Rapport

Lønnsom foredling av sjømat i Norge

Med fokus på teknologiutvikling og økt automatisering

Forfatter(e)
Hanne Digre
Eirin Marie Skjøndal Bar, John Reidar Mathiassen, Dag Standal, Leif Grimsmo, Kristian Henriksen, Anita Romsdal (NTNU) og Frank Asche (UIS)

Foto: SINTEF Fiskeri og havbruk
SINTEF Fiskeri og havbruk AS
Prosesssteknologi
2014-10-13
Rapport

Lønnsom foredling av sjømat i Norge
Med fokus på teknologiusvikling og økt automatisering

VERSION
FINAL

FORFATTER(E)
Hanne Digre
Eirin Marie Skjøndal Bar, John Reidar Mathiassen, Dag Standal, Leif Grimsmo, Kristian Henriksen, Anita Romsdal (NTNU) og Frank Asche (UIS)

OPPDRAAGSGIVER(E)
Nærings- og fiskeridepartementet

OPPDRAAGSGIVERS REF.
Sigrid Dahl Grønnevet

PROJEKTNR
6021133

ANTALL SIDER OG VEDLEGG:
94 + vedlegg

SAMMENDRAG

Lønnsom foredling av sjømat
SINTEF Fiskeri og havbruk har sammen med professor Frank Asche foretatt en analyse av norsk sjømatindustriøs muligheter til lønnsom foredling av sjømat i Norge. Analysen omfatter vurderinger knyttet til:

- Dagens situasjon i de tre sektorene (hvitfisk, pelagisk og laks)
- Fremtidige muligheter for lønnsom foredling av sjømat i Norge med fokus på teknologiusvikling og økt automatisering, samt
- Lønnsomhetspotensialet for foredling i Norge

Analysen vil inngå i det faglige grunnlaget til det offentlige NoU-utvalget som foretar en gjennomgang av sjømatindustriens rammevilkår.

Rapporten foreslår noen prioriterte tiltak knyttet til spesielt teknologiusvikling og økt automatisering for å styrke muligheten til å drive med lønnsom foredling av sjømat i Norge.

UTARBEIDET AV
Hanne Digre

KONTROLLERT AV
Ulf Winther/ Harry Westavik

GODKJENT AV
Karl A. Almås

RAPPORTNR
A26355
ISBN
978-82-14-05769-0
GRADERING
Åpen
GRADERING DENNE SIDE
Åpen
Innholdsfortegnelse

Sammendrag ... 4

Konklusjon ... 11

Prioriterte forslag til tiltak ... 12

Innledning ... 13

- Formål med utredningen .. 13
- Hvordan vi har løst oppdraget .. 14
- Definisjon av begreper .. 15

Metode.. 17

DEL A) Premisser for foredlingsindustrien ... 18

- **A.1 Ytre faktorer** .. 19
 - A.1.1 Norsk sjømatproduksjon .. 19
 - A.1.2 Næringsstruktur og lønnsmøte .. 23
 - A.1.3 Utviklingstrender for sjømatprodukter ... 26
 - A.1.4 Markedsutvikling ... 28
 - A.1.5 Handelsbarrierer .. 31
 - A.1.6 Tilgang til kompetanse .. 31

- **A.2 Biologiske forhold** .. 34
 - A.2.1 Råstofftilgang ... 34
 - A.2.2 Nærhet til fangstfelt og merdkant ... 36
 - A.2.3 Råstoffkvalitet ... 37

- **A.3 Utfordringene - kort oppsummert** ... 39

DEL B) Teknologiutvikling og økt automatisering ... 40

- **B.1 Bærekraftig industrielt Norge** .. 41
 - B.1.1 Lean Manufacturing .. 42
 - B.1.2 Planlagt styring og økt markedstilpasning ... 44

- **B.2 Økt automatisering for en bærekraftig foredling av sjømat i Norge** 46
 - B.2.1 Situasjonen i dag .. 46
 - B.2.2 Teknologiske hovedutfordringer og fremtidige muligheter .. 49
 - B.2.3 FoU-innsats mot leverandørindustrien til marin industri ... 54
 - B.2.4 Nødvendige fokusområder i fremtidens forskning og utvikling ... 56
 - B.2.4.1 Teknologiske fokusområder .. 58
 - B.2.4.2 State-of-the-art innen hvert teknologiske fokusområde ... 59
 - B.2.4.3 Konkrete forskningstema innenfor hvert teknologiske fokusområde 62

- **B.3 Marint restråstoff** .. 65
B.4 Ombordproduksjon som strategi for filetproduksjon? .. 67
 B.4.1 Innledning .. 67
 B.4.2 Automatisert prosesslinje ombord .. 70
B.5 Oppsummering .. 72

DEL C) Lønnsomhetspotensial for fremtidig foredling i Norge ... 74
 C.1 Kostnadsdrivere i norsk foredling i dag .. 75
 C.1.1 Noen sentrale konkurransevilkår for norsk foredlingsindustri .. 75
 C.1.2 Nærmere om lønn- og produksjonskostnader i Norge .. 79
 C.2 Lønnsomhetspotensial ved økt automatisering ... 81
 C.3 Lønnsomhetspotensial for utnyttelse av marint restråstoff .. 84
 C.3.1 Verdiskapingspotensial ... 84
 C.4 Oppsummering .. 86

Referanser .. 87

Vedlegg .. 92
 Verdikjeder for marint restråstoff - Havbrukssektoren .. 92
 Verdikjeder for marint restråstoff - Fiskerisektoren .. 93
Sammendrag

Automatisering og robotisering av produksjonsprosesser forventes å få en sentral plass i samfunnet. I en utredning fra Stiftelsen for Strategisk Forskning i Sverige, forventes det at i løpet av en periode på 20 år, vil hele 46 % av alle jobber i Sverige, erstattes av digitalisering, automatisering, robotisering og ulike former for dataanalyser (Fölster, 2014). En tilsvarende studie av det amerikanske arbeidsmarkedet er utført ved Universitetet i Oxford, og med samme konklusjon som i Sverige (Frey & Osborne, 2013). Det forventes at Norge må følge samme trend for å være konkurransedyktig i fremtiden.

Denne rapporten har tatt for seg norsk sjømatindustris muligheter til lønnsom foredling i Norge, med fokus på teknologiutvikling og automatisering innen fiskeforedling, hvor totalutnyttelse av råstoffet er en forutsetning. Rapporten diskuterer også muligheten for ombordproduksjon som alternativ strategi for filetproduksjon. Som en viktig referanse til denne strategien er det redegjort for en rekke indikatorer som beskriver viktige rammebetingelser for industrien (Del A). Teknologiutvikling og økt automatisering er satt inn i et helhetlig perspektiv, hvor man også har vurdert hvordan teknologiutviklingen gjennom fleksible løsninger kan bidra med mer markedsorienterte produksjonsstrategier for norsk sjømatindustri. Situasjonen i dag er beskrevet, og det er skissert nødvendige fokusområder for fremtidens forskning og utvikling for å realisere visjonen om en tilnærmet fullautomatisert og bærekraftig norsk fiskeforedling industri med mattrygghet i fokus (Del B). Lønnsomhetspotensialet ved økt automatisering og beskrivelse av kostnadsnivå, samt sammenligning mot andre lands foredling industri er også gjennomført (Del C).

Analysen er utført på oppdrag for Nærings- og fiskeridepartementet, og er et innskpill til NOU-utvalget som foretar en gjennomgang av sjømatindustriens rammvilkår. Bakgrunnen for NOU-utvalgets arbeid er ønsket om å utvikle en mer konkurransedyktig sjømatindustri, gjennom å legge til rette for en bedre lønnsomhet. Denne rapporten går ikke inn på regulatoriske forhold (Råfiskloven, Deltakerloven, konsesjonsregelverket etc.), da dette er diskutert i flere andre rapporter.

Dagens situasjon og utfordringer (Del A)

Norsk fiskeforedling har de siste 30-årene gjennomgått omfattende endringer og antall foredelingsbedrifter er sterkt redusert, spesielt innenfor havfiskindustrien, men også innenfor havbruksnæringen og i pelagisk sektor. Lønnsomheten i filetindustrien for alle de tre verdikjedene har vært svak over tid. Norge er et høye kostland hvor det stilles særlige krav til markedsorientering, teknologiutvikling og utnyttelse av naturgitte fortrinndom sjømatindustrien skal være lønnsom. Forreddelingsindustrien er arbeidsintensiv og norske lønnkostnader er høye. Norsk industri konkurranceevne er sikkert siste ti årene, da timelønnkostnader har vært økende (i 2013 var timelønnkostnadene i industrien i Norge 55 % høyere enn i EU (Conference Board, Eurostat, SSB og Beregningsutvalget)).

Det er en utfordring for sjømatindustrien å få tilgang til ferskt råstoff av god kvalitet gjennom hele året. Spesielt gjelder dette havfiskindustrien og pelagisk konsumindustri. En stor del av råstoffet fanges kun deler av året. En lønnsom kontinuerlig drift av foredlingen krever en gitt råstoffbase. Dagens kunder er blitt større aktører som ønsker leverandører som kan sikre daglig tilstedeværelse i butikkhyllene med produktene.
Foredlingsindustrien, inkludert alle de tre verdikjedene; hvitfisk, pelagisk og laks, sliter med flere utfordringer som må løses dersom denne industrien skal kunne drive lønnsomt i årene som kommer. Nedenfor følger noen av dem:

- Produksjonskapasiteten på anleggene må utnyttes gjennom hele året, dette gjelder spesielt hvitfisk og pelagisk sektor. Tiltak må settes inn for å redusere de sesongmessige svingningene.

- Fiskeindustrien har for liten kontroll med kvaliteten på fisken som leveres. Det vil være mye å hente på forbedret fangstbehandling, ettersom tapt kvalitet i fangstleddet ikke kan kompenseres i etterfølgende ledd.

- Lav grad av automatisering i foredlingsleddet. Det har skjedd svært lite innen teknologiutviklingen de siste 30 årene når det gjelder foredlingen av hvitfisk. Dette forklares til en viss grad av at markedet for slik teknologi har skrumpet inn. Spesielt er det behov for automatisering av arbeidsintensive operasjoner som trimming og bein fjerning for å redusere lønnskostnadene.

- Innenfor deler av dagens sjømatindustri består over 50 prosent av arbeidsstokken av ufaglærte arbeidere. Med den forventede framtidige utviklingen innenfor sjømatindustrien, med blant annet økt automatisering og behov for mer innovasjon innenfor produkt, marked og strategi vil det kreve økt etter- og videreutdanning av dagens arbeidskraft og økt kompetanse for nyansatte.

- Foredlede norske sjømatprodukter møter handelshindringer i form av høye tollsatser i viktige markeder for norske fiskeprodukter. Norske fiskeprodukter blir utsatt for sanksjoner i ulike typer internasjonale konfliktene.

- Dagens regelverk gir sjømatindustrien mindre mulighet til å kontrollere verdikjeden, slik tilfellet er i havbruksnæringen. En viktig konsekvens er at fiskerleddet ikke får tilbakeført viktig markedskunnskap.

Med referanse til mulighetene innen automatisering i vid forstand, er det potensiale for å effektivisere foredlingsindustrien i Norge, og gjerne med utgangspunkt i "high road" strategien (beskrevet i Winther et al., 2014) for norsk sjømat med et fokus på ferske produkter eller frosne produkter av høy kvalitet, samt god restråstoffutnyttelse av det avskjær som følger med.

Fremtidige muligheter med fokus på økt automatisering og teknologiutvikling (Del B)

Norge må utnytte sine fortrinn som nærhet til råstoffet, store naturressurser, sterk økonomi, nærhet til markedere som Europa og Russland, samt høyt utdannet arbeidskraft. Norge er også godt posisjonert for å delta i den bioøkonomiske utviklingen, spesielt innenfor det «blå segmentet» der vår bioteknologiske leverandørindustri og industribedrifter innen havbruk og marine ingredienser er verdensledende (BioVerdi 2014).

Den nasjonale FoU-strategien for en havnasjon av format – Hav 21 (Hav 21, 2012) peker på at teknologiutvikling og effektivisering av norsk produksjon er nødvendige tiltak for å kunne møte internasjonal konkurranse. Utvikling og implementering av teknologi som reduserer manuelt arbeid er en hovedstrategi for å utvikle foredling av fisk i Norge. Dette er pekt på som en av hovedutfordringene i den nasjonale strategien for Hav 21. Ved å se mot annen masseproducenterende industri er det rimelig å anta at fleksibilitet og mulighet for hurtig endring i produksjon samt markeddistribution vil være en nøkkel til en robust industriell sjømatproduksjon. Fremtidens produksjonslinjer må ha fleksibilitet i forhold til varierende råstoff og produkt som etterspørses i markedet.
Lønnsom fordeling av sjømat i Norge forutsetter en høy grad av automatisering av foredlingsprosessen, både selve bearbeidingen og av vaske- og vedlikeholdsoperasjoner, og skal bidra til å redusere produksjonskostnadene. Mer automatiserte fabrikker med fokus på kvalitet og produktutvikling vil føre til økt foredlingsgrad i fiskeindustrien (illustrert i Figur 1). En lettere integrering opp mot markedet både nasjonalt og internasjonalt er nødvendig for å lykkes. Det er et stort potensiale i Norge for lønnsom bearbeiding av fisk i en kompetanse- og teknologi basert fiskeindustri. For at flåteleddet skal være i stand til å levere råstoff sortert etter gitte kvalitetskrav må det skje en oppgradering av dagens fangstbehandlingslinjer. Spesielt må dagens fangstprosess forbedres, og det må utvikles automatiserte slaktelinjer, lik dagens moderne lakseslakteri.

Figur 1. Teknologiutvikling påvirker både hvilket marint råstoff som kan benyttes, samtidig som utvikling av foredlingssteknologi både påvirkes av og påvirker etterspørselen fra markedet og konsumentene.

Oppsummet må man:

1) **Identifisere forsknings- og teknologibehov** i foredlingsleddet i norsk sjømatindustri og detaljere dette i nasjonal skala.

2) **Utvikle teknologier** for automatisk fordeling av fisk, både på land og om bord.

3) **Kanalisere de utviklede teknologier** inn i innovasjoner og kommersiell utnyttelse, gjennom innovasjonsprosjekter og produktutvikling hos utstyrsløseringer og foredlingsbedrifter.

4) **Formidle forskningen** slik at den kan påvirke andre industrier – utover sjømatindustrien.

Behovet for fremtidige teknologiske løsninger for nær fremtid (et 5års perspektiv) og i et fremtidig scenario (>10 år frem i tid) er beskrevet og bygger på tanken om en fremtidig fullautomatisert industri:

1) **Automatisering av enhetsoperasjoner** i en fabrikk eller om bord på en båt, hvor råstoff, arbeidsoppgaver og andre rammer er klart definert på forhånd (5 års perspektiv).

2) **Fullautomatisert adaptiv produksjon og selvlærende fabrikker/produksjonsanlegg** på land og om bord, som må håndtere store variasjoner i råstofftilgang og markedsgrad **uten hjelp fra mennesker** (>10 års perspektiv).

De nødvendige fokusområder for teknologiutvikling er beskrevet i nok detalj til at rapporten kan være et utgangspunkt for spesifikke forskningssatsninger og – programmer.
I tabellene 1, 2 og 3 følger noen konkrete eksempler på identifiserte teknologiske gap og mulige teknologiske løsninger i et nært tidsperspektiv, som angitt i punkt 1. Tabellene beskriver dagens situasjon, hva som trengs av ny teknologi og anslår mulig gevinst ved bruk av ny teknologi innenfor foredling av hvitfisk (filet), pelagisk (sildefilet) og laks:

Tabell 1. Overordnet prosesslinje for hvitfisk filet, som viser tilgjengelig teknologi, behovet for ny teknologi og hva gevinsten er ved innføring av ny teknologi.

<table>
<thead>
<tr>
<th>Prosesslinje</th>
<th>Tilgjengelig teknologi</th>
<th>FOU-behov – ny teknologi</th>
<th>Gevinst med ny teknologi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mottak og råstoffhåndtering</td>
<td>• Truck transport
• Store lastebærere i plast (kar)
• Grading- og sortingsteknologi
• Kjøltemoder som f.eks. slurry is</td>
<td>• Nye interntransportløsninger
• SYDOOSI (FIFO, prinsipp i større grad)
• Automatisk kvalitetssbogsering av hel fisk
• Automatisert lagerstyring</td>
<td>• Redusert bemanning
• Redusert behov for plastkar
• Enklere renhold og bedre hygiena
• Bedre sorterings- og logistikk videre i produksjonslinjen
• Større andel råstoff til høykvalitetsprodukt ved at høy kvalitet inn i høy kvalitet ut</td>
</tr>
<tr>
<td>Filetering og skinning</td>
<td>• Mekanisk fileringsmaskin med manuelt inmmating tilpasset bestemte størrelser/art
• Mekanisk skinning
• Kjøltemoder som f.eks superkjøling</td>
<td>• Automatisk inmmating.
• Automatisk og adaptiv inntjering av fileringen for hver enkelt fisk, uavhengig av størrelse og art.
• Kun 1 person til etterkontroll per linje.</td>
<td>• Redusert bemanning
• Mindre flaskehåler og raskere produksjon
• Muliggjøre adaptiv produksjon uavhengig av størrelse og art.
• Muliggjøre kontinuerlig automatisk linje uten menneskelig intervensjon.
• Økt utbytte
• Større andel råstoff til høykvalitetsprodukt</td>
</tr>
<tr>
<td>Kutting/remskjæring/trimming</td>
<td>• Mekanisk nakkekutter med manuelt inmmating
• Fjerning av bein v/vannjet (utstyr til Valke og Mare, nyttig tilgjengelig)</td>
<td>• Adaptiv justering av nakkekuttet for hver enkelt fisk, uavhengig av størrelse og art, automatisk inmmating.
• Automatisk enkeltvis fjerning av pinnebein.
• Automatisk inmmating automatisk med 3D maskinsyn og roboter.
• Automatisk kvalitetsskolltoll</td>
<td>• Redusert bemanning
• Mindre flaskehåler og raskere produksjon
• Muliggjøre adaptiv produksjon uavhengig av størrelse og art.
• Muliggjøre kontinuerlig automatisk linje uten menneskelig intervensjon.
• Økt utbytte
• Større andel råstoff til høykvalitetsprodukt</td>
</tr>
<tr>
<td>Pakking</td>
<td>• Flowlinje med manuelle pakkestasjoner
• Delvis automatisk pakkeinnsatser f.eks. for standardiserte filetstykker</td>
<td>• Automatiske lagtingsløsninger
• Automatisk kvalitetsskolltoll / inspeksjon før pakking</td>
<td>• Redusert bemanning
• Mindre flaskehåler og raskere produksjon
• Redusjon av personer
• Muliggjøre kontinuerlig automatisk linje uten menneskelig intervensjon.
• Dokumentert mottatt og levert kvalitet
• Redusert manuell håndtering reduserer risikoen for kontaminering av patogene bakterier.
• Bevaring av kvaliteten gjennom hele produksjonsprosessen bidrar til bedre sluttkvalitet</td>
</tr>
<tr>
<td>Renhold</td>
<td>• Vaskemaskiner for kar og bakker
• Manuelt renhold styling</td>
<td>• Helautomatiske væskestasjoner
• Vaskemaskiner for produksjonslokaler
• Hygienisk design av alle maskiner, logistikk/lovløsninger og produksjonslokaler.</td>
<td>• Redusert bemanning
• Enklere/raskere renhold og bedre hygiena
• Økt utbytte av produksjonsutstyr
• Fjerning av tunge manuelle arbeidsoperasjoner (gjelder hele prosesslinja)</td>
</tr>
</tbody>
</table>
Tabell 2. Overordnet prosesslinje for filetproduksjon av sild, som viser tilgjengelig teknologi, behovet for ny teknologi og hva gevinsten er ved innføring av ny teknologi.

<table>
<thead>
<tr>
<th>Prosesslinje</th>
<th>Tilgjengelig teknologi</th>
<th>Fou-behov – ny teknologi</th>
<th>Gevinst med ny teknologi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mottak/grading</td>
<td>• Mekaniske gradere med noe manuelt etterkontroll.</td>
<td>• Helaautomatisk grading ved bruk av 3D maskinsyn og automasjon.</td>
<td>• Mer nøyaktig grading, og dermed mindre give-away.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Adaptiv grading i forhold til mer optimal filetering eller (robotisert) pakking i etterkant.</td>
</tr>
<tr>
<td>Pakking – hel fisk</td>
<td>• Manuelt</td>
<td>• Helaautomatisk robotisert pakking (4 roboter per linje), med kun få (1-2 per linje) personer for korriger og kontroll i etterkant.</td>
<td>• Innsparring på inntil 10-20 personer på en typisk pakkelinje.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ingen menneskelig berøring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mindre give-away, adaptiv produksjon av bestemte pakningsstørrelser.</td>
</tr>
<tr>
<td>Filetering sild</td>
<td>• Mekanisk filetering med maskinsyn i forkant for å detektere utkast og returfisk.</td>
<td>• Adaptiv filetering basert på størrelse og formen til fisken, samt basert på kundens krav.</td>
<td>• Bedre utbytte på fillet, samt dynamisk og adaptiv tilpasning etter kundens behov.</td>
</tr>
<tr>
<td>Pakking – filet</td>
<td>• Manuelt</td>
<td>• Robotisert pakking med kun 3-2 personer for korriger og etterkontroll.</td>
<td>• Redusert bemanning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mulighet for nye og mer tilpassede produkter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mindre give-away.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ingen menneskelig berøring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Redusert manuell håndtering reduserer risikoen for kontaminering av patogene bakterier.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Bevaring av kvaliteten gjennom hele produksjonsprosessen bidrar til bedre sluttkvalitet</td>
</tr>
<tr>
<td>Renhold</td>
<td>• Manuelt renhold styling</td>
<td>• Vaskeroboter for produksjonslokalen</td>
<td>• Redusert bemanning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hygienisk design av alle maskiner, logistikløsninger og produksjonslokal.</td>
<td>• Enkler/raskere renhold og bedre hygiene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Økt utnyttelse av produksjonsutstyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Fjerning av tunge manuelle arbeidssituasjoner (gjelder hele prosesslinje)</td>
</tr>
</tbody>
</table>
Tabell 3. Overordnet prosesslinje for filetproduksjon av laks, som viser tilgjengelg teknologi, behovet for ny teknologi og hvæ gevinsten er ved innføring av ny teknologi.

<table>
<thead>
<tr>
<th>Prosesslinje</th>
<th>Tilgjengelig teknologi</th>
<th>Fou-behav – ny teknologi</th>
<th>Gevinst med ny teknologi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodekapping/filetmaskin</td>
<td>• Maskiner som krever manuell innmatning, med fast størrelsesstilling per linje.</td>
<td>• Automatisk innmatning og adaptiv justering av hodekapp og filetering etter størrelse og form (indre og ytre).</td>
<td>• Redusert bemanning. Bedre utbytte etter filetering, samt færre feil som må korrigeres i trimmemaskin og ettertrimming.</td>
</tr>
<tr>
<td>Trimming</td>
<td>• Trimmemaskiner som tar buklit, rygghett, bukhinne og halekutt. Krever manuell ettertripping med 4-5 personer per linje per skift.</td>
<td>• Fullautomatisk trimming med maks 1 person til etterkontroll og ettertripping per linje.</td>
<td>• Innsparing 3-4 personer per linje per skift. Økt utbytte</td>
</tr>
<tr>
<td>Pinnebein/skinning</td>
<td>• Manuell pinnebeinfjerning (pre-rigor) og automatisk pinnebeinfjerning (post-rigor)</td>
<td>• Automatisk fjerning av pre-rigor pinnebein enkeltvis.</td>
<td>• Redusert bemanning. Større andel råstoff til høykvalitetsprodukt. Økt utbytte</td>
</tr>
<tr>
<td>Porsjonering/Pakking</td>
<td>• Automatisk porsjonering, men delvis manuell pakking</td>
<td>• Robotisert pakking, helaautomatisk med 1 person til etterkontroll og justering.</td>
<td>• Redusert bemanning. Fjerner menneskelig berøring. Documentert mottatt og levert kvalitet. Redusert manuell håndtering reducerer risikoen for kontaminering av patogene bakterier. Bevaring av kvaliteten gjennom hele produksjonsprosessen bidrar til bedre sluttkvalitet</td>
</tr>
<tr>
<td>Renhold</td>
<td>• Vaskemaskiner for kar og bakker. Manuelt renhold spylning</td>
<td>• Helaautomatiske vaskestasjon. Vaskeroboter for produksjonslokalene. Hygienisk design av alle maskiner, logistikkåpninger og produksjonslokale.</td>
<td>• Redusert bemanning. Enklerere/raskere renhold og bedre hygene. Økt utnyttelse av produksjonsutstyr. Fjerning av tunge manuelle arbeidsoperasjoner (gjelder hele prosesslinja)</td>
</tr>
</tbody>
</table>

Dersom Norge skal ha en foredlingsindustri i fremtiden må fiskeforedelsesanleggene fullautomatiseres, og teknologiutvikling og forskning innenfor dette feltet må bli en nasjonal satsning. Utover å øke lønnsomheten, bærekraftigheten og mattryggheten i norsk fiskeforedelsesindustri, vil en slik nasjonal satsning og visjon kunne gjøre Norge til et globalt foregangsland innen flere forskningsfelt – eksempelvis kunstig intelligens, adaptiv robotikk, fleksibel produksjon og bærekraftig industri.

Styrke leverandørindustrien

Lønnsomhetspotensial for fremtidig foredling i Norge (Del C)

Det er i rapporten også gitt en beskrivelse av kostnadsnivået i Norge sammenlignet mot andre lands foredelsindustri. Vi har også sett på lønnsomhetspotensialet ved innføring av økt automatisering i foredelsindustrien.

Hovedfunnene, Del C:
- Norsk fiskeindustri har over tid hatt lav lønnsomhet, og svekkelsen av konkurranseevnen i form av økte kostnader, rammer derfor fiskeindustrien.
- Norges lave energikostnader, sammenlignet med våre handelspartnere, vil være en fordel dersom prosesseringen av fisk helautomatiseres.
- For den norske fiskeindustrien utgjør vareforbruk den største andelen av driftskostnadene, med størrelsesorden 60-80 prosent.
- Ved innføring av økt automatisering og teknologutvikling har vi estimert en økning av dekningsbidraget fra dagens 12% til 28%\(^1\).
- Ny teknologi vil redusere bemanningsbehovet, men kreve annen type kompetanse. Eksempelvis vil kompetanse innen automasjon og prosessstyring bli viktig i fremtiden. Selv om totalt antall ansatte vil reduseres, vil ikke lønnskostnadene reduseres tilsvarende, da høyere kompetanse hos ansatte krever høyere lønn per ansatt.
- De viktigste mulighetene med ny teknologi er potensialet for kvalitets- og produktforbedringer, økt kapasitet (økt volum per tidsenhet), økt utbytte og økt andel bedre betalte produkter. Produktene som helhet kan holde en høyere kvalitet, og dermed oppnå en høyere pris i markedet. Dette forutsetter en helhetlig kvalitetstanke, fra fangst/merd til sluttklappeder deres rolle i utviklingen av Norge som sjøfartsnasjon og den norske maritime næring som ei global kompetansenæring. Når det gjelder sjømatindustrien må imidlertid leverandører til marint sektor (sjømatnæringen) forholde seg til en langt mer fragmentert og mindre teknologitung næring med svakere tradisjon for å initiere, prøve ut og ta i bruk FoU-resultater.

\(^1\) Dekningsbidrag=Inntekter – variable kostnader
• Det meste av restråstoffet fra oppdrettet fisk og pelagisk utnyttes i dag og anvendes hovedsakelig til føringsredienser, mens kun 9% av volumet går til konsum- og sjømatprodukter.

• Det er et stort potensial i å øke utnyttelsesgraden av restråstoff fra hvitfiskssektoren hvor det meste av restråstoffet i dag blir dumpet til havs.

Det er imidlertid en stor utfordring som begrenser teknologiutviklingen i fiskeforedling. I global sammenheng er industriell fiskeforedling en liten sektor (med begrenset lønnsomhet og betalingsevne) med et begrenset marked for teknologileverandører. Dette har konsekvenser for teknologileverandørenes og fiskeindustriens vilje og evne til å satse på egen FoU. Mye av den teknologiutviklingen som skjer i fiskeindustrien er derfor tilpassing av eksisterende teknologi til nye applikasjoner.

Konklusjon

Vår hovedkonklusjon refererer til følgende:

- Med referanse til mulighetene for teknologiutvikling er det gode muligheter for en fremtidig lønnsom foredlingsindustri i Norge.

- Det er et betydelig potensiale for å modernisere og utvikle norsk foredlingsindustri. For å realisere slike målsettinger innenfor rammene av et høyt lønns- og kostnadsnivå, er det viktig å satse på økt automatisering av foredlingsindustrien.

- Med referanse til det høye lønns- og kostnadsnivået i Norge, er det viktig at Norge etablerer et komparativt fortrinn hva gjelder teknologisk status i foredlingsindustrien.

- Økt automatisering representerer en grunnleggende effektivitetsgevinst. Det er derfor viktig å utrede konsekvensene av- og implikasjonene for en slik strategi.

- Økt automatisering av den fiskeribaserte foredlingsindustrien kan innebære økte kapitalbindinger innen foredlingssektoren. Ved økt satsing på automatisering, er det derfor viktig å realisere skalaøkonomiske stordriftsfordeler til slike teknologiske tilpasninger.

- Det vil være grunnleggende å undersøke om automatisering bidrar til økt sentralisering av foredlingsindustrien, i form av færre- og større enheter. På denne bakgrunn vil det være nødvendig å undersøke om nye strukturer i foredlingsindustrien for hvitfisk, fordner nye flåtestrukturer eller om det favoriserer økt teknisk mobilitet i fangstleddet.

- Basert på målet om en total utnyttelse av det marine råstoffet er det viktig å foreta strategiske vurderinger for lokalisering av nye foredlingsforetak. Dette for å vurdere om en slik strategi kan knyttes til etableringen av nye foretaksclusteringer (clusters), slik vi bl.a. erfarer innen den øvrige maritime industrien.

- Potensialet for økt utnyttelse av restråstoff ligger i dag hovedsakelig på to områder; økt utnyttelse av restråstoff fra hvitfisk (77% av restråstoffet blir ikke utnyttet), samt øke andelen av det restråstoffet som i dag blir prosessert til konsumprodukter. Det må legges til rette for utvikling av kompakt og automatisert prosessteknologi for produksjon av mer høyverdige produkter og halvfabrikata til konsum.
Ombordproduksjon representerer en alternativ strategi til landbasert foredling. Ombordproduksjon kan imidlertid også være et bidrag til en ny type arbeidsdeling mellom sjø og landbasert foredling.

Innen FoU-området fordrer realisering av strategien at innsatsen koordineres innen ulike faglige disipliner som kybernetikk, maskinteknikk, produksjonslogistikk, industriell design og råstoffkunnskap, og at kontakten mellom FoU-institusjoner og næringsaktører styrkes.

Prioriterte forslag til tiltak

1) Biomarin utstyrindustri får et eget anvendt FoU-program for utvikling av pilot- og demonstrasjonsteknologi. Programmet skal fokusere på bygging og uttesting av prototyp automatiseringsteknologi hos potensielle kunder i norsk sjømatindustri.

3) Leverandører og industriaktører bør ha en felles FoU-arena med langsiktig utviklingsperspektiv, feks et eget forum i regi av FHF, eller andre FoU-baserte finansieringsmuligheter.

4) Det bør opprettes et forskningsprogram i Norges Forskningsråd med vekt på de foreslåtte fem teknologiske forsknings- og utviklingsområder (FO1-FO5); Foredlingsintelligens, Foredlingsrobotikk, Fleksibelt foredling, Hygienisk design av foredlingsutstyr og foredlingsfabrikker ogProduksjonslogistikk.

5) Ombordproduksjon kan representere effektiv og lønnsom produksjon av ulike filetprodukter som har høy kvalitet. I forhold til dagens flåtestruktur bør potensialet for ombordproduksjon utredes og det bør vurderes om slike fartøy også kan være leverandører av halvfabrikata produkter til den landbaserte foredlingsindustrien.
Innledning

Formål med utredningen

Regjeringens visjon er at Norge skal være verdens fremste sjømatnasjon. En av hovedutfordringene som påpekes i Sjømatmeldingen (Meld. St. 22, 2013) er å utvikle en mer konkurranseboyktig sjømatindustri, og samtidig sikre at verdiskaping og arbeidsplasser kommer kystsamfunnene til gode.

Stoltenberg-regjeringen oppnevnede i 2013 et offentlig utvalg som skal foreta en gjennomgang av sjømatindustriens rammevilkår. Solberg-regjeringen har valgt å videreføre dette utvalget uten endringer i mandatet. I mandatet for utvalgte heter det blant annet:

Den norske sjømatindustrien har et svært godt utgangspunkt med nærhet til betydelige fiskeressurser fra fiskeri og havbruk, kombinert med kort vei til godt betalende markeder i Europa og Russland. Samtidig opererer sjømatindustrien i et råvare- og ferdigvaremarked som preges av sterke konkurranse. Industri- og teknologisk virksomhet i et høyst kostbart område stiller særlige krav til markedsorientering, teknologiutvikling og utnyttelse av naturgitte fortrinn.

Sjømatindustrien er avhengig av lønnsomme bedrifter for å kunne sikre framtida utvikling og vekst. Regjeringen legger for å sikre at fiskerireussursene er feilbruk på en måte som bidrar til høyeste mulig verdiskaping gjennom hele verdikjeden. Tilsvarende er det ønskelig å legge til rette for lønnsom videreforedling av oppdrettsfisk i Norge.

Sjømatnæringen skal videreutvikles ved å hygge på vårt fortrinn med tilgang på ferskt råstoff av høy kvalitet.

I forbindelse med utvalgsarbeidet gjennomfører Nærings- og fiskeridepartementet noen faglige analyser. Denne rapporten gjelder lønnsom foredling av sjømat og hvordan norsk fisk (vill og oppdrett) kan bearbeides lønnsomt i Norge, før eksport.

Hensikten med oppdraget er å gi en analyse av norsk sjømatindustris muligheter til lønnsom foredling av sjømat i Norge sammenliknet med foredling av sjømat i utlandet. Analysen tar utgangspunkt i teknologiske utfordringer og muligheter, og drøftes hvordan økt automatisering og teknologiutvikling i foredelingsindustrien kan gi muligheter for en fremtidig lønnsom foredelingsindustri i Norge, sett i sammenheng med noen sentrale rammebetingelser som:

- Råstofftilgang
- Nærhet til fangstfelt og oppdrettsanlegg
- Råstoff kvalitet
- Tilgang til kompetanse
- Handelsbarrierer
- Markedsutvikling
- Utviklingstrender for sjømatprodukter

Analysen omfatter villfisk (inkl. hvitfisk og pelagisk) og oppdrettet fisk (laks og delvis ørret).
Hvordan vi har løst oppdraget

Utredningsoppdraget tar utgangspunkt i vårt arbeid innen teknologi og teknologiutvikling for en lønnsom og bærekraftig foredlingsindustri fordelt på tre sektorer; hvitfisk, pelagisk og laks/orrørr. Hovedfokus i rapporten tar for seg hvordan sentrale premisser for norsk foredling påvirkes av og påvirker teknologiutvikling og hvilke konsekvenser dette har for fremtidig lønnsom fiskeforedling i Norge og er struktureret som vist i figur 2.

Figur 2. Oversikt over rapportstruktur. Rapporten fokuserer på hvordan premisser for norsk foredling påvirkes av og påvirker teknologiutvikling og hvilke konsekvenser dette har for fremtidig lønnsom fiskeforedling i Norge.

Rapporten deles inn i tre deler:

- **Del A**) gir en oversikt over dagens situasjon i de tre sektorene hvitfisk, pelagisk og laks/orrørr, samt de ulike utfordringer og barrierer de tre sektorene står ovenfor m.h.t. fremtidig vekst i sektoren. Områdene som er spesielt belyst er; ytre faktorer som næringsstruktur, lønnsomhet, utviklingstrender for sjømatprodukter, markedsutvikling, handelsbarrierer og tilgang til kompetanse og biologiske forhold som råstofftilgang, nærhet til fangstfelt og merkant og råstoffkvalitet.

- **Del B**) gir en vurdering av motiver og behovet for teknologiutvikling både spesifikt for foredling av sjømat, men også som et ledd i fremtidig vareproducerende norsk industri med utgangspunkt i dagens rammebetingelser og fremtidige trender Vi har også identifisert rollen forskning og utvikling har som et ledd i bærekraftig teknologiutvikling. I rapporten har vi beskrevet dagens state-of-the-art og identifisert nødvendige fokusområder før å få skape en fullautomatisert og bærekraftig fiskeforedlingsindustri med mattrygghet i fokus satt i et bioøkonomisk perspektiv. De nødvendige fokusområder for teknologiutvikling er beskrevet i detalj og rapporten kan være et utgangspunkt for spesifikke forskningsatsninger og –programmer.

- **Del C**) gir en vurdering av lønnsomhetspotensialet ved innføring av økt automatisering i foredlingsindustrien. En sammenligning av foredling i Norge og utlandet er også utført.

På grunn av strukturelle ulikheter er utredningsoppdraget delt opp i to hovedverdikjeder i den norske sjømatnæringen, den havbruksbaserte (laks/orrørr) og fiskeribaserte verdikjeden (hvitfisk og pelagisk). Vi har valgt å fokusere i hovedsak på foredlingsleddet, da det er her utfordringene mht lønnsomhet er størst, som vist i Figur 3.
Definisjon av begreper

- **Bearbeidingsplikt:** Krav til føredlingsanlegg om at den som kjøper fangst i henhold til leveringsplikten (dvs. etter utbud i vedkommende region), alltid "skal foreta bearbeiding av 70 % av torskefangstene omfattet av leveringsplikten før videresalg". Bearbeidingsplikten skal sikre at bedrifter som kjøper fangst faktisk bearbeider det meste av den kjøpte fisken i stedet for å selge alt videre uten noen form for bearbeiding for å øke fortjenesten som følge av differanse mellom prisen som følger av forskriften og prisen som kan oppnås i markedet.

- **Ferdige konsumprodukter:** Produkter som er ferdig prosessert og klare for konsum.

- **Foredling/primærprosessering:** Foredling av sjømat er definert som bearbeiding av vannlevende organismer og fisk slaktet for kommersielle formål fra både akvakultur og ville bestander. Fiskeforedling er et generelt begrep som definerer post-fangst eller slakteoperasjoner utført på fisk etter bløgging, som sortering, gradering, sløying, fjerning av skinn og eller bein, filetering og trimming. Fiskeforedling kan også inkludere røyking, frysing og pakking, etc. (Thrane et al. 2009).

- **Halvfabrikata:** Industrielt foredlede råvarer som anvendes til videre foredling, og ikke til konsum.

- **HG-fisk:** HG-fisk (Engelsk forkortning av Head and gutted) er et fiskeprodukt der både hode og innvoller er fjernet fra fisken.

- **Leveringsplikt:** Leveringsplikten er et vilkår knyttet til torsketrålkonsesjonen til enkelte fartøy. Formålet med forskriften er å sikre anlegg som bearbeider fisk stabil råstofftilførsel fra torsketrålfåtten. Leveringsplikten er et krav til fartøyeier som sikrer at leveringspliktig fangst blir tilbydd til tilgodesette bedrifter, eller til andre bedrifter innenfor en region dersom den eller de som er direkte tilgodesett i vilkåret ikke ønsker å kjøpe fangsten.

- **Sjømatindustri:** Virksomheter som tar hånd om fisken etter at den er oppdrettet eller fisket, som foretar eventuell bearbeiding og deretter omsetter fisken nasjonalt eller internasjonalt (St.meld. nr. 22 (2012-2013)).
✓ Viderefoedling/sekundærprosessering: Foredling av sjømat som omfatter enhetsoperasjoner som brukes til å omdanne råvarer og ingredienser til næringsmidler, da operasjoner som salting, tørring, fermentering, emballering, varmebehandling, etc.
Metode

SINTEF Fiskeri og havbruk har fått oppdrag om å evaluere muligheter for bærekraftig foredling av sjømat i Norge ble gjennomført som en case-studie (Yin 1989). Case studier er ofte en foretrukken forskningsmetode i utforskende ledd av forskingsprosjekt, samt i deskriptive studier.

Sjømatindustrien er en av Norges viktigste industrier (Reve og Sasson, 2012), og derfor viktig som en pådriver for bærekraftig utvikling i samfunnet. I rapporten gis det en oversikt over dagens tilgjengelige teknologi, teknologibehov er avdekket, samt fremtidige teknologiske trender som er relevante for denne industrien. Vi har undersøkt hvordan teknologiske løsninger i foredlingsleddet av sjømatindustrien påvirker mulighetene for bærekraftig foredling i Norge.

Metodene for datainnehenting er basert på dokumentanalyse, det vil si en gjennomgang av strategier, dokumenter og rapporter som belyser teknologiutvikling og implementering i sjømatforedlingsindustrien. SINTEF Fiskeri og havbruk har trukket ut de strategier og dokumenter som er vurdert å være sentrale for teknologiutvikling.

Sentrale personer i sjømatnæringen har vært intervjuet for å kvalitetssikre vår oppfatning av tematikken, og dataen innhentet gjennom dokumentanalysen. I vårt tilfelle valgte vi å bruke "snøball metoden" for å finne interessenter som kunne delta i dybdeintervjuer. Snøball-metoden er en metode som gir et utvalg av respondenter gjennom henvisninger gjort blant de som kjenner andre som har samme kvalifikasjonene som forskeren ser etter (Biernacki et al., 1981). Dette gjøres for å forsikre seg om at studien involverer de mest relevante intervjuobjektene basert på hva andre innenfor samme ekspertområde også mener, og kompleterer kvalifiserte utvalg gjort gjennom litteratursøk og bransjekunnskap.

Følgende bedrifter har bidratt med intervjuobjekt til dybdeintervjuer:
- SalMar - verdikjede for oppdrettslaks (laksefilet, konsumprodukter, konsekvensprodukter/restråstoff)
- Nergård - verdikjede for pelagisk fisk (sild; rund, flaps, filet) og verdikjede konvensjonell (tørrfisk, saltfisk, klippfisk)
- Norway Seafoods – verdikjede hvitfisk (tradisjonelle filetprodukter)

I tillegg har SINTEF vært i kontakt med utvalgte rederier som Roaldsnes (trål, HG-produksjon) og Vartdal Seafood AS (trål, filetproduksjon ombord). For å validere data og å identifisere arbeidsområder har det videre blitt gjennomført intervjuer med bedrifter fra foredling innen laks, pelagisk og hvitfiskverdikjedene. Flere interne arbeidsmøter med deltakelse fra erfarte forskere fra SINTEF Fiskeri og havbruk og Universitetet i Stavanger med bred kjennskap til laks, pelagisk og hvitfisknæringen er også gjennomført. Uformelle samtaler med flere mindre bedrifter, også utstyrleverandørene, har også blitt foretatt som en del av dataanalysen og som et ledd i datainnsamlingsstrategien for å sikre at de viktigste tematiske problemstillingene for teknologiutvikling i foredlingsleddet har blitt tilstrekkelig belyst og er representative for alle aktører innen foredling av sjømat. Det er også gjennomført et møte med NOU-utvalget i løpet av prosjektet.
DEL A) Premisser for foredlingsindustrien
A.1 Ytre faktorer

A.1.1 Norsk sjømatproduksjon

Norsk sjømatnæring består i hovedsak av tre sektorer; laks og ørret som oppdrettes, og hvitfisk og pelagisk fisk som fanges. I tillegg kommer skalldyr hvor reker, taskekrabbe og kongekrabbe er de viktigste artene og bløtdyr hvor blåskjell og kamskjell er de viktigste artene. Totalproduksjonen av norsk sjømat har økt sterkt de siste 25 år fra om lag 2 millioner tonn til 3.5 millioner tonn, som vist i Figur 4. Den viktigste årsaken til dette er at lakseproduksjonen har økt fra under 35 000 tonn i 1985 til 1.2 millioner tonn i 2012. Dette gjør også at laks er den største enkeltarten både målt i volum og omsetning i norsk sjømatnæring. Produksjonen av pelagisk fisk har også økt betydelig, men her kan en også observere store sykler som skyldes varierende bestandsstørrelser og dermed kvoter for viktige arter. Fangstene av hvitfisk har vært mer stabile, rundt 600 000 tonn per år, men også her er det store sykler. Det er også betydelige fangst fem andre arter. Viktigst her er lavverdiarter som går til oppmaling som øyepål, kolmule og tobis.

Bildet er noe forskjellig hvis en ser på produksjonsverdi (av førstehåndsomsetning), som vist i Figur 5. Det mest øyneværende er den store betydningen av oppdrettsnæringen, som samlet utgjør 65,6% av den totale produksjonsverdien i 2012, opp fra 32% i 1985. Også verdien av fanget fisk har økt i perioden, fra om lag 10

Figur 5. Inflasjonsjustert verdi av produksjon av ulike fiskegrupper, 1985-2012 (Kilde: SSB).

For å komplementere bildet, regner vi ut gjennomsnittlige inflasjonsjusterte priser. Disse er vist i Figur 6, med prisen for de tre ville artene på den venstre aksen, og prisen for oppdrettsfisk på den høyre. Prisen på oppdrettsfisk er blitt redusert fra 87,81 kr/kg i 1985 til 22,78 kr/kg i 2012, slik at den inflasjonsjusterte prisen nå er en fjerdedel av hva den var på midten av 1980-tallet.\(^2\) Den inflasjonsjusterte prisen for pelagisk fisk har steget fra 2,68 kr/kg til 6,16 kr/kg og her har følgelig både pris og kvantum bidratt til verdiøkningen i denne sektoren. Dette gir også en god illustrasjon på at norske fangster ikke i nevneverdig grad påvirker prisen, da en i så fall ville forventet en prisreduksjon som følge av de økte landingene. Dette er følgelig en indikasjon på at norsk pelagisk sektor er pristagere i et globalt marked. For hvitfisk og pelagisk fisk er prisnivået stabilt, men med betydelig kortsiktig variasjon.

\(^2\) Det er her verd å påpeke at mye litteratur påpeker at prisnedgangen for laks har vært et av de viktigste virkemidlene for å gjøre laksen mer konkurransedyktig. Veksten i laksenæringen har likevel vært lønnsom fordi innovasjoner har forbedret produktiviteten slik at produksjonskostnadene har sunket like mye. En oppsummering av denne litteraturen finnes i Asche og Bjørndal (2011).
Verdiutviklingen i norsk sjømateksport er i all hovedsak i samsvar med produksjonsverdien. Dette skyldes at bearbeidingsgraden er liten. Laks eksporteres i hovedsak som hel sløyd, men filet har økt noe og kvantumet av andre mer bearbeidede produkter har også økt med produksjonen selv om ikke andelen har økt i stor grad. Pelagisk fisk eksporteres i hovedsak som hel frossen eller frossen fillet. Variasjonen er noe større i hvitfisksektoren hvor de konvensjonelle produktene klippfisk, saltfisk og tørrfisk har stabilt god etterspørsel, mens fersk og frossen segmentet varierer mer med kvotestørrelsen. Med en kostnadsandel på over 75% i konvensjonell sektor er bearbeidelsesgraden og dermed verdiskapningen på land begrenset.\(^3\) I den resterende delen av hvitfisknæringen er det fremste utviklingsstrekket at den landbaserte filetindustrien er delvis utradert de siste ti årene. Størstedelen av kvantaene av hvitfisk går nå ut som hel frossen eller hel fersk, men det har også vært en positiv utvikling for fersk fillet. Denne utviklingen er vist med verditall for torsk i Figur 7. For laks og sild er eksportandelenene basert på verdi vist i Figur 8 og Figur 9. Som en kan se, eksporteres 79% av laksen helt. Gitt det store volumet laks er det likevel mulig å de resterende 21% gjør at foredlet laks er den viktigste bearbeidingskategorien i norsk fiskeeksport. Gitt at størstedelen av den bearbeidede laksen er filet, er bearbeidingsgraden likevel begrenset. For sild er den eksportandelen for den helt ubearbeidede frosne silden relativt begrenset på 43%. Bearbeidingsgraden for viktige bearbeidede produkter som sildelapper (hel hodekappet sild med ryggbeinet fjernet) og filet er imidlertid begrenset.

\(^3\) Den høye prisen på klippfisk og tørrfisk kan hovedsakelig forklares med vekttapet som følge av vannuttrekket.

A.1.2 Næringsstruktur og lønnsomhet

I 2012 utgjorde foredlingsindustrien totalt 9600 årsverk, hvorav 3 920 årsverk var knyttet til havbruksbasert foredling og 5680 årsverk knyttet til fiskeribasert foredling. Bidrag til BNP var på totalt 6,5 mrd NOK i verdiskapning (havbruk 2,8 mrd og villfisk 3,7 mrd NOK). Produksjonsverdien var totalt på 40,1 mrd NOK, fordelt mellom havbruk og fiskeri på hhv. 10,7 mrd og 29,4 mrd NOK (Sandberg et al, 2014). Lønnsomheten i foredlingsindustrien er lav, med en overskuddsgrad på henholdsvis 1,3 %, 1,4 % og 0,3 % for laks, pelagisk og torsk i 2011/2012. Spesielt er situasjonen i hvitfisksektoren kritisk.

Den norske hvitfiskindustrien består av ca. 220 bedrifter med rundt 3 300 årsverk. Sektoren omfatter konvensjonell sektor som produserer klippfisk, saltfisk, tørrfisk og/eller tar i mot og videreselger fersk hel fisk (210 bedrifter med 2 500 årsverk) og filetindustrien som produserer fersk og fryset filet (10 bedrifter med 800 årsverk). I 2013 ble det fångstet om lag 472 000 tonn torsk, 148 000 tonn sei og 101 000 tonn hyse (Kilde: Norges Råfisklag). Av tilgjengelig råstoff i 2012 gikk 4% til fersk filet, 12% til frosset filet, 12% til saltt fisk, 1% til saltt filet, 8% til tørrfisk og 32% til klippfisk (Kilde: Kontali Analyse AS). Lønnsomheten
i hvitfiskindustrien har over lang tid vært svak, særlig innen filetindustrien (Figur 10), og en rekke fabrikker har blitt nedlagt de siste årene. Driftsundersøkelsen for fiskeindustrien viser at filetindustrien bare har hatt positivt resultat i to av de siste 12 årene, ca. 0,3 % inntjening i 2012. Klippfisk og saltfisk gikk i minus i 2012, mens tørrfisk fikk et resultat på 4% av driftsinntekt (Henriksen, 2013). På grunn av lav lønnsomhet har det vært politisk debatt rundt hvitfiskindustrien i Norge de siste årene (Meld st 22, Hav21, Olafsen et al, 2012).

Figur 10. Ordinært resultat før skatt i % av driftsinntekt (veid gjennomsnitt) i utvalgte sektorer i hvitfiskindustrien (Bendiksen, 2013).

Pelagisk konsumindustri har gjennom lang tid hatt lav lønnsomhet, men har siden 2008 tjent penger. Derimot har lønnsomheten i denne perioden vært fallende og var i 2011 kun på 1,4 % av driftsinntektene (se Figur 11, Bendiksen 2013). Store landinger av sild, makrell og lodde i årene 2008 – 2010 er en viktig årsak til den bedrede lønnsomheten i disse årene, samt muligens også strukturendringene som har skjedd i pelagisk konsumindustri. Samlet landet norske fartøy 1,1 millioner tonn pelagisk fisk i 2013. De viktigste artene til

Deltagerlovens formål er (http://lovdata.no/dokument/NL/lov/1999-03-26-15/KAPITTEL_1§3):

a) å tilpasse fiskeflåtens Fangstkapasitet til ressursgrunnlaget for å sikre en rasjonell og bærekraftig utnyttelse av de marine ressurser,
b) å øke lønnsomheten og verdiskapingen i næringen og gjennom dette trygge bosetting og arbeidsplasser i kystdistrikten, og
c) å legge til rette for at høstingen av de marine ressurser fortsatt skal komme kystbefolkningen til gode.

Figur 11. Ordinært resultat for skatt i % av omsetning for pelagisk konsumindustri sammenlignet med øvrig fiskeindustri (Bendiksen, 2013).

Mellom 15-20% av laksen fileteres i Norge (se Figur 8), og andelen har ligget på samme nivå over flere år. Det eksisterer omtrent 50 lakseslakterier i Norge, og 35 foredlingsbedrifter. De fleste slakteriene er eid og drevet av oppdrettsselskap, men det eksisterer også flere frittstående slakterier som slakter på kontrakt (Winther et al., 2011). De 10 største foredingsanleggene håndterte ca 135 000 tonn råstoff i 2010, tilsvarende 80 % av det totale råstoffet som ble foredlet. Lønnsomheten i bearbeiding av laks ser ut til å variere omvendt proporsjonalt med prisen på fersk hel laks. I perioder med høy lakspriser er det vanskelig å ta ut tilsvarende prisøkning på ferdige produkter. Foredling av laks og ørret er først og fremst utrømmet filet som går til videreforedling i andre land, men det produseres også mer bearbeidede og konsumpakkede produkter som hovedsakelig blir solgt på hjemmemarkedet (Bendiksen, 2013). For regnbueørret ligger foredlingsgraden mellom 8-12%, som er lavere enn laks. Mens lønnsomheten i matfiskleddet lenge har vært svært tilfredsstillende, har den vært svak innen slakting og foredling av laks (Bendiksen 2013).

For å ta SalMar som eksempel var det kun foredlingsdelen som gikk med underskudd i 2013, mens både matfisk/settefisk, slakteri og restråstoff (Nutrimar) hadde god lønnsomhet. Restråstoff industrien er imidlertid avhengig av restråstoff fra norsk videreforedling av laks og ørret. På samme måte som for foredlingsvirksomheten er også restråstoff-foredlingen skilt ut som egen virksomhet hvis denne er eid av samme selskap. Anslagsvis over 70% av restråstoffet fra norsk laks og ørret oppdrett blir i dag foredlet i utlandet hvor de fileterer skøyd og iset laks. Økt norsk foredling av laks og ørret utgjør derfor et svært stort potensial for norsk restråstoffindustri (se også kap.C3). I Winther et al. (2011) viser lønnsomhetsanalysene at oppdrett med integrert foredling over tid oppnår bedre lønnsomhet enn oppdrett uten foredling. Akkumulert,
i perioden 2006-2009 oppnådde aktører med integrert foredling 47 % høyere driftsmargin per kg slaktet laks enn oppdrettete uten integrert foredlingsaktivitet.

A.1.3 Utviklingstrender for sjømatprodukter

I norsk sjømatindustri produseres et vidt spekter av produkter tilpasset ulike markedsers og kunders spesifikasjoner. Utviklingstrender for sjømat er premissgivere for hvilke retning utviklingen av en fremtidig sjømatindustri vil ta. Sjømatmarkedet er i hurtig utvikling, og det er vanskelig å forutsi hva som vil være fremtidens produkter. Ved å se mot annen masseproduserende industri er det rimelig å anta at fleksibilitet og mulighet for hurtig endring i produksjon samt markedstilpassing vil være en nøkkel til en robust industriell sjømatproduksjon. Det viktigste kjennetegnet ved en fremtidsrettet sjømatindustri vil da være at den er fleksibel og kan utnytte de muligheter og møte de utfordringene som dukker opp.

Forbrukerne sitter med nøkkelen til utviklingen i næringsmiddelindustrien. Gjennom valg av hva og hvor de spiser påvirker forbrukerne både egen situasjon og næringsmiddelindustriens verdikjede (NTP Food for life, 2010). Helsefokus, matvaretrygghet, global urbanisering, økonomi og klimatrussselen påvirker i stor grad dagens trender innen næringsmiddelindustrien. De viktigste trendene for sjømatkonsum er helse, lettvinnhet, smak og miljø beskrevet i Iversen et al. (2011):

1) Helsebringenge mat defineres som matvarer som ivaretar forbrukernes helse og velvære. Fiskens helsemessige fordeler, spesielt mth innhold av essensielle fettsyrer, gir mange kjøpsargumenter i forhold til kjøtt.

2) Lettvinnhet - Forbrukere vil ha lettvinte måltidsløsninger for enkel tilberedning hjemme, ferdige produkter, mindre porsjoner og produkt pakket i praktisk emballasje (Hoen et al., 2009). Maten skal likevel være sund og fersk. Her har sjømat et potensial, da utvalget av ferdigrette eller halvfabrikata er i de fleste markeder mindre enn for kjøtt (Iversen et al., 2011).

3) Smak – All mat som gir god smaks- og spiseproblemløsning er den beste garanti for gjenkjøp. Fisk er gjerne nøytral på smak, og kan tilpasses det meste av retter. Ulike karakteristika ved fisken kan brukes for å differensiere den fra konkurrerende fisk. Forskjellene kan utnyttes mht fiskens opprinnelse, historie og karakteristika til å skape gode historier som kan brukes i markedsføringen. Et typisk eksempel på dette er tørrfisk fra Lofoten, som fikk godkjent geografisk beskyttelse i EU i april 2014.

4) Miljø - Sjømat har flere fordeler mht miljørelaterte kriterier, med bl.a. et veldig lavt CO2 fotavtrykk sammenlignet med kjøtt (Winther et al., 2009). Det er en sterk interesse for korteist mat. Trusselen omkring klimaendringer samt høy utsprengsel etter ferske produkter kan sette fortgang i denne trenden. Sjømat har også sine utfordringer knyttet til miljøperspektivet, særlig har problemstillinger rundt oppdrett vært aktuelt de siste årene; hvordan oppdrettsfisken påvirker ville bestander gjennom bl.a. rømming og lus.

To av de viktigste utviklingstrendene i sjømatmarkeder i industrialiserte land er økt konkurranse og mer konsentrerte detaljister både mot forbruker og i HoReCa segmentet. I tillegg er avlastningsmarkedene blitt stadig klarere og sterke segmentert fra resten av sjømatmarkedet. Norge har lenge hatt tradisjon for å sende lavverdifulkbare produkter til etablert begrep i eksportstatistikken. I disse markedene er ettersporselen svært prissensitiv, da hovedproduktet som etterspørsels er billig protein og ikke spesifikke fiskearter eller produkttyper.

5 HoReCa (Hotel, Resturant og Catering) er et forretningsbegrep som brukes om den sektoren innen næringslivet som tilbereder og serverer mat og drikke (www.wikipedia.no)
Sjømatmarkedet i industrialiserte land er preget av noen få supermarkedkjeder som dominerer detaljistleddet, og for å få hylleplass her må en kunne levere et betydelig sett tilleggstjeneste utover det fysiske produktet fisk (Kvaløy og Tveteras, 2008). Det viktigste er at en kan passe inn i effektive logistik-kjeder, og om en ikke kan levere store nok kvantum alene, så må en selge til en handler som sourcer for en supermarkedkjede. I tillegg er en mengde garantier i forhold til kvalitet og leveringssikkerhet viktig, og i stadig flere markeder er et miljøområde også et krav.

Salg av store volum med sjømat forutsetter en konkurransedyktig pris. Det er bare et begrenset antall produkter som vil lykkes med å differensiere seg fra handelsvaremarkedene. Wiegan (2014) gir et eksempel på hvordan merkeordninger og kjedemerker har større markedsandel i sjømatmarkedet enn i mange andre segmenter, noe som kan gjøre det vanskelig å utvikle egne merkevarer. Det er en tendens til at norske leverandører må samarbeide med bedrifter i landene hvor produktet selges for porsjonering, pakking og riktig presentasjon. Fleksibilitet i forhold til leveringsevne gir imidlertid mange muligheter, med fremveksten av sushi segmentet som et av de beste eksemplene.

Andre viktige momernt innen utviklingsstrender for sjømatindustrien er utnyttelse av råstoffet i tidligere prosesseringfaser og at ferske høykvalitetsprodukter er de mest verdifulle, noe som tyder på en økt spesialisering av råvareutnyttelsen i tråd med trender fra annen næringsmiddelindustri. Moderne kylling eller griseslakteri utnytter hele dyret fordi det gir best lønnsomhet (Gardner, B.L. 2002). Å stykke opp dyrene i es den grad det gjøres i dag er av forholdsvis ny oppfinnelse, på begynnelsen av 1980-tallet ble de fleste kyllinger fremdeles solgt hele. Ved å stykke opp kyllingene oppnår man flere høyere kvalitetsprodukter som fillet, samtidig som produserer flere lavverdiprodukter som pålegg, farse, paté og fjærmel. Som følge av dette er fjærmelet blitt mindre av talet og dyreller med høyere verdi.

Dette er en utvikling en i stadig større grad ser også for laks. Tall fra Rubinstiftelsen (www.rubin.no) viser hvordan avskjær i stadig større grad ble utnyttet frem til midten av 1990-tallet, og deretter har så godt som alt avskjær blitt benyttet. Samtaler med foredliningsanlegg indikerer at en ny strukturell endring begynte å skyte fart rundt 2005. Skalaen i mange av anleggene ble da så stor at en kunne utvikle markeder for spesifikk deler av fisken, som hoder, skinn og ryggbein. Dette har gjort at verdien av avskjæret har økt fra om lag 1% av omsetningen till om lag 5% av omsetningen.

Et hovedtrekk i en såkalt "high road" strategi for produktinnovasjon på laks, beskrevet av Winthers et al., (2014) er at de beste stikkene fra laksen i stadig større grad prosesseres, og en får mer spesialiserte produkter rettet mot mer spesifikk markedssegment. Dette fremstår i stor grad som en utvikling parallell til det en har observert for kylling. Det er ikke tilfeldig at over 90% av den norske lakseeksperten er fersk. Det skyldes at for de fleste sjømatprodukter er ferske produktformer de mest verdifulle (Asche og Bjørndal, 2011). Også for frosset fisk har de beste kuttene i relativ ubearbeidete produktformer største verdi. For eksempel konkluder Roheim et al. (2007) i en studie av frosne sjømatprodukter i Storbritannia i forhold til mer bearbeidede produkter at: "These products involve more use of input factors, but the results show that their final value is lower. Thus, while typically considered ‘value-added’ products, they are adding value to a product which is of lower value from an initial state, perhaps because of lower quality. In other words, if the product were of sufficiently high quality, one would expect that the fish be marketed as the higher-valued product, natural.”

A.1.4 Markedsutvikling

Sjømat er i større grad enn andre matvarer et handelsprodukt. Ifølge FAO blir 39% av all sjømat eksportert, og over 80% av eksporten går til industrialiserte land, hvorav nesten tre fjerdedeler går til EU, USA og Japan (Tveteras et al., 2012). Handelen øker også sterkt, og mer i kvantum enn i verdi. EU og USA er ledende i denne utviklingen, mens den japanske importen synker. Utviklingen for EU er vist i Figur 12, mens Figur 13 og Figur 14 viser fordelingen på opprinnelsesland og arter. Som en kan se er det stor variasjon i både arter og opprinnelsesland. Det er også interessant å påpeke at Norge er største eksportland til EU, noe som selvfølgelig også gjør EU til det klart viktigste enkeltmarkedet for norsk sjømatnæring.

Med disse trendene er "high road" strategien for norsk sjømat et fokus på *ferske produkter* eller *frosne produkter av høy kvalitet*, samt *god restråstoffutnyttelse* av det avskjær som følger med. Det synes klart at mer primærprosessering kan gjøres i Norge.

![Figur 12. EUs sjømatimport, 2000-2013 (Kilde: Norges sjømatråd).](image-url)
Den store handelen med sjømat gir både muligheter og utfordringer for norsk sjømatnæring, og mulighetene er i betydelig grad forskjellig for fangst og oppdrettsdelene av næringen. For fangstsektoren er kvantum tilgjengelig i hovedsak gitt fra naturens side, om enn med betydelig kortsiktig variasjon. Mulighetene for sektoren handler da om å finne de beste utnyttelsene for råstoffet. I hvitfisknæringen er begrenset utnyttelse av restråstoffet en betydelig utfordring, og bedre utnyttelse har et betydelig verdiskapingspotensial. For oppdrett kan en også øke produksjonen, og laksenæringens suksess er i stor grad basert på at innovasjoner har redusert produksjonskostnadene og dermed gjort laksen mer konkurransedyktig på pris.

Utfordringene for den norske fiskeindustrien ble forsterket av at tredjelandsbearbeiding for reeksport er blitt stadig vanligere. Dette gjør at den naturgitte fordelen ved å være lokalisert nær naturressursene ikke lenger er like viktig, og den tradisjonelle strukturen ved at bearbeiding enten skjedde nær produsent eller nær konsument er betydelig endret. For norsk næringsfag til denne konkurransen to hovedformål. Med bedre transportmuligheter for fersk fisk, ble bearbeiding i Nord-Europa en mulighet, spesielt siden EU har høyere tollsats på bearbeidet fisk enn på ubearbeidet fisk. Dette gjorde dansk foredlingsindustri svært viktig for norsk laksbearbeiding, men også fangster av vill fisk landes i Danmark og Storbritannia. De siste årene har Polen i stor grad tatt over for Danmark som tredjepartsforedler av norsk laks og viser at også blant tredjeland er konkurransen hard. Den andre hovedformen skyldes ny teknologi muliggjorde dobbeltfrysering uten at kvaliteten ble betydelig forringet. Dette har bidratt sterkt til å gjøre Kina til verdens største sjømatexportør, og det er et av de viktigste markedene for helfrossen norsk torsk.

Mange detaljistsektsjoner for sjømat, spesielt i den velstående verden, har også endret seg mye de siste tiårene. På slutten av 1980-tallet var spesialiserte forhandlere som fiskehandler og markedsplasser den viktigste salgskanalene for sjømat. I store europeiske marked som Frankrike og Storbritannia tok supermarkedkjedene hurtig over denne funksjonen i løpet av 1990-tallet slik at ved århundreskiftet sto kjeden for over 80% av detaljistomsetningen av sjømat, og en har sett en lignende utvikling i de fleste andre velstående land (Asche og Bjørndal, 2011). Supermarkedkjedene har stor fokus på effektiv logistikk og pris er viktig i konkurransen dem i mellom og i forhold til andre typer detaljister. Dette gir en betydelig fokus på skalasamdriftsfordeler, og gjør at en mengde parametere som ikke var viktig i tradisjonelle verdikjeder blir viktig. Eksempler er leveringsdysštighet, ensartet produktkvalitet, garantier i forhold til produktutviklingssystemene etc. Fordi utsalgsstedene blir større og utvalget ofte skal være ensartet i et stort antall butikker, setter dette krav til hele verdikjeden. Det gjør at behandlesmør og bedrifter blir større, og også at arter er bedrifter som er for små får mulighet til å markedsføre sine varer i mange av kjedene. Fordi tradisjonelle fiskedisker er kostbare i drift er det også en klar tendens mot å bedriffe slike produkter, et annet forhold som igjen får betydning for hele verdikjeden.

De forskjellige hovedsegmentene i norsk sjømatnæring har respondert svært forskjellig på den muligheten/utfordringen fremveksten av supermarkedkjedene. Laksbearbeidingen har endret seg mot større og færre bedrifter, og er blant de viktigste leverandørene til kjedenes sjømatsortiment. Næringen er imidlertid i stor grad en leverandør av primæråttann til bearbeidingsbedrifter som er lokaliseret mellom Norge og konsumenten. En stor del av disse bedriftene ligger i det endelige konsumlandet, men en ser at den industri er stadig større grad er lokalisert i tredjeland med Polen og Danmark som de viktigste, og at de største bedriftene og produksjonsanleggene blir stadig større. Fiskeindustrien for laks driver også en stor grad av produktutvikling både i Norge og andre land hvor det finnes en fiskeindustri. For pelagisk sektor og konvensjonell hvitfisk har utviklingen i liten grad ført til endringer, og det har vært lite produktutvikling. Det er litt bekymringsfullt at andelen av pelagisk fisk som går til sjøvært prissensitive markeder som Nigeria og Egypt synes å øke i perioder når kvotene er høyere. Etterspørselen i de tradisjonelle markedene for konvensjonell sektor er fremdeles sterk og lite prissensitiv. Utviklingspotensialet synes imidlertid begrenset da størstedelen av økningen i fangstene i tider med høye kvoter ikke finne kjøpere her selv om prisen synker sterkt. Som vist i kapittel A.1.2 så er den tradisjonelle hvitfiskfiletindustrien i stor grad forsvunnet de siste årene. I noen grad har høyverdiprodukter som fersk filet og fersk skrei overtatt, men hovedsakelig har
det gjort denne delen av hvitfisknæringen likere de andre hovedsegmentene ved at lite bearbeidet råstoff sendes ut av landet for bearbeiding andre steder.

Kort oppsummert er sjømatmarkedet internasjonalt i sterk vekst. At supermarkedkjedene har overtatt fra fiskehandler og andre spesialiserte detaljister som skar fisken til for kundene har også økt bearbeidingsgraden i verdikjeden. Bortsett fra produksjonsveksten i laksøkonomien har imidlertid norsk fiskerimarked i liten grad vært i stand til å benytte de mulighetene denne utviklingen har skapt.

A.1.5 Handelsbarrierer

Det er to mulige hovedforklaringer på at norsk sjømatnæring eksporterer lite bearbeidede fiskeprodukter:
1) Norsk fiskeindustri er ikke konkurransedyktig
2) Handelsbarrierer som diskriminerer mot norsk bearbeiding vanskeliggjør dette.

Steinshamm, Asche og Tveterås (2001) gir en drøfting av dette saksområdet, og det har ikke i årene etter vært vesentlige endringer som påvirker konkurranseområdet der i nevneverdig grad.

Norges viktigste eksportmarked, EU, har et tollsatsregime som klart diskriminerer mot bearbeidet importert fisk, inkludert norsk. For mange arter er ubearbeidet eller lite bearbeidet fisk uten toll eller med svært lav tollsats som for hel laks eller laksefilet, hvor tollsatsen er 2%. For noen bearbeidede produkter, og da spesielt konvensjonelle hvitfiskprodukter er det betydelige tollfri kvoter, mens for de fleste mer bearbeidede produkter, som røykt laks er den nominelle tollsatsen 13%. Den reelle er betydelig høyere da tollen pålegges varens verdi, og det dermed ikke er bare fisken men også verden av de andre faktorene i bearbeidingsprosessen som toll-legges. At det ikke er tollfrie kvoter for nye typer produkter vanskeliggjør også produktutvikling fra norsk bedrifter for markedet i EU. De fleste andre markeder har en tilsvarende struktur, selv om et betydelig antall frihandelsavtaler gir bedre markedsadgang til enkeltland.

Dagens norske fiskeindustri er i liten grad konkurransedyktig for mer bearbeidede produkter, selv uten tollbarrierer. Frihandelsavtale i leren grad ledet til en økning i eksporten av mer bearbeidede sjømatprodukter, og for kategorier hvor en viss grad av bearbeiding ikke rammes av høyere tollsats ser en likevel at størstedelen av eksporten er enda mindre bearbeidet. Laks er et godt eksempel på dette ved at det ikke er høyere tollsats på filet enn på hel fisk. Likevel eksporterer fisken i hovedsak som hel. Dette er indikasjoner på at det norske kostnadsnivået er en betydelig utfordring i forhold til å få til ytterligere bearbeiding av norsk fisk. Imidlertid gir flere laksbedrifter uttrykk for at andelen pre-rigor laksefilet vil øke dersom teknologi for automatisk fjerning av pinnebein pre-rigor utvikles. Med det datagrunnlaget som finnes kan en imidlertid ikke gi et klart svar på om det er handelshindringene eller kostnadsnivået som er den største utfordringen.

A.1.6 Tilgang til kompetanse

Dagens sjømatnæring sysselsatte i 2012 tilnærmet 47 400 årswerk, hvorav tilnærmet 6533 er tilhørende i kjerneaktivitet fiskeindustri (Sandberg et al. 2014). En gjennomgang av kompetansebehov i sjømatnæringen er gjort både av Winther et al. (2014), Henriksen et al. (2014) og Sandberg et al. (2014). Kort oppsummert viser disse at over 50% av arbeidstokken i fiskeindustrien består av fagfolk og lønn, og at 89% av bedriftenes likvel er fornøyde med kompetansen. Henriksen et al. (2014) har sett på kompetansebehovet frem mot 2020 og ser følgende trender:
- Det vil ikke bli en stor økning i antall årswerk i sjømatnæringen
- Innenfor fiskeindustrien vil det ikke bli økning i antall årswerk, muligens en reduksjon pga. strukturering og automatisering
Innenfor leverandørindustrien vil det trolig være behov for en økning av antall årsverk.
Både innenfor fiskeri, havbruk og fiskeindustri vil det være en økt etterspørsel etter formell utdanning og særlig fagbrevets rolle ser ut til å styrkes (se Figur 15).
Spesielt innenfor fiskeindustrien vil det etterspøres arbeidskraft med kompetanse innenfor mekanikk, elektronikk og automasjon.
Økt fokus på produktutvikling, marked og differensiering vil gi økt etterspørsel etter høyere utdannet arbeidskraft.

Norsk industris konkurranseevne er svekket de siste ti årene, målt ved relative timelønnskostnader, og differansen har vært økende. I 2013 var timelønnskostnadene i industrien i Norge 55 % høyere enn handelspartnerne i EU (Conference Board, Eurostat, SSB og Beregningsutvalget). Til sammenligning tjener ingeniører i deler av Kina dobbelt så mye som kolleger i Norden, og land som Indonesia, Romania, Ukraina og Spania er i større grad lavkostland enn Kina (Teknisk ukeblad, 25. sept 2012).

Konklusjonen er derfor at; Hvis alle andre faktorer er like, må en arbeidstide i norsk industri bestå av noe annet enn hos andre. Dette noe annet kan for eksempel skapes ved å fokusere på markeder som tåler høyere priser, at vi er i front teknologisk og at vi også utnytter "norske" særtrekk ut over eventuelt naturgitte fortrinn som nærhet til mærdkant og fiskefelt.
Et "norsk" sætrekk, er at det i den enkelte bedrift er relativt små forskjeller i status, prestisje og lønnsnivå, med en bedriftskultur preget av involvering og medvirkning. I tillegg er det etablerte prosedyrer for å håndtere uenighet mellom ansatte og ledelse, veldig lavt streikenivå og lang tradisjon for konstruktiv forhandling mellom partene i arbeidslivet. Ingen andre land har sammenligningsvis så høy grad av tillit og så lav grad av konflikt. I tillegg har vi arbeidskraft med høy kompetanse. Dette gjør det mulig å utnytte likheter gjennom robuste samarbeidsstrukturen som skaper en helhetlig og effektiv produksjonsflyt. En bedriftskultur preget av involvering, verdiskapningsforståelse, sammen med relativt lavt behov for styring "ovenfra", gir gode forutsetninger for innovasjon i norsk fiskeindustri.
A.2Biologiske forhold

A.2.1 Råstofftilgang

Det er en utfordring for sjømatindustrien å få tilgang til ferskt råstoff av god kvalitet gjennom hele året. En lønnsom kontinuerlig drift av foredlingsanlegg krever en gitt råstoffbase. Dagens kunder er blitt større aktører som ønsker færre, men sikre leverandører som kan sikre daglig tilstedeværelse i butikkhyllene med produktene. En av hovedutfordringene for å få jevn råstofftilgang i hvitfisk sektoren er store sesongvariasjoner (Standal og Utne, 2007), illustrert i Figur 16. Dette skyldes dels reguleringer (olympisk fiske) og biologi (gytevandring). Om lag 50% av årets fangst tas i månedene januar til april. Dette kan skape utfordringer som kapasitet i mottak, lagring for lenge av råstoff før prosessering som fører til tap av restholdbarhet og kvalitetsreduksjon, og jevnhet i tilførsel til markedet. Ettersesongen er det andre arter som er viktige som f.eks. hyse, men da er produksjonskapasiteten på anleggene gjerne for høy til å drive lønnsomt. Markedet krever helårs leveranser av råstoff, gjerne ferskt, noe som krever et annet fangstregime enn dagens.

![Figur 16. Sesongvariasjoner i landing av torsk for de ulike redskapstypene (Standal og Hershoug, 2015).](http://www.regjeringen.no/pages/38727231/StrategiLevendeLagringFisk100614.pdf)

Fangstbasert oppdrett (FBO) er foreslått som et virkemiddel for jevne råstofftilgang utover dagens sesong, og flere prosjekter og tiltak er satt i gang for å styrke denne næringen (Strategiplan for levendelagring av torsk, 2014). Målsettingen med FBO er å øke biomassen, forbedre råstoffkvaliteten og muligheten til å opppre strategisk i forhold til markedene ved selv å bestemme når fisken skal slaktes og selges. Beregninger av økonomien i fangstbasert oppdrett av torsk viser at lønnsomheten er mest følsom for endringer i salgspris, tilvekst og førstehåndspris (Hermansen, 2010). Store torskekvoter (og lavere priser på torsk) slik som de siste 2-3 årene har derfor vært negativt for lønnsomheten i FBO. For å stimulere til levering av levende torsk får båter som leverer levende et påslag på kvoten på 50 prosent. Viktig er at torskene blir stående i en
ventemerd i minst en uke. Slik som situasjonen er pr.d.d. mht råstoffpris, tilgjengelig volum etc er FBO et helfisk-konsept. Vi snakker her om ypperste kvalitet, og i dag er råstoffet for «eksklusivt» til å kunne brukes til filetproduksjon. For fremtidig grunnlag for filetproduksjon må volumet øke betydelig, samt også være tilgjengelig større deler av året (lavsesong) (Personlig meddelelse Trond Rismo, Improvement & development manager, Norway Seafoods, 2014).

Bruk av frosset/tint råstoff er også foreslått som et alternativ til jevnere råstofftilgang i hvitfisksektoren (Grimsmo og Digre 2012), men slik som råstoffprisen på frosset råstoff er i dag (dyrere enn fersk) er ikke dette så aktuelt. Tint råstoff av høy kvalitet er i utgangspunktet godt egnet til filetproduksjon, men i følge fiskeindustrien har kvaliteten (dårlig utblødning og filetspalting) på tilgjengelig fryst råstoff blitt dårligere (Grimsmo og Digre 2012). Det er også slik at kvaliteten på fryst rund hodekappet fisk først blir synlig etter tining og filetering. Dermed utgjør kjøp og foredling av fryst råstoff en betydelig kvalitetsrisiko for industrien, spesielt hvis produktene skal inn på godt betalte markedssegmenter for filetprodukter. Det er også utfordringer knyttet til dårligere utbytte på råstoff som har vært fryst.

![Figur 17. Forventede fangster av pelagisk fisk i Norge per art, 2014 (Kilde: Pelagia AS).](image-url)
Når det gjelder laks er tilgangen til råstoff mer jevn gjennom året sammenlignet med fiskerisektoren. Figur 18 viser gjennomsnittlig utslakting per måned av laks fra 2005 til 2012. Det er en noe økt utslakting de siste månedene av året. Slakterierne har i dag et behov på ca 30-40 000 tonn slaktevolum i basis for strategisk utvikling, etablering og drift av foredlingsfabrikk. Per i dag er det 10-12 (av 50) aktører/slakteri som har tilsvarende råstoffbase, og flere hevder at råstofftilgang er en stor barriere for økt grad av foredling (Winther et al., 2011). Næringen ønsker innføring av rullerende MTB slik at en kan få et jevnere uttak av råstoff til slakteri- og foredlingsaktivitet. Slik regelverket er i dag er konsekvensen et slaktemønster som en konsekvens av biologiske forhold og eventuelle uforutsette forhold, og ikke styrt etter ette rspørsel fra markedet. Regelverket knyttet til reguleringsregime er under vurdering.

![Graf](image)

Figur 18. Gjennomsnittlig utslakting per måned av laks, 2005-2012. (Kilde: Fiskeridirektoratet).

A.2.2 Nærhet til fangstfelt og merdkant

Myndighetene har gjennom mange år ønsket å bygge opp under den norske hvitfiskindustrien konkurransefortrin g jennom nærhet til fiskefeltene og ferskt råstoff av høy kvalitet.

Nærhet til fangstfelt er avgjørende for den delen av fiskeindustrien som tar i mot fersk fisk (i hovedsak hvitfisk) fra den mindre kystflåten. Den norske salt- og klippfiskindustrien, som har sitt tyngdepunkt i sunnmørsregionen, er imidlertid i liten grad avhengig av nærhet til fangstfelt, da råstoffet til denne industrien består i hovedsak av fryst stor fisk (inkl. en viss import av fryst råstoff, hovedsakelig stillehavstorsk), og fersk fisk som saltes på i Nord-Norge under torskesesongen.

Når det gjelder pelagisk fisk er ikke nærhet til fangstfelt like viktig, da havgående ringnotfartøy kan levere fersk og kjølt fisk i et ganske stort utbudsområde, også til Danmark og Skottland. De pelagiske fangstene blir omsatt på auksjon drevet av Norges Sildesalgslag og moderne ringnotfartøy fører fangsten over forholdsvis lange avstander slik at det i liten grad er den nærmeste (norske) kjøperen som har det største konkurransefortrinnet.
Nærhet til oppdrett/merdkant har i dag lite å si for hvorvidt laksen blir foredlet i Norge eller ikke. Utvikling av automatisert pre rigor beinfjerning av laks anses imidlertid som den viktigste muligheten for å øke andelen av foredling i Norge. Da vil nærhet til merdkant kunne bli et viktig konkurransesfortrinn for norsk foredlingsindustri. I og med at filetproduksjonen er ganske arbeidskraft intensiv fins det også et betydelig potensial i videreutvikling av automatiseringsteknologi her.

A.2.3 Råstoffkvalitet

Råstoffkvaliteten for villfisk har en naturlig biologisk variasjon som er av stor betydning. Denne variasjonen er derimot ikke kontrollerbar, og derfor lite å gjøre noe med. Det er imidlertid betydelige kvalitetsproblemer som oppstår under selve fangstoperasjonen og prosesseringen av råstoffet ombord. Derfor er det viktig at man optimaliserer fangstbehandlingen fra fisken fangstes til den er ferdig prosessert og kjølt frem til forbruker. Dette kan man optimalisere gjennom å forbedre bl.a. teknologien gjennom verdikjeden.

Figur 19. Fangstskaderegistreringer på fisk fangstet med garn, snurrevad og line i 2004 sammenlignet med 2014. Figuren viser samlet gjennomsnittlig fordeling mellom kvalitetsklassene (%) (Akse et al., 2014).

Grunnen til at spesielt snurrevad kommer så dårlig ut m.h.t. råstoffkvalitet skyldes at det er meget vanskelig å størrelsesbegrense enkeltfanger og problemene oppstår når det fangstes mye fisk. Til tross for at det er gjennomført flere prosjekt og forsøk med fokus på størrelsesbegrensning i snurrevadfiske de siste årene er det fortsatt en utfordring at det fangstes for mye fisk i enkelthal (se også info om pågående prosjekt hos FHF: 900865: Fangstkontroll i snurrevad, http://www.fhf.no/prosjektetaljer/?projectNumber=900865). Dette medfører ofte at kvaliteten på fisken forringes og gir dårlig filetkvalitet, dårlig utblødning og skader. For å reducere kvalitetsrisikoen er det mye å hente på forbedret fangstbehandling (menneskelige faktorer, rutiner etc.), ettersom tapt kvalitet her ikke kan kompenseres i etterfølgende ledd. Utvikling av automatiserte slaktelinjer om bord hvor man inkluderer både bedøving og automatisk bløgging vil derfor være et stort fremskritt m.h.t. å levere god kvalitet på fisken til foredlingsanleggene. Dette er et av de viktigste tiltakene næringen selv har påpekt for å styrke konkurranseevnen og sikre rekrutteringen. Det er under utvikling
fullautomatiserte slaktelinjer som er tilpasset ombord, både med utstyr fra Baader og Seaside AS7. Video av et av konseptene finner du her: \url{http://gemini.no/multimedia/automatisering-inntar-fiskeflaten/}.

Noen av de viktigste kvalitetsbestemmende faktorer i pelagiske fiskearter er forekomsten av parasitter og åte (buksprenging), i tillegg til fiskens fettinnhold. Disse faktorene er naturgitte og er ikke kontrollerbare. Det er store variasjoner i disse faktorene både når det gjelder årstid, fiskeslag og fangstområde (Falch et al., 2006), noe som gjør det vanskelig å forutse hvordan kvaliteten på fisken er gjennom året og i den enkelte fangst. For å ta vare på fiskekvaliteten i fangstleddet har en tradisjonelt fokuset på tiltak ombord i fartøyet som hurtig nedkjøling, skånsom håndtering, forbedret renhold og kvalitetssikringssystemer. Operasjonelle forhold rundt fangstprosessen og konstruksjon av fangstredskapet vil også innenfor pelagisk sektor ha stor betydning for råstoffets kvalitet. Utforming av silkasser og logistikk til mottakstanker anses også som vesentlig. Ringnot fartøyet "Christina E" har nylig installert et helt nytt laste-/losse- og kjølesystem, som har gitt en kvalitetsevinst på råstoffet sammenlignet med andre ringnot fartøy som har tradisjonelt utstyr ombord (se Figur 20, Aursand, I.G. og Sævik R., 2014).

Laks er anerkjent som høykvalitetsmat globalt sett. For å opprettholde denne kvaliteten er man avhengig av å optimalisere en rekke forhold langs produksjonskjedene fra sykdomsforebyggende tiltak, foringsregime, sikre fiskevelferd, minske stressbelastning før avliding etc. Ved økt foredling i Norge vil det være viktig å kvalitetsdifferensiere råstoffet for å oppnå en optimal anvendelse. Kvalitetsparametere som er aktuelle å sortere etter hos laks er f.eks. fargefeil på grunn av blod, melanin og pigmentinnhold, måling av fett, fettfordeling og fettsammensetning, påvisning av bein, spalting/bløt muskel, deformiteter og vintersår (Heia et al., 2009). Instrumentelle måleteknikker kan benyttes til slik kvalitetsdifferensiering. Figur 21 viser QMonitor (QVision AS) en potensiell løsning som kan anvendes til automatisk måling av fettinnhold og farge i laksefilet.

7 Mer om automatiserte slaktelinjer for villfisk kan finnes her: \url{http://www.fhf.no/prosjektdetaljer/?projectNumber=900930} \url{http://www.fhf.no/prosjektdetaljer/?projectNumber=900526}
A.3 Utfordringene - kort oppsummert

Foredlingsindustrien, inkludert alle de tre verdikjedene; hvitfisk, pelagisk og laks, har flere utfordringer som må løses dersom denne industrien skal kunne drive lønnsomt i årene som kommer. Nedenfor følger noen av dem:

- Produksjonsskapasiteten på anleggene må utnyttes gjennom hele året, dette gjelder spesielt hvitfisk og pelagisk sektor. Tiltak må settes inn for å redusere de sesongmessige svingningene.

- Fiskeindustrien har for liten kontroll med kvaliteten på fisken som leveres. Det vil være mye å hente på forbedret fangstbehandling, ettersom tapt kvalitet i fangstleddet ikke kan kompenseres i etterfølgende ledd.

- Innenfor deler av dagens sjømatindustri består over 50 prosent av arbeidsstokken av ufaglærte arbeidskraft. Med den forventede framtidige utviklingen innenfor sjømatindustrien, med blant annet økt automatisering og behov for mer innovasjon innenfor produkt, marked og strategi vil det kreve økt etter- og videreutdanning av dagens arbeidskraft og økt kompetanse på nyansatte.

- Foredelte norske sjømatprodukter møter handelshindringer i form av høye tollsatser i viktige markeder for norske fiskeprodukter og norske fiskeprodukter blir utsatt for sanksjoner i ulike typer internasjonale konflikter.

- Dagens regelverk gir den fiskeribaserte sjømatindustrien mindre mulighet til å kontrollere verdikjeden, slik bedriftene i den havbruksbaserte verdikjeden kan, blant annet med den konsekvens at fiskerleddet ikke får tilbakeført viktig markedskunnskap.
DEL B) Teknologiutvikling og økt automatisering
B.1 Bærekraftig industrielt Norge

Industriell virksomhet er bærebjelken i den norske verdiskapingen og i utvikling av velferdssamfunnet. Norsk vareproduserende industri er sterkt påvirket av et globalt marked. Endringer i et globalt marked fra masseproduksjon til fleksibel og differenstiøren råstoffsutnyttelse påvirker hvordan fremtidig industriell virksomhet må utformes for å være lønnsom i Norge (European Union, 2013). Vekst innen vareproduserende industri anses av EU-kommisjonen å være veien til løsning på dagens sosioøkonomiske utfordringer i regionen, og veien mot et sosialt, økonomisk og miljømessig bærekraftig samfunn (European Union, 2013). Ryggraden innen industri er antatt å bestå av SMEer, noe som kan tolkes som et behov for spesialisering av kunnskap og produkter. Økende behov for kompetanse blir også nevnt som et ledd i sosialt bærekraftig vekst.

Mange av teknologiutfordringene som må løses for å få til en lønnsom bærekraftig fiskeforedling i Norge gitt rammebetingelsene beskrevet i rapportens del A, er generiske for industriproduksjon generelt og vil kunne overføres mellom ulike sektorer og produksjonstyper. Dagens norske teknologileverandører har en overvekt av SMEer. Ved å bygge opp spisskompetanse innen automatisk bearbeiding av biologisk råstoff, både direkte ved å utvikle sammensatte teknologiske løsninger for fiskeforedlingsindustrien, men også indirekte ved å utvikle komponenter som inngår i denne type løsninger (som for eksempel kamera og vision-teknologi for å kunne identifisere art og individ, samt automatisk trimming, se figur 22) vil Norge kunne være i forkant av den tredje industrielle revolusjonen slik den blir beskrevet i EU kommisjonens veikart for fremtidens fabrikker og gjør det mulig å utvikle en industriell posisjon som er attraktiv og konkurransedyktige på det internasjonale markedet (European Union, 2013; Made in Sweden 2030; Vinnova, 2013). Teknologiutvikling som øker utbyttegraden og utnyttelsen av biologisk råstoff er også beskrevet i rapporten BioVerdi 2014 som et viktig ledd i å få norsk næringsmiddelproduksjon inn et bioøkonomisk perspektiv. For å få dette til må teknologileverandørene styrkes, og er nærmere beskrevet i kap. B.2.3.

![Figur 22. Automatisk trimming av laks – teknologi under utvikling i prosjektet RoboTrimNo1 (Forskningsrådet Prosjekt No 228500/O30, Foto: TYD AS).](image-url)
Høye lønnskostnader tvinger frem automatisering og investering i roboter. Likevel er vi sammenlignet med våre naboer og EU-land langt bak i investeringstakten. Ved å øke graden av automatisering og anvendelse av roboter i vareproducerende industri, er det helt nødvendig med kompetanse.

"En fremtidig konkurransedyktige norsk fiskeindustri er avhengig av gode (konkurransedyktige) rammevilkår, teknologiutvikling, kompetanseutvikling, innovasjon og anvendelse av forskningsbasert kunnskap. Den må videre være attraktiv som leverandør i det internasjonale markedet, og attraktiv som arbeidsplass."

For å lykkes med å utnytte våre særnorske konkurransefortrinn både biologisk som nærhet til råvaren og samfunnsmessig som flat organisasjonsstruktur og høy utdanningsgrad (nærmere beskrevet i del A og C), er det viktig med en helhetlig tilnærming til foredlingsleddet i sjømatindustrien. Man må se på strategiene og prinsippene som brukes for å styre produksjonen i et verdikjedeperspektiv, i forhold til utviklingstrendene i markedet og potensialet knyttet til teknologiutvikling og økt automatisering.

Norske fiskeforeldre står overfor en særdeles vanskelig oppgave ved at de både skal håndtere stor usikkerhet og variasjon i råstofftilgangen, samtidig som de må være i stand til å møte behovene i markedet – og alt dette må gjøres så kostnadseffektivt som mulig for å maksimere lønnsomheten. Matprodusenter har tradisjonelt konkurrert på å tilby kundene gode produkter til lave priser. For å kunne tilby lave priser, har produsentene i stor grad fokusert på prinsipper fra masseproduksjon for å holde enhetskostnadene lave. De senere årene har imidlertid nye strategier for planlegging og styring av produksjon vokst fram som alternativ til masseproduksjon og disse representerer nye muligheter for mer lønnsom og markedstilpasset produksjon i norsk fiskeindustri.

B.1.1 Lean Manufacturing

Lean Manufacturing fokuserer på å optimalisere prosessene og eliminere tap (waste). Fokuset er med på å kutte kostnader, og levere det kunden ønsker og er villig til å betale for. Lean-filosofien er knyttet til en grunnanke om kontinuerlig forbedring i alle ledd. Istedensfor å gjøre raske, uregelmessige endringer som er forstyrrende for arbeidsplassen, gjøres små og varige endringer for at ansatte som faktisk jobber med prosesser, utstyr og materialer er med på å ta utviklingen fremover. Dette er sentralt for å styrke den globale konkurransekraften til norske vareproduksjonsbedrifter – hvor medarbeiderdrevet forbedring og innovasjon blir stadig viktigere. Denne systematiske tilnærming er svært effektivt på tvers av alle typer bransjer, og den reduserer svinn eller uproduktivt arbeid i alle ledd.

"Lean manufacturing: Kontinuerlig forbedring av prosess med kundens verdiperspektiv i fokus. Alt som ikke skaper verdi for kunden er definert som "waste""

Lean er ikke et universelt system, men handler primært om en type ledelse, et menneskesyn og en kultur, som vil avspeiles i hvilket land, sektor og virksomhet det anvendes i. Lean relaterer seg til Toyotas produksjonsmetoder og metodikken fokuserer på å eliminere såkalt løsning (waste) og ser på kundens
opplevelse av produktets verdi fremfor kostnadselementer. Det underliggende målet er å forbedre den bedriftsøkonomiske lønnsomheten. Sentralt i denne tenkningen er det å skape merverdi med mindre innsats av ressurser (Krijnen, 2007).

Lean er et samlebegrep for ulike verktøy, teknikker og metoder som anvendes i utviklingsprosjekter. Metoden oppstod hos Toyota og deres måte å utvikle og produserere bidro til å gjøre Toyota i stand til å konkurrere med amerikansk og europeisk bilindustri gjennom å levere høgverdige kvalitetsprodukter. Metodene og tankegangen har siden blitt banebrytende for all industri og har også senere blitt tilpasset for bruk i offentlig sektor.

Lean kjennetegnes først og fremst av fem grunnleggende prinsipper:

- **Verdi er spesifisert ut fra kundenes perspektiv (Hva er kunden villig til å betale for? Alt annet er definert som "waste")**
- **Identifiser verdistømmene (innsatsfaktorene vs. utbytte)**
- **Skape flyt igjennom alle prosesser (reduserte gjennomløpstider)**
- **Etterspørselen igangsetter vareproduksjon (pull). Dette medfører reduksjon av kapitalbinding i delelager, mellomlager og ferdigvarelager**
- **Arbeide mot perfeksjon (alt som gjøres i dag kan gjøres bedre i morgen)**
B.1.2 Planlagt styring og økt markedstilpasning

Masseprodusert skreddersøm er et begrep som brukes om produksjon av varer og tjenester som er tilpasset den enkelte kundes ønsker og behov med tilnærmet masseproduksjonens effektivitet. Masseprodusert skreddersøm er basert på masseproduksjon, lean manufacturing og håndverksorientert produksjon (Gilmore & Pine, 2000).

Eksempler på Masseprodusert skreddersøm:

Nike introduserer inntil 300 nye modeller av løpesko hver 6. måned, i tillegg kan kunden selv "designe" sin egen sko uten at dette koster stort mer enn masseproduserte sko.

Et viktig poeng med denne produksjonsteknikken er at ingenting produseres før det er solgt. Det betyr at man ikke produserer for lager, men for forsendelse basert på kundeordre, og dette reduserer kostnadene.

Både lean og masseprodusert skreddersøm inngår i et nytt produksjonsparadigme som fokuserer på fleksibilitet og smidighet (agility). Lean fokuserer på å redusere kostnader og sløsing, mens masseprodusert skreddersøm muliggjør produksjon av et bredt variantspekter skreddersydd til kundenes ønsker uten betydelig kostnadsøkning. **Konseptene trenger imidlertid tilpasning for de kan overføres til mat.**

Matvarer produseres i dag i stor grad til lager basert på prognoser. Ettersom forjeneestemarginene på produktene er små, har produsentene vært avhengige av å produsere effektivt og i store volum for å opppretholde lønnsomheten – for deretter å «dytte» produktene ut i markedet. Store batcher og produksjon til lager kan være økonomisk lønnsomt fordi det muliggjør færre omstillinger av produksjonsutstyret, jevnere produksjon og rask levering av produkter til kunden. Samtidig medfører en slik strategi risiko for at man har produsert feil produkt og dermed ikke er i stand til å levere variantene kundene etterspør, eller at man har produsert for mye slik at varelageret må kastes, eventuelt selges til reduserte priser. Disse utfordringene forsterkes av den generelle trenden mot økt produktvariasjon og økende etterspørsel etter forskellige matvarer. Selv om total etterspørsel innenfor en produkttkategori kan være forholdsvis stabil og forutsigbar, gjør økt produktvariasjon det vanskeligere å prognostisere behovet for hver enkelt variant.

Som et alternativ til det ensidige fokuset på kostnadseffektivitet gjennom høyvolumproduksjon framheves nå responsenve og fleksibilitet som en av de viktigste egenskapene for å skape og opppretholde konkurranseforrinn i vareproduksjon (Bernardes & Hanna, 2009; Christopher & Holweg, 2011). Dette betyr at produsenter må kunne reagere stadig raskere på endringer i markedet. Matprodusenter står dermed overfor et krav om både økt fleksibilitet og høy kostnadseffektivitet – to strategier som normalt oppfattes som motpoler og uføremelige med hverandre. De senere årene har imidlertid ulike differenseringsstrategier vokst fram, hvor produkter med ulike karakteristika planlegges og styres på ulike måter.
Ren kundeordrestyrt produksjon som i masseprodusert skreddersøm er imidlertid lite gjennomførbart i matproduksjon, blant annet fordi produksjonsledetiden oftest er betydelig lengre enn kundenes krav til leveringsledetid (Soman, 2005). Derimot har flere studier pekt på at en hybridløsning som combinerer produksjon på ordre med produksjon til lager kan være et godt alternativ for matprodusenter (Romsdal, 2014; Soman, 2005; van Donk, 2001). *For eksempel kan man da se for seg at produkter med kort holdbarhet og usikker etterspørsel produseres på ordre, mens produkter med lengre holdbarhet og mer forutsigbar etterspørsel kan produseres til lager.* I tillegg kan pakking på ordre være et alternativ i situasjoner hvor halvfabrikata kan lagres en viss tid. Potensialet knyttet til slike løsninger vil øke betraktelig etter hvert som det utvikles mer fleksibelt og automatisert produksjonsutstyr som både muliggjør raskere omstillinger mellom produktvarianter og eventuelt også én-stykkshåndtering i bearbeidings- og pakkingsprosesser.

Ved å kombinere masseproduksjonens kostnadsfordeler med løsninger for mer fleksibel produksjon, kan norsk industri dermed klare seg med høyere lønnsnivå og ekspandere gjennom mer markedsorienterte produksjonsstrategier.
B.2 Økt automatisering for en bærekraftig foredling av sjømat i Norge

I dette avsnittet behandles dagens teknologistatus og fremtidige teknologiske behov basert på trender innen fiskeri- og havbruksnæring sett i sammenheng med trender generelt innen industriproduksjon. Det er flere utfordringer som må løses for å lykkes med en bærekraftig foredling i dagens Norge. For å få til en effektivisering av sjømatproduksjonen kreves bl.a. standardisering av operasjoner, standardisering av maskiner samt fleksibelt utstyr og operatører med høyere teknisk kompetanse. Avsnittet tar for seg hvordan teknologiske løsninger på kjente utfordringer, og utvikling av ny generisk teknologi kan bygge opp under en mulig lønnsom og bærekraftig fiskeforedlingen i Norge. Utfordringer i leverandørindustrien for å utvikle teknologien det er behov for i fremtiden er også omtalt senere i dette avsnittet.

Økt teknologiutvikling i sjømatproduksjon med hovedvekt på å utvikle miljøvennlig prosessteknologi som innebærer utvikling av automatiserte produksjonslinjer for foredling av alt råstoff.

Kilde: Hav 21 Mat

B.2.1 Situasjonen i dag

For å kunne være konkurransedyktige må fiskeindustrien tilpasse seg store internasjonale næringsmiddelkonsern som stadig utvikler nye produkter og konsepter, men i filetindustrien har det samtidig skjedd svært lite teknologiutvikling de siste 30 år. Den nasjonale strategien Hav 21 (Hav 21, 2012) peker på at teknologiutvikling og effektivisering av norsk produksjon er nødvendige tiltak for å kunne møte internasjonal konkurranse. Utvikling og implementering av mindre arbeidskrevende teknologi er en hovedstrategi for å opprettholde og utvikle foredling av fisk i Norge (illustring figur 23), og er pekt på som en av hovedutfordringene i den nasjonale strategien Hav 21. Fremtidens produksjonslinjer må ha fleksibilitet i forhold til tilgjengelig og varierte råstoff og produkt som etterspørres i markedet.

Figur 23. Fra manuelt arbeid til fullautomatisering (Bilde: SINTEF Fiskeri og havbruk og TYD).

Hvitfiskindustrien må i større grad bli en kompetanse- og teknologibasert industri med fokus på markedstilpasset høykvalitetsprodukter for å overleve. Lakseindustrien ligger foran hvitfiskindustrien når det gjelder innovasjon og teknologiutvikling innen førstehåndtering/slitting og filering, men i både hvitfisk- og lakseindustrien er det et spesielt behov for automatisering av arbeidstilintensive operasjoner som trimming og bein fjerning. I norsk pelagisk industri foregår det relativt lite foredling i dag, men viktige
teknologiske utfordringer og økonomiske potensialer ligger i utvikling av automatiserte sorteringssystemer som sorterer fisk effektivt og med stor nøyaktighet.

Forskning på teknologisk forbedring innen fiskeforedling har hatt hovedfokus på automatisering av enkeltprosesser i foredlingslinjen, med formål om å effektivisere produksjonen og redusere operatørværelse. Dette er i tråd med den globale trenden i næringsmiddelindustrien som går mot økt bruk av roboter og automatisering til bruk i kvalitetsgradering og prosesseringsoppgaver (Bondø et al. 2011).

Robotikk og automatisering har blitt gradvis implementert i sjømatindustrien på global basis, med noen konkrete verktøy spesielt utviklet for fiskeforedling (Buljo et al. 2013).

"Utfordring:
I global sammenheng er imidlertid industriell fiskeforedling en liten sektor (med begrenset lønnsomhet og betalingsevne) med et begrenset marked for teknologileverandører. Dette har konsekvenser for teknologileverandørenes og fiskeindustriens vilje og evne til å satse på egen FoU. Mye av den teknologiutviklingen som skjer i fiskeindustrien er derfor tilpassing av eksisterende teknologi til nye applikasjoner.

En skjematisk oversikt over ulike prosesseringsforløp for hvitfisk og laks er vist i Figur 24. Post-rigor og pre-rigor filetering av fisk er vist hhv til venstre og høyre i figuren nedenfor. For å kunne benytte en høy grad av automatiserte maskinelle løsninger for f.eks. pinnebeinfjerning kreves det pr i dag en viss grad av modning av fisken på grunn av mekaniske utfordringer med behandling av pre-rigor fisk. Pre-rigor filet er hovedsakelig benyttet til produksjon av "high end" fiskeprodukter beregnet til for eksempel sushi og et kresent ferskvaremarked (Olafsen et al 2012).

Figur 24. Flytskjema over mulige prosesstrinn for hvitfisk og laks.

Dagens mekaniske, semi-automatiserte og automatiserte løsninger er ennå ikke i stand til å utføre en høyere grad av automatisk håndtering, bearbeiding, og effektiv råstoffutnyttelsen (Bondø et al. 2011). Sammenlignet med samvirkende menneskelig arbeidskraft, er fiskeforedlsingsanlegg i dag satt sammen av en rekke påfølgende individuelle automatiserte eller maskinelle operasjoner med lite fleksibelt prosessutstyr.
som er vanskelig å tilpasse i forhold til individ og art, og det er liten/dårlig kommunikasjon mellom prosesser hvor det er behov for menneskelige operatører for å tilrettelegge inn og ut-mating mellom enhetsoperasjoner (Roulet-Dubonnet et al. 2009). For både havbruks- og villfiskektoren er det fortsatt store potensialer gjennom videreutvikling av teknologi for industriell foredling av ferskt restråstoff som er nærmere beskrevet senere. For eksempel er det meste av kvalitetsgraderingen ennå manuelt basert (Bondø et al 2011).

B.2.2 Teknologiske hovedutfordringer og fremtidige muligheter

Figur 25. Teknologiutvikling påvirker både hvilket marint råstoff som kan benyttes, samtidig som utvikling av foredlingsteknologi både påvirkes av og påvirker etterspørsel fra markedet og sluttbruker.

Lønnsom foredling av sjømat i Norge forutsetter en høy grad av automatisering og robotisering, av foredlingsprosessen, både selve bearbeidingen og vaske- og vedlikeholdsoperasjoner for å få ned produksjonskostnadene. Dagens relativt lave antall produktvariasjoner er et resultat av begrenset mulighet for adaptiv produksjon. Det er i dag mere lønnsomt å produsere et fåtall produktvariasjoner og øke lønnsomheten via erfaren produksjonsledelse og enkelte produksjonsstyringsverktøy.

"For å kunne øke markedstilpasningen og lønnsomheten i norsk videreforedling av sjømat krever det at flere teknologiske hovedutfordringer løses, som hver er generelle på tvers av laks, hvitfisk og pelagisk sektor"

Når det gjelder hovedutfordringer innen behov for fremtidige teknologiske løsninger og identifiserte teknologi-gap kan dette sees ut fra to ulike tidsperspektiver. Teknologiske løsninger for nær fremtid, et 5års perspektiv, bygger videre på dagens retning innen teknologiutvikling og er beskrevet i punkt 1, mens punkt 2
skisserer et fremtidig senario (>10 år frem i tid) og bygger på tanken om en fremtidig fullautomatisert industri:

1. **Automatisering av enhetsoperasjoner** i en fabrikk eller om bord på en båt, hvor råstoff, arbeidsoppgaver og andre rammer er klart definert på forhånd.

2. **Fullautomatisert adaptiv produksjon og selvlærende fabrikker/produksjonsanlegg** på land og om bord, som må håndtere store variasjoner i råstofftilgang og markedskrav uten hjelp fra mennesker.

I tabellene nedenfor følger noen konkrete eksempler av identifiserte teknologiske gap og mulig teknologiske løsninger i et nært tidsperspektiv, som angitt i punkt 1. Tabellene beskriver dagens situasjon, hva som trengs av ny teknologi og anslår mulig gevinst ved bruk av ny teknologi innenfor foredling av hvitfisk (filet), pelagisk (sildefilet) og laks (Tabell 4, Tabell 5, og Tabell 6). Lønnsomhetspotensialet ved innføring av ny teknologi er beskrevet i del. C.2.

Tabell 4. Overordnet prosesslinje for hvitfisk filet, som viser tilgjengelig teknologi, behovet for ny teknologi og hva gevinsten er ved innføring av ny teknologi.

<table>
<thead>
<tr>
<th>Prosesslinje</th>
<th>Tilgjengelig teknologi</th>
<th>FOU-behov – ny teknologi</th>
<th>Gevinst med ny teknologi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mottak og råstoffhåndtering</td>
<td>• Truck transport</td>
<td>• Nye interntransportløsninger SVODSI (FIFO, prinsipp i større grad)</td>
<td>• Redusert bemanning</td>
</tr>
<tr>
<td></td>
<td>• Store lastebærere i plast [kar]</td>
<td>• Automatisk kvalitetsdifferensiering av hel fisk</td>
<td>• Redusert behov for plastker</td>
</tr>
<tr>
<td></td>
<td>• Grading- og sorteringsteknologi</td>
<td>• Automatisert lagerstyring</td>
<td>• Enklere renhold og bedre hygien</td>
</tr>
<tr>
<td></td>
<td>• Kjølemetoder som feks. slurry is</td>
<td></td>
<td>• Bedre sortering og logistikk videre i produksjonslinjen</td>
</tr>
<tr>
<td>Filetering og skinning</td>
<td>• Mekanisk fileringsmaskin med manuell immating tilpasset bestemte størrelser/art</td>
<td>• Automatisk innmatning.</td>
<td>• Redusert bemanning</td>
</tr>
<tr>
<td></td>
<td>• Mekanisk skinning</td>
<td>• Automatisk og adaptiv innjustering av filetningen for hver enkelt fisk, uavhengig av størrelse og art.</td>
<td>• Mindre flaskehålser og raskere produksjon</td>
</tr>
<tr>
<td></td>
<td>• Kjølemetoder som feks superkyljing</td>
<td>• Kun 1 person til etterkontroll per linje.</td>
<td>• Muliggjøre produsjon uavhengig av størrelse og art.</td>
</tr>
<tr>
<td>Kutting/renskjering/trimming</td>
<td>• Mekanisk nakkukutter med manuell immating</td>
<td>• Adaptiv justering av nakkukutt for hver enkelt fisk, uavhengig av størrelse og art, automatisk immating.</td>
<td>• Muliggjøre kontinuerlig automatisk linje uten menneskelig intervansjon.</td>
</tr>
<tr>
<td></td>
<td>• Fjerning av bein v/vannjet (utført til Valia og Marei, nylig tilgjengelig)</td>
<td>• Automatisk enkeltvis fjerning av pinnebenne.</td>
<td>• Økt utbytte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adaptive trimming automatisk med 3D maskinsyn og roboter.</td>
<td>• Økt utbytte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automatisk kvalitetskontroll</td>
<td>• Større andel råstoff til høykvalitetsprodukt</td>
</tr>
<tr>
<td>Pakking</td>
<td>• Flowlinje med manuelle pakkestasjoner</td>
<td>• Automatiske laggingsløsninger</td>
<td>• Redusert bemanning</td>
</tr>
<tr>
<td></td>
<td>• Delvis automatiske pakkelinjer f.eks. for standardiserte filerstykker</td>
<td>• Automatisk kvalitetskontroll / inspeksjon før pakking</td>
<td>• Mindre flaskehålser og raskere produksjon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Muliggjøre kontinuerlig automatisk linje uten menneskelig intervansjon.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Dokumentert mottatt og levert kvalitet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Redusert manuell håndtering reduserer risikoen for kontaminering av patogene bakterier.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Bevaring av kvaliteten gjennom hele produksjonsprosessen bidrar til bedre sluttkvalitet.</td>
</tr>
<tr>
<td>Renhold</td>
<td>• Vaskemaskiner for kar og bakker</td>
<td>• Helaautomatiske vestesstasjoner</td>
<td>• Redusert bemanning</td>
</tr>
<tr>
<td></td>
<td>• Manuelt renhold splying</td>
<td>• Vaskeroboter for produksjonslokaler</td>
<td>• Enklere/raskere renhold og bedre hygien</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hygienisk design av alle maskiner, logistikk løsninger og produksjonslokaler.</td>
<td>• Økt utbytte av produksjonsutstyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Fjerning av tunge manuelle arbeidsoperasjoner (gjelder hele prosesslinje).</td>
</tr>
<tr>
<td>Prosesslinje</td>
<td>Tilgjengelig teknologi</td>
<td>FouU-behov – ny teknologi</td>
<td>Gevinst med ny teknologi</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Mottak/grading</td>
<td>• Mekaniske gradere med noe manuell etterkontroll.</td>
<td>• Helaautomatisk grading ved bruk av 3D maskinsyn og automasjon.</td>
<td>• Mer nøyaktig grading, og dermed mindre give-away.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Adapativ grading i forhold til mer optimal filetering eller (robotisert) pakking i etterkant.</td>
</tr>
<tr>
<td>Pakking – hel fisk</td>
<td>• Manuelt</td>
<td>• Helaautomatisk robotisert pakking (4 roboter per linje), med kun få (1-2 per linje) personer for korriger og kontroll i etterkant.</td>
<td>• Innsparing på inntil 10-20 personer på en typisk pakkeline.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ingen menneskelig berøring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mindre give-away, adaptiv produksjon av bestemte pakningsstørrelser.</td>
</tr>
<tr>
<td>Filetering sild</td>
<td>• Mekanisk filetering med maskinsyn i forkant for å detektere utkast og returfisk.</td>
<td>• Adaptiv filetering basert på størrelse og formen til fisken, samt basert på kundens krav.</td>
<td>• Bedre utbyte på fillet, samt dynamisk og adaptiv tilpasning etter kundens behov.</td>
</tr>
<tr>
<td>Pakking – filet</td>
<td>• Manuelt</td>
<td>• Robotisert pakking med kun 3-2 personer for korriger og etterkontroll.</td>
<td>• Redusert bemanning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mulighet for nye og mer tilpassede produkter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mindre give-away.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ingen menneskelig berøring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Redusert manuell håndtering reduserer risikoen for kontaminering av patogene bakterier.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Bevaring av kvaliteten gjennom hele produksjonsprosessen bidrar til bedre sluttkvalitet.</td>
</tr>
<tr>
<td>Renhold</td>
<td>• Manuelt renhold spylting</td>
<td>• Vaskeroboter for produksjonslokaler</td>
<td>• Redusert bemanning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hygienisk design av alle maskiner, logistikk/kløpsninger og produksjonslokal.</td>
<td>• Enklere/raskere renhold og bedre hygiene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Økt utnyttelse av produksjonsutstyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Fjerning av tung manuelle arbeidsoperasjoner (gjelder hele prosesslinje).</td>
</tr>
</tbody>
</table>
Tabell 6. Overordnet prosesslinje for filetproduksjon av laks, som viser tilgjengelig teknologi, behovet for ny teknologi og hva gevinsten er ved innføring av ny teknologi.

<table>
<thead>
<tr>
<th>Prosesslinje</th>
<th>Tilgjengelig teknologi</th>
<th>FIO-behov – ny teknologi</th>
<th>Gevinst med ny teknologi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimming</td>
<td>▪ Trimmemaskiner som tar buklist, ryggfett, bukhinne og halekutt. Krever manuell ettertrimm med 4-5 personer per linje per skift.</td>
<td>▪ Fullautomatisk trinn med maks 1 person til etterkontroll og ettertrimm per linje.</td>
<td>▪ Innsparing 3-4 personer per linje per skift. ▪ Økt utbytte</td>
</tr>
<tr>
<td>Pinnebein/skinning</td>
<td>▪ Manuell pinnebeinfjerning (pre-rigor) og automatisk pinnebeinfjerning (post-rigor)</td>
<td>▪ Automatisk fjerning av pre-rigor pinnebein enkeltvis. ▪ Automatisk kvalitetskontroll</td>
<td>▪ Redusert bemanning ▪ Større andel råstoff til høydelskvalitetsprodukt ▪ Økt utbytte</td>
</tr>
<tr>
<td>Porsjonering/Pakkling</td>
<td>▪ Automatisk porsjonering, men delvis manuell pakking</td>
<td>▪ Robotisert pakking, helautomatisk med 1 person til etterkontroll og justering.</td>
<td>▪ Redusert bemanning ▪ Fjerner menneskelig berøring. ▪ Dokumentert mottatt og bevilget kvalitet ▪ Redusert manuell håndtering reduserer risikoen for kontaminering av patogene bakterier. ▪ Bevaring av kvaliteten gjennom hele produksjonsprosessen bidrar til bedre sluttkvalitet</td>
</tr>
<tr>
<td>Renhold</td>
<td>▪ Vaskemaskiner for kar og bakker ▪ Manuelt renhold spylting</td>
<td>▪ Helaautomatiske vaskestasjoner ▪ Vaskeroboter for produksjonslokaler ▪ Hygienisk design av alle maskiner, logistikkoplosninger og produksjonslokale.</td>
<td>▪ Redusert bemanning ▪ Enklere/raskere renhold og bedre hygiene ▪ Økt utnyttelse av produksjonsutstyr ▪ Fjerning av tunge manuelle arbeidsoperasjoner (gjelder hele prosesslinja)</td>
</tr>
</tbody>
</table>

På overordnet nivå er det ingen forskningsmessige eller teknologiske hindre for å automatisere norsk sjømatindustri slik situasjonen er i dag. Ved en fremtidsrettet teknologiutvikling og kunnskapsbygging innen norsk utstyrseleverandørindustri vil man forvente positive ringvirkninger utenfor sjømatindustrien hvor samfunnet blir mer teknologisk avansert, og tilrettelegger for økonomisk utvikling i et bioøkonomisk perspektiv. Akkurat som oljeindustrien har fått norsk ingeniørkunst og akademisk ekspertise til å blomstre, er en mulig positiv effekt at Norge blir unikt i verden som er bærekraftig teknologiavanserende samfunnsutvikling.

"Det er også ønskelig at norske miljøer kan bli globalt ledende innen teknologi og automatisering med fokus på lønnsom fordeling og økt råstoffutbytte i kombinasjon med reduksjon av svinn som en følge av fokus på lønnsom og bærekraftig sjømatindustri med videreføring av sjømat i Norge.

Fremtidig teknologisk utvikling i et langtidsperspektiv mot fullstendig automatiske og adaptive enhetsoperasjoner innebærer at hver enkelt enhetsoperasjon, for eksempel filetering med en fileteringsmaskin, tilpasser seg automatisk og adaptivt til størrelsen, arten og anatomien til hver enkelt fisk, samt til ønsket produkt som er output fra operasjonen. I praksis ønsker man at enhetsoperasjonene skal gi optimalt resultat hver gang. Dette krever ny teknologi i form av 3D maskinsyn med avansert
belysningsteknologi og annen sensorteknologi for å identifisere kvalitetsvariasjoner, størrelse, art og anatomi til hver enkelt fisk som går inn i enheten som utfører operasjonen. Det kreves også ny teknologi for å gjøre selve håndteringen adaptivt, på bakgrunn av informasjon om hver enkelt fisk. Her er adaptiv regulering og robotikk sentrale utfordringer.

Lignende grad av automasjon er i dag å finne i noen vareproduserende industrier. Treindustrien, metallurgi og plast har løst førstestadiet i produksjonen og har oppnådd full individuell forståelse av råmaterialet. Merk at trevareindustrien først har blitt svært effektive i senere tid i forhold til 3D deteksjon av kvister ved hjelp av lavenergirøntgenteknologi, som muliggjør optimal kuttning av tømmerstokker m.m. Vareproduserende industri har nå blitt svært automatisert der hvor montasje-oppgavene er enklere, og andre mer kompliserte 3D montasje oppgaver begynner å bli robotisert, slik som for eksempel montasje av kontorstoler ved bruk av roboter (eks. Håg). Synergi med den teknologiske utviklingen innen vareproduserende industri gjør at "de teknologiske legoklossene" stort sett er tilgjengelig, men det krever fortsatt fokus på teknologiutvikling som er spesielt tilpasset fiskeforedling. For å enhetsoperasjonene (maskiner og roboter) skal kunne måle relevante parameterer til råstoffet – i praksis hver enkelt fisk – må det utvikles nye algoritmer, 3D maskinsyn og sensorer til slik at maskinen får det like lett som i vareproduserende industri – hvor råstoffet er standardisert. Selvlærende foredlingsfabrikker som dynamisk tilpasser produksjonen i forhold til råvaretilgang og markedsbehov er nødvendig for å kunne øke markedstilpasningen og lønnsomheten i fiskeforedling industrien.

Fremtidens foredlingsfabrikk må dekke tre ulike forhold:

1. Tilfredsstille kundebehov.
2. Maksimere lønnsomhet.
3. Maksimere totalutnyttelse av råstoffet i et bærekraftig perspektiv.

B.2.3 FoU-innsats mot leverandørindustrien til marin industri

Med leverandørindustri menes leverandører av de innsatsfaktorer i form av varer og tjenester (teknologi, maskiner, redskap osv) som må til for enten å høste eller produsere marine produkter. Leverandørindustrien er en viktig del av sjømatnæringen i Norge og omsetningsverdien innenfor leverandørindustrien var på 23 mrd NOK i 2010 i et verdianslag gjort av Olafsen et al. (2012), se Figur 26.

I følge Olafsen et al. (2012) er de viktigste premisser for å ha en sterk leverandørindustri i Norge i 2050 knyttet til:

- Økt aktivitet og produksjon i selve kjernevirksomheten (fiskeri, havbruk m.m.)
- Økt etterspørsel etter norsk teknologi og kompetanse fra oppdrettsvirksomhet i andre deler av verden
- At det skjer en viss strukturering i leverandørleddet
- At aktørene samarbeider på nye måter og i større grad leverer helhetlige løsninger

Sjømatnæringen i Norge vokser og den økende aktiviteten vil kunne gi grunnlag for vekst og ringvirkninger for marin leverandørindustri som vist ovenfor.

"FoU i leverandørindustrien for offshoresektoren har spilt en avgjørende rolle i utviklingen av den norske olje- og gassnæringen. Det samme gjelder for maritime utstyrslverandører til rederi, verft, deres rolle i utviklingen av Norge som sjøfartsnasjon og den norske maritime næring som et global kompetansesenter. Leverandører til marin sektor (sjømatnæringen) må imidlertid forholde seg til en langt mer fragmentert og mindre teknologitung næring med svakere tradisjon for å innitere, prøve ut og ta i bruk FoU-resultater."

En innovasjon i fiskeindustrien kan defineres som en ny prosess/teknologi og/eller et nytt produkt. Sjømatprodukter, så vel som andre konsumentprodukter, får stadig kortere livssyklus. Dette stiller økende krav til teknologiens fleksibilitet. Teknologileverandørene spiller en sentral rolle i forhold til utviklingen av
fiskeindustrien, og samspill mellom teknologileverandører er helt avgjørende for utvikling av nye produkter og innovasjon (se Figur 25). Det ligger imidlertid store utfordringer i å fremskaffe risikovillig kapital til ferdigutvikling av teknologi og ideer som ennå ikke har bevist sin kapabilitet. Viktige trender i europeisk matvareindustri (Østvik et al. 2010) som også norsk fiskeindustri må forholde seg til er; a) matvaretrygghet, b) fleksibilitet i forhold til produksjon og marked og c) konkurransekraftig og effektiv produksjon.

Kunnskap er grunnlaget for innovasjon og fiskeindustriens behov for å redusere kostnader er driveren for utvikling av ny teknologi og nye tjenester. Som vist i Del C er råstoffkostnaden den desidert viktigste kostnadsbæreren for norsk fiskeindustri, derfor får teknologiutvikling mht. å forbedre utbytte høyeste prioritet. Maskiner og teknologi for fremtidens produksjonslinjer må også ivareta fleksibilitet både i forhold til varierende råstoff (størrelse, art og kvalitet), ønsket produkt og volum (ref. differensiert styring i kapittel B.1.2) og produksjonsmetode, sammen med en effektivitet som sikrer konkurransekraftighet og lønnsomhet i et globalisert marked.

I følge Aslesen et al. (2002) "Studie av innovasjonssystemer for marine innsatsvarer STEP rapport" er markedet for ny teknologi og innovasjoner i norsk marin industri ikke i stand til å finansiere utviklingen av denne (nødvendige) teknologien. Dette teknologiutviklingsproblemet kan løses med offentlig innsats i forskning og teknologiutvikling. Slik innsats bør gis i flere faser av innovasjonsprosessen;

1. tidlig i utviklingen av en ny ide,
2. gjennom utviklingsfasen,
3. for å få testet ut teknologien, og
4. få sertifisert denne hos potensielle kunder

"I dag er det teknologileverandørleddet som i hovedsak alene må bære omkostningene ved teknologiutvikling. For å sikre utvikling og lønnsomhet i norsk fiskeindustri anbefales det derfor at marin utstyrindustri får eget program for utvikling av pilot- og demonstrasjonsteknologi eller subsidierat bedre tilgang til eksisterende programmer for finansiering av bygging og uttesting av prototyp teknologi hos potensielle kunder i norsk fiskeindustri."
B.2.4 Nødvendige fokusområder i fremtidens forskning og utvikling

I dette kapitlet vil vi gå gjennom de nødvendige fokusområder i fremtidens forskning og utvikling, og forklare og begrunne disse fokusområdene ut fra den store sammenhengen som norsk sjømatindustri befinner seg i og ut fra situasjonen globalt innenfor teknologiutvikling og industri med synergier til norsk sjømatindustri. Med dette forsøker vi å danne et helhetlig bilde av hva det skal forskes på og utvikles, og hvorfor. Sammenhengen mellom sjømatindustrien, andre bransjer og aktiviteter som gjøres i forsknings- og utviklingsmiljø (FoU), enten i FoU-sektoren (universitet, høyskoler og institutt) eller hos tilsvarende miljø innad i bedrifter – eksempelvis utstyrsleverandører – i sjømatindustrien er vist i Figur 27. Hverken fiskeforedling industri eller FoU-miljø eksisterer i isolasjon, og det er viktig å se på synergiene og overføringsmekanismer mellom disse. Vi går nærmere inn på dette i det følgende avsnittet, og leseren anbefales å referere til figuren for å få en visuell oversikt over hvor informasjonen hører hjemme.

Figur 27. Sammenhengen mellom sjømatindustrien, andre bransjer og aktiviteter som gjøres i forsknings- og utviklingsmiljø (FoU), enten i FoU-sektoren (universitet, høyskoler og institutt) eller hos tilsvarende miljø innad i bedrifter – eksempelvis utstyrsleverandører – er skissert (illusjon: SINTEF Fiskeri og havbruk).

Forskning og utvikling rettet mot sjømatindustrien både på land og om bord har noen utfordringer som er unike. Innenfor automatisk foredling er den relevante forskningen i hovedsak fokusert på teknologiutvikling og grunnforskning innenfor utvalgte områder – hvor forskningsresultatene er bestemte teknologier eller teknologiske metoder. I sjømatindustrien er utfordringene ikke bare de teknologiske aspektene av forskningen, men hvordan man identifiserer detaljerte forskningsbehov og faktisk får anvendt forskningen og teknologien.
Oppsummert ser vi at man må:

1. **Identifisere forsknings- og teknologibehov** i foredlingsleddet i norsk sjømatindustri og detaljere dette i nasjonal skala.
2. **Utvikle teknologier** for automatisk foredling av fisk, både på land og om bord.
3. **Kanalisere de utviklede teknologier** inn i innovasjoner og kommersiell utnyttelse, gjennom innovasjonsprosjekter og produktutvikling hos utstyrslverandører og foredlingsbedrifter.
4. **Formidle forskningen** slik at den kan påvirke andre industrier – utover sjømatindustrien.

Merk at **punkt 1** er delvis ivaretatt ved gjennomføring av denne rapporten. Likevel ser vi at både tilgjengelig teknologi og teknologibehov endrer seg dynamisk og må kontinuerlig oppdateres og detaljeres i større grad. Dette er fundamentet for å vite "hvor skoen trykker" i sjømatindustrien og dets skjæringsflate med forskningsverdenen, og for å vite hvilke teknologier som trenges til enhver tid. Årsaken til at dette må gjøres på nasjonal skala er at Norge er for lite til at man kan sitte på hver sin tue og finne opp det samme hjulet. Ved å identifisere fellestrekk eller fellesutfordringer som eksisterer på nasjonal skala – flere steder i landet – vil man kunne sette mer FoU-midler og energi til for å løse disse utfordringene - sammen.

Innenfor foredling vil en automatisering medføre behov for utvikling av teknologier – noe som er motivasjonen for **punkt 2. Ettersom teknologibehov på land og om bord har likheter, er det naturlig å fokusere på generell teknologi for automatisk foredling, som kan anvendes begge steder.** Foredling om bord har større krav til kostnadseffektivitet, arealbruk og har vanskelige operasjonsforhold på grunn av stor bevegelse, spesielt under stor sjøgang, og det vil derfor variere hvorvidt en teknologi som er moden for bruk på land også kan brukes om bord. På den annen side må teknologi beregnet for ombordforedling bli presset til å være kompakte, robuste og effektive. Utviklingen av teknologi med slike rammebetingelser kan muliggjøre svært areal effektive og fleksible foredlingsanlegg også på land. I forskningsøyemed er det derfor naturlig å se disse i sammenheng, slik at man kan utnytte synergier mellom landbasert foredling og ombordforedling.

Kanalisering av de utviklede teknologier, som er **punkt 3,** er noe av det mest utfordrende ettersom det krever en tetter kobling mellom forskningsverdenen og sjømatindustrien - hvor sjømatindustrien kan være representert av utstyrleverandører (som skal integrere ny teknologi i nytt utstyr) og foredlingsbedrifter som skal bruke det nye utstyret i sine fabrikker. Spesielt i forhold til rammeverk er det nødvendig at utstyrleverandøren får økonomiske støtte i større grad enn i dag til å eksperimentere og jobbe med å integrere ny teknologi og nye forskningsresultater i sitt utstyr.

Formidling av forskningen til andre industrier, som satt opp i **punkt 4,** er helt essensielt fordi Norge og sjømatindustrien ikke lever i isolasjon. Noen teknologier utviklet i forskningsprosjekter rettet mot norsk sjømatindustri vil kunne være enten for umoden, dyrk eller komplisert til at det kan brukes direkte. Gode ideer forsvinner aldri, og en formidling av resultatene vil kunne stimulere andre og større industrier til å ta ballen videre og gjøre teknologien mer moden, mer rimelig og mer praktisk anvendbar. Ettersom det er store likheter mellom fordelingsoppgaver i fiskeindustrien og det som finnes i matindustri og avansert robotikk, vil man ved formidling av forskningen kunne utnytte disse synergiene på tvers av industrier, bransjer og forskningsområder.
B.2.4.1 Teknologiske fokusområder

Innenfor automatisk foredling er den relevante forskningen i hovedsak fokuset på teknologiutvikling og grunnforskning innenfor utvalgte områder – hvor forskningsresultatene er bestemte teknologier eller teknologiske metoder. Disse teknologiene for automatisk foredeling – uavhengig av spesifikk anvendelse – kan deles inn i fem fokusområder (FO1-FO5):

1. FO1: Foredelingsintelligens.
2. FO2: Foredelingsrobotikk.
3. FO3: Fleksibel foredling.
4. FO4: Hygienisk design av foredelingsutstyr og foredelingsfabrikker.
5. FO5: Produksjonslogistikk

En beskrivelse av disse teknologiene følger nedenfor:

FO1: Foredelingsintelligens inkluderer ulike typer kunstig intelligens, sensorsystemer og maskinsyn for å muliggjøre gradering, sortering og andre avgjørelser, som trenges innen automatisk foredeling, på en intelligent måte – på lik linje med en erfaren menneskelig foredelingsarbeider. Foredelingsintelligens kan brukes enten alene til overvåkning og prosessforståelse (se, men ikke røre), eller sammen med foredelingsrobotikk for fysisk håndtering eller bearbeiding fisken.

FO3: Fleksibelt foredling inkluderer styringssystemer som muliggjør automatisk optimalisering og fleksibel tilpasning av foredelingsutstyr og fabrikkkonfigurasjoner, slik at råvareflyt og logistikk tilpasses råvaretilgangen og markedsbehov på en dynamisk måte. Dette er analogt til hvordan menneskelige operatører finnerstiller foredelingsutstyr og hvordan skiftedeleder fordeler foredelingsarbeiderne til de ulike enhetsoperasjonene dynamisk i forhold til hvordan situasjonen er i øyeblikket og planlagt.

FO4: Hygienisk design av foredelingsutstyr og foredelingsfabrikker inkluderer både utforming av foredelingsutstyr slik at det ikke blir skittent, overflatebehandlinger som minimerer kontaminasjon, utforming av fabrikker slik at foredelte vare holdes ukontaminert, og design av vaskesystemer som effektivt vasker hele fabrikken og hvert enkelt foredelingsutstyr. Å minimere det foredelte produktets kontakt med menneskelige smittebærere er et viktig aspekt av hygienisk design av fabrikker.

FO5: Produksjonslogistikk omhandler planlegging og styring av den integrerte flyten av varer og informasjon mellom aktører i en verdikjede. Hovedmålet er å balansere tilbud med etterspørsel slik at man produserer og leverer nøyaktig de produktene kundene etterspør på en mest mulig kostnads- og resurseffektiv måte. Matvarer krever i tillegg en rask verdikjede med minimal lagring og håndtering for å bevare produktets kvalitet.
B.2.4.2 State-of-the-art innen hvert teknologiske fokusområde

En revolusjon av norsk foredlingsindustri krever teknologi som muliggjør fremtidens foredlingsfabrikker. Fremtidens foredlingsfabrikker vil kunne være tilnærmet helt automatiserte, med optimalt utbytte og med en fleksibilitet som gjør at det kontinuerlig tilpasser seg råvaretilstand/tilgang og markedsbehov. Den ideelle måten å komme dit på er en helhetlig og industribred innovasjonsprosess i nasjonal skala. Dersom vi ser for oss forskning og teknologiutvikling i de fire nevnte fokusområdene, kan vi se hvor vi står i dag (state-of-the-art) og hvor det er mulig å komme ved økt fokus. Tabell 7 viser en oversikt over state of the art til de ulike fokusområder (FO1-FO5).

Tabell 7. Fokusområder (FOer), state-of-the-art relevant til hvert FO og mulig progresjon forbi state-of-the-art ved prioritering av forskning og teknologiutvikling innenfor disse fokusområdene.

<table>
<thead>
<tr>
<th>Fokusområde</th>
<th>State-of-the-art</th>
<th>Progresjon forbi state-of-the-art ved prioritering av FOer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Betydelig utviklingstid og spesialisering av teknologier for hver anvendelse/produkt/art.</td>
<td>Teknologier som muliggjør enkel og rask utvikling av løsninger til nye anvendelser/produkter/art.</td>
</tr>
<tr>
<td></td>
<td>Betydelig utviklingstid for hver applikasjon.</td>
<td>Kortere utviklingstid for nye løsninger, muliggjort av generell kapabilitet i robotverktøy, robotssensorm og robotstyringsmetodikk.</td>
</tr>
<tr>
<td></td>
<td>Foreningsutstyr og foreningsfabrikker blir betydelig redusert produktivitet når råvaretilgangen eller markedsbehov endrer seg uten for et lite og begrenset parameterområde.</td>
<td>Muliggjøre foreningsutstyr og foreningsfabrikker som tilpasser seg fremtidige variasjoner i råvaretilgang og markedsbehov.</td>
</tr>
<tr>
<td>FO4: Hygienisk design</td>
<td>Foreningsutstytre krev vanligvis mye manuelt arbeid for å å vaskre rent.</td>
<td>Hygieniske foreningsløsninger for utstyr, verktøy og fabrikker, inkludert selvrørsende hygieniske overlater och designløsninger som minimerer kontaminering.</td>
</tr>
<tr>
<td></td>
<td>Produkts levelid, mattrigghet og kvalitet er suboptimal.</td>
<td>Muliggjøre trygge sjømatprodukter med høyere kvalitet og lengre levetid, og dermed øker matvaretrygghet og matsikkerhet.</td>
</tr>
<tr>
<td></td>
<td>Renhold er hovedskkelig manuelt arbeid som krever mye arbeidsinnsats, både for enkeltstyr og fabrikker som helhet.</td>
<td>Automatisk, robotiserat och kontrollerat renhold av hele foreningsfabrikken.</td>
</tr>
<tr>
<td>FO5: Produksjonslogistik</td>
<td>Fokus på kostnadseffektivitet på bekostning av fleksibilitet og markedsstilpasning, men økende interesse for markedsorienterte planleggsprinsipper.</td>
<td>Dynamisk og integrert styring og koordinering av fangst, foredling, pakking, salg og distribusjon - i sanntid.</td>
</tr>
<tr>
<td></td>
<td>Håndtering av usikkerhet i råstofftilgang: få alternativer, liten kunnskap og begrenset IKT-støtte.</td>
<td>Fleksibel og markedsstilpasset foredling og pakking av et bredt variantespæker.</td>
</tr>
<tr>
<td></td>
<td>Begrenset informasjonsdeling, spesielt mellom aktører i den fiskeribaserede verdikjeden.</td>
<td>Produksjonstingsprinsipper og IKT-systemer som kan håndtere usikkerheit i råstofftilgang.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informasjonsdeling i sanntid som muliggjør dynamisk balansering av tilbud og etterspørsel.</td>
</tr>
</tbody>
</table>
FO1 Foredlingsintelligens: 3D maskinsyn begynner å bli mer utbredt i foreedlingsutstyr og i forskningsarbeid som retter seg mot en høyere grad av automatisering i fiskeindustrien (Mathiassen et al., 2011; Mathiassen et al., 2012). Røntgenavbildning har også sett en utviklende trend innen fiskeindustrien, hvor det nå finnes røntgensensorer som muliggjør følsom og noyaktig lavenergi-røntgenavbildning i industriell fiskeforedling (Rheinländer et al., 2003) som blant annet er nylig anvendt på deteksjon av pinnebein i hvitfiskfilet og porsjoner av beinfrie filtporsjoner (Valka X-ray Guided Cutting Machine, Valka ehf, Island). I tillegg er det gjennomført et prosjekt i regi av FHF8 om deteksjon av pinnebein i pre-rigor laksefilet ved bruk av lavenergirøntgen.

Optisk spektroskopi er også en teknikk som med hell har blitt anvendt på å måle ulike kvalitetsparametere på fiskeprodukter i industrielle foredlingsprosesser (Isaksson et al., 2001; Wold et al., 2010, se Figur 28), primært i fillet og ellers direkte i fiskemuskel (Segtman et al., 2009; Heia et al., 2009). Med romlig-skiftet Raman spektroskopi (Afseth et al., 2014) er det også mulig å måle gjennom skinn, og dette er vist å fungere på laks. Teknologi for 3D-avbildning og gjenkjenning av 3D-objekter har utviklet seg betydelig de senere årene (Thielemann et al., 2009; Skotheim et al., 2012, selv om anvendelse av denne teknologien har blitt mer utbredt i vareproduserende industri og FoU-anvendelser enn direkte i fiskeforedlingsindustrien. Mange anvendelser innen fiskeforedling, f.eks. på håndtering eller bearbeiding av fisk, krever en automatisk klassifisering eller måling av fiskens parametere for bruk i et styringssystem. Styringssystemet velger på grunnlag av dette om eller hvordan en sorteringsmekanisme, bearbeidingsverktøy eller lignende skal styres (Mathiassen et al., 2011).

En hoved begrensing i state-of-the-art per i dag er at hver nye anvendelse/applikasjon krever et betydelig utviklingsarbeid for å tilpasse eller utvikle nye løsninger – både med hensyn til utstyrskomponenter og programvare/algoritmer. Ytterligere en begrensning i dagens state-of-the-art er det manglende, evne i mange tilfeller, til å gjøre jobben like godt eller bedre enn en erfaren menneskelig foredlingsarbeider.

Figur 28. 3D og scatter for automatisk singulering, orientering og kvalitets-sortering av hel laks (Illustrasjon: SINTEF Fiskeri og havbruk).
FO2 Foredlingsrobotikk: Robotikk og automasjon har blitt benyttet i mange anvendelser i sjømatindustrien, og noen spesifikke verktøy har blitt utviklet for bruk i robotisert fiskeforedling (Buljo et al., 2013). Robotisert håndtering av ettergivende, fleksible eller deformerbare objekter er et viktig forskningsområde innen matvareindustri, kirurgi og tekstilindustri. Modellering av kontaktflaten mellom et robotverktøy og objekt som bearbeides har blitt gjort av flere forskere; se f.eks. Siciliano (2008). De Silva (1995) utviklet en metode for on-line måling av den mekaniske impedansen ved grenseflaten mellom verktøy og objekt, mens Navarro-Alarcon (2013) utnytter maskinsyn til å gjøre visuelle målinger som brukes for å estimere objektets deformasjon i real-time. Fiskeforedling med roboter er utfordrende, og resulterer ofte i robotsensorsignaler som medfører behov for raske endringer i robotens bevegelsesbane (Kröger, 2010), hvis man ønsker tilpasningsdyktige roboter og robotverktøy. Til tross for bruk av robotverktøy i fiskeforedling, inkludert det som er brukt i forelingsutstyret til Marel, Baader og andre, er det fortsatt et gap mellom modenhetsgrad av det som implementeres i fiskeforedling industri sammenlignet med kjøttindustrien. Kjøttindustrien, spesielt i Danmark – en av de største svineksportørene i verden – har sett en høy grad av robotisering med tilsvarende utvikling i robotverktøy (Madsen et al., 2006; Hinrichsen, 2010; Guire et al., 2010).

FO3 Fleksibel foredling: Sammenlignet med et team med samarbeidende menneskelige forelingsarbeidere, er dagens fiskeforedlingfabrikker dominert av relativt uavhengige enhetsoperasjoner og ufleksibelt forelingsutstyr. Tilsvarende er det i dagens situasjon er det ofte minimal kommunikasjon mellom forelingsutstyr for hver enhetsoperasjon, og menneskelige forelingsarbeidere må ofte gjøre manuell innmating til utstyret og korrigere resultatet ved utmating før innmating til neste enhetsoperasjon. Selv om det foreløpig ikke er anvendt til fiskeforedling, kan man muligens oppnå samarbeidsevne mellom fiskeforedling utstyr ved bruk av såkalte multi-agent kontrollsystemer som har vist seg å fungere utmerket i andre industrier (Roulet-Dubonnet et al., 2009; Gellein and Nyen, 2010; Lind et al., 2009; Wadhwa and Lien, 2011).

FO5 Produksjonslogistikk: Matprodusenter håndterer en heterogen gruppe produkter, med ulik grad av forgjengelighet og usikkerhet i etterspørsel. Produktene leveres til标记er med stadig større krav til kvalitet, stor variantbredde, korte leveringstider og høy servicegrad. Foredingsleddet for sjømat og andre deler av matindustrien står imidlertid i en særstilling ved at de også må forholde seg til usikkerhet i råvaretilgang (Chaudhuri, Dukovska-Popovska, Damgaard, & Hvolby, 2014; Ottesen & Grønhaug, 2003). Dette betyr at man ofte må produsere i henhold til kvalitet og mengde råstoff man mottar framfor de variaser og volumn som markedet etterspør. Svingninger i råvaretilførsel fører også til dårlig kapasitetsutnyttelse. I annen industri bruker man gjerne lager for å bufe mot usikkerhet i både etterspørsel og råvaretilgang (van der Vorst, Beulens, & van Beek, 2005). Denne strategien er imidlertid begrenset for mat ettersom kvaliteten på både råvarer, halvfabrikata og ferdigvarer reduseres ved lagring. Til tross for dette, er produksjon til lager i store volumn den mest vanlige strategien fordi den gjør det mulig å holde enhetskostnadsene lavre (van Donk, Akkerman, & van der Vaart, 2008; Verdouw & Wolfert, 2010). Prosesser, teknologi og utstyr er dermed tilpasset store produksjonsvolum og få produktvarianter – noe som igjen reduserer produksjonsapparatets fleksibilitet til å reagere på signaler fra markedet (Romsdal, 2014). Mer markedsstipasjede strategier som produksjon på ordre har fått oppmerksomhet i matforedling i senere tid, gjerne i kombinasjon med produksjon til lager (Romsdal, 2014; Soman, 2005). Det gjenstår imidlertid å løse
en del utfordringer før en slik strategi kan implementeres i stor skala, både på taktisk og operativt nivå og knyttet til IKT-støtte og informasjonsdeling. Målet er å muliggjøre dynamisk og integrert styring på tvers av verdikjeden – hvor både fangst, foredling, pakking, salg og distribusjon er koordinert i sanntid.

B.2.4.3 Konkrete forskningstema innenfor hvert teknologiske fokusområde

Innenfor hvert fokusområde er det konkrete forskningstema som det må detaljfokus på for å realisere en tilnærmert helautomatisert foredlingsindustri med maksimalt utbytte. State-of-the-art har illustrert hvor skoen trykker, og hvordan man ønsker at progresjon forbi state-of-the-art skal se ut. I det følgende beskriver vi konkrete forskningstema som muliggjør denne progresjonen, dersom det fokuserer spesifikt på disse.

FO1 Foredlingsintelligens: Det må utvikles avbildnings- og sensorteknologier som egner seg tilnærmelt til alle typer enhetsoperasjoner innen håndtering og bearbeiding av fisk og fiskeprodukter – med fokus på metoder og systemer som muliggjør adaptiv fordelingsintelligens på nivå med en erfaren menneskelig foredlingsarbeider. Spesifikt må det forskes på:

FO1.1 Multimodale 3D maskinsynsystemer og programvare/algoritmer som måler i flere optiske modus og røntgen i samme 3D volum. Tema som inngår her er: 1) Fleksible maskinvarekonfigurasjoner som egner seg til avansert multimodal avbildning av fisk. 2) Semløs integrasjon mellom røntgenavbildning og 3D-maskinsyn, som muliggjør anatomisk deteksjon og lokalisering av bein uten behov for dyre CT-skanner. 3) Fleksible programvarekomponenter og algoritmemoduler som muliggjør praktisk anvendelse hos alle utstyrleverandører.

FO1.2 Intelligente sensorer, med fokus på optiske målemetoder som egner seg til prosessmålinger av viktige kvalitetsparametere i fisk.

FO1.3 Modell- og vision-basert 3D gjenkjenning av føylige objekter, med fokus på utvikling av algoritmer og programvaremoduler som er i stand til å gjenkjenne formen og anatomiske avvik og posisjoner i fisk og fiskeprodukter, uavhengig av hvordan de er deformert eller bøyd.

FO1.4 Robuste mulivariate klassifikatorer, med fokus på programvaremoduler for robust multivariate, multiklasse klassifikatorer som er i stand til å gi optimale klasifiseringsresultater under vanskelige operasjonsforhold (Provost & Fawcett, 2001) og på forhånd ukjente kost-nytte avveiningar – hvor klassifikatorene er designet for bruk på multimodale biledata, geometridata og spektrale data fra fisk og fiskeprodukter.

FO2 Foredlingsrobotikk: Det må utvikles teknologier for robotsystemer som kan anvendes til mange oppgaver innenfor håndtering og bearbeiding av fisk og fiskeprodukter – med fokus på følsomme multifunksjonelle robotverktøy, adaptive robotstyringsmetoder og kontrollprogramvare designert for deterministisk manipulering av skjøre og føylige objekter, slik som fisk og fiskeprodukter. Spesifikt må det forskes på:

FO2.1 Robotverktøy med flernytteverdi, for deterministisk håndtering og bearbeiding, med fokus på robotverktøy som nærmer seg den fleksibilitet og flernytteverdi som finnes i hånden – med eller uten kniv – til en erfaren foredlingsarbeider. Det er kjent at mangel på robotverktøy som fungerer på fleksible materialer er en av de to hindrene som gjør at roboter foreløpig ikke er allment brukt i deterministisk håndtering i anvendelser i dette domenen (euRobotics, 2014).

FO2.2 Ulineære observer-modeller for robotiseret håndtering og bearbeiding av føylige objekter, hvor fokus er på matematiske modeller som muliggjør deterministisk interaksjon mellom robotverktøy og et føylig obent. Det bør fokuseres på ulineære observer-modeller for føylige objekter – med fokus på modeller av fisk og fiskeprodukter som kan egne seg som modell for kontrollert og deterministisk håndtering og bearbeiding. Hensikten med dette er å bygge en nøyaktig matematisk modell av objektet som manipuleres av roboten, slik at man kan programmere en nøyaktig styringsalgoritme for robotverktøyet. Evnen til å modellere og matematisk forutsi
oppførselen til fleksible objekter under håndtering er den andre av de to teknologiske barrierene som må brytes for å kunne anvende robotikk deterministisk i dette domenen (euRobotics, 2014).

FO2.3 Adaptiv bevegelsesplanlegging og styring for robotisert håndtering og bearbeiding av føyelige objekter, med fokus på utvikling av kontrollteori og algoritmer for modell-baserte feedback reguleringsalgoritmer (f.eks. model-predictive control (MPC), passivitet-baserte metoder m.m.) som egner seg til fisk og fiskeprodukter.

FO2.4 Sensor-verktøy-robot integrasjon for adaptiv foredlingsrobotikk, med fokus på utvikling av programwaremoduler og konseptuelt rammeverk som muliggjør anvendelser med føyelige objekter og tilpasning til uforutsette hendelser.

FO3 Fleksibel bearbeiding: Det må utvikles styringsmetodikk og fleksibel design for automasjonsmoduler som muliggjør fleksibel foredling på enkeltprosessnivå (én enkelt enhetsoperasjon) likeså som på flerprosessnivå (en hel foredlingsfabrikk). Spesifikt må det forskes på:

FO3.1 Prosess-spesifikk produksjonsoptimalisering, med fokus på å utvikle metoder og metodikk for produksjonsoptimalisering av én enkelt håndterings- eller bearbeidingsprosess. Dette muliggjør en fremtidsrettet tilnærming til å designe foredlingsutstyr for enkeltprossesser.

FO3.2 Fleksible automasjonsmoduler, med fokus på å utvikle generelle design på automasjonsmoduler som gir helt eller tilnærmert optimal produksjon av flere prosesser med en enkelt modul. Dette er automasjonsmoduler som – lik en menneskelig foredlingsarbeider – kan bleggje en fisk eller trimme en filet, alt ettersom hvordan han er fordelt på et skift. Hensikten her er å komme nærmere den type fleksibilitet som finnes hos den menneskelige arbeider, for dermed å muliggjøre automatisk foredling som er adaptiv of fleksibel på fabrikknivå.

FO3.3 Multi-agent styringssystem for fiskeforedling, med fokus på metodikk som egner seg til styring på fabrikknivå. Her hensikten å utvikle autonomt styringssystem som kan fordele arbeid til de fleksible automasjonsmodulene som finnes på fabriken – på samme måte som skiftleder på en foredlingsfabrikk fordeler oppgaver til foredlingsarbeidere.

FO4 Hygienisk design av foredlingsutstyr og foredlingsfabrikker: Det må utvikles hygieniske løsninger og metodikk for design og konstruksjon av foredlingsutstyr og robotsystemer, på enkeltprosessnivå og på fabriknivå. Spesifikt må det forskes på:

FO4.1 Identifisering av hygieniske designkriterier, som muliggjør en standardisert måte å vurdere hvor vaskbart eller kontamineringssikkert et foredlingsutstyr er. Hensikten med dette er at dette gir grunnlaget for å designe rett og hygienisk.

FO4.2 Robuste selv-rensende og anti-mikrobielle overflater, med fokus på å identifisere, karakterisere og teste funksjonelle selv-rensende og antimikrobielle overflatematerialer- eller overflatebehandlinger som egner seg til bruk på foredlingsutstyr generelt, eller på kontamineringssatte steder som f.eks. robotverktøy eller krinkelkroker. Her anbefales det å se på nanostrukturer og mikrooverflatestruktur inspirert at biologiske løsninger som finnes i naturen – f.eks. i naturlig vannavstøtende eller antimikrobielle overflater i planter og insekter (Liu et. al., 2010; Gundersen et. al., 2014).

FO4.3 Praktisk anvendelse av funksjonelle overflater i hygienisk design, med fokus på utvikling av metodikk og designprinsipper for hvordan funksjonelle overflater skal integreres i foredlingsutstyr, renholdes og vedlikeholdes for å minimere kontaminering.

FO4.4 Automatisk og robotisert renhold av foredlingsutstyr og foredlingsfabrikker, med fokus på utvikling av systemer som kan gjøre en like god renhold hver gang, gjøre grundigere renhold med samme effektivitet som mennesker. Det bør også fokuseres på renholdssystemer som automatisk kan observere og lokalisere områder av foredlingsutstyr som krever ekstra renhold.
FO5 Produksjonslogistikk: Det må utvikles konsepter, rammeverk og metodikker for planlegging og styring som kombinerer høykostnadseffektiv foredling med prinsipper for markedstilpasset produksjon av flere produktvarianter i mindre volum. Spesifikt må det forskes på:

FO5.1 Differensiert produksjonsstyring, hvor ulike planleggingsprinsipper kombineres for å ta hensyn til både produktkarakteristika og behovene i markedet. Nye løsninger muliggjøres av mer fleksibelt produksjonsutstyr og økt automatisering, men samtidig må utfordringer knyttet til hvordan én produksjonsressurs kan styres med to ulike planleggingsprinsipper løses.

FO5.2 Håndtering av usikkerhet i råstofftilførsel, hvor det er behov for utvikling av konsepter og rammeverk for hvilke håndteringsmekanismer som er egnet for ulikearter, markeder, årstider, osv., med erfaringsoverføring fra andre sektorer. IKT-systemer som APS (Advanced Planning Systems) og ERP (Enterprise Resource Planning) må videreutvikles for å kunne håndtere denne typen usikkerhet.

FO5.3 Informasjonsdeling mellom verdikjedeaktører er kritisk for å muliggjøre planlegging og styring som balanserer både fangst/råstofftilgang, kapasitet i foredlingsleddet og behov i markedet. Forskning trengs for å 1) utvikle kompetanse og forståelse i næringa for viktigheten av å dele informasjon framover og bakover i verdikjeden, og 2) utvikle og teste konkrete løsninger for utveksling av informasjon i samtid.
B.3 Marint restråstoff

Restråstoff gir i dag betydelig verdiskaping i fiskeri- og havbruksnæringen, og mange bedrifter har økt fokus på (økt)restråstoffutnyttelse. Det meste av restråstoffet utnyttes i dag av norsk marin ingrediensindustri hvor det i hovedsak produseres ulike proteinprodukter og olje. Mesteparten anvendes som føringsnøtt og bare 9% av volumet går til konsum- og sjømatprodukter.

Lønnsom produksjon basert på marint restråstoff krever tilførsel av restråstoff av god kvalitet. I FHF forprosjektet (FHF#900949); "Råstoffbehandling og -kvalitet for marin ingrediensindustri" var målsettingen å avklare FoU-utfordringer og FoU-behov knyttet til råstoffbehandling og – kvalitet for marin ingrediensindustri. Forprosjektet har konkludert med at det er behov for å teste ut nye metoder og teknologiløsninger for råstoffbehandling og logistikk for både laks, pelagisk og hvitfisk for å ivareta råstoffkvaliteten slik at dette råstoffet i større grad kan benyttes til produksjon av produkter til humant konsum. I del 0 gis en oversikt over utnyttelsesgraden av restråstoff fordelt på sektor for 2013. Utnyttelsesgrad, sammen med teknologistatus og hvor potensialene ligger for økt verdiskapning fra restråstoff, er vist i Tabell 8 nedenfor.

Tabell 8. Utnyttelsesgrad, teknologistatus og hvor potensialene ligger for økt verdiskapning fra restråstoff.

<table>
<thead>
<tr>
<th>Sektorer</th>
<th>Hvitfisk</th>
<th>Pelagisk</th>
<th>Havbruk</th>
<th>Skalldyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ikke utnyttet (%)</td>
<td>77%</td>
<td>0%</td>
<td>11%</td>
<td>59%</td>
</tr>
<tr>
<td>Prosesserings: Båt= B, Land = L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Teknologistatus: G = gammel, N = nyere</td>
<td>G, + nisje</td>
<td>G</td>
<td>G, N</td>
<td>G</td>
</tr>
<tr>
<td>Hvor ligger potensialet?</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Økt utnyttelse</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Økt verdi av biprodukter (økt konsumandel)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Utvikling av ny- og implementering av eksisterende teknologi</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Hvis en tar hensyn til tilgjengelig volum og verdiskapingspotensial for norsk utnyttelse av restråstoff er det noen områder som skiller seg ut vist i Tabell 9.

<table>
<thead>
<tr>
<th>Sektor</th>
<th>Prosessted</th>
<th>Verdiskapingspotensial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hvitfisk</td>
<td>Om bord</td>
<td>Øke utnyttelsesgraden med fokus på humant marked, utvikling av prosessteknologi (kompakt) og sorteringsteknologi.</td>
</tr>
<tr>
<td></td>
<td>På land</td>
<td>Tilgang til sortert/fraksjonert restråstoff av høy kvalitet for produksjon av marine ingredienser.</td>
</tr>
<tr>
<td>Pelagisk</td>
<td>På land</td>
<td>Øke andelen til humant marked gjennom bedre tilgang til sortert/fraksjonert restråstoff av høy kvalitet . Utvikling av prosessteknologi og produktutvikling</td>
</tr>
<tr>
<td>Høvbruk</td>
<td>På land</td>
<td>Øke andelen til humant marked gjennom bedre tilgang til sortert/fraksjonert restråstoff av høy kvalitet . Utvikling av prosessteknologi og produktutvikling</td>
</tr>
</tbody>
</table>
B.4 Ombordproduksjon som strategi for filetproduksjon?

B.4.1 Innledning

De vedvarende lønnsomhetsproblemerne i filetindustrien kombinert med et høyt lønns- og kostnadsnivå, indikerer at Norge i stadig større grad har blitt en råvareeksportør, og at Norge taper posisjon i forhold til eksport av filet fra både Island og Russland. Fra 2011 til 2013 økte norsk ekspорт av ubearbeidea råstoff fra 33 000 tonn torsk til 87 000 tonn torsk. I samme periode økte den russiske eksporten av ombordprodusert tørskefilet fra 20 000 tonn filet til 36 700 tonn filet til det europeiske markedet. Tilsynelate ble det bare eksportert 13 000 tonn fryst filet av torsk fra Norge. Den sterke økningen av fryst tørskefilet refererer til at russiske rederier har kjøpt hhv. norske- og islandske fabrikktrålere for fiske på russiske kvoter i Barentshavet (FiskeribladetFiskaren, 5. mai- 2014).

Lønnsomhetsproblemer i filetindustrien og eksport av ubearbeidea råstoff ut av Norge, bidrar med dette til at Norge taper markedsandelene innen filetsegmentet og at potensielle arbeidsplasser innen filetproduksjon eksporteres til andre land. De nye varestrømmene medvirkar til at prosesseringen av råstoff fra Nord-Atlanteren lokaliseres til områder med betydelig lavere produksjonskostnader, før ferdige produktene eksporteres tilbake til europeiske markedere. For fiskeri-Norge fører dette til tap av alternative arbeidsplasser og globaliseringen fører til økt miljøbelastning som følge av økt transport/frakt av fisk.

På denne bakgrunn kan det være et spørsmål om ombordproduksjon kan vurderes som strategi for å øke sysselsettingen- og omfanget av filetproduksjon, og om det kan bidra til å kople sammen nye verdikjeder som består av en ny arbeidsdeling mellom sjø- og land i Norge. Mens ombordproduksjon i seg selv representerer autonomi og et alternativt til dagens tradisjonelle arbeidsdeling mellom sjø og land, kan det være et viktig spørsmål om filetprodukter fra ombordproduserende fartøyer, alternativt kan leveres til landindustrien i Norge for videre prosessering.

Denne problemstillingen refererer til at organiseringen av fiskerinæringen kan omtales som en gjennomregulert sektor, med betydelig innslag av samhandlingsproblemer mellom fangst- og foredlingsleddet. I denne delen av notatet skal vi ta utgangspunkt i institusjonell økonomi og fokusere på begrepet transaksjonskostnader i en gitt verdikjede. Vi beskriver noen faktorer som genererer slike kostnader og hvordan de kan reduseres. Ombordproduksjon kan dermed oppfattes som en hypotese om at produksjonsformen kan redusere transaksjonskostnadene mellom fangst- og foredlingsleddet, gi grunnlag for en mer kostnadseffektiv produksjon av filet og skape grunnlag for en ny arbeidsdeling mellom sjø og landbasert foredling.

Tilnærmingen tar utgangspunkt i at aktorene i fiskeribaserte verdikjeder representerer egne beslutningssystemer med iboende institusjonelle rammer og organisasjonsformer. Graden av autonomi og omfanget av transaksjonskostnader, har med dette en direkte korrespondanse til hvordan man organiserer økonomiske virksomheter. Også som fangst- og foredlingsleddet er gjensidig avhengig av hverandre, fordeler organisatoriske rasjonaliteten av faktorene fungerer mot hverandre på en mest mulig friksjonsfri eller kostnadseffektiv måte, som gir lavest mulig transaksjonskostnader. Eksempelvis kan sårbar teknologi, lav tekniske mobilitet, store sesongvariasjoner, stive organisatoriske strukturer, manglende kapasitetsutnyttelse og uforutsigbarhet hva gjelder prisdannelsen gjennom ulike ledd, være faktorer som genererer transaksjonskostnadene mellom ulike aktører i verdikjedene.

I norsk fiskerinæring har det til dels vært et sterk et motsetningsforhold mellom den landbaserte fiskeindustrien og den delen av fiskeflåten som produserer filet om bord. I debatten har hovedargumentet vært at den ombordproduserende fiskeflåten eksproprierer potensielle arbeidsplasser innen den landbaserte

Historisk sett har fabrikktrålsflåten vært en av de mest lønnsomme fartøygruppene i norsk fiskerindustri (Fiskeridirektoratets Lønnsomhetsundersøkelse, div. årg.). I rapporten "Noen samfunnsøkonomisk vurderinger av ombordproduksjon" (Olsen, 1990), viser Olsen (op. cit) til at ombordproduksjon av filet, kan være en betydelig mere lønnsom produksjonsform enn tilsvarende landbasert produksjon som baseres på leveranser fra frysetråler for videre filetering på land. På 1980- og 1990-tallet, var det derfor stor interesse fra andre trålgrupper å legge om driften fra saltfisk, ferskfisk og frysetrål (HG), til produksjon av filet om bord.

Av hensyn til fiskeindustrien og målet om å holde ved like landbaserte arbeidsplasser, etablerte derfor myndighetene sterke restriksjoner for å hindre en ytterligere vidning mot omlegging til ombordproduksjon for den øvrige trålerflåten. Sterk nedgang i ressursgrunnlaget på slutten av 1980-tallet og begynnelsen av 1990-tallet, førte imidlertid til reduksjon i antall fartøy samt et betydelig omfang av slike skifter i trålgrense. Introduksjonen av strukturpolitiske tiltak som først enhetskvoteordningen og senere strukturordningene på slutten av 1990-tallet, har ført til ytterligere konsentrasjon av kvotevernlaget på stadig større fartøy. Mens trålerflåten på slutten av 1980-tallet var ca. 120 fartøy, er det i dag (2014) ca. 38 fartøy igjen, inkludert fartøy som har konsesjon for å produsere filet om bord.

Over tid er imidlertid omfanget av ombordproduksjon gradvis blitt redusert. Pr. i dag, er det konkret 3 tråler og to autolinefartøy som produserer filet av kvotevernlaget. Ved siden av at markedet utvikla seg i favor av å produsere rundfrossen fisk (HG) av et gitt kvotegrunnlag ut over slutten på 1990-tallet, kan reduksjonen i ombordproduksjon også forklares med endringer i institusjonelle rammevilkår for den ombordproduserende flåten. Historisk sett refererer dette til tap av kvotefaktorer som opprinnelig var knyttet til en fabrikktråler- og saltfisktrålkonvensjon samt at også omregningsfaktorer for filetutbyttet er redusert i forhold til et rund vekt kvotegrunnlag. Over tid har denne utviklingen ført til en betydelig reduksjon av ferdig produksjonsmenige (filet) i forhold til en rund vekt kvote (Standal, 2007). Slik har ombordproduserende fartøy heller ikke hatt noen prioritet i det øvrige virkemiddelapparatet hva gjelder lån og tilskudd til flåteorden etc.

10 Beregningene av ombordproduksjon som er utført av Olsen (1990) tar utgangspunkt i Johansen’s (1977) vilkår for samfunnsøkonomiske analyse. For et komparativt studie mellom hhv. ombordproduksjon og tradisjonell filetproduksjon er det grunnleggende at variable faktorer kan sammenlignes på en korrekt måte, eksempelvis lønn i foredlingsindustrien mot lønn om bord i fabrikktråleren, produktavgift om bord mot arbeidsavdragssum på land osv.

11 Trålerflåtens totale gruppekvoter refererer til trålstigen, som angir fordelingen av torsk m.v. mellom ulike fartøy- og redskapsgrupper. Trålerflåtens samla gruppekvote er videre delt inn i ca 90 kvotefaktorer. Videre var trålerflåten delt inn i ulike grupper som småtrål, ferskfisk/frysetrål, saltfisktrål og fabrikktrål. Mens fartøy i gruppen småtrål hadde en kvotefaktor på 0.35-0.65, hadde gruppen saltfisktrål og fabrikktrål en kvotefaktor på hhv 1.6 og 1.9. Over tid er denne justert til 1.0 for fartøy fra ulike trålgrenser.
Endringene i rammebetingelsene for den ombordproduserende trålerflåten, har likevel ikke redusert fordelene med konseptet produksjon av filet om bord i fangstleddet. Ombordproduksjon kan i første rekke beskrives som autonomi; fartøyene fangster egen fisk som produseres ferdig om bord. Man samhandlingsproblemer slik vi kjenner de fra den tradisjonelle arbeidsdelingen mellom fangst- og landbasert foredlingsledd. Dette betyr at ombordproduserende fartøy er definert som selvtilvirkere og gitt en rett til å kjøpe egen fangst. Følgelig er ikke ombordproduserende fartøy omfatta av Råfisklagets system for minstepriser. Den totale inntjeningen er utelukkende reflektert i brutto fangstverdii og herunder delingen av inntekter mellom hhv. rederi og mannskaper. At fangst- og fangst- og foredelsesleddet er integrert om bord i samme enhet (fartøyet) medfører også at man ikke belaster miljøet hva gjelder tids- og kostnadsbetraktende frakttransport av fisk mellom de ulike leddene i en gitt verdikjede. I tillegg unngår man dobbeltfrysing av hhv. fangst og ferdig produkt. I forhold til miljøbelastninger hva gjelder fangst- og foredling, kan følgelig ombordproduksjon være en mer miljøvennlig tilpasning enn eksempelvis transport av råstoff fra fangstfeltene til landbasert foredling i Norge eller alternativt frakt av rundfrosset råstoff til Kina for prosessering, og retur tilbake til Europa/Norge for salg i sluttnicamente. I et klimaperspektiv antas det også at slike fordeler kan forsterkes med avgrensett fangst og foredling. I et klimaperspektiv antas det også at slike fordeler kan forsterkes i favor av fangst og foredling. Dette som følge av at man forventer en mer nordlig- og østlig utbreddelse av de store kommersielle fiskeressursene og at avstandene for fangst for landbasert prosessering vil øke (Stenevik og Sundby, 2007).

Tradisjonelt har den ombordproduserende flåten også fungert som en viktig flåtegruppe for kruttering av mannskaper til maritim sektor i vid forstand. Hvert fartøy har et betydelig mannskap med tradisjonelt over 30 personer om bord, virksomheten har gitt grunnlag for nær doble sett av mannskaper for organisering av skifordning, innslag av norske mannskaper dominerer og det har tradisjonelt vært en betydelig kruttering av kvinner. Inkludert landbasert service etc. har fartøyene som driver ombordproduksjon totalt sett gitt grunnlag for en betydelig sysselsetting pr. fartøy.

Med basis i beskrivelsen av begrepet transaksjonskostnader og framstillingen foran, kan vi skissere endringer i styringsstrukturer mellom ulike transaksjonspartnere, og hvordan disse kommer til uttrykk hva gjelder nyorganisering mellom fangst- og foredlingsleddet. Målet er å redusere transaksjonskostnader i en gitt verdikjede eller identifiserere nye organisasjonsmodeller som gir gevinst i form av økt effektivitet og økt inntjening. Dersom slike gevinster kan identifiseres, vil det imidlertid være et viktig spørsmål om hvordan slike gevinster kan fordeles mellom aktører i en nyorganisert verdikjede.

12 Deling av brutto fangst, definisjoner av felles kostnader og lottandeler er regulert av avtaler mellom Norsk Sjømannsforbund og Fiskebåt.
Figur 29 viser et eksempel på verdikjeder ved produksjon av sløyd og hodekappet fisk vs. produksjon av fryst filet om bord. Det er gjennomført flere interessante forsøk på produksjon av konsumentprodukter av filet om bord, men dette krever imidlertid større plass, kompetanse og dels utvikling av ny og automatisert prosessteknologi. Det kan være betydelige potensialer for norsk fiskeindustri i å bruke sjøfryst filet til produksjon av konsumentprodukter. Spesielt gjelder dette produksjon av produkter basert på fryst filet som tines i butikk og presenteres som ferske "Frozen at Sea" produkter av høy kvalitet.

I Norge er en viktig målsetting å øke utnyttelsen av biprodukter/restråstoff fra fiskerinæringa. I et slikt perspektiv har ombordproduserende fartøyene et særlig komparativt fortrinn. Fartøyene kan basere biproduktprosesser på ferskt råstoff og sortere dette råstoffet der det "oppstår" og dermed produserer mel, marine oljer av høy kvalitet og konsumentprodukter.

B.4.2 Automatisert prosesslinje ombord

I FHF prosjektet (No. 900930) *Implementering av teknologi for optimal kvalitet i fremtidens prosesslinje på trålere "OPTIPRO"* er det jobbet med fremtidens automatiserte prosesslinje ombord, vist i Figur 30. Denne inkluderer både HG-, filet- og restråstoffproduksjon. 3D tegninger og beskrivelse av fremtidens prosesslinje ombord er også detaljert beskrevet sluttrapporten (Olsen et al., 2014).
Figur 30. Fremtidens prosesslinje for ombordproduksjon (illuasjon: SINTEF Fiskeri og havbruk).

I FHF-prosjektet Automatisk fangstbehandling av hvitfisk på snurrevadfartøy (No. 900526) er det under utvikling en automatisk slaktelinje ombord som inkluderer bedøving, automatisk bløgging og automatisk sortering på art og størrelse hvor bla. robotteknologi og maskinsyn er benyttet (se Figur 31). Denne slaktelinja muliggjør raskere blodtapping av fisk (fangsten bløgges levende), gir raskere bearbeiding (enkelte fartøy rapporterer om en økning av bløggekapasiteten på 30-40 %), bedre sortering, i tillegg gir det bedre HMS for mannskapet om bord fordi håndteringen av bedøvd fisk blir lettere og reduserer risiko for feilskjær og skader.

Figur 31. Automatisk slaktelinje ombord på fartøy; elektrobedøvelse (Stansaas #1), automatisk sortering (art og størrelse), flytting av fisk via robotteknologi og automatisk bløgging (Foto: SINTEF Fiskeri og havbruk).
Når det gjelder utvikling og produksjon av mer konsumentvennlige produkter ombord vil det være et stort behov for utvikling av automatiserte løsninger. Her vil erfaringer og løsninger utviklet for annen næringsmiddel- og vareproducenterende industri kunne overføres og tilpasses ombordproduksjon av sjømatprodukter. En global trend er i økende grad å knytte ulike tjenester til produkter. Madshus ski lanserer høsten 2014 RFID brikker i hver ski, som gjennom en leser og en mobilapplikasjon gjør valg av riktig ski enklere og samtidig gir kunden noe langt mer enn bare et nytt skipar. Ombordproduksjon av konsumentprodukter er også ganske "ekositisk" og vil kunne gi interessante muligheter for å knytte "tjenester" til disse produktene gjennom individuell merking, sporing og gjenkjenning.

For ombordproduksjon gjelder det samme prinsippet for fleksibilitet og automatisering som for øvrig sjømatforedling. Generelt vil det være fordelaktig med en mest mulig fleksibel produksjon, hvor omstilling til ulike produktvarianter (ut i fra egne føringer, fangstsammensetning og markedet) bør ta (svært) kort tid. I dag er det er det mye bufring av fisk og "halvfabrikata" underveis i filetproduksjon ombord. Hver fisk eller halvfabrikata blir også manuelt håndtert en rekke ganger. Alle batcher eller "køer" under produksjonen gir forsinkelse, effektivitetstap og potensielt kvalitetstap.

At fangst- og foredelsledet er integrert i samme enhet (fartøyet) medfører også at man ikke belaster miljøet hva gjelder frakt/transport av fisk mellom de ulike leddene i en gitt verdikjede. I forhold til miljøbelastninger hva gjelder fangst- og foredling, kan følgelig ombordproduksjon være en mer miljøvennlig tilpasning enn eksempelvis transport av råstoff fra fangstfeltene til landbasert foredling i Norge eller alternativt frakt av rundfrosset råstoff (HG) til Kina for prosessering. I et klimaperspektiv antas det at slike fordeler kan forsterkes i favor av ombordproduksjon.

\[B.5\] Oppsummering

I del B har vi beskrevet motiver og behovet for teknologiutvikling både spesifikt for foredling av sjømat, men også som et ledd i fremtidig vareproducenterende norsk industri med utgangspunkt i dagens rammebetingelser og fremtidige trender. Vi har identifisert rollen som forskning og utvikling har som et ledd i bærekraftig teknologiutvikling (se Figur 27). I rapporten har vi beskrevet dagens state-of-the-art og identifisert nødvendige fokusområder frem mot visjonen om fullautomatisert og bærekraftig fiskeforedlingsindustri med mattrygghet i fokus satt i et bioøkonomisk perspektiv. Ved å se mot annen masseproduserende industri er det rimelig å anta at fleksibilitet og mulighet for hurtig endring i produksjon samt markedsstillelse vil være en nøkkel til en robust industriell sjømatproduksjon. Det viktigste kjennetegnet ved en fremtidsrettet sjømatindustri vil da være at den er fleksibel og kan utnytte de muligheter og møte de utfordringene som dukker opp.

Oppsummert ser vi at man må:

1) **Identifiser forsknings- og teknologibehov** i foredelsledet i norsk sjømatindustri og detaljere dette i nasjonal skala.

2) **Utvikle teknologier** for automatisk foredling av fisk, både på land og om bord.

3) **Kanaliser de utviklede teknologier** inn i innovasjoner og kommersiell utnyttelse, gjennom innovasjonsprosjekter og produktutvikling hos utstyr- og forelingsbruket.

4) **Formidle forskningen** slik at den kan påvirke andre industrier – utover sjømatindustrien.

Behovet for fremtidige teknologiske løsninger for nær fremtid (et 5års perspektiv) og i et fremtidig scenario (>10 år frem i tid) er beskrevet og bygger på tanken om en fremtidig fullautomatisert industri:

1) **Automatisering av enhetsoperasjoner** i en fabrikk eller om bord på en båt, hvor råstoff, arbeidsoppgaver og andre rammer er klart definert på forhånd (5 års perspektiv).
2) **Fullautomatisert adaptiv produksjon og selvlærende fabrikker/produksjonsanlegg** på land og om bord, som må håndtere store variasjoner i råstofftilgang og markedskrav **uten hjelp fra mennesker** (>10 års perspektiv)

De nødvendige fokusområder for teknologiutvikling er beskrevet i nok detalj til at rapporten kan være et utgangspunkt for spesifikke forskningssatsninger og – programmer.

De viktigste områdene som trekkes frem i denne delen som fremtidig teknologibehov og utviklingsbehov på **kort sikt** er listet i Tabell 4, Tabell 5 og Tabell 6.

Når det gjelder utviklingen som må foregå på **lang sikt** er den relevante forskningen i hovedsak fokusert på teknologiutvikling og grunnforskning innenfor utvalgte områder. Disse teknologiene for automatisk foredling – uavhengig av spesifikk anvendelse – kan deles inn i fem fokusområder (FO1-FO5), **FO1:** Foredlingssintelligens, **FO2:** Foredlingsrobotikk, **FO3:** Fleksibel foredling, **FO4:** Hygienisk design av foredlingsutstyr og foredlingsfabrikker, og **FO5:** Produksjonslogistikk. Disse er beskrevet i B.2.4).

Konsekvensen av en norsk satsning vil også kunne få positive globale effekter i forhold til fiske- og matproduksjon internasjonalt. Dette er positivt i dagens globaliserete samfunn, og vil faktisk også kunne lønne seg. **Norsk teknologi vil kunne bli en lønnsom eksportvare – på lik linje med foredlet norsk fisk.**

Norsk teknologi vil kunne bli en lønnsom eksportvare – på lik linje med foredlet norsk fisk.

13 FAST Search and Transfer AS, som ble endel av Microsoft. Opera Software som nesten ble kjøpt opp av Apple, samt andre teknologier som f.eks. verdensledende GPU (graphical programming unit) teknologi fra Falanx Microsystems som ble kjøpt opp av ARM.
DEL C) Lønnsomhetspotensial for fremtidig foredling i Norge
C.1 Kostnadsdrivere i norsk foredling i dag

C.1.1 Noen sentrale konkurransevilkår for norsk foredlingsindustri

Hovedeksportøren av torsk til Kina er Russland. Import fra Russland står for 76 prosent av all torsk, mens Norge kun står for 7 prosent. Totalt importerte Kina i overkant av 2,5 millioner tonn fisk i 2011 hvorav hvitfisk stod for tilnærmet 1,4 millioner tonn. Norsk eksport av hvitfisk til Kina utgjorde i 2011 totalt tilnærmet 70 000 tonn. Den kinesiske fiskeindustrien er bygd opp med basis i lave arbeidskraftkostnader og minimale investeringer i maskiner og annet prosessutstyr.

Kinesisk hvitfiskindustri fortsetter å øke, må de også gjennom en effektivisering for ikke å miste lønnsomheten.

Tabell 10. Oversikt over lønnskostnader for Norge, Danmark, Storbritannia, Spania og Polen.

<table>
<thead>
<tr>
<th></th>
<th>Gjennomsnittlig lønnskostnader pr. arbeidet time</th>
<th>Arbeidet tid</th>
<th>Ikke-arbeidet tid</th>
<th>Arbeidet og ikke-arbeidet</th>
<th>Andre sosiale kostnader</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kr/t</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Norge</td>
<td>363</td>
<td>65,5</td>
<td>17,4</td>
<td>82,9</td>
<td>17,1</td>
<td>100</td>
</tr>
<tr>
<td>Danmark</td>
<td>289</td>
<td>75,8</td>
<td>14,6</td>
<td>90,4</td>
<td>9,6</td>
<td>100</td>
</tr>
<tr>
<td>Storbritannia</td>
<td>172</td>
<td>71,4</td>
<td>13,2</td>
<td>84,6</td>
<td>15,4</td>
<td>100</td>
</tr>
<tr>
<td>Spania</td>
<td>159</td>
<td>55</td>
<td>19,6</td>
<td>74,6</td>
<td>25,4</td>
<td>100</td>
</tr>
<tr>
<td>Polen</td>
<td>49</td>
<td>60,6</td>
<td>25,3</td>
<td>85,9</td>
<td>14,1</td>
<td>100</td>
</tr>
</tbody>
</table>

På "standardprodukter" vil en trolig være avhengig av å redusere lønnskostnadene knyttet til produksjonen og å øke det økonomiske utbyttet fra råstoffet. I følge Marel ligger i dag den norske fiskeindustrien "to generasjoner" bak den islandske i bruken av nytt og automatisert utstyr (Gunnarsson, foredrag Marel). For filetproduksjon fra laks i Norge er situasjonen noe bedre, og en har kommet lengre innen automatisering av filetproduksjonen, sammenlignet med hvitfisk, noe som har medført et redusert bemanningsbehovet i noe grad.Sammenligning av laksefiletproduksjon med annen type industriell matproduksjon som for eksempel kylling og svin, viser at det er muligheter for å strekke seg lengre innen automatisering og spesielt innen robotisering av produksjonen. Oppdrett av fisk og husdyr har en fordel med å være innenfor en relativt lik størrelsersfordeling, til forskjell fra villfisk. For prosessering av villfisk består ofte leverte fangster av et større spekter av størrelser. Ved automatisering av villfiskproduksjon er en derfor i enda større grad avhengig av sorteringsteknologi i forskjell fra villfisk. For prosessering av villfisk består ofte leverte fangster av et større spekter av størrelser. Ved automatisering av villfiskproduksjon er en derfor i enda større grad avhengig av sorteringsteknologi i forskjell fra villfisk, eller fleksibelt prosessersutstyr som er tilnærmet uavhengig av fiskens størrelse og art ved prosessering.
En av fordelene norsk industri har, er lave energikostnader, sammenlignet med våre handelspartnere (se tabell 11). I følge NOU 2014:3 har Norge for perioden 2003-2012 en gjennomsnittlig strømpris som kun er 41 % av strømprisen våre handelspartnere må betale.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Norge</td>
<td>26,6</td>
<td>19,2</td>
<td>20,3</td>
<td>21,6</td>
<td>25,1</td>
<td>25,1</td>
<td>29,1</td>
<td>29,4</td>
<td>32,3</td>
<td>33,9</td>
<td>30,6</td>
<td></td>
</tr>
<tr>
<td>Handelspartnerne</td>
<td>64,3</td>
<td>51,0</td>
<td>51,5</td>
<td>52,9</td>
<td>61,5</td>
<td>62,9</td>
<td>72,1</td>
<td>75,4</td>
<td>72,2</td>
<td>73,2</td>
<td>72,9</td>
<td></td>
</tr>
<tr>
<td>Relative elektrisitetspriser, prosent</td>
<td>41,3</td>
<td>37,6</td>
<td>39,4</td>
<td>40,8</td>
<td>40,8</td>
<td>39,9</td>
<td>40,4</td>
<td>39,0</td>
<td>44,7</td>
<td>46,3</td>
<td>42,0</td>
<td></td>
</tr>
</tbody>
</table>

Dette kostnadsforrinnet vil være en fordel dersom prosesseringen av fisk helautomatiseres. I og med at Norge har lavere energikostnad enn våre handelspartnere, vil vi dermed få et fortrinn innen kostnadsledelse dersom bemanningsbehovet blir lavt nok.

I norsk industri generelt har det vært sterk fokus på automatisering og rasjonalisering ved hjelp av teknologi og grunnet gjennomgående høyere lønnskostnader enn våre konkurrentland. Et "Norsk" sættrek, i tilfelle i forhold til asiatiske land, er at den i den enkelte bedrift er relativt små forskjeller i status, prestisje og lønnshøysnå, med en bedriftskultur preget av involvering og medvirkning. I tillegg er det etablerte prosedyrer for å håndtere uenighet mellom ansatte og ledelse, veldig lav streikenivå og lang tradisjon for konstruktiv forhandling mellom partene i arbeidslivet. En bedriftskultur preget av involvering, verdiskapningsforståelse, sammen med relativt lavt behov for styring "ovenvifra" gir gode forutsetninger for innovasjon i norsk fiskeindustri.

Island har til dels de samme naturlige fortrinnene som Norge, med nærhet til fiskefeltene og benyttes i mange tilfeller derfor som sammenligningsgrunnlag for den norske fiskeindustrien. Det er her derimot viktig å ta med i sammenligningen at Island ikke har hatt samme utvikling i landets velferd- og kostnadsnivå over de siste 30 år som Norge. På Island er fiskeri en av nøkkelindustriene og det har vært satset hardt for å beholde foredlingen av fisk nasjonalt. Likevel kan Norge lære en del av utviklingen som har skjedd på Island.

Kina er ikke mulig og tilbakemeldingene er at filetproduksjon av dobbeltfryst råstoff gir for dårlig kvalitet til at det er lønnsomt i Norge. Videre er tilbakemeldingen at behovet for ny teknologi, som øker utbyttet og kvaliteten på sluttproduktet, samt reduserer behovet for bemanning, stort. Norsk lønnsnivå er for høyt, og med dagens bemanningsbehov blir dermed kostnadene for høye, sammenlignet med utlandet.

C.1.2 Nærmere om lønn- og produksjonskostnader i Norge.

I den norske hvitfiskindustrien utgjør vareforbruk, som inkluderer råstoffkostnadene, den største andelen av driftskostnadene, med størrelsesorden 66 % for hvitfisk filet, og 78 % for konvensjonell, vist i Figur 32 og Tabell 12 (Bendiksen, 2013). Lønnskostnadene var dobbelt så store for filetindustrien (18%) sammenlignet med konvensjonell sektor (9%), mens andre driftskostnader utgjorde hhv. 16 og 9,4% for filet og konvensjonell.

![Oversikt over fordeling av de totale variable kostnadene for hvitfisk i 2011](image)

Figur 32. Oversikt over fordeling av de totale variable kostnadene for hvitfisk i 2011 (Bendiksen, 2013).

<table>
<thead>
<tr>
<th></th>
<th>Hvitfisk samlet</th>
<th>Hvitfisk konvensjonell</th>
<th>Hvitfisk filet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vareforbruk</td>
<td>76,19 %</td>
<td>77,74 %</td>
<td>65,51 %</td>
</tr>
<tr>
<td>Lønnskostnader</td>
<td>10,56 %</td>
<td>9,22 %</td>
<td>18,47 %</td>
</tr>
<tr>
<td>Andre driftskostnader</td>
<td>10,52 %</td>
<td>9,41 %</td>
<td>16,06 %</td>
</tr>
</tbody>
</table>

Nilssen et al. (2014) har analysert hvilken råstoffstrategi som er mest lønnsom for norske hvitfisk filetbedrifter, og fant at hvitfiskfiletindustrien som har den høyeste andelen ferskt kvalitetsråstoff, oppnår bedre lønnsomhet i forhold til de som bruker mer frossen fisk. Det er også slik at de bedriftene som presterer best i mindre grad mottar råstoff fra torsketrålere enn de øvrige. Det ferske råstoffet av høy kvalitet kommer i stor grad fra kystfiskefartøy med krokredskaper (line og juksa).

Oversikt over fordeling av de totale variable kostnadene for hvitfisk filet, konvensjonell, pelagisk konsumindustri og foredling av laks fra 2005-2011 er vist i Figur 33. Beregningene er gjort med bakgrunn i driftsundersøkelsen i fiskeindustrien for driftsåret 2011 (Bendiksen, 2013). Råstoffkostnader er den tyngste kostnadskomponenten i fiskeforedling i Norge for alle de ulike verdikjedene, men varierer fra 65% hvitfisk filet, 71% foredling laks, 78% hvitfisk konvensjonell til 80% pelagisk konsum. Lønnskostnadene er høyest i hvitfiskensegement (filet, 18,5%) og foredling av laks (14,4%), mens lønnskostnadene i konvensjonell sektor og pelagisk konsumindustri ligger på hhv. 9,2 % og 6,7%. I pelagisk konsumindustri er det allerede innført automatisering og effektivisering, som har bidratt til at kvantum produsert per ansatt er fordoblet siden 1995 (Henriksen og Bendiksen, 2008).
C.2 Lønnsomhetspotensial ved økt automatisering

Det er utført en analyse av hvordan økt automatisering og teknologisk utvikling kan påvirke lønnsomheten i foredlingsindustrien. For nærmere beskrivelse av teknologistatus og fremtidig teknologiutvikling se Tabell 4, Tabell 5 og Tabell 6 i del B. I analysen er hvitfisk brukt som eksempel, da potensialet for å redusere lønnskostnadene er størst for denne verdikjeden (se Figur 33). Beregningene baserer seg på nøkkeltall fra den årlige driftundersøkelsen utført av Nofima (Bendiksen, 2013, se vedlegg), samt bedriftsinterne regnskap (disse kan ikke offentliggjøres). Forutsetningene som er lagt til grunn er diskuterte med bedriftene for mest mulig realisme i beregningene.

Forutsetningene for beregningene er gjort ut fra 3 nivåer:

- Dagens: Standard teknologi som benyttes i dagens filetindustri
- Med tilgjengelig teknologi: Den nyeste tilgjengelige teknologien som finnes på markedet i 2015
- Fremtidige muligheter: Fremtidens teknologi med fleksible automatiserte løsninger tilpasset varierted råstoff (type og tilgang) og marked (type produkt og etterspørsel)

Dagens:
- Basert på dagens drift og produktsammensetning

Med tilgjengelig teknologi (0-4 år):
- Endringer basert på muligheter innenfor dagens tilgjengelige teknologi.
 - Redusert bemanningsbehov manuelle operasjoner i foredling (kutting reinskjæring) -35%
 - Redusert bemanningsbehov annet (flytting av råstoff og halvfabrikata, truckkjøring): -20 %
 - Økt bytte stor fisk: +1%
 - Økt utbytte liten fisk: +1 %
 - Redusert mengde mindre betalte produkter (for eksempel bits and pieces) : -0,8%
 - Redusert andel dårlig betalte produkter (for eksempel farseprodukter): -1%
 - Økt andel bedre betalte produkter (for eksempel loins): +1 til 2 %

Framtidige muligheter (>10 år):
- Endringer basert på mulig teknologi i framtiden
 - Redusert bemanningsbehov manuelle operasjoner i foredling (kutting reinskjæring) -50%
 - Redusert bemanningsbehov annet (flytting av råstoff og halvfabrikata, truckkjøring/mottak): -20 %
 - Økt utbytte stor fisk: +2%
 - Økt utbytte liten fisk: +2%
 - Redusert mengde mindre betalte produkter (for eksempel bits and pieces) : - 4%
 - Redusert andel dårlig betalte produkter (for eksempel farseprodukter): -5 %
 - Økt andel bedre betalte produkter (for eksempel loins): + 5%

Dersom foredlingsanleggene for hvitfisk i Norge hadde oppgradert til dagens nyeste tilgjengelige teknologiske løsninger, antar man en sannsynlig reduksjon av lønnskostnad i størrelsesorden 3-5%, se Tabell I3 og Figur 34. I tillegg vil økt automatisering gi en mulig inntektsøkning i form av:
 - Kvalitetsforbedring (reduksjon av fall, kjøling, kvalitetsdifferensiering, forbedret fangstbehandling etc) og redusert nedklassing av varer
 - Utbytteøkning i filetproduksjon med 1-2%
 - Økning i andel av produkter til bedre betalte produkter (loins + 5%)
✓ Effektivitet i innkjøpt råstoff

dersom man ser forbi dette (>10 år) kan man se en enda større reduksjon i kostnader knyttet til foredlingsleddet. Her snakker vi om en ytterligere reduksjon av lønnskostnadene til halvparten av dagens nivå (Tabell 13 og Figur 34). Det finnes forskning og teknologi under utvikling som i løpet av 5 år ville kunne implementeres i ferdige teknologiske løsninger og utstyr. Hovedteknologiene som er under utvikling, og som vil muliggjøre et økt filetutbytte, økt utnyttelse av restruktør til høyverdige produkter og en betydelig reduksjon i behovet for og kostnadene til manuell arbeidskraft er:

1. 3D maskinsyn for nøyaktig sortering, gradering og bearbeiding av hel fisk og filet.
2. Adaptiv robotikk for singulering og bearbeiding av produkter.
3. Helhetlig design og kommunikasjon mellom teknologiske utstyr for selvoptimaliserende produksjon.

Disse teknologiene er beskrevet i rapportens del B.

Figur 34. Fordeling av variable kostnader i norsk fiskeindustri (hvitfisk filet) i dag, med tilgjengelig teknologi (om 5 år) og med fremtidens teknologi (> 10 år).

<table>
<thead>
<tr>
<th></th>
<th>Dagens</th>
<th>Med tilgjengelig teknologi</th>
<th>Framtidige muligheter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Råvare</td>
<td>68 %</td>
<td>65 %</td>
<td>60 %</td>
</tr>
<tr>
<td>Emballasje</td>
<td>5 %</td>
<td>5 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Lønn</td>
<td>16 %</td>
<td>12 %</td>
<td>7 %</td>
</tr>
<tr>
<td>DB2</td>
<td>12 %</td>
<td>18 %</td>
<td>28 %</td>
</tr>
</tbody>
</table>
Kommentarer til beregningsgrunnlaget:

Ny teknologi vil redusere bemanningsbehovet, men kreve annen type kompetanse. Eksempelvis vil kompetanse innen automasjon og prosessstyring bli viktig i framtiden. Selv om totalt antall ansatte vil reduseres, vil ikke lønnskostnadene reduseres tilsvarende, da høyere kompetanse hos ansatte krever høyere lønn per ansatt.

De viktigste mulighetene med ny teknologi er potensialet for kvalitets- og produktforbedringer, samt en økning i utbytte av primærprodukt og økt kapasitet (økt volum per tidsenhet). Herunder økt kvalitet fra flåteleddet, reduksjon/fjerning av skader på råstoff og produkter under transport, økt utbytte og økt andel bedre betalte produkter. I tillegg vil produktene som helhet holde en høyere kvalitet, og dermed kunne oppnå en høyere pris i markedet. Dette forutsetter en helhetlig kvalitetstanke, fra fangst til sluttbruker, som ikke er utbredt i nevneverdig grad i dag.

Selv om fiskeindustrien vil kunne øke lønnsomheten er det usikkert om de vil sitte igjen med hele den økte marginen. Økte marginer som følger av produkt og prosessforbedringer fordeler seg som regel på både leverandør og kunde. Fokuset for årene framover bør være på kvalitet, utbytte, utnyttelsesgrad, produktutvikling og markedsarbeid, gjennom økt automatisering og teknologiutvikling. På tross av forventede positive økonomiske effekter er det også viktig å poengtere at en økt satsning på automatisering og teknologiutvikling krever større investeringskostnader.
C.3 Lønnsomhetspotensial for utnyttelse av marint restråstoff

C.3.1 Verdiskapingspotensial

Figur 35. Oversikt over utnyttelsesgraden av restråstoff fordelt på sektor for 2013 (Olavsen et al. 2014).

Som vist i figuren ligger det desidert største potensialet for utnyttelse av restråstoffvolum i hvitfiskektoren, mens potensialet for økt verdiskapning fra pelagisk-, laks-, og skalldyrsektoren ligger i økt lønnsomhet i prosesseringen av restråstoff og høyere andel produktet til humant konsum. Verdikjedene for marint restråstoff for havbrukssektoren og fiskerisektoren er illustrert i vedlegg.

I hvitfiskektoren ble 230.000 tonn restråstoff dumpet i 2013 og den største andelen kommer fra trålflåten som sløyer, hodekapper (HG) og fryser fisk ombord. Ved produksjon av HG fisk ombord utgjør restråstoffet rundt 30% av rundvekt, mens produksjon av filet om bord gir over 60% restråstoff av rundvekt. I havfiskeflåten er det to eldre fartøy med melfabrikk (med filetlinjer), samt fire nye fartøy levert i 2013 som har melfabrikk basert på restråstoff fra HG produksjon. For fartøy med filetlinjer er det mest interessant å medvirke i prosessering av restråstoff, fordi det er en høy lønnsomhet av dette produktet i fiskeindustrien. I forsikteriene, spesielt i torskefisket, leveres fisken ofte bløgg og rund til landanleggene. I forbindelse med sløyving og prosessering i fiskeindustrien blir biproduktene (i hovedsak hoder, lever og rogn) tatt vare på, prosessert og solgt.
I prosjektet "Fryst hvitfisk restråstoff: Fra havfiskeflåten til marine ingredienser" (FHF prosjekt nr 900858) gis en grundig analyse av kostnadene med å fryse inn og levere samfengt restråstoff fra havfiskeflåten i fryst tilstand. Rapporten anslår at kostnadene for innfrysning ligger på NOK 3-3,50 pr.kg og at prisen for restråstoff må betales med minst 4 til 5 kroner per kg for at det skal bli lønnsomt. Det ble også gjennomført prosesseringsforsøk på land av det fryste samfengte restråstoffet hvor selve tiningen var en stor utfordring samt at selve produksjonen av samfengt råstoff var problematisk og lite kommersielt interessant. Det er også gjennomført et forprosjekt på ensilasjeproduksjon av restråstoff om bord i havfiskeflåten (Rindahl et al., 2013). Prosjektet påviste et mulig potensial for å drive lønnsom ensilering av biprodukter om bord i den havgaende hvitfiskflåten, men at de største usikkerhetsfaktorene er; plass til lagringstanker om bord i forhold til regelverk for størrelse på fiskefartøy og bunnfelling av beinrester. Et annet moment som må påpekes er at det i dag er svært få kjøpere av fiskeensilasje og at prisen er relativt lav (estimert salgspris på 1,5 kr/kg).

Filetering av fisk om bord gir et initiativ til å ta vare på restråstoffet, men melfabrikkene som er installert om bord, er basert på gammel teknologi hvor mye av proteinet går tapt (anslagsvis 30%) i limvannet. I patentet; Jansson et al. (2011) er det beskrevet en prosess basert på hydrolyse av marint råstoff, i dette tilfellet antarktisk krill, som i dag er i bruk for prosessering av krill om bord i fartøyet "Juvel" eid av Emerald Fisheries. I denne prosessen utnyttes alt råstoffet som kommer om bord.

Mesteparten av det marine restråstoffet som i dag utnyttes prosesseres til foringredienser og bare 9% av volumet går til konsum- og sjømatprodukter (Olafsen et al., 2014). Formarkedet kan kun betale i forhold til verdensmarkedssprisen på protein og fett, og dette har begrenset pris- og innntektopsleta for prosessering av marint restråstoff og spesielt for ensilasjeproduksjon.

Den mest nærliggende løsningen for redusert dumping og økt verdiskaping av marint restråstoff fra hvitfiskesektoren er å utvikle teknologi for automatisk fraksjonering av restråstoffet hvor det oppstår, samt å utvikle kompakt og automatisert prosesssteknologi for produksjon av mer høyverdige produkter (bedre betalt enn ensilasje og presskakemel) og halvfabrikata som: kaldpresset tran (av lever), proteinkonsentrater og beinmel. Grimsmo og Jansson (2005) gjennomførte et prosjekt hvor de evaluerde kostnader, råstoffbehov, design og driften av et kompaktanlegg for prosessering av marine biprodukter.

For havbrukssektoren utnyttes i dag så og si alt restråstoff og produksjonen foregår enten via datterselskaper til oppdrett- og slakterivirksomheter eller av uavhengige bedrifter som kjøper restråstoffet. Lønnsomheten i produksjonen basert på restråstoff fra havbruksnæringen har vært økende. Tradisjonelt har slikt restråstoff,
som ikke pakkes og frysles til konsumanvendelse (som buker, bits & pieces, og i til en viss grad rygger), gått til ensilajeproduksjon. Ensileringen foregår ute på det enkelte anlegg der biproduktene oppstår og utstyret som trengs er kvern, syredoseringsutstyr og lagertank med omrøring. Ensilajekonsentrat brukes både i kraftforindustrien og i fiskeforindustrien hvor ensilajekonsentrat blandes inn i tørrfôr.

C.4 Oppsummering

I Del C har vi gitt en beskrivelse av kostnadsnivået i Norge sammenlignet mot andre lands foredlingsindustri, samt sett på lønnsomhetspotensialet ved innføring av økt automatisering i foredlingsindustrien.

Kort oppsummert er hovedfunnene:

- Norsk fiskeindustri har over tid hatt lav lønnsomhet, og svekkelsen av konkurranseevnen i form av økte kostnader, rammer derfor den norske fiskeindustrien hardt.

- Norges lave energikostnader, sammenlignet med våre handelspartnere, vil være en fordel dersom prosesseringen av fisk helautomatiseres

- For den norske fiskeindustrien utgjør vareforbruk den største andelen av driftskostnadene, med størrelsesorden 60-80 prosent.

- Ved innføring av økt automatisering og teknologiutvikling har vi estimert en økning av dekningsbidraget fra dagens 12% til 28%.

- Ny teknologi vil redusere bemanningsbehovet, men kreve annen type kompetanse. Eksempelvis vil kompetanse innen automasjon og prosesstyring bli viktig i framtiden. Selv om totalt antall ansatte vil reduseres, vil ikke lønnskostnadene reduseres tilsvarende, da høyere kompetanse hos ansatte krever høyere lønn per ansatt.

- De viktigste mulighetene med ny teknologi er potensialet for kvalitets- og produktforbedringer, økt kapasitet (økt volum per tidsenhet), økt utbytte og økt andel bedre betalte produkter. Produktene som helhet vil holde en høyere kvalitet, og dermed kunne oppnå en høyere pris i markedet. Dette forutsetter en helhetlig kvalitetstanke, fra fangst til sluttbruker.

- Det meste av restråstoffet fra oppdrettet fisk og pelagisk anløpes i dag og anvendes hovedsakelig til foringredienser, mens kun 9% av volumet går til konsum- og sjømatprodukter.

- Det er et stort potensial i å øke utnyttelsesgraden av restråstoff fra hvitfisksektoren hvor det meste av restråstoffet i dag blir dumpet til havs.

FiskeribladetFiskaren (2014): artikkel, 05.05.2014.

Soman, C. A. (2005). Make-to-order and make-to-store in food processing industries. (PhD), University of Groningen, Groningen, the Netherlands.

Vedlegg

Verdikjeder for marint restråstoff - Havbruksektoren
Verdikjeder for marint restråstoff - Fiskerisektoren