Age, weight and decompression sickness in rats

Journal: Archives Of Physiology And Biochemistry

Manuscript ID: NAPB-2015-0086.R1

Manuscript Type: Original Paper

Date Submitted by the Author: 30-Nov-2015

Complete List of Authors: Buzzacott, Peter; Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy)
Theron, Michael; Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy)
Mazur, Aleksandra; Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy)
Wang, Qiong; Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy)
Lambrechts, Kate; Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy)
Eftedal, Ingrid; Norwegian University of Science and Technology, Department of Circulation and Medical Imaging
Ardestani, Simin; Norwegian University of Science and Technology, Department of Circulation and Medical Imaging
Guerrero, Francois; Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy)

Keywords: Decompression illness, diving, Long-Evans, regression modelling

URL: http://mc.manuscriptcentral.com/napb Email: eckel@uni-duesseldorf.de
Decompression health outcome by age and overall

127x76mm (120 x 120 DPI)
Age, weight and decompression sickness in rats

by

Peter Buzzacott,* Michael Theron, Aleksandra Mazur, Qiong Wang, Kate Lambrechts, Ingrid
Eftedal, Simin Berenji Ardestani, François Guerrero.

*Corresponding author

Keywords: Decompression illness, diving, Long-Evans, regression modelling.

Peter Buzzacott is a Marie Curie Experienced Research Fellow, Université de Bretagne
Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy), UFR
Sciences et Techniques, 6 avenue Le Gorgeu, CS 93837, 29200 Brest Cedex 3, France, and
an Adjunct Lecture at the School of Sports Science, Exercise and Health, the University of
Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
Ph: +33 (2) 9801 6235
E-mail: peter.buzzacott@uwa.edu.au

Michael Theron, Director, Université de Bretagne Occidentale, Laboratoire Optimisation des
Régulations Physiologiques (ORPhy), UFR Sciences et Techniques, 6 avenue Le Gorgeu, CS
93837, 29200 Brest Cedex 3, France. E-mail: Michael.theron@univ-brest.fr

Aleksandra Mazur, Research Fellow, Université de Bretagne Occidentale, Laboratoire
Optimisation des Régulations Physiologiques (ORPhy), UFR Sciences et Techniques, 6
avenue Le Gorgeu, CS 93837, 29200 Brest Cedex 3, France. E-mail: maz.aleksandra@gmail.com

Qiong Wang, Research Fellow, Université de Bretagne Occidentale, Laboratoire
Optimisation des Régulations Physiologiques (ORPhy), UFR Sciences et Techniques, 6
avenue Le Gorgeu, CS 93837, 29200 Brest Cedex 3, France. E-mail: wangqiong0008204@yahoo.com

Kate Lambrechts, Research Fellow, Université de Bretagne Occidentale, Laboratoire
Optimisation des Régulations Physiologiques (ORPhy), UFR Sciences et Techniques, 6
avenue Le Gorgeu, CS 93837, 29200 Brest Cedex 3, France. E-mail: lambrechtskate@hotmail.com

Ingrid Eftedal, Researcher, Norwegian University of Science and Technology, Department of
Circulation and Medical Imaging, Postbox 8905, 7491 Trondheim, Norway. E-mail: ingrid.eftedal@ntnu.no

Simin Berenji Ardestani, Research assistant, Norwegian University of Science and
Technology, Department of Circulation and Medical Imaging, Postbox 8905,
7491 Trondheim, Norway. E-mail: siminb@stud.ntnu.no

François Guerrero, Director, Université de Bretagne Occidentale, Laboratoire Optimisation
des Régulations Physiologiques (ORPhy), UFR Sciences et Techniques, 6 avenue Le Gorgeu,
CS 93837, 29200 Brest Cedex 3, France. E-mail: francois.guerrero@univ-brest.fr
Age, weight and decompression sickness in rats

Abstract

Objective: The aim of this study was to determine if, after controlling for weight, age is associated with decompression sickness (DCS) in rats.

Methods: Following compression-decompression, male rats aged 11 weeks were observed for DCS. After two weeks recovery surviving rats were re-dived using the same compression-decompression profile.

Results: In this experiment there was a clear difference between DCS outcome at ages 11 or 13 weeks in matched rats (p=0.002).

Discussion: Even with weight included in the model age was significantly associated with DCS (p=0.01), yet after removal of weight the association was much stronger (p=0.002).

Conclusion: We believe that age is likely to be found associated with the probability of DCS in a larger dataset with a wider range of parameters, after accounting for the effect of weight.

Introduction

Age is a factor of interest for decompression sickness (DCS) research in diving humans (Carturan et al., 2002, Carturan et al., 1999). Both diving and aging exert distinct influences over cardiovascular function though the nature of their relationship when combined remains uncertain (Boussuges et al., 2009). With senescence the cardiovascular system undergoes complex structural and functional changes (Ardestani et al., 2015)
Diving too may lead to vascular dysfunction and endothelial cell death (Lambrechts et al., 2013, Wang et al., 2014).

Aging induces phenotypical changes in human coronary arterioles that are similar to the age-associated remodeling of the walls of large arteries seen in rats, age is associated with increasing endothelial dysfunction in both humans and rodents (Lakatta, 2003) and age-related endothelial dysfunction has been observed in coronary arterioles of approximately 80-week old rats (Csiszar et al., 2002) corresponding to a human age of 90 years (Sengupta, 2013). Rats are also a useful model for researching DCS (Mazur et al., 2014), particularly as the majority of DCS research in humans is, by necessity, retrospective (Sulaiman et al., 1997). Since age-associated cardiovascular changes have been found comparable between humans and rats, we propose that rat model research might help elucidate the relationship between age and risk of DCS in humans. The number of data required for such an analysis is of the order of many hundreds therefore rat models offers a convenient alternative to studying DCS in humans. For rat research though, age is confounded by weight, which increases with age (Figure 1), and weight is a known risk factor for DCS in rats (Lillo and MacCallum, 1991, Arieli et al., 2007).

The aim of this study was to determine if age is associated with DCS outcome in rats after controlling for weight. The purpose of this study was support investment into a substantial modelling project to estimate the size of the effect of age upon DCS outcome in rats. If no correlation between age and DCS was observed in this study then the modelling endeavour to estimate the effect size of age upon DCS would not proceed.
Methods

Male Long-Evans rats (n=20) were obtained in two batches, two weeks apart, from Janvier SAS (Le Genest St Isle, France) at age 10 weeks. Long Evans were included in this experiment for their wide variation in weight at 11 weeks and their rapid growth (a median increase of 20% bodyweight) over the following two weeks (median 58g, range 20-90g). The rats were housed for one week before the experiment in the Faculty of Sciences and Techniques vivarium in standard conditions, (mean temperature 21.2°C +/- 0.2, relative humidity 27% +/- 16%, 12 hour light:dark cycle, 7am-7pm), during which they had access to water and rat chow ad libitum. Hydration was withdrawn 30 mins before compression. The rats were weighed on the day of diving before being compressed in a 170-litre hyperbaric chamber (Comex, Marseille, France). All dives commenced in the morning after 8am.

The air inside the chamber was compressed to 1000kPa at the rate of 100kPa per minute. Maximum pressure was held for 45-minutes followed by decompression at 100kPa per minute to 200kPa. Decompression was thereafter staged with five mins at 200kPa, five mins at 160kPa and 10 mins at 130kPa. This protocol has been shown to produce DCS signs in a predictable proportion of male rats aged 10-11 weeks (Buzzacott et al., 2014).

Following decompression the rats were swiftly removed from the chamber and observed for signs of DCS for one hour. DCS classification was No observable DCS (no-DCS)=0, respiratory distress or paralysis (survived-DCS)=1, or death within one hour (dead-DCS)=2. The diagnosis was noted by two observers in each case. The observation period ended at 60 minutes and mortality, morbidity or apparent health was noted.

After two weeks recovery the surviving rats were re-dived using the same compression-decompression profile. In rats at this post-adolescent stage of their lives, two weeks equates to a little over one year of young adult development in humans. This research, including
death as an endpoint, was approved by Universite de Bretagne Occidentale animal research
ethic committee and the French Ministry of Agriculture (R-2011-FG-01). A pain-display
scale was also approved by the ethic committee and any animal displaying signs at the pre-
determined threshold (n=1) was immediately euthanized with an intraperitoneal injection of a
lethal dose of sodium-pentobarbital. All rats showing signs of DCS below the threshold
recovered within 30 mins and were indistinguishable from the other survivors at 60 mins, as
has been previously reported (Lillo, 1988, Sallee and Adams, 1970).

ANALYSIS

Potential predictors of DCS outcome were analysed using SAS ver 9.3 (SAS, Cary, North
Carolina). Significance of age was assessed using ordinal logistic regression with weight on
the day of diving included in the model, (Eq. 1), since weight is known to have a significant
effect upon likelihood of DCS (Mazur et al., 2014). The rats were compressed one or two at a
time, in with other rats of different strains for other experiments to be reported elsewhere.
Model fit of the dataset was optimised using the likelihood ratio test with one degree of
freedom comparing the log likelihood (−2LL) of the full model (Eq. 1) with the diminished
model, which is appropriate for small datasets when only one of two parameters is to be
removed.

\[
\ln \left(\frac{P_j}{1-P_j} \right) = \alpha_j + \beta_1 \text{Age} + \beta_2 \text{Weight} \\
\]

(1)

The modelled probability (P) of a ternary DCS outcome state \(j \), (of no-DCS, survived-DCS or
dead-DCS), is been described in detail elsewhere (Buzzacott et al., 2014). Briefly, the
probability of no-DCS (vs. DCS) is calculated, then the probability of dead-DCS (vs. alive).
The probability of survived-DCS is then determined by subtracting the probabilities of no-
DCS and dead-DCS from 1.0, which is the sum of all possible probabilities. Significance
was accepted at $p<0.05$ and we had 80% power to detect a difference of ±30% DCS within 20 rats at the $p<0.05$ level of significance.

Lastly, we predicted what theoretical effect the four rats who made only the first dive would have had if they had had the opportunity to live through the second dive, which would have moved the data towards the null hypothesis (that additional age had the opposite effect upon DCS outcome).

Results

Mean weight by age and block is shown in Table 1. The mean weight of Batch 1 at age 13 weeks effectively cancelled out the effect of weight in Batch 2 at age 11 weeks (Table 1, in bold). During the first dive one rat from each Batch died from DCS, one rat from Batch 1 was excluded from the second dive after the cage it was in was mislabelled and one rat from Batch 2 was euthanized after the first dive to alleviate pain. DCS outcome by age is shown in Figure 1.

The -2LL of the initial model was 46.967, the -2LL=54.458 after age was removed (difference=7.491) and the -2LL=47.439 after weight was removed (difference=0.472). Removing weight did not significantly worsen the model ($p>0.25$) but removing age did ($p<0.01$) therefore weight was removed from the model. Age was then shown to be significantly associated with the probability of suffering DCS ($p=0.002$). In this experiment there was a clear difference between DCS outcome at ages 11 or 13 weeks in matched rats. If the four rats excluded from the second dive had each hypothetically survived it then age would have remained significant ($p=0.008$).
Discussion

Even with weight included in the model age was significantly associated with DCS (p=0.01), yet after removal of weight the association was much stronger (p=0.002), therefore we believe that age is likely to be found associated with the probability of DCS in a large dataset with a wider range of parameters, after accounting for the effect of weight. The estimated size of the effect of age we observed (Fig. 1) was considerably greater than we previously reported in Sprague-Dawley rats between the ages of 11 and 13 weeks and therefore we speculate that the effect size in a larger analysis with multiple strains might be substantially smaller (Mazur et al., 2014). Lillo et al (2002) suggest weight has an exponential effect upon risk of DCS but this study did not primarily aim to estimate effect size, rather the aim was confirm if a relationship exists between age and DCS after controlling for weight. Given that the mean weight in Batch 1 at 13 weeks was equivalent to the mean weight in Batch 2 at 11 weeks, weight was controlled for through study design and the effect size of weight not explored. Given the outcome had three ordinal levels, ordinal logistic regression was an appropriate method of model-fitting in this instance.

There are many limitations in a small test-retest experiment such as this, including that the effect of a second exposure (through matched controls) is a potential confounder. The second dive was made after two weeks recovery and all rats appeared healthy but we cannot exclude the possible influence of stress, either more or less, than during the first exposure. It is also possible that the rats’ resistance deteriorated over an additional two weeks of housing in our vivarium, for example if they were subjected to low temperature or humidity, noise, etc, but we consider this unlikely because other rats were housed in the same vivarium over the same period and their health showed no signs of housing stress, not to mention that the rats in this
experiment showed considerable weight gain over the two week rest period. Indeed, prior
hyperbaric exposure has been shown to acclimate rats to compression/decompression,
increasing their likelihood of survival (Montcalm-Smith et al., 2010).

Hormonal levels may have increased during the two week interlude but that might not
confound the effect of age since hormonal levels are tied with age, especially when sexual
maturity is first reached as in this study. Hormones were recently suggested as a potential
explanation for the difference in DCS outcome between male and female rats (Mazur et al.,
2014) but how exactly additional age effected susceptibility to DCS is not clear from this
study. The first dive was made in the chamber with larger rats from other experiments but in
the second dive the rats in this experiment unaccompanied in the chamber. Again, possibly
stress confounded the difference, for example if pheromones were detected from other strains
in the first experiment and this was somehow protective, (although there is nothing to suggest
this possibility in the literature). Lastly, we cannot predict what effect the four rats who made
only the first dive would have actually had if they had had the opportunity to make the
second dive. We showed that, hypothetically, even if they had survived the second dive then
age would have remained significant but we cannot know what their weights would have
been at age 13 weeks and so this is tentative at best.

Conclusion

Rat models appear to have the potential to contribute to mankind’s understanding of the
influence age exerts upon risk of DCS among divers. Even given the above limitations we are
now confident enough of the existence of an association to proceed with modelling the effect
size of age upon DCS outcome in rats in a much larger study.
Declaration of Interests

The research leading to this publication received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FRP/2007-2013/ under REA grant agreement n° 264816 PHYPODE. Ingrid Eftedal received funding from the Norwegian Research Council and Statoil ASA under Petromaks project n° 220546.

References

Table 1: Mean weight (SD) per batch by age

<table>
<thead>
<tr>
<th>Batch</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>11 (n=10)</td>
<td>13 (n=8)</td>
</tr>
<tr>
<td></td>
<td>13 (n=10)</td>
<td>13 (n=8)</td>
</tr>
<tr>
<td>Weight</td>
<td>268 (12)</td>
<td>358 (11)</td>
</tr>
<tr>
<td></td>
<td>336 (12)</td>
<td>400 (21)</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1: Decompression health outcome by age and overall
Age, weight and decompression sickness in rats

by

Peter Buzzacott,* Michael Theron, Aleksandra Mazur, Qiong Wang, Kate Lambrechts, Ingrid Eftedal, Simin Berenji Ardestani, François Guerrero.

*Corresponding author

Keywords: Decompression illness, diving, Long-Evans, regression modelling.

Peter Buzzacott is a Marie Curie Experienced Research Fellow, Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy), UFR Sciences et Techniques, 6 avenue Le Gorgeu, CS 93837, 29200 Brest Cedex 3, France, and an Adjunct Lecture at the School of Sports Science, Exercise and Health, the University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
Ph: +33 (2) 9801 6235
E-mail: peter.buzzacott@uwa.edu.au

Michael Theron, Director, Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy), UFR Sciences et Techniques, 6 avenue Le Gorgeu, CS 93837, 29200 Brest Cedex 3, France. E-mail: Michael.theron@univ-brest.fr

Aleksandra Mazur, Research Fellow, Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy), UFR Sciences et Techniques, 6 avenue Le Gorgeu, CS 93837, 29200 Brest Cedex 3, France. E-mail: maz.aleksandra@gmail.com

Qiong Wang, Research Fellow, Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy), UFR Sciences et Techniques, 6 avenue Le Gorgeu, CS 93837, 29200 Brest Cedex 3, France. E-mail: wangqiong0008204@yahoo.com

Kate Lambrechts, Research Fellow, Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy), UFR Sciences et Techniques, 6 avenue Le Gorgeu, CS 93837, 29200 Brest Cedex 3, France. E-mail: lambrechtskate@hotmail.com

Ingrid Eftedal, Researcher, Norwegian University of Science and Technology, Department of Circulation and Medical Imaging, Postbox 8905, 7491 Trondheim, Norway. E-mail: ingrid.eftedal@ntnu.no

Simin Berenji Ardestani, Research assistant, Norwegian University of Science and Technology, Department of Circulation and Medical Imaging, Postbox 8905, 7491 Trondheim, Norway. E-mail: siminb@stud.ntnu.no

François Guerrero, Director, Université de Bretagne Occidentale, Laboratoire Optimisation des Régulations Physiologiques (ORPhy), UFR Sciences et Techniques, 6 avenue Le Gorgeu, CS 93837, 29200 Brest Cedex 3, France. E-mail: francois.guerrero@univ-brest.fr
Age, weight and decompression sickness in rats

Abstract

Objective: The aim of this study was to determine if, after controlling for weight, age is associated with decompression sickness (DCS) in rats.

Methods: Following compression-decompression, male rats aged 11 weeks were observed for DCS. After two weeks recovery surviving rats were re-dived using the same compression-decompression profile.

Results: In this experiment there was a clear difference between DCS outcome at ages 11 or 13 weeks in matched rats (p=0.002).

Discussion: Even with weight included in the model age was significantly associated with DCS (p=0.01), yet after removal of weight the association was much stronger (p=0.002).

Conclusion: We believe that age is likely to be found associated with the probability of DCS in a larger dataset with a wider range of parameters, after accounting for the effect of weight.

Introduction

Age is a factor of interest for decompression sickness (DCS) research in diving humans (Carturan et al., 2002, Carturan et al., 1999). Both diving and aging exert distinct influences over cardiovascular function though the nature of their relationship when combined remains uncertain (Boussuges et al., 2009). With senescence the cardiovascular system undergoes complex structural and functional changes and risk of cardiovascular disease increases (Ardestani et al., 2015)
In a French study of 200 professional divers (mean age 38 years), 2.5% had a high 10-year risk and 34% had an intermediate 10-year risk of an acute coronary event (Pougnet et al., 2012). Diving too may lead to vascular dysfunction and endothelial cell death (Lambrechts et al., 2013, Wang et al., 2014). Obad et al found that post-dive flow-mediated dilation of the brachial artery in divers remained reduced for two days after a single air dive (Obad et al., 2007). Right ventricular dysfunction and increased pulmonary artery pressure likewise took longer than 24 hours to reverse (Obad et al., 2007).

Aging induces phenotypical changes in human coronary arterioles that are similar to the age-associated remodeling of the walls of large arteries seen in rats, age is associated with increasing endothelial dysfunction in both humans and rodents (Lakatta, 2003) and age-related endothelial dysfunction has been observed in coronary arterioles of approximately 80-week old rats (Csiszar et al., 2002) corresponding to a human age of 90 years (Sengupta, 2013). Rats are also a useful model for researching DCS (Mazur et al., 2014), particularly as the majority of DCS research in humans is, by necessity, retrospective (Sulaiman et al., 1997). Since age-associated cardiovascular changes have been found comparable between humans and rats, we propose that rat model research might help elucidate the relationship between age and risk of DCS in humans. The number of data required for such an analysis is of the order of many hundreds therefore rat models offers a convenient alternative to studying DCS in humans. For rat research though, age is confounded by weight, which increases with age (Figure 1), and weight is a known risk factor for DCS in rats (Lillo and MacCallum, 1991, Arieli et al., 2007). Sex has also recently been shown associated with the risk of DCS in rats and VGE-grades have been found higher in male divers over females (Mazur et al., 2014, Buzzacott et al., 2014, Boussuges et al., 2009). By age 55 years the lifetime risks of
cardiovascular disease in humans are similar in males and females although first manifestations differ considerably (Leening et al., 2014).

The aim of this study was to determine if, after controlling for weight, age is associated with DCS outcome in rats after controlling for weight. The purpose of this study was to assess the viability of support investment into a substantial modelling project to estimate the size of the effect size of age upon DCS outcome in rats. If no significant raw effect correlation between age and DCS was observed in this study then the modelling endeavour to estimate the effect size of age upon DCS would not proceed.

Methods

Male Long-Evans rats (n=20) were obtained in two batches, two weeks apart, from Janvier SAS (Le Genest St Isle, France) at age 10 weeks. Long Evans were included in this experiment for their wide variation in weight at 11 weeks and their rapid growth (a median increase of 20% bodyweight) over the following two weeks (median 58g, range 20-90g). The rats were housed for one week before the experiment in the Faculty of Sciences and Techniques vivarium in standard conditions, (mean temperature 21.2°C +/- 0.2, relative humidity 27% +/- 16%, 12 hour light:dark cycle, 7am-7pm), during which they had access to water and rat chow ad libitum. Hydration was withdrawn 30 mins before compression. The rats were weighed on the day of diving before being compressed in a 170-litre hyperbaric chamber (Comex, Marseille, France). All dives commenced in the morning after 8am.

The air inside the chamber was compressed to 1000kPa at the rate of 100kPa per minute. Maximum pressure was held for 45-minutes followed by decompression at 100kPa per
minute to 200kPa. Decompression was thereafter staged with five mins at 200kPa, five mins at 160kPa and 10 mins at 130kPa. This protocol has been shown to produce DCS signs in a predictable proportion of male rats aged 10-11 weeks (Buzzacott et al., 2014).

Following decompression the rats were swiftly removed from the chamber and observed for signs of DCS for one hour. DCS classification was No observable DCS (no-DCS)=0, respiratory distress or paralysis (survived-DCS)=1, or death within one hour (dead-DCS)=2. The diagnosis was noted by two observers in each case. The observation period ended at 60 minutes and mortality, morbidity or apparent health was noted.

After two weeks recovery the surviving rats were re-dived using the same compression-decompression profile. In rats at this post-adolescent stage of their lives, two weeks equates to a little over one year of young adult development in humans. We had 80% power to detect a difference of ±30% DCS within 20 rats at the p<0.05 level of significance. This research, including death as an endpoint, was approved by Universite de Bretagne Occidentale animal research ethic committee and the French Ministry of Agriculture (R-2011-FG-01). A pain-display scale was also approved by the ethic committee and any animal displaying signs at the pre-determined threshold (n=1) was immediately euthanized with an intraperitoneal injection of a lethal dose of sodium-pentobarbital. All rats showing signs of DCS below the threshold recovered within 30 mins and were indistinguishable from the other survivors at 60 mins, as has been previously reported (Lillo, 1988, Sallee and Adams, 1970).

ANALYSIS

Potential predictors of DCS outcome were analysed using SAS ver 9.3 (SAS, Cary, North Carolina). Significance of age was assessed using ordinal logistic regression with weight on the day of diving included in the model, (Eq. 1), since weight is known to have a significant effect upon likelihood of DCS (Mazur et al., 2014). The rats were compressed one or two at a
time, in with other rats of different strains for other experiments to be reported elsewhere.

Model fit of the dataset was optimised using the likelihood ratio test with one degree of
freedom comparing the log likelihood (-2LL) of the full model (Eq. 1) with the diminished
model, which is appropriate for small datasets when only one of two parameters is to be
removed.

\[
\ln\left(\frac{P_j}{1-P_j}\right) = \alpha_j + \beta_j \text{Age} + \beta_j \text{Weight}
\] (1)

The modelled probability (P) of a ternary DCS outcome state \(j\), (of no-DCS, survived-DCS or
dead-DCS), is been described in detail elsewhere (Buzzacott et al., 2014). Briefly, the
probability of no-DCS (vs. DCS) is calculated, then the probability of dead-DCS (vs. alive).
The probability of survived-DCS is then determined by subtracting the probabilities of no-
DCS and dead-DCS from 1.0, which is the sum of all possible probabilities. Significance
was accepted at \(p<0.05\). We had 80% power to detect a difference of \(\pm 30\%\) DCS within
20 rats at the \(p<0.05\) level of significance.

Lastly, we predicted what theoretical effect the four rats who made only the first dive would
have had if they had had the opportunity to live through the second dive, which would have
moved the data towards the null hypothesis (that additional age had the opposite effect upon
DCS outcome).

Results

Mean weight by age and block is shown in Table 1. The mean weight of Block Batch 1 at age
13 weeks effectively cancelled out the effect of weight in Block Batch 2 at age 11 weeks
(Table 1, in bold). During the first dive one rat from each Block Batch died from DCS, one
A rat from Block Batch 1 was excluded from the second dive after the cage it was in was mislabelled and one rat from Block Batch 2 was euthanized after the first dive to alleviate pain. DCS outcome by age is shown in Figure 12.

The -2LL of the initial model was 46.967, the -2LL=54.458 after age was removed (difference=7.491) and the -2LL=47.439 after weight was removed (difference=0.472).

Removing weight did not significantly worsen the model (p>0.25) but removing age did (p<0.01) therefore weight was removed from the model. Age was then shown to be significantly associated with the probability of suffering DCS (p=0.002). In this experiment there was a clear difference between DCS outcome at ages 11 or 13 weeks in matched rats. If the four rats excluded from the second dive had each hypothetically survived it then age would have remained significant (p=0.008).

Discussion

Even with weight included in the model age was significantly associated with DCS (p=0.01), yet after removal of weight the association was much stronger (p=0.002), therefore we believe that age is likely to be found associated with the probability of DCS in a large dataset with a wider range of parameters, after accounting for the effect of weight. The estimated size of the effect of age we observed (Fig. 12) was considerably greater than we previously reported in Sprague-Dawley rats between the ages of 11 and 13 weeks and therefore we speculate that the effect size in a larger analysis with multiple strains might be substantially smaller (Mazur et al., 2014). Lillo et al (2002) suggest weight has an exponential effect upon risk of DCS but this study did not primarily aim to estimate effect size, rather the aim was
confirm if a relationship exists between age and DCS after controlling for weight. Given that
the mean weight in Batch 1 at 13 weeks was equivalent to the mean weight in Batch 2 at 11
weeks, weight was controlled for through study design and the effect size of weight not
explored. Given the outcome had three ordinal levels, ordinal logistic regression was an
appropriate method of model-fitting in this instance. Long-Evans were included in this
experiment for their wide variation in weight at 11 weeks and their rapid growth (a median
increase of 20% bodyweight) over the following two weeks (median 58g, range 20-90g). This
may well differ to the characteristics of the dataset we will use to determine the effect size of
weight upon DCS outcome and in this respect this experiment should be considered ‘proof of
concept’ rather than an assessment of effect size. Strain has recently been found not
associated with DCS outcome in three rat studies and, though less common than Sprague-
Dawley or Wistar, Long-Evans have previously been used in hyperbaric research (Buzzacott
et al., 2014, Mazur et al., 2014, Torbati et al., 1995).

There are many limitations in a small test-retest experiment such as this, including that the
effect of a second exposure (through matched controls) is a potential confounder. The second
dive was made after two weeks recovery and all rats appeared healthy but we cannot exclude
the possible influence of stress, either more or less, than during the first exposure. It is also
possible that the rats’ resistance deteriorated over an additional two weeks of housing in our
vivarium, for example if they were subjected to low temperature or humidity, noise, etc, but
we consider this unlikely because other rats were housed in the same vivarium over the same
period and their health showed no signs of housing stress, not to mention that the rats in this
experiment showed considerable weight gain over the two week rest period. Indeed, prior
hyperbaric exposure has been shown to acclimate rats to compression/decompression,
increasing their likelihood of survival (Montcalm-Smith et al., 2010).
Hormonal levels may have increased during the two week interlude but that might not confound the effect of age since hormonal levels are tied with age, especially when sexual maturity is first reached as in this study. Hormones were recently suggested as a potential explanation for the difference in DCS outcome between male and female rats (Mazur et al., 2014) but how exactly additional age effected susceptibility to DCS is not clear from this study. The first dive was made in the chamber with larger rats from other experiments but in the second dive the rats in this experiment unaccompanied in the chamber. Again, possibly stress confounded the difference, for example if pheromones were detected from other strains in the first experiment and this was somehow protective, (although there is nothing to suggest this possibility in the literature). Lastly, we cannot predict what effect the four rats who made only the first dive would have actually had if they had had the opportunity to make the second dive. We showed that, hypothetically, even if they had survived the second dive then age would have remained significant but we cannot know what their weights would have been at age 13 weeks and so this is tentative at best.

Conclusion

Rat models appear to have the potential to contribute to mankind’s understanding of the influence age exerts upon risk of DCS among divers. Even given the above limitations we are now confident enough of the existence of an association to proceed with modelling the effect size of age upon DCS outcome in rats in a much larger study.

Declaration of Interests
The research leading to this publication received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FRP/2007-2013/ under REA grant agreement n° 264816 PHYPODE. Ingrid Eftedal received funding from the Norwegian Research Council and Statoil ASA under Petromaks project n° 220546.

References

Table 1: Mean weight (SD) per block by age

<table>
<thead>
<tr>
<th>Block</th>
<th>1 (n=10)</th>
<th>2 (n=8)</th>
<th>3 (n=10)</th>
<th>4 (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (weeks)</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Weight (g)(SD)</td>
<td>268 (12)</td>
<td>358 (11)</td>
<td>336 (12)</td>
<td>400 (21)</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1: Increasing weight in Long-Evans rats by age in weeks and sex (Janvier SAS, Le Genest-St-Ise, France)

Figure 2: Decompression health outcome by age and overall