Lokalisering av begravde objekter i snø med georadar

Med fokus på søk i snøskred

av
211 Siri Engeskaug
225 Ivar Matthias Haukelidsæter

The application of ground penetrating radar for locating objects buried in snow

Geologi og Geofare
GE491
06.2017
Innholdsfortegnelse

1. Sammendrag.. 6
2. Innledning.. 7
3. Teori .. 9
 3.1. Snøskred og søk etter mennesker tatt av skred ... 9
 3.1.1. Statistikk for snøskred i Norge ... 9
 3.1.2. Snø og snøskred ... 12
 3.1.3. Søkemetoder og utfordringer med dagens teknologi ... 16
 3.2. Georadar .. 21
 3.2.1. Elektromagnetiske bølger ... 21
 3.2.2. Relativ permittivitet ... 22
 3.2.3. Konduktivitet ... 23
 3.2.4. Frekvens ... 24
 3.2.5. Demping av em-bølgenes signal .. 24
 3.2.6. Skinndybde ... 25
 3.2.7. Vertikal oppløsning... 26
 3.2.8. Horisontal oppløsning ... 27
 3.2.9. Polarisering og orientering av antenner .. 29
 3.2.10. Tolking av georadarprofiler .. 30
 3.3. Bruk av georadar for søk etter skredtatte .. 32
4. Metode ... 36
 4.1. Feltarbeid med georadar ... 36
 4.1.1. Eksperiment på Turtagrø .. 38
 4.1.2. Eksperiment i Frudalen ... 41
 4.2. Prosessering av data .. 44
 4.2.1. Reflex2DQuick ... 44
5. Resultater ... 47
 5.1. Eksperiment på Turtagrø ... 47
 5.1.1. Forsøk 1-5 ... 47
 5.1.2. Frekvensspekter ... 51
 5.2. Eksperiment i Frudalen .. 52
 5.2.1. Forsøk 6-10 ... 52
6. Diskusjon .. 57
Tabelliste

Tabell 1: Liste over materialegenskaper for utvalgte materialer ved 100MHz. 23
Tabell 2: Vertikal oppløsning .. 27
Tabell 3: Horisontal oppløsning ... 28
Tabell 4: Måleparametere brukt under feltarbeid .. 37
Tabell 5: Objekter i forsøk 1-5 ... 40
Tabell 6: Objektenes mål .. 40
Tabell 7: Objekter i forsøk 6-10 ... 44
Tabell 8: Oversikt over plassering av objekter under forsøk 1, 2 og 3 47
Tabell 9: Oversikt over plassering av objekter under forsøk 4 og 5 50
Tabell 10: Oversikt over plassering av objekter under forsøk 6, 7 og 8 52
Tabell 11: Oversikt over plassering av objekter under forsøk 6, 9 og 10 54

Figurliste

Figur 1: Statistikk over dødsulykker som følge av snøskred gjennom 10 vinter............... 10
Figur 2: Statistikk over dødsulykker fra forskjellige typer snøskred 11
Figur 3: Statistikk over omkomne i snøskred fra 2003-2013 gruppert etter aktivitet 11
Figur 4: Statistikk over hvilken gruppe som har funnet de omkomne............................ 12
Figur 5: Omvandlingsskjema for snø .. 14
Figur 6: Løssnøskred ... 14
Figur 7: Flakskred ... 15
Figur 8: Redningsgrupper ... 17
Figur 9: Elektronisk søkeutstyr: a) sender-mottaker, b) Recco ... 19
Figur 10: Utfordringer med RECCO-systemet .. 20
Figur 11: Demping av em-bølger: a) spredning, b) inhomogeniteter 25
Figur 12: Skinndybde .. 26
Figur 13: Horisontal oppløsning .. 28
Figur 14: Polariserering .. 30
Figur 15: Punktrefflektor ... 31
Figur 16: Radarprofil fra leteaksjonen ved Tête de Balme, Sveits 2001 34
Figur 17: Georadar fra MALÅ ... 37
Figur 18: Oppsett av MALÅ 500 MHz .. 38
Figur 19: Eksperiment på Turtagrø .. 39
Figur 20: Eksperiment i Frudalen ... 41
Figur 21: Hønsenettinger brukt under eksperiment i Frudalen .. 43
Figur 22: Oversikt over hull a-e i Frudalen ... 43
Figur 23: Dewow filter korreksjon ... 45
Figur 24: Georadarprofiler: a) før prosessering, b) Prosessert georadarprofil 46
Figur 25: Georadarprofil fra forsøk 1, 2 og 3 ... 48
Figur 26: Georadarprofil fra forsøk 4 og 5 .. 50
Figur 27: Frekvensspekter fra forsøk 4 ... 51
Figur 28: Georadarprofil fra forsøk 6, 7 og 8 ... 53
Figur 29: Georadarprofil fra forsøk 6, 9 og 10 ... 55
Forord

Denne oppgaven er skrevet i forbindelse med avsluttende bachelorutdanning i studiet Geologi og geofare 2014-2017 ved Høgskulen på Vestlandet, campus Sogndal.

Vi vil også takke Tor Geir Ø. Garpestad, Jens Kolnes og Øyvind Yttervik for samarbeid under feltarbeidet med georadar.
1. Sammendrag

Alpin skiferdsel blir stadig mer populært, noe som fører til at flere personer oppsøker skredfarlig terreng utenfor preparerte løyper. De siste årene har statistikken på antall snøskredofre økt, og det er stort behov for nye og raskere metoder for søk etter skredtatte. En stor del av de skredtatte blir fullstendig begravet i snømasser, og er avhengige av assistanse for å overleve. I dag brukes det flere søkemetoder, der redningsgrupper har opplæring og kunnskap til å hente ut skredtatte. Felles for disse søkemetodene er at de er tidkrevende, og redningsmannskapet må oppholde seg i skredutsatt område over lengre tid. Georadar har ved tidligere anledninger blitt brukt til å finne skredofre i situasjoner der andre metoder har feilet, men det er enda ikke funnet noen i live ved hjelp av radaren. I denne oppgaven blir en georadar med 500 MHz antenne fra den svenske produsenten MALÅ brukt til å undersøke potensiale til søk og redning. Hovedmålet med oppgaven er å teste hvorvidt georadaren klarer å skille objekter og personer fra snøen og skredmaterialet rundt. Totalt 10 målinger er blitt gjort på 2 forskjellige lokasjoner med ulike snøtyper, for å vurdere hvordan snøen påvirker signalene fra radaren. Forsøkene viser at lokalisering av objekter med radaren er lettest i tørr snø, mens vann i snødekket forstyrer og demper signalene. Orienteringen til gjenstandene viser seg også å være avgjørende for refleksjoner, og konduktive objekter som ligger på tvers av profilretningen skiller seg tydelig ut i radargrammene som klare reflektorer. I oppgaven blir det også diskutert hvordan georadaren bør brukes til søk i snø, sammen med anbefalinger til videre undersøkelser for å utvide forståelsen av radaren. Eksperimentene som er utført i denne oppgaven viser at det er potensiale for bruk av georadar til søk etter objekter og personer, og denne metoden kan bli et viktig verktøy i fremtiden med forbehold om videreutvikling av ny teknologi.
2. Innledning

Personer som ofte ferdes i skredutsatt terreng har gjerne en elektronisk sender-mottaker for å kunne utføre kameratredning, i tillegg til en skredsekk med oppblåsbare ballonger som reduserer faren for å bli begravet. Enkelte skiklær-produsenter bruker også en refleksionsbrikke som sys inn i klærne (recco-brikke). Denne brikken kan brukes for å søke opp personer ved hjelp av et søkesystem kalt Recco. Det er likevel flere utfordringer med dagens teknologi for søk etter skredtatte. Mange som ferdes i naturen om vinteren er ikke utstyrt med slike hjelpemidler, noe som fører til at sjansene for å bli funnet i et snøskred er betydelig redusert. Det er derfor viktig å finne andre metoder som raskt kan lokalisere personer begravet av snøskred. I dag brukes lavinehunder, redningsmannskap med søkestang og søk fra helikopter for å finne begravde personer. Disse lokaliseringss-metodene er tidkrevende og dersom en person ligger begravet i snø over en halvtime, er det liten sannsynlighet for å finne personen i live (Landrø, 2002).

Denne oppgaven går ut på å undersøke om det elektromagnetiske måleapparatet, georadar, kan brukes til å lokalisere objekter og personer som er begravd i snø. Georadar er en geofysisk undersøkelsesmetode som sender ut elektromagnetiske bølger, og fanger opp endringer i undergrunnen. Radaren som er brukt i forsøkene kommer fra den svenske produsenten MALÅ og har en antenne på 500 MHz. Målet med forsøkene er å undersøke om georadaren vil fange opp kontrasten mellom skredmasser og objekter, personer og skredmateriale. Skredmateriale blir i denne oppgaven definert som det materiale snøen tar med seg i et snøskred som trær, vegetasjon, stein og jord. Skredmasser defineres som all snø involvert i skredet. Forsøkene som er gjort handler om å teste hvilke fordeler og begrensninger MALÅ 500 MHz (heretter omtalt som georadaren), har for søk etter objekter og personer i snø, der målsettingene er:
A) Vurdere hvordan snøens oppbygging påvirker lokalisering av begravde objekter med georadaren.

B) Undersøke om det er mulig å bruke georadaren til å skille personer og utstyr som er begravet i snøen fra skredmasser og skredmateriale (trær, stein, blokker) og finne ut hvilke typer objekter radaren best lokaliserer.

C) Redegjøre for hvordan objektenes form og størrelse påvirker georadarens signal, der hovedmålet er å undersøke radarens horisontale oppløsning for å bestemme hvor små objekter georadaren kan oppdage.

D) Undersøke hvordan objektens orientering påvirker georadarens signal, slik at en kan komme med anbefalinger til hvordan en best mulig kan gjøre søk med georadar.

E) Vurdere om elektronisk søkeutstyr påvirker georadaren, og undersøke om personer med innebygd Recco-brikke i klær eller sender-mottaker, lettere kan bli lokalisert ved georadar enn personer uten elektronisk søkeutstyr.

F) Undersøke hvilken avstand en kan forvente å se refleksjoner fra forskjellige objekter, for å komme med et forslag til hvor tette profilene kan være ved søk gjennom et område (søkegrid).
3. Teori

I første del av dette avsnittet (avsnitt 3.1.) blir det beskrevet hvorfor snøskredforskning er viktig, før prosessen for snø, snøskred og snøskredtypene blir forklart. Deretter blir det beskrevet hvordan dagens søk etter skredtatte foregår, og hvilke utfordringer dagens teknologi medfører.

Avsnitt 3.2. presenterer den elektromagnetiske målemetoden- georadar, som i denne oppgaven blir brukt for lokalisering av begravde objekter i snøen. Deretter blir det beskrevet hvordan radargrammer bør tolkes, med vekt på lokalisering av objekter og materiale som er relevant for snøskred.

I siste delen av teori-avsnittet (avsnitt 3.3.) blir mulighetene for bruk av georadar til søk i snøskred forklart, basert på tidligere undersøkelser fra Svalbard og Chamonix og undersøkelser beskrevet av Heilig et al. (2008). I tillegg blir nødvendigheten av å utvikle ny teknologi for søk i snøskred beskrevet ved hjelp av tidligere erfaringer og tester.

3.1. Snøskred og søk etter mennesker tatt av skred

3.1.1. Statistikk for snøskred i Norge

Hver vinter blir personer i Norge tatt av snøskred. Tidligere var det oftest personer som oppholdt seg i hus i skredutsatt terreng som ble rammet av naturlig utløste skred, men i de siste årene er det personer som driver med friluftsaktiviteter, spesielt ski- og scoottskjøring som forårsaker de fleste ulykker (Brattlien, 2016). Statistikken viser at tre til fem personer i Norge omkommer som følge av snøskred hvert år, mens det på verdensbasis er mellom 150 og 200 mennesker som omkommer i snøskred hver vinter (NGI, 23.03.2017).

I denne oppgaven brukes den elektromagnetiske målemetoden, georadar til å lokalisere objekter og personer begravd i snø, for så å vurdere om georadar vil være et nyttig hjelpemiddel for søk etter skredtatte. Det er viktig å vite hvilke faktorer som påvirker snøskredulykker og hva som er mest sannsynlig å møte i et skredområde, slik at en er klar over hvilke forhold og forutsetninger georadaren skal brukes under. I forbindelse med forskning på snøskredulykker, har NGI utarbeidet en rapport om dødsulykker som følge av snøskred over en 10-års periode. Denne rapporten viser at skikjørere som ferdes i bratt terreng er mest utsatt for skred, hvor
flakskred krever flest liv. Rapporten viser også at det er en økning i ulykker de siste årene og at det er letemannskaper som oftest finner de omkomne. (Brattlien, 2016).

Figur 1 viser en oversikt over dødsulykker som følge av snøskred fra 2003 til 2013. Fra vinteren 08/09 til 09/10 er det en fremtredende økning av dødsulykker. Den tydelige økningen er en følge av friluftsaktiviteter som er i utvikling, hvor aktiviteter som randonèe og off-piste skikjøring der en beveger seg på ski utenfor preparerte løyper, har blitt mer populært. Dette fører til at flere personer oppsøker bratt terreng med helling over 30°, og dermed er utsatt for skred (Brattlien, 2016).

Av skredene som forårsaket dødsulykkene er 80% utløst av menneskelig aktivitet, mens 20% er naturlig utløst. 70% av de omkomne har oppsøkt bratt terreng hvor hellingen er over 30°, mens de resterende 30% har ferdes på slakt terreng, men kan ha vært utsatt for naturlige utløste skred på dager hvor det har vært stor snøskredfare (Brattlien, 2016).

Skredtype har også en innvirkning på dødsulykkene, hvor Figur 2 viser at hele 77% av hendelsene skjedde som følge av flakskred. Flakskred utløses når svake lag i snøen går i brudd, og fører til at sammenhengende flak av snø skil rør ut (Brattlien, 2012). I avsnitt 3.1.2 blir de forskjellige skredtypene forklart nærmere. Statistikken viser også at det skjer flest ulykker i helger og helligdager, og at mars måned er den måneden det skjer flest dødsulykker (Brattlien, 2016).

Figur 3 viser tydelig at det er skikjørere som står for nesten halvparten av skredulykkene. Disse skikjørerne er primært personer med randonée- og telemarks utstyr som ferdes i bratt terreng og ikke vanlige skigåere som ferdes på langrenn og fjellski (Brattlien, 2016). Det er også verdt å merkes at snøskutere står for 19% av dødsulykkene, slik at en kan forvente å finne større objekter som en snøskuter i et snøskred.

Figur 4 viser at det er letemannskaper (redningsgrupper) som oftest finner de skredtatte. Det kan være mangel på kompetanse og utstyr som gjør at turfolge ikke klarer å gjennomføre kameratredning. 57% av de omkomne har ikke hatt sender-mottaker, noe som gjør kameratredning svært vanskelig. Dette er grunnen til at snøskredforskning stadig blir viktigere, der metoder for rask og sikker søking i skredutsatt område er avgjørende for å redde liv.
Statistikken viser at letemannskaper finner de fleste skredtatte, og organisert redningsarbeid med funksjonelt søkeutstyr kan være den avgjørende faktoren for å finne skredtatte i tide. Uten elektronisk søkeutstyr er det vanskelig å lokalisere skredtatte, og det er derfor viktig å utvikle nye metoder for rask og sikker søking som ikke avhenger av bruk av sender-mottaker.

Figur 4: Oversikt over hvilken gruppe som har funnet de omkomne, der letemannskaper som oftest finner de skredtatte (Brattlien, 2016).

3.1.2. Snø og snøskred

Snødekkets oppbygging

Snø er en porøs blanding av is, vann og luft hvor poresystemet utgjør en sammenhengende struktur av iskrystaller (Selvik, 2002). Snøfaller i utgangspunktet som nedbør der vanndamp i luften kjøles ned til under null grader slik at vannmengden går direkte over til å bli iskrystaller (Landrø, 2002). I tillegg kan snø transporteres med vind og skred, og bidra til dannelse av flere lag med snø som kalles snødekkets oppbygging. Været er den viktigste påvirkningen for
snødekkets oppbygging, da vind og temperaturforskjeller avgjør hvordan snøens overflate endrer seg. Snø som blir dekket av ny snø, vil på grunn av endring i trykk og temperatur gjennomgå en omvandling og få andre egenskaper enn snøen over. Slike sekvenser med lagvis oppbygging av snø med forskjellige egenskaper har stor betydning for snøskred og utløsning av snøskred (Landrø, 2002).

Løssnøskred, sørpeskred og skavlbrudd

Snøskred deles ofte inn i to hovedtyper, løssnøskred og flakskred. De to hovedtypene kan også deles videre inn som tørrsnøskred og våtsnøskred, etter vanninnhold i snøen (Lied og Kristensen, 2003). Figur 5 viser et skjema for omvandling av snø hvor pilene viser mulige overganger mellom forskjellige typer snø. Tørr nysnø er svært lette, løse og tørre snøkrystaller som faller ved et par kuldegrader når det er tørr luft, vindstille og skydekket er høyt slik at krystallene har lang falltid (Landrø, 2002). Dersom det faller store mengder tørr nysnø, kan det utløses tøre løssnøskred i svært bratte heng med minimum 35˚ helling. Utløsning av løssnøskred vises i Figur 6, og skjer ved utvikling av bevegelse i et punkt på snøoverflaten som setter snøen nedenfor i bevegelse. Det kan dermed oppstå en kjedereaksjon, der skredet utvikler seg både i dybde og bredde. Løssnøskred blir som regel utløst av ytre påvirkninger som skikjørere, eller stein og snø som faller ned og setter i gang bevegelsen (Landrø, 2002).

Om våren eller ved sterk soloppvarming kan storkornet snø (Figur 5) miste bindingen, og våte løssnøskred kan oppstå ved hellinger lavere enn 35°. Dersom snøens vanninnhold er så høyt at snøen nesten er flytende, kan skredet kalles et sørpeskred. Tilførsel av vann fra snøsmelting eller intens regn er den viktigste årsaken til utløsning av sørpeskred (Lied og Kristensen, 2003). Snøskred som følge av skavlbrudd kan også være årsak til ulykker (se avsnitt 3.1.1). Skavler løses ut/ knekkes av fra fjellrygger, og kan utløse skred i relativt stabile nedenforliggende heng grunnet sjokkbelastning fra skavlens fall. Det kan også være utrygt å oppholde seg på en skavl, da tilleggsbelastningen fra mennesker kan føre til skavlbrudd (Varsom, 2017).
Figur 5 Omvandlingsskjema for snø. Pilene viser mulige overganger mellom de forskjellige snøtypene (Landrø, 2002).

Figur 6: Løssnøskred som starter i et punkt før skredet brer seg ut (Landrø, 2002).

Flakskred

Selv om løssnøskred, sørpeskred og skavlbrudd kan sette i gang store bevegelser av snøen og gjøre ødeleggelsel, er det flakskred som er de farligste skredene. Statistikken viser at flakskred krever flest menneskeliv, og denne type skred er hovedtrusselen mot skikjørere (avsnitt 3.1.1). Flakskred løser som følge av brudd i faste snølag i heng rundt 30˚eller brattere (Landrø, 2002). Skredet vil gli ut i større eller mindre flak som etter kort tid kommer opp i stor hastighet og
brytes opp til mindre blokker. Figur 7 viser de tre hovedelementer som må være tilstede for å utløse flakskred: 1) flaket, der krystallene er godt bundet til hverandre. 2) et svakt lag bestående av dårlig bundet snø som fort kollapser, eller et glatt lag med lite friksjon. 3) en glideflate som flaket kan skli på, bestående av hardere snø eller et skarelag (Landrø, 2002).

Figur 7: Flakskred utløses ved brudd av tre faktorer: en glideflate, et svakt lag og et bundet skredflak (Landrø, 2002).

Når en vet dannelsesmønsteret for snøskred, kan en vurdere hvordan skredene vil utvikle seg og hvilke skredmaterialer det vil være sannsynlig å finne i de forskjellige skredene. Siden flakskred er den farligste skredtypen, vil denne typen være hovedfokuset videre i denne oppgaven. I flakskred vil den høye hastigheten av oppsprukne flak ta med seg blokker og stein i tillegg til trær og busker dersom området består av mye vegetasjon. Størrelsen på skredmaterialet er avhengig av hvor stor hastighet skredet har, der hastigheten generelt øker med økende helling, og skredets evne til å transportere masser øker med økende hastighet (Mears, 1992).

Selv om hastighet er viktig, er det fastheten til snødekket som er den avgjørende faktoren for løsriving og transportering av skredmasser (Selvik, 2002). Når flakene glir ut og brytes opp i flere deler, vil snøpartiklene samle opp mer masse, og danne en front med høyere tetthet. Fronten vil bevege seg hurtigere og etter hvert gå over til en slags flytebevegelse, hvor skredets bunn har høy tetthet mens tettheten avtar høyere opp i skredden (Mears, 1992). Denne tetthetsforskjellen kommer av at det er mer luft i øvre del av skred, og mindre luft i nedre del.
Transport av skredmateriale foregår i nedre del med høyere tetthet, fordi den øvre delen består av en snøsky som kan bli flere titalls meter høy (McClung og Schaerer, 2006).

Når skredet stanser og faller til ro, vil skredmassene ofte etablere en stratigrafisk struktur. Den høye tettheten i bunn av skredet fører til at større materialet blir fraktet og avsatt i øvre del (Selvik, 2002). Stratigrafien blir altså en revers gradering, ettersom masser i bevegelse har en evne til å samle de minste skredmassene nederst og de største blokkene på topp (Tschirky et al., 2000). Blokker i skredmassene vil danne en struktur med imbrikering, som vil si at den lengste aksen til blokkene er orientert med retningen til skredet (Blikra og Nemec, 1998). Overliggende trykk fra øvre del av snømassene fører til at nedre del blir komprimert, og det vil være svært lite luft i bunn av snøskredet. I øvre del av skredet vil det være mer luft grunnet lavere tetthet og luftrom rundt større snøblokker (Tschirky et al., 2000). Dersom en skredtatt person havner nederst i et snøskred, er altså sjansene for å overleve mye mindre enn dersom en havner i øvre del av skredet (Selvik, 2002). Dersom det er lite vegetasjon i snøskredområdet, kan en forvente en tettpakket snø struktur i skredmassene uten betydelig innhold skredmateriale.

3.1.3. Søkemetoder og utfordringer med dagens teknologi

I Norge settes det hvert år i gang flere redningsaksjoner i forbindelse med snøskred og søk etter mennesker tatt av snøskred. Kameratredning med sender-mottaker-system er den raskeste søkemetoden, men utstyret er dyrt og statistikken viser at de fleste som blir tatt av snøskred ikke har brukt apparatet (se avsnitt 3.1.1). I tillegg kan ikke personer som ferdes alene, eller der hele turfølget blir tatt av skred, reddes ved kameratredning. For å finne skredtatte i tide, er en nødt til å ha organiserte redningstjenester med kvalifisert personale og fungerende utstyr for søk i skred. Figur 8 viser statlige og profesjonelle aktører som skal ha kompetanse til å bistå i redningsaksjoner i forbindelse med snøskred (Råd, 27.03.2012).
Figur 8: Oversikt over grupper som skal bistå ved redningsaksjoner. Alle grupper skal beherske førstehjelp, sikkerhet- og risikovurdering, organisering, redning og søkemetoder (Råd, 27.03.2012).

I dag er det flere søkemetoder som benyttes av organiserte redningstjenester for å lokalisere mennesker som er begravd i snøskred:

- Overflatesøk med helikopter
- Lavinehunder
- Elektronisk søkeutstyr
- Søk med sondestenger

Overflatesøk med helikopter

Når en skal starte opp søk etter skredtatte er det viktig å analysere skredområde for å avgjøre om det er trygt å ta seg inn i området med tanke på fare for flere skred. Dette kan gjøres svært raskt med overflatesøk med helikopter, hvor redningsgruppen får oversikt over skredet, utløpsområdet og skredbanen, og finner ut hvor en skal konsentrere søket. Ofte er det hindringer i skredbanen som trær og blokker, som har fanget opp den skredtatte personen, og disse hindringene kan bli lokalisert raskt med overflatesøk. Dersom det blir funnet objekter som tilhører den skredtatte i overflaten av skredet, kan dette gi informasjon om strømningsforholdet i skredet. En kan også være heldig å finne en stav eller ski som stikker opp av skredooverflaten, noe som gjør det naturlig å begynne søk etter den skredtatte nær de lokaliserte objektene (Selvik, 2002).
Søk med lavinehunder

Dersom skredtatte personer ligger dypt begravet slik at et overflatesøk ikke vil gi noen resultater, er lavinehunder et effektivt hjelpemiddel for søk da de kan lukte seg frem til begravde personer. Lavinehunder har god presisjon og høy søkehastighet og en godkjent lavinehund skal kunne lokalisere to personer som er begravet ned til 3 meter innenfor et område på 150m x 150m på en halvtime. Lavinehunder er trent til å markere, enten ved å gi hals eller å grave i snøen når den lukter mennesker, slik at redningsmannskapet kan bruke sondestang for å finne hvor den skredtatte ligger (Norges røde kors, 1992).

Søk med lavinehunder er en effektiv måte å søke på, men metoden er avhengig av hundens dagsform, og ytre påvirkninger som vind og andre lukter i nærheten. En begravet menneskekropp avgir luktpartikler som blir fraktet til overflaten ved luftstrømmer i snømassene. Disse partiklene vil følge minste motstand på vei opp, der hindringer som store blokker, luftrom i snøen, trestammer og liknende vil kunne lede luktpartiklene vekk fra den skredtatte (Burnett, 2003). Derfor er søk med lavinehunder helt avhengig av mannskap med sondestenger som kan søke i området rundt der hunden markerer. Lukten er også utsatt for vind, hvor jevn vind er håndterbart for lavinehunder, men sterke vindkast gjør at lukten spres på en måte som gjør den vanskelig å spore (Burnett, 2003).

Søk ved hjelp av elektronisk utstyr

Søk ved hjelp av elektronisk utstyr kan være et godt alternativ til lavinehund ekvipasjen så lenge hunden ikke blir forstyrret av lukt eller spor. Søk med sender-mottaker-systemet er effektivt og de aktuelle redningstjenestene og skredgruppene (Figur 8) har omfattende trening i søk etter denne metoden. Figur 9a viser et eksempel på en sender-mottaker, hvor knappene på toppen justeres ettersom en vil motta eller sende elektromagnetiske signaler på 457 KHz. Rekkevidden er på 60 meter, men er avhengig av snøforhold og dybde til de begravde. Det er også mulig å benytte flere apparater samtidig under et søk (Selvik, 2002).

Søk med sender-mottaker-system er avhengig av at den skredtatte er utstyrt med et slikt apparat i sendemodus med nok batteritid. Denne søkemetoden fungerer best dersom det finnes personer på overflaten med sender-mottaker, som kan starte søket raskt og utføre kameratredning. Dersom dette utstyret først blir tatt i bruk når redningstjenesten kommer, er det stor sjanse for
at tiden ikke er tilstrekkelig for å finne overlevende, da en statistisk stor andel omkommer før 35 minutter etter at skredet har stanset (Selvik, 2002).

Dersom personer blir tatt av et skred i nærheten av et alpinsenter, er det stor sannsynlighet for at personene ikke bruker et sender-mottaker-apparat da kulturen med å ha apparatet på kropp ikke er like sterk i skiheiser. Derfor er det et godt hjelpemiddel hvis skisentrene tar i bruk recco-systemet, og har hjelpemannskap som er opplært i systemet. Recco-systemet består av refleksjonsbrikker som blir innebygget i skiklær som vist i Figur 9b. Recco-brikken mottar signalet på 917MHz og sender det tilbake med dobbel frekvens til søkeenheten, slik at det er mulig å lokalisere brikken (RECCO, 26.04.2017). Systemet baserer seg på at den skredtatte har en slik reflektorbrikke innebygget i skiklærne, og at en recco-søkeenhet er i nærheten (Selvik, 2002).

![Figur 9: a) Eksempel på sender-mottaker fra Mammut. På baksiden er det en beskrivelse av fremgangsmåte for søk. b) Innebygget RECCO-brikke i ski jakke.](image-url)
Søk med sondestenger

Punktsøk blir gjort i forbindelse med overflatesøk der hensikten er å tidlig avklare om skredtatte kan befinne seg ved hindringer i form av trær og blokker som stikker opp i skredmassene. Det blir også foretatt punktsøk i området hvor lavinehunder markerer funn. Grovsøk går ut på at hvert mannskap skal gå på linje over skredet, og sondere organisert tre ganger per steg (Jamieson og Auger, 1997). Prosessen for finsøk er den samme som ved grovsøk, men grunnet mindre avstand mellom mannskap, er finsøk en mer tidkrevende metode som brukes i liten grad.

Søk med sondestenger er effektivt i kombinasjon med andre metoder, men alene er metoden tidkrevende og meget usikker. Sjansen for å treffe skredofferet med søkestangen i større skred er liten. Når det søkes med grovsøk har en mulighet til å dekke store områder fort, men det er også mulig å gå over personen uten å treffe med stangen. Sondestenger har også begrenset
dybde, slik at det er umulig å lokalisere ofre som ligger dypere enn stangens lengde. I tillegg vil mannskap som leter med sondestenger oppholde seg i skredutsatt område over lengre tid, og er derfor eksponert for eventuelle nye skred.

3.2. Georadar

Utfordringer med dagens teknologi innen søk etter skredtatte gjør at det stadig blir forsket på nye og raskere måter for søk etter savnede i snøskred. Georadar er en elektromagnetisk metode som har egenskaper til å skille personer fra snøen rundt, og utvikling av denne metoden er derfor svært interessant i denne sammenhengen.

Georadar som på engelsk kalles ground penetrating radar (GPR) er en geofysisk undersøkelsesmetode. Georadar blir brukt til å gjøre undersøkelser av strukturer under overflaten, og kan brukes til kvartærgeologisk kartlegging, der georadaren viser detaljerte strukturer og lagdelinger i sedimenter. Radaren kan også brukes til å lokalisere grunnvannsspeil i løsmasser og sprekker med vann i fast fjell. En kan også bruke georadar til å lokaliserer mineralforekomster, gjøre arkeologiske undersøkelser, bestemme is- og snø tykkelser, og andre undersøkelser for å lokalisere variasjoner i undergrunnen. (Mauring et al., 1995)

Prinsippet med georadar er å sende elektromagnetiske bølger ned i grunnen, for å måle refleksjonene av bølgene. Refleksjonene er et resultat av endringer i undergrunnen, og georadaren vil dermed ha mulighet til å skille snø fra objekter og personer fordi de elektriske egenskapene til de begravde objektene er forskjellig fra snøen rundt.

3.2.1. Elektromagnetiske bølger

Bølgenes utbredelse i materialet er avhengig av de elektriske egenskapene til vertsmaterialet (Mussett og Khan, 2000).

Dybden til reflektor kan uttrykkes med TWT:

\[h = \frac{TWT \times v}{2} \]

hvor \(h \) er dybden til reflektor og \(v \) er hastigheten em-bølgene forplanter seg med i ulike materialer (fasehastigheten).

3.2.2. Relativ permittivitet

Refleksjon av em-bølgene er et resultat av endring i vertsmaterialets relative permittivitet \((\varepsilon_r) \), og brukes til å skille materialer fra hverandre. Relativ permittivitet beskriver evnen et materiale har til å danne elektrisk ladning, og kalles også dielektrisitetskonstanten. Denne evnen er avhengig av at atomene utvikler positive eller negative ladninger når de blir utsatt for et elektrisk felt. Når materialet har ladning, kan det kalles en elektrisk dipol. Dielektrisitetskonstanten i geologiske materialer er ofte styrt av tilstedeværelse av vann, der høyt vanninnhold gir høy relativ permittivitet. Amplituden til de reflekterte bølgene øker med forskjell i relativ permittivitet. Stor forskjell mellom materialers relative permittivitet gir mindre forplantning av energi gjennom laggrenser, slik at mesteparten av energien blir reflektert tilbake (Mussett og Khan, 2000). Dette vises tydelig i georadar-profilet som en laggrense, og et eksempel på dette er skille mellom is og vann. Tabell 1 viser verdier for relativ permittivitet og andre egenskaper for utvalgte materialer. Relativ permittivitet er også viktig for bølgenes hastighet gjennom materialet, der for eksempel våt og fuktig snø har høyere relativ permittivitet og dermed lavere hastighet enn tørr snø.

Bølgenes hastighet kan utrykkes ved formelen:

\[\nu = \frac{c}{\sqrt{\varepsilon_r}} \]

hvor \(c \) er lysets hastighet (0,3 m/ns), og \(\varepsilon_r \) er relativ permittivitet.
Tabell 1: Liste over materialegenskaper for utvalgte materialer ved 100MHz. I georadar undersøkelser varierer hastighet ikke med frekvens, men med materialtype.

<table>
<thead>
<tr>
<th>Materiale</th>
<th>Relativ permittivitet, εr</th>
<th>Konduktivitet, σ (mS/m)</th>
<th>Hastighet, v (m/ns)</th>
<th>Demping, α (dB/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luft</td>
<td>1</td>
<td>0</td>
<td>0,30</td>
<td>0</td>
</tr>
<tr>
<td>Ferskvann</td>
<td>80</td>
<td>0,5</td>
<td>0,033</td>
<td>0,1</td>
</tr>
<tr>
<td>Saltvann</td>
<td>80</td>
<td>30000</td>
<td>0,01</td>
<td>1000</td>
</tr>
<tr>
<td>Tørr sand</td>
<td>3-10</td>
<td>0,01-0,5</td>
<td>0,15</td>
<td>0,01</td>
</tr>
<tr>
<td>Vannmettet sand</td>
<td>20-30</td>
<td>0,1-1,0</td>
<td>0,06</td>
<td>0,03-0,3</td>
</tr>
<tr>
<td>Granitt</td>
<td>4-6</td>
<td>0,01-1</td>
<td>0,13</td>
<td>0,01-1</td>
</tr>
<tr>
<td>Is</td>
<td>3-8</td>
<td>0,01</td>
<td>0,16</td>
<td>0,01</td>
</tr>
<tr>
<td>Snø*</td>
<td>1,2-12</td>
<td>0,00</td>
<td>0,08-0,27</td>
<td><0,01</td>
</tr>
<tr>
<td>Tre*</td>
<td>8-15</td>
<td>0,02</td>
<td>0,07-0,1</td>
<td></td>
</tr>
<tr>
<td>Stein/Blokk*</td>
<td>5-10</td>
<td>0,1-2</td>
<td>0,09-0,13</td>
<td></td>
</tr>
<tr>
<td>Menneske*</td>
<td>50</td>
<td>800</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>Metall*</td>
<td>∞</td>
<td>3,66 x 10^7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.3. Konduktivitet

3.2.4. Frekvens

Frekvens (f) er antall bølgelengder som repeterer seg selv per tidsenhet (Mussett og Khan, 2000). Antennene til georadaren sender ut et spekter av em-bølger og dette spekteret er en normalfordeling rundt senterfrekvensen. De vanligste senterfrekvensene ligger mellom 25 og 1000 MHz, og antennene som er brukt i denne oppgaven har en senterfrekvens på 500 MHz. Em-bølger med høye frekvenser har mindre bølgelengde og dempes raskere enn lave frekvenser fordi amplituden dempes med samme faktor for hver bølgelengde. Formel 3 viser hvordan forholdet mellom frekvens og bølgelengde:

$$f = \frac{\nu}{\lambda}$$

(3)

hvor ν er em-bølgens hastighet, og λ er bølgelengden (Mussett og Khan, 2000).

3.2.5. Demping av em-bølgenes signal

3.2.6. Skinndybde

Skinndybde (δ) er et uttrykk for hvor stor penetrasjonsevne georadaren har. Skinndybde er et dyp der de elektromagnetiske bølgenes amplitude er redusert til $1/e$, hvor e er den matematiske konstanteren 2,718 (Mauring et al., 1995). Bølgene blir svakere ved dypet grunnet demping av signalet. Amplituden vil aldri bli null siden den avtar eksponentielt, men skinndypet er et estimat for georadarens rekkevidde. Under skinndypet vil bølgene ofte være så svake at georadaren ikke klarer å registrere bølgene over støynivået. Skinndypet avtar med øket demping av signalet, slik at en georadar med lav frekvens i et materiale med lav konduktivitet vil gi størst penetrasjonsdyp. Det er derfor viktig å vurdere hvilken frekvens en vil bruke til forskjellige undersøkelser. Figur 12 illustrerer skinndypet ved to forskjellige frekvenser i samme vertsmateriale, og viser forholdet mellom frekvens, demping og skinndybde.

Det teoretiske skinndypet kan regnes ut ved:

$$\delta = 500 \sqrt{\frac{1}{\sigma f}} \quad (1)$$

hvor σ er elektrisk ledningsevne (konduktivitet), og f er frekvens (Mussett og Khan, 2000).

3.2.7. Vertikal oppløsning

Georadarens frekvens er avgjørende for apparatets evne til å registrere reflektorer, hvor en skiller mellom horisontal- og vertikaloppløsning. Vertikal oppløsning er minimum avstand mellom to reflektorer for at radaren skal kunne fange de opp som separate reflektorer. Vertikal oppløsning er i teorien $\lambda/4$, men usikkerhet ved fasehastighet og variasjoner i bølgeform begrenser den reelle vertikale oppløsningen til $\lambda/3$-$\lambda/2$ (Mauring et al., 1995). Formel 3 viser forholdet mellom frekvens og bølgelengde, hvor den vertikale oppløsningen får en mindre verdi med økende frekvens, noe som fører til bedre vertikal oppløsning (Mauring et al., 1995). Undersøkelser av grunne objekter eller detaljerte lagdelinger krever derfor høyere frekvens som gir bedre vertikal oppløsning. Tabell 2 viser vertikal oppløsning for utvalgte materialer ved forskjellige frekvenser.
Tabell 2: Vertikal oppløsning for snø, stein/blokk og menneske ved frekvenser på 50, 100 og 500 MHz. Antatt vertikal oppløsning er $\lambda/2$

<table>
<thead>
<tr>
<th>Materiale</th>
<th>Frekvens, f (MHz)</th>
<th>Vertikal oppløsning (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snø ($v = 0,21$ m/ns)</td>
<td>50</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1,05</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0,21</td>
</tr>
<tr>
<td>Stein/Blokk ($v = 0,09$ m/ns)</td>
<td>50</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0,09</td>
</tr>
<tr>
<td>Menneske ($v = 0,04$ m/ns)</td>
<td>50</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>0,04</td>
</tr>
</tbody>
</table>

3.2.8. Horisontal oppløsning

Horisontal oppløsning bestemmer hvor stor avstand det må være mellom reflektorene for at de kan detekteres som individuelle refleksjoner, og varierer med antennefrekvens og materialtype (Mauring et al., 1995). Ved lave antennefrekvenser vil den horisontale oppløsningen få høyere verdi, som fører til dårligere oppløsning. Minstearealet for deteksjon av reflektorer vil være mindre ved høye frekvenser, og høye frekvenser har derfor bedre horisontal oppløsning (Annan, 2003). Det er dermed viktig å velge riktig frekvens i forhold til formålet med undersøkelsene. Høye frekvenser har god vertikal- og horisontal oppløsning og egner seg godt til undersøkelser av tette lag og små strukturer. Lave frekvenser har dårligere oppløsning, men er godt egnet til undersøkelser av f.eks. is-tykkeler der grenseflatene er store. Arealet for refleksjon fra en grenseflatene kalles Fresnelsone (Baker og Jol, 2007). Denne sonens størrelse er avhengig av dybden til reflektor, lysets hastighet, relativ permeabilitet og frekvens, og kan beregnes ved hjelp av disse formlene:

\[
A = \frac{c}{4f \sqrt{\varepsilon_r}} + \frac{d}{\sqrt{\varepsilon_r} - 1} \quad (4)
\]

\[
B = \frac{A}{2} \quad (5)
\]

hvor A og B er halvakser, mens d er dybde til reflektor som vist i Figur 13. c lysets hastighet (0,3 m/ns), ε_r er relativ permittivitet og f er frekvens (Mauring et al., 1995).

Formlene for fresnelsonen kan også brukes til å beregne en teoretisk verdi for minimumsstørrelsen et objekt må ha for å gi en refleksjon. I teorien kan en detektere en reflektor dersom \(B > \frac{d}{10}\) (Mauring et al., 1995). Tabell 3 viser utregninger for fresnelsonen i snø ved forskjellige dybder og forskjellige frekvenser, og det er tydelig at minstearealet for deteksjon øker med lavere frekvens. Horisontal oppløsning er derfor viktig for undersøkelsene av objekter begravd i snøen, da den er direkte relatert til fresnelsonen, og kan forklare hvorfor vi ser noen reflektorer og ikke andre.

![Diagram](image)

Figur 13: Horisontal oppløsning av en reflektor, der det mest av energien blir reflektert fra sirkelen som kalles «Fresnelzone» (Mauring et al., 1995).

**Tabell 3: Utregning av horisontal oppløsning ved formel 4 og 5 for snø \(\varepsilon_r = 2\) ved 50, 250 og 500 MHz. Verdiene er satt til forventede dybder av objekter som kan lokalisere: \(d = 0,5\text{m og } 1\text{m}. Dersom } B > \frac{d}{10}\text{ vil en forventet refleksjon fra objektet.}

<table>
<thead>
<tr>
<th>Frekvens, (f) (MHz)</th>
<th>Dybde, (d) (m)</th>
<th>(A) (m)</th>
<th>(B) (m)</th>
<th>(d/10) (m)</th>
<th>Forventet refleksjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0,5</td>
<td>1,56</td>
<td>0,78</td>
<td>0,05</td>
<td>Ja</td>
</tr>
<tr>
<td>1</td>
<td>2,06</td>
<td>1,03</td>
<td>0,1</td>
<td></td>
<td>Ja</td>
</tr>
<tr>
<td>250</td>
<td>0,5</td>
<td>0,7</td>
<td>0,35</td>
<td>0,05</td>
<td>Ja</td>
</tr>
<tr>
<td>1</td>
<td>1,21</td>
<td>0,61</td>
<td>0,1</td>
<td></td>
<td>Ja</td>
</tr>
<tr>
<td>500</td>
<td>0,5</td>
<td>0,61</td>
<td>0,3</td>
<td>0,05</td>
<td>Ja</td>
</tr>
<tr>
<td>1</td>
<td>1,1</td>
<td>0,55</td>
<td>0,1</td>
<td></td>
<td>Ja</td>
</tr>
</tbody>
</table>

28
3.2.9. Polarisering og orientering av antenner

Et elektromagnetisk felt har til enhver tid en størrelse og retning. Polarisering beskriver feltets retning som en funksjon av tid. Hvis vektoren som beskriver det elektriske feltet alltid er rettet i en rett linje, kalles det lineær polarisering. De vanligste antennene er dipol-antenner, som sender ut elektrisk felt med lineær polarisering. Antennen som er brukt i denne oppgaven (MALÅ 500 MHz antenne) er en dipol-antenne, hvor antennene er parallell og orientert vinkelrett på profilretningen, likt T2R1 som vist i Figur 14.

Objekter vil reflektere og diffraktere energi avhengig av polariseringen til feltet som sendes ut. Dersom det diffrakte feltet fra et objekt og mottaker-antennen begge er lineært polariserte, men de polariserte feltene har forskjellig orientering, vil man få en depolarisering. Depolarisering er en svekkelse av mottatt signal på grunn av forskjellig orientering i polariseringens retning. Mottakerantennens evne til å ta imot signal fra bakken er derfor ikke bare avhengig av størrelsen på det diffrakte feltet, men også retningen på polariseringen. Dersom det diffrakte feltet har polarisering normalt på mottaker-antennens polarisering, vil ikke signalet blir registrert (Radzevicius og Daniels, 2000).

Orienteringen av antennene er avgjørende for reflekssjonenes styrke ved mottakelse av signalet. Figur 14 viser et forsøk gjort for å illustrere hvordan ulike antenne-orienteringer blir påvirket av signalet fra undergrunnen. Undersøkelsen er gjort over et kobberrør med diameter 0,0032m på 0,46 m dyp, og viser at antennens orientering i forhold til kobberrørene er avgjørende for signalets styrke. Antennenes orientering vil også påvirke ellipsen til den horisontale oppløsningen (se avsnitt 3.2.8). Parallele antenner vil ha fotavtrykk med radius A vinkelrett på antennene og radius B parallelt med antennene (Baker og Jol, 2007). Det vil si at både fotavtrykket til radaren og den lineære polariseringen er ulikt med forskjellige orienteringer. Det største signalet fra avlange, konduktive objekter oppstår dersom antennen er orientert parallelt med objektets lengste akse, som vist i Figur 14 (T2R1 over 0°).
Figur 14: Georadarundersøkelser med forskjellige vinkler over et kobberrør. Både parallele orientoering og kryssorientoeringer i utprøvd ved 0, 15, 30 og 45°. T2R1 er et antennepakk som ligger vinkelrett på profilretningen (pilen). Antenneopsettet til T1R2 ligger parallel med profilretningen. Figuren er modifisert fra Radzevicius og Daniels (2000).

3.2.10. Tolking av georadarprofiler

Tolking av georadar-data er basert på sammenlikning og gjenkjenning av refleksjoner og refleksjonsmønstre (Mauing et al., 1995). Refleksjoner oppstår hovedsakelig som følge av forskjeller i relativ permittivitet mellom materialer (se avsnitt 3.2.2.). Det er viktig å ha kunnskap om hvordan objekter vanligvis ser ut i et georadar-profil og hvordan form og orientering påvirker refleksjonene for å tolke radargrammer på best mulig måte.

Relativ permittivitet for snø er avhengig av tetthet, fuktighet, kornstørrelse og temperatur og kan variere fra 1,2-12, der økende vanninnhold fører til økende relativ permittivitet (Modroo og Olhoeft, 2004a). En menneskekropp har en gjennomsnittlig relativ permittivitet på 50, mens materialer som kan forekomme i snøskredavsetninger som stein, trær, sko o.l. har verdier fra 2 til 12 for relativ permittivitet. (Modroo og Olhoeft, 2004b). Siden snøen og skremateriale kan ha nokså lik verdi for relativ permittivitet er det ikke gitt at det vil oppstå refleksjoner fra materialgrensene. Det er stor forskjell i relativ permittivitet mellom snø og mennesker, og snø og metall, slik at det er sannsynlig å oppdage refleksjoner med varierende styrke fra en skredtatt person eller en ski.
Grense mellom snø og grunn

Overflaten under snøen vises i georadarprofilet (radargrammet) som en refleksjon langs grenseflaten. Refleksjonens styrke er avhengig av hvilken type grunn snøen ligger over. Der overflaten er is, fjell eller tørre løsmasser kan refleksjonen fra laggrensen være svak grunnet liten forskjell i relativ permittivitet (Tabell 1). Dersom overflaten under snøen består av vannmettede løsmasser, som f.eks. myr og lignende kan en forvente en tydelig refleksjon fra grensen fordi vannnettet materialet har høyere relativ permittivitet (Mauring et al., 1995).

Objekter

Objekter som er små i forhold til signalets bølgelengde opptrer som punktrefflektor under overflaten, og vil vises som hyperbler i radargrammet. Disse objektene kan være stein, blokker, eller utstyret til en skikjører. Objektene opptrer som hyperbler i radargrammet fordi refleksjoner vil bli registrert ved TWT (se avsnitt 3.2.1) så fort objektet er innenfor georadarens rekkevidde. Em-bølgene som blir transmittert sprer seg i alle retninger, slik at objektene blir registrert både før og etter radaren er rett over dem. Siden avstanden fra objektet til georadarens antenner, varierer langs måleretningen, vil også TWT til objektet variere i radargrammet. Dette fører til at objektet opptrer som en omvendt U i form av en hyperbel, der toppunktet indikerer minste avstand til objektet som vist i Figur 15 (Selvik, 2002). Avstanden fra georadaren registrerer første signal, til radaren befinner seg rett over objektet, blir kalt «avstand x» i denne oppgaven og er illustrert med blå markør i Figur 15. Ved horisontale reflektorer blir det ingen hyperbel fordi signalet som rammer objektet med en vinkel, reflekteres vekk fra mottakerantenen.

![Figur 15: Figur modifisert fra Mussett og Khan (2000). Objekter kan opptre som punktrefflektor og vises som en hyperbel i radargrammet. Avstand x fra første signal radaren mottar, til radaren befinner seg rett over objektet.](image-url)
Orientering av objekter

3.3. Bruk av georadar for søk etter skredtatte

Skredproblematikk blir stadig mer relevant for samfunnssikkerheten da flere velger å oppsøke bratt terreng utenom skiløypene (se avsnitt 3.1.1). Dagens søkemetoder er tidkrevende dersom den skredtatte ikke bruker elektronisk søkeutstyr, som et sender-mottaker-apparat (se avsnitt 3.1.3). I tillegg viser statistikken at de fleste ofrene for snøskred ikke har brukt elektronisk utstyr da ulykken inntraff (se avsnitt 3.1.1). Søk etter skredtatte krever store redningsaksjoner, der mannskapet stort sett beveger seg på bakkenivå med elektronisk søkeutstyr, lavinehunder eller sondestenger (se avsnitt 3.1.3). Det vil alltid være en risiko forbundet med ferdsel i et skredområde da det er sannsynlig at flere skred kan utløses, og nye metoder for effektiv og sikker søking etter skredtatte personer er derfor nødvendig.

Siden 1994 har georadaren blitt ansett som et instrument for søk etter skredtatte (Crocco og Ferrara, 2014). Snø er et medium med liten eller ingen konduktivitet (avsnitt 3.2.3), der de elektromagnetiske bølgene har stor penetrasjonene. I tillegg er permittivitetskontrasten mellom personer og snø stor, slik at det er mulig å lokalisere personer ved hjelp av refleksjoner fra embølgene. Georadarens egenskaper er derfor viktig for utvikling av ny teknologi innenfor søk etter skredtatte personer.
Tidligere erfaringer med bakkebasert radar

Det er brukt georadar for søk etter mennesker begravd av snøskred i flere tilfeller. I 2001 ble en savnet person lokalisert i et snøskred ved Fardalen utenfor Longyearbyen, ved hjelp av georadaren PulseEkko med 1000 MHz antenner. Samme år ble georadaren brukt til å lokalisere skredtatte i det sveitsisk fjellområde Tête de Balme nær Chamonix, Frankrike (Instanes et al., 2004). I begge tilfeller måtte redningsgruppene avslutte leteaksjonene uten funn av de savnede, og mannskap med georadar ble hentet inn flere dager etter skredene gikk (Instanes et al., 2004).

Snøskredet i Tête de Balme 6. februar 2001 ble utløst av en gruppe nordmenn, hvor fem personer ble tatt av skredet. Fire av personene brukte sender-mottaker, og ble funnet innen 45 minutter etter skredet løsnet. På dette tidspunktet var en person allerede omkommet, en annen var kritisk skadet og omkom senere, mens to kom seg uskadet fra skredulykken. Redningsaksjonen ble avsluttet kvelden 7. februar uten å ha lokalisert den siste savnede personen (Instanes et al., 2004).

Tidligere tester med luftbasert radar

Undersøkelsene med georadar på Svalbard og i Sveits ble gjort med bakke-basert radar. Ulempen med denne metoden er at mannskapet vil være utsatt for fare da en skal undersøke skredområdet. I tillegg er bakkebasert radar svært tidkrevende da en må dra med seg utstyr over et større område. Derfor er det gjort tester der georadaren blir plassert under helikopter, slik at resultatene fortøpende blir sendt til monitoren og analysert av personell i helikopteret (Kristensen, 2003).

I 2007 ble det gjort en studie der deteksjon av objekter ble gjennomført ved luftbåren georadar (Heilig et al., 2008). Studiet gikk ut på å simulere bruk av helikoper ved å sette opp en 6 meter høy kabelbane med en lengde på 20 meter. Snøen under kabelen ble presset sammen med en måkebil slik at snøen ble tettpakket og ville likne massene fra et snøskred (se avsnitt 3.1.2). Tre poser med 10 liter vann ble brukt til å simulere personer da en menneskekropp består av opptil 60% vann. Relativ permittivitet for en menneskekropp og vann kan også sammenliknes, slik at signalene fra posene ville være en tilnærming av signalene fra en menneskekropp (Heilig et al., 2008). Formålet med testene var å finne ut 1) hvordan snøens egenskaper påvirker signalet fra radaren, 2) maksimal høyde der radaren kan detektere objekter og 3) hvordan
orientering av de begravde objektene i forhold til måleretning påvirker signalet (Heilig et al., 2008).

Resultatene fra undersøkelsene viste at snøens egenskaper er svært viktige, da vannposene lett ble gjenkjent ved refleksjoner i tørr snø med lav relativ permittivitet. I våt og fuktig snø ble signalet kraftig dempet grunnet økt konduktivitet i snøen (se avsnitt 3.2.3), og lokasjon av vannposene ble umulig. Høyden til georadaren påvirket målingene ved at den laterale utstrekningen av em-bølgene ble begrenset til 1,5 meter fra radarlinjen, noe som førte til at radarens søkestripe kun var på 3 meter. Studiet viste også at orienteringen av objektene i forhold til georadarens antenne er relevant i forhold til hvordan energien blir konsentrert, der vannposene på tvers av radarlinjen reflekterte mindre energi enn posene langs radarlinjen (se avsnitt 3.2.9). Det er derfor viktig å avdekke et område fra flere retninger, hvor en flygning i ortogonale mønstre ble anbefalt for å utelukke usikkerheter i forhold til orientering av objekter (Heilig et al., 2008).
4. Metode

4.1. Feltarbeid med georadar

Kontrollenheten ble festet til XV Monitoren ved hjelp av en Ethernet kommunikasjonskabel, og antennen ble koblet til kontrollenheten med fiberoptiske kabler. Det oppkoblede utstyret ble dratt av personen som utførte forsøkene som vist i Figur 18. Kontrollenheten ble plassert i en sekk, da dette er mest praktisk for personen som utførte forsøkene. Monitoren viser fortløpende profiler av undergrunnen og ble festet med karabinkroker til fremsiden av sekken slik at personen som gjennomførte forsøkene kunne følge med på målingene.

Innstillinger av måleparametere gjøres på XV Monitoren og Tabell 4 viser hvilke innstillinger som ble brukt under forsøkene. Hastigheten brukes til en omtrentlig bestemmelse av dybden mens en samler data og bestemmes av vertsmaterialet og målingene ble samlet med et konstant tidsintervall (time triggering) på 0,1 s. Samplingsintervallet må være minst 10 ganger så høy som signalets senterfrekvens for å gi korrekte målinger og stacks øker kvaliteten på målingene ved at flere målinger blir lagt sammen, der gjennomsnittet av disse utgjør en måling.
Tabell 4: Innstillinger av måleparametere brukt under feltarbeid på Turtagrø og i Frudalen.

<table>
<thead>
<tr>
<th>Måleparametere</th>
<th>Innstilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>500 MHz</td>
</tr>
<tr>
<td>Velocity</td>
<td>0,21 m/ns</td>
</tr>
<tr>
<td>Acquisition mode</td>
<td>Time triggering</td>
</tr>
<tr>
<td>Time interval</td>
<td>0,1 s</td>
</tr>
<tr>
<td>Sampling frequency</td>
<td>18928,96 MHz</td>
</tr>
<tr>
<td>Stacks</td>
<td>4</td>
</tr>
</tbody>
</table>

Under forsøkene ble elektroniske markører brukt under datainnsamlingen hver gang antennen var rett over objektene. Det ble lagt ut en markør i form av en taustump rett ovenfor objektene, slik at personen som opererte georadaren lett kunne se hvor objektene lå begravet. Disse overflatemarkeringene var til stor hjelp i den etterfølgende tolkning av profilene, da det var lettere å vurdere radargrammene fordi objektenes nøyaktige posisjon var kjent.

Figur 17: Georadar fra MALÅ: Fra venstre: Monitor – Kontrollenhet - Antenne
Figur 18: Figuren viser oppsett av georadar under undersøkelsene: 500 MHz antenne til høyre, kblet med tau til sekk (kontrollenhet) for å beskytte kablene. Monitor med koblinger til venstre.

4.1.1. Eksperiment på Turtagrø

Turtagrø Hotell på Sognfjellet ble valgt som lokasjon på grunn av de store brøytekantene, der en snødybde omkring 1,5 meter var avgjørende for å kunne utføre feltarbeidet. Dersom det ikke hadde vært nok snø, ville det være vanskelig å skille refleksjoner fra objekter og bakken. Tykkelsen var også avgjørende for at snødekket hadde god nok stabilitet til å utføre undersøkelser over de utgravde hullene. Det er også gunstig for målingene at feltarbeidet ble utført på en brøytekant fordi brøytekanter har snø som er trykket sammen til mer kompakte masser over tid og har dermed liknende elektriske egenskaper som pakket snø fra et snøskred (se avsnitt 3.1.2). Lufttemperaturen dagen målingene ble tatt lå på -13˚C, slik at snøen var tørr og hadde en lav relativ permittivitet (se avsnitt 3.2.2).

Sondestenger ble brukt til å sondere snødybden som var rundt 1,5 meter langs brøytekanten. Kanten var også dyp innover, slik at vi kunne grave objektene ca. en meter inn i brøytekanten. Mellomrommene mellom hullene ble satt til ca. 3 meter fra midten av hull til midten av neste hull for å unngå at refleksorene påvirket hverandre. På denne måten ville det bli lettere å finne avstanden fra radaren mottar første signal til den befinner seg rett over objektet (avstand x i Figur 15). Denne avstanden er viktig for målsetting F) (se avsnitt 2) som handler om å undersøke hvilken avstand radaren kan oppdage objekter og avgjøre hvor tett profilene må

Eksperimentet på Turtagrø inneholdt flere målinger på samme strekning med forskjellige objekter i hullene. Hullene ble gravd igjen før målingene ble utført slik at objektene ble omringet av snø for å simulere et snøskred-scenario. Hull nr. 1 helt til venstre i Figur 19 var alltid åpent og tomt og fungerte som kontrollhull, men kunne også simulere luftrom i skredmasser. De to siste forsøkene ble gjennomført med forstyrret snø i hull 6, for å ha et sammenligningsgrunnlag med objektene.

Objektene ble valgt ut i fra hva en skikjører utenfor preparerte løyper ofte har med seg, da denne gruppen hyppigst blir rammet av snøskred (se avsnitt 3.1.1). Tabell 5 viser hvilke objekter som ble brukt i eksperimentet, og hvor de ble plassert i de forskjellige forsøkene, mens Figur 4 viser målene til objektene. Sekken ble pakket med spade, termos og matpakke i forsøk 1 og 2, før objektene ble gravd ned enkeltvis for å skille hvilke som ga tydelig utslag. Nistepakken var pakket inn i aluminiumsfolie for å se om det ga utslag på georadaren, og ble plassert alene i hull 6 i forsøk 3 for å teste georadarens horisontale oppløsningen (se avsnitt

\[\text{Figur 19: Figuren viser brøytekanten som ble brukt i eksperimentet på Turtagrø med nummererte hull. Forsøk 1 og 2 trengte 4 hull. I tillegg ble det gravd to ekstra hull for å utføre de resterende forsøkene.}\]
3.2.8). Det ble også utført flere undersøkelser med recco-brikke og sender-mottaker for å kunne besvare målsetting E), der formålet var å avklare om elektronisk utstyr påvirker georadaren. Orientering av ski ble også endret under forsøkene for å teste hvordan refleksjonene varierer i forhold til orientering av asymmetriske objekter (målsetting D). Alle forsøkene ble utført to ganger for å kunne kontrollere og sammenlikne resultatene.

Tabell 5: Oversikt over objekter i forsøk 1-5, hvor personen som utførte målingene alltid gikk i retning fra hull 1 til hull 6.

<table>
<thead>
<tr>
<th>Forsøk</th>
<th>Hull 1</th>
<th>Hull 2</th>
<th>Hull 3</th>
<th>Hull 4</th>
<th>Hull 5</th>
<th>Hull 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tomt (0)</td>
<td>Sekt med spade, termos og niste (aluminium) (S1)</td>
<td>En ski (SKI1)</td>
<td>Ski hjelm (SH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tomt (0)</td>
<td>Sekt med spade, termos og niste (aluminium) (S1)</td>
<td>To ski på langs (SKI2)</td>
<td>Skistøvler (SS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tomt (0)</td>
<td>Tom sekk (S2)</td>
<td>To ski på langs (SKI2)</td>
<td>Spade (SP)</td>
<td>Termos (T)</td>
<td>Niste m/aluminium (MP)</td>
</tr>
<tr>
<td>4</td>
<td>Tomt (0)</td>
<td>Jakke m/ recco-brikke (REC)</td>
<td>Person m/recco-brikke (M/REC)</td>
<td>En ski normalt på måleretning (SKI90)</td>
<td>Sendermottaker (S/M)</td>
<td>Forstyrret snø (01)</td>
</tr>
<tr>
<td>5</td>
<td>Tomt (0)</td>
<td>Jakke m/ recco-brikke (REC)</td>
<td>Person u/recco-brikke (M)</td>
<td>En ski normalt på måleretning (SKI90)</td>
<td>Sendermottaker (S/M)</td>
<td>Forstyrret snø (01)</td>
</tr>
</tbody>
</table>

Tabell 6: Oversikt over målene til de forskjellige objektene brukt under eksperimentet på Turtagrø.

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Lengde (cm)</th>
<th>Breddde (cm)</th>
<th>Dybde (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sekt</td>
<td>52</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>Spade</td>
<td>58</td>
<td>2-20</td>
<td>2</td>
</tr>
<tr>
<td>Termos</td>
<td>30</td>
<td>8,4</td>
<td>8,4</td>
</tr>
<tr>
<td>Matpakke</td>
<td>10</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>En ski</td>
<td>182</td>
<td>12,5- 8,9- 11,1</td>
<td>1,2</td>
</tr>
<tr>
<td>Skihjelm</td>
<td>28</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>Skistøvler</td>
<td>29</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>To ski</td>
<td>182</td>
<td>12,5 -8,9- 11,1</td>
<td>1,2</td>
</tr>
<tr>
<td>Person</td>
<td>165</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Sender-mottaker</td>
<td>11,3</td>
<td>7,5</td>
<td>2,7</td>
</tr>
<tr>
<td>Jakke</td>
<td>20</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>
4.1.2. Eksperiment i Frudalen

Formålet med forsøkene ved Skjerdinganebreen var å 1) gjenskape resultatene fra Turtagrø i skredmasser, 2) finne ut hvor små objekter 500 MHz antennen kan detektere (målsetting C), og 3) undersøke hvor nærme objektet (i horisontalplanet) radaren må være for å få oppdage signal fra objektet (målsetting F). Forsøkene ble utformet med hensyn på å besvare disse tre punktene.

Skredfaren i området gjorde at det ikke var forsvarlig å gå på ferske skredavsetninger. Det ble derfor valgt et område som vi anså som trygt, der det lå gamle skredmasser fra et flakskred observert på en tidligere befaring (se vedlegg 5). Forsøk 6 ble utført klokken 12:26, mens de andre forsøkene ble utført i tidsrommet 16:46-17:06.

Dybden i skredmassene ble sondert med sonderingsstang til over 2.4 meter (stangens lengde). Profilet var ca. 16 meter langt og det ble gravd hull med ca. 3 meter mellomrom som på Turtagrø. Det ble laget to spor i snøoverflaten for målinger med georadaren, hvor spor 1 ble lagt rett over hull og objekter. Det andre sporet (spor 2) ble lagt parallelt, med en avstand på 50 cm fra spor 1. Hensikten med to spor var å undersøke om georadaren registrerer objekter selv om de ikke ligger direkte under antennen, for å kunne si noe om hvilken avstand som bør brukes mellom profilene i et eventuelt søk. Georadaren ble trukket av to personer, hvor den ene trakk radaren og den andre gikk bak og holdt den i sporet som vist i Figur 20.

Figur 20: Oversikt over utførsel av eksperiment i Frudalen. Radaren blir dratt i spor nr 2. En person drar radaren, og den andre sikrer at den holder seg i sporet med hjelp av tau festet bak i pulken.
Hullene ble gravd med ulik dybde og bredde for å få plass til ulike objekter og teste den horisontale oppløsningen. Hønsenettinger ble brukt i de to første forsøkene (Figur 21), mens turutstyr identisk til det som ble brukt på Turtagrø, ble gravd ned i de to siste forsøkene. Feltarbeidet ved Skjerdinganebreen i Fruliden bestod av 3 deler:

DEL 1 bestod av å gå et profil før hullene ble gravd, for å ha en referanseramme til tolking av resultatene.

DEL 2 hadde som mål å undersøke formål 2) og 3). Det ble gravd ut 5 hull, der et skulle være tomt gjennom alle forsøkene. Nettinger av ulik størrelse (Figur 21) ble plassert i hullene med forskjellig dybde etter Tabell 7. Størrelsene på de to minste nettingene N3 og N4, ble bestemt til d/10 fra teorien om horisontal oppløsning (se avsnitt 3.2.8) og plassert på de utregnede dybdene (se Tabell 3). Nettingen på 5cm x 5cm (N4) ble plasser på 45 cm dybde i snøen, og nettingen på 10cm x 10 cm (N3) ble plassert på 95 cm (se avsnitt 3.2.8).

For å få sikre at nettingene ble plasser rett under radaren ble sonderingsstangen stukket ned i midten av sporet og ned i hullet. Nettingen ble plassert rett under stangen som vist i Figur 22, og da nettingene var på plass ble hullene fylt igjen med snø. Profilene ble gått to ganger for å redusere risikoen for usikkerheter, som for eksempel ujevn hastighet. Dette viste seg å være til nytte da GPS-en knyttet til radaren ikke registrerte nøyaktig posisjon under forsøkene, og målingene måtte ta utgangspunkt i konstant hastighet.

DEL 3 bestod av å undersøke formål 1) og ble gjennomført på samme måte som på Turtagrø, hvor objektene ble plassert i hullene og gravd igjen. Også her ble det kontrollert med sonderingsstang at objektene lå rett under sporet. Kun de objektene som ga refleksjoner på Turtagrø ble brukt. Sekken var pakket med termos og spade, men nistepakken i aluminiumsfolie ble utelatt. Samme type ski og skistøvler ble også brukt.
Figur 21: Hønsenetting i forskjellige størrelser ble gravd ned for å undersøke den horisontale oppløsningen. Fra venstre: N1 (50 x 50 cm), N2 (25 x 25 cm), N3 (10 x 10 cm) og N4 (5 x 5 cm). Målestokken på bildet er 1m lang.

Figur 22: Oversikt over hull a-e med forskjellige dybder fra overflaten til objekt: a) 100cm, b) 75 cm, c) 120 cm, d) 45 cm, e) 100 cm. Sonderingsstangen brukes til å bestemme dybde, og hvor i hullet objektet må ligge for å være midt i.
Tabell 7: Oversikt over lokasjonen til forskjellige objekter. Det ble gått i to forskjellige spor, der spor 1 lå rett over objektene og spor 2 lå slik at radaren lå 50cm til siden i horisontalretning fra hullene.

<table>
<thead>
<tr>
<th>Forsøk</th>
<th>Hull 1 (100cm)</th>
<th>Hull 2 (75cm)</th>
<th>Hull 3 (120cm)</th>
<th>Hull 4 (45cm)</th>
<th>Hull 5 (95cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Tomt</td>
<td>Tomt</td>
<td>Tomt</td>
<td>Tomt</td>
<td>Tomt</td>
</tr>
<tr>
<td>7 (Spor 1)</td>
<td>Tomt (0)</td>
<td>Netting (N2) 25cm x 25cm</td>
<td>Netting (N1) 50cm x 50cm</td>
<td>Netting (N4) 5cm x 5cm</td>
<td>Netting (N3) 10cm x 10cm</td>
</tr>
<tr>
<td>8 (Spor 2)</td>
<td>Tomt (0)</td>
<td>Netting (N2) 25cm x 25cm</td>
<td>Netting (N1) 50cm x 50cm</td>
<td>Netting (N4) 5cm x 5cm</td>
<td>Netting (N3) 10cm x 10cm</td>
</tr>
<tr>
<td>9 (Spor 1)</td>
<td>Tomt (0)</td>
<td>Sekk (S1)</td>
<td>Ski på langs (SKI1)</td>
<td>Ski på tvers (SKI90)</td>
<td>Skistøvler (SS)</td>
</tr>
<tr>
<td>10 (Spor 2)</td>
<td>Tomt (0)</td>
<td>Sekk (S1)</td>
<td>Ski på langs (SKI1)</td>
<td>Ski på tvers (SKI90)</td>
<td>Skistøvler (SS)</td>
</tr>
</tbody>
</table>

4.2. Prosessering av data

4.2.1. Reflex2DQuick

Databehandling av georadarmålingene kalles prosessering, og gjøres ved hjelp av programmet Reflex2DQuick. Programmet tillater import, visualisering, prosessering og analyse av georadar-data, og er et verktøy for å kunne identifisere de begravde objektene bedre fra snøen rundt. Georadarmålingene blir prosessert ved hjelp av forskjellige filtre som gir diverse effekter til profilene. I vedlegg 1 og 2 ligger det en oversikt over hvilke verdier som er brukt for de forskjellige filtrene i de prosesserte radargrammene fra Turtagrø og Frudalen.

Static correction ble brukt for å få riktig dybde på målingene, og setter starttidspunktet til 0 ns der første signal blir mottatt. Denne korrigeringen gjør at refleksjonene fra objektene får riktig ankomsttid, slik at dybden blir korrekt (Sandmeier, 2014). «Static correction» er brukt i prosessering av alle georadarprofilene.

Subtract mean (dewow) er et filter som regner ut amplitude-midtpunktet (A) for målingene og setter det til A= 0. Filteret blir brukt til å fjerne lavfrekvent forskyvning av data som ofte forekommer med bruk av georadar (Sandmeier, 2014). Den lavfrekvente forskyvningen kommer fra de første bølgene som ankommer antennen og er bølger som går langs overflaten eller luften. Disse bølgene fører til en forskjovet komponent som forvrenger hele målingens
spekter, som vist i Figur 23 (Jol, 2009). For å eliminere lavfrekvent forskyvning er dette filteret brukt på alle våre målinger.

![Diagram av spekter med og uten de-woo filter](image)

Gain function forsterker amplituden fra signalet over en tid ved hjelp av en lineær og en eksponentiell funksjon. Filteret brukes for å kompensere for demping av signalet ved spredning (se avsnitt 3.2.5). Refleksjonene blir derfor mer forsterket jo lengre nede på y-aksen de ligger basert på TWT (Sandmeier, 2014).

Det er også viktig å bruke korrekt hastighet for vertsmaterialet ved prosessering av georadarprofiler. TWT til refleksjoner blir beregnet, slik at dybden til objektene i meter vises
langs y-aksen (se avsnitt 3.2.1). Dybden avhenger av hastigheten til vertsmateriale, og blir forklart videre i avsnitt 5.1 og 5.2).

Effekten av prosessering vises tydelig nedenfor, der Figur 24 viser et georadarprofil uten prosessering (a) og et prosessert profil, hvor filtrene «Subtrackt mean (dewow)», «Gain Function» og «Background removal» er brukt for å dempe støy og for å forsterke refleksjonene fra objektene (b).

![Georadarprofil før prosessering](image1)

![Prosessert georadarprofil](image2)

Figur 24: a) Georadarprofil før prosessering der trace-incr er brukt til å beregne lengde på x-aksen.

5. Resultater

5.1. Eksperiment på Turtagrø

5.1.1. Forsøk 1-5

Felles for alle forsøkene utført i brøytekanten ved Turtagrø Hotell, er at plasseringen til objektene er kjent. På denne måten kan overflatemarkingene (hvite kvadrater langs den horisontale aksen på profilet) brukes til å gjenkjenne hvilket objekt som ligger begravd i snøen. Overflatemarkingene på profilene indikerer hvilket hull som ligger under, hvor markeringen lengst til venstre på figurene viser hull 1. I Tabell 8 og Tabell 9 har hvert objekt fått et navn eller nummer, og disse identifiseringsene er plassert i radargrammene, slik at en enkelt kan se hvilket objekt som hører til hvilket hull. Profilene er prosessert på samme måte, slik at de skal kunne sammenliknes på best mulig måte.

For at dybden til objektene på y-aksen skal være korrekt, ble det ved hjelp av TWT regnet ut hastigheten til verts materialet (se avsnitt 3.2.1). Dybden til sekken i hull 2 ble beregnet til 85 cm (toppuntet på hyperbelen) (se avsnitt 3.2.10). Ved hjelp av TWT til denne reflektoren, ble den utregnede hastigheten for snøen 0,2 m/ns (Formel 1). Denne hastigheten brukes i prosessering av profilene fra Turtagrø, slik at dybden til objektene blir mest mulig nøyaktig.

Hastigheten på 0,2 m/ns ligger innenfor hastighetsintervallet for snø i Figur 1 (se avsnitt 3.2.2). Dette tyder på at verts materialet er av tettpakket snø med en verdi for relativ permittivitet på ca. 2,2 (Formel 1). Lav relativ permittivitet tyder på at det er lite vanninhold i snøen, noe som stemmer bra med observasjonene fra feltarbeidet. Siden hastigheten på 0,2 m/ns passer godt med de observerte forholdene, blir denne hastigheten brukt videre i forsøk 1-5. Usikkerhet ved utregning av hastighet blir diskutert i avsnitt 6.7.

Forsøk 1, 2 og 3

Tabell 8: Oversikt over plassering av objekter under forsøk 1, 2 og 3.

<table>
<thead>
<tr>
<th>Forsøk</th>
<th>Hull 1</th>
<th>Hull 2</th>
<th>Hull 3</th>
<th>Hull 4</th>
<th>Hull 5</th>
<th>Hull 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tomt (0)</td>
<td>Sekk med spade, termos og niste (aluminium)(S1)</td>
<td>En ski (SKI1)</td>
<td>Ski hjelm (SH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tomt (0)</td>
<td>Sekk med spade, termos og niste (aluminium)(S1)</td>
<td>To ski på langs (SKI2)</td>
<td>Skistøvler (SS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tomt (0)</td>
<td>Tom sekk (S2)</td>
<td>To ski på langs (SKI2)</td>
<td>Spade (SP)</td>
<td>Termos (T)</td>
<td>Matpakke m/aluminium (MP)</td>
</tr>
</tbody>
</table>
Figur 25: Georadarprofiler fra forsøk 1, 2 og 3. Objektene ligger begravet under overflatemarkeringene, og tekstboksene viser hvilket objekt som er begravd (Tabell 8). BR=Bunnreflektor.
Den dominerende horisontale reflektoren i profilen kalles i dette eksperimentet bunnreflektør (BR), og går igjen på alle profilene fra eksperimentet på Turtagrø. Reflektoren passer godt med den sonderte dybden av brøytekanten på ~1,5 meter, og viser laggrensen mellom snøen og bakken (se avsnitt 3.2.10. om tolking av georadarprofiler).

I forsøk 1 ble 4 objekter gravd ned, og overflatemarkeringene/identifikasjonsnummer viser lokasjonen til objektene. I profil 1 er det kun objektet S1 som gir betydelig utslag på georadaren i form av en klar hyperbel (se avsnitt 3.2.10). Dette objektet er en sekk som inneholder en spade, en termos og en matpakke pakket i aluminiumsfolie. Målene til sekkens og objektene i sekk er beskrevet i Tabell 6. Avstand x (Figur 15) fra første signal til georadaren var rett over sekk, ble målt til 1,26 meter.

Sekken er av materialet polyester, mens de andre objektene er av metall. Det tomme hullet (0) under markering nr. 1 skal representere luftlommer i skredmasser. Dette hullet er det samme i alle forsøkene, og ser ut til å gi en svak hyperbel. Skien på langs av måleretningen under markering (SKI1) og skihjelmen (SH) ser ikke ut til å gi noen utslag på radargrammene.

I profil 2 vises sekkens (S1) igjen som en tydelig hyperbel under overflatemarkering 2. To skistøvler (SS) ble byttet ut med skihjelmen i hull 4, og i profil 2 er antydning til en hyperbel fra punktrefflektoren i dette hullet, selv om denne er svak. Det ble lagt til en ekstra ski langs måleretningen i hull 3 (SKI2), men fremdeles ser ikke skiene ut til å gjøre noe klart utslag på georadaren.

I forsøk 3 ble objektene i sekkens tatt ut og plassert i egne hull, for å undersøke hvilke objekter som gir mest utslag på georadaren. Den tomme sekkens (S2) under markering nr. 2 viser her en liten antydning til hyperbel, mens spaden (SP) og termosen (T) viser tydelige hyperbler i profilet. Avstand x for spaden ble målt til ca. 80 cm, og avstand x for termosen ble målt til ca. 40 cm. Termosen var orientert med den lengste siden på tvers av måleretningen. Matpakken (MP) under markering 6 ser ikke ut til å påvirke georadaren, og skiene på langs (SKI2) vises heller ikke her som tydelige reflektorer.
Forsøk 4 og 5

Tabell 9: Oversikt over plassering av objekter under forsøk 4 og 5.

<table>
<thead>
<tr>
<th>Forsøk</th>
<th>Hull 1</th>
<th>Hull 2</th>
<th>Hull 3</th>
<th>Hull 4</th>
<th>Hull 5</th>
<th>Hull 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Tomt (0)</td>
<td>Jakke m/recco-brikke (REC)</td>
<td>Person m/recco-brikke (M/REC)</td>
<td>En ski normalt på måleretning (SKI90)</td>
<td>Sendermottaker (S/M)</td>
<td>Forstyrret snø (01)</td>
</tr>
<tr>
<td>5</td>
<td>Tomt (0)</td>
<td>Jakke m/recco-brikke (REC)</td>
<td>Person u/recco-brikke (M)</td>
<td>En ski normalt på måleretning (SKI90)</td>
<td>Sendermottaker (S/M)</td>
<td>Forstyrret snø (01)</td>
</tr>
</tbody>
</table>

Figur 26: Georadarprofil fra forsøk 4 og 5. Objektene ligger begravet under overflatemarkeringene, og tekstboksene viser hvilket objekt som er begravd (Tabell 9). BR=Bunnreflektor.
I forsøk 4 ble en jakke med recco-brikke (REC) gravd inn i hull 2, mens en person med recco-brikke (M/REC) ble lagt inn i hull 3. En ski ble gravd inn på tvers av måleretningen (SKI90) i hull 4 og en sender-mottaker (S/M) ble gravd inn i hull 5. Hull 6 bestod kun av forstyrret snø (01). Det ser ut til at personen (M/REC) og skien på tvers av måleretningen (SKI90) gir utslag på georadaren. Den sterkeste reflektoren kommer fra skien, og hyperbelen har en asymmetrisk form. Forstyrret snø (01) og jakken (REC) gir ingen utslag på dette profilet. Det ser heller ikke ut til at radaren blir påvirket av signaler fra sender-mottakeren (S/M).

I profil 5 er objektet i hull 3 den eneste forskjellen fra profil 4, hvor personen som befinner seg i hull 3 under forsøk 5, ikke er utstyrt med recco-brikke (M). Refleksjonene fra hyperblene er nokså identiske med resultatene fra forsøk 4, men i profil 5 kan det se ut til å være en antydning til hyperbel fra jakken med recco-brikke (REC) selv om denne er svak. Avstanden fra første signal til radaren var rett over objektene (x i Figur 15) ble målt til 1,05 meter for personen (M) og 0,45 meter for skien på tvers (SKI90).

5.1.2. Frekvensspekter

Frekvensspekteret fra forsøk 4 representerer en samling av alle frekvenser mottakerantennen har registret under utførelsen av forsøket (se avsnitt 3.2.4). Frekvensene med størst amplitude ligger normalfordelt rundt 500MHz, og amplitudene blir mindre på frekvenser langt unna 500 MHz. Det er flere små toppler utover fra 2000 MHz og opp til 10 000 MHz som trolig er forstyrrelser fra objekter rundt forsøksområdet. Det er ingen topp i rundt 1834 MHz, som tyder på at mottakeren ikke registrerte noen signaler fra recco-brikken (se avsnitt 3.1.3.).

![Figur 27: Frekvensspekter fra forsøk 4. Spekteret viser hvilke frekvenser mottakerantennen har registrert under hele målingen.](image)
5.2. Eksperiment i Frudalen

5.2.1. Forsøk 6-10

Forsøkene i Frudalen ble utført på samme måte som på Turtagrø hvor plasseringene til objektene var kjent og overflatemarkeringer ble benyttet for å markere hvor i profilen objektene lå begravet. Forsøkene ble utført på skredavsetninger fra gamle snøskred, dekket med nedbørssnø.

For at hastigheten til vertsmaterialet skulle være mest mulig korrekt ble det tatt utgangspunkt i en reflektor med kjent dybde og TWT. Ved hønsenettingen på 45 cm dybde i forsøk 7 ble TWT målt til 5,11 ns. Dette ble brukt til å regne ut hastigheten til vertsmaterialet (se avsnitt 3.2.1). Hastigheten til EM-bølgene i snøen ble regnet ut til 0,176 m/ns, noe som kan stemme godt da snøpakken inneholdt mer fuktighet enn snøen på Turtagrø (se avsnitt 3.2.2). Snøen forandret seg i løpet av dagen under forsøkene i Frudalen, slik at det ville være realistisk å bruke en annen hastighet for forsøk 6. Det var ikke noe grunnlag for utregning av hastighet i radargrammet fra forsøk 6, derfor ble hastigheten 0,176 m/ns brukt på alle forsøkene fra Frudalen.

Tabell 10 viser oversikt over forsøk 6, 7 og 8, der forsøk 6 ble utført før graving slik at snøen ikke skulle bli forstyrret, og blir brukt for å sammenligne radargrammene. I forsøk 7 og 8 er det brukt hønsenetting av forskjellige størrelser, for å teste georadarens horisontale oppløsning (se avsnitt 3.2.8). Tabell 11 gir en oversikt over forsøk 6, 9 og 10 der noen av de samme objektene fra Turtagrø ble gravd ned. Målene til objektene som også ble brukt i eksperimentet på Turtagrø er vist i Tabell 6.

Forsøk 6, 7 og 8

Tabell 10: Oversikt over plassering av objekter under forsøk 6, 7 og 8.

<table>
<thead>
<tr>
<th>Forsøk</th>
<th>Hull 1 (100cm)</th>
<th>Hull 2 (75cm)</th>
<th>Hull 3 (120cm)</th>
<th>Hull 4 (45cm)</th>
<th>Hull 5 (95cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Ikke gravd</td>
<td>Ikke gravd</td>
<td>Ikke gravd</td>
<td>Ikke gravd</td>
<td>Ikke gravd</td>
</tr>
<tr>
<td>7 (Spor 1)</td>
<td>Tomt (0)</td>
<td>Netting 25cm x 25cm (N2)</td>
<td>Netting 50cm x 50cm (N1)</td>
<td>Netting 5cm x 5cm (N4)</td>
<td>Netting 10cm x 10cm (N3)</td>
</tr>
<tr>
<td>8 (Spor 2)</td>
<td>Tomt (0)</td>
<td>Netting 25cm x 25cm (N2)</td>
<td>Netting 50cm x 50cm (N1)</td>
<td>Netting 5cm x 5cm (N4)</td>
<td>Netting 10cm x 10cm (N3)</td>
</tr>
</tbody>
</table>

Forsøk 6 ble utført før graving av hull, for å identifisere hyperbler som allerede eksisterte i snødekket, hvor formålet var å undersøke hvordan gamle skredmasser ser ut i radargrammet (målsetting A og B). Profil 6 viser flere tilsynelatende horisontale reflektorer samt flere hyperbler, der de viktigste er sirklet rundt. De markerte områdene viser hyperbler og horisontale refleksjoner en må være oppmerksom på i tolkningen, da de ligger i den dybden objektene ble begravd i.
Område 1 består av flere mindre punktrepllektorer mellom 0,5 m og 1,2 m. I dette området ble det senere gravd et hull som skulle stå åpent. Område 2 inneholder flere replektorer som rekker fra 1,0m til 1,8m dyp. Område 3 markerer en hyperbel som ligger på 0,3m til 0,5 m. Videre ned i profilet er det mange repleksjoner, men de øvrige ligger for dypt til bli feiltolket som et nedgravd objekt. Nedover i profilet er det flere lange repleksjoner og hyperbler, sannsynligvis fra gammelt skredmateriale.

I profil 7 er hull 1 tomt (0) og det ser ut til å være noe forstyrrelser i de horisontale lagene rett etter overflatemarkeringen. Det er vanskelig å skille dette fra det som allerede befant seg i snødekket på profil 6. Nettingen i hull 2 (N2), på 75 cm dyp gir ingen repleksjoner som er mulig å skille fra de horisontale. I hull 3 (N1) er det ingen nye repleksjoner på 1,2m dyp. Ved hull 4 er en punktrepllektor fra N4 synlig, da denne var ikke til stede på Profil 6. Repleksjonen fra N4 er ikke kraftig, men den skiller seg klart ut fra den ellers horisontale lagdelingen. I hull 5 er det en synlig hyperbel på omtrent 1m dyp som kan være N3. Den ligger litt dypt, men det kan være på grunn av usikkerheter i hastigheten som er brukt (se avsnitt6.7). Profil 7 er prosessert likt som profil 6, men de dype repleksjonen er mye svakere i dette profilet.

I forsøk 8 ble spor 2 brukt som måle-spor, og radaren ble flyttet 50 cm lengre bort, slik at den ikke kjørte rett over hullene. I profil 8 ser man de samme horisontale lagene i snøen, men nettingen som var synlig i profil 7 er ikke synlig her.

Forsøk 6, 9 og 10

Tabell 11: Oversikt over plassering av objekter under forsøk 6, 9 og 10.

<table>
<thead>
<tr>
<th>Forsøk</th>
<th>Hull 1 (100cm)</th>
<th>Hull 2 (75cm)</th>
<th>Hull 3 (120cm)</th>
<th>Hull 4 (45cm)</th>
<th>Hull 5 (95cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Ikke gravd</td>
<td>Ikke gravd</td>
<td>Ikke gravd</td>
<td>Ikke gravd</td>
<td>Ikke gravd</td>
</tr>
<tr>
<td>9 Spor 1</td>
<td>Tomt (0)</td>
<td>Sekk med spade og termos (S1)</td>
<td>Ski på langs (SKI1)</td>
<td>Ski på tvers (SKI90)</td>
<td>Skisko (SS)</td>
</tr>
<tr>
<td>10 Spor 2</td>
<td>Tomt (0)</td>
<td>Sekk med spade og termos (S1)</td>
<td>Ski på langs (SKI1)</td>
<td>Ski på tvers (SKI90)</td>
<td>Skisko (SS)</td>
</tr>
</tbody>
</table>
Figuur 29: Georadarprofiel fra forsøk 6, 9 og 10. Objektene i profil 9 og 10 ligger begravet under overflatemarkingene, og tekstboksene viser hvilket objekt som er begravd (Tabell 11).

I profil 9 er hull 1 (0) fortsatt tomt. Det er et par uklare punktreksektorer i radargrammet, men det er vanskelige å skille disse fra resten av snømassen. Sekken i hull 2 (S1) ligger på 0,75 meters dyp og er helt usynlig. SKI1 i hull 3 ligger langs måleretningen på 1,2m og er ikke synlig i radargrammet. Skien på tvers (SKI90) i hull 4 ligger på ca. 50 cm dybde og gir en hyperbel lignende den på Turtagrø. Hyperbelen er litt usymmetrisk, trolig fordi skien ikke ligger helt flatt. Hyperbelen er så svak at det hadde vært umulig å skille den fra snømassene uten overflatemarkingen. I hull 5 kan en se at det er skjedd endringer fra profilet med netting, men det er ingen klar refleksjon fra skiskoene som kan brukes til å skille ut fra snømassene.
Profil 10 ble gått i spor 2, med de samme objektene i hullene som i profil 9. I dette profilet ser man en hyperbel rundt hull 4, som mulig er fra skien. Resten av profilet gir ingen brukbare reflektorer fra de nedgravde objektene.

Resultatene fra Frudalen er av lavere kvalitet enn resultatene fra Turtagrø. Det kan skyldes oppvarming av snødekket i løpet av dagen, da mye energi dempes i det fuktige topplaget i snøen (se avsnitt 3.2.5). Skredmateriale og lagvis vannansamling kan også ha vært med å dempe signalet. Forsøkene med nedgravde objekter ble utført fra 16:46-17:06, mens forsøk 6 med et urørt profil, ble utført kl. 12:26. Profilene er prosessert likt og det er tydelig at skinndybden til radaren er dypere på profil 6 enn profilene som er målt senere på dagen (se avsnitt 3.2.6.).
6. Diskusjon

6.1. Snødekkets betydning

Snøens egenskaper er viktig for lokalisering av objekter ved bruk av georadaren, hvor forskjell i relativ permittivitet mellom snø og objekter er avgjørende for å se refleksjoner (se målsetting A og avsnitt 3.2.2). Konduktivitet og vanninhold i snøen er også viktig for demping av signalet, hvor fuktig snø raskere demper em-bølgenes signal (se avsnitt 3.2.3 og 3.2.5). Snødekket i eksperimentene på Turtagrø og i Frudalen var svært forskjellige da forsøkene på Turtagrø ble gjort en kaldt vinterdag i mars, mens forsøkene i Frudalen ble gjennomført i mai da temperaturen var høy og solen varmet opp snøen. Forsøkene fra Turtagrø resulterte i gode radargrammer, med tydelige refleksjoner fra flere objekter. I eksperimentet fra Frudalen ble ikke refleksjonene like tydelige, og radargrammene ble vanskeligere å tolke. Disse forskjellene i radargrammene er interessante resultater da de bekrefter at snødekket har en betydelig påvirkning for lokalisering av begravde objekter.

Snøen i brøytekanten på Turtagrø var tørr og tettpakket, noe som gjorde den godt egnet for sammenlikning med snø i et snøskred (se avsnitt 3.1.2). Værforholdene under eksperimentet ved Turtagrø holdt seg mer eller mindre konstant under forsøkene, og den kalde temperaturen gjorde at snøen holdt seg tørr gjennom hele dagen. Tørr snø har lite vanninhold og dermed lav konduktivitet, slik at em-bølgenes energi forplantes godt, og blir lite dempet av mediet de gjennomstrømmer. Lite vanninhold i snøen gjør også snøen mer homogen, slik at man får mindre spredning av signalet (se avsnitt 3.2.5). Som forklart i avsnitt 3.2.2 dempes em-bølgene hovedsakelig ved overgangen mellom to medier med forskjell i relativ permittivitet, slik at kraftige refleksjoner identifiserer objekteene i radargrammene.

Ved eksperimentet i Frudalen var de klimatiske forholdene annerledes, da solen varmet opp snøen der forsøkene ble utført. Forsøk 6 ble utført kl. 12.26 på formiddagen, før hullene ble gravd. Forsøk 10 ble utført ca. 5 timer senere, da solen hadde påvirket snødekket i den grad at det dryppet inne i hullene. I profil 6 ser vi refleksjoner fra større dyp enn i profil 7-10. Disse resultatene er av interesse da det er tydelig at snøsmelting påvirket em-bølgenes penetrasjonsevne, og endrer skinndypet (se avsnitt 3.2.6).

Skinndypet er tydelig redusert i profilene som er utført etter solpåvirkning, og er et resultat av endring i snøens egenskaper. Solens påvirkning fører til økt vanninhold, som igjen fører til økende konduktivitet i snøen og økt spredning av signalet. Disse resultatene gjør det tydelig at
snøens egenskaper har stor betydning for lokalisering av begravde objekter, der tørr snø er best egnet for søk etter skredtatte. Det vil også være størst forskjell i relativ permittivitet mellom tørr snø \((\varepsilon_r \approx 1,2-2)\) og objekter \((\varepsilon_r \approx 6-50)\), da økende vanninnhold i snøen også fører til høyere relativ permittivitet (se avsnitt 3.2.2). En antenn med lavere frekvens rundt 250 MHz, ville fungert bedre ved søk i våte snømasser, da skinndypet er større for lavere frekvenser.

Innhold av skredmateriale i snødekket er også avgjørende for lokalisering av objekter, da skredmateriale og enkelte objekter kan opptre som liknende hyperbler i radargrammer (se avsnitt 3.2.10). Snøen fra forsøkene i Frudalen antas å inneholde gamle inhomogene skredmasser, og vises best i profil 6. Dette snødekket er forskjellig fra snøen på Turtagrø, og i radargrammene fra Frudalen er det flere hyperbler og refleksjoner enn i profilene fra Turtagrø. En usikkerhet med vurdering av snødekket er at det ikke ble tatt et profil fra Turtagrø før graving, og dermed finnes det ingen sammenlikningsgrunnlag for upåvirket snø fra Turtagrø. Likevel er det tydelig at radargrammene fra Frudalen inneholder mer forstyrrelser enn i profilene fra Turtagrø.

Det ser ut til at georadaren fungerer best til å lokalisere objekter og personer under tørrere snøforhold. Statistikken for dødsulykker som følge av snøskred viser at de fleste dødsulykker skjer som følge av flaksred (se avsnitt 3.1.1). Flaksred inneholder ofte tørr og tettpakket snø, noe som gjør at georadaren kan fungere godt for søk etter skredtatte i et tørt flaksred. Dette gjør at anvendelsesområdet til georadaren blir begrenset til tørrere snøskred, og radaren vil...
dermed ikke være like funksjonell for søk etter objekter eller personer i for eksempel våte løssnøskred eller sørpeskred (se avsnitt 3.1.2.).

6.2. Forskjellige objekttyper

Målsetting B) går ut på å undersøke om det er mulig å bruke georadaren til å skille personer og utstyr fra skredmateriale og snøen rundt, og vurdere hvilke objekter som best lokaliseres med radaren. Dersom snøskred utløses i områder med mye vegetasjon, vil en forvente mer skredmateriale i snømassene. Som forklart i avsnitt 3.1.2. kan en forvente en tettpakket snø struktur uten betydelig skredmateriale dersom det er lite vegetasjon i snøskredområdet. Eksperimentet på Turtagrø ble utført med tettpakket snø uten skredmateriale, hvor formålet var å skille objekter og personer fra snøen rundt. I tillegg gikk forsøkene ut på å undersøke hvilke objekter som gir best resultater for lokalisering ved georadaren.

Resultatene fra Turtagrø viser en tydelig sammenheng mellom materialtype og refleksjoner, der objekter med størst forskjell i relativ permittivitet fra snø, som forventet gir kraftigst refleksjon. I forsøk 1 og 2 ble en sekk som inneholdt objekter av metall (spade, termos og matpakke) plassert i hull 2, noe som resulterte i en sterk refleksjon. Da spaden, termosen og matpakken ble tatt ut av sekken og plassert i egne hull i forsøk 3, ble refleksjonen fra sekken svekket mens termosen og spaden viste tydelige hyperbler (Figur 25). Dette resultatet bekrefter at refleksjonenes styrke er avhengig av de elektriske egenskapene til de begravde objektene. Metallet i spaden og termosen leder strøm godt og den relative permittiviteten for metall er derfor uendelig (Tabell 1). Sekken inneholder ingen form for metaller og er laget av polyester. Dette materialet har lav relativ permittivitet og er derfor vanskeligere å detektere enn objektene av metall.

Jakken med recco-brikke fra forsøk 4 og 5 er vanskelig å lokalisere, men det kan se ut til at jakken opptrer som en svak refleksjon i profil 5. Jakken er laget av materiale Derimax NX, som er et pustende membran. Jakken har dermed liten relativ permittivitet da materialet inneholder mye luft (\(\varepsilon_r\) luft≈1). Liten forskjell i relativ permittivitet mellom jakke og snø gjør at det reflekteres lite energi fra materialgrensen, og objektet blir vanskelig å detektere.

Før gjennomføring av forsøkene ble det forventet en tydelig refleksjon fra ski, men dette så ikke ut til å stemme da profil 1, 2 og 3 ikke viser noen tegn til refleksjon mellom snø og ski. Skiene inneholder metall både i stålkantene og i bindingene, noe som bør gi utslag på
georadaren. Da skiene ble orientert på tvers av måleretningen i profil 4 og 5, fanget georadaren opp signalene, og sterke refleksjoner oppstod i radargrammet. Dette synliggjør derfor betydningen av orientering av objekter i forhold til georadarens antenne, og beskrives videre i avsnittet 6.4.

Forsøk 4 og 5 gikk også ut på å vurdere om deteksjon av personer med georadaren er mulig, hvor en person ble plassert i hull 3. Refleksjonene fra markøren viser seg å være tydelige i begge forsøkene og undersøkselene bekreftet teorien om at permittivitetsforskjellene mellom snø og personer resulterer i tydelige refleksjoner ($\varepsilon_r_menneske \approx 50$, $\varepsilon_r_snø \approx 2$).

I eksperimentet på Turtagró ble det oppdaget både fordeler og begrensninger georadaren når det gjelder deteksjon av forskjellige objektyper. Forøkene viste tydelig at personer og materialer av metall gir de kraftigste refleksjonene. Det er vanskelig å lokalisere objekter som klær og sekk, der den relative permittiviteten er lav og de elektriske egenskapene ikke avviker vesentlig fra snøens egenskaper. Når det gjelder snøskredforskning kan disse resultatene være av interesse, da skikjørene utenfor preparerte løyper er den gruppen som hyppigst blir rammet av snøskred (se avsnitt 3.1.1). Skikjørene har ofte en sekk som er utstyrt med objekter av metall som f.eks. en spade og dersom en person med en tursekk blir begravd av et snøskred kan både metall-objekter og personen utgjøre sterke refleksjoner i et radargram.

6.3. Objekters form og størrelse

Undersøkelser av objekters form og størrelse er viktig for å avdekke begrensinger med georadaren (målsetting C). Både den horisontale og vertikale oppløsningen vil være avgjørende for hvilke reflektorer som vil opptre i radargrammer (se avsnitt 3.2.7 og 3.2.8). Formålet med eksperimentet i Frudalen var å plassere hønsenettinger av forskjellig størrelse for å undersøke om faktiske målinger avviker fra teorien om horisontal oppløsning. I tillegg gikk forsøkene ut på å finne ut hvor små objekter georadaren kan detektere.

For å vurdere antennens evne til å detektere objekter med ulik størrelse ble det gravd ned 4 nettinger, N1, N2, N3 og N4 som vises i profil 7 og 8 (Figur 28). Under overflatemarkering nr. 4 i profil 7, vises en hyperbel fra 5cm x 5cm med hønsenetting (N4). Det reflekterte signalet er ikke sterkt, så det ville vært vanskelig å skille den fra andre hyperbler i radargrammet uten overflatemarkøren. Dersom en sammenligner profil 7 med profil 6, kan en se at hyperbelen ikke er der før gravingen begynte. Da åpne hull og annen forstyrret snø i hullene på siden viser
ikke lignende reflektorer, er det liten tvil om at reflektoren er fra nettingen. Det er også en hyperbel fra hull 5 som kan være N3.

Nettingene N1 og N2 vises ikke i radargrammet selv om de ble beregnet til innenfor størrelsesens utregnede horisontale oppløsning. Dette skyldes trolig demping av signalet igjennom snødekket som forklar i avsnitt 6.1. Profil 7 viser også flere nesten-horisontale reflektorer den første meteren ned i snøen. Disse lagene er kraftigst over hull 2 og 3 og kan forklare hvorfor man ikke ser nettingene der, selv om det er de største. Målinger fra Garpestad et al. (2017) er utført samme dag i nærheten av feltlokaliteten for forsøk 6-10 i Frudalen. Disse målingene er utført i en skyggelagt helning og viser en klar reflektor fra hønsetettinger, 0,5m x 0,5m, flere meter under snøen (se vedlegg 3). Dermed kan man anta at det var forholdene i snøen over N1 og N2 som gjorde dem usynlige for radaren. Refleksjonene fra N3 og N4 viser at teorien for horisontal oppløsning kan gjelde under forhold som stemmer godt med utregningene. Det krever imidlertid en homogen snøpakke, da forsøket viser tydelige begrensninger i horisontal oppløsning der det er små lokale variasjoner i snøens egenskaper (se avsnitt 3.2.8 og Figur 28).

I forsøkene fra Turtagrø viser det ingen refleksjoner fra sender-mottaker, eller nistepakken i aluminiumsfolie. Det kan tolkes på to måter; 1) at disse objektene ikke synes på grunn av materialenes egenskaper, eller 2) at de var utenfor den horisontale oppløsningen til radaren. Det er en viss usikkerhet da orienteringen til objektene ikke ble notert da de ble gravd ned. Det vil derfor være hensiktsmessig å ha med objektene i videre studier med georadar.

Den teoretiske utregningen av vertikal oppløsning er beskrevet i Tabell 6, avsnitt 3.2.7, hvor vertikal oppløsning for menneske ($\varepsilon_r =50$) er 0,04 meter. Dermed vil en kunne forvente å få refleksjoner både fra topp og bunn av personen, gitt at personen reflekterer signalet. Da ingen objekter ser ut til å gi doble reflektorer på Turtagrø eller Frudalen, kan det tenkes at ytterkanten av objektene ikke nødvendigvis var det som reflekterte signalet, men kanskje luftrommet inni. Teorien om vertikal oppløsning vil derfor være vanskelig å anvende direkte når en bruker georadaren til søk i skredmasser.

Formen til objektene vil også være avgjørende for hvilken refleksjon man ser i radargrammet. Det kan se ut som at flate objekter som spaden og skien reflekterer mest energi tilbake. Derimot får man svakere refleksjoner fra spaden når den er pakket inn i sekken og har en rundere form. Hyperbelens form er til en viss grad avhengig av formen til objektet, som forklart i avsnitt 3.2.10. Dette vises tydelig i profil 4 med SKI90 som har en usymmetrisk hyperbel, fordi skien lå litt skeivt og den ene siden lå dermed litt høyere enn den andre.
Dersom radaren skal brukes til søk etter skredtatte personer er det viktig å forstå at selv små objekter som N4 kan gi refleksjoner. Det kan være både positivt og negativt at georadaren fanger opp refleksjoner fra små objekter i sammenheng med søk. I skredmasser med mye skredmateriale, som stein, grus, jord og greiner etc. vil det trolig kunne medføre flere reflektorer fra objekter som ikke tilhører skredofre. Det vil medføre krevende tolkning av radargrammene, og muligens tap av livsviktig tid. Samtidig betyr det at man kan potensielt finne et skredoffer uten å gå rett over og det kan være nok at radaren går rett over en skistav, eller bare tuppen på en ski.

6.4. Objekters orientering

Objekters orientering i forhold til antennene har vist seg å være høyest relevant for hvor sterkt signal som motas av radaren (målsetting D). Ved undersøkelser utført av Radzevicius og Daniels (2000) ble det vist at et kobberrot ble tilnærmert usynlig for radaren da objektet ble rotert 90 grader, og lå vinkelrett på antennen (se avsnitt 3.2.9). Heilig et al. (2008) fikk lignende resultater med vannposer i snø, der orienteringen også var avgjørende for hvor sterke refleksjoner radaren mottok (se avsnitt 3.3.).

Georadaren har en orientering med parallelle antennen som ligger vinkelrett på profilet, og Baker og Jol (2007) beskriver dette oppsettet som egnet til søk etter objekter med høy konduktivitet som for eksempel metallgjenstander. Statistikken fra NVE viser at hele 70% av skredtatte enten har ski eller snowboard når de blir tatt av skred. Ikke alle ski har stålkanter, men skikjører har ofte skistaver, som bør kunne reflektere signaler dersom de er orientert parallelt med radarens antenner. 19% av skredtatte brukte snøskuter, som også vil være et mål med høy konduktivitet, og dermed også et område hvor radaren bør undersøkes ytterligere (se avsnitt 3.1.1).

Resultatene fra Turtagrø viser klart at når antennen er orientert vinkelrett på profilet, gir en ski på tvers en tydeligere refleksjon enn en ski på langs. Det er flere mulige forklaringer på dette. Fresnelsonen, fotavtrykket under radaren er også avhengig av antennenes orientering (se avsnitt 3.2.8). Med georadaren vil korteste radiusen i ellipsen være orientert parallellet med antennene. Det er mulig at skien ble for smal, og usynlig for radaren i forhold til halvaksen (B) i fresnelsonen. Skien kan også ha blitt usynlig for radaren pga. det elektriske feltets orientering. Radzevicius og Daniels (2000) beskriver hvordan kobberrot oppfattes av ulike radaroppsett, der antennorientering parallelt med rørets lengste akste forventer å gi best resultat ved
konduktive mål. At skien på langs ikke synes kan da forklares med at antenneorienteringen er normal på stålkantens lengste akse og dette skaper en depolarisering av signalet. Reflektorene fra skien på tvers gav sterkere signaler, som stemmer med Radezviciuss resultater, da antenne er orientert parallelt med stålkantenes lengste akse.

Resultatene viser utvilsom at radaren er egnet til å finne metallobjekter under de riktige snøforhold. Hvis radaren skal anvendes i søk, vil del likevel være nødvendig å söke i et mønster (søkegrid) med profiler som går vinkelrett på hverandre, for å utelukke feilkilder grunnet objektenes orientering. Ved et slikt søk vil man i verste tilfelle få en depolarisering ved 45˚ (se avsnitt 3.2.9). En ski som er ligger på langs i et profil vil da ligge på tvers i det som krysser.

6.5. Elektronisk søkeutstyr

Målsetting E) gikk ut på å finne ut om elektronisk søkeutstyr påvirker georadaren, og dette ble testet i eksperimentet på Turtagrø. I profil 4 og 5 (Figur 26) er objektene under overflatemarkeringen 2, 3 og 5 av interesse for undersøkelse av elektroniske utsy. I hull 2 ligger en jakke med recco-brikke (REC), hull 3 består av en person med (M/REC) og uten recco-utstyr (M), og i hull 5 er en sender-mottaker i «send-modus» gravd ned (S/M). I profil 4 er personen ikledt med recco-brikke, og profil 5 viser samme person uten recco-brikke. Siden radargrammene er likt prosessert, skal det være mulig å sammenlikne profilene og gjenkjenne forskjeller (se avsnitt 4.2).

Refleksjonene fra personen i hull 3 er relativ lik i begge radargrammene, og det er ingen tegn til at recco-brikken påvirker signalet. Dersom elektronisk utstyr har innflytelse på georadaren, vil hele radargrammet vanligvis være forstyrrett. Jakken i hull 2 ser heller ikke ut til å gi refleksjoner eller forstyrrelser, men i profil 5 kan det se ut til at jakken gir en svak hyperbel. Siden denne refleksjonen er svak og ikke er tilstede i profil 4, kan refleksjonen tolkes til å komme fra selve jakken, og en kan se bort ifra at recco-brikken er årsaken til refleksjon. Det ser heller ikke ut til at sender-mottakeren i hull 5 har innflytelse på georadaren, da det ikke er betydelige forstyrrelser fra apparatet i profil 4 og 5.

I avsnitt 3.1.3 blir søkemетодene recco- og sender-mottaker-systemet beskrevet, hvor sender-mottaker-systemet opererer med 457 KHz mens recco-brikken søkes opp med 917 MHz, men sender tilbake med dobbel frekvens. Georadaren som er brukt i forsøkene sender ut frekvenser i et spekter rundt 500MHz, som vil si at georadaren kan registrere frekvenser som er normalt
fordelt rundt 500MHz (se avsnitt 3.2.4). I avsnitt 5.1.2 er programmet Reflexw brukt til å finne frekvens-spekteret for georadaren, og Figur 27 viser normalfordelingen av frekvenser som antennen sender og mottar. Siden recco-brikken sender tilbake dobbel frekvens (1834 MHz), og sender-mottakeren sender ut bølger med frekvenser på 457 KHz, vil disse frekvensene være i yttergrensen av georadarens spekter. Derfor vil signalen fra apparatene være så svake at de ikke påvirker målingene betydelig.

Ved bruk av georadar for søk etter skredtatte, er det verdt å merke seg at georadaren ikke blir påvirket av signalet fra sender-mottaker- eller recco-systemet. Dermed unngår en at søket blir forstyrret av elektronisk søkeutstyr, og anvendelsen av 500 MHz georadar kan konsentreres til søk etter objekter uten elektroniske sendere. Statistikken for snøskred i Norge viser at de fleste ofrene for snøskred ikke er utstyrt med elektronisk søkeutstyr (avsnitt 3.1.1). Det er også flere utfordringer med søk ved hjelp av elektronisk utstyr, som derfor gjør det viktig å finne metoder for å lokalisere personer uavhengig av dette utstyret (se avsnitt 3.1.3). På grunnlag av dette, kan georadaren fungere godt til søk etter skredtatte uavhengig av bruk av elektronisk søkeutstyr.

6.6. Anvendelighet av georadaren for søk i snø

For å vurdere hvor anvendelig georadaren er for søk etter personer og objekter i snøskred, er det viktig å avdekke radarens begrensninger. Resultatene fra eksperimentene på Turtagrø og i Frudalen viser at radarens penetrasjonsevne avhenger i stor grad av snødekket, hvor snø med høyt vanninnhold og løse vannmolekyler fører til kraftig demping av signalet (se avsnitt 3.2.5). Det er også realistisk å forvente varierende mengder med skredmateriale i et snøskred, men undersøkelsene for å skille turutstyr fra skredmasser og skredmateriale ble vanskelig å tolke grunnet mye forstyrrelser i radargrammet (se avsnitt 6.1).

Siden profilene fra Turtagrø ga de beste resultatene, blir forslaget til søkegrid basert på grunnlag av forsøkene 1-5 fra Turtagrø (målsetting F). Det vil si at anbefalingen til søk etter objekter og personer med georadaren i dette tilfelle er begrenset til tørr og tettpakket snø uten betydelig innhold av skredmateriale. Søkegrid blir betegnet som det mønsteret radaren bør følge for å dekke hele området, slik at alle mulige refleksjoner blir oppdaget. Undersøkelsene fra Turtagrø kan si noe om hvor langt unna objektet georadaren kan være for å oppdage refleksjoner fra objektet (se avsnitt 3.2.10 og 5.1). Denne avstanden (x) er viktig for å sette opp

I profil 2 er avstanden fra første refleksjon til faktisk posisjon av sekk (S1) på 1,26 meter. I profil 5 er avstanden på 1,05 meter for personen (M), og 0,45 meter for skien på tvers av måleretning (SKI90). Fra tidligere forsøk ved Fardalen og Chamonix (se avsnitt 3.3) ble det brukt en avstand på 0,40 meter mellom hvert profil i søkegriden (Selvik, 2002). Denne avstanden fungerte godt, men en større avstand vil føre til at området raskere blir gjennomsøkt. Avstanden vil avhenge av type objekt, størrelse på objektet og hvor dypt objektet ligger. Fresnelsonen vil utvide seg i dypet, og derfor skape større usikkerhet til lokalisering ved dypt begravde objekter (se avsnitt 3.2.8). Dette er en klar begrensing, der utgangspunktet for søkegrid bør baseres på større objekter av metall og personer slik at refleksjonene er sterke nok til at de blir lokaliser.

I profil 3 fra Turtagrø viser både termos (T) og spade (SP) tydelige refleksjoner, men avstanden fra første refleksjon til faktisk plassering av objekt er mye større for spaden (x = ca. 80 cm) enn termosen (x = ca. 40 cm). Siden størrelsen til objektene er avgjørende for avstanden fra første refleksjon til faktisk posisjon kan det være hensiktsmessig å dele opp søket i grovsøk og finsøk, der en kan konsentre seg om sok etter store gjenstander ved grovsøk. En mulig avstand mellom profilene ved grovsøk kan være ca. 1 meter. Ved finsøk etter mindre objekter vil en profilavstand på 40-45 cm kunne være tilstrekkelig. Flere undersøkelser er naturligvis nødvendig for å fastsette anbefalinger, dette er diskutert videre i avsnitt 6.8.

6.7. Feilkilder

Det finnes flere feilkilder og usikkerheter i denne oppgaven, hvor de viktigste er hastighetsberegning av em-bølgene i snøen, tolking av georadarprofiler og usikkerheter ved datainnhenting fra feltarbeid med sonering og GPS-målinger. Den beregnede hastigheten i snøen ved eksperimentene blir brukt i prosesseringen slik at radargrammene skal bli mest mulig korrekt. I eksperimentet ved Turtagrø ble ikke den faktiske dybden av brøytekanten sondert, men kun estimert til ca. 1,5 meter. Med korrekt dybde ville hastighetsberegningen vært mer
korrekt da bunnreflektoren (BR) er klar og tydelig i radargrammene og kunne blitt brukt som utgangspunkt for TWT (se avsnitt 3.2.1). Derfor ble dybden fra toppen av snødekket til topp av sekk (S1) beregnet ut fra Figur 19, der skiens lengde er kjent. Denne dybden på 0,85 meter ble utgangspunktet for beregning av hastigheten (se avsnitt 3.2.1) selv om den ikke er sondert i virkeligheten.

Feilkildene med hastighetsberegning og datainnhenting under eksperiment ble forbedret før forsøkene i Frudalen, hvor dybden ble sondert for alle de begravde objektene. Likevel viste det seg å bli vanskelig med hastighetsberegning da hyperblene i radargrammene ikke var like tydelige som i profilene fra Turtagrø. Dermed ble det vanskelig å identifisere riktig TWT i radargrammene, noe ga større usikkerhet ved hastighetsberegningene. I tillegg fungerte ikke GPS-en optimalt, slik at målingene ble basert på et start- og sluttidspunkt der avstanden ble beregnet utfra hastigheten til georadaren over måleretningen. Avstanden i radargrammene fra Frudalen er derfor ikke korrekt, og kan betraktes som en feilkilde som kunne ført til store usikkerheter ved beregning av avstand x (Figur 15) for radargrammene i Frudalen.

Ut fra tidligere forsøk og teori, kan likevel både hastigheten på 0,2 m/ns for snøen ved Turtagrø og 0,176 m/ns for snøen i Frudalen gi en grei tilnærmning av virkeligheten da snøen på Turtagrø var tørrere enn snøen i Frudalen (se avsnitt 3.2.2). Dersom hastigheten som er brukt i radargrammene er feil, vil dybden til refektorene også bli feiltolket. Det var derfor avgjørende for resultatene at dybden til hønsenettingene i Frudalen ble sondert nøyaktig, slik at hastigheten som ble endret i radargrammene kunne tilpasses dybden til nettingene.

Tolking av georadarprofiler kan også resultere i visse usikkerheter og feilkilder, og i denne oppgaven har det vært mest usikkerheter grunnet høyt vanninhold i målingene fra Frudalen. Denne usikkerheten har gjort det vanskelig å undersøke hvor kraftige refleksjonene fra skredmassene er i forhold til de begravde objektene (målsetting B). Ved eksperimentene i denne oppgaven har lokasjonen til objektene alltid vært kjent, og markert med overflatemarkeringer. I radargrammene fra Frudalen er det også diverse hyperbler og refleksjoner som ikke er kjent på forhånd. Disse tolkes til å være inhomogeniteter i gamle skredmasser, skredmateriale og lagdelinger fra nedbørsnø, men det vil kunne være eventuelle feilkilder i tolkningen.

Det er også usikkerheter om hvorvidt eksperimentene som er utført i denne oppgaven er representative for et virkelig snøskred. Det er diskutert hvordan skredmasser med skredmateriale kan forstyrre signalene fra objekter og personer, men siden innholdet av
skredmateriale i skredmassene er uklart i forsøkene i Frudalen, blir målsettingen (B) vanskelig å besvare. Derfor er det fortsatt en usikkerhet om georadaren er funksjonell for søk etter skredtatte der skredmassene inneholder betydelig med skredmateriale.

Det vil også være usikkerheter med tanke på utførsel av georadaråmlinger i et reelt snøskred. Gjennom eksperimentene i denne oppgaven er det brukt lang tid til å lage spor til radaren slik at den kan bevege seg på en jevn flate. I et snøskred-scenario er det stor sannsynlighet for at overflaten er ujevn, og dette kan påvirke signalene fra georadaren i stor grad, samtidig som det kan være vanskelig å håndtere georadaren i ulendt terreng. Ved ujevn overflate vil signalene fra objektene oppfattes forskjellig fra en jevn overflate, da avstand x (Figur 15) vil variere i y-aksen. Dermed kan hyperblene få en annerledes form, og det kan bli vanskelig å tolke objektets faktiske posisjon samtidig som dybden til reflektoren kan feiltolkes.

6.8. Forslag til videre undersøkelser

For å vurdere om georadaren egner seg til søk etter skredtatte bør en gjøre flere undersøkelser om hvordan instrumentet bør benyttes. Det mangler fremdeles viten om radarens anvendelighet og begrensninger. I eksperimentene beskrevet av Heilig et al. (2008) (se avsnitt 3.3), ble ikke vannpose som simulerte mennesker sammenliknet med andre objekter eller skredmateriale. I områder med mye vegetasjon vil snøskred ofte inneholde skredmateriale (se avsnitt 3.1.2), og det kan være nyttig å gjøre en undersøkelse der mulighetene for å skille mennesker fra skredmateriale blir vurdert.

Det kan være en fordel at personen som opererer radaren har praktisk og teoretisk kunnskap om forskjellige typer skred og typiske strukturer i skredmasser, slik at en best mulig kan skille disse fra personer i et georadarprofil. Det er også verdt å merke seg at flakskred er den skredtypen som har krevd flest menneskeliv (se avsnitt 3.1.1). Dermed kan en vektlegge georadarundersøkelser av denne type skred og finne ut hva en kan forvente å finne av skredmateriale i flakskred og hvordan dette forventes å opptre i radargrammer.

Det vil også være en fordel å undersøke forskjellige søkegrid med hensyn til objektets dybde, størrelse og materiale og vurdere største og minste avstand for deteksjon av objekter og personer. På denne måten kan en finne ut den beste metoden for raskest gjennomsøkning av et område. Etablering av et fast søkegrid og søkemønster for bruk av georadar i søk vil være til stor hjelp for letemannskaper som skal bruke oppsettet. Det er mulig at det kreves ulike
søkemønster i ulike typer skredmasser, avhengig av materiell sammensetning og vanninnhold i snøen.

Orienteringen til blokkene i et snøskred vil være med den lengste aksen langs skredretningen, såkalt imbrikering (se avsnitt 3.1.2). Hvis dette også er tilfellet for mennesker i skredmassene, vil det være fornuftig å prioritere søk med georadaren på tvers av skredet ettersom georadaren gir best utslag på konduktive mål som er orientert på tvers av profilet (se avsnitt 3.2.9). I videre utvikling av søkemetoder med georadar vil det derfor være hensiktsmessig å notere hvilken retning skredofre ligger i når de blir funnet, for å se om det er noen dominerende retning. Hvis det finnes en dominerende retning på skredofre, vil det spare søkemannskap mye tid å legge profiler på tvers av denne retningen.

Georadarens oppsett begrenser bruken til søk i skred noe, fordi den som trekker radaren må tolke radargrammet på stedet. I felt er det begrensede prosesseringsmuligheter, så tolkningen vil bli vanskelig. Uten de prosesseringsmulighetene i Reflex2DQuick kan det være vanskelig å se forskjell på refleksjoner fra objekter og skredmasser. Når liv står på spill vil det ligge et voldsomt press på den som skal tolke dataen, som trolig vil gjøre tolkningen enda vanskeligere.

Både tidligere erfaringer og tester viser tydelig at georadar kan fungere godt som en metode for søk etter skredtatte (se avsnitt 3.3). Dersom en kan bruke egenskapene til georadaren i luftbåren form, kan en bruke georadar til å gjøre et første søk av området, og vurdere om det er mennesker tatt av skredet. Dette kan minske tiden som redningspersonal må bruke i områder eksponert for skredfare. For å vurdere hvordan georadaren vil fungere i luftbåren form, kan det være fornuftig å gjøre diverse undersøkelser som simulerer dette. Det kan gjøres ved å koble georadaren til en kabelbane, liknende eksperimentene beskrevet av Heilig et al. (2008) (se avsnitt 3.3).
Ved slike undersøkelser er det viktig å vurdere hvordan laget med luft over snøen påvirker embølgene, og hvilke virkninger dette får for refleksjonene fra objekter i snøen. Ved å heve radaren over bakken vil også den horisontale oppløsningen endres. Skremateriale i snøen er en av de store utfordringene til georadarens søkepotensial, og hvis man øker avstand mellom radar og bakken, kan mindre objekter som grus, jord og kvister muligens bli oversett av radaren. Hvis det er tilfellet, vil det være en fordel med å bruke luftbåren radar.

Dersom det er mulig å opprette et tråløst georadarsystem, kunne det være interessant å teste hvorvidt det er mulig å feste georadaren til en drone. Droner er fjernstyrte luftfartøy som ofte blir brukt til overvåkning. Disse er stadig i utvikling og blir brukt til flere formål, deriblant å kontrollere skredutsatte veier. Statens vegvesen har tatt i bruk droner for å overvåke veier der det er stor skredfare (Hjellen et al., 2016). Dette gjør det mulig å stenge veien før skredet inntreffer, slik at en hindrer katastrofale ulykker. Utvikling av en dronebasert georadar ville ført til ny teknologi innen søk i snøskred, hvor georadarens egenskaper kan føre til en raskere metode for lokalisering av skredtatte.
7. Konklusjon
Gjennom denne oppgaven er georadaren MALÅ 500 MHz vurdert som et instrument med mulighet til å benyttes for søk etter skredtatte. Vurderingene er gjort på bakgrunn av eksperimentene på Turtagrø og i Frudalen, hvor hensikten var å grave ned diverse objekter i snøen, for så å lokalisere de med georadaren. Begrensninger for bruk av georadaren har kommet til syne ved tolking av resultatene fra eksperimentene (radargrammene). Snødekket er en viktig faktor for bruk av radaren til søk i snø, hvor georadaren fungerer best under tørre snøforhold (målsetting A). Forsøkene besvarte også målsetting B), der radargrammene fra Turtagrø tydelig viser at personer og materialer av metall gir de kraftigste refleksjonene, mens objekter som klær og sekk ble vanskelig å lokalisere grunnet lav kontrast i den relative permittiviteten.

Det kom også tydelig frem at radaren har god horisontal oppløsning, og objekter med størrelse d/10 kommer til syne i radargrammet når fresnelsonens halvakse (B), er større enn d/10 (målsetting C). Dette kan være en fordel da radaren potensielt kan fange opp en skistav, eller bare tuppen på en ski. Forsøkene på Turtagrø besvarte også målsetting D), som omhandlet objekters orientering, der konduktive mål gir sterkest refleksjon dersom radarens antenne er orientert parallelt med objektets lengste akse. Dette tilsier at radaren kan fange opp stålkanten til for eksempel en ski eller skistav. Elektronisk søkeutstyr påvirker ikke radaren, og en kan utelukke videre undersøkelser av disse hjelpemidlene for søk i snø med georadaren (målsetting E).

Oppgaven har også belyst områder hvor ytterlige undersøkelser bør utføres, spesielt med fokus på profilavstand og søkegrider (målsetting F). Det er et tydelig potensiale for bruk av georadar i søk av snøskred, spesielt om metoden kan kombinieres med dagens søketeknikker, slik at flere søkemetoder kan føre til raskere lokalisering av skredtatte. Både tidligere undersøkelser og eksperimentene i denne oppgaven understreker at georadar kan ha stor betydning for snøskredforskning. Dersom ny teknologi gjør det mulig å kombinere georadar med en drone, kan det være mulig å sende inn en dronebasert georadar i et skredområde. Dette vil kunne redusere oppholdstiden til redningsmannskapet i utsatt området, og mulig gjøre redningsaksjonen både raskere og tryggere.
8. Referanser

Hjellen, Odd Einar, Alex Klein-Paste, Ed McCormack, og Gunne Håland. 2016. Bruk av drone (RPAS) til vurdering av snøskred og steinsprang på veg. NTNU.

NGI. 2017. NGI | Snøskred 23.03.2017 [Hentet 23.03 2017].

Råd, Nasjonalt Redningsfaglig. 27.03.2012. Retningslinjer for redningstjeneste ved snøskredulykker. edited by Nasjonalt Redningsfaglig Råd.

Varsom, snøskredskolen. 2017. Snøskredproblemer | Skavlbrudd 2017 [Hentet 15.05 2017].
Vedlegg 1: Prosessering brukt i profilene 1-5 fra eksperimentet på Turtagro
Vedlegg 2: Prosessering brukt i profilene 6-10 fra eksperimentet i Frudalen
Vedlegg 3: Resultater fra Garpestad et al. (2017). De røde markeringene viser begravde hønsenettinger. Disse målingene er utført i en skyggelagt helning og viser en klar reflektor fra hønsenettinger, 0,5m x 0,5m, flere meter under snøen.
Vedlegg 4:
Forsøk 6 er uprosesseret data fra profil 6 i Frudalen. Forsøk 4 er uprosesseret data fra profil 4 på Turtagrø.

Det er tydelig at amplituden til refleksjonene i forsøk 4 er større enn ved refleksjonene i forsøk 6.
Vedlegg 5: Flakskredet i Frudalen på tidligere befaring. Forsøk 6-10 ble gått over skredmassene på et senere tidspunkt, da de var dekket av nedbørssnø.