the trade-off between
accurate modeling of uncertainty and computational time. The
effect of approximating the uncertainty with a three-stage tree
is judged to be small, as it is only the first-stage decisions
that are actually used and the producer has the opportunity
of rescheduling for the following days of the week. The price
and inflow for the remaining days of the week after the initial
stochastic stages are chosen as a random realization of the
forecasted price and inflow for the specific day. The stochastic
bid optimization model has a variable horizon that accounts
for the fact that the water values are updated once a week, and
all the days from the current day and to the next update has to
be represented in the tree. This is done so that the stochastic
model is tailored to fit with current practice for the connection
between short and longer-term scheduling. An example of the
tree structure used in this paper is given in Fig. ??, where from
the branching structure it is evident that new information is

1The seasonal scheduling developed for this simulation procedure is only
needed to find the value of water to be used as an input to the short-term
scheduling models, and hence we use simplified approach. In particular,
the seasonal model uses historical data for price and inflow that was not
available to the producer at the time of operations, and hence the water values
are adapted to the actual development, which the producer has no way of
foreseeing. The fit between the reservoir management strategy and the realized
development of price and inflow is overestimated, and the management of the
larger reservoirs is not directly comparable to the real-life situation. For the
purpose of comparison, however, the seasonal model and the water values
are adequate as both the stochastic and the deterministic model use the same
water values.
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TABLE I
VALUES OF PRICE POINTS.

Number 1 2 3 4 5 6 7
Price 0 15 20 23 27 30 100

TABLE II
WEIGHT FACTORS FOR THE DETERMINISTIC SCENARIOS.

Scenario 1 2 3 4 5 6 7 8 9
Weight 0.83 0.91 0.94 0.97 0 1.03 1.06 1.09 1.17

revealed when the market is cleared once a day. By the tree
construction and reduction algorithm, [?], the tree is reduced to
the smallest size that still adequately represents the statistical
structure of uncertainty for price and inflow, resulting in 18-
25 scenarios for each run of the stochastic model. This has
consequences for the number of bid points, since according to
[?], the number of scenarios, S has to satisfy (??). If there are
too few scenarios compared to the number of price points, the
optimization adapts ”too well” to the information given.

S ≥ 2I + 2 (19)

According to eq. (??), the number of bid points I is chosen
to be 7. The bid points are the same every day throughout
the simulation procedure, and chosen in a way that covers the
whole range of possible prices with more points in the areas
where most of the prices will fall. The specific prices used
can be seen in Table ??.

The practice-based approach uses a single forecasted value
of price and inflow as input. The price forecast is scaled
by different weights to yield individual scenarios that are
used with the deterministic model to create a bid matrix.
The weights are shown in Table ?? and are the same as
currently used by Agder Energi and the price forecast is the
base scenario from SKM. The method of simply scaling the
scenarios means that all scenarios have the same time-profile
as the forecasted price profile, and hence that the scenarios
never intersect each other. This is a poor representation of the
uncertainty in spot market prices.

A schematic of Mandalsvassdraget is shown in Fig. ??.
Nåvatn and Juvatn have the largest capacities and also the
highest degrees of regulation, while the other reservoirs are
small and can be filled or emptied within the week. The
discharge from upstream reservoirs is subject to river flow
travel time in the watercourses between some of the reservoirs,
and the longest time delay is 5 hours. Some characteristics of
the reservoirs and stations in the system are shown in Table
?? and ??.

TABLE III
STORAGE LIMITS FOR RESERVOIRS (Mm3).

Name Min Max
Nåvatn 6.5 206.2
Skjerkevatn 2.3 19.6
Juvatn 0 142.0
Lognavatn 1.4 10.0
Ørevatn 0 11.2
Tungesjø 0 2.2
Mannflåvatn 0.8 2

HÅVERSTAD

BJELLAND

MANNFLÅVATN

LAUDAL

TUNGESJØ

ØREVATN

LOGNA

SMELAND

LOGNAVATN

JUVATN

SKJERKA

SKJERKEVATN

NÅVATN

Fig. 3. Schematic of the topology of the river system in the case study, Man-
dalsvassdraet. Reservoirs are represented as trapezeoids and power stations as
rectangles

TABLE IV
INSTALLED CAPACITY IN STATIONS (MW).

Name Min Max
Skjerka 26.4 102.7
Logna 6.0 14.6
Smeland 10.0 24.1
Håverstad 12.4 69.7
Bjelland 25.7 76.3
Laudal 38.5 103.2

For the specific case of Mandalsvassdraget, the solution
time for one run of the stochastic model is under 50s, when
implemented and solved in Xpress [?] on a 3.40 GHz Intel
PC with 16.0 GB RAM. For 9 consecutive runs of the
deterministic model to yield a bid matrix, the computational
time is in fact a bit longer, about 100s.

VII. RESULTS

A. Obtained average price

The average price per MWh produced is a measure of
performance of the short-term scheduling model and shows
how improvements in modeling may increase the price at
which a producer can sell their power. The obtained average
price is the sum of all spot market revenues during the
simulated period divided by the total produced volume over
the same period. Even though use of the balancing market
is penalized in the bid optimization model as explained in
Section ??, the producer may make a profit by participating in
the balancing market as explained in [?]. When revenue from
the market is calculated, actual historical costs for up ramping
and profits from down ramping is included in the measure.
Table ?? shows the results for the obtained average price. The
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TABLE V
SIMULATION RESULTS FOR OBTAINED AVERAGE PRICE.

Stochastic Deterministic
Euro 23.084 22.925

Percent -0.69

TABLE VI
SIMULATION RESULTS FOR TOTAL VALUE.

Stochastic Deterministic
Euro 14442784 14354771

Percent -0.61

TABLE VII
SIMULATION RESULTS FOR THE NUMBER OF ODD STARTS.

Stochastic Deterministic
Hours 151 182

Percent +17.0

improvement in average price with the stochastic method is
0.69% compared to the deterministic alternative. Such small
numbers are to be expected given the flexibility the producers
have to make corrective actions both in short-term markets and
over time through its power plants. The difference in average
price for the individual weeks can be found in Appendix ??.

B. Total value

The obtained average price may not be an adequate measure
of performance, as it does not account for operational costs.
The costs of hydropower are related to start-ups of units and
the opportunity costs of lowering reservoirs. Hence another
measure of performance is the sum of total obtained profits
over the simulation period and the total value of the water
left in the reservoirs at the end of the period, i.e. at the end
of the first 7 weeks. This is a measure of the total value of
water used in the simulation period and water saved for later
use. Releasing more water and producing at high prices now
means that less water will be available for future production,
and a balance must be struck for scheduling the available water
resources over time. Table ?? shows that the stochastic model
has a total value that is 0.61% higher than the deterministic
model. The stochastic approach uses more water than the
deterministic model and hence has a lower value of the water
left in the reservoirs, but achieves a higher total value.

C. Odd starts

To investigate the stability of the resulting production sched-
ule, a measure called odd starts is developed where the number
of times a turbine is turned on or off for just one or two hours
at a time is recorded and added for all turbines in the system,
and the result is shown in Table ??. A low number of odd starts
is an indicator of a realistic and implementable production
plan, as such frequent starts and stops are undesirable and
often manually rescheduled by producers. The stochastic bid
optimization results in a 17.0% decrease in odd starts. Odd
starts often occur due to sudden changes in the spot price over
few hours. When the stochastic model finds the bid matrix it
takes into account scenarios with different price profiles and

Hour
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Fig. 4. Plot of reservoir level at Juvatn over the simulation period.

hence different scenarios for where the price peaks can occur.
The practice-based method, on the other hand, sees the same
profile scaled equally in all hours, resulting in a bid matrix
that is not as robust to sudden changes in price.

D. Reservoir management strategy

The reservoir management strategy is important to give
validity to the above results. Nåvatn and Juvatn have the
capability to store water over seasons, and the water release
strategy is controlled by the water value. The water value used
in this case study is based on output from the seasonal model,
which is possibly a rudimentary element of the simulation
procedure in terms of representing real operating conditions,
see Footnote 1 in Section ??. The stochastic model releases
more water from the large reservoirs than the deterministic
model to better utilize high price hours now instead of saving
water for later. According to the water values used, this is
the correct behavior since the prices during the simulation
period are actually higher than towards the end of the seasonal
horizon. A plot of the reservoir level at Juvatn is shown in
Fig. ??, where it is evident that the reservoir level is quite low
towards the end of the simulation period.

The management strategy for the smaller reservoirs shows
significant differences between the stochastic and the deter-
ministic model. Since inflow is uncertain in the stochastic
model, the strategy is more conservative as the reservoir level
does not tend as much towards the bounds of the reservoirs.
When inflow is uncertain, the risk of spillage when reservoir
levels are high is taken into account in the reservoir manage-
ment strategy. In the simulation, the stochastic approach yields
fewer hours with reservoir levels at the maximum level than
the deterministic model, and hence a reduced risk of spillage.
The simulated values for spill are also lower for the stochastic
model. The percentage of time when reservoir levels are at
maximum is presented in Table ??, the amount of spill in
Table ?? and a plot of the reservoir level at Skjerkevatn in
Fig. ??.

E. Results without river flow travel time

To investigate how the complexity of the river cascade
affects the results, the simulation procedure is implemented
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TABLE VIII
NUMBER OF HOURS WHERE THE RESERVOIR LEVEL IS AT MAXIMUM.

Stochastic Deterministic
Skjerkevatn Hours 135 181

Percent 25%
Lognavatn Hours 112 165

Percent 32%

TABLE IX
NUMBER OF HOURS AND THE AMOUNT OF SPILL.

Stochastic Deterministic
Skjerkevatn Hours 4 6

m3 3156 5039
Lognavatn Hours 63 95

m3 614651 1166413
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Fig. 5. Plot of reservoir level at Skjerkevatn over the simulation period. This
is an intake-reservoir for one of the main power stations in the cascade and
has a moderate risk of spill.

for the same reservoir topology as Mandalsvassdraget, but
without river flow travel time in the watercourses between
reservoirs. Having time delays means that hours are more
strongly dependent on each other, because large discharged
volumes from upstream reservoirs in high priced hours may
force production in downstream reservoirs a few hours later
when the price is lower. An extreme case would be that the
downstream reservoirs are flooded and water is lost. These
dependencies must be taken into consideration when the bids
and the following production allocation is determined, as it is
crucial that the bid decisions are flexible enough to account
for possible adverse developments.

Tables ?? and ?? show the results for obtained average
price and total value for the deterministic and stochastic ap-
proach without travel time. The improvement by the stochastic
formulation is 0.61% for obtained average price and 0.57%
for total value. Hence, the stochastic model still outperforms
the practice-based method, but with a smaller difference than
when travel time is present, as in Tables ?? and ??. This is
taken to mean that the stochastic formulation has even larger
potential for improvements for complex systems. Without river
flow time delay, the difference between the stochastic and
the deterministic model is smaller since the system is less
constrained.

TABLE X
OBTAINED AVERAGE PROFITS WITHOUT RIVER FLOW TRAVEL TIME.

Stochastic Deterministic
Euro 23.12 22.98

Percent -0.61

TABLE XI
SIMULATION RESULTS FOR TOTAL VALUE WITHOUT RIVER FLOW TRAVEL

TIME.

Stochastic Deterministic
Euro 14467069 14384291

Percent -0.57

VIII. CONCLUSION

The results from the case study of Mandalsvassdraget show
that the stochastic bid optimization model gives improvements
in terms of a 0.69% higher obtained average price and a 0.61%
higher total value than a heuristic method used in practice.
Any small gain is considered interesting by producers, as
this problem is solved every day. The reservoir management
strategy is improved, as the stochastic model obtains a higher
total value than the practice-based heuristics and hence utilizes
the available water in a better way. This is due to the fact
more water is scheduled for production now when prices are
higher and not saved for later. Part of this extra production
is a result of the increase in average price obtained by using
the stochastic model. A higher price increases the profit from
production and with identical water values a superior model
will have a shift towards producing now instead of saving the
water for later. In addition, the risk of spillage is also reduced,
as the number of hours with full reservoirs is fewer when using
the stochastic reservoir management strategy. The model is
implemented for a complex real-life system, and the stochastic
model uses best-practice forecasts that are, at a cost, currently
available to the industry, namely price scenarios developed by
market analysts or the power company itself. The algorithm is
also fast enough to be used on a daily basis and is tailored to be
included in the scheduling hierarchy used by most producers
today.

The results from the specific case study of Mandalsvass-
draget are positive on behalf of the stochastic model, and this
can be seen as an indicator of the potential added value of
implementing a stochastic method for the bidding problem.
The simulation should be carried out over longer periods of
time, other times of year and other reservoir systems before
any general conclusions can be made. High reservoir levels and
large inflows characterize the time of year when the simulation
in this paper is performed. To get a good comparison between
the stochastic and the deterministic model the simulation
should cover a longer period of time with more variation in
regards to the availability of water or market prices.

Our test framework could be used to investigate other ap-
proaches for short-term production scheduling. The framework
is relatively easy to update to reflect potential changes in
market rules, scenario input, or how the value of the water in
the reservoirs at the end of the bidding horizon is calculated.
A possible use of this framework is to evaluate the value of
capacity changes or waterway improvements.
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APPENDIX

Table ?? summarizes the difference in obtained average
price each week.

TABLE XII
DIFFERENCE IN OBTAINED AVERAGE PRICE IN e/MW

Week Stochastic average price Deterministic average price Difference
1 25.59 24.89 0.71
2 26.55 25.84 0.71
3 25.76 24.34 1.41
4 18.75 19.14 -0.39
5 17.60 16.93 0.68
6 17.96 17.50 0.46
7 25.67 24.45 1.22




