Bioforsk Rapport

Vol. 7 Nr. 23/2012

Tungmetaller og organiske forurensninger i organisk avfall

Kildesortert og sentralsortert avfall

Bioforsk Jord og miljø

Forfatter(e): Carl Einar Amundsen

Data: 15. juni 2012

Tilgjengelighet: Åpen

Prosjekt nr.: 2110449

Saksnr.: 978-82-17-00895-8

Rapport nr.: 23/2012

Oppdragsgiver: Bioforsk Jord og miljø

Kontakt: Øystein Vethe

Prosjektleder: Roald Sørheim

Sammendrag:

Hovedmålet for prosjektet var å bestemme om det var forskjeller i innhold av metaler og organiske forurensninger i den organiske avfallsfraksjonen fra sentralsortert og kildesortert avfall. Det ble tatt ut grønne poser med kildesortert matavfall fra Oslo, kildesortert avfall fra Hadeland og Ringerikse Avfallsselskap (HRA) og sentralsortert avfall fra Bjørnhytten avfallsanlegg, Ludvika kommune, i Sverige.

Kort kontakt tid og liten kontaktflate mellom organiske avfall og fremmedlegemer gjør det mulig å redusere innholdet av tungmetaller og organiske forurensninger i det organiske avfallet. Kildesortering av husholdningsavfall er med på å redusere kontakt tiden og er således et første viktig steg for å sikre høy kvalitet på organiske avfall som råstoff til biogass- og komposteringsprosesser. Fjerning av fremmedlegemer før oppmaling av innsamlet avfallet vil redusere innholdet av tungmetaller og organiske forurensninger i organiske avfallet. En nærmere vurdering av de høy nivåene av ftalater i det organiske avfallet fra HRA og Ludvika og hvilken betydning dette har for utnyttelse av sluttproduktet etter behandlingsprosessen, bør gjennomføres.
Innhold

1. Sammendrag ... 1
2. Innledning .. 4
 2.1 Bakgrunn ... 4
 2.2 Valg av anlegg .. 4
 2.2.1 Oslo .. 4
 2.2.2 Hadeland- og Ringerike Avfallsanlegg (HRA) 5
 2.2.3 Ludvika, Bjørnhyttan avfallsanlegg ... 5
 2.3 Grenseverdier for metaller i organiske gjødselvarer 5
 2.4 Konsentrasjoner av tungmetaller og organiske forurensninger i matavfall 6
 2.4.1 Bakgrunnsnivåer av tungmetaller og organiske forurensninger i kompost 7
 2.5 Konsentrasjoner av tungmetaller og organiske forurensninger i kompost og biorest 9
3. Uttak og sortering av avfallsprøver .. 11
 3.1 Uttak av prøver fra avfallsanlegg .. 11
 3.1.1 Hadeland og Ringerike avfallsselskap (HRA) 11
 3.1.2 Oslo kommune, Energigjenvinningsetaten 11
 3.1.3 Ludvika, Bjørnhyttan avfallsanlegg .. 11
 3.2 Sortering av avfallsprøver ... 12
 3.2.1 Hadeland og Ringerike avfallsselskap (HRA) 12
 3.2.2 Oslo kommune, Energigjenvinningsetaten 13
 3.2.3 Ludvika, Bjørnhyttan avfallsanlegg .. 14
4. Behandling og analyse av prøver .. 16
 4.1 Fremmedlegemmer ... 16
 4.2 Tørrstoff og glødetap ... 16
 4.3 Tungmetaller ... 17
 4.4 Organiske miljøgifter .. 17
 4.5 Forurensninger i ulike fremmedlegemmer .. 18
5. Resultater og diskusjon .. 19
 5.1 Tørrstoff, glødetap og pH .. 19
 5.2 Fremmedlegemmer ... 19
 5.3 Tungmetaller ... 20
 5.3.1 Oslo ... 21
 5.3.2 HRA ... 21
 5.3.3 Ludvika .. 21
 5.4 Organiske forurensninger .. 23
6. Vurdering av risiko ved bruk av organisk avfall .. 26
 6.1 Grenseverdier for organiske forurensninger i organiske avfall 28
7. Diskusjon ... 29
 7.1 Sammenligning av avfallsfraksjoner ... 29
 7.2 Variasjoner i innhold gjennom sesongen ... 30
 7.3 Organisk materiale i direkte kontakt med fremmedlegemer 30
 7.4 Fremmedlegemmer i analysert fraksjon ... 31
8. Konklusjon .. 32
9. Referanser .. 33
10. Vedlegg .. 35
 10.1 Analysemetoder organiske forbindelser ... 35
 10.2 Analyseresultater tungmetaller og organiske forurensinger 38
Forord

Undersøkelsen er finansiert gjennom det brukerstyrte innovasjonsprosjektet - Biogass som del av landbruks verdikjede (Norges Forskningsråds prosjekt nummer 188914) og med noe tilleggsfinansiering fra Bioforsk.

Det rettes stor takk til Hege Bergheim og Roald Aasen ved Bioforsk for deres innsats ved sorteringen av ca. 500 kg avfall.

Ås, 15. juni 2012

Roald Sørheim

Prosjektleder
1. Sammendrag

Bakgrunn

Kildesortering og sentralsortering av husholdningsavfall er to vanlige måter å sortere husholdnings- og næringsavfall på. Ved kildesortering i husholdningene legges matavfall og restavfall i hver sine beholdere, mens der hvor avfallet sorteres sentralt, legges matavfall og restavfall i samme beholder. Selv om det i begge innsamlingsordningene forutsettes at noen avfallsfraksjoner (f.eks. El avfall og farlig avfall) sorteres ut ved kilden (i husholdningene), vil kontakttiden mellom organisk avfall og fremmedlegemer være betydelig større i de tilfellene hvor avfall sorteres sentralt, forutsatt samme innsamlingsfrekvens.

Et sentralt spørsmål er om det er vesentlige forskjeller når det gjelder innhold av metaller og organiske forbindelser i den organiske avfallsfraksjonen fra sentralsortert og kildesortert avfall.

Som bakgrunn for undersøkelsen er det antatt at tre forhold er viktige for innholdet av miljøgifter i avfallet som skal behandles:

- Innhold av fremmedlegemer som er sannsynlig kilde for miljøgifter
- Kontakttid mellom avfall og fremmedlegemer
- Fuktighet og surhetsgrad i avfallet

Valg av avfallsanlegg

Det ble tatt ut grønne poser med kildesortert matavfall fra Oslo, kildesortert avfall fra Hadeland og Ringerike Avfallsselskap (HRA) og sentralsortert avfall fra Bjørnhyttan avfallsanlegg, Ludvika kommune, i Sverige.

Resultater

Tørrstoff, organisk innhold og pH

Avfallet fra Oslo og HRA var vesentlig våtere (tørrstoff 31,9 % og 29,6 %) enn avfallet fra Ludvika (tørrstoff 42,6%) som var malt opp, terket og sortert. Lavere glødetap i prøvene fra Ludvika kan skyldes at det organiske avfallet herfra allerede var en del omsatt i oppmalings- og tørkeprosessen. pH i det organiske avfallet fra HRA var lavere enn fra Oslo og Ludvika. Basert på de målte pH-verdiene kan det forventes en større grad av metallutlekkning fra fremmedlegemer i avfall fra HRA og Oslo enn fra Ludvika. Betydningen av pH for utlekkning av organiske forurensinger er mindre kjent, men trolig har pH mindre betydning.

Fremmedlegemer

Avfallet som ble sortert fra de tre anleggene var svært forskjellig, dermed også utsorteringen av fremmedlegemer. Fremmedlegemer i organiske avfall fra Oslo (intakte grønne poser) var relativt lett å sortere ut, mens fremmedlegemer i avfallet fra HRA var
noe vanskeligere å sortere fordi avfallsposene var åpnet og avfallet blandet og skrudd i sorteringsanlegget. Avfall fra Ludvika var finmalt, tørt og luktet relativt lite. Selv om avfallet hadde vært igjennom tre sorteringstrinn, var det fortsatt en del fremmedlegemer tilstede. Til forskjell fra sorteringen ved Oslo og HRA, ble utsorteringen av fremmedlegemer i avfall fra Ludvika gjort ved bruk av pinsett. Det var generelt vanskelig å få ut alle fremmedlegemer på grunn av form, farge og størrelse (70-80 % fjerning). Total mengde fremmedlegemer (på vektbasis) var størst i avfall fra HRA (8,3 % i gjennomsnitt) og minst i avfall fra Ludvika (gjennomsnittlig 3,2%).

Tungmetaller

Innholdet av tungmetaller i organisk avfall fra Oslo var på samme nivå som innholdet i vegetabilske og animalske næringsmidler og dermed betydelig lavere enn innholdet i norsk kompost og biorest. Avfallet tilfredsstilte kvalitetsklasse 0 for alle metaller. Etter en råtneprosess, som antas å øke konsentrasjonen av tungmetaller (i tørrstoffet) med 100 %, vil kadmium i enkelte prøver (Oslo 3 og 4) klassifisere råtneresten til klasse I.

Innholdet av tungmetaller i organisk avfall fra HRA var for krom og sink, samt kadmium og bly, noe høyere enn innholdet i vegetabilske og animalske næringsmidler, og var således noe mer forurenset enn avfallet fra Oslo. Det organiske avfallet herfra tilfredsstilte kravene til kvalitetsklasse 0 for alle metaller, bortsett fra for kobber og sink i prøve HRA-3 (kvalitetsklasse II). Etter en utråtningsprosess vil konsentrasjonen av sink i bioresten (basert på HRA-3) kunne overskride kvalitetskravet til klasse II.

Konsentrasjonen av kadmium og kvikksølv i avfall fra Ludvika klassifiserte dette i kvalitetsklasse II, for sink i klasse I, øvrige metaller i klasse 0. Etter utråtning (100 % økning i konsentrasjon på basis av tørrstoff) kan konsentrasjonen av kadmium klassifisere avfallet i kvalitetsklasse III.

Organiske forurensninger

"Forurensingsmønsteret" for de organiske forurensningene var likt mønsteret for tungmetaller: konsentrasjonene var betydelig høyere i sortert avfall fra Ludvika enn fra Oslo og HRA, mens konsentrasjonene i avfall fra HRA var høyere enn fra Oslo.

Konsentrasjonene av organiske forurensninger i avfall fra Oslo var på nivå med det som kan forventes i rent matavfall, mens konsentrasjonene av mange organiske forurensninger i det organiske avfallet fra Ludvika var mer sammenlignbart med nivået i norsk avløpsslam. Konsentrasjonene av Di-isononyl-ftalat (DINP) var spesielt høye i avfallet fra Ludvika. DINP er et av stoffene som de siste årene er blitt mer og mer brukt som erstatning for DEHP (Di-(2-ethylheksyl)ftalat) og anses å være mindre skadelige for helse og miljø.

Analyseresultatene fra de sentralsorterte Ludvika-prøvene viste at det har liten betydning hvorvidt husholdningsavfallet samles inn separat eller om dette gjøres sammen med næringsavfall i kommunen. Mengden fremmedlegemer i disse prøvene synes heller ikke å ha betydning for konsentrasjonen av metaller i HRA, mens konsentrasjonene i avfall fra HRA var høyere enn fra Oslo.

Konsentrasjonene av organiske forurensninger i avfall fra Oslo var på nivå med det som kan forventes i rent matavfall, mens konsentrasjonene av mange organiske forurensninger i det organiske avfallet fra Ludvika var mer sammenlignbart med nivået i norsk avløpsslam. Konsentrasjonene av Di-isononyl-ftalat (DINP) var spesielt høye i avfallet fra Ludvika. DINP er et av stoffene som de siste årene er blitt mer og mer brukt som erstatning for DEHP (Di-(2-ethylheksyl)ftalat) og anses å være mindre skadelige for helse og miljø.

Analyseresultatene fra de sentralsorterte Ludvika-prøvene viste at det har liten betydning hvorvidt husholdningsavfallet samles inn separat eller om dette gjøres sammen med næringsavfall i kommunen. Mengden fremmedlegemer i disse prøvene synes heller ikke å ha betydning for konsentrasjonen av metaller i HRA, mens konsentrasjonene i avfall fra HRA var høyere enn fra Oslo.

Konsentrasjonene av organiske forurensninger i avfall fra Ludvika, HRA og Oslo var på nivå med det som kan forventes i rent matavfall, mens konsentrasjonene av mange organiske forurensninger i det organiske avfallet fra Ludvika var mer sammenlignbart med nivået i norsk avløpsslam. Konsentrasjonene av Di-isononyl-ftalat (DINP) var spesielt høye i avfallet fra Ludvika. DINP er et av stoffene som de siste årene er blitt mer og mer brukt som erstatning for DEHP (Di-(2-ethylheksyl)ftalat) og anses å være mindre skadelige for helse og miljø.

Konklusjoner
Det forholdet som best synes å forklare de store forskjellene i konsentrasjonsnivåer, ligger i måten avfallet blir behandlet på ved Bjørnyttan-anlegget. Kverning og oppmaling fører til varmeutvikling og svært effektiv kontakt mellom fremmedlegemer (som ikke er sortert ut) og det organiske avfallet.

Kort kontakttid og liten kontaktflate mellom organisk avfall og fremmedlegemer er avgjørende for å redusere innholdet av tungmetaller og organiske forurensninger i det organiske avfallet. Fjerning av fremmedlegemer før oppmaling av innsamlet avfall vil redusere innholdet av tungmetaller og organiske forurensninger i organisk avfall.

Resultatene viser at sammenblanding av restavfall og matavfall gir et mindre rent organisk avfall til bruk i komposterings- og råtneprosesser. Mulighetene for å få et sluttprodukt (ferdig kompost eller biorost) med et unødig høyt innhold av uønskede forbindelser øker på denne måten. Kildesortering av husholdningsavfall er med på å redusere kontakttiden og er således et første viktig steg for å sikre høy kvalitet på organisk avfall som råstoff til biogass- og komposteringsprosesser.

Kildesortert organisk avfall kan i enkeltprøver ha et forhøyet innhold av tungmetaller. Dette viser at kildesortering av avfall ikke nødvendigvis sikrer at innholdet av miljøfremmede stoffer er lavt.

Konsentrasjonene av ftalater var generelt høyt i organisk avfall fra HRA og Ludvika, noe som mest sannsynlig skyldes kontakt med plast. Det er derfor grunn til å gjøre en nærmere vurdering av de høye nivåene av enkelte ftalater i det organiske avfallet og hvilken betydning dette har for utnyttelse av sluttproduktet etter behandlingsprosessen.
2. Innledning

2.1 Bakgrunn

Sentralsortering av avfall medfører lenger kontakt mellom organisk avfall og fremmedlegemer (metall, plast, rester av bygningsmaterialer, lakk, lim, maling, lyspærer, løsemidler, vaskemidler etc.) enn ved kildesortering. Samtidig er det sannsynlig at sentralsorteringen gir en blanding av avfall som er mindre fuktig og mindre sur, noe som vil være positivt med tanke på innholdet av en del miljøfremmede stoffer.

Et sentralt spørsmål er om det er vesentlige forskjeller når det gjelder innhold av metaller og organiske miljøgifter i den organiske avfallsfraksjonen fra sentralsortering og kildesortert avfall. Det er tidligere vist at konsentrasjonen av kadmium, bly, kvikksølv, nikkel, sink, kobber og krom i sortert avfall fra FolloRen er lavt (kvalitetsklasse 0 og I, en prøve tatt 13.08. 2008; Briseid et al., 2010). Datagrunnlaget for å sammenligne sorteringsordningene med hensyn på innhold av metaller og miljøfremmede organiske forbindelser er imidlertid mangelfullt.

Det er en kjent sammenheng mellom type fremmedlegemer og miljøfremmede stoffer. Metaller som bly, kadmium, kvikksølv, sink, nikkel, krom og kobber vil kunne mobiliseres fra batterier, blikkbokser, spiker, lyspærer etc. ved kontakt med organisk materiale. Ulike typer plast kan avgi stoffer som ftalater og bisfenol A, maling, lim, fugematerialer inneholder metaller, tensider, ftalater og klorerte parafiner, perfluorerte stoffer kan finnes i tekstiler, tepper, teflonbelegg osv.

Innholdet av miljøfremmede stoffer i den utsorterte organiske avfallsfraksjonen som brukes som råstoff i biogassanlegg vil gi informasjon om behovet for tiltak for å redusere fremmedlegemer, hvilke fremmedlegemer som evt. bør reduseres/fjernes og hvilke miljøfremmede stoffer (uønskede stoffer) som utgjør et potensielt problem.

Analyser av fremmedlegemer i avfallet fra de to sorteringsordningene vil gi informasjon om hvor god utsorteringen av metall, plast, spesialavfall er i dag. Dette vil være nyttig dersom det skulle være behov for å utforme tiltak til forbedring av kvaliteten på bioreost og kompost.

Kunnskap om dagens innhold av fremmedlegemer og miljøfremmede stoffer i sortert avfall vil være et godt grunnlag for å vurdere framtidige endringer i sorteringsrutiner.

2.2 Valg av anlegg

2.2.1 Oslo

I Oslo ble det 1.oktober 2009 startet opp med kildesortering i hjemmene. Matavfall, plastavfall og restavfall sorteres for seg i hhv. grønne og blå poser, samt vanlige handleposer til restavfallet. Det er disse tre posene som legges i avfallscontaineren i husholdningene og hentes hver 14de dag.

I tillegg sorteres panteflasker, glass og metall, papir, papp og drikkekartonger og farlig avfall.
Syv typer avfall sorteres ut:

- Panteflasker
- Glass og metallemballasje
- Papp, papir og drikke kartonger
- Plastemballasje
- Farlig avfall
- Matavfall
- Restavfall

Panteflasker, glass, metall, papp, papir, drikkekartonger og farlig avfall leveres ved gjenvinningstasjoner.

Etter frakt til sorteringsanlegget på Haraldrud sorteres restavfall, matavfall og plastavfall i et optisk sorteringsanlegg.

Ved årsskiftet 2010/2011 var 100.000 husstander med på prosjektet.

2.2.2 Hadeland- og Ringerike Avfallsanlegg (HRA)

Glass, metaller, treverk sorteres ut og leveres til miljøstasjon.

I anlegget på Trollmyra tømmes avfall fra bil i en oppsamlingsbingse (tømmetank) og mates derfra inn i et sorteringsanlegg.

2.2.3 Ludvika, Bjørnhyttan avfallsanlegg

Husholdningsavfall og næringsavfall består av en blanding av restavfall, plast, metall, etc. Dette mates inn i en oppmalingenhet hvor avfallet kutttes opp. Deretter fores avfallet inn i en homogeniseringstrømmel (6-8 timer), hvor det vendes og finfordeles. Etter homogeniseringstrømmelen passerer det knuste avfallet en magnet som fjerner metall, før avfallet grovsiktes. Her fjernes plastpartikler og annet brennbart materiale (forbrennes). Deretter fjernes mindre plastbiter og brennbart materiale ved finskiing. Tredje sikteprosessen(vindsikting) fjerner glass og mindre plastbiter. Materialet som blir igjen er råkompost.

Omkring 40% av husholdningsavfallet som kommer inn til anlegget blir kompostert. 10% er vann og resten brennbart materiale som forbrennes.

2.3 Grenseverdier for metaller i organiske gjødselvarer

Forskrift om gjødselvarer m.v. av organisk opphav setter kvalitetskrav til produkter basert på råvarer av bl.a. organiske materiale (Tabell 2-1). Kvalitetsklasse 0 kan brukes fritt så lenge det ikke overstiger plantenes behov for næringsstoffer. Klasse I kan brukes i mengde tilsvarende 4 tonn/daa per 10 år, mens produkter i kvalitetsklasse II kan brukes i mengder tilsvarende 2 tonn/daa er 10 år.

For organiske forurensninger er det ikke satt grenseverdier, men det heter generelt at "Den som produserer eller omsetter produkter etter denne forskriften skal vise aktsomhet og treffe rimelige tiltak for å begrense og forebygge at produktet inneholder organiske miljøgifter, etc. som kan medføre skade på helse eller miljø ved bruk".
Tabell 2.1: Grenseverdier for tillatt innhold av tungmetaller i gjødselvarer av organisk opphav.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>0,4</td>
<td>0,8</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Pb</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>Hg</td>
<td>0,2</td>
<td>0,6</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Ni</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>Zn</td>
<td>150</td>
<td>400</td>
<td>800</td>
<td>1500</td>
</tr>
<tr>
<td>Cu</td>
<td>50</td>
<td>150</td>
<td>650</td>
<td>1000</td>
</tr>
<tr>
<td>Cr</td>
<td>50</td>
<td>60</td>
<td>100</td>
<td>150</td>
</tr>
</tbody>
</table>

2.4 Konsentrasjoner av tungmetaller og organiske forurensninger i matavfall

Konsentrasjoner av tungmetaller og organiske forurensninger i sortert organisk avfall i dette prosjektet sammenlignes bl.a. med konsentrasjoner funnet i vegetabilsk- og animalsk avfall, norsk og svensk kompost og råtnerest.

Konsentrasjoner av tungmetaller i næringsmidler og plantemateriale er hentet fra en sammenstilling gjort i 2002 (Tabell 2-2; Amundsen et al. 2002). Dataene ble brukt for å beregne bakgrunnskonsentrasjoner av metallene i kompost. Her ble det antatt, basert på beregninger og undersøkelser fra Sverige, at matavfallet bestod av 70% vegetabilsk og 30% animalsk avfall.

Tabell 2-2: Konsentrasjoner av tungmetaller og arsen i næringsmidler og plantemateriale (Amundsen et al. 2002). Enhet: mg/kg TS

<table>
<thead>
<tr>
<th></th>
<th>Vegetabilsk materiale</th>
<th>Animalisk materiale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Næringsmidler</td>
<td>Plantemateriale</td>
</tr>
<tr>
<td>Cd</td>
<td>0,04</td>
<td>0,08</td>
</tr>
<tr>
<td>Pb</td>
<td>0,01</td>
<td>0,45</td>
</tr>
<tr>
<td>Hg</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>Ni</td>
<td>2,1</td>
<td>2</td>
</tr>
<tr>
<td>Zn</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Cu</td>
<td>9,8</td>
<td>9</td>
</tr>
<tr>
<td>Cr</td>
<td>0,53</td>
<td>0,5</td>
</tr>
<tr>
<td>As</td>
<td>0,4</td>
<td></td>
</tr>
</tbody>
</table>

De største forskjellene mellom vegetabilsk og animalsk avfall finnes for nikkel, krom og arsen. Ved uttak av matavfall for homogenisering og analyse, vil derfor forholdet vegetabilsk/animalsk avfall ha størst betydning for konsentrasjonsnivået for disse elementene.

For matvarer finnes først og fremst analysedata for persistente organiske forbindelser (POP) som dioksiner/furaner, PCB og bromerte flammehemmere (bl.a. PBDE). Årsaken til
dette er at disse forbindelsene er giftige for mennesker i lave konsentrasjoner og at stoffene er fettløselige og således kan finnes i høye konsentrasjoner i fettrik mat (animalske matvarer).

PBDE

Konsentrasjonene av PBDE (sum alle kongenere) i fiskefilet varierer normalt i området <1-10 µg/kg våtvekt, vanligvis mindre enn 2 µg/kg våtvekt for de fleste fiskeslag (Kvalem et al. 2006; Hove et al. 2006). Konsentrasjonene øker med fettmengden i fisken. I lever kan konsentrasjonene av sumPBDE være høyere enn 10 µg/kg våtvekt.

Dersom konsentrasjonene av sumPBDE er høyere enn 2 µg/kg våtvekt, kan det antas at det organiske avfallet er forurenset av fremmedlegemer.

PCB

Konsentrasjonene av PCB7 i fisk øker med økende fettmengde. I mager fisk som sei er konsentrasjonene vanligvis <1 µg/kg våtvekt, mens det i kveite ble målt konsentrasjoner opptil 240 µg/kg våtvekt (Kvalem et al. 2006). Konsentrasjonene øker samtidig med alder på fisken. De høyeste verdiene av PCB finnes i fiske- og seloljer hvor det er målt konsentrasjoner på 150 µg/kg våtvekt. Gjennomsnittlig nivå av PCB7 i fiskemuskel ble av Amundsen et al. (2002) beregnet til 2,9 µg/kg våtvekt. I vegetabilske matvarer er konsentrasjonene av PCB7 vanligvis <0,1 µg/kg våtvekt (Kvalem et al. 2006).

Det kan på bakgrunn av dette antas at konsentrasjoner av PCB7 høyere enn 3-5 µg/kg våtvekt i organisk avfall er påvirket av fremmedlegemer.

PAH

Konsentrasjonene av PAH i matvarer varierer svært mye (http://ec.europa.eu/food/fs/sc/scf/out154_en.pdf). Generelt er nivået av PAH16 lavere enn 100 µg/kg våtvekt (i røkt mat generelt opptil 10ganger høyere) og ved konsentrasjoner høyere enn 100 µg/kg våtvekt er det relativt sikkert at matavfallet er påvirket av fremmedlegemer i restavfallet.

Bisfenol A

Andre organiske forurensinger

For ftalatene er det gjort en del undersøkelser av i hvilken grad stoffene smitter av fra ulike plastprodukter, men det finnes lite data om forekomst i mat.

Da de fleste ftalater er betydelig mindre fettløselige og lettere nedbrytbare enn PCB, PBDE og mange PAH-forbindelser, vil bakgrunnsnivåene i matavfall være lavere. Konsentrasjonsnivået som bestemmes i sortert organisk avfall vil derfor i all hovedsak skyldes smitte fra fremmedlegemer i restavfallet.

2.4.1 Bakgrunnsnivåer av tungmetaller og organiske forurensninger i kompost

Beregninger av bakgrunnsverdier for tungmetaller og organiske forurensinger i kompost og råtnerest (Amundsen et al. 2002; 2005) gir en indikasjon på hvilket konsentrasjonsnivå som kan forventes i disse produktene uten at de er forurenset fra fremmedlegemer.
Ved beregning av bakgrunnsnivået av tungmetaller i bioavfallskompost, hageavfallskompost og råtnerest ble fem forutsetninger lagt til grunn:

- Det organiske avfallet i kompost består av 70% vegetabilsk og 30% animalsk avfall
- Ved kompostering blandes 40% organisk avfall og 60% strukturmateriale (tørrstoff)
- Mengden tørrstoff reduseres med 50% i komposterings- og råtneprosessen
- Hageavfallskompost inneholder 10% jord
- De organiske forbindelsene brytes ikke ned i komposterings- eller råtneprosessen

Beregningene av bakgrunnsverdier (Tabell 2-3, 2-4) er beheftet med betydelig usikkerhet og nivåene må brukes kun som en pekepinn på hva som kan være de laveste nivåene som forventes å finnes i kompost og råtnerest.

Tabell 2-3: Gjennomsnittlige konsentrasjoner av metaller i norsk dyrket jord (0-5cm), norsk kompost, vegetabilsk og animalsk mat, innhold i matavfall, spon og bark (strukturmateriale) og beregnet bakgrunnskonsentrasjon av metaller i bioavfallskompost og hageavfallskompost (data fra Amundsen et al. 2002). Enhet: mg/kg TS.

<table>
<thead>
<tr>
<th>Bakgrunn</th>
<th>Bioavfallskompost</th>
<th>Hageavfallskompost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jord</td>
<td>Kompost</td>
<td>Vegetabilsk</td>
</tr>
<tr>
<td>Cd</td>
<td>0,2</td>
<td>0,5</td>
</tr>
<tr>
<td>Pb</td>
<td>0,24</td>
<td>0,26</td>
</tr>
<tr>
<td>Hg</td>
<td>0,05</td>
<td>0,2</td>
</tr>
<tr>
<td>Ni</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>Zn</td>
<td>64</td>
<td>243</td>
</tr>
<tr>
<td>Cu</td>
<td>19</td>
<td>65</td>
</tr>
<tr>
<td>Cr</td>
<td>27</td>
<td>19</td>
</tr>
</tbody>
</table>

Tabell 2-4: Konsentrasjoner (µg/kg) av organiske forurensinger i vegetabilsk og animalsk avfall, samt i strukturmateriale brukt for å beregne bakgrunnskonsentrasjoner av forbindelsene i kompost og biorest (Amundsen et al. 2005).

<table>
<thead>
<tr>
<th>Forurensning</th>
<th>Vegetabilsk avfall</th>
<th>Animalsk avfall</th>
<th>Strukturmateriale</th>
<th>Bakgrunnskonsentrasjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB 7</td>
<td>7</td>
<td>30</td>
<td>15</td>
<td>Kompost</td>
</tr>
<tr>
<td>16PAH</td>
<td>10</td>
<td>30</td>
<td>100</td>
<td>Biorest</td>
</tr>
<tr>
<td>Ftalater (DEHP)</td>
<td>400</td>
<td>400</td>
<td>500</td>
<td>Kompost</td>
</tr>
<tr>
<td>PBDE</td>
<td>10</td>
<td>30</td>
<td>20</td>
<td>Biorest</td>
</tr>
<tr>
<td>Bisfenol A</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>Biorest</td>
</tr>
</tbody>
</table>
2.5 Konsentrasjoner av tungmetaller og organiske forurensninger i kompost og biorest

Det er ingen klare forskjeller mellom konsentrasjonene av tungmetaller i biorest (Tabell 2-5) og kompost (Tabell 2-6). Konsentrasjonene av metaller er betydelig høyere enn i matavfall. En sammenligning viser at 50-90% av innholdet i kompost og biorest skyldes forurensninger fra fremmedlegemer etc.

Tabell 2-5: Konsentrasjoner av tungmetaller i norsk biorest. Enhet: mg/kg TS.

<table>
<thead>
<tr>
<th>Briseid et al. (2010) (n=2)</th>
<th>Govasmark et al. (2011) (n=14)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anlegg 1 (n=12)</td>
</tr>
<tr>
<td>Cd</td>
<td>0,63</td>
</tr>
<tr>
<td>Pb</td>
<td>21</td>
</tr>
<tr>
<td>Hg</td>
<td>0,2</td>
</tr>
<tr>
<td>Ni</td>
<td>30</td>
</tr>
<tr>
<td>Zn</td>
<td>387</td>
</tr>
<tr>
<td>Cu</td>
<td>125</td>
</tr>
<tr>
<td>Cr</td>
<td>19</td>
</tr>
</tbody>
</table>

Tabell 2-6: Konsentrasjoner av tungmetaller i norsk kompost (referert i Amundsen et al. 2002).

<table>
<thead>
<tr>
<th>Paulsrud et al. (1997) (n=9)</th>
<th>Lystad (2002) (n=13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middel Min-maks</td>
<td>Middel Min-maks</td>
</tr>
<tr>
<td>Cd</td>
<td>0,37</td>
</tr>
<tr>
<td>Pb</td>
<td>22,5</td>
</tr>
<tr>
<td>Hg</td>
<td>0,11</td>
</tr>
<tr>
<td>Ni</td>
<td>11</td>
</tr>
<tr>
<td>Zn</td>
<td>197</td>
</tr>
<tr>
<td>Cu</td>
<td>52</td>
</tr>
<tr>
<td>Cr</td>
<td>16</td>
</tr>
</tbody>
</table>
Tabell 2-7: Konsentrasjoner (mg/kg TS) av organiske forurensinger i norsk og svensk kompost og råterest.

<table>
<thead>
<tr>
<th></th>
<th>Kompost</th>
<th>Råterest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amundsen 2005 (n=5)</td>
<td>Paulsrud 1997 (n=9)</td>
</tr>
<tr>
<td>PCB7</td>
<td>0,091 (<0,005-0,091)</td>
<td>0,024 (0,003-0,078)</td>
</tr>
<tr>
<td>PBDE</td>
<td>0,023 (0,01-0,047)</td>
<td>0,0004-0,03 (0,0024-0,0095)</td>
</tr>
<tr>
<td>PAH</td>
<td>1,05 (0,7-1,4)</td>
<td>1,36 (<0,1-3,8)</td>
</tr>
<tr>
<td>Ftalater</td>
<td>DEP <0,1-0,2</td>
<td>0,2 (<0,1-0,2)</td>
</tr>
<tr>
<td></td>
<td>DIBP <0,1-0,52</td>
<td>0,52 (<0,1-0,52)</td>
</tr>
<tr>
<td></td>
<td>DBP <0,1-7,9</td>
<td>0,36-2,0</td>
</tr>
<tr>
<td></td>
<td>BBP <0,1</td>
<td>0,38-0,42</td>
</tr>
<tr>
<td></td>
<td>DEHP 1-11</td>
<td>5,8 (1-11)</td>
</tr>
<tr>
<td></td>
<td>DOP <0,5</td>
<td><0,1</td>
</tr>
<tr>
<td></td>
<td>DINP <1</td>
<td>2,8-2,9</td>
</tr>
<tr>
<td>Fenoler</td>
<td>Bisfenol-A (0,43-2)</td>
<td>1,2 (0,43-2)</td>
</tr>
<tr>
<td></td>
<td>4-nonylfenol</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>4-octylfenol</td>
<td></td>
</tr>
</tbody>
</table>
3. Uttak og sortering av avfallsprøver

3.1 Uttak av prøver fra avfallsanlegg

3.1.1 Hadeland og Ringerike avfallsselskap (HRA)

Kildesortert husholdningsavfall ble tatt ut fra avfallsstrømmen etter at dette var matet fra tømmetank (01MA100) ved anlegget på Trollmyra og før avfallet havnet i tank hvor det tilsettes vann (tank 01FK100). Avfallet fra HRA har dermed ikke vært igjennom sorteringen som gjøres ved sorteringsanlegget før dette mates inn i råtnetankene.

Ved bruk av stor spade ble avfall fra transportbåndet fylt i 10-liters bøtte ca. 10 ganger i løpet av en arbeidsdag. 10-liters bøtta ble tømt i en 105-liters tønne med lokk.

3.1.2 Oslo kommune, Energigjenvinningsetaten

Etter frakt til sorteringsanlegget på Haraldrud sorteres restavfall, matavfall og plastavfall i et optisk sorteringsanlegg.

Uttak av matavfall ble gjort ved at en 105-liters tønne ble plassert ved transportbåndet hvor matavfall (grønne poser) var sortert ut. I løpet av en arbeidsdag ble 40-50 poser tilfeldig tatt ut fra båndet av personell ved sorteringsanlegget.

Tønna med grønne poser ble dagen etter fylling transportert til Bioforsk Jord og miljø for videre sortering og analyse.

3.1.3 Ludvika, Bjørnyttan avfallsanlegg

De fire første avfallsprøvene fra Ludvika er avfall samlet inn gjennom den ordinære avfallsinnsamlingen i kommunen. Dette innebærer at husholdnings- og næringsavfall ble samlet i samme runden.

Avfallet som ble analysert i dette prosjektet var råkompost dvs. etter de tre sorteringstrinnene (kap. 2.2.3), men før forkompostering av avfallet.

En 105-liters tønne ble fylt i løpet av en arbeidsdag som ved de andre anleggene og tønna transportert til Bioforsk Jord og miljø dagen etter prøveuttak.

Follo RenAvfall fra Follo (ikke-kildesortert husholdningsavfall) ble i 2008 fraktet til Ludvika og sortert ved Bjørnhyttan avfallsanlegg. Det sorterte avfallet har siden den gang blitt lagret i tette plastbøtter ved 4 °C. Dette avfallet ble i november 2011 sendt til analyse for bestemmelse av de samme organiske forurensningene som ble bestemt i de øvrige prøvene i dette prosjektet (i figurer angitt som Ludvika/Follo).

Til sammen 7 prøver som var sortert ved anlegget på Bjørnhyttan, Ludvika, ble analysert i prosjektet.

3.2 Sortering av avfallsprøver
Etter transport til laboratoriet ved Bioforsk Jord og miljø, ble tønnene med avfall veid og deretter sortert så snart som mulig (samme dag eller dagen etter).

3.2.1 Hadeland og Ringerike avfallsselskap (HRA)
Avfallet fra HRA virket relativt vått og det organiske avfallet var noe knust. Fremmedlegemer i tønna var lite oppmalt og var relativt lett å sortere ut (Figur 3-1).
Hele avfallstønna ble sortert. Glass, metall og plast var de tre hovedkategoriene avfall som ble sortert ut, men også tøyrester etc. ble funnet (Figur 3-2).

Figur 3-1: Avfall fra HRA prøvetatt 28.april, sortert 29.april.
3.2.2 Oslo kommune, Energigjenvinningsetat
Det var generelt lite fremmedlegemer i avfall fra Oslo. Plast, metall og glass var lite fragmentert og lett å skille fra det organiske avfallet.
Det organiske avfallet var ofte lite knust og omdannet (Figur 3-3).
3.2.3 Ludvika, Bjørnhyttan avfallsanlegg

Avfall fra Bjørnhyttan avfallsanlegg hadde en helt annen struktur (Figur 3-4), sammensetning og luktet langt mindre enn avfallet fra de to andre anleggene. Det var ikke mulig å sortere hele tønna med avfall fra Ludvika. For å bestemme mengde fremmedlegemeler i avfallet ble det derfor tatt ut tre begerglass med ca. 2 liter avfall fra tønna. Disse ble sortert i 4 fraksjoner: glass, metall, plast og diverse (skumgummi, gummi, tekstil etc) (Figur 3-5). Mengde fremmedlegemeler i hele avfallstønna ble estimert som et gjennomsnitt av disse tre ”plakkanalysene”.

Figur 3-4: Avfall fra Ludvika var relativt tørt og finmalt i forhold til avfall fra HRA og Oslo.

Figur 3-5: Sortering av avfall fra Ludvika ble gjort med pinsett. Fremmedlegemene (metall, plast og glass) ble sortert i skåler.
Ved utsorteringen ble organisk materiale som var vedheftet fremmedlegemene fjernet så godt som mulig. Det organiske materialet som fortsatt var vedheftet fremmedlegemene og som ble vasket bort før tørking, utgjorde derfor en svært liten del av den totale mengden organisk materiale (se for eksempel utsortert plast fra Oslo, figur 3-3, høyre).
4. Behandling og analyse av prøver

4.1 Fremmedlegemer
Glass, metall, plast og diverse (tøyrester, gummi etc) ble for avfall fra HRA og Oslo veid før og etter vasking. Etter vask ble alle avfallsfraksjonene tørrket ved 40 °C (minimum 1 uke) og veid pånytt. Utsorterte fremmedlegemer fra Ludvika ble ikke vasket før tøring da disse allerede var ”rene” (Figur 3-5).

Mengde fremmedlegemer (tørrvekt) ble relatert til mengde organisk avfall (tørrvekt) i tønna.

4.2 Tørrstoff og glødetap
Etter at fremmedlegemer var sortert ut fra det organiske avfallet, ble avfallet homogenisert ved bruk av en hurtigmikser (Figur 4-1). Homogenisert organisk avfall ble deretter fordelt på to aluminiumsformer og frosset (-18 °C).

Begge disse formene ble frysetørket før kjemisk analyse av det organiske avfallet.

Figur 4-1: Venstre: Homogenisering av sortert organisk materiale i hurtigmikser. Høyre: fordeling av homogenisert avfall i aluminiumsformer for innfrysing og frysetørking.

Tørrvekt og glødetap til det organiske avfallet ble bestemt etter fordeling av homogenisert avfall i tre aluminiumsskåler.
4.3 Tungmetaller
Frysetørkede prøver ble sendt til laboratoriet for analyser (bortsett fra prøvene Ludvika 5 og 6, samt Ludvika Follo, som ikke ble frysetørket).
Metallene kadmium, bly, kvikksølv, nikkel, sink, kobber, krom, kobolt, mangan, sølv, samt halvmetallet arsen ble bestemt ved bruk av ICP-SFMS. Prøvene ble først tørket ved 50 °C og deretter oppsluttet med salpetersyre og H₂O₂ i mikrobølgeovn.
Analysene ble utført ved ALS Scandinavia AB, Luleå, Sverige.

4.4 Organiske miljøgifter
Frysetørkede prøver av sortert organiske avfall ble sendt til Institute for Sanitary Engineering, Water Quality and Solid Waste Management, Department of Hydrochemistry, University of Stuttgart.
Instituttet har bred erfaring med analyser av miljøfremmede organiske forbindelser i ulike medier. De organiske forurensningene som ble bestemt i det sorterte organiske avfallet (Tabell 4-1) kan alle relateres til avfallsfraksjoner i husholdnings- og næringsavfall.
Analysemetoder, presisjon og nøyaktighet for analysene er gitt i vedlegg 1.

Tabell 4-1: Oversikt over organiske forurensinger som bestemmes i sortert organiske avfall fra Oslo, HRA og Ludvika.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PCB028</th>
<th>PCB052</th>
<th>PCB101</th>
<th>PCB118</th>
<th>PCB153</th>
<th>PCB138</th>
<th>PCB180</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB; Ftalater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naftalen</td>
<td>Biphenyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenafylet</td>
<td>Diphenylether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acaentaften</td>
<td>NAP-C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranten</td>
<td>4-Nonylphenols</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenantrren</td>
<td>4-t-Octylphenol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antracen</td>
<td>Bisphenol A (BPA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranten</td>
<td>Tetrabromo-BPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyren</td>
<td>Triclosan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(a)antracen</td>
<td>Methyltriclosan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krysen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(b)fluoranten</td>
<td>Syntetiske muskforbindelser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(k)fluoranten</td>
<td>Galaxolid (HHCB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(a)pyren</td>
<td>HHCB-Lacton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyren</td>
<td>Tonalid (AHTN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(ghi)perylen</td>
<td>Kaffein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di-benz(a,h)antracen</td>
<td>TCEP-Tri-(2-kloroetyl)fosfat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCPP-Tri-(2-kloroisopropyl)fosfat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDCPP-Tri-(1,3-dikloroisopropyl)fosfat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PBDE
<table>
<thead>
<tr>
<th>BDE028</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDE047</td>
</tr>
<tr>
<td>BDE100</td>
</tr>
<tr>
<td>BDE99</td>
</tr>
<tr>
<td>BDE154</td>
</tr>
<tr>
<td>BDE153</td>
</tr>
<tr>
<td>BDE183</td>
</tr>
</tbody>
</table>
4.5 Forurensninger i ulike fremmedlegemener

Det er mange produkter som havner i restavfallet som inneholder de forurensningene som er bestemt her (Tabell 4-2). Ved blanding av restavfall og matavfall er potensialet for overføring av forurensninger til matavfallet dermed stort.

<table>
<thead>
<tr>
<th>Forurensning</th>
<th>Produktgrupper i husholdningene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metaller</td>
<td>Batterier, legeringer, metalliske produkter, belegg, maling, lakk, lyskilder</td>
</tr>
<tr>
<td>PCB</td>
<td>Isolerglasslim, kondensatorer i belysning, fugemasse, betongtilsats*</td>
</tr>
<tr>
<td>PAH</td>
<td>Kreosot (treimpregnering), asfalt og stekt/grillet mat</td>
</tr>
<tr>
<td>Brommerte flammehemmere</td>
<td>Plastkomponenter i elektrisk og elektronisk utstyr, kretskort, PC-eksteriør, kontakter og brytere, transportmidler</td>
</tr>
<tr>
<td>Alkylfenoler</td>
<td>Bilvaskemidler, rengjøringsmidler, vannbasert maling, lim</td>
</tr>
<tr>
<td>Bisfenol A</td>
<td>Polykarbonat plast</td>
</tr>
<tr>
<td>Ftalater</td>
<td>Plastherder, bindemiddel i maling og lim, mykner i plast, gummi, maling og lim, trykkfarger og fugemidler</td>
</tr>
<tr>
<td>Musk-forbindelser</td>
<td>Galaxolid (HHCB) og Tonalid (AHTN) finnes i kosmetikk og vaskemidler</td>
</tr>
<tr>
<td>Fosfor flavemehemmere</td>
<td>Polyuretan skum, plast</td>
</tr>
</tbody>
</table>

*forbudt brukt i 1980-i dag faset ut i alle produkter.

For mer informasjon om miljøgifter i produkter se for eksempel http://www.miljostatus.no/Tema/Kjemikalier/Produkter/
5. Resultater og diskusjon

5.1 Tørrstoff, glødetap og pH
Avfallet fra Oslo og HRA var vesentlig våtere (TS 31,9% og 29,6%) enn avfallet fra Ludvika (TS 42,6%) som var sortert, malt opp og tørket. Lavere glødetap i prøvene fra Ludvika kan skyldes at det organiske avfallet herfra allerede er en del omsatt i oppmalings- og tørkeprosessen. Glødetapet i avfall fra Follo, sortert ved anlegget i Ludvika (Ludvika/Follo, Tabell 5-1), er enda lavere, noe som kan skyldes en viss grad av omsetning ved lagring (2008-2011).

pH i det organiske avfallet fra HRA var lavere enn fra Oslo og Ludvika (Tabell 5-1). Lavere pH i prøvene fra Ludvika/Follo enn i Ludvika-prøvene kan skyldes lang tids lagring av dette avfallet.

Basert på de målte pH-verdiene kan det forventes en større grad av metallutlekking fra fremmedlegemer i avfall fra HRA og Oslo enn fra Ludvika. Betydningen av pH for utlekking av organiske forurensinger er mindre kjent, men trolig har pH mindre betydning.

Tabell 5-1: Tørrstoff, glødetap og pH i sortert organisk avfall fra Oslo, HRA Ludvika og Ludvika/Follo.

<table>
<thead>
<tr>
<th></th>
<th>Oslo (n=3)</th>
<th>HRA (n=3)</th>
<th>Ludvika (n=4)</th>
<th>Ludvika/Follo</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>31,9</td>
<td>29,6</td>
<td>42,6</td>
<td>50,4</td>
</tr>
<tr>
<td>Glødetap</td>
<td>88,2</td>
<td>84,2</td>
<td>78,5</td>
<td>67,3</td>
</tr>
<tr>
<td>pH</td>
<td>5,1</td>
<td>4,8</td>
<td>5,6</td>
<td>4,6</td>
</tr>
</tbody>
</table>

5.2 Fremmedlegemer
Avfallet som ble sortert fra de tre anleggene var svært forskjellig, dermed også utsorteringen av fremmedlegemer.

Organisk avfall fra Oslo var relativt lett å sortere ut. De grønne posene i tønnen var intakte og fremmedlegemer i posene lett å sortere ut.

Organisk avfall fra HRA var noe vanskeligere å sortere fordi avfallsposene var åpnet og avfallet blandet og skrudd i sorteringsanlegget. Det var likevel fullt mulig å få til en god utsortering av fremmedlegemer fra det organiske avfallet.

Mengde fremmedlegemer (sum plast, metall, glass og annet) var størst i avfall fra HRA og minst i avfall fra Ludvika (Tabell 5-2). Mengden plast var for eksempel vesentlig høyere i avfallet fra HRA enn fra de andre stedene.
Tabell 5-2: Mengde fremmedlegemer (% av TS) i avfall fra HRA, Ludvika og Oslo samlet inn og sortert i perioden mai-september 2011.

<table>
<thead>
<tr>
<th></th>
<th>HRA (n=4)</th>
<th>Ludvika (n=4)</th>
<th>Oslo (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Middel</td>
<td>Max</td>
</tr>
<tr>
<td>Plast</td>
<td>2,33</td>
<td>6,20</td>
<td>10,30</td>
</tr>
<tr>
<td>Glass</td>
<td>0,58</td>
<td>2,12</td>
<td>5,26</td>
</tr>
<tr>
<td>Metall</td>
<td>0,50</td>
<td>1,10</td>
<td>1,44</td>
</tr>
<tr>
<td>Annet#</td>
<td>1,10</td>
<td>1,36</td>
<td>1,62</td>
</tr>
<tr>
<td>Bleier*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tekstil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grønne plastposer*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kattesand*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum¤</td>
<td>5,25</td>
<td>8,32</td>
<td>11,45</td>
</tr>
</tbody>
</table>

*Prosent av våtvekt; ¤for Oslo er ikke bleier, grønne poser og kattesand inkludert i sum; #annet: bl.a. skumgummi, gummi

Sett på bakgrunn av mengde fremmedlegemer var det forventet at glødetapet i avfall fra Ludvika skulle vært høyere (lavere andel fremmedlegemer). Årsaken til det relativt sett lavere glødetapet kan være at utsorteringen av fremmedlegemer i avfallet fra Ludvika har vært mindre effektiv på grunn av svært små biter. En annen forklaring kan være at det organiske materialet ble noe nedbrutt i prosessen før avfallet ble sortert ved Bioforsk.

Total mengde fremmedlegemer (på vektbasis) var størst i avfall fra HRA (8,3% i gjennomsnitt) og minst i avfall fra Ludvika (gjennomsnittlig 3,2%). Basert på mengden fremmedlegemer som ble funnet i avfallsprøvene (høyest i HRA, lavest i prøver fra Ludvika), kan det forventes et høyere innhold av tungmetaller og organiske forurensinger i prøvene fra HRA.

Plast: HRA>Osloludvika
Metall: HRA>Osloludvika
Glass: Ludvika>Osloludvika
Annet: Oslo>HRA>Ludvika
SUM: HRA>Osloludvika

Resultatene fra plukkanalysen er gitt som prosent av tørrvekt. Plast er på vektbasis det viktigste fremmedlegemet i avfallet fra HRA og Oslo, mens metall er det minst viktige. På volumbasis er plast betydelig viktigere, i alle fall i avfall fra HRA og Oslo.

5.3 Tungmetaller

Konsentrasjonene av tungmetaller var generelt betydelig høyere i prøver som er behandlet ved Ludvika-anlegget enn det organiske avfallet som var sortert ut fra Oslo og HRA (Figur 5-1).
5.3.1 Oslo

Innholdet av tungmetaller i organisk avfall fra Oslo var på samme nivå som innholdet i vegetabiliske og animalske næringsmidler (se Tabell 2-2), bortset fra for kadmium og bly som synes å være noe forhøyet i enkelte prøver. Kildesortering og transport til sorteringsanlegget forurenset i svært liten grad det organiske avfallet i Oslo.

Konsentrasjonene av tungmetaller i det organiske avfallet fra Oslo var dermed betydelig lavere enn innholdet i norsk kompost og råtnerest (se Tabell 2-5, 2-6). Avfallet tilfredsstiller kvalitetsklasse 0 for alle metaller. Etter en råtneprosess, som antas å øke konsentrasjonene av tungmetaller (i tørrstoffet) med 100%, vil kadmium i enkelte prøver (Oslo 3 og 4) kunne klassifisere råtneresten til klasse I (Tabell 2-1).

5.3.2 HRA

Innholdet av tungmetaller i organisk avfall fra HRA var for krom og sink, samt kadmium og bly, noe høyere enn innholdet i vegetabiliske og animalske næringsmidler. Det organiske avfallet fra HRA var derfor mer forurenset enn avfallet fra Oslo. Med bakgrunn i sammensetningen og konsistensen på avfallet (se figur 3-1), var dette som forventet.

Konsentrasjonene av tungmetaller i det organiske avfallet fra HRA var likevel betydelig lavere enn innholdet i norsk kompost og råtnerest (Tabell 2-5, 2-6). Avfallet tilfredsstiller kravene til kvalitetsklasse 0 for alle metaller, bortsett fra for kobber og sink i prøve HRA-3 (kvalitetsklasse II). Etter for eksempel en utråtningsprosess vil konsentrasjonen av sink i råtneresten kunne overskride kvalitetskravet til klasse II (Tabell 2-1).

5.3.3 Ludvika

Konsentrasjonene av tungmetaller i det sorterte avfallet fra Ludvika var betydelig høyere enn konsentrasjonene i rent vegetabilsk og animalsk matavfall (se Tabell 2-2). Konsentrasjonene av kadmium og kvikksølv klassifiserer avfallet i kvalitetsklasse II, for sink i klasse I, øvrige metaller i klasse 0. Etter utråtning (100% økning i konsentrasjon på basis av tørrstoff) kan konsentrasjonen av kadmium klassifisere råtneresten i kvalitetsklasse III (Tabell 2-1).

Det var ingen vesentlige forskjeller mellom de fire første prøvene fra Ludvika (Ludvika 1-4, næringsavfall og husholdningsavfall) og Ludvika 5-6 (kun husholdningsavfall) (Figur 5-1). Konsentrasjonene av kvikksølv var imidlertid overraskende høye i det sentralsorterte husholdningsavfallet (kvalitetsklasse II) og må skyldes kontaminering for eksempel fra termometre eller mest sannsynlig lyspærer (sparepærer). Resultatene indikerer at det har lieten betydning hvorvidt husholdningsavfallet samles inn separat eller om dette gjøres sammen med næringsavfall i kommunen.

Forskjellene på prøve Ludvika 5 og Ludvika 6 var at fremmedlegemer ble sortert ut fra Ludvika 5, mens Ludvika 6 var en usortert prøve. Da konsentrasjonene av tungmetaller i disse prøvene var relativt like, indikerer dette at mengden fremmedlegemer ikke har betydning for analyseresultatet. Videre betyr dette at det organiske avfallet ble kontaminert i innsamlings- og sorteringsprosessen.

De relativt høye konsentrasjonene av tungmetaller og organiske forurensninger i organisk avfall sortert ved anlegget på Bjørnyttan skyldtes med andre ord sammenblanding og oppmaling av matavfallet sammen med restavfall.

Konsentrasjonene av tungmetaller i prøvene fra Ludvika/Follo (husholdningsavfall fra Follo sortert ved avfallsanlegget på Bjørnyttan i 2008) var på samme nivå som de øvrige prøvene produsert ved dette anlegget (Figur 5-1). Dette gir en indikasjon på at det er selve innsamlings- og sorteringsprosessen som forårsaker de relativt høye nivåene og ikke spesielt avfall fra Ludvika eller Follo-distriktet.
Avfallet hentes hos forbruker med omtrent samme frekvens. Forskjellen ligger i sorteringsordningen. Trolig har oppholdstiden (6-8 timer) i homogeniseringstrommelen vesentlig betydning fordi avfallet her finfordeles og varmes opp (høy biologisk aktivitet). God kontakt og økt temperatur gir trolig gunstige forhold for ”svetting” av mange organiske forurensinger.

5.4 Organiske forurensninger

”Forurensningsmønsteret” for de organiske forurensningene (Figur 5-2) var mye likt mønsteret for tungmetaller: konsentrasjonene var betydelig høyere i sortert avfall fra Ludvika enn fra Oslo og HRA, og konsentrasjonene var høyere i avfall fra HRA enn fra Oslo.

Konsentrasjonene av PCB i avfall fra Oslo og HRA (Figur 5-2) var på nivå med det som kan forventes i matavfall (Tabell 2-4), mens konsentrasjonene i avfallet fra Ludvika var mer sammenlignbart med nivået i kompost og råtnerest (Tabell 2-7). Antas en reduksjon av tørrstoffet på 50% i en råtneprosess, vil konsentrasjonen av PCB, imidlertid bli høyere enn det som ble funnet i de fleste kompost og råtnerestprøvene referert i Tabell 2-7.

Mønsteret for polybromerte flammehemmere, PAH og ftalater er mye likt mønsteret for PCB: konsentrasjonene i avfall fra Oslo og HRA var nær det som kan forventes å utgjøre en bakgrunnskonsentrasjon, mens konsentrasjonene i det organiske avfallet fra Ludvika var 4-40 ganger høyere (Figur 5-2).

Konsentrasjonene av ulike PBDE-kongenere (BDE 47-BDE 183) i organisk avfall fra Ludvika var sammenlignbart med konsentrasjoner funnet i avløpsslam fra norske renseanlegg (Thomas et al. 2011). Konsentrasjonene i organiske avfall fra Oslo og HRA var lavere enn i avfall fra Ludvika (Figur 5-2). Deka-BDE (BDE-209) var den forbindelsen som ble funnet i høyest konsentrasjoner i norsk avløpsslam (Thomas et al. 2011), men konsentrasjonen av de ”tyngste” brommerte difenyleterne (BDE 196-209) ble ikke bestemt i det organiske avfallet i dette prosjektet.

Konsentrasjonene av sum ftalater var lavest i avfall fra Oslo, høyest i prøver fra Ludvika (Figur 5-2). Konsentrasjonene av DEHP og spesielt DINP, var betydelig høyere enn det som bl.a. ble funnet i kompost og råtnerest (Tabell 2-7), men på nivå med tidligere funn i norsk avløpsslam (Nedland og Paulsrud 2006). Konsentrasjonene av DINP var spesielt høye i avfallet fra Ludvika. DINP (og DIDP) har de siste årene blitt mer og mer brukt som erstatning for DEHP og ansees å være mindre skadelige for helse og miljø.

Konsentrasjonene av 4-nonylfenol (<1,5 mg/kg TS; Figur 5-2) var betydelig lavere enn det som bl.a ble funnet i norsk avløpsslam i 2006 (14-40 mg/kg, samt i tidligere undersøkelser 1996-2002; Nedland og Paulsrud 2006).
Konsentrasjonene av Bisfenol A (0,1-1,3 mg/kg, Figur 5-2) var på samme nivå som konsentrasjonene funnet i norsk kompost, noe lavere enn konsentrasjonene i to prøver av råtnerest (Tabell 2-7). Konsentrasjonene av fenoler generelt, var mer lik i avfall fra de tre anleggene enn de fleste andre forbindelser.

Syntetiske muskforbindelser (Galaxolid, Tonalid) ble ikke påvist i prøver fra Oslo og HRA, mens konsentrasjonene i prøver fra Ludvika var noe lavere enn konsentrasjonene funnet i norsk avløpsslam (Thomas et al. 2011). Som i avløpsslam, var konsentrasjonene av Galaxolid (HHCB og HHCB-Lacton: nedbrytningsprodukt av HHCB) betydelig høyere enn konsentrasjonen av Tonalid.
Figur 5-2: Konsentrasjoner av organiske forurensinger i avfall fra Oslo, HRA, Ludvika og Follo.

Konsentrasjonene av koffein var betydelig høyere i avfall fra Norge (Oslo, HRA og Ludvika/Follo) (Figur 5-2). Det må antas at forskjellene skyldes at kaffegrut (fra kok- og filterkaffe) i liten grad havner i avfallet i Ludvika-regionen, trolig som en følge av bruk av koffeinfr kaffe eller bruk av pulverkaffe. Dette illustrerer at forskjeller i kostholds- og drikkevaner kan spores gjennom kjemiske analyser av organisk avfall. En slik klar sammenheng styrker tiltroen til at utvalget av prøver (uttak ved avfallsanlegg, sortering og homogenisering i laboratoriet) faktisk fanger opp og reflekterer sammensetningen av det organiske avfallet fra de tre anleggene.

Det ble ikke påvist konsentrasjoner over deteksjongsgrensen for tetrabrom bisfenol-A (flammehemmer), triclosan og metyltriclosan (bakteriedrepende stoffer) i noen av de organiske avfallsprøvene.
6. Vurdering av risiko ved bruk av organisk avfall

De organiske avfallsfraksjonene som ble analysert i dette prosjektet utgjør ikke sluttproduktene i en behandlingsprosess og er derfor ikke de materialene som anvendes på jord. Det analyserete organiske avfallet fra Oslo blir råstoff i en biogassprosess og blir en del av råtneverden herfra. Dette gjelder også for det organiske avfallet fra HRA. Avfallet fra Ludvika går i dag igjennom en komposteringsprosess hvor det også tilsettes strukturmateriale. Sluttbehandlingen av det organiske avfallet vil endre sammensetning og konsentrasjoner av både tungmetaller og organiske forurensninger.

Selv om kvaliteten til de organiske materialene som er analysert bare sier noe om råstoffet som ingår i ulike organiske behandlingsprosesser, vil de gi en indikasjon på kvaliteten på sluttproduktene. Da det er den organiske avfallsfraksjonen fra Ludvika som er mest likt ferdig produkt og som har de høyeste nivåene av miljøfremmede stoffer, er det mest nærliggende å gjennomføre en vurdering for dette avfallet.

Det ble i perioden 2007-2009 gjennomført en risikovurdering av tungmetaller (kadmium, bly, kvikksev, nikkel, sink, kobber og krom) og organiske forurensinger (PCB7, 16PAH, ftalater (DEHP, DBP), 4-nonylfenol og 4-oktylfenol inkl. etoksilater og LAS) i norsk avløpsslam brukt som jordforbedringsmiddel (Eriksen et al. 2009). For de andre metallene (kobolt, sølv), samt arsen, bromerte flammehemmere, musk-forbindelser, bisfenol A, fosforbaserte flammehemmere, er det ikke gjennomført noen risikovurdering ved tilførsel til jord.

I risikovurderingen var tilført mengde avløpsslam til jord 4 og 6 tonn per daa per 10 år (dvs. opptil 50% mer enn det som tillates ifølge Forskrift om gjødselvarer m.v. av organis opphav). Risikovurderingen omfattet vurderinger av effekter på jordlevende organismer, organismer i vann som mottar avrenning fra områder hvor avløpsslam ble brukt, effekter på planter, effekter på mennesker og dyr ved konsum av mat og vann som er påvirket av avløpsslam (til sammen 12 endepunkter og eksponeringsveier). Konsentrasjonene av tungmetaller og organiske forurensninger i avløpsslam som ble brukt i risikovurderingen var gjennomsnittsnivåer for innholdet i norsk avløpsslam de siste 5 årene (Tabell 6-1).

Risikovurderingene konkluderte med at konsentrasjonene av sink i avløpsslam ved tilsetning (4-6 tonn/daa gjennom 100 år) til sandig jord kunne føre til overskridelse av effektivitete av planter og jordlevende organismer. For de andre metallene var risiko-forholdet mindre enn 1 etter 100 år bruk av avløpsslam. Forkvikksev, kobber og krom var forholdet mellom 1 og 0,5. Risikovurderingen indikerte videre at enkelte grupper som konsumerer større mengder korn enn gjennomsnittet, vil kunne overskride anbefalt mengde for inntak av kadmium og kobber. Resultatene fra risikovurderingen medførte bl.a. at VKM gav et generelt råd om å fortsette arbeidet med å redusere innholdet av tungmetaller i avløpsslam brukt på dyrket mark.

Risikovurderingen viste videre at konsentrasjonene av PCB og enkelte PAH i avløpsslam (Tabell 7-1) lokalt over tid (100 år), potensielt kunne føre til en øksepsjon for mennesker som spiser mye mat (mer enn 50 %) dyrket på slamtilført jord. VKM sier videre at eksponeringen for disse forbindelsene mest sannsynlig er overestimert, slik at eksponeringen også lokalt kan betraktes som “uten risiko på lang sikt”.

1 Her: Forholdet mellom konsentrasjonen i jord og den konsentrasjonen som antas å gi effekt
Konsentrasjonene av kadmium, sink og kobber (metallene som ble vist å kunne utgjøre en risiko på sikt i VKMs risikovurdering) i organisk avfall fra Ludvika var lavere enn de verdiene som ble brukt i risikovurderingen. Dette gir en god indikasjon på at metallnivået i avfallet ikke vil utgjøre noen risiko ved bruk over lang tid.

Tabell 6-1: Konsentrasjoner av metaller i prøver av organiske avfall fra Oslo, HRA og Ludvika og konsentrasjoner brukt i risikovurdering av avløpslam (Eriksen et al. 2009).

<table>
<thead>
<tr>
<th></th>
<th>Cd</th>
<th>Pb</th>
<th>Hg</th>
<th>Cu</th>
<th>Ni</th>
<th>Cr</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oslo-1</td>
<td>0,0602</td>
<td>2,06</td>
<td>0,015</td>
<td>12,4</td>
<td>1,95</td>
<td>2,08</td>
<td>27,6</td>
</tr>
<tr>
<td>Oslo-2</td>
<td>0,0562</td>
<td>0,161</td>
<td>0,005</td>
<td>14,5</td>
<td>0,501</td>
<td>0,156</td>
<td>22,2</td>
</tr>
<tr>
<td>Oslo-3</td>
<td>0,24</td>
<td>0,215</td>
<td>0,005</td>
<td>7,62</td>
<td>0,394</td>
<td>0,186</td>
<td>20,6</td>
</tr>
<tr>
<td>Oslo-4</td>
<td>0,295</td>
<td>0,141</td>
<td>0,02</td>
<td>12</td>
<td>0,366</td>
<td>0,264</td>
<td>33,8</td>
</tr>
<tr>
<td>HRA-1</td>
<td>0,151</td>
<td>1,59</td>
<td>0,029</td>
<td>12,2</td>
<td>2,64</td>
<td>4,51</td>
<td>81,3</td>
</tr>
<tr>
<td>HRA-2</td>
<td>0,126</td>
<td>1,75</td>
<td>0,013</td>
<td>11,7</td>
<td>2,05</td>
<td>6,3</td>
<td>43,5</td>
</tr>
<tr>
<td>HRA-3</td>
<td>0,118</td>
<td>1,76</td>
<td>0,018</td>
<td>15,6</td>
<td>1,64</td>
<td>3,76</td>
<td>499</td>
</tr>
<tr>
<td>HRA-4</td>
<td>0,121</td>
<td>2,81</td>
<td>0,015</td>
<td>9,54</td>
<td>1,98</td>
<td>1,73</td>
<td>45,9</td>
</tr>
<tr>
<td>Ludvika-1</td>
<td>0,994</td>
<td>16,1</td>
<td>0,087</td>
<td>38,6</td>
<td>6,96</td>
<td>7,35</td>
<td>125</td>
</tr>
<tr>
<td>Ludvika-2</td>
<td>0,471</td>
<td>15,4</td>
<td>0,254</td>
<td>37,7</td>
<td>8,29</td>
<td>17,6</td>
<td>228</td>
</tr>
<tr>
<td>Ludvika-3</td>
<td>0,376</td>
<td>12,9</td>
<td>0,129</td>
<td>37,8</td>
<td>6,07</td>
<td>9,8</td>
<td>130</td>
</tr>
<tr>
<td>Ludvika-4</td>
<td>0,261</td>
<td>10,2</td>
<td>0,174</td>
<td>36,4</td>
<td>4,83</td>
<td>8,28</td>
<td>102</td>
</tr>
<tr>
<td>Ludvika-5</td>
<td>0,383</td>
<td>28,7</td>
<td>1,04</td>
<td>38</td>
<td>9,67</td>
<td>19,1</td>
<td>171</td>
</tr>
<tr>
<td>Ludvika-6</td>
<td>0,333</td>
<td>11,9</td>
<td>1,21</td>
<td>37</td>
<td>7,77</td>
<td>13,9</td>
<td>181</td>
</tr>
<tr>
<td>Ludvika/Follo</td>
<td>0,372</td>
<td>30,9</td>
<td>0,078</td>
<td>41</td>
<td>11,3</td>
<td>11,4</td>
<td>139</td>
</tr>
</tbody>
</table>

Risikovurdering avløpslam: 0,80 22 0,90 268 14 23 326

For PCB7, 16PAH, DEHP og DBP var konsentrasjonene i det organiske avfallet fra Ludvika høyere enn det som ble brukt i risikovurderingen av avløpslam (Tabell 6-2). Spesielt var konsentrasjonene av DBP høye (opptil 80x høyere). Selv om risiko-forholdet for DBP i risikovurderingen var lavt (<0,05), er det grunn til å se nærmere på disse resultatene. Konsentrasjonene av DEHP i organiske avfall fra Ludvika var også relativt høyt i forhold til konsentrasjonene i avløpslam. Da risiko-forholdet i forhold til humant inntak for DEHP var 0,2 i slamrisikovurderingen (Eriksen et al. 2009), bør også konsentrasjonene av DEHP følges nærmere opp.
Tabell 6-2: Konsentrasjoner av organiske forurensninger i prøver av organisk avfall fra Oslo, HRA og Ludvika og konsentrasjoner brukt i risikovurdering av avløpsslam (Eriksen et al. 2009).

<table>
<thead>
<tr>
<th></th>
<th>PCB$_7$</th>
<th>16PAH</th>
<th>DBP</th>
<th>DEHP</th>
<th>4-nonylfenol</th>
<th>4-oktylfenol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg/kg</td>
<td>µg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Oslo 1</td>
<td>3,39</td>
<td>54</td>
<td>1,28</td>
<td>2,24</td>
<td>0,42</td>
<td>0,03</td>
</tr>
<tr>
<td>Oslo 2</td>
<td>4,38</td>
<td>66</td>
<td>1,33</td>
<td>2,69</td>
<td>0,60</td>
<td>0,03</td>
</tr>
<tr>
<td>Oslo 3</td>
<td>4,81</td>
<td>143</td>
<td>2,38</td>
<td>4,10</td>
<td>0,60</td>
<td>0,03</td>
</tr>
<tr>
<td>Oslo 4</td>
<td>2,66</td>
<td>171</td>
<td>2,01</td>
<td>3,08</td>
<td>0,64</td>
<td>0,03</td>
</tr>
<tr>
<td>HRA 1</td>
<td>3,73</td>
<td>991</td>
<td>2,29</td>
<td>55,0</td>
<td>0,67</td>
<td>0,03</td>
</tr>
<tr>
<td>HRA 2</td>
<td>4,39</td>
<td>422</td>
<td>1,54</td>
<td>25,4</td>
<td>0,25</td>
<td>0,03</td>
</tr>
<tr>
<td>HRA 3</td>
<td>7,14</td>
<td>297</td>
<td>3,61</td>
<td>34,5</td>
<td>0,39</td>
<td>0,02</td>
</tr>
<tr>
<td>HRA 4</td>
<td>4,84</td>
<td>285</td>
<td>2,15</td>
<td>14,1</td>
<td>0,26</td>
<td>0,02</td>
</tr>
<tr>
<td>LUD 1</td>
<td>13,5</td>
<td>605</td>
<td>9,24</td>
<td>60,9</td>
<td>1,25</td>
<td>0,04</td>
</tr>
<tr>
<td>LUD 2</td>
<td>21,3</td>
<td>1946</td>
<td>21,7</td>
<td>54,0</td>
<td>1,20</td>
<td>0,09</td>
</tr>
<tr>
<td>LUD 3</td>
<td>20,7</td>
<td>1119</td>
<td>19,3</td>
<td>59,0</td>
<td>1,16</td>
<td>0,05</td>
</tr>
<tr>
<td>LUD 4</td>
<td>18,0</td>
<td>1431</td>
<td>16,6</td>
<td>48,5</td>
<td>1,51</td>
<td>0,06</td>
</tr>
<tr>
<td>LUD 5</td>
<td>19,9</td>
<td>3569</td>
<td>18,9</td>
<td>104</td>
<td>0,99</td>
<td>0,05</td>
</tr>
<tr>
<td>LUD 6</td>
<td>20,9</td>
<td>3869</td>
<td>14,3</td>
<td>91,3</td>
<td>0,95</td>
<td>0,06</td>
</tr>
<tr>
<td>Ludvika/Follo</td>
<td>20,0</td>
<td>1706</td>
<td>28,3</td>
<td>20</td>
<td>1,21</td>
<td>0,10</td>
</tr>
<tr>
<td>Risikovurdering avløpsslam</td>
<td>12</td>
<td>1800</td>
<td>0,34</td>
<td>49,2</td>
<td>29,6</td>
<td>0,47</td>
</tr>
</tbody>
</table>

Konsentrasjonene av ftalater var generelt høyt i organisk avfall fra HRA og Ludvika, noe som mest sannsynlig skyldes kontakt med plast. Det er derfor all grunn til å gjøre en nærmere vurdering av hva de høye nivåene av ftalater i det organiske avfallet har å si for sluttproduktet i behandlingsprosessen.

6.1 Grenseverdier for organiske forurensinger i organisk avfall

Sammenlignes innholdet av DEHP, 4-nonylfenol, 16PAH og 7PCB i organisk avfall fra Oslo, HRA og Ludvika (Tabell 6-2) med grenseverdier for avløpsslam i Danmark, Sverige og Tyskland (Tabell 6-3), sees at konsentrasjonene av DEHP og 16PAH i flere av prøvene som er sortert ved Bjørnyttan-anlegget og en prøve fra HRA er høyere enn anbefalte grenseverdier for disse parametrene.

Tabell 6-3: Grenseverdier eller anbefalte verdier (Sverige) for innholdet av organiske forurensninger i avløpsslam for Danmark, Sverige og Tyskland (Erhardt & Prüess 2001).

<table>
<thead>
<tr>
<th></th>
<th>DEHP</th>
<th>4-nonylfenol</th>
<th>16PAH</th>
<th>7PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/kg TS</td>
<td>µg/kg TS</td>
<td>µg/kg</td>
<td>µg/kg</td>
</tr>
<tr>
<td>Danmark</td>
<td>50</td>
<td>10</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>Sverige</td>
<td>50</td>
<td>3000</td>
<td>400</td>
<td>200</td>
</tr>
</tbody>
</table>

Nivåene av DEHP for et par av prøvene fra Ludvika ca. 2x grenseverdien på 50 mg/kg TS. Det er derfor grunn til å se nærmere på innholdet av ftalater generelt i avfall fra Ludvika.
7. Diskusjon

7.1 Sammenligning av avfallsfraksjoner

Tidligere utredninger om forurensinger i kompost (for eksempel Amundsen et al. 2002) vektlegger sortering i husholdningene, transport til komposteringsanlegget, tilsatsmidler i komposteringsprosessen og sortering og behandling ved komposteringsanlegget som fire viktige faktorer for kompostkvalitet.

Dette prosjektet vektlegger hvordan sortering og behandling av husholdningsavfall påvirker kvaliteten til det organiske avfallet, men flere faktorer gjør at direkte sammenligning av analyseresultatene fra de tre organiske avfallsfraksjonene ikke gir et fullstendig bilde.

Utsortering av fremmedlegemer fra avfallet fra Ludvika var krevende fordi disse bestod av til dels svært små biter. Det antas derfor at det finnes mer fremmedlegemer i det organiske avfallet som analyseres fra Ludvika enn det plukkanalysene viste.

Utsorteringen av fremmedlegemer fra avfallet i tønna som ble sendt Bioforsk var en relativt enkel prosess på den måten at fremmedlegemene i liten grad var malt opp. Det organiske avfallet som ble analyseret var derfor fritt for fremmedlegemer.

3. Bare hele poser ble fraktet i tønnen fra Oslo Energigjenvinning til Bioforsk og det var derfor kun feilsortert avfall i de 40-50 grønne posene i tønnen som medførte kontakt mellom organisk avfall og fremmedlegemer.

Det organiske avfallet i de grønne posene var betydelig mindre knust enn avfall fra HRA og utsorteringen av fremmedlegemer var en rask og oversiktlig prosess. Det sorterte organiske avfallet fra Oslo hvor tungmetaller og organiske forurensninger ble bestemt, var helt fritt for fremmedlegemer.

En sammenligning av analyseresultatene fra Ludvika med resultatene fra Oslo og HRA, gir dermed ikke et generelt bilde av forskjeller i kvaliteten på organisk avfall som kommer fra kildesorterte og sentralsorterte ordninger.
Basert på ovenstående, var det forventet et betydelig høyere innhold av tungmetaller og organiske forurensinger i organisk avfall fra Ludvika enn ved de to andre anleggene. Lavest innhold var forventet i organisk avfall fra Oslo. Historikken og behandlingen av de ulike fraksjonene gjorde at innholdet av tungmetaller og organiske forurensninger i avfallet fra Ludvika kunne sammenlignes med innholdet i norsk kompost og avløpsslam, mens sortert organisk avfall fra HRA og Oslo var mer sammenlignbart med innholdet i matvarer (vegetabilsk og animalsk).

Resultatene fra prosjektet ga en relativt klar indikasjon på at oppmaling og knusing av avfallet før fremmedlegemer som plast og metall var tatt ut fra avfallet, ga et forhøyet nivå av tungmetaller og organiske forurensinger i det organiske avfallet. Avfall fra Oslo var ved prøveuttaket det minst knuste og oppmalte avfallet, organisk avfall fra HRA har hatt en noe lenger kontakttid med fremmedlegemer, mens avfall fra Ludvika har lengst og mest intens kontakttid mellom organisk avfall og fremmedlegemer.

Dette viser at kontakttiden og kontaktflaten mellom organisk avfall og fremmedlegemer har stor betydning for kvaliteten på det organiske avfallet som skal viderebehandles i en komposterings- eller råtneprosess.

En relativt omfattende undersøkelse av kompostkvalitet gjennomført av "The Institute for Environment and Sustainability (JRC-IES) bekrefter funnene og antagelsene som er gjort her. I JRC-IES undersøkelsen ble 162 prøver av kompost analysert med hensyn på tungmetaller og organiske forurensinger (mange av de samme metallene og organiske forurensningene som ble analysert her). Kompostprøvene ble hentet fra bl.a. disse anleggstypene: 1) Behandling av kildesortert husholdningsavfall og hage/parkavfall; 2) behandling av kun hage/park-avfall (green compost); 3) behandling av avløpsslam (slamkompost); 4) utråtning av kildesortert husholdningsavfall og 5) behandling av ikke-sortert husholdningsavfall i mekanisk biologisk anlegg (MBT-anlegg).

Resultatene fra denne undersøkelsen var entydig når det gjaldt innholdet i ferdig kompost: kompost fra anlegg som brukte MBT-prosessen var høyere (2-10ganger) for alle tungmetaller og organiske forurensninger enn for eksempel kompost fra kildesortert husholdningsavfall. For de fleste av de analyserete parametrene var innholdet i MBT-kompost også høyere enn i slamkompost (JRC 2011). Rapporten understreker at nivåene av tungmetaller og organiske forurensninger i MBT-kompost, basert på dagens kunnskap, ikke utgjør noen miljøtrussel ved bruk.

7.2 Variasjoner i innhold gjennom sesongen

7.3 Organisk materiale i direkte kontakt med fremmedlegemer

Fremmedlegemer som ble sortert ut fra avfallstønnene HRA og Oslo, var som nevnt vedheftet noe organisk materiale som ble vasket bort før tørking. Mengen av dette materialet var imidlertid svært liten i forhold til den totale mengden i tønnen (mye mindre enn 1%, se for eksempel figur 3-3). Selv om dette organiske materialet på grunn av kontakten med fremmedlegemer hadde et høyere innhold av tungmetaller og organiske forurensninger, vil dette ikke ha vesentlig betydning for konsentrasjonene bestemt i organisk avfall fra HRA og Oslo.
7.4 Fremmedlegemer i analysert fraksjon

Et argument for at konsentrasjonene av tungmetaller og organiske forurensninger var høyere i prøver sortert ved avfallsanlegget ved Bjørnhyttan, Ludvika, sammenlignet med prøvene fra Oslo og HRA, er at mengden fremmedlegemer her er større. Prøven Ludvika 5 var sortert i laboratoriet (som de øvrige prøvene), mens Ludvika 6 ikke ble sortert før analyse. Selv om utsorteringen ikke var 100 % effektiv i prøve 5, men trolig 70-80 %, var det forventet at konsentrasjonene av tungmetaller og organiske forurensninger skulle være vesentlig høyere i prøve 6 enn i prøve 5. Da konsentrasjonene var like i disse to prøvene, må dette skyldes at forurensningene finnes i det organiske materialet (som utgjør 97-99 % av prøven) og ikke først og fremst i fremmedlegemene i prøven.

Den vesentligste faktoren som kan forklare forskjellene i innhold av miljøgifter mellom de undersøkte avfallsprøvene er måten avfallet blir behandlet på ved Bjørnhyttan-anlegget. Kverning og oppmaling fører til varmeutvikling og svært effektiv kontakt mellom fremmedlegemer (som ikke er sortert ut) og det organiske avfallet.
8. Konklusjoner

Liten kontakttid og kontaktflate mellom organisk avfall og fremmedlegemer er avgjørende for å redusere innholdet av tungmetall og organiske forurensninger i det organiske avfallet. Fjerning av fremmedlegemer før oppmaling av innsamlet avfall vil redusere innholdet av tungmetall og organiske forurensninger i organisk avfall.

Resultatene viser at sammenblanding av restavfall og matavfall gir et mindre rent organisk avfall til bruk i komposterings- og råtneprosesser. Mulighetene for å få et avfallsprodukt (ferdig kompost eller råtnerest) med et unødig høyt innhold av uønskede forbindelser øker på denne måten. Kildesortering av husholdningsavfall er med på å redusere kontakttidene og er således et første viktig steg for å sikre høy kvalitet på organisk avfall som råstoff til biogass- og komposteringsprosesser.

Kildesortert organisk avfall kan i enkeltprøver ha et forhøyet innhold av tungmetaller. Dette viser at kildesortering av avfall ikke nødvendigvis sikrer at innholdet av miljøfremmede stoffer er lavt.

Konsentrasjonene av ftalater var generelt høyt i organisk avfall fra HRA og Ludvika, noe som mest sannsynlig skyldes kontakt med plast. Det er derfor grunn til å gjøre en nærmere vurdering av de høye nivåene av enkelte ftalater i det organiske avfallet og hvilken betydning dette har for utnyttelse av sluttproduktet etter behandleingsprosessen.
9. Referanser

http://www.nifes.no/index.php?page_id=150&article_id=2336&lang_id=1

http://www.mattilsynet.no/publikasjoner/rapporter/mat/milj_gifter_i_matvarer_p_det_norske_markedet_2003_2005_71893

10. Vedlegg

10.1 Analysemetoder organiske forbindelser

1.1 Materials

All organic solvents were of pesticide residue analysis grade. They were obtained from VWR International GmbH, Darmstadt, Germany. Prior to use, all glassware was rinsed with methanol. Quantitation and recovery standards consisting of 13C-labeled or deuterized compounds were purchased from Cambridge Isotope Laboratories (CIL, Andover, MA, USA). He 5.0 (Linde AG, Höllriegelskreuth, Germany) was used as carrier gas for GC-MS. Acidic silica was prepared by mixing concentrated H$_2$SO$_4$ (44 g) with neutral silica (56 g).

Samples were freeze-dried, ground and sieved (2,5 mm) shortly after sampling. 30 g of the samples were then Soxhlet extracted with n-hexane for eight hours. An aliquot equal to 10 g sample was used for the analysis of PCB and PBDE, an aliquot equal to 2 g sample was used for the analysis of PAH, DEHP and DDX.

1.2 Methods

1.2.1 PCB and PBDE

To an aliquot equal to 10 g sample the quantitation and recovery standards were added and the sample was then treated with sulphuric acid (95 %). The extracts of the samples were purified by column chromatography on aluminium oxide columns using successively n-hexane (5 ml), n-hexane/dichloromethane (90/10, v:v, 5 ml), and n-hexane/dichloromethane (1/1, v:v, 5 ml) as eluent. The eluents were concentrated to less than 10 µl in a nitrogen stream and spiked with 13C-labelled PCB 209 as recovery standard prior to GC/MS-analysis.

1.2.2 PAH, DEHP and DDX

After adding the quantitation and recovery standards to the aliquot of the sample the solvent was evaporated (~10 µl).

Methanol was added to the residues of the samples and after 24 h at -8 °C the samples were filtered to remove the precipitated fatty acids. Samples were then purified by column chromatography on silica gel columns using successively n-hexane (5 ml), n-hexane/dichloromethane (90/10, v:v, 10 ml), n-hexane/dichloromethane (1/1, v:v, 5 ml) and acetone (5 ml) as eluent. The eluents were concentrated to 200 µl prior to GC/MS-analysis.

1.3 Analytics

Analysis was carried out by GC/MS (Agilent 6890N GC, Agilent 5975 MS, splitless injection). The GC column used was a Varian VXms (30 m x 0.25 mm i.d., 0.25 µm film thickness). Detection was performed in single ion monitoring mode (SIM). For PCB analysis the GC oven temperature was programmed as follows: 80 °C (hold 1 min), 7 °C/min → 180 °C (hold 1 min), 12 °C/min → 240 °C (hold 0 min), 20 °C/min → 300 °C (hold 8 min), 20 °C/min →
320 °C (hold 7 min); total run time was 40.29 min. Injection temperature was 270 °C, injection volume 1 µl.

For PBDE analysis the GC oven temperature was programmed as follows: 130 °C (hold 1 min), 20 °C/min → 210 °C (hold 1 min), 10 °C/min → 270 °C (hold 5 min), 20 °C/min → 300 °C (hold 3 min), 20 °C/min → 320 °C (hold 30.5 min); total run time was 53 min. Injection temperature was 270 °C, injection volume 1 µl.

For PAH, DEHP and Nonylphenol analysis the GC oven temperature was programmed as follows: 80 °C (hold 1 min), 7 °C/min → 180 °C (hold 1 min), 12 °C/min → 240 °C (hold 0 min), 20 °C/min → 300 °C (hold 15 min); total run time was 39.29 min. Injection temperature was 270 °C, injection volume 1 µl.

For DDT analysis the GC oven temperature was programmed as follows: 130 °C (hold 1 min), 20 °C/min → 210 °C (hold 1 min), 10 °C/min → 270 °C (hold 5 min), 20 °C/min → 300 °C (hold 5 min), 20 °C/min → 320 °C (hold 10 min); total run time was 32.5 min. Injection temperature was 270 °C, injection volume 1 µl.

Qualification for all analysed PCB and PBDE congeners was performed with 13C labelled standard solutions, quantification was carried out using the isotope dilution method.

1.4 Quality assurance and control

Recovery rates were monitored for each sample by adding 13C-labelled PCB 209 prior to work up and PCB 209 before GC/MS-analysis. The ranged from 79.3 % to 93.4 %, average 91.7 %. The reproducibility was calculated after work-up by analysing the identical sample eight times, giving an overall error of 6.6 %. Analytical blanks were performed for every 6th samples (see table 4). Notably high concentrations of analyte in the analytical blank samples were only observed for DEHP.

<table>
<thead>
<tr>
<th></th>
<th>Σ PAH 16</th>
<th>Σ PCB 6</th>
<th>Σ PBDE</th>
<th>DEHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>3.1</td>
<td>1.4</td>
<td>0.9</td>
<td>313</td>
</tr>
<tr>
<td>August</td>
<td>8.8</td>
<td>0.7</td>
<td>0.3</td>
<td>220</td>
</tr>
<tr>
<td>October</td>
<td>8.1</td>
<td>1.8</td>
<td>0.6</td>
<td>218</td>
</tr>
<tr>
<td>December</td>
<td>9.7</td>
<td>2.2</td>
<td>0.8</td>
<td>277</td>
</tr>
<tr>
<td>February</td>
<td>15.0</td>
<td>0.8</td>
<td>0.7</td>
<td>496</td>
</tr>
<tr>
<td>April</td>
<td>12.2</td>
<td>0.1</td>
<td>0.1</td>
<td>642</td>
</tr>
</tbody>
</table>

The limit of detection was defined as three times the signal-to-noise ratio, and the limit of quantification as six times the signal-to-noise ratio, respectively. Table 5 shows the limits of detection and quantification for some selected analytes. Values for the reproducibility were determined by parallel work-up and analyses of three samples.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Detection limit [µg/kg]</th>
<th>Quantification limit [µg/kg]</th>
<th>Compound</th>
<th>Detection limit [µg/kg]</th>
<th>Quantification limit [µg/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene</td>
<td>0.21</td>
<td>0.43</td>
<td>PCB 52</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>0.49</td>
<td>0.98</td>
<td>PCB 118</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Pyrene</td>
<td>0.36</td>
<td>0.71</td>
<td>PCB 153</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>Chrysene</td>
<td>0.29</td>
<td>0.59</td>
<td>BDE 47</td>
<td>0.09</td>
<td>0.18</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>1.00</td>
<td>1.99</td>
<td>BDE 99</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>DEHP</td>
<td>8.98</td>
<td>17.96</td>
<td>BDE 153</td>
<td>0.19</td>
<td>0.38</td>
</tr>
</tbody>
</table>
10.2 Analyseresultater tungmetaller og organiske forurensinger

<table>
<thead>
<tr>
<th>Labnummer</th>
<th>N00172407</th>
<th>N00172408</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deres prøvenavn</td>
<td>HRA-1</td>
<td>Oslo-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>organisk avfall</td>
</tr>
<tr>
<td>Analyse</td>
<td>Resultater</td>
<td>Usikkerhet (o)</td>
</tr>
<tr>
<td>Tørstoff (l.)</td>
<td>94,4</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>1,49</td>
<td>0,90</td>
</tr>
<tr>
<td>Cd</td>
<td>0,091</td>
<td>0,038</td>
</tr>
<tr>
<td>Co</td>
<td>0,058</td>
<td>0,155</td>
</tr>
<tr>
<td>Cr</td>
<td>4,51</td>
<td>1,21</td>
</tr>
<tr>
<td>Cu</td>
<td>12,2</td>
<td>2,4</td>
</tr>
<tr>
<td>Hg</td>
<td>0,009</td>
<td>0,0419</td>
</tr>
<tr>
<td>Mn</td>
<td>117</td>
<td>28</td>
</tr>
<tr>
<td>Ni</td>
<td>2,65</td>
<td>0,70</td>
</tr>
<tr>
<td>Pb</td>
<td>1,59</td>
<td>0,32</td>
</tr>
<tr>
<td>Zn</td>
<td>81,3</td>
<td>18,1</td>
</tr>
<tr>
<td>Alt</td>
<td><0,3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labnummer</th>
<th>N00172407</th>
<th>N00172408</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deres prøvenavn</td>
<td>HRA-1</td>
<td>Oslo-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>organisk avfall</td>
</tr>
<tr>
<td>Analyse</td>
<td>Resultater</td>
<td>Usikkerhet (o)</td>
</tr>
<tr>
<td>Tørstoff (l.)</td>
<td>98,1</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>1,08</td>
<td>0,43</td>
</tr>
<tr>
<td>Cd</td>
<td>0,6692</td>
<td>0,0233</td>
</tr>
<tr>
<td>Co</td>
<td>0,622</td>
<td>0,141</td>
</tr>
<tr>
<td>Cr</td>
<td>2,88</td>
<td>0,96</td>
</tr>
<tr>
<td>Cu</td>
<td>12,4</td>
<td>2,3</td>
</tr>
<tr>
<td>Hg</td>
<td>0,0126</td>
<td>0,0021</td>
</tr>
<tr>
<td>Mn</td>
<td>10,8</td>
<td>0,4</td>
</tr>
<tr>
<td>Ni</td>
<td>1,95</td>
<td>0,52</td>
</tr>
<tr>
<td>Pb</td>
<td>2,86</td>
<td>0,42</td>
</tr>
<tr>
<td>Zn</td>
<td>27,8</td>
<td>5,4</td>
</tr>
<tr>
<td>Alt</td>
<td><0,2</td>
<td></td>
</tr>
</tbody>
</table>
Rapport

N113415

Deres prøvenavn

Ludvik:1
organisk avfall

Labnummer: N00173409

<table>
<thead>
<tr>
<th>Analyse</th>
<th>Resultater</th>
<th>Usikkerhet (s)</th>
<th>Enhet</th>
<th>Metode</th>
<th>Utløft</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tverrstoff (L.)*</td>
<td>95,1</td>
<td>%</td>
<td>1</td>
<td>W</td>
<td>IEA</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0,768</td>
<td>0,471</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cd</td>
<td>0,994</td>
<td>0,189</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Co</td>
<td>1,30</td>
<td>0,30</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cr</td>
<td>7,35</td>
<td>1,94</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cu</td>
<td>38,9</td>
<td>7,3</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Hg</td>
<td>0,0088</td>
<td>0,0046</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Mn</td>
<td>90,2</td>
<td>20</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ni</td>
<td>6,96</td>
<td>1,87</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Pb</td>
<td>16,1</td>
<td>3,2</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Zn</td>
<td>12,5</td>
<td>2,5</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ag</td>
<td>1,48</td>
<td></td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>IEA</td>
</tr>
</tbody>
</table>

Deres prøvenavn

Oslo-2
organisk avfall

Labnummer: N00173410

<table>
<thead>
<tr>
<th>Analyse</th>
<th>Resultater</th>
<th>Usikkerhet (s)</th>
<th>Enhet</th>
<th>Metode</th>
<th>Utløft</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tverrstoff (L.)*</td>
<td>95,0</td>
<td>%</td>
<td>1</td>
<td>W</td>
<td>IEA</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>0,123</td>
<td>0,387</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cd</td>
<td>0,0562</td>
<td>0,0119</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Co</td>
<td>0,0654</td>
<td>0,0167</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cr</td>
<td>0,156</td>
<td>0,044</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cu</td>
<td>14,5</td>
<td>2,7</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Hg</td>
<td><0,01</td>
<td></td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Mn</td>
<td>29,5</td>
<td>5,6</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ni</td>
<td>0,501</td>
<td>0,142</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Pb</td>
<td>0,161</td>
<td>0,039</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>IEA</td>
</tr>
<tr>
<td>Zn</td>
<td>22,2</td>
<td>4,4</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ag</td>
<td><0,2</td>
<td></td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>IEA</td>
</tr>
</tbody>
</table>

Deres prøvenavn

Ludvik:2
organisk avfall

Labnummer: N00173411

<table>
<thead>
<tr>
<th>Analyse</th>
<th>Resultater</th>
<th>Usikkerhet (s)</th>
<th>Enhet</th>
<th>Metode</th>
<th>Utløft</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tverrstoff (L.)*</td>
<td>97,6</td>
<td>%</td>
<td>1</td>
<td>W</td>
<td>IEA</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>1,49</td>
<td>0,53</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cd</td>
<td>0,47</td>
<td>0,099</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Co</td>
<td>1,44</td>
<td>0,32</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cr</td>
<td>13,6</td>
<td>3,0</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cu</td>
<td>37,7</td>
<td>7,1</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Hg</td>
<td>0,254</td>
<td>0,085</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Mn</td>
<td>146</td>
<td>27</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ni</td>
<td>8,36</td>
<td>2,19</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Pb</td>
<td>15,4</td>
<td>3,1</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Zn</td>
<td>22,8</td>
<td>4,5</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ag</td>
<td>0,329</td>
<td></td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>IEA</td>
</tr>
</tbody>
</table>

ALS Laboratory Group Norway AS
P B 643 Sløyen
N-0214 Oslo
Norway

Web: www.alsglobal.no
E-post: info.alsgroup.no
Tel: +47 22 13 18 00
Fac: +47 22 52 51 77
Inger.Altsten
2011.12.08 18.15.49
Client Service
nger.altsten@alsglobal.no
Rapport

Labnummer

Labnummer	N113415

Deres prøvenavn

Deres prøvenavn	Oslo-3
organisk avfall	

Labnummer

Labnummer	N00173412

<table>
<thead>
<tr>
<th>Tønnsstoff (L)</th>
<th>Resultater</th>
<th>Usikkerhet (s)</th>
<th>Enhet</th>
<th>Metode</th>
<th>Utført</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>1,10</td>
<td>0,45</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Cd</td>
<td>0,240</td>
<td>0,046</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Co</td>
<td>0,0434</td>
<td>0,0123</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Cr</td>
<td>0,186</td>
<td>0,052</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Cu</td>
<td>7,62</td>
<td>1,43</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Hg</td>
<td><0,01</td>
<td></td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Mn</td>
<td>29,0</td>
<td>3,8</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Ni</td>
<td>0,244</td>
<td>0,108</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Pb</td>
<td>0,215</td>
<td>0,045</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Zn</td>
<td>29,6</td>
<td>4,1</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Ag*</td>
<td><0,2</td>
<td></td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
</tbody>
</table>

Deres prøvenavn

Deres prøvenavn	HRA-2
organisk avfall	

Labnummer

Labnummer	N00173413

<table>
<thead>
<tr>
<th>Tønnsstoff (L)</th>
<th>Resultater</th>
<th>Usikkerhet (s)</th>
<th>Enhet</th>
<th>Metode</th>
<th>Utført</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>1,57</td>
<td>0,58</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Cd</td>
<td>0,126</td>
<td>0,075</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Co</td>
<td>0,530</td>
<td>0,100</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Cr</td>
<td>6,30</td>
<td>1,65</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Cu</td>
<td>11,7</td>
<td>2,2</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Hg</td>
<td>0,0134</td>
<td>0,0066</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Mn</td>
<td>51,8</td>
<td>10,0</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Ni</td>
<td>2,05</td>
<td>0,54</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Pb</td>
<td>1,75</td>
<td>0,35</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Zn</td>
<td>43,5</td>
<td>8,7</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Ag*</td>
<td><0,3</td>
<td></td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
</tbody>
</table>

Deres prøvenavn

Deres prøvenavn	HRA-3
organisk avfall	

Labnummer

Labnummer	N00173414

<table>
<thead>
<tr>
<th>Tønnsstoff (L)</th>
<th>Resultater</th>
<th>Usikkerhet (s)</th>
<th>Enhet</th>
<th>Metode</th>
<th>Utført</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>1,01</td>
<td>0,56</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Cd</td>
<td>0,118</td>
<td>0,024</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Co</td>
<td>0,343</td>
<td>0,076</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Cr</td>
<td>3,76</td>
<td>1,00</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Cu</td>
<td>35,5</td>
<td>39</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Hg</td>
<td>0,0176</td>
<td>0,0046</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Mn</td>
<td>113</td>
<td>21</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Ni</td>
<td>1,64</td>
<td>0,43</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Pb</td>
<td>1,76</td>
<td>0,36</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Zn</td>
<td>499</td>
<td>98</td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Ag*</td>
<td>0,380</td>
<td></td>
<td>mg/kg TS</td>
<td></td>
<td></td>
<td>IA</td>
</tr>
</tbody>
</table>

*ALS Laboratory Group Norway AS
P B 643 Sløyen
N-0214 Oslo
Norway
Web: www.alsglobal.no
E-post: lab@alsglobal.com
Tel: +47 22 13 18 00
Fax: +47 22 52 51 77
Inger Alten
2011-12-01 18:14:59
Client Service
inger.alten@alsglobal.com*
Deres prøvenavn
Oslo-4
organisk avfall

Labnummer
N00173415

<table>
<thead>
<tr>
<th>Analyse</th>
<th>Resultater</th>
<th>Usikkerhet (s)</th>
<th>Enhet</th>
<th>Metode</th>
<th>Utført</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tørstoff (%)</td>
<td>56.9</td>
<td>0.99</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>As</td>
<td>3.54</td>
<td>0.06</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cd</td>
<td>0.065</td>
<td>0.0056</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Co</td>
<td>0.070</td>
<td>0.0174</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cr</td>
<td>0.28</td>
<td>0.072</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cu</td>
<td>12.0</td>
<td>2.3</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Hg</td>
<td>2.05</td>
<td>0.038</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Mn</td>
<td>24.5</td>
<td>4.6</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ni</td>
<td>0.368</td>
<td>0.105</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Pb</td>
<td>0.144</td>
<td>0.030</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Zn</td>
<td>33.8</td>
<td>6.9</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ag*</td>
<td><0.2</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>IEA</td>
<td></td>
</tr>
</tbody>
</table>

Deres prøvenavn
HRA-4
organisk avfall

Labnummer
N00173416

<table>
<thead>
<tr>
<th>Analyse</th>
<th>Resultater</th>
<th>Usikkerhet (s)</th>
<th>Enhet</th>
<th>Metode</th>
<th>Utført</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tørstoff (%)</td>
<td>44.3</td>
<td>0.65</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>As</td>
<td>1.29</td>
<td>0.04</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cd</td>
<td>0.124</td>
<td>0.024</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Co</td>
<td>0.544</td>
<td>0.127</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cr</td>
<td>1.73</td>
<td>0.46</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cu</td>
<td>9.54</td>
<td>1.81</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Hg</td>
<td>0.0159</td>
<td>0.0385</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Mn</td>
<td>58.2</td>
<td>11.2</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ni</td>
<td>1.98</td>
<td>0.54</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Pb</td>
<td>2.81</td>
<td>0.37</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Zn</td>
<td>45.9</td>
<td>9.1</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ag*</td>
<td><0.3</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>IEA</td>
<td></td>
</tr>
</tbody>
</table>

Deres prøvenavn
Ludvika-3
organisk avfall

Labnummer
N00173417

<table>
<thead>
<tr>
<th>Analyse</th>
<th>Resultater</th>
<th>Usikkerhet (s)</th>
<th>Enhet</th>
<th>Metode</th>
<th>Uutført</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tørstoff (%)</td>
<td>45.1</td>
<td>0.455</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>As</td>
<td>0.94</td>
<td>0.072</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cd</td>
<td>0.176</td>
<td>0.026</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Co</td>
<td>1.17</td>
<td>0.26</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cr</td>
<td>9.09</td>
<td>1.54</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cu</td>
<td>37.8</td>
<td>7.1</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Hg</td>
<td>0.129</td>
<td>0.054</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Mn</td>
<td>142</td>
<td>26</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ni</td>
<td>6.07</td>
<td>1.60</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Pb</td>
<td>12.0</td>
<td>2.6</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Zn</td>
<td>130</td>
<td>25</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ag*</td>
<td>0.904</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>IEA</td>
<td></td>
</tr>
<tr>
<td>Analyse</td>
<td>Resultater</td>
<td>Usikkerhet (±)</td>
<td>Enhet</td>
<td>Metode</td>
<td>Utført</td>
<td>Sign</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Tørrstoff (%)</td>
<td>41.9</td>
<td>0.396</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>As</td>
<td>0.711</td>
<td>0.050</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cd</td>
<td>0.364</td>
<td>0.064</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Co</td>
<td>1.62</td>
<td>0.23</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cr</td>
<td>2.10</td>
<td>0.20</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cu</td>
<td>36.4</td>
<td>6.8</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Hg</td>
<td>0.174</td>
<td>0.064</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Mn</td>
<td>113</td>
<td>21</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ni</td>
<td>4.03</td>
<td>1.20</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Pb</td>
<td>18.2</td>
<td>2.1</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Zn</td>
<td>902</td>
<td>20</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ag*</td>
<td>0.447</td>
<td></td>
<td>mg/kg TS</td>
<td>1</td>
<td>5</td>
<td>IEA</td>
</tr>
</tbody>
</table>

Måleusikkerheten fra underleverandører angis ofte som en utvidet usikkerhet beregnet med dekningsfaktor 2. For ytterligere informasjon, kontakt laboratoriet.**

Denne rapporten rør kun gjengis i sin helhet, om ikke utlevere laboratorium på forhånd har skriftlig godkjent annet.

Angirende laboratoriums ansvar i forbindelse med oppdrag, se aktuelt produktkatalog eller vår webside www.alsglobal.no

Den digitalt signert PDF-fil representerer den opprinnelige rapporten. Eventuelle utskrifter er å anse som kopier.

Målemetode

<table>
<thead>
<tr>
<th>Nr</th>
<th>Beskrivelse</th>
<th>Metode</th>
<th>Oppslutning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analyse av tungmetaller (M-4)</td>
<td>EPA metoder 200.7 og 200.8 (modifisert)</td>
<td>Salpetersyre og H2O2 i mikrobølgeovn.</td>
</tr>
</tbody>
</table>

Godkjenner

| IEA | Inger Elkebu Alten |
Rapport

Rapport

Projekt: 29.11.2011
Best.nr:
Registrert: 2011-12-01
Utstedt: 2011-12-08
Bioforsk Jord og miljø
Carl Einar Amundsen
Frederik A. Dahlsvei 20
N-1432 ÅS
Norge

Analyse av faststoff

<table>
<thead>
<tr>
<th>Labnummer</th>
<th>N00178011</th>
</tr>
</thead>
</table>
| **Deres prøvenavn:** | 14. Lundenka sortert
Organisk avfall |

<table>
<thead>
<tr>
<th>Analyse</th>
<th>Resultat</th>
<th>Usikkerhet (s)</th>
<th>Enhet</th>
<th>Metode</th>
<th>Ulført</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tørrstoff (L.)</td>
<td>43.3</td>
<td>%</td>
<td>1</td>
<td>W</td>
<td>IEA</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>2.60</td>
<td>0.82</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cd</td>
<td>0.003</td>
<td>0.079</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cr</td>
<td>19.1</td>
<td>0.0</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cu</td>
<td>38.0</td>
<td>7.2</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Hg</td>
<td>1.04</td>
<td>0.33</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ni</td>
<td>9.067</td>
<td>2.55</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Pb</td>
<td>29.7</td>
<td>5.8</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Zn</td>
<td>17.1</td>
<td>34</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ag*</td>
<td>0.984</td>
<td></td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>IEA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labnummer</th>
<th>N00178812</th>
</tr>
</thead>
</table>
| **Deres prøvenavn:** | 15. Lundenka Usortert
Organisk avfall |

<table>
<thead>
<tr>
<th>Analyse</th>
<th>Resultat</th>
<th>Usikkerhet (s)</th>
<th>Enhet</th>
<th>Metode</th>
<th>Ulført</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tørrstoff (L.)</td>
<td>42.6</td>
<td>%</td>
<td>1</td>
<td>W</td>
<td>IEA</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>2.49</td>
<td>0.74</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cd</td>
<td>0.333</td>
<td>0.064</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cr</td>
<td>13.9</td>
<td>3.7</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Cu</td>
<td>37.0</td>
<td>7.0</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Hg</td>
<td>1.21</td>
<td>0.38</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ni</td>
<td>7.777</td>
<td>2.04</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Pb</td>
<td>11.9</td>
<td>2.4</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Zn</td>
<td>18.1</td>
<td>35</td>
<td>mg/kg TS</td>
<td>1</td>
<td>H</td>
<td>IEA</td>
</tr>
<tr>
<td>Ag*</td>
<td>0.489</td>
<td></td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>IEA</td>
</tr>
</tbody>
</table>

ALS Laboratory Group Norway AS
P B 643 Skøyen
N-0214 Oslo
Norway

Web: www.alsglobal.no
E-post:
Tel: + 47 22 13 18 00
Fax: + 47 22 52 51 77

Inger Alten
Revenue Service
2011-12-08 15:18:21
[alsglobal.com](http://www.alsglobal.com)

Måløvsikkerhet fra underleverandører angis ofte som en utvidet usikkerhet beregnet med dekningsfaktor 2. For ytterligere informasjon, kontakt laboratoriet.

Denne rapporten får kun gjengis i sin helhet, om ikke underleverandører på forhånd har skriftlig godkjent annet.

Angiende laboratoriets ansvar i forbindelse med oppdrag, se aktuell produktkatalog eller vår webside www.alsglobal.no

Den digitalt signert PDF-fil representerer den opprinnelige rapporten. Eventuelle utskrifter er å anse som kopier.
Analyse av biologisk materiale

<table>
<thead>
<tr>
<th>Deres provåpne</th>
<th>Lsdvik/Follo 11.11.11</th>
<th>organisk avfall</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Labnummer</th>
<th>N00175742</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Analyse</th>
<th>Resultat</th>
<th>Enhet</th>
<th>Metode</th>
<th>Utford</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannstoffs (E)</td>
<td>46</td>
<td>%</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
<tr>
<td>As*</td>
<td>2.56</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
<tr>
<td>Cd*</td>
<td>0.372</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
<tr>
<td>Co*</td>
<td>2.63</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
<tr>
<td>Cr*</td>
<td>11.4</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
<tr>
<td>Cu*</td>
<td>41.9</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
<tr>
<td>Mg*</td>
<td>0.0780</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
<tr>
<td>Mn*</td>
<td>89.1</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
<tr>
<td>Ni*</td>
<td>11.3</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
<tr>
<td>Pb*</td>
<td>30.9</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
<tr>
<td>Zn*</td>
<td>139</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
<tr>
<td>Ag*</td>
<td>1.58</td>
<td>mg/kg TS</td>
<td>1</td>
<td>S</td>
<td>CASL</td>
</tr>
</tbody>
</table>
Rapport

N1112520

LT845EDK3S

* etter parameternavn indikerer uakkreditert analyse.

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beskrivelse</th>
<th>Metode</th>
<th>Oppsluining</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analyse av tungmetaller (M-4)</td>
<td>EPA metoder 200.7 og 200.8 (modifisert)</td>
<td>Tørrtapsselvansming er utført ved 105 °C etter svensk standard SIS 028113. Analyseprøven er tørrt ved 50 °C og elementinnehållet er TS-korrigeret. Salpetresyre og H2O2 i mikrobølgeovn.</td>
</tr>
</tbody>
</table>

Godkjenner

CALS
Carina Slatta

ICP-SFMS

<table>
<thead>
<tr>
<th>Ansvarlig laboratorium:</th>
<th>ALS Scandinavia AB, Aurorum 10, 977 75 Luleå, Sverige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkreditering:</td>
<td>SWEDAC, registreingsnr. 1087</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ansvarlig laboratorium:</th>
<th>ALS Scandinavia AB, Aurorum 10, 977 75 Luleå, Sverige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkreditering:</td>
<td>SWEDAC, registreingsnr. 2000</td>
</tr>
</tbody>
</table>

Måleusikkerheten fra underleverandører angis ofte som en utvidet usikkerhet beregnet med dekningstaktor 2. For ytterligere informasjon, kontakt laboratoriet.

Denne rapporten får kun gjengis i sin helhet, om ikke utførende laboratorium på forhånd har skriftlig godkjent annet.

Angående laboratoriets ansvar i forbindelse med oppdrag, se aktuell produktkatalog eller vår website www.alsglobal.no

Den digitalt signert PDF-fil representerer den opprinnelige rapporten. Eventuelle utskrifter er å anse som kopier.

Utførende teknisk enhet (innen ALS Laboratory Group) eller eksternt laboratorium (underleverandør).
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB028</td>
<td>0.15</td>
<td>0.21</td>
<td>0.28</td>
<td>0.28</td>
<td>0.17</td>
<td>0.22</td>
<td>0.36</td>
<td>0.54</td>
<td>0.51</td>
<td>1.33</td>
<td>2.38</td>
<td>2.92</td>
<td>1.77</td>
<td>1.23</td>
<td>0.85</td>
</tr>
<tr>
<td>PCB052</td>
<td>0.30</td>
<td>0.36</td>
<td>0.54</td>
<td>0.32</td>
<td>0.34</td>
<td>0.44</td>
<td>0.59</td>
<td>1.05</td>
<td>2.07</td>
<td>2.55</td>
<td>5.37</td>
<td>3.72</td>
<td>2.49</td>
<td>1.18</td>
<td>0.97</td>
</tr>
<tr>
<td>PCB101</td>
<td>0.82</td>
<td>0.88</td>
<td>0.89</td>
<td>0.58</td>
<td>0.74</td>
<td>0.78</td>
<td>1.22</td>
<td>0.83</td>
<td>2.60</td>
<td>3.67</td>
<td>4.37</td>
<td>3.44</td>
<td>2.92</td>
<td>3.74</td>
<td>3.10</td>
</tr>
<tr>
<td>PCB118</td>
<td>0.46</td>
<td>0.55</td>
<td>0.53</td>
<td>0.31</td>
<td>0.44</td>
<td>0.49</td>
<td>0.90</td>
<td>0.46</td>
<td>1.27</td>
<td>2.13</td>
<td>1.83</td>
<td>1.28</td>
<td>1.28</td>
<td>2.20</td>
<td>1.00</td>
</tr>
<tr>
<td>PCB153</td>
<td>0.80</td>
<td>1.11</td>
<td>1.28</td>
<td>0.52</td>
<td>0.95</td>
<td>1.08</td>
<td>1.92</td>
<td>0.82</td>
<td>3.02</td>
<td>4.63</td>
<td>3.24</td>
<td>3.49</td>
<td>4.20</td>
<td>4.57</td>
<td>5.21</td>
</tr>
<tr>
<td>PCB138</td>
<td>0.57</td>
<td>0.72</td>
<td>0.73</td>
<td>0.40</td>
<td>0.58</td>
<td>0.71</td>
<td>1.22</td>
<td>0.54</td>
<td>2.33</td>
<td>4.07</td>
<td>2.11</td>
<td>2.35</td>
<td>4.65</td>
<td>5.12</td>
<td>5.24</td>
</tr>
<tr>
<td>PCB180</td>
<td>0.29</td>
<td>0.56</td>
<td>0.55</td>
<td>0.25</td>
<td>0.51</td>
<td>0.68</td>
<td>0.93</td>
<td>0.59</td>
<td>1.68</td>
<td>2.94</td>
<td>1.38</td>
<td>0.82</td>
<td>2.58</td>
<td>2.84</td>
<td>3.64</td>
</tr>
<tr>
<td>Sum PCB7</td>
<td>3.39</td>
<td>4.38</td>
<td>4.81</td>
<td>2.66</td>
<td>3.73</td>
<td>4.39</td>
<td>7.14</td>
<td>4.84</td>
<td>13.86</td>
<td>21.33</td>
<td>20.73</td>
<td>18.0</td>
<td>19.9</td>
<td>20.9</td>
<td>20.0</td>
</tr>
<tr>
<td>Sum PCB6</td>
<td>2.93</td>
<td>3.83</td>
<td>4.28</td>
<td>2.34</td>
<td>3.29</td>
<td>3.90</td>
<td>6.25</td>
<td>4.38</td>
<td>12.20</td>
<td>19.20</td>
<td>18.97</td>
<td>16.73</td>
<td>18.63</td>
<td>18.73</td>
<td>19.0</td>
</tr>
<tr>
<td>PBDE</td>
<td></td>
</tr>
<tr>
<td>BDE028</td>
<td>0.02</td>
<td>0.06</td>
<td>0.11</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.10</td>
<td>0.05</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.05</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>BDE047</td>
<td>0.44</td>
<td>0.63</td>
<td>1.61</td>
<td>0.30</td>
<td>0.44</td>
<td>0.47</td>
<td>0.87</td>
<td>0.55</td>
<td>2.61</td>
<td>5.04</td>
<td>2.13</td>
<td>2.64</td>
<td>2.57</td>
<td>2.30</td>
<td>1.57</td>
</tr>
<tr>
<td>BDE100</td>
<td>0.08</td>
<td>0.14</td>
<td>0.14</td>
<td>0.06</td>
<td>0.13</td>
<td>0.09</td>
<td>0.18</td>
<td>0.08</td>
<td>0.59</td>
<td>1.52</td>
<td>0.67</td>
<td>0.76</td>
<td>0.89</td>
<td>0.76</td>
<td>0.73</td>
</tr>
<tr>
<td>BDE099</td>
<td>0.35</td>
<td>0.35</td>
<td>0.44</td>
<td>0.19</td>
<td>0.38</td>
<td>0.38</td>
<td>0.86</td>
<td>0.25</td>
<td>2.65</td>
<td>7.31</td>
<td>2.75</td>
<td>3.19</td>
<td>3.44</td>
<td>3.62</td>
<td>1.44</td>
</tr>
<tr>
<td>BDE154</td>
<td>0.07</td>
<td>0.08</td>
<td>0.17</td>
<td>0.04</td>
<td>0.13</td>
<td>0.10</td>
<td>0.09</td>
<td>0.03</td>
<td>0.33</td>
<td>0.66</td>
<td>0.32</td>
<td>0.35</td>
<td>0.34</td>
<td>0.35</td>
<td>1.67</td>
</tr>
<tr>
<td>BDE153</td>
<td>0.15</td>
<td>0.14</td>
<td>0.20</td>
<td>0.11</td>
<td>0.13</td>
<td>0.09</td>
<td>0.08</td>
<td>0.05</td>
<td>0.55</td>
<td>0.95</td>
<td>0.42</td>
<td>0.55</td>
<td>0.43</td>
<td>0.49</td>
<td>2.35</td>
</tr>
<tr>
<td>BDE183</td>
<td>0.31</td>
<td>0.17</td>
<td>0.18</td>
<td>0.10</td>
<td>0.23</td>
<td>0.26</td>
<td>0.15</td>
<td>0.04</td>
<td>1.08</td>
<td>1.05</td>
<td>0.69</td>
<td>0.77</td>
<td>0.58</td>
<td>0.37</td>
<td>10.89</td>
</tr>
<tr>
<td>Sum PBDE7</td>
<td>1.41</td>
<td>1.56</td>
<td>2.84</td>
<td>0.83</td>
<td>1.46</td>
<td>1.42</td>
<td>2.33</td>
<td>1.05</td>
<td>7.88</td>
<td>16.61</td>
<td>7.02</td>
<td>8.32</td>
<td>8.31</td>
<td>7.93</td>
<td>18.74</td>
</tr>
<tr>
<td>PBDE related</td>
<td>sample descr.</td>
<td>OSLO 1</td>
<td>OSLO 2</td>
<td>Oslo 3</td>
<td>OSLO 4</td>
<td>HRA 1</td>
<td>HRA 2</td>
<td>HRA 3</td>
<td>HRA 4</td>
<td>LUD 1</td>
<td>LUD 2</td>
<td>LUD 3</td>
<td>LUD 4</td>
<td>LUD 5</td>
<td>LUD 6</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>TBPE-1</td>
<td>1.04</td>
<td>3.42</td>
<td>4.59</td>
<td>2.18</td>
<td>3.63</td>
<td>1.94</td>
<td>2.56</td>
<td>1.97</td>
<td>1.80</td>
<td>1.57</td>
<td>1.67</td>
<td>3.48</td>
<td>1.47</td>
<td>1.39</td>
<td>2.38</td>
</tr>
<tr>
<td>TBPE-2</td>
<td>13.7</td>
<td>14.2</td>
<td>27.7</td>
<td>18.8</td>
<td>13.7</td>
<td>15.2</td>
<td>27.1</td>
<td>21.6</td>
<td>30.9</td>
<td>68.9</td>
<td>34.8</td>
<td>44.9</td>
<td>42.72</td>
<td>38.79</td>
<td>56.30</td>
</tr>
<tr>
<td>PAH</td>
<td>OSLO 1</td>
<td>OSLO 2</td>
<td>Oslo 3</td>
<td>Oslo 4</td>
<td>HRA 1</td>
<td>HRA 2</td>
<td>HRA 3</td>
<td>HRA 4</td>
<td>LUD 1</td>
<td>LUD 2</td>
<td>LUD 3</td>
<td>LUD 4</td>
<td>LUD 5</td>
<td>LUD 6</td>
<td>Ludvika/Follo</td>
</tr>
<tr>
<td>NAP</td>
<td>7.7</td>
<td>12.2</td>
<td>25.3</td>
<td>18.8</td>
<td>37.3</td>
<td>25.4</td>
<td>23.1</td>
<td>26.5</td>
<td>46.0</td>
<td>151.8</td>
<td>65.8</td>
<td>85.0</td>
<td>95.0</td>
<td>75.8</td>
<td>374.9</td>
</tr>
<tr>
<td>ACY</td>
<td>1.0</td>
<td>2.2</td>
<td>1.4</td>
<td>2.1</td>
<td>14.3</td>
<td>4.5</td>
<td>2.5</td>
<td>1.2</td>
<td>13.7</td>
<td>3.5</td>
<td>8.2</td>
<td>7.9</td>
<td>40.9</td>
<td>51.1</td>
<td>22.4</td>
</tr>
<tr>
<td>ACE</td>
<td>0.6</td>
<td>1.3</td>
<td>0.8</td>
<td>1.8</td>
<td>2.4</td>
<td>2.3</td>
<td>1.4</td>
<td>1.2</td>
<td>3.8</td>
<td>3.6</td>
<td>21.1</td>
<td>20.3</td>
<td>3.3</td>
<td>2.2</td>
<td>20.9</td>
</tr>
<tr>
<td>FL</td>
<td>2.2</td>
<td>5.1</td>
<td>3.1</td>
<td>5.4</td>
<td>15.4</td>
<td>10.3</td>
<td>9.5</td>
<td>4.1</td>
<td>18.4</td>
<td>20.4</td>
<td>50.3</td>
<td>62.9</td>
<td>50.8</td>
<td>36.5</td>
<td>58.0</td>
</tr>
<tr>
<td>PHEN</td>
<td>19.6</td>
<td>16.7</td>
<td>32.8</td>
<td>18.0</td>
<td>193.9</td>
<td>104.3</td>
<td>102.1</td>
<td>30.4</td>
<td>114.6</td>
<td>352.1</td>
<td>306.4</td>
<td>410.4</td>
<td>712.3</td>
<td>674.2</td>
<td>205.3</td>
</tr>
<tr>
<td>ANTHR</td>
<td>2.9</td>
<td>1.5</td>
<td>7.1</td>
<td>5.7</td>
<td>48.2</td>
<td>32.8</td>
<td>21.4</td>
<td>6.5</td>
<td>31.1</td>
<td>52.7</td>
<td>45.0</td>
<td>46.1</td>
<td>10.7</td>
<td>111.9</td>
<td>28.5</td>
</tr>
<tr>
<td>FLU</td>
<td>4.4</td>
<td>6.8</td>
<td>17.4</td>
<td>23.0</td>
<td>144.4</td>
<td>41.4</td>
<td>29.7</td>
<td>39.4</td>
<td>58.1</td>
<td>319.4</td>
<td>160.0</td>
<td>262.2</td>
<td>623.9</td>
<td>630.5</td>
<td>232.6</td>
</tr>
<tr>
<td>PYR</td>
<td>5.2</td>
<td>8.2</td>
<td>19.2</td>
<td>19.1</td>
<td>168.7</td>
<td>48.8</td>
<td>35.3</td>
<td>42.2</td>
<td>80.2</td>
<td>384.9</td>
<td>117.9</td>
<td>155.3</td>
<td>475.3</td>
<td>493.3</td>
<td>262.7</td>
</tr>
<tr>
<td>BA</td>
<td>1.3</td>
<td>2.0</td>
<td>9.0</td>
<td>16.6</td>
<td>75.9</td>
<td>25.7</td>
<td>11.6</td>
<td>22.2</td>
<td>31.9</td>
<td>116.4</td>
<td>75.7</td>
<td>86.8</td>
<td>261.1</td>
<td>312.6</td>
<td>78.2</td>
</tr>
<tr>
<td>CHR</td>
<td>1.2</td>
<td>2.6</td>
<td>9.4</td>
<td>16.6</td>
<td>84.4</td>
<td>35.2</td>
<td>15.0</td>
<td>31.1</td>
<td>43.1</td>
<td>177.7</td>
<td>76.3</td>
<td>89.7</td>
<td>287.1</td>
<td>368.8</td>
<td>55.7</td>
</tr>
<tr>
<td>BBF</td>
<td>1.7</td>
<td>1.4</td>
<td>5.1</td>
<td>8.9</td>
<td>52.2</td>
<td>31.1</td>
<td>11.0</td>
<td>24.7</td>
<td>34.0</td>
<td>101.0</td>
<td>44.6</td>
<td>53.1</td>
<td>244.1</td>
<td>280.0</td>
<td>77.0</td>
</tr>
<tr>
<td>BKF</td>
<td>1.7</td>
<td>1.4</td>
<td>4.7</td>
<td>4.7</td>
<td>46.5</td>
<td>20.1</td>
<td>6.6</td>
<td>16.2</td>
<td>30.3</td>
<td>74.2</td>
<td>42.1</td>
<td>46.7</td>
<td>222.8</td>
<td>219.5</td>
<td>60.0</td>
</tr>
<tr>
<td>BAP</td>
<td>2.1</td>
<td>1.3</td>
<td>3.5</td>
<td>7.5</td>
<td>60.5</td>
<td>14.0</td>
<td>8.8</td>
<td>15.4</td>
<td>40.8</td>
<td>62.0</td>
<td>37.5</td>
<td>41.6</td>
<td>161.4</td>
<td>210.8</td>
<td>95.3</td>
</tr>
<tr>
<td>IND</td>
<td>0.7</td>
<td>0.6</td>
<td>1.5</td>
<td>4.3</td>
<td>18.0</td>
<td>8.8</td>
<td>4.8</td>
<td>7.2</td>
<td>17.3</td>
<td>35.9</td>
<td>18.7</td>
<td>17.1</td>
<td>120.0</td>
<td>135.0</td>
<td>37.4</td>
</tr>
<tr>
<td>GHI</td>
<td>1.0</td>
<td>1.6</td>
<td>2.1</td>
<td>11.6</td>
<td>27.0</td>
<td>13.6</td>
<td>10.5</td>
<td>12.3</td>
<td>37.3</td>
<td>73.8</td>
<td>37.9</td>
<td>38.8</td>
<td>192.4</td>
<td>188.1</td>
<td>78.0</td>
</tr>
<tr>
<td>DBA</td>
<td>0.5</td>
<td>1.4</td>
<td>1.1</td>
<td>7.2</td>
<td>2.1</td>
<td>3.9</td>
<td>3.5</td>
<td>4.4</td>
<td>4.7</td>
<td>16.3</td>
<td>11.1</td>
<td>7.6</td>
<td>68.1</td>
<td>79.1</td>
<td>19.2</td>
</tr>
<tr>
<td>Sum EPA 16</td>
<td>54</td>
<td>66</td>
<td>143</td>
<td>171</td>
<td>991</td>
<td>422</td>
<td>297</td>
<td>285</td>
<td>605</td>
<td>1946</td>
<td>1119</td>
<td>1431</td>
<td>3569</td>
<td>3869</td>
<td>1706</td>
</tr>
<tr>
<td>Sum germ. TVO</td>
<td>12</td>
<td>13</td>
<td>34</td>
<td>60</td>
<td>349</td>
<td>129</td>
<td>71</td>
<td>115</td>
<td>218</td>
<td>666</td>
<td>341</td>
<td>459</td>
<td>1565</td>
<td>1664</td>
<td>580</td>
</tr>
<tr>
<td>PAH related</td>
<td>Oslo 1</td>
<td>Oslo 2</td>
<td>Oslo 3</td>
<td>Oslo 4</td>
<td>HRA 1</td>
<td>HRA 2</td>
<td>HRA 3</td>
<td>HRA 4</td>
<td>LUD 1</td>
<td>LUD 2</td>
<td>LUD 3</td>
<td>LUD 4</td>
<td>LUD 5</td>
<td>LUD 6</td>
<td>Ludvika/Follo</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>Biphenyl</td>
<td>2.7</td>
<td>4.0</td>
<td>6.9</td>
<td>24.5</td>
<td>12.5</td>
<td>8.9</td>
<td>9.0</td>
<td>10.7</td>
<td>22.8</td>
<td>61.9</td>
<td>51.4</td>
<td>29.6</td>
<td>33.4</td>
<td>21.7</td>
<td>30.6</td>
</tr>
<tr>
<td>Diphenylether</td>
<td>10.2</td>
<td>14.1</td>
<td>15.7</td>
<td>20.2</td>
<td>19.2</td>
<td>16.9</td>
<td>23.2</td>
<td>30.2</td>
<td>17.3</td>
<td>20.7</td>
<td>38.5</td>
<td>38.8</td>
<td>31.5</td>
<td>52.3</td>
<td>33.4</td>
</tr>
<tr>
<td>NAP-C1</td>
<td>11.9</td>
<td>23.1</td>
<td>20.5</td>
<td>18.6</td>
<td>24.9</td>
<td>12.6</td>
<td>25.1</td>
<td>16.7</td>
<td>131</td>
<td>264</td>
<td>209</td>
<td>104</td>
<td>101</td>
<td>121</td>
<td>672</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phthalates</th>
<th>Oslo 1</th>
<th>Oslo 2</th>
<th>Oslo 3</th>
<th>Oslo 4</th>
<th>HRA 1</th>
<th>HRA 2</th>
<th>HRA 3</th>
<th>HRA 4</th>
<th>LUD 1</th>
<th>LUD 2</th>
<th>LUD 3</th>
<th>LUD 4</th>
<th>LUD 5</th>
<th>LUD 6</th>
<th>Ludvika/Follo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEP</td>
<td>0.12</td>
<td>0.14</td>
<td>0.11</td>
<td>0.19</td>
<td>0.22</td>
<td>0.13</td>
<td>0.41</td>
<td>0.06</td>
<td>0.25</td>
<td>1.03</td>
<td>2.04</td>
<td>2.04</td>
<td>4.1</td>
<td>1.9</td>
<td>5.4</td>
</tr>
<tr>
<td>DIBP</td>
<td>0.72</td>
<td>1.08</td>
<td>1.58</td>
<td>1.69</td>
<td>2.60</td>
<td>1.09</td>
<td>2.92</td>
<td>2.23</td>
<td>7.08</td>
<td>16.80</td>
<td>23.80</td>
<td>12.13</td>
<td>15.9</td>
<td>11.7</td>
<td>62.2</td>
</tr>
<tr>
<td>DBP</td>
<td>1.28</td>
<td>1.33</td>
<td>2.38</td>
<td>2.01</td>
<td>2.29</td>
<td>1.54</td>
<td>3.61</td>
<td>2.15</td>
<td>9.24</td>
<td>21.7</td>
<td>19.3</td>
<td>16.6</td>
<td>18.9</td>
<td>14.3</td>
<td>28.3</td>
</tr>
<tr>
<td>BBP</td>
<td>2.31</td>
<td>2.61</td>
<td>2.62</td>
<td>2.01</td>
<td>3.26</td>
<td>5.34</td>
<td>4.89</td>
<td>4.37</td>
<td>2.40</td>
<td>9.17</td>
<td>5.27</td>
<td>2.83</td>
<td>7.7</td>
<td>6.3</td>
<td>2.6</td>
</tr>
<tr>
<td>DEHP</td>
<td>2.24</td>
<td>2.69</td>
<td>4.10</td>
<td>3.08</td>
<td>55.0</td>
<td>25.4</td>
<td>34.5</td>
<td>14.1</td>
<td>60.9</td>
<td>54.0</td>
<td>59.0</td>
<td>48.5</td>
<td>103.7</td>
<td>91.3</td>
<td>419.9</td>
</tr>
<tr>
<td>DOP</td>
<td>0.77</td>
<td>0.93</td>
<td>0.95</td>
<td>0.31</td>
<td>2.21</td>
<td>1.02</td>
<td>7.76</td>
<td>0.33</td>
<td>9.71</td>
<td>6.52</td>
<td>11.62</td>
<td>6.41</td>
<td>1.2</td>
<td>1.0</td>
<td>2.7</td>
</tr>
<tr>
<td>DINP</td>
<td>5.18</td>
<td>3.96</td>
<td>4.65</td>
<td>1.56</td>
<td>4.43</td>
<td>15.1</td>
<td>5.91</td>
<td>12.0</td>
<td>378</td>
<td>345</td>
<td>324</td>
<td>280</td>
<td>143.2</td>
<td>153.1</td>
<td>160.4</td>
</tr>
<tr>
<td>Sum PHTHs</td>
<td>12.6</td>
<td>12.7</td>
<td>16.4</td>
<td>10.9</td>
<td>70.0</td>
<td>49.5</td>
<td>60.0</td>
<td>35.2</td>
<td>468</td>
<td>455</td>
<td>445</td>
<td>369</td>
<td>295</td>
<td>280</td>
<td>681</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phenols</th>
<th>Oslo 1</th>
<th>Oslo 2</th>
<th>Oslo 3</th>
<th>Oslo 4</th>
<th>HRA 1</th>
<th>HRA 2</th>
<th>HRA 3</th>
<th>HRA 4</th>
<th>LUD 1</th>
<th>LUD 2</th>
<th>LUD 3</th>
<th>LUD 4</th>
<th>LUD 5</th>
<th>LUD 6</th>
<th>Ludvika/Follo</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Nonylphenols</td>
<td>0.42</td>
<td>0.60</td>
<td>0.60</td>
<td>0.64</td>
<td>0.67</td>
<td>0.25</td>
<td>0.39</td>
<td>0.26</td>
<td>1.25</td>
<td>1.20</td>
<td>1.16</td>
<td>1.51</td>
<td>0.99</td>
<td>0.95</td>
<td>1.21</td>
</tr>
<tr>
<td>4-t-Octylphenol</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.04</td>
<td>0.09</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>Bisphenol A (BPA)</td>
<td>0.23</td>
<td>0.15</td>
<td>0.29</td>
<td>0.24</td>
<td>0.65</td>
<td>1.08</td>
<td>1.34</td>
<td>0.88</td>
<td>0.30</td>
<td>0.27</td>
<td>0.58</td>
<td>0.40</td>
<td>0.40</td>
<td>0.28</td>
<td>0.96</td>
</tr>
<tr>
<td>Phenols</td>
<td>Tetrabromo-BPA</td>
<td>Triclosan</td>
<td>Methyltriclosan</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>conc. in µg/kg d.w.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Synth. musks</th>
<th>Oslo 1</th>
<th>Oslo 2</th>
<th>Oslo 3</th>
<th>Oslo 4</th>
<th>HRA 1</th>
<th>HRA 2</th>
<th>HRA 3</th>
<th>HRA 4</th>
<th>LUD 1</th>
<th>LUD 2</th>
<th>LUD 3</th>
<th>LUD 4</th>
<th>LUD 5</th>
<th>LUD 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc. in µg/kg d.w.</td>
<td>ISWA-No.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Musks</th>
<th>HHCB</th>
<th>HHCB-Lacton</th>
<th>AHTN</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc. in µg/kg d.w.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>199</td>
<td>295</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>249</td>
<td>588</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>722</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Misc.</th>
<th>Oslo 1</th>
<th>Oslo 2</th>
<th>Oslo 3</th>
<th>Oslo 4</th>
<th>HRA 1</th>
<th>HRA 2</th>
<th>HRA 3</th>
<th>HRA 4</th>
<th>LUD 1</th>
<th>LUD 2</th>
<th>LUD 3</th>
<th>LUD 4</th>
<th>LUD 5</th>
<th>LUD 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc. in mg/kg d.w.</td>
<td>ISWA-No.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Misc.</th>
<th>Caffeine</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc. in mg/kg d.w.</td>
<td>2.68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Misc.</th>
<th>TCEP</th>
<th>TCPP</th>
<th>TDCPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc. in µg/kg d.w.</td>
<td>71</td>
<td>57</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>207</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>138</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>366</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td>2069</td>
<td>2324</td>
<td>932</td>
</tr>
<tr>
<td></td>
<td>788</td>
<td>743</td>
<td>1616</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Misc.</th>
<th>DEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc. in µg/kg d.w.</td>
<td>579</td>
</tr>
</tbody>
</table>

52