Evolutionary consequences of seed banks and seed dispersal in *Arabidopsis*

Thesis for the degree of Philosophiae Doctor

Trondheim, December 2011

Norwegian University of Science and Technology
Faculty of Natural Sciences and Technology
Department of Biology

NTNU – Trondheim
Norwegian University of Science and Technology
Acknowledgements

I want to give a special thanks to my supervisor professor Hans K. Stenåsen for his invaluable assistance, encouragement, and for giving me advice during my PhD program. I also wish to thank Hans for providing me the opportunity to join to his research group and to experience a wonderful new environment somewhat different from my home country. I also deeply appreciate professor Jon Ågren at University of Uppsalas for his great contribution and stimulating discussions in two of my manuscripts.

Dr. Sverre Lundemo gave an excellent contribution to the projects. I would like to thank him both for being a good friend and sharing the office during my PhD program, and discussion, giving me feedback in different subjects. We have been out in the field many times especially in Norway, Iceland and Svalbard. I never forget the time that we were in Svalbard for a couple of days looking for Arabis alpina and we had to cross Isfjorden in a rubber boat to access the population in stormy weather. I also appreciate Sverre for reading my thesis and for his invaluable feedback. I thank Dr. Stephan W. Ansell, at Natural History Museum, London, for his contribution on my fourth manuscript.

I would like to thank Dr. Ivar Herfindal at Department of Biology for providing me a map of Norway that has been used in my papers. Gratitude is also given to professor Cristophe Pelabon and associate professor Jenny Hagenblad for nice discussions in the journal clubs. A special thanks also to Guri F. Hansen at Plant Biology Center for watering and taking care of my plants in the greenhouse. I am grateful for help from Marianne Dore Hansen and Hanna Maja Tunset for doing microsatellite genotyping. I would like to express my gratitude to the collaboration and support of departmental staff and several anonymous people that have helped me through my PhD period at the Department of Biology.

I also thank my family, and especially my wife Mitra, who joined me in the last year of my PhD program. I thank for her love and patience and taking care of me during the last few months of writing the thesis.

Finally I acknowledge the generous financial support from the Norwegian Research Council.

December 2011, Trondheim
Mohsen Falahati-Anbaran
Contents

Acknowledgments ..i

Table of content ... ii

List of papers .. 1

Summary ... 3

Introduction ... 5

Seeds and seed related traits ... 5
Ecology of seed banks ... 5
Seed banks and effective population size .. 6
Gene flow through seed and pollen dispersal .. 7
Aims of the study ... 9

Materials and methods ... 10

Study species ... 10
Seed and soil samples ... 13
Molecular and data analyses .. 13

Results and discussion .. 15

Seed banks in A. thaliana and A. lyrata (Papers I and II) ... 15
Genetic diversity and structure (Papers I and II) ... 16
Evolutionary consequences of seed banks (Papers I and II) 16
Pattern of dispersal in time and space in A. thaliana (Paper III) 17
Patterns of genetic diversity and structure of A. lyrata in contrasting regions (Paper IV) 18
Conclusions and further remarks ... 20

References .. 21
List of papers

This thesis is based on four papers.

III) Falahati-Anbaran M, Lundemo S, Stenøien HK. Quantifying dispersal in time and space in northern European populations of *Arabidopsis thaliana* (manuscript).

Declaration of contribution

In paper I, HKS initiated the project and organized, HKS and SL did the field work, HKS, SL and MFA performed the analysis and all authors contributed to write the paper. The project in paper II was initiated by HKS, SL did the field work, HKS, SL and MFA did the data analysis, MFA and SL wrote the paper with contribution from the other authors. In paper III, HKS initiated the experiments. HKS, MFA and SL designed and conducted the field work; MFA analysed the data and wrote the paper with the contribution from the other authors. In paper IV, HKS, SL and MFA initiated the project, MFA and SL planned and conducted the field work, MFA, SL analysed the data, MFA wrote the paper with contribution from the other authors.
Summary
In most plant species, seeds after dispersing from the mother plant (primary dispersal) may undergo secondary dispersal, either in time by remaining dormant in the soil and forming a seed bank, or in space by movement to other locations. Seed bank and dispersal in space are bet-hedging strategies that minimize the extinction risk and aid to population stability and persistence in temporally variable environments. The ability to establish seed bank via depositing a fraction of seeds into the soil may also increase the potential of early stage adaptation into new habitats. A persistent seed bank preserves genetic diversity and buffers populations from the loss of genetic variants due to random drift. Although theoretical studies have highlighted the role of seed banks in elevating effective population size, little information exists regarding the evolutionary potential of seed banks in natural populations.

In this thesis I studied inter- and intraspecific variation in genetic composition of seed banks and its significance in natural populations of two closely related species in the genus *Arabidopsis*. *A. thaliana* is an annual self-compatible plant whereas *A. lyrata* is perennial and self-incompatible. The potential contribution of seed banks to effective population size (*N_e*), generation time, genetic variation, and population dynamics has been addressed. The pattern of dispersal over time and space was investigated by monitoring of natural populations over five consecutive years in *A. thaliana*. In addition, regional differences in seed bank, genetic composition and structure in *A. lyrata* were investigated between three contrasting regions in northern Europe.

The results showed that both species form persistent seed banks throughout their Norwegian distribution range. Seedling density was lower in *A. lyrata* than *A. thaliana*, as would be expected from a perennial. Moreover, the seed bank contributes to total effective population size in perennial *A. lyrata*, though not to the same extent as in *A. thaliana*. In *A. lyrata* both seed bank and above-ground individuals seemingly have a similar contribution to the total *N_e*.

Monitoring *A. thaliana* populations over multiple years revealed that in most populations two or more distinct multilocus genotypes were present, which often varied in frequency between years, leading to variation in within-population diversity. Although most of the distinct multilocus genotypes within each population were genetically similar, probably due to historical mutation and recombination events, in some cases multiple colonization events due
to migration from other populations were evident. Many geographically closely situated populations shared common multilocus genotypes and expressed low differentiation compared to distant ones. The results show evidence dispersal in time, i.e., persistence of dormant or ungerminated seeds in ten populations in which 29% of seeds descended two or three years before present, on average. Additionally there are signs of seed and pollen immigration from other populations in almost one fifth of the studied cohorts, reflecting an effective migration rate of 1.8% per generation. Migration through pollen and seeds in *A. thaliana* is therefore common, and the seed bank plays, at the same time a substantial role in overall population dynamics.

Comparing natural populations of *A. lyrata* in different regions revealed that soil seed banks are either absent or small in Icelandic populations and average density of seed bank is 2.5 fold smaller than what was observed among Norwegian populations, though the overall differences between regions was not statistically significant. The level of genetic variation in Icelandic was similar to Swedish and significantly higher than what found in Norwegian populations. In addition population differentiation on Icelandic was significantly lower than what found in Swedish and Norwegian populations. When comparing similar distribution areas in the regions, the effect of habitat structure was found to be less important to explain the differences in genetic structuring. Immigration rate over time was similar between regions that show variable population differentiations. The results suggest that relatively low differentiation among Icelandic populations is more likely due to large historical effective population sizes compared to Scandinavian populations, rather than immigration *per se*.
Introduction

Seeds and seed related traits
Seed size, the establishment of seed banks and dispersal in space are important traits that may influence population persistence, the colonization and extinction time and interact with environmental variables (Cohen 1966; Silvertown 1981; Brown & Venable 1986; Venable & Brown 1988; Guo et al. 2000). In most flowering plants seeds after dispersing from the mother plant (primary dispersal), may experience dispersal events, either by remaining dormant in the soil (seed bank formation), or in space by movement to other locations (dispersal in space). Seed bank formation and seed dispersal are bet-hedging strategies which enable plants to escape unfavorable environmental conditions (Venable & Brown 1988). Seed size is highly variable and may vary over ten orders of magnitude among species, from dust-like seeds of orchids being as small as 0.3μg to the 20 kg seeds of the double coconut (Arditti 1967; Harper et al. 1970; Silvertown 1981; Moles et al. 2005; Linkies et al. 2010). Although large seed size has been attributed to higher survival rate, there is a tradeoff between seed size and seed number (Jakobsson & Eriksson 2000). A negative relationship has been observed between seed size and number for many species across different habitat types (Jakobsson & Eriksson 2000; Metz et al. 2010). Although large seeds generally have a higher chance to establish, they may experience higher mortality due to higher predation rate. In addition, a tradeoff exists between seed size and dispersal ability in which larger seeds may have limited possibilities for long distance dispersal (e.g., Parciak 2002). Generally speaking, small seeds are more easily dispersed and may thus facilitate colonization into new environments (e.g., Silvertown 1981).

Ecology of seed banks
A seed bank is a deposit of viable and ungerminated propagules, and can exist both as mature seeds on the plant (aerial seed bank) or in the soil (soil seed bank), whereas in animals this trait is evident through diapausing eggs (Cohen 1966; De Stasio 1990; Christoffoleti & Caetano 1998). Delayed germination of seeds is a bet-hedging strategy to minimize the risks of germinating at the wrong time of the growth season, and in face of unpredictable environmental disturbances (Cohen 1966; Childs et al. 2010). Bet-hedging has been widely investigated theoretically and empirically (e.g., Venable 2007 and references therein). While
fluctuations in environmental conditions may increase the rate of mortality and variance in reproductive success among years, seed banks may have substantial potential in buffering variation in reproductive success and minimize the extinction risk (Pake & Venable 1996).

Seeds can either persist in the soil for a short time until the next germination season (less than a year; transient seed bank) or remain in the soil as dormant beyond one year (persistent seed bank; Thompson & Grime 1979). The existence of seed banks in plants in terrestrial and aquatic ecosystems has been well documented (Thompson & Grime 1979; Leck et al. 1989; Thompson et al. 1997; Evans et al. 2007), and although seed dormancy has been strongly attributed to formation of seed bank, empirical studies have found no close relationship between dormancy and seed bank formation (Thompson et al. 2003; Honda 2008). Perennial and large seed species are less capable to establish seed banks than annual and small seed species (Silvertown 1981; Thompson 1987; Honda 2008), and large seeds usually less able to persist for longer periods of time in the soil (Thompson 1987). The number of seeds found in the seed bank of annual and biannual plants is often higher than in perennials, indicating the greater capacity of annual species to persist in the soil seed bank than perennials (Arroyo et al. 2006; Honda 2008; DeFalco et al. 2009). Seeds of plant species may remain in soil as dormant or ungerminated for a few years up to several decades, centuries, or even >1000 years (Kivilaan & Bandurski 1981; Shen-Miller et al. 1995; Thompson et al. 1997; Telewski & Zeevaart 2002). Although the ecological potential of seed traits has been extensively studied in numerous species (Howe & Smallwood 1982; Thompson 1987; Bakker 1996), little information exists about the evolutionary importance of secondary seed dispersal over time (seed bank) and space (migration) in plants that differ in several life history traits.

Seed banks and effective population size

Most annual species and some perennials maintain seed banks, and the seed bank will over time contain seeds of different genotypes as not all seeds germinate directly after reproductive events. This buffering effect can dampen the rate of loss of genetic variation due to stochastic variation in the environment and increase the effective population size (Templeton & Levin 1979; Hairston & De Stasio 1988). Genetic variation in plant populations harbouring seed banks is influenced by mutual gene flow between the seed-bank and the above-ground individuals. Theoretical expectations and experimental studies suggest that seed banks may moderate the effect of genetic drift through buffering against changes in census sizes in
above-ground cohorts (Epling et al. 1960; Templeton & Levin 1979; Nunney 2002; Vitalis et al. 2004; Honnay et al. 2008). Estimations of effective population size should therefore be based on both seeds from the seed-bank and above-ground individuals.

The effective size of a given population \(N_e \) can be defined as the size of an ideal population that loses genetic variation (through genetic drift) between generations at the same rate as the natural population under study (Wright 1931; Kimura & Crow 1963). Estimation of effective population size from genetic and ecological data is a challenging topic in evolutionary biology and many different methods have been proposed, though most of them are based on simplified assumptions that seldom apply to real populations (for review see: Leberg 2005; Wang 2005). These approaches, which can be used to estimate contemporary and historical \(N_e \), are based on both demographic and genetic models (Schwartz et al. 1999; Nunney 2002; Leberg 2005; Wang 2005). Genetic models based on heterozygosity excess (Pudovkin et al. 1996), temporal shifts in allele frequency (Krimbas & Tsakas 1971; Waples 1989; Wang 2001) and linkage disequilibrium, LD (Hill 1981; Waples 1991; Waples & Do 2008, 2010) have received considerable attention in the estimation of \(N_e \) (Luikart et al. 2010). The LD method offers an unbiased single sample estimator of contemporary \(N_e \) (Bartley et al. 1992; Waples & Do 2008), and has been shown to perform better than the temporal method (Waples & Do, 2010) as it needs only a single time point per population, whereas the latter require data from at least two time points for each population. Coalescent theory may also be used to infer the demographic history of populations through estimating historical \(N_e \) based on ancestral relationships among individuals (Fu & Li 1999). Historical \(N_e \) infers the amount of genetic diversity over evolutionary time since formation of a population, reflecting bottlenecks, range expansions, migration and admixture events in the past. Neutral genetic diversity within populations is positively related to the coalescence time and effective population size.

Gene flow through seed and pollen dispersal

In flowering plants, dispersal is the movement of genes through seeds or pollen from one site to another (Endler 1977; Levin 1981). If a given dispersal event results in establishment or reproduction within the local gene pool, gene flow has occurred (Endler 1977). Gene flow among populations may increase within-population genetic diversity and reduces genetic differentiation between local populations (Ehrlich & Raven 1969). Type of mating system
play an important role in determining the level of gene flow through pollen dispersal, in which in an outcrossing plant exhibiting a self-incompatibility (SI) system, a higher level of gene flow is often expected between populations in a given space compared with predominantly self-pollinating species because the former is highly dependent on pollen flow from other individuals of the same species (e.g., Govindaraju 1988a,b; Mable & Adam 2007). The SI system in plants prevents fertilization by self-pollen and accepts only pollen from genetically unrelated individuals, thus facilitating outcrossing. Seed dispersal in plants is often expected to be a distance dependent process, i.e. with higher seed movement over short distances compared to long distances (Howe and Smallwood 1982 and references therein). However, long distance seed dispersal is very important because it can affect on colonization processes and metapopulation dynamics (Cain et al. 2000).

Molecular techniques have been used extensively to study the pattern of pollen and seed dispersal (Ouborg et al. 1999). Dispersal can be quantified using direct (parentage analysis and assignment test) and indirect approaches using population structure (e.g., genetic differentiation measures like F_{ST}; Slatkin 1987; Cain et al. 2000). Historical gene flow patterns has traditionally been studied using a simple population structure model introduced by Wright (1931), in which the relationship between the number of immigrants a population receive and population differentiation (F_{ST}) can be shown as $F_{ST} = [1/(1+4Nm)]$, where N_e and m is the effective population size and migration rate per generation, respectively. However, this model is based on a large number of simplifying assumptions that are unlikely to hold true for natural populations (Whitlock & McCauley 1999). In addition, this method is not appropriate to study the spatial patterns of genetic structure and gene flow among subpopulations (Hutchison & Templeton 1999; Sork et al. 1999).

The pattern of gene flow among populations in a given geographical area is often quantified through isolation by distance, IBD. Under a stepping-stone model of population structure, the relative influence of gene flow and genetic drift on regional population structure can be inferred from the relationship between genetic and geographic distance among pairs of populations (Kimura & Weiss 1964). The pattern of IBD can thus be compared between regions to determine how gene flow and drift have contributed in shaping the genetic composition within a given region compared with others. In this model, gene flow is expected to decline with increasing geographic distance between populations. In species with restricted seed and pollen dispersal between populations, a significant relationship is expected between
genetic and geographic distance, leading to isolation by distance (Slatkin 1993). Several factors may affect the pattern of IBD, such as the scale and regional topography in which populations are being sampled, number of populations, and time since colonization of a locality (Crispo & Hendry 2005). The absence of IBD has been attributed to several factors such as recent colonization of regions followed by rapid range expansion or fragmentation (Slatkin 1993; Hutchison & Templeton 1999; Crispo & Hendry 2005).

Aims of the study

In this thesis I have used two closely related species, both of which are widely used as models in research, to study the ecological and evolutionary importance of seed banks and dispersal. In particular, I have tried to discern how annual and perennial species differ in their strategies for dealing with environmental stochasticity, and more specifically, whether the importance of seed banks differ in annual and perennial plants.

The main objectives addressed in this thesis are:

1) To investigate the existence of seed banks in *A. thaliana* and *A. lyrata* and to determine the relative contribution of the seed bank to total effective population size and generation time (Papers I and II)

2) To study the pattern of secondary seed dispersal in time and space by quantifying the effective seed and pollen migration rate and dispersal in time in *A. thaliana* (Paper III)

3) To study the pattern of genetic diversity and structuring in *A. lyrata* inhabiting contrasting habitats (Paper IV)
Materials and methods

Study species

Arabidopsis thaliana (L.) Heynh. (Figure 1), known as mouse-ear cress or wild thale cress, is a weedy annual, self-pollinating plant in the mustard family (Brassicaceae). The plant has small, white flowers, and can produce large amounts of small seeds (~0.1-0.5 mm long, Figure 2). In Scandinavia it predominantly germinates in the autumn, overwinters as a rosette and does flower and sets seed in early spring. It is diploid (2n = 10) with a relatively small genome, 125Mb, and has been extensively used as a model for molecular biology and ecological and evolutionary studies (Mitchell-Olds & Schmitt 2006; Koornneef & Meinke 2010). The plant is native to Eurasia and North Africa (O’Kane & Al-Shehbaz 1997; Al-Shehbaz & O’Kane 2002). Additionally, the species has been introduced and successfully established in central and Northern Europe, North America, southwest Asia, Australia and New Zealand (Sharbel *et al.* 2000; Al-Shehbaz & O’Kane 2002; Hoffmann 2002).

![Figure 1: Floral display in *Arabidopsis thaliana* (right) and *A. lyrata* (left). Photo: M. Falahati-Anbaran.](image)

In Norway *A. thaliana* occurs in wide range of habitats from sea level and up to 1150 m asl and distributed from 58°N to 69°N. The plant occupies mainly disturbed areas such as road verges, railway tracks, and rocky slopes with thin soil layer and low vegetation cover (Figure 3).
Arabidopsis lyrata subsp. petreae (L.) O’Kane & Al-Shehbaz (1997), northern rock cress, is a perennial and self-incompatible herb that is distributed over disjunctive regions in Central and Northern Europe (Jonsell et al. 1995). A. lyrata is closely related to A. thaliana, and it is believed they diverged from a common ancestor about 5-10 million years ago (Koch et al. 2000; Hu et al. 2011). In contrast to A. thaliana, A. lyrata has larger flowers (Figure 1) and seeds (1-1.5 mm long, Figure 2). It is diploid (2n = 16) with a larger genome (207 Mb, Hu et al. 2011) than A. thaliana, and has been extensively used as a model in ecological and evolutionary studies (Mitchell-Olds 2001). In northern Europe, the plant is restricted to mountainous areas of south-western Norway, a small part of the eastern coast of Sweden, United Kingdom, Faeroe Islands and across most of Iceland (Jonsell et al. 1995; Schmickl et al. 2010). In Norway, the plant grows in habitats located from the sea level up to ~ 1700 m asl and deep valleys and mountain peaks my thus create physical barriers limiting connectivity between populations (Figure 3). In contrast, A. lyrata in Sweden occur mostly in open habitats.
along the coast, with no major physical barriers between sites. In Iceland the plant is found on lava plain and disturbed and open habitats from see level to highlands.

Figure 3: Typical habitat of *Arabidopsis thaliana* locality at Byneset, Trondheim (top), and *A. lyrata* locality in Sæbo, Eidfjord (bottom). Photo: M. Falahati-Anbaran.
Seed and soil samples

Seeds from above-ground plants were sampled from natural populations of *A. thaliana* across its Norwegian distribution range between 2005 and 2009 (Papers I and III). Soil samples (ten samples in each population; ~10 × 10 cm, 1-5 cm deep) were randomly collected throughout each population before seed dispersal in late May and early June 2005, 2008 and 2009 (Papers I and III).

In *A. lyrata*, soil samples were collected from 14 populations in southwestern Norway, in which the above-ground individuals were previously analysed by Gaudeul *et al.* (2007), (Paper II) in July 2006, before that year’s seed rain. Soil and rosette leaves from ten Icelandic populations of *A. lyrata* were sampled in 2009 (Paper IV).

A. thaliana seeds were sown in the greenhouse and leaf tissue was collected from one individual per maternal plant (Papers I and III). Soil samples were stored at 4 °C before germination trials to break dormancy of seeds. Thereafter, the soil was spread out in a thin layer on top of commercial potting soil in 12.8 × 14.5 cm pots to stimulate germination of seeds (Papers I, II, III and IV). Pots were placed in the greenhouse under 16 h day length for about 10 months until no more seedlings emerged. The temperature and humidity during the germination experiment were 20 °C and 65%, respectively. Leaf tissue from each emerged seedling was collected separately. The leaves obtained from above-ground individuals and seedlings emerging from the soil samples were dried at 45 °C for 24 h (Papers I, II, III and IV).

Molecular and data analyses

Genomic DNA was extracted from individual plants of above-ground and seed-bank cohorts using the E.Z.N.A.™ SP Plant DNA Kit (Omega Bio-Tek, Inc). *A. thaliana* samples were screened using 107 (Paper I) and 103 (Paper III) SNP markers described in Törjék *et al.* (2003). Eleven (Paper I) and twenty one (Paper III) SNPs were excluded with no call or low efficiency after genotyping. *A. lyrata* samples were screened with 15 (Paper II) and 21 (Paper IV) microsatellite markers. The primer sequences of flanking regions for microsatellite loci used in *A. lyrata* are described in Bell and Ecker (1994), Clauss *et al.* (2002), Loudet *et al.* (2002), and Kuittinen *et al.* (2004).
Seed bank density between species was compared using a Mann-Whitney U test (Paper II). The within-species variation between contrasting habitats was investigated by comparing density of seed bank in Icelandic $A. \text{lyrata}$ to that in Norwegian populations (Paper IV). Population genetic parameters and pairwise F_{ST} (Weir & Cockerham 1984) were estimated using Arlequin 3.5 (Excoffier et al. 2005), FSTAT (Goudet 1995) and Genepop (Rousset 2008; Papers I, II, III and IV). Analysis of molecular variance, AMOVA, was conducted using Arlequin (Paper I). Genetic structure was also inferred by model based Bayesian methods as implemented in Structure (Pritchard et al. 2000; Falush et al. 2003; Papers I, II and IV), BAPS (Corander & Marttinen 2006; Corander et al. 2008; Papers I and II) and Instruct (Gao et al. 2007; Paper III). The results of Bayesian analyses were summarized across multiple runs using CLUMPP (Jakobsson & Rosenberg 2007). Spatial structure was investigated using isolation by distance (IBD). IBD was performed by regressing genetic distance against geographical distance and the significant was tested by permutation test using GeneAlex (Peakall & Smouse 2006; Papers I and IV). Contemporary N_e was estimated with a linkage disequilibrium approach implemented in NeEstimator 1.3 (Peel et al. 2004; Paper II). Historical effective population size (N_e) was estimated based on a coalescent-based maximum likelihood method implemented in Migrate (Beerli & Felsenstein 1999, 2001; Papers I, II and IV). Dispersal in space was quantified by a conservative estimate based on distance criterion using an assignment test (Cornuet et al. 1999). Migration through pollen dispersal was also computed by identifying individuals carrying two or more private alleles at heterozygous SNP loci in each cohort. The effective migration rate, i.e. dispersal and establishment, was calculated combining both seed and pollen flow events for each population. Dispersal in time was estimated by assigning above-ground individuals sampled in 2009 to the previous above-ground cohorts using a distance based criterion (Nei et al. 1983) implemented in GeneClass2 (Piry et al. 2004). Analysis of variance, ANOVA, was conducted to test for differences between regions for various parameters (Iceland, Norway and Sweden) and the difference between regions was examined using a post hoc Bonferroni test (Paper IV). A Welch F test was used to examine differences in population differentiation (pairwise F_{ST}) among regions and multiple comparisons was conducted using Tamhane’s test (Paper IV). Analysis of covariance, ANCOVA, was used to test the regression slope of isolation by distance between regions (Paper IV). All statistical analyses were performed using SPSS version 16.
Results and discussion

Seed banks in A. thaliana and A. lyrata (Papers I and II)
The results revealed that both species maintained persistent seed banks in their northern European distribution range. The seed bank density as determined by the germination method varied considerably within A. thaliana and A. lyrata populations. Overall, the seedling density in A. thaliana was an order of magnitude higher than in A. lyrata. Because soil samples were collected before seed rain, any evidence of germination from soil samples indicates the presence of a persistent seed bank. Seed banks were detected in all A. thaliana populations in 2005. In contrast, in 2 out of 14 A. lyrata Norwegian populations, no seedlings were detected. The results may indicate that the existence of a persistent seed bank is more important for annual plants than for perennials. The discrepancy in seedling density between the study species can mainly be attributed to differences in life history traits, which is in agreement with theoretical predictions and empirical studies, showing that annual plants in general have higher reproductive output than perennials (Harper & Ogden 1970; Hirshfield & Tinkle 1975; Primack 1979). Moreover seed size in A. thaliana a priori is considerably smaller than A. lyrata and it has been shown that large seed species may capable less to persist in the soil for long time relative to small seed ones (Silvertown 1981; Thompson 1987). The results are in agreement with previous studies showing a higher seed bank density in annual than perennial species (e.g., Arroyo et al. 2006). Although the seed bank density in Icelandic populations of A. lyrata was 2.5 fold smaller than that in Norwegian populations, the difference was not statistically significant (P = 0.088). Most Icelandic A. lyrata populations either lacked completely a seed bank (30%) or had low seedling densities (60%; < 50 viable seeds pr m$^{-2}$) and in only one population the density of seed bank was high (10%; > 100 viable seeds pr m$^{-2}$). The results also showed no differences between population densities (rosettes per m$^{-2}$) between regions. Variation in seed production between regions may be attributed the differences in seed production rather than population density (Vergeer & Kunin 2011). Other ecological and biological factors such as soil particle size, soil nutrient levels, and microbial activities may also influence the density of seeds in the seed bank (Wagner & Mitschunas 2008; DeFalco et al. 2009)
Genetic diversity and structure (Papers I and II)
The level of genetic diversity did not vary between seed bank and above-ground cohorts in either *A. thaliana* or *A. lyrata*, suggesting that most genetic variability in the seed bank is present in above-ground cohorts. This has also been reported in other studies, both for annual and perennial species (Mahy *et al.* 1999; Mandák *et al.* 2006). The average between-cohort differentiation, i.e. between seed bank and above-ground plants, was considerably lower than that among populations for both *A. thaliana* and *A. lyrata*. Similarly, model based Bayesian clustering revealed a high level of structure in Norwegian populations of *A. lyrata* and *A. thaliana*. In *A. thaliana*, populations were assigned to 15 ancestral clusters based on seed-bank (2005 samples) and above-ground (2005 and 2006) data. In most populations the seed-bank and above-ground cohorts were genetically similar. A significant correlation was detected between genetic and geographical distance in Norwegian populations of *A. thaliana*, indicating isolation by distance pattern for all cohorts. This suggests a high level of gene flow relative to drift over short geographical distance, and relatively lower gene flow relative to genetic drift at longer distance (Hutchison & Templeton 1999). In *A. lyrata*, Bayesian clustering based on seed bank and above-ground data revealed a high level of structure among populations and most of seed bank and above-ground cohorts for each population were grouped to similar ancestral clusters.

Evolutionary consequences of seed banks (Papers I and II)
The contribution of the seed bank to total effective population size (*N*_e) was quantified by estimating the scaled mutation parameter (*θ*) for individual seed-bank (*θ*_S) and above-ground 2005 (*θ*_{A-5}) and combined (*θ*_T) cohorts using SNP data in *A. thaliana*. The results showed that the total *N*_e, i.e. when combining seed-bank and above-ground individuals, was greater than when considering the above-ground cohort alone. A similar result was observed based on estimates of historical and contemporary effective population size in *A. lyrata*. Interestingly, the relative ratio measured by *θ*_S/*θ*_T was higher in *A. thaliana* than *A. lyrata*, suggesting a weaker contribution of the seed bank to *N*_e in the later species. In *A. lyrata*, *θ*_{A-5}/*θ*_T was slightly lower than *θ*_S/*θ*_T, but not statistically significant, suggesting a similar contribution of both seed-bank and above-ground cohorts to total *N*_e. Although the historical effective *N*_e based on the coalescence method was significantly higher than contemporary *N*_e estimates, a similar relative ratio was obtained based on both methods for *A. lyrata*. Generation time in *A. thaliana* was estimated based on the model introduced by Vitalis *et al.* (2004). This was
conducted by estimating the total effective population size from a subset of populations using microsatellite data obtained from Stenøien et al. (2005). Thus, generation time in Norwegian populations of *A. thaliana* was found to be on average 4 years (range 1-8), and only two out of six (33%) populations showed a generation time of one year. This is a rough estimate of generation time in natural populations of plant species based on molecular data. This indicates that presence of seed bank elevate generation time by differential recruitment of seeds of different genotypes preserved in the soil. Taken together these results support theoretical expectations, that seed banks can substantially increase the total N_e in both annual and perennial species (Hairston & De Stasio 1988; Kaj et al. 2001; Nunney 2002; Vitalis et al. 2004; Waples 2006).

Pattern of dispersal in time and space in *A. thaliana* (Paper III)

A. thaliana can spread rapidly into new areas (Jørgensen & Mauricio 2004) and it has been suggested that local populations experience extensive metapopulation dynamics with occasional extinctions and subsequent recolonization by immigrations from other populations (Bergelson et al. 1998; Lavigne et al. 2001; Le Corre 2005). Both dispersal in space (immigration from other populations) and dispersal in time (regeneration from the seed bank) could contribute to recolonization (Husband & Barrett 1996). However, no studies have so far described the relative contribution of dispersal in space and time in plant populations. Through sampling the seed-bank and above-ground cohort in natural populations of *A. thaliana* over several years, it was possible to measure the level of migration within (dispersal in time) and between (immigration) populations. Evidence of immigration of seeds and/or pollen from other populations was observed in 49 out of 222 study cohorts, yielding an average migration rate of 1.8% per generation. Dispersal through seeds was considerably higher than pollen dispersal, with an average seed to pollen ratio being 7.06 across 10 populations. The estimated migration rate is considerably higher than what we may expected from the high F_{ST} values found across populations. The inconsistency between high population differentiation and high migration rate could be due to large effect of random genetic drift in purging rare migrants. However, one may expect a high migration rate for a weedy species that inhabits disturbed areas with a large anthropogenic impact. Moreover, some closely situated populations (< 1 km) were highly differentiated, suggesting the possible role of other factors such as long distance seed dispersal due to anthropogenic activities. Long distance dispersal has also been reported in other studies on *A. thaliana* that found common
multilocus genotypes were shared between populations (Bomblies et al. 2010; Lewandowska-Sabat et al. 2010).

Additionally dispersal in time was observed in one third of populations (10 out of 29) in which 29 % of seeds on average descended from two or three years before present. The average generation time for these populations exhibiting dispersal in time was 1.5 years. This is lower than the estimates based on historical effective population size (average 4 years). The discrepancy between two estimates is probably due to the fact that historical N_e reflects allelic variation over a long period relative to estimates based on short-term temporal sampling. In populations where no plants in the above ground were observed during field work in a given year, recolonization happened the subsequent year, likely due to regeneration from seed bank. This indicates a significant contribution of seed bank to population dynamic in Norwegian population of A. thaliana. In many cases a high fluctuation in genetic diversity between years observed in genetically diverse populations is mostly attributed to the variation in regeneration of distinct multilocus genotypes, MLGs, from the seed bank. The average between-year population differentiation was low ($F_{ST} = 0.095$). This was lower than that recently reported for A. thaliana surveyed over four years in southern Europe ($F_{ST} = 0.16$, Gomaa et al. 2011). In some populations the two most frequent MLGs were differentiated at only one SNP site, indicating a mutation as the source of variation. In addition, signature of historical recombination events was observed through the presence of all four possible allele combinations at two-locus haplotype in several populations (sensu Stumpf & McVean 2003). The results indicate that the current pattern of genetic variation in natural populations of A. thaliana in Norway is shaped by historical events such as mutation, colonization and recombination. Despite of frequent migrations events through seed and pollen dispersal in the natural populations of A. thaliana, seed bank play a substantial role in overall population dynamic.

Patterns of genetic diversity and structure of A. lyrata in contrasting regions (Paper IV)

Patterns of genetic diversity and differentiation in natural populations of A. lyrata were compared between three regions in northern Europe. The level of genetic differentiation among Icelandic populations ($F_{ST} = 0.1$; mean geographical distance 93 km, range 8.6-182 km) was smaller than observed for Swedish ($F_{ST} = 0.19$; mean geographical distance 40 km,
range 2-85 km) and Norwegian ($F_{ST} = 0.30$; mean geographical distance 165 km, range 2-385 km) populations. Additionally genetic differentiation among populations distributed over similar area in Icelandic was still considerably lower compared to Swedish and Norwegian populations. Genetic diversity in Icelandic populations ($H_E = 0.35$) was similar to that observed in Sweden ($H_E = 0.33$), and both were substantially higher than what found in Norwegian populations ($H_E = 0.25$). The discrepancy in the level of genetic diversity between regions is probably due to a high allelic richness in the Icelandic and Swedish populations compared with Norwegian ones. A significant relationship between genetic and geographical distance was observed in Icelandic populations ($r = 0.55$, $P = 0.01$) indicating a pattern of isolation by distance (IBD) and IBD was also evident in Norway and Sweden. However, the slope of the regression line (b) was steeper in Norwegian ($b = 0.44$) and Icelandic ($b = 0.45$) populations compared to Swedish ($b = 0.15$) populations. The observed pattern of IBD in Icelandic populations of *A. lyrata* is inconsistent to what Schierup *et al.* (2008) found when examining the self-incompatibility gene, S-locus. The observed IBD pattern at neutral markers is as expected because it has been shown that gene flow by both seed and pollen dispersal is restricted in *A. lyrata* (Schierup *et al.* 2006). IBD in natural populations of *A. lyrata* has also been documented in other studies, at both a local (Clauss & Mitchell-Olds 2006; Gaudeul *et al.* 2007) and continental scale (Muller *et al.* 2008; Ansell *et al.* 2010; Lloyd *et al.* 2011).

Interestingly, there was no significant differences in historical migration rate, M ($M = m/u$, where m and u are immigration and mutation rate per generation respectively) between regions. However, historical effective size measured based on theta (θ) was significantly larger in Icelandic than Swedish and Norwegian populations. The discrepancy between similar levels of genetic diversity, but considerably different historical sizes is probably due to higher private allelic richness found in Icelandic compared with Swedish populations. Icelandic populations, with low levels of population differentiation, exhibit larger effective population sizes compared to Scandinavian populations. It is therefore likely that the low level of population structure (F_{ST}) in Icelandic populations can be explained by a high historical effective population size, rather than high levels of gene flow.
Conclusions and further remarks

The results of this study show that both *A. thaliana* and *A. lyrata* maintain seed banks, preserve genetic variation and increase the effective population size in their distribution range in Norway. However, the investment in the seed bank is considerably higher in *A. thaliana* than in *A. Lyrata*, and is consistent with other studies showing high seed bank density in annuals relative to perennials. Rapid germination of *A. lyrata* seeds probably leads to low seed bank densities, while the large seed size limits the dispersal ability. In *A. thaliana*, the results indicate that populations experience a relatively high degree of immigration from other populations (dispersal in space), a pattern which is expected from a weedy species inhabiting disturbed habitats impacted by human activities. Moreover, one third of the populations exhibit dispersal in time. Further studies should be aimed at understanding the molecular mechanisms of this. This is the first study that attempts to estimate real-time migration rate and dispersal in time in plant populations. More studies are therefore needed to test whether the observed pattern is valid for other plants, and to develop better models to understand the process.

Comparing patterns of genetic diversity and structure in *A. lyrata* populations from different regions revealed extremely low population differentiation among Icelandic populations compared to in Scandinavia. This pattern is more likely due to large effective population size rather than immigration *per se*, and this suggests that comparing patterns of genetic structure between habitats could be a powerful approach to understand the evolutionary mechanisms behind the current distribution of plant species.
References

Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19, 137-144.

Lloyd MW, Roche B, Roberts RP (2011) Genetic variation and population structure of Arabidopsis lyrata ssp. lyrata (Brassicaceae) along the eastern seaboard of North America. Castanea 76, 28-42.

Paper I
Is not included due to copyright
Paper II
Is not included due to copyright
Is not included due to copyright
Paper IV
Is not included due to copyright
Doctoral theses in Biology

Norwegian University of Science and Technology
Department of Biology

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Degree</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>Tor-Henning Iversen</td>
<td>Dr. philos</td>
<td>The roles of statoliths, auxin transport, and auxin metabolism in root gravitropism</td>
</tr>
<tr>
<td>1978</td>
<td>Tore Slagsvold</td>
<td>Dr. philos</td>
<td>Breeding events of birds in relation to spring temperature and environmental phenology</td>
</tr>
<tr>
<td>1978</td>
<td>Egil Sakshaug</td>
<td>Dr.philos</td>
<td>“The influence of environmental factors on the chemical composition of cultivated and natural populations of marine phytoplankton”</td>
</tr>
<tr>
<td>1980</td>
<td>Arnfinn Langeland</td>
<td>Dr. philos</td>
<td>Interaction between fish and zooplankton populations and their effects on the material utilization in a freshwater lake</td>
</tr>
<tr>
<td>1980</td>
<td>Helge Reinertsen</td>
<td>Dr. philos</td>
<td>The effect of lake fertilization on the dynamics and stability of a limnetic ecosystem with special reference to the phytoplankton</td>
</tr>
<tr>
<td>1982</td>
<td>Gunn Mari Olsen</td>
<td>Dr. scient</td>
<td>Gravitropism in roots of Pisum sativum and Arabidopsis thaliana</td>
</tr>
<tr>
<td>1982</td>
<td>Dag Dolmen</td>
<td>Dr. philos</td>
<td>Life aspects of two sympatric species of newts (Triturus, Amphibia) in Norway, with special emphasis on their ecological niche segregation</td>
</tr>
<tr>
<td>1984</td>
<td>Eivin Røskaft</td>
<td>Dr. philos</td>
<td>Sociobiological studies of the rook Corvus frugilegus</td>
</tr>
<tr>
<td>1984</td>
<td>Anne Margrethe Cameron</td>
<td>Dr. scient</td>
<td>Effects of alcohol inhalation on levels of circulating testosterone, follicle stimulating hormone and luteinizing hormone in male mature rats</td>
</tr>
<tr>
<td>1984</td>
<td>Asbjørn Magne Nilsen</td>
<td>Dr. scien</td>
<td>Alveolar macrophages from expectorates – Biological monitoring of workers exposed to occupational air pollution. An evaluation of the AM-test</td>
</tr>
<tr>
<td>1985</td>
<td>Jarle Mork</td>
<td>Dr. philos</td>
<td>Biochemical genetic studies in fish</td>
</tr>
<tr>
<td>1985</td>
<td>John Solem</td>
<td>Dr. philos</td>
<td>Taxonomy, distribution and ecology of caddisflies (Trichoptera) in the Dovrefjell mountains</td>
</tr>
<tr>
<td>1985</td>
<td>Randi E. Reinertsen</td>
<td>Dr. philos</td>
<td>Energy strategies in the cold: Metabolic and thermoregulatory adaptations in small northern birds</td>
</tr>
<tr>
<td>1986</td>
<td>Bernt-Erik Sarther</td>
<td>Dr. philos</td>
<td>Ecological and evolutionary basis for variation in reproductive traits of some vertebrates: A comparative approach</td>
</tr>
<tr>
<td>1986</td>
<td>Torleif Holthe</td>
<td>Dr. philos</td>
<td>Evolution, systematics, nomenclature, and zoogeography in the polychaete orders Oweniniomorpha and Terebellomorpha, with special reference to the Arctic and Scandinavian fauna</td>
</tr>
<tr>
<td>1987</td>
<td>Helene Lampe</td>
<td>Dr. scient</td>
<td>The function of bird song in mate attraction and territorial defence, and the importance of song repertoires</td>
</tr>
<tr>
<td>1987</td>
<td>Olav Hogstad</td>
<td>Dr. philos</td>
<td>Winter survival strategies of the Willow tit Parus montanus</td>
</tr>
<tr>
<td>1987</td>
<td>Jarle Inge Holten</td>
<td>Dr. philos</td>
<td>Autecological investigations along a coast-inland transect at Nord-Møre, Central Norway</td>
</tr>
</tbody>
</table>
1987 Rita Kumar Dr. scient Botany Somaclonal variation in plants regenerated from cell cultures of Nicotiana sanderae and Chrysanthemum morifolium

1987 Bjørn Åge Tømmerås Dr. scient. Zoolog Olfaction in bark beetle communities: Interspecific interactions in regulation of colonization density, predator - prey relationship and host attraction

1988 Hans Christian Pedersen Dr. philos Zoology Reproductive behaviour in willow ptarmigan with special emphasis on territoriality and parental care

1988 Tor G. Heggberget Dr. philos Zoology Reproduction in Atlantic Salmon (Salmo salar): Aspects of spawning, incubation, early life history and population structure

1988 Marianne V. Nielsen Dr. scient Zoology The effects of selected environmental factors on carbon allocation/growth of larval and juvenile mussels (Mytilus edulis)

1988 Ole Kristian Berg Dr. scient Zoology The formation of landlocked Atlantic salmon (Salmo salar L.)

1989 John W. Jensen Dr. philos Zoology Crustacean plankton and fish during the first decade of the manmade Nesjø reservoir, with special emphasis on the effects of gill nets and salmonid growth

1989 Helga J. Vivås Dr. scient Zoology Theoretical models of activity pattern and optimal foraging: Predictions for the Moose Alces alces

1989 Reidar Andersen Dr. scient Zoology Interactions between a generalist herbivore, the moose Alces alces, and its winter food resources: a study of behavioural variation

1989 Kurt Ingar Draget Dr. scient Botany Alginate gel media for plant tissue culture

1990 Bengt Finstad Dr. scient Zoology Osmotic and ionic regulation in Atlantic salmon, rainbow trout and Arctic char: Effect of temperature, salinity and season

1990 Hege Johannesen Dr. scient Zoology Respiration and temperature regulation in birds with special emphasis on the oxygen extraction by the lung

1990 Åse Krokkje Dr. scient Botany The mutagenic load from air pollution at two workplaces with PAH-exposure measured with Ames Salmonella/microsome test

1990 Arne Johan Jensen Dr. philos Zoology Effects of water temperature on early life history, juvenile growth and prespawning migrations of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta): A summary of studies in Norwegian streams

1990 Tor Jørgen Almaas Dr. scient Zoology Pheromone reception in moths: Response characteristics of olfactory receptor neurons to intra- and interspecific chemical cues

1990 Magne Husby Dr. scient Zoology Breeding strategies in birds: Experiments with the Magpie Pica pica

1991 Tor Kvang Dr. scient Zoology Population biology of the European lynx (Lynx lynx) in Norway

1991 Jan Henning L'Abèe Lund Dr. philos Zoology Reproductive biology in freshwater fish, brown trout Salmo trutta and roach Rutilus rutilus in particular

1991 Asbjørn Moen Dr. philos Botany The plant cover of the boreal uplands of Central Norway, L Vegetation ecology of Solendet nature reserve; haymaking fens and birch woodlands

1991 Else Marie Løbersli Dr. scient Botany Soil acidification and metal uptake in plants

1991 Trond Nordtug Dr. scient Zoology Reflctometric studies of photomechanical adaptation in superposition eyes of arthropods

1991 Thyra Solem Dr. scient Botany Age, origin and development of blanket mires in Central Norway
1991 Odd Terje Sandlund
Dr. philos
Zoology
The dynamics of habitat use in the salmonid genera *Coregonus* and *Salvelinus*: Ontogenetic niche shifts and polymorphism

1991 Nina Jonsson
Dr. philos
Zoology
Aspects of migration and spawning in salmonids

1991 Atle Bones
Dr. scient
Botany
Compartmentation and molecular properties of thioglucoside glucohydrolase (myrosinase)

1992 Torgrim Breihagen
Dr. scient
Zoology
Mating behaviour and evolutionary aspects of the breeding system of two bird species: the Temminck's stint and the Pied flycatcher

1992 Anne Kjersti Bakken
Dr. scient
Botany
The influence of photoperiod on nitrate assimilation and nitrogen status in timothy (*Phleum pratense* L.)

1992 Tycho Anker-Nilssen
Dr. scient
Botany
Food supply as a determinant of reproduction and population development in Norwegian Puffins *Fratercula arctica*

1992 Bjørn Munro Jenssen
Dr. philos
Zoology
Thermoregulation in aquatic birds in air and water: With special emphasis on the effects of crude oil, chemically treated oil and cleaning on the thermal balance of ducks

1992 Arne Vollan Aarset
Dr. philos
Zoology
The ecophysiology of under-ice fauna: Osmotic regulation, low temperature tolerance and metabolism in polar crustaceans.

1993 Geir Slupphaug
Dr. scient
Botany
Regulation and expression of uracil-DNA glycosylase and O6-methylguanine-DNA methyltransferase in mammalian cells

1993 Tor Fredrik Næsje
Dr. scient
Zoology
Habitat shifts in coregonids.

1993 Yngvar Asbjørn Olsen
Dr. scient
Zoology
Cortisol dynamics in Atlantic salmon, *Salmo salar*: Basal and stressor-induced variations in plasma levels and some secondary effects.

1993 Bård Pederssen
Dr. scient
Botany
Theoretical studies of life history evolution in modular and clonal organisms

1993 Ole Petter Thangstad
Dr. scient
Botany
Molecular studies of myrosinase in Brassicaceae

1993 Thrine L. M. Heggberget
Dr. scient
Zoology
Reproductive strategy and feeding ecology of the Eurasian otter *Lutra lutra*.

1993 Kjetil Bevanger
Dr. scient.
Zoology
Avian interactions with utility structures, a biological approach.

1993 Kåre Haugan
Dr. scient
Botany
Mutations in the replication control gene trfA of the broad host-range plasmid RK2

1994 Peder Fiske
Dr. scient
Zoology
Sexual selection in the lekking great snipe (*Gallinago media*): Male mating success and female behaviour at the lek

1994 Kjell Inge Reitan
Dr. scient
Botany
Nutritional effects of algae in first-feeding of marine fish larvae

1994 Nils Rav
Dr. scient
Zoology
Breeding distribution, population status and regulation of breeding numbers in the northeast-Atlantic Great Cormorant *Phalacrocorax carbo carbo*

1994 Annette-Susanne Hoepfner
Dr. scient
Botany
Tissue culture techniques in propagation and breeding of Red Raspberry (*Rubus idaeus* L.)

1994 Inga Elise Bruteig
Dr. scient
Botany
Distribution, ecology and biomonitoring studies of epiphytic lichens on conifers

1994 Geir Johansen
Dr. scient
Botany
Species-specific and photoadaptive responses in light harvesting and utilization in marine phytoplankton

1994 Morten Bakken
Dr. scient
Zoology
Infanticidal behaviour and reproductive performance in relation to competition capacity among farmed silver fox vixens, *Vulpes vulpes*
1994 Arne Moksnes Dr. philos Zoology Host adaptations towards brood parasitism by the Cockoo
1994 Solveig Bakken Dr. scient Botany Growth and nitrogen status in the moss Dicranum majus Sm. as influenced by nitrogen supply
1994 Torbjørn Forseth Dr. scient Zoology Bioenergetics in ecological and life history studies of fishes.
1995 Olav Vadstein Dr. philos Botany The role of heterotrophic planktonic bacteria in the cycling of phosphorus in lakes: Phosphorus requirement, competitive ability and food web interactions
1995 Hanne Christensen Dr. scient Zoology Determinants of Otter Lutra lutra distribution in Norway: Effects of harvest, polychlorinated biphenyls (PCBs), human population density and competition with mink Mustela vision
1995 Svein Håkon Lorentsen Dr. scient Zoology Reproductive effort in the Antarctic Petrel Thalassoica antarctica; the effect of parental body size and condition
1995 Chris Jørgen Jensen Dr. scient Zoology The surface electromyographic (EMG) amplitude as an estimate of upper trapezius muscle activity
1995 Martha Kold Bakkevig Dr. scient Zoology The impact of clothing textiles and construction in a clothing system on thermoregulatory responses, sweat accumulation and heat transport
1995 Vidar Moen Dr. scient Zoology Distribution patterns and adaptations to light in newly introduced populations of Mysis relicta and constraints on Cladoceran and Char populations
1995 Hans Haavardsholm Blom Dr. philos Botany A revision of the Schistidium apocarpum complex in Norway and Sweden
1996 Jorun Skjærmo Dr. scient Botany Microbial ecology of early stages of cultivated marine fish; impact fish-bacterial interactions on growth and survival of larvae
1995 Ole Ugedal Dr. scient Zoology Radioesium turnover in freshwater fishes
1996 Inghjørg Einarsdottir Dr. scient Zoology Production of Atlantic salmon (Salmo salar) and Arctic char (Salvelinus alpinus): A study of some physiological and immunological responses to rearing routines
1996 Christina M. S. Pereira Dr. scient Zoology Glucose metabolism in salmonids: Dietary effects and hormonal regulation
1996 Jan Fredrik Børseth Dr. scient Zoology The sodium energy gradients in muscle cells of Mytilus edulis and the effects of organic xenobiotics
1996 Gunnar Henriksen Dr. scient Zoology Status of Grey seal Halichoerus grypus and Harbour seal Phoca vitulina in the Barents sea region
1997 Gunvor Øie Dr. scient Botany Evalutation of rotifer Brachionus plicatilis quality in early first feeding of turbots Scophthalmus maximus L. larvae
1997 Håkon Holien Dr. scient Botany Studies of lichens in sparcce forest of Central Norway, Diversity, old growth species and the relationship to site and stand parameters
1997 Ole Reitan Dr. scient. Zoology Responses of birds to habitat disturbance due to damming
1997 Jon Arne Grottum Dr. scient. Zoology Physiological effects of reduced water quality on fish in aquaculture
1997 Per Gustav Thingstad Dr. scient. Zoology Birds as indicators for studying natural and human-induced variations in the environment, with special emphasis on the suitability of the Pied Flycatcher
1997 Torgeir Nygård Dr. scient Zoology Temporal and spatial trends of pollutants in birds in Norway: Birds of prey and Willow Grouse used as Biomonitors
1997 Signe Nybø Dr. scient. Zoology Impacts of long-range transported air pollution on birds with particular reference to the dipper *Cinclus cinclus* in southern Norway

1997 Atle Wibe Dr. scient. Zoology Identification of conifer volatiles detected by receptor neurons in the pine weevil (*Hylobius abietis*), analysed by gas chromatography linked to electrophysiology and to mass spectrometry

1997 Rolv Lundheim Dr. scient. Zoology Adaptive and incidental biological ice nucleators

1997 Arild Magne Landa Dr. scient. Zoology Wolverines in Scandinavia: ecology, sheep depredation and conservation

1997 Kåre Magne Nielsen Dr. scient. Botany An evolution of possible horizontal gene transfer from plants to soil bacteria by studies of natural transformation in *Acinetobacter calcoacetius*

1997 Jarle Tufto Dr. scient. Zoology Gene flow and genetic drift in geographically structured populations: Ecological, population genetic, and statistical models

1997 Trygve Hesthagen Dr. philos Zoology Population responses of Arctic char (*Salvelinus alpinus* (L.)) and brown trout (*Salmo trutta* L.) to acidification in Norwegian inland waters

1997 Trygve Sigholt Dr. philos Zoology Control of Parr-smolt transformation and seawater tolerance in farmed Atlantic Salmon (*Salmo salar*) Effects of photoperiod, temperature, gradual seawater acclimation, NaCl and betaine in the diet

1997 Jan Østnes Dr. scient. Zoology Cold sensation in adult and neonate birds

1998 Seethaledsumy Visvalingam Dr. scient. Botany Influence of environmental factors on myrosinases and myrosinase-binding proteins

1998 Thor Harald Ringsby Dr. scient. Zoology Variation in space and time: The biology of a House sparrow metapopulation

1998 Erling Johan Solberg Dr. scient. Zoology Variation in population dynamics and life history in a Norwegian moose (*Alces alces*) population: consequences of harvesting in a variable environment

1998 Sigurd Mjøen Saastad Dr. scient. Botany Species delimitation and phylogenetic relationships between the *Sphagnum recurvum* complex (Bryophyta): genetic variation and phenotypic plasticity

1998 Bjarte Mortensen Dr. scient. Botany Metabolism of volatile organic chemicals (VOCs) in a head liver S9 vial equilibration system in vitro

1998 Gunnar Austrheim Dr. scient. Botany Plant biodiversity and land use in subalpine grasslands. – A conservation biological approach

1998 Bente Gunnveig Berg Dr. scient. Zoology Encoding of pheromone information in two related moth species

1999 Kristian Overskaug Dr. scient. Zoology Behavioural and morphological characteristics in Northern Tawny Owls *Strix aluco*: An intra- and interspecific comparative approach

1999 Hans Kristen Stensøien Dr. scient. Botany Genetic studies of evolutionary processes in various populations of nonvascular plants (mosses, liverworts and hornworts)

1999 Trond Arnøsen Dr. scient. Botany Vegetation dynamics following trampling and burning in the outlying haylands at Selendet, Central Norway

1999 Ingvat Stenberg Dr. scient. Zoology Habitat selection, reproduction and survival in the White-backed Woodpecker *Dendrocopos leucotos*

1999 Stein Olle Johansen Dr. scient. Botany A study of driftwood dispersal to the Nordic Seas by dendrochronology and wood anatomical analysis
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Degree</th>
<th>Department</th>
<th>Research Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Trina Falck Galloway</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Muscle development and growth in early life stages of the Atlantic cod (Gadus morhua L.) and Halibut (Hippoglossus hippoglossus L.)</td>
</tr>
<tr>
<td>1999</td>
<td>Marianne Giæver</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Population genetic studies in three gadoid species: blue whiting (Micromesistius poutassou), haddock (Melanogrammus aeglefinus) and cod (Gadus morhua) in the North-East Atlantic</td>
</tr>
<tr>
<td>1999</td>
<td>Hans Martin Hanslin</td>
<td>Dr. scient</td>
<td>Botany</td>
<td>The impact of environmental conditions of density dependent performance in the boreal forest bryophytes Dicranum majus, Hylocomium splendens, Plagiochila asplenigudises, Pilium cristae-castrensis and Rhytidadelphus lokeus</td>
</tr>
<tr>
<td>1999</td>
<td>Ingrid Bysveen Mjølnerød</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Aspects of population genetics, behaviour and performance of wild and farmed Atlantic salmon (Salmo salar) revealed by molecular genetic techniques</td>
</tr>
<tr>
<td>1999</td>
<td>Else Berit Skagen</td>
<td>Dr. scient</td>
<td>Botany</td>
<td>The early regeneration process in protoplasts from Brassica napus hypocotyls cultivated under various g- forces</td>
</tr>
<tr>
<td>1999</td>
<td>Stein-Are Sæther</td>
<td>Dr. philos</td>
<td>Zoology</td>
<td>Mate choice, competition for mates, and conflicts of interest in the Lekking Great Snipe</td>
</tr>
<tr>
<td>1999</td>
<td>Katrine Wangen Rustad</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Modulation of glutamatergic neurotransmission related to cognitive dysfunctions and Alzheimer’s disease</td>
</tr>
<tr>
<td>1999</td>
<td>Per Terje Smiseth</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Social evolution in monogamous families: mate choice and conflicts over parental care in the Bluetthroat (Luscinia s. svecica)</td>
</tr>
<tr>
<td>1999</td>
<td>Gunnbjørn Bremset</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Young Atlantic salmon (Salmo salar L.) and Brown trout (Salmo trutta L.) inhabiting the deep pool habitat, with special reference to their habitat use, habitat preferences and competitive interactions</td>
</tr>
<tr>
<td>1999</td>
<td>Frode Ødegaard</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Host specificity as parameter in estimates of arthropod species richness</td>
</tr>
<tr>
<td>1999</td>
<td>Sonja Andersen</td>
<td>Dr. scient</td>
<td>Botany</td>
<td>Expresional and functional analyses of human, secretory phospholipase A2</td>
</tr>
<tr>
<td>2000</td>
<td>Ingrid Salvesen</td>
<td>Dr. scient</td>
<td>Botany</td>
<td>Microbial ecology in early stages of marine fish: Development and evaluation of methods for microbial management in intensive larviculture</td>
</tr>
<tr>
<td>2000</td>
<td>Ingear Jostein Øien</td>
<td>Dr. scient</td>
<td>Botany</td>
<td>The Cuckoo (Cuculus canorus) and its host: adaptations and counteradaptations in a coevolutionary arms race</td>
</tr>
<tr>
<td>2000</td>
<td>Pavlos Makridis</td>
<td>Dr. scient</td>
<td>Botany</td>
<td>Methods for the microbial control of live food used for the rearing of marine fish larvae</td>
</tr>
<tr>
<td>2000</td>
<td>Sigbjørn Stokke</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Sexual segregation in the African elephant (Loxodonta africana)</td>
</tr>
<tr>
<td>2000</td>
<td>Odd A. Gulseth</td>
<td>Dr. philos</td>
<td>Zoology</td>
<td>Seawater tolerance, migratory behaviour and growth of Charr, (Salvelinus alpinus), with emphasis on the high Arctic Diesel charr on Spitsbergen, Svalbard</td>
</tr>
<tr>
<td>2000</td>
<td>Pål A. Olsvik</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Biochemical impacts of Cd, Cu and Zn on brown trout (Salmo trutta) in two mining-contaminated rivers in Central Norway</td>
</tr>
<tr>
<td>2000</td>
<td>Sigurd Einum</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Maternal effects in fish: Implications for the evolution of breeding time and egg size</td>
</tr>
<tr>
<td>2001</td>
<td>Jan Ove Evjem</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Production and nutritional adaptation of the brine shrimp Artemia sp. as live food organism for larvae of marine cold water fish species</td>
</tr>
<tr>
<td>2001</td>
<td>Olga Hilmo</td>
<td>Dr. scient</td>
<td>Botany</td>
<td>Lichen response to environmental changes in the managed boreal forest systems</td>
</tr>
<tr>
<td>Year</td>
<td>Name</td>
<td>Degree</td>
<td>Subject</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>2001</td>
<td>Ingebrigt Uglem</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Male dimorphism and reproductive biology in corkwing wrasse (\text{Symphodus melops L.})</td>
</tr>
<tr>
<td>2001</td>
<td>Bård Gunnar Stokke</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Coevolutionary adaptations in avian brood parasites and their hosts</td>
</tr>
<tr>
<td>2002</td>
<td>Ronny Aanes</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Spatio-temporal dynamics in Svalbard reindeer (\text{Rangifer tarandus platyrhynchus})</td>
</tr>
<tr>
<td>2002</td>
<td>Mariann Sandsund</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>Exercise- and cold-induced asthma. Respiratory and thermoregulatory responses</td>
</tr>
<tr>
<td>2002</td>
<td>Dag-Inge Øien</td>
<td>Dr. scient</td>
<td>Botany</td>
<td>Dynamics of plant communities and populations in boreal vegetation influenced by scything at Solendet, Central Norway</td>
</tr>
<tr>
<td>2002</td>
<td>Frank Rosell</td>
<td>Dr. scient</td>
<td>Zoology</td>
<td>The function of scent marking in beaver (\text{Castor fiber})</td>
</tr>
<tr>
<td>2002</td>
<td>Janne Østvang</td>
<td>Dr. scient</td>
<td>Botany</td>
<td>The Role and Regulation of Phospholipase A(_2) in Monocytes During Atherosclerosis Development</td>
</tr>
<tr>
<td>2002</td>
<td>Terje Thun</td>
<td>Dr.philos</td>
<td>Biology</td>
<td>Dendrochronological constructions of Norwegian conifer chronologies providing dating of historical material</td>
</tr>
<tr>
<td>2002</td>
<td>Birgit Hafjeld Borgen</td>
<td>Dr. scient</td>
<td>Biology</td>
<td>Functional analysis of plant idioblasts (Myrosin cells) and their role in defense, development and growth</td>
</tr>
<tr>
<td>2002</td>
<td>Bård Øyvind Solberg</td>
<td>Dr. scient</td>
<td>Biology</td>
<td>Effects of climatic change on the growth of dominating tree species along major environmental gradients</td>
</tr>
<tr>
<td>2002</td>
<td>Per Winge</td>
<td>Dr. scient</td>
<td>Biology</td>
<td>The evolution of small GTP binding proteins in cellular organisms. Studies of RAC GT Pases in (\text{Arabidopsis thaliana}) and the Ral GT Pase from (\text{Drosophila melanogaster})</td>
</tr>
<tr>
<td>2002</td>
<td>Henrik Jensen</td>
<td>Dr. scient</td>
<td>Biology</td>
<td>Causes and consequences of individual variation in fitness-related traits in house sparrows</td>
</tr>
<tr>
<td>2003</td>
<td>Jens Rohloff</td>
<td>Dr. philos</td>
<td>Biology</td>
<td>Cultivation of herbs and medicinal plants in Norway – Essential oil production and quality control</td>
</tr>
<tr>
<td>2003</td>
<td>Åsa Maria O. Espmark Wibe</td>
<td>Dr. scient</td>
<td>Biology</td>
<td>Behavioural effects of environmental pollution in threospine stickleback (\text{Gasterosteus aculeatus}) L.</td>
</tr>
<tr>
<td>2003</td>
<td>Dagmar Hagen</td>
<td>Dr. scient</td>
<td>Biology</td>
<td>Assisted recovery of disturbed arctic and alpine vegetation – an integrated approach</td>
</tr>
<tr>
<td>2003</td>
<td>Bjørn Dahle</td>
<td>Dr. scient</td>
<td>Biology</td>
<td>Reproductive strategies in Scandinavian brown bears</td>
</tr>
<tr>
<td>2003</td>
<td>Cyril Lebogang Taolo</td>
<td>Dr. scient</td>
<td>Biology</td>
<td>Population ecology, seasonal movement and habitat use of the African buffalo (\text{Syncerus caffer}) in Chobe National Park, Botswana</td>
</tr>
<tr>
<td>2003</td>
<td>Marit Stranden</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Olfactory receptor neurones specified for the same odorants in three related Heliothine species (\text{Helicoverpa armigera, Helicoverpa assulta and Heliothis virescens})</td>
</tr>
<tr>
<td>2003</td>
<td>Kristian Hassel</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Life history characteristics and genetic variation in an expanding species, (\text{Pogonatum dentatum})</td>
</tr>
<tr>
<td>2003</td>
<td>David Alexander Rae</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Plant- and invertebrate-community responses to species interaction and microclimatic gradients in alpine and Artic environments</td>
</tr>
<tr>
<td>2003</td>
<td>Åsa A Borg</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Sex roles and reproductive behaviour in gobies and guppies: a female perspective</td>
</tr>
<tr>
<td>2003</td>
<td>Eldar Ásgard Bendiksen</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Environmental effects on lipid nutrition of farmed Atlantic salmon (\text{Salmo Salar}) L. parr and smolt</td>
</tr>
<tr>
<td>2004</td>
<td>Torkild Bakken</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>A revision of Nereidinae (Polychaeta, Nereididae)</td>
</tr>
<tr>
<td>2004</td>
<td>Ingar Pareliussen</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Natural and Experimental Tree Establishment in a Fragmented Forest, Ambohitantely Forest Reserve, Madagascar</td>
</tr>
<tr>
<td>Year</td>
<td>Name</td>
<td>Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Tore Brembu Dr.scient</td>
<td>Genetic, molecular and functional studies of RAC GTPases and the WAVE-like regulatory protein complex in Arabidopsis thaliana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Liv S. Nilsen Dr.scient</td>
<td>Coastal heath vegetation on central Norway; recent past, present state and future possibilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Hanne T. Skiri Dr.scient</td>
<td>Olfactory coding and olfactory learning of plant odours in heliothine moths. An anatomical, physiological and behavioural study of three related species (Heliothis virescens, Helicoverpa armigera and Helicoverpa assulta)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Lene Østby Dr.scient</td>
<td>Cytochrome P4501A (CYP1A) induction and DNA adducts as biomarkers for organic pollution in the natural environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Emmanuel J. Gerreta Dr. philos</td>
<td>The Importance of Water Quality and Quantity in the Tropical Ecosystems, Tanzania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Linda Dalen Dr.scient</td>
<td>Dynamics of Mountain Birch Treelines in the Scandes Mountain Chain, and Effects of Climate Warming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Lisbeth Mehli Dr.scient</td>
<td>Polygalacturonase-inhibiting protein (PGIP) in cultivated strawberry (Fragaria x ananassa): characterisation and induction of the gene following fruit infection by Botrytis cinerea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Børge Moe Dr.scient</td>
<td>Energy-Allocation in Avian Nestlings Facing Short-Term Food Shortage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Matilde Skogen Dr.scient</td>
<td>Metabolic profiling and species discrimination from High-Resolution Magic Angle Spinning NMR analysis of whole-cell samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Sten Karlsson Dr.scient</td>
<td>Dynamics of Genetic Polymorphisms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Terje Bongard Dr.scient</td>
<td>Life History strategies, mate choice, and parental investment among Norwegians over a 300-year period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Tonette Røstelien ph.d</td>
<td>Functional characterisation of olfactory receptor neurone types in heliothine moths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Erlend Kristiansen Dr.scient</td>
<td>Studies on antifreeze proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Eugen G. Sørmo Dr.scient</td>
<td>Organochlorine pollutants in grey seal (Halichoerus grypus) pups and their impact on plasma thyroid hormone and vitamin A concentrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Christian Westad Dr.scient</td>
<td>Motor control of the upper trapezius</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Lasse Mork Olsen ph.d</td>
<td>Interactions between marine osmo- and phagotrophs in different physicochemical environments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Åslaug Viken ph.d</td>
<td>Implications of mate choice for the management of small populations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Ariaya Hymete Sahle Dingle ph.d</td>
<td>Investigation of the biological activities and chemical constituents of selected Echinops spp. growing in Ethiopia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Anders Gravbøst Finstad ph.d</td>
<td>Salmonid fishes in a changing climate: The winter challenge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Shimane Washington Makabu ph.d</td>
<td>Interactions between woody plants, elephants and other browsers in the Chobe Riverfront, Botswana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Kjartan Østbye Dr.scient</td>
<td>The European whitefish Coregonus lavaretus (L.) species complex: historical contingency and adaptive radiation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2006 Kari Mette Murvoll
Biology
ph.d
Levels and effects of persistent organic pollutants (POPs) in seabirds
Retinoids and \(\alpha \)-tocopherol – potential biomarkers of POPs in birds?

2006 Ivar Herfindal
Biology
Dr.scient
Life history consequences of environmental variation along ecological gradients in northern ungulates

2006 Nils Egil Tokle
Biology
ph.d
Are the ubiquitous marine copepods limited by food or predation? Experimental and field-based studies with main focus on *Calanus finmarchicus*

2006 Jan Ove Gjershaug
Biology
Dr.philos
Taxonomy and conservation status of some booted eagles in south-east Asia

2006 Jon Kristian Skei
Biology
Dr.scient
Conservation biology and acidification problems in the breeding habitat of amphilians in Norway

2006 Johanna Järnegren
Biology
ph.d
Aceta Oophaga and Aceta Excavata – a study of hidden biodiversity

2006 Bjørn Henrik Hansen
Biology
ph.d
Metal-mediated oxidative stress responses in brown trout (*Salmo trutta*) from mining contaminated rivers in Central Norway

2006 Vidar Grøtan
Biology
ph.d
Temporal and spatial effects of climate fluctuations on population dynamics of vertebrates

2006 Jafari R Kideghesho
Biology
ph.d
Wildlife conservation and local land use conflicts in western Serengeti, Corridor Tanzania

2006 Anna Maria Billing
Biology
ph.d
Reproductive decisions in the sex role reversed pipefish *Syngnathus typhle*: when and how to invest in reproduction

2006 Henrik Pärn
Biology
ph.d
Female ornaments and reproductive biology in the bluethroat

2006 Anders J. Fjellheim
Biology
ph.d
Selection and administration of probiotic bacteria to marine fish larvae

2006 P. Andreas Svensson
Biology
ph.d
Female coloration, egg carotenoids and reproductive success: gobies as a model system

2006 Sindre A. Pedersen
Biology
ph.d
Metal binding proteins and antifreeze proteins in the beetle *Tenebrio molitor* - a study on possible competition for the semi-essential amino acid cysteine

2006 Kasper Hancke
Biology
ph.d
Photosynthetic responses as a function of light and temperature: Field and laboratory studies on marine microalgae

2006 Tomas Holmern
Biology
ph.d
Bushmeat hunting in the western Serengeti: Implications for community-based conservation

2006 Kari Jørgensen
Biology
ph.d
Functional tracing of gustatory receptor neurons in the CNS and chemosensory learning in the moth *Helothis virens*

2006 Stig Ulland
Biology
ph.d
Functional Characterisation of Olfactory Receptor Neurons in the Cabbage Moth, (*Mamestra brassicae* L.) (Lepidoptera, Noctuidae). Gas Chromatography Linked to Single Cell Recordings and Mass Spectrometry

2007 Snorre Henriksen
Biology
ph.d
Spatial and temporal variation in herbivore resources at northern latitudes

2007 Roelof Frans May
Biology
ph.d
Spatial Ecology of Wolverines in Scandinavia

2007 Vedasto Gabriel Ndiblema
Biology
ph.d
Demographic variation, distribution and habitat use between wildebeest sub-populations in the Serengeti National Park, Tanzania
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Degree</th>
<th>Field</th>
<th>Research Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Julius William Nyahongo</td>
<td>ph.d</td>
<td>Biology</td>
<td>Depredation of Livestock by wild Carnivores and Illegal Utilization of Natural Resources by Humans in the Western Serengeti, Tanzania</td>
</tr>
<tr>
<td>2007</td>
<td>Shombe Ntaraluka Hassan</td>
<td>ph.d</td>
<td>Biology</td>
<td>Effects of fire on large herbivores and their forage resources in Serengeti, Tanzania</td>
</tr>
<tr>
<td>2007</td>
<td>Per-Arvid Wold</td>
<td>ph.d</td>
<td>Biology</td>
<td>Functional development and response to dietary treatment in larval Atlantic cod (Gadus morhua L.) Focus on formulated diets and early weaning</td>
</tr>
<tr>
<td>2007</td>
<td>Anne Skjetne Mortensen</td>
<td>ph.d</td>
<td>Biology</td>
<td>Toxicogenomics of Aryl Hydrocarbon- and Estrogen Receptor Interactions in Fish: Mechanisms and Profiling of Gene Expression Patterns in Chemical Mixture Exposure Scenarios</td>
</tr>
<tr>
<td>2007</td>
<td>Jiska van Dijk</td>
<td>ph.d</td>
<td>Biology</td>
<td>Wolverine foraging strategies in a multiple-use landscape</td>
</tr>
<tr>
<td>2007</td>
<td>Flora John Magige</td>
<td>ph.d</td>
<td>Biology</td>
<td>The ecology and behaviour of the Masai Ostrich (Struthio camelus massaicus) in the Serengeti Ecosystem, Tanzania</td>
</tr>
<tr>
<td>2007</td>
<td>Bernt Rønning</td>
<td>ph.d</td>
<td>Biology</td>
<td>Sources of inter- and intra-individual variation in basal metabolic rate in the zebra finch, (Taeniopygia guttata)</td>
</tr>
<tr>
<td>2007</td>
<td>Sølvi Wehn</td>
<td>ph.d</td>
<td>Biology</td>
<td>Biodiversity dynamics in semi-natural mountain landscapes. - A study of consequences of changed agricultural practices in Eastern Jotunheimen</td>
</tr>
<tr>
<td>2008</td>
<td>Trond Moxness Kortner</td>
<td>ph.d</td>
<td>Biology</td>
<td>"The Role of Androgens on previtellogenic oocyte growth in Atlantic cod (Gadus morhua): Identification and patterns of differentially expressed genes in relation to Stereological Evaluations"</td>
</tr>
<tr>
<td>2008</td>
<td>Katarina Mariann Jørgensen</td>
<td>Dr.Scient</td>
<td>Biology</td>
<td>The role of platelet activating factor in activation of growth arrested keratinocytes and re-epithelialisation</td>
</tr>
<tr>
<td>2008</td>
<td>Tommy Jørstad</td>
<td>ph.d</td>
<td>Biology</td>
<td>Statistical Modelling of Gene Expression Data</td>
</tr>
<tr>
<td>2008</td>
<td>Anna Kusnierczyk</td>
<td>ph.d</td>
<td>Biology</td>
<td>Arabidopsis thaliana Responses to Aphid Infestation</td>
</tr>
<tr>
<td>2008</td>
<td>Jussi Evertsen</td>
<td>ph.d</td>
<td>Biology</td>
<td>Herbivore sacoglossans with photosynthetic chloroplasts</td>
</tr>
<tr>
<td>2008</td>
<td>John Eilif Hermansen</td>
<td>ph.d</td>
<td>Biology</td>
<td>Mediating ecological interests between locals and globals by means of indicators. A study attributed to the asymmetry between stakeholders of tropical forest at Mt. Kilimanjaro, Tanzania</td>
</tr>
<tr>
<td>2008</td>
<td>Ragnhild Lyngved</td>
<td>ph.d</td>
<td>Biology</td>
<td>Somatic embryogenesis in Cyclamen persicum. Biological investigations and educational aspects of cloning</td>
</tr>
<tr>
<td>2008</td>
<td>Line Elisabeth Sundt-Hansen</td>
<td>ph.d</td>
<td>Biology</td>
<td>Cost of rapid growth in salmonid fishes</td>
</tr>
<tr>
<td>2008</td>
<td>Line Johansen</td>
<td>ph.d</td>
<td>Biology</td>
<td>Exploring factors underlying fluctuations in white clover populations – clonal growth, population structure and spatial distribution</td>
</tr>
<tr>
<td>2009</td>
<td>Astrid Jullumstrø Feuertherm</td>
<td>ph.d</td>
<td>Biology</td>
<td>Elucidation of molecular mechanisms for pro-inflammatory phospholipase A2 in chronic disease</td>
</tr>
</tbody>
</table>
2009 Pål Kvello
Biology
Neurons forming the network involved in gustatory coding and learning in the moth Heliothis virescens; Physiological and morphological characterisation, and integration into a standard brain atlas

2009 Trygve Devold Kjellsen
Biology
Extreme Frost Tolerance in Boreal Conifers

2009 Johan Reinert Vikan
Biology
Coevolutionary interactions between common cuckoos Cuculus canorus and Fringilla finches

2009 Zsolt Volent
Biology
Remote sensing of marine environment: Applied surveillance with focus on optical properties of phytoplankton, coloured organic matter and suspended matter

2009 Lester Rocha
Biology
Functional responses of perennial grasses to simulated grazing and resource availability

2009 Dennis Ikanda
Biology
Dimensions of a Human-lion conflict: Ecology of human predation and persecution of African lions (Panthera leo) in Tanzania

2009 Johan Reinert Vikan
Biology
Coevolutionary interactions between common cuckoos Cuculus canorus and Fringilla finches

2009 Zsolt Volent
Biology
Remote sensing of marine environment: Applied surveillance with focus on optical properties of phytoplankton, coloured organic matter and suspended matter

2009 Lester Rocha
Biology
Functional responses of perennial grasses to simulated grazing and resource availability

2009 Dennis Ikanda
Biology
Dimensions of a Human-lion conflict: Ecology of human predation and persecution of African lions (Panthera leo) in Tanzania

2009 Huy Quang Nguyen
Biology
Egg characteristics and development of larval digestive function of cobia (Rachycentron canadum) in response to dietary treatments -Focus on formulated diets

2010 Eli Kvingedal
Biology
Intraspecific competition in stream salmonids: the impact of environment and phenotype

2010 Sverre Lundemo
Biology
Molecular studies of genetic structuring and demography in Arabidopsis from Northern Europe

2010 Iddi Mihijai Mfunda
Biology
Wildlife Conservation and People’s livelihoods: Lessons Learnt and Considerations for Improvements. Tha Case of Serengeti Ecosystem, Tanzania

2010 Anton Tinchov Antonov
Biology
Why do cuckoos lay strong-shelled eggs? Tests of the puncture resistance hypothesis

2010 Anders Lyngstad
Biology
Population Ecology of Eriophorum latifolium, a Clonal Species in Rich Fen Vegetation

2010 Hilde Farevik
Biology
Impact of protective clothing on thermal and cognitive responses

2010 Ingerid Brenne Arbo
Medical technology
Nutritional lifestyle changes – effects of dietary carbohydrate restriction in healthy obese and overweight humans

2010 Yngvild Vindenes
Biology
Stochastic modeling of finite populations with individual heterogeneity in vital parameters

2010 Hans-Richard Brattbak
Medical technology
The effect of macronutrient composition, insulin stimulation, and genetic variation on leukocyte gene expression and possible health benefits

2011 Geir Hysing Bolstad
Biology
Evolution of Signals: Genetic Architecture, Natural Selection and Adaptive Accuracy

2011 Karen de Jong
Biology
Operational sex ratio and reproductive behaviour in the two-spotted goby (Gobiusculus flavescens)

2011 Ann-Iren Kittang
Biology
Arabidopsis thaliana L. adaptation mechanisms to microgravity through the EMCS MULTIGEN-2 experiment on the ISS— The science of space experiment integration and adaptation to simulated microgravity

2011 Aline Magdalena Lee
Biology
Stochastic modeling of mating systems and their effect on population dynamics and genetics

2011 Christopher Gravningen Sørmo
Biology
Rho GTPases in Plants: Structural analysis of ROP GTPases; genetic and functional studies of MIRO GTPases in Arabidopsis thaliana
2011 Grethe Robertsen ph.d Biology Relative performance of salmonid phenotypes across environments and competitive intensities
2011 Line-Kristin Larsen ph.d Biology Life-history trait dynamics in experimental populations of guppy (Poecilia reticulata): the role of breeding regime and captive environment
2011 Maxim A. K. Teichert ph.d Biology Regulation in Atlantic salmon (Salmo salar): The interaction between habitat and density
2011 Torunn Beate Hancke ph.d Biology Use of Pulse Amplitude Modulated (PAM) Fluorescence and Bio-optics for Assessing Microalgal Photosynthesis and Physiology
2011 Sajeda Begum ph.d Biology Brood Parasitism in Asian Cuckoos: Different Aspects of Interactions between Cuckoos and their Hosts in Bangladesh
2011 Kari J. K. Attramadal ph.d Biology Water treatment as an approach to increase microbial control in the culture of cold water marine larvae
2011 Camilla Kalvatn Egset ph.d Biology The Evolvability of Static Allometry: A Case Study
2011 AHM Raihan Sarker ph.d Biology Conflict over the conservation of the Asian elephant (Elephas maximus) in Bangladesh
2011 Gro Dehli Villanger ph.d Biology Effects of complex organohalogen contaminant mixtures on thyroid hormone homeostasis in selected arctic marine mammals
2011 Kari Bjoerneraas ph.d Biology Spatiotemporal variation in resource utilisation by a large herbivore, the moose
2011 John Odden ph.d Biology The ecology of a conflict: Eurasian lynx depredation on domestic sheep
2011 Simen Pedersen ph.d Biology Effects of native and introduced cervids on small mammals and birds