Jan Ove Gjershaug

Taxonomy and conservation status of hawk-eagles (genus *Nisaetus*) in South-East Asia

Doctoral thesis
for the degree of philosophiae doctor

Trondheim, May 2006

Norwegian University of Science and Technology
Faculty of Natural Sciences and Technology
Department of Biology

NTNU
Innovation and Creativity
TAXONOMY AND CONSERVATION STATUS OF HAWK-EAGLES (GENUS NISAETUS) IN SOUTH-EAST ASIA

by

Jan Ove Gjershaug

PhD Thesis

Department of Biology
Faculty of Natural Sciences and Technology
Norwegian University of Science and Technology
Trondheim, Norway
2006
The time will come I believe, though I shall not live to see it, when we shall have fairly true genealogical trees of each kingdom of nature ...

Charles Darwin, 1857, letter to T. H. Huxley

The painting of Javan Hawk-eagle on the front cover is by Trond Haugskott.
PREFACE

This thesis is based on four research projects. In the period 1997-1998 studies were carried out on the Javan Hawk-eagle *Nisaetus bartelsi* on Java as part of an environmental cooperation programme between Indonesia and Norway funded by the Norwegian government. The aim of the project was to study the conservation status of this rain forest eagle and use it as a flagship species in an attempt to protect threatened rain forests in Indonesia (Røv & Gjershaug 2000). Nils Røv, Torgeir Nygård, Dewi M. Prawiradilaga, Yayat Afianto, Hapsoro and Adam Supriatna have been collaborating with me on this project.

The second project was on taxonomy and phylogeny of some booted eagles in Indonesia, based on molecular genetics as part of the project “Species and subspecies as taxonomical categories used in conservation biology” in collaboration with Kaare Aagaard, Kjetil Hindar, Nils Røv og Kirsti Kvaløy. This project was financed by the Norwegian Research Council (NFR) in 1998-2000. The project was expanded to cover most of the booted eagle taxa in the world as a result of collaboration with Anita Gamauf and Elisabeth Haring at the Museum of Natural History in Vienna.

The third project was on the taxonomy of the Flores Hawk-eagle *Nisaetus floris* on the Lesser Sunda Islands in Indonesia. It was partly an extension of the former project, involving field work in Indonesia in 2002, financed by the Norwegian Institute for Nature Research (NINA). Nils Røv, Kirsti Kvaløy, Dewi M. Prawiradilaga, Usep Suparman and Zaini Rahman have been collaborating with me on this project.

The final project was on the taxonomy of hawk-eagles of the genus *Nisaetus* in India. This was also an extension of the second project and included morphological studies of bird skins at The Natural History Museum at Tring in 2004 and two months field work in India in 2005, financed by NINA, in collaboration with Yngve Espmark, Ola Diserud and Pamela Rasmussen.

I am greatly indebted to the Department of Biology, NTNU, and my supervisor Professor Eivin Røskaft for support and advice. I am also grateful to my co-authors of the papers for fruitful discussions, and especially to Nils Røv for his cooperation in the field.

Many persons have contributed to this thesis through their help in the field. To avoid forgetting anyone I refer to the various papers for their names.

I thank all who have commented on drafts of the papers presented here; they are named in the various manuscripts. A special thank to Professor Jon E. Swenson and Kjetil Bevanger for comments on a draft of this synopsis. I am also indebted to my colleagues at NINA who have supported me, and to Duncan Halley for help with the English. I want to thank NINA for financial support to the field work in 2002 and 2005. The change to half-time post as a research scientist was the main reason for doing this PhD.

Finally, I wish to express my gratitude to my wife, Gunn, daughters, Svanhild and Ane Marte, and grandchild, Hedda, who periodically have had a husband, father and grandfather away on field work in Asia for long periods. I dedicate this thesis to them.
ABSTRACT

Morphological, vocal and molecular data have been used to reevaluate the taxonomy of some Asian Nisaetus taxa. This name is used instead of Spizaetus because the latter genus is polyphyletic with clades in Asia, South America and Africa. The Changeable Hawk-eagle complex (N. cirrhatus cirrhatus, N. c. limnaeetus, N. c. floris, N. lanceolatus and N. philippensis) has been studied. We propose that Nisaetus floris (Flores Hawk-eagle) should be treated as a distinct species, whereas the taxonomic status of Nisaetus c. cirrhatus and N. c. limnaeetus is still uncertain. We also propose that the Philippine Hawk-eagle should be split into two species Nisaetus philippensis and N. pinskeri. In the Mountain Hawk-eagle Nisaetus nipalensis complex, we propose that Nisaetus kelaarti (Legge’s Hawk-eagle) should be treated as a distinct species. The conservation status of Nisaetus floris, Nisaetus kelaarti and Nisaetus bartelsi has been evaluated from population density estimates, which are based on territory size. N. floris and N. bartelsi qualify for the category “Endangered” on the IUCN Red List, whereas N. kelaarti qualifies as “Near Threatened”. The changes in taxonomy of Nisaetus floris and N. kelaarti meet the qualification for being included in the Red List.

SAMMENDRAK PÅ NORSK

Vi har brukt morfologiske, vokale og molekylære data for å revurdere taksonomien til noen taksa i den asiatiske haukørnslektten Nisaetus. Dette navnet er brukt i stedet for Spizaetus da denne er polyfyletisk med en gruppe i Asia, en i Sør-Amerika og en art i Afrika. Changeable Hawk-eagle - komplekset (N. cirrhatus cirrhatus, N. c. limnaeetus, N. c. floris, N. lanceolatus og N. philippensis) er studert, og vi har foreslått at Nisaetus floris (Flores Hawk-eagle) skal regnes som en egen art, mens den taksonomiske status til Nisaetus c. cirrhatus og N. c. limnaeetus fremdeles er usikker. Vi har også foreslått at Philippine Hawk-eagle skal splittes i to arter, Nisaetus philippensis og N. pinskeri. I Mountain Hawk-eagle Nisaetus nipalensis komplekset foreslår vi at Nisaetus kelaarti (Legge’s Hawk-eagle) regnes som en egen art. Vi har vurdert bevaringsstatusen til Nisaetus floris, Nisaetus bartelsi og Nisaetus kelaarti ut fra populasjonstetthetsestimat som er basert på territoriestørrelse. De to førstnevnte artene kvalifiserer til ”direkte truet” på Rødlista, mens kelaarti kvalifiserer til kategorien ”nær truet”. Endringen av taksonomisk status for Nisaetus floris og Nisaetus kelaarti har vært en forutsetning for å inkludere disse artene på Rødlista.
CONTENTS

PREFACE ... 3

ABSTRACT ... 4

CONTENTS ... 5

LIST OF PAPERS ... 7

INTRODUCTION .. 8

PROBLEM DESCRIPTION .. 8

SPECIES CONCEPTS .. 8

SPECIATION .. 9

SPECIES DELIMITATION ..11

OBJECTIVES .. 13

STUDY OBJECTS ... 14

Booted eagles
Nisaetus cirrhatus
Nisaetus floris
Nisaetus lanceolatus
Nisaetus philippensis
Nisaetus pinskeri
Nisaetus nipalensis
Nisaetus kelaarti
Nisaetus bartelsi

METHODS ... 20

SEXING OF MUSEUM SPECIMENS 20

MITOCHONDRIAL DNA SEQUENCES AS A
PHYLOGENETIC TOOL ..20
RESULTS AND DISCUSSION ... 24

SPECIES DELIMITATION ... 24

Nisaetus cirrhatus complex
Nisaetus floris
Nisaetus c. cirrhatu and _Nisaetus c. limnaeetus_
Nisaetus nipalensis and _Nisaetus kelaarti_

CONSERVATION STATUS .. 27

Nisaetus floris
Nisaetus kelaarti
Nisaetus bartelsi

GENERAL DISCUSSION ... 29

SPECIES DELIMITATION
USE OF MOLECULAR ANALYSIS IN TAXONOMY
USE OF VOCALIZATIONS IN TAXONOMY
TAXONOMY AND CONSERVATION
CONSERVATION STATUS

CONCLUSIONS AND FUTURE PERSPECTIVES 34

LITERATURE .. 35

PAPERS I-VI

APPENDICES

A. List of current species of booted eagles
B. Proposed new taxonomy of booted eagles
LIST OF PAPERS

III. Gjershaug, J. O., Diserud, O., Rasmussen, P. C. & Espmark, Y. On the taxonomic status of the Changeable Hawk-eagle *Nisaetus cirrhatus* in India. (Manuscript)

IV. Gjershaug, J. O. & Espmark, Y. Intra-individual and geographical variation in the calls of the Changeable Hawk-eagle *Nisaetus cirrhatus* in India. (Manuscript)

V. Gjershaug, J. O., Diserud, O. & Rasmussen, P. C. An overlooked threatened eagle species: Legge’s Hawk-eagle *Nisaetus kelaarti*. (Manuscript)

The papers are referred to in the text by their Roman numerals.
INTRODUCTION

PROBLEM DESCRIPTION

The accurate determination of species limits is a central concern in the conservation of global biodiversity (e.g. Wilson 1992, Hazevoet 1996, Collar 1997, Frankham et al. 2002, Newton 2003, Agapow et al. 2004). In cases where the taxonomic status of threatened subspecies has not been sufficiently clarified, there is a risk that potentially valid species could become extinct before conservation action is initiated. Currently, subspecies are not included in IUCN’s red lists (e.g. BirdLife International 2000, 2001, IUCN 2004). A change of taxonomic status from subspecies to full species will therefore have great importance for its conservation attention. However, it would not be advisable to propose species status for a taxon just for conservation reasons. All such decisions should be made as far as possible according to the same basic criteria (Collar 1997).

SPECIES CONCEPTS

There has been a long-standing controversy over species concepts. Mayden (1997) discussed 22 concepts of species that are in use today. The biological species concept (BSC) (Mayr 1942, 1963, 1982) has been the dominating species concept in ornithology for most of the last six decades. It is defined as “groups of actually or potentially interbreeding natural populations which are reproductively isolated from other such groups”. However, there has been much debate concerning the difficulty of applying the BSC to allopatric taxa. In particular proponents of the phylogenetic species concept (PSC) have claimed that their species concept is less arbitrary of its treatment of allopatric taxa. They define the species as “the smallest diagnosable cluster of individual organisms within which there is a parental pattern of ancestry and descent” (Cracraft 1983, McKitrick & Zink 1988, Hazevoet 1994, 1996). I agree with much of the critique of the PSC (e.g. Collar 1997, Snow 1997, Lee 2003) that the concept is at least as arbitrary and subjective as BSC and has great weakness both from theoretical and practical standpoints. To use the criteria of PSC on human populations would give the controversial result that various geographical populations of humans are different species (Haffer 1997, Bock 2004). Why should they be more appropriate to use on birds? A variant of PSC is called the monophyletic species concept. It stress that the species should be monophyletic, in other words that different populations of the same species should be more closely related to each other than to populations of other species (Mishler & Donoghue 1982, Lidén 1990, Alström 2002). Paraphyly is, however, quite common (e.g. Talbot & Shields 1996, Haffer 1997, Harrison 1998, Omland et al. 2000, Funk & Omland 2003). Under budding speciation, the cause of paraphyly is incomplete lineage sorting (Funk & Omland 2003). Some of the critique of the PSC was because the importance of congruence of independent lines of evidence for species limits was not duly emphasised in the early writings of PSC proponents (Zink 1997).

Recently, modified versions of the evolutionary species concept (Simpson 1951, Wiley 1981, Wiley & Mayden 1997) have incorporated the essences of several of the other species concepts as the General Lineage Concept (de Queiroz 1998, 1999). Helbig et al. (2002) defined it as: “population lineages maintaining their integrity with respect to other such lineages through time and space, this means that species are diagnostically different, reproductively isolated (otherwise they would not maintain their integrity upon contact) and
members of each (sexual) species share a common mate recognition and fertilization system (otherwise they would be unable to reproduce).”

The Comprehensive Biologic Species Concept (Johnson et al. 1999) is another broad, inclusive species concept with the following definition: “An avian species is a system of populations representing an essentially monophyletic, genetically cohesive, and genealogically concordant lineage of individuals that share a common fertilisation system through time and space, represent an independent evolutionary trajectory, and demonstrate essential but not necessarily complete reproductive isolation from other such systems”.

There is, however, still no consensus about how best to define species (Dillon & Fjeldså 2005).

SPECIATION

Speciation theory, as many issues in evolutionary biology, began with Darwin (1859). By formulating a theory on how species change he paved the way for the scientific study of speciation. The next big step was taken with the “Modern Synthesis” (Dobzansky 1937, Huxley 1942, Mayr 1942) when Darwin’s evolutionary theory was fitted into Mendelian genetics. The definition of species as reproductively isolated groups of organisms (BSC; Mayr 1942) was paralleled by speciation theories, where isolation was believed to be the causal agent.

Allopatric speciation, where new species arise from geographically isolated populations of the same ancestral species, is the most widely accepted of all current speciation models (Mayr 1942, 1963). It can be divided into vicariance and peripatric (peripheral) speciation, depending on the location of the geographical split and the size of the subpopulations. In vicariance speciation a continuous population is split in the centre of its distribution, giving rise to two or more large, isolated sub-populations. With time the sub-populations are thought to evolve reproductive isolation as a by-product of genetic drift and/ or divergent selection pressures. Since vicariance speciation requires a large amount of genetic differentiation to lead to reproductive isolation in secondary contact. The process is generally believed to be rather slow.

Reproductive isolation could evolve somewhat faster (involve fewer genetic changes) in peripatric speciation (Mayr 1954). Here a small peripheral portion of the population becomes isolated and may undergo one or several bottlenecks (Carson 1975). Genetic drift caused by low population size during the bottlenecks, together with relaxed selection pressure under the following flush phase, when the population increases rapidly in size, allows the formation of new gene combinations that would not have survived in the original population. Reproductive isolation is then believed to evolve either as a by-product of the genetic changes (Mayr 1954, Carson 1975, Templeton 1980) or as a consequence of relaxation of mating preferences in bottlenecks (Kaneshiro 1989).

According to another development of the allopatric speciation theory, the reinforcement theory (Dobzhansky 1937), even small genetic differences acquired in isolation might lead to reproductive isolation in secondary contact if the production of hybrids with low fitness selects for prezygotic isolation.
Recent studies indicate that avian speciation involves little genetic change and occurs rapidly in small populations (e.g. Grant and Grant 1997, Smith et al. 1997, Grant and Grant 1998, Grant et al. 2000). Speciation in birds proceeds via the evolution of behavioural barriers to interbreeding, whereas postmating isolation evolves much more slowly, probably occurring only after gene exchange has effectively ceased. Thus, there is considerable potential for introgressive hybridization to influence the evolution of diverging species. This is supported by the very high incidence of interspecific hybridization found in birds, and the fact that even distantly related taxa can produce fertile hybrids (Panov 1989, Grant & Grant 1992). In fact, hybridization may be an important positive factor in avian speciation (Grant 1986, Grant & Grant 1998, Veen et al. 2001).

A much used example of extremely rapid divergence with very little genetic differentiation, is the cichlids in Lake Victoria (Meyer 1993, Seehausen & van Alphen 1998, Turner 1999, Nagl et al. 2000). Fryer (2001) finds however the evidence unconvincing. Other rapid evolution in fish are described for northern freshwater fish species (Rundle & Schluter 2004, Snorrason & Skulason 2004, Østbye et al. in press). Uy & Borgia (2000) demonstrated distinct male preferences for bower decorations and female choice for those preferences in two populations of the Vogelkop bowerbird Amblyornis inornatus and claimed that this was the first direct evidence for the speciation by sexual selection (SSS) hypothesis in birds. New theoretical and empirical work has increased the plausibility of speciation without geographical isolation (Sympatric speciation). This has motivated a shift of focus away from isolation and towards the very mechanisms that initiate divergence. The old geographical classification of speciation models is no longer taken for granted (Schluter 2001, Via 2001). The concept of ecological speciation, where isolation is an effect of adaptation to divergent selective regimes, has gained consistent support from empirical evidence (Schluter 1998, 2000, 2001). Adaptive speciation is defined as “speciation processes in which the splitting is an adaptive response to disruptive selection caused by frequency-dependent biological interactions” (Dieckmann et al. 2004). Without divergent selection, even weak natural selection on female preference may hinder developing disparate mating traits and reproductive isolation from drift (Turelli et al. 2001).

Sexual selection can lead to rapid divergence between populations since it directly affects the traits involved in reproductive isolation and increases the overall rate of change (Andersson 1994, Panhuis et al. 2001). This has spurred an interest among biologists to examine the possible role of sexual selection in speciation. Sexual dichromatism and plumage ornamentation in birds (Barraclough et al. 1995, Møller & Cuervo 1998) has been shown to correlate with species richness. Furthermore, prezygotic (sexual) isolation seems to evolve faster than postzygotic isolation (Coyne & Orr 2004). However, Morrow et al. (2005) did not find any evidence for sexual selection as an engine of speciation in birds.

Nevertheless, in the phylogenies of many animal groups, the traits presumably maintained by sexual selection are more often lost than gained (Wiens 2001). This paradoxical fact seems to argue against speciation by sexual selection. The Kaneshiro model (Kaneshiro 1980) however, relates directly to loss of sexually selected traits. This model is a development of peripatric speciation with a special focus on sexual selection. It proposes that sexual selection might act as a stabilising agent on species-specific mating under normal circumstances and that the speciation would appear as a direct consequence of relaxed sexual selection pressures following bottlenecks. This model was used to explain the extreme plumage variation among subspecies of yellow wagtails Montacilla flava (Ödeen & Björklund 2003).
No evidence has yet emerged that sexual selection could be important in causing sympatric speciation for birds, nor that different types differ sufficiently in ecology to co-exist in the long term. If sympatric speciation occurs at all in birds, it is likely to affect relatively few species, because few show discontinuity in niche preference linked with mating behaviour (Newton 2003). Possible cases of sympatric speciation are described by Grant & Grant (1979) and Sorenson et al. (2003). The crossbills (Loxia) could be another possible example. They occur as different ecotypes, which differ in body size, vocalizations, bill size and food preferences (Groth 1988, Marquiss & Rae 2002, Benkman 2003). Allopatric speciation or a two-step process starting in allopatry and finishing in sympatry is, however, the most likely explanation for evolution of new bird species (Newton 2003).

Despite the popularity of models based on genetic drift (Mayr 1963, Templeton 1980, Provine 1989), there is little evidence that drift plays an important role in speciation. There is, in contrast, a growing body of evidence for the importance of natural and sexual selection. The recent “explosion” of works on speciation, however, concentrates almost entirely on reproductive isolation (Coyne & Orr 2004).

SPECIES DELIMITATION

Birds are delimitated using a far more restrictive set of criteria than for other organisms, with field diagnosability being the ultimate criteria of distinctiveness (Watson 2005). As a proponent of the above modified version of the Biological Species Concept, I believe that there should be indications of reproductive isolation (in the meaning of genetic isolation) between the taxa before regarding them as different species. These reproductive barriers can either be pre-zygotic isolation due to differential species or mate recognition, or post-zygotic isolation, where the phenotypic differentiation is so great that hybrids would be selected against ecologically (Grant & Grant 1997, Schluter 2001). Small diagnostic differences, which do not need to have any implications for reproductive isolation, better indicate subspecies rank. Another post-zygotic isolation mechanism is partly or full hybrid sterility, which do not occur between closely related taxa that have been separated less than one million years (Price & Bouvier 2002).

Under the BSC only the vaguest guidelines have been given as how to treat such allopatric populations (Mayr & Ashlock 1991). They argued that it is impossible in some cases of allopatry to obtain clear-cut proof one way or another, and that it is just as serious an error to call a population a species, when it is really only a subspecies, as to do the opposite. They prefer to treat allopatric populations of doubtful rank as subspecies, because the use of trinominal nomenclature conveys two important pieces of information: closest relationship and allopatry.

Large morphological differences between two taxa can indicate that their intermediate offspring might have lower fitness. Ecological speciation occurs when divergent selection on traits between populations in contrasting environments leads directly or indirectly to the evolution of reproductive isolation (Schluter 2000, 2001).

Recently, Helbig et al. (2002) have worked out more detailed guidelines for assigning species rank. According to their criteria, allopatric taxa are assigned species rank if they are fully diagnosable in each of several discrete or continuously varying characters related to different functional contexts, e.g. structural features, plumage colours, vocalisations or DNA
sequences, and the sum of the character differences corresponds to or exceeds the level of divergence seen in related species that coexist in sympatry. To assess these criteria, a comparative analysis of related species is necessary and evidence pertaining to potential incompatibilities of mate recognition systems (e.g. lack of response to song playback) may be particularly relevant.

Allopatric taxa will be termed allospecies (Amadon 1966, Short 1969) if they do not fulfil the criterion above, but have at least one character which is fully diagnostic and the level of divergence is equivalent to that of the most closely related sympatric species, or they are statistically diagnosable by a combination of two or three characters. The characters may be either discrete or vary continuously, but they must be functionally independent. Characters may also be molecular sequences (e.g. of mtDNA), but a single fixed nucleotide difference would not be sufficient to justify allospecies rank: the degree of divergence must be taken into consideration through a comparative analysis. The molecular divergence between allopatric taxa is proportional to the time that has elapsed since the two taxa diverged from a common ancestor and gives a rough indication of how likely it is that reproductive incompatibilities have evolved between the two taxa (Helbig et al. 2002). But it should not be used alone to decide if they are different species.

Where diagnosable taxa meet without hybridization (parapatry) they are ranked as species (Helbig et al. 2002). But when a hybrid zone joins them, they are ranked as semispecies, as such zones indicate a substantial restriction of gene flow. Only in cases where the taxa recently have come into contact and the overall divergence suggests that they will remain distinct, they will be ranked as full species (Helbig et al. 2002). In sympatry, taxa will be ranked as species if they hybridize only rarely and there is little or no gene flow between them because of low hybrid fitness (Helbig et al. 2002).

There has been a tendency in recent years, following Smith (1965), to make a distinction between allopatry, in which populations or taxa are separated by a distributional gap that prevents contact, and parapatry, in which populations of taxa are in contact. Mayr & Ashlock (1991) propose that populations meeting in a zone of contact without any interbreeding should be treated as species, and as subspecies if occasional hybrids occur. The criteria of Helbig et al. (2002) are less stringent than those traditionally applied by most proponents of the BSC, because they place more weight on reproductive incompatibility than on full reproductive isolation. Taxa meeting at a narrow, stable hybrid zone is regarded as semispecies, because the stability and steepness of a zone like this would indicate a restriction of gene flow (Helbig et al. 2002). They argued that hybrid zones probably always indicate an intrinsic barrier to gene flow. The breadth of a hybrid zone relative to the dispersal distance of the taxa involved is a good indicator of the degree to which gene flow is restricted. Diagnosable taxa that hybridize as a result of secondary contact will be ranked as species if they have only recently come into contact either naturally (through range expansion) or artificially (through human habitat alteration or introduction), and the level of their overall divergence suggests that they will remain distinct (Helbig et al. 2002). Parapatry reflects a situation where two taxa are ecologically identical or so similar that they cannot coexist in the same habitat. The fact that they do not hybridize, despite occurring in very close proximity, indicates that some intrinsic reproductive isolation is very likely to be operating.

Theoretical models suggest that the evolution of reproductive isolation can be rapid (Lande 1981, Barton & Charlesworth 1984) and that morphological character states, and even complex morphological structures, can evolve well within one million years (Nilsson &
Pelger 1994). The view that speciation in birds may occur rapidly is supported by empirical data. For instance, mtDNA sequences of Sandford’s Sea Eagle *Haliaeetus sandfordi* and White-bellied Sea Eagle *H. leucogaster* differ by only 0.3%. They differ substantially in morphology and in behaviour, and are considered as different species (Wink et al. 1996). In several genera, species pairs with mtDNA genetic distances of less than 2% have been documented (Seibold & Helbig 1995, Shields & Wilson 1987, Kessler & Avise 1984, Avise & Zink 1988). In each of these pairs, taxa are morphologically distinct, have sympatric breeding ranges and would probably be ranked as species under any species concept. Interspecific and intraspecific genetical distances show substantial overlap (Vogler & DeSalle 1994, Helbig et al. 1995).

To delimitate allopatric taxa, Isler et al. (1998, 1999) used a minimum of three differences in vocal characters and one morphological character which identified individuals of at least one sex unambiguously to a particular taxon. With the diversity of song variation and response, the vocal evidence alone is not a credible test of species distinctiveness (Payne 1986). Collar (1997) claimed that it is time that ornithologists considered in depth the entire question of the scientific measurement of vocal differences in relation to taxonomic valuation.

In spite of these guidelines, there will always be borderline cases with subjective taxonomic judgement. The speciation process yields intermediate stages when species status is more or less irresolvable (Coyne & Orr 2004). The way in which species are defined and delineated can, however, have great impact on their conservation status.

OBJECTIVES

The main objective of this thesis is to obtain knowledge on taxonomy and population status on some *Nisaetus* hawk-eagles in south-east Asia that can be used for conservation of these species.

The specific aims are to report the:

1. phylogeny of the Changeable Hawk-eagle complex (Paper I).
2. taxonomic status of the Flores Hawk-eagle (if *Nisaetus floris* is a distinct species from *Nisaetus cirrhatus limnaeetus*) (Paper II).
3. taxonomic status of the Changeable Hawk-eagle complex (if *Nisaetus limnaeetus* in North India is a distinct species from *Nisaetus cirrhatus* in South India (Paper III and IV).
4. taxonomy of the Mountain Hawk-eagle complex (if *Nisaetus kelaarti* in South India is a distinct species from *Nisaetus nipalensis* in North India (Paper V).
5. home-range size of the Javan Hawk-eagle to make a rough estimate of the population size (Paper VI).
STUDY OBJECTS

Booted eagles

The booted eagles (eagles with feathered tarsi) (Aves, Falconiformes, Accipitridae) are currently regarded as an assemblages of 39 species in nine genera in the tribe Aquilini (Aquila, Ictinaetus, Hieraaetus, Lophaetus, Polemaetus, Stephanoaetus, Spizaetus, Spizastur and Oroaetus) (del Hoyo et al. 1994, Ferguson-Lees & Christie 2001, 2005). The molecular genetical analyses show that the genus Spizaetus is polyphyletic, consisting of an Old World and a New World lineage (Gamauf et al. 2005, Helbig et al. 2005a, Lerner & Mindell 2005, Haring et al. in manuscript). Brown & Amadon (1968) stated that Spizaetus africanus, S. ornatus and S. tyrannus are not obviously tied with any of the other species of the Spizaetus genus, but they did not draw any taxonomical consequences from that. This was also recognized by Jollie (1976-77) based on morphological analysis. Based on the same molecular genetical analyses, the genera Spizastur and Oroaetus should be included in the genus Spizaetus Viellot 1816, and the ten Asian Nisaetus species are monophyletic. They should be assigned to a different genus, for which the name Nisaetus Hodgson 1836 is available. I therefore use this name. The Crowned Hawk Eagle Stephanoaetus coronatus was found by Helbig et al. (2005a) to be sister species of the Nisaetus group, whereas Lerner & Mindell (2005) found it to be the first diverging species after the Nisaetus and Spizaetus eagles. This difference is likely a result of different taxon set used in the two studies. Our results (Gamauf et al. 2005, Haring et al. submitted) are in accordance with that of Lerner & Mindell (2005), but I have choosen to follow Helbig et al. (2005) as their phylogeny is based on both mitochondrial and nuclear DNA with high bootstrap values.

Cassin’s Hawk-eagle Spizaetus africanus of West Africa should be placed in the genus Aquila based on its phylogenetical position (Lerner & Mindell 2005). All Hieraaetus eagles except the H. kienerii should be included in the genus Aquila. H. kienerii is phylogenetically distant from its current congeners in Hieraaetus (Lerner & Mindell 2005) and is also morphologically very distinct, and should be placed in its own genus. The reuse of the genus name Astur used for the first description of this taxon by Saint-Hilaire in 1835 is not possible because it is preoccupied. Brehm has used it already for the genus Accipiter in 1831. Therefore, we have proposed to put the monotypic species Hieraaetus kienerii into the new genus Kienastur gen. nov. (Haring et al. submitted). Helbig et al. (2005) proposed that the spotted eagles (Aquila pomarina, A. clanga and A. hastata) should be included in the genus Lophaetus, Kaup 1847. As Ictinaetus malayensis is probably close related to these eagles (Lerner & Mindell 2005, Haring et al. submitted), we have also placed this species in the genus Lophaetus (Haring et al. submitted).

In addition to the 39 species covered by Ferguson-Lees & Christie (2005), Nisaetus pinskeri has been split from Nisaetus philippensis (Paper I), Nisaetus kelaarti should be split from Nisaetus nipalensis (Paper V), and Hieraaetus weiskei is probably also a distinct species based on molecular genetics (Bunce et al. 2005, Lerner & Mindell 2005). A list of all current booted eagles with English and scientific names is presented in Appendix A. A proposed new taxonomy of booted eagles is presented in Appendix B.

The phylogeny of booted eagles based on molecular genetics has been partly described by Wink & Sauer-Gürtth 2004, Helbig et al. 2005a, Bunce et al. 2005, Lerner & Mindell 2005. Based on these papers and our own data (Gamauf et al. 2005, Haring et al. submitted and
Paper I), I have constructed manually a consensus tree (phylogenetical hypothesis) for all booted eagles (Fig. 1).

Fig. 1. A phylogenetic hypothesis based on mtDNA for all booted eagles with current nomenclature constructed manually from data in Wink & Sauer-Gürth 2004, Helbig et al. 2005a, Bunce et al. 2005, Lerner & Mindell 2005, Gamauf et al. 2005, Haring et al. submitted
and Paper I. *Harpagornis moorei* is an extinct giant eagle from New Zealand. See also Appendices A and B.

Fig. 2. A proposed phylogenetic hypothesis of Asian *Nisaetus* eagles based on the data in Paper I, Gamauf *et al.* 2005 and Haring *et al.* submitted. The tree is constructed manually. The paintings of eagles are from Weick 1980, with permission from the author.
I have studied the following eight species of *Nisaetus* hawk-eagles:

Changeable Hawk-eagle *Nisaetus cirrhatus*

The Changeable Hawk-eagle is the most widespread of the *Nisaetus* hawk-eagles in South-East Asia, with a geographical distribution from India to the Bali and the Southern Philippine islands. It has five subspecies (Fig. 4): *N. c. cirrhatus* in the Indian subcontinent, *N. c. ceylanensis* in Sri Lanka, *N. c. limnaeetus* from the Himalayan foothills through Indomalaya into the Greater Sundas and the Philippines, *N. c. andamanensis* on the Andaman Islands, *N. c. vanheurni* on Simeulue Island. Ferguson-Lees & Christie (2005) treat *limnaeetus*, *andamanensis* and *vanheurni* as distinct species. It is a small eagle with a weight up to 1.8 kg. It inhabits savannah woodland, cultivation with trees, secondary and open primary forests from sea level up to 2,200 m a.s.l. (del Hoyo *et al.* 1994, Ferguson-Lees & Christie 2001).
Fig. 4. Distribution of Changeable Hawk-eagle *Nisaetus cirrhatus* complex. The proposed phylogenetic hypothesis is from Paper I, constructed manually. One specimen (lim13) from Sulawesi probably represents an undescribed subspecies (question mark on the map). The Changeable Hawk-eagle is a paraphyletic taxon. The paintings of eagles are from Weick 1980, with permission from the author.

Flores Hawk-eagle *N. floris*

The Flores Hawk-eagle has been regarded as a subspecies of *N. cirrhatus* until recently. It is found in the Lesser Sundas from Lombok to Flores. This eagle has a juvenile-like adult plumage, and is much larger than *Nisaetus cirrhatus*. It is found in lowland and submontane forests up to 1,600 m, but is found most often in lowland rainforests. Occasionally individuals are seen over cultivated areas, but always close to intact or semi-intact forest.

Sulawesi Hawk-eagle *N. lanceolatus*

This medium-sized eagle is endemic to Sulawesi. It is found in primary and secondary forests from lowland up to at least 2000 m. (Thiollay & Rahman 2002). Ferguson-Lees & Christie (2001) follows Amadon (1982) and state that it forms a superspecies with *N. nipalensis*, *N. bartelsi*, *N. alboniger* and *N. philippensis*. Based on our genetical analyses, both *N. lanceolatus* and *N. philippensis* are more related to *N. cirrhatus* than to *N. nipalensis*.
Northern Philippine Hawk-eagle \textit{N. philippensis}

This medium sized eagle is distributed in rainforests on the Philippine island of Luzon. The population size is estimated to about 200-220 pairs, which qualifies for the category “endangered” on the Red List (Preleuthner & Gamauf 1998).

Southern Philippine Hawk-eagle \textit{N. pinskeri}

Preleuthner & Gamauf (1998) described \textit{pinskeri} as a new subspecies of \textit{N. philippensis}. Based on the morphological and plumage differences found in that study and the differences in mtDNA found later, it is now proposed as a distinct species (Paper I). It has been recorded on eleven of the Phillipine islands, in forested areas with closed canopy. Preleuthner & Gamauf (1998) have estimated the population size to 320-340 pairs, which qualify as “endangered” on the Red List.

Mountain Hawk-eagle \textit{N. nipalensis}

This is a large eagle with currently three recognized subspecies: \textit{N. n. nipalensis} from Himalayan foothills to China, Taiwan and western Thailand, \textit{N. n. orientalis} in Japan, and \textit{Nisaetus n. kelaarti} in south west India and Sri Lanka (del Hoyo et al. 1994, Ferguson-Lees & Christie 2001). We regard \textit{N. kelaarti} as a distinct species. A recently discovered population in south-east Russia has been identified as \textit{N. n. orientalis} (Nechaev et al. 1999), but our genetic studies have shown that it is more related to the birds in China and Taiwan than to the Japanese birds (Haring \textit{et al.} in manus). MacKinnon & Phillips (2000) stated that the race \textit{fokiensis} is a rare resident in Taiwan, and that the race \textit{orientalis} breeds in NE China and winters to Taiwan. This is not in accordance with our genetic studies.

Legge’s Hawk-eagle \textit{N. kelaarti}

This large eagle has been regarded as a subspecies of \textit{N. nipalensis} until now. It is associated with primary evergreen forests, even though it sometimes uses more degraded forests and cultivated areas for hunting (Thiollay 1993, own observations).

Javan Hawk-eagle \textit{N. bartelsi}

The taxonomic status of this eagle has changed several times in the past. Streseeman (1924) first described it as a new subspecies of \textit{N. nipalensis}. Some years later Stresemann (1938) renamed it as \textit{N. nanus bartelsi}. Hoogerwerft (1946) came to the conclusion that it was too large to belong to \textit{N. nanus} and found it premature to make any pertinent statement about its systematic position. Amadon (1953) made a review of the whole group of Asian \textit{Spizaetus} (\textit{Nisaetus}) species and came to the conclusion that, because its range was separated from \textit{N. nipalensis} by \textit{N. alboniger} on Sumatra, he could not recognise \textit{bartelsi} as a subspecies of \textit{N. nipalensis}, and considered it as a full species. Its systematic position has remained unresolved. Our mtDNA analysis has confirmed that it is a distinct species, with \textit{N. alboniger} as its sister species (Haring \textit{et al.} submitted). This medium-sized eagle is endemic to Java. It is
mostly found in the fragmented primary rainforests, but is sometimes even found in secondary forests, and can be observed hunting in cultivated areas.

METHODS

A broad range of quantitative and qualitative methods have been used in this thesis.

1. Phylogeny based on the mitochondrial DNA cytochrome b and control region genes (Paper I).
4. Tape recording, sonagrams and play-back experiments (Paper III and IV).
5. Population density estimation by direct observations of distances between neighbouring territories, distances between nests and by radiotelemetry (Paper VI).

SEXING OF MUSEUM SPECIMENS

Many studies have demonstrated that a significant percentage of accipitrid specimens are incorrect sexed (Storer 1966, Snyder & Wiley 1976, Bortolotti 1984a, 1984b, Ferrer & de la Court 1992, Knox & Walters 1992, Brooker 1996). We have therefore used Principle Component Analysis of 13 biometrical characters in Paper III to classify unsexed specimens and to identify mis-sexed specimens as proposed by Bortolotti (1984a, 1984b). Because of large sexual dimorphism in Nisaetus hawk eagles, mis-sexed specimens could greatly have influenced the biometric comparison between taxa.

MITOCHONDRIAL DNA SEQUENCES AS A PHYLOGENETIC TOOL

Mitochondrial DNA (mtDNA) sequences have frequently been used in the phylogenetic reconstruction of both deep vertebrate divergences and of relationships with a more recent history. The mtDNA is mainly maternally inherited and thus recombination of mtDNA is rare (Lansman et al. 1983). The fixation rate of a gene is directly proportional to the effective population size, given that the population is mating randomly and the gene evolving neutrally. A shorter fixation time is important when investigating rapidly diverging lineages. The risk of reconstructing the gene tree instead of the species tree is reduced considerably when a gene or a set of genes with a short fixation time are used (Moore 1995). Because specific regions of the mitochondrial genome evolve at different rates, it can be used to reconstruct phylogenies at different systematic levels (Mindell 1997, Härlid 1999).

The genetic information is encoded by the sequence of the four DNA bases adenine (A), thymine (T), guanine (G) and cytosine (C). DNA exists as complementary double strands, in which A pairs with T and G with C via hydrogen bonding. Genes are transcribed into messenger RNA (mRNA) which is translated into protein in the ribosomes. Animal genomes contain large regions (up to 98% of total DNA) of non-coding DNA, which are not translated into proteins. Mitochondrial DNA, however, consists mainly of protein encoding and ribosomal RNA (rRNA) genes, which are sequences that code for the RNA components of ribosomes. Uncoding regions are rare except for the control region (Beebee & Rowe 2004).
The mtDNA probably originated from bacterial endosymbionts, which fused with early eukaryotic cells (Margulis 1981).

Most studies on birds have been based on the mtDNA cytochrome b gene, which is thought to diverge in separated bird populations at a rate of about 2% per million years (Lovette 2004). It is most useful for separations that occurred within the past 4-5 million years. The mtDNA control region sequences are the most rapidly evolving region of the mtDNA genome and are useful for dating separations that occurred in the past 10,000 years (Newton 2003). We have therefore used both of these genes in our phylogenetical reconstructions.

DNA was extracted from museum feathers or skin from the foot pads, and polymerase chain reaction (PCR) gave DNA products that were sequenced. The lengths of the sequences were 264 nucleotids for cyt b and 237 for the control region. Both distance (neighbour-joining algorithm (Saitou & Nei 1987) and maximum parsimony methods were used to infer the phylogenetic relationships. Figures 5 and 6 provide a schematic overview of the various procedures between the starting point to the final result as a phylogenetical tree.
Fig. 5. Schematic illustration of the steps from sample to DNA-sequence (modified after Wink 2000, Fig. 4 on p. 834).
Fig. 6. From DNA-sequence to phylogeny (modified after Wink 2000, Fig. 5 on p. 835).
POPULATION SIZE ESTIMATE

We have used a rough method to obtain a rapid assessment of the population size. The population density has been estimated by the nearest-neighbour distances (NNDs) between pairs as a measure of territorial spacing to estimate population sizes from the available habitat (reviews in Ripley 1985, Krebs 1999). A circular plot (radius = ½ NND) is used as a measure of the density. The nearest-neighbour distances have been estimated either by direct observations of the borders between neighbouring territories or the distances between nests. We have also mapped one territory by radio-telemetry. Similar methods have been used in other studies of tropical rainforest raptors (Thiollay 1989, Whitacre et al. 1992, Preleuthner & Gamauf 1998, Lovell et al. 2003).

RESULTS AND DISCUSSION

SPECIES DELIMITATION

The *Nisaetus cirrhatus* complex (Paper I)

On bases of the cytochrome *b* gene, the *cirrhatus* complex can be divided into two groups; one comprising *N. c. cirrhatus*, *N. c. ceylanensis* and *N. c. floris*, the other comprising the other taxa (*N. c. limnaeetus*, *N. c. vanheurni* and *N. c. andamanensis*). The relationships between these haplogroups are, however, only poorly supported in the bootstrap analyses. The haplotype distribution based on the CR resembles that found for cytochrome *b*, but for this gene, the clade of *N. c. cirrhatus* and *N. c. ceylanensis* no longer cluster with *N. c. floris*, but appear as a sister group of the remaining haplogroups of *N. cirrhatus*. The haplotypes of *N. c. limnaeetus* do not form a monophyletic group nor do they cluster according to geographic affinities in any of the phylogenetical trees. Within *N. cirrhatus* the genetical distances are rather low (0-1.5% in cytochrome *b*). We used *N. lanceolatus* and *N. philippensis* as outgroup taxa in the analyses. This gave the surprising results that *N. p. philippensis* and *N. p. pinskeri* was 3.4% different in cytochrome *b* and they did not form a monophyletic group.

The genetical distances observed within *Nisaetus cirrhatus* are in the range that can be expected at the intraspecific level. There is, however, a wide range of sequence divergences between pairs of presumably closely related bird species (0.1-10.6%) and subspecies (0.1-2.6%) (Seibold & Helbig 1995), which indicates that speciation may occur at different levels of sequence divergence. There is no direct way to deduce species status from observed sequence divergence values. Because additional information to interpret reproductive isolation (e. g. morphology and vocalization) was not available, we did not find good arguments to split this taxon into separate species (as suggested by e. g. Stresemann & Amadon 1979). We advocated the maintenance of the current taxonomy of the *cirrhatus-limnaeetus* complex.

There is a clear genetic distinction between *Nisaetus c. philippensis* and *Nisaetus p. pinskeri*. Based on this, together with their morphological and plumage pattern differences (Preleuthner & Gamauf 1998), we suggest that they should be treated as distinct species.
The use of a molecular clock to date mitochondrial lineages is based on the assumption that mutations in the mitochondrial genome (mtDNA) accumulate over time at rates that can be calibrated against absolute dates derived from fossils or geological evidence. Although the 2% rule for avian mitochondrial evolution is in widespread use, this standard rate is supported by only a small number of calibration studies that show substantial heterogeneity (Lovette 2004).

After having split of *N. floris* as a distinct species, *N. cirrhatus* seems to be a paraphyletic species, due to incomplete lineage sorting.

Nisaetus floris (Paper II)

Reproductive isolation between *N. floris* and *N. (c.) limnaeetus* is suggested based on considerable morphological differences in both adult and juvenile plumages and no mixing of *floris* (n=5) and *limnaeetus* (N=5) mtDNA haplotypes, and no known hybridization despite no effective distribution barriers. We therefore regard *N. floris* as a distinct species according to the Biological Species Concept.

N. floris and *N. (c.) limnaeetus* are commonly regarded as allopatric, being separated only by a narrow strait between Bali and Lombok, perhaps not more than 1 km during the Pleistocene glacial sea-level depression (Van Oosterzee 1997). Changeable Hawk-eagles are able to colonise distant islands (Thiollay 1996, own observations). The distribution boundary between Bali and Lombok could therefore arguably be considered parapatric. The argument that parapatric and ecologically incompatible taxa are best treated as subspecies, because they are necessarily very closely related (Bock 1986, Amadon & Short 1992) is certainly not universally valid (Garcia-Moreno & Fjeldså 1999). Helbig *et al.* (2002) recommended that diagnosable taxa that are strictly parapatric and do not hybridise should be ranked as separate species, because it appears unlikely that such a situation can be maintained without intrinsic reproductive isolation. Natural selection would favour interbreeding between two populations that are in contact at an ecotone or trivial ecological barrier if hybrids have no fitness disadvantage. If such interbreeding does not occur despite the lack of an effective extrinsic barrier, mixing may be being prevented by intrinsic isolation mechanisms.

The genetical distance between *floris* and *limnaeetus* was found to be only 0.8-1.9 % in mtDNA cyt b (Paper I), indicating that they were separated during the Pleistocene. The Flores Hawk-eagle probably evolved in a refuge somewhere in the Lesser Sundas. Theoretical models suggest that the evolution of reproductive isolation can be fast (Lande 1981, Barton & Charlesworth 1984), and that morphological character states can evolve in much less than one million years (Nilsson & Pelger 1994), especially if there is strong selection combined with bottleneck effects. The neotenic (juvenile-like) plumage of adult *floris* may be an effective reproductive barrier for pairing with *limnaeetus*, as selection should work against pairing with juvenile birds. We find no obvious explanation for why *floris* has evolved neoteny, but such a trait might perhaps arise by loss of genetic variation in small populations.
Nisaetus cirrhatus (Paper III and IV)

Morphology
Based on biometrics of museum specimens, we found that *N. (c.) limnaeetus* has a significantly larger bill length and bill depth than *N. c. cirrhatus*, whereas *cirrhatus* has a larger crest length and tail length. Eighteen of 58 museum specimens of *limnaeetus* had more or less intermediate crest length, and of 15 *limnaeetus* observed in the field, four had a crest of intermediate length. Using a Principal Component Analysis (PCA) the two taxa were not well separated.

Vocalization
Play-back experiments where territorial pairs of *N. (c.) limnaeetus* were presented vocalizations from both *limnaeetus* and *cirrhatus* gave no indication of species recognition, as the reaction was very similar for the two type of vocalizations. Sonographic analyses of the different types of calls of the two taxa revealed no significant differences between the taxa in the measured parametre.

Rasmussen & Anderton (2005) found that there are some consistent morphological and vocal differences between *cirrhatus* and *limnaeetus*. The difference in crest length has been one of the main reasons for splitting these taxa into two different species. We found that only three of 48 characters were diagnostic different (no overlap) between the two taxa. The most diagnostic character is the longer crest in *cirrhatus*. As we have seen several *limnaeetus* with intermediate crest lengths, we think this perhaps indicates an earlier gene flow between the two taxa. The differentiation between these taxa in mtDNA cytochrome *b* was 0.4-1.2 % (Paper I). It may be a result of small sample size (only one *limnaeetus* from Nepal). The crest in hawk-eagles is possibly sympleisomorphic, as this character is found in most species of *Nisaetus* and in many other eagle genera. It has probably little importance in species recognition and mate selection. A similar situation is found in *Nisaetus nipalensis*, where there are both populations with and without a crest, and these are not separated in mtDNA cytochrome *b* (Haring et al. submitted). In my opinion the differences between *cirrhatus* and *limnaeetus* are so few and small, that I consider them as conspecific. But as there are different opinions among the authors of Paper III, we recommend more genetical analyses, both mitochondrial and nuclear, to find out if there is any degree of reproductive isolation between the two taxa.

Nisaetus nipalensis and **N. kelaarti** (Paper V)

Statistical analyses of biometrical variables revealed significant differences between *nipalensis* and *kelaarti* in eight variables. A principal component analysis (PCA) gave no overlapping of the two taxa. There were also at least six plumage differences between the two taxa. In addition, the genetic difference between the two taxa is average 4.4 % in mtDNA cytochrome *b*. However, in the control region (CR) the average genetic difference was only 3.2 %, indicating that cyt *b* value may be exaggerated. Founder effects in small relict rainforest habitats during cool and dry periods of the Pleistocene may be an explanation (Haring et al. submitted). From this, we conclude that *N. kelaarti* should be regarded as a distinct species.

The morphological differences between *N. kelaarti* and *N. nipalensis* in bill and feet indicate ecological differences between them. Longer bill and hind claws on *N. kelaarti* suggests that
it may have a higher proportion of mammals in its diet than *N. nipalensis*. The very short primary projection (Kipp’s distance) is probably an adaptation either to hunting inside forests or lack of migratory behaviour (Kipp 1959).

CONSERVATION STATUS

Nisaetus floris (Paper II)

On the basis of distances between three neighbouring territories, we estimated that the territory size for Flores Hawk-eagle is ca. 40 km². Given that it is primarily dependent on forest, this implies that the total population size for the species is probably less than 100 pairs (Prawiradilaga et al. in prep).

The population density estimate is based only on one territory size. Therefore more studies should be carried out to obtain larger sample size, and thereby more convincing results. But, we are convinced that the population will still qualify at least as Endangered on the Red List under criterion C2a(i) (total population <2,500 individuals and all subpopulations <250 individuals). BirdLife International (2005) has now listed it as Endangered.

Nisaetus kelaarti (Paper V)

The Legge’s Hawk-eagle is associated with primary evergreen forests. The current network of forest reserves in the Western Ghats may be inadequate, as it includes a low proportion of the most evergreen forest. Even smaller suitable forest areas remain in Sri Lanka. Based on the population density estimate of one pair per 2,110 ha (Thiollay 1993) and a remaining rainforest area of about 20,000 km² (Collins et al. 1991), we obtained a rough population estimate of about 1,000 pairs of *Nisaetus kelaarti* for the Western Ghats. We have used the population density estimate of Thiollay (1993) in lack of own estimates. I am uncertain about the methods used to get this estimate, but the estimate is quite similar to a estimate of one pair per 2,500-2,800 ha for *Nisaetus nipalensis orientalis* in Japan (Yamazaki 2000).

In Sri Lanka, there is very little habitat left for the species. The remaining area of rainforests (lowland and montane) was estimated to be 2135 km² in 1995 (Legg & Jewell 1995), although this has certainly declined since then. The three remaining larger forests (Peak Wilderness, Knuckles Hills and Sinharaja) cover 515 km². Most of the remaining forest patches are less than 10 km². Although the species is known to occur and breed in fragments even this small (D. Warakagoda in litt. 2006), they normally prefer larger forest patches. Given these data, Sri Lanka probably supports about one hundred pairs. Thus the total population of the species is likely to less than 2,500 breeding individuals, with about 10% of these on Sri Lanka.

The taxon has not previously been included on the IUCN Red List as this lists species only (e.g. BirdLife International 2001). As a distinct species, we suggest it would qualify as Near Threatened, because although it falls under the threshold of 2,500 individuals for the category Endangered, it does not have more than 95% of the mature individuals in one subpopulation as required under criterion C2a(ii). For the category Vulnerable it is required that all mature individuals are in one subpopulation. Using the C1 criterion it should qualify as Vulnerable if
the population decline has been more than 10% within three generations (since 1981), which is probable based of habitat loss during this period. The dense forest was reduced by 19.5% in southern part of Western Ghats in the period 1973-1995 with an annual rate of 0.8% (Jha et al. 2000). If we assume the same rate for the period 1981-2005 (3 generations), it gives 19.2% forest reduction for the period. But the IUCN guidelines (IUCN 2005) requires that the population decline using the C1 criterion has been estimated based on real population data, not “suspected” based on rates of forest loss. I find this unreasonable. If population estimates based on available habitats are acceptable for the C1 criterion, why should not estimates of population decrease by the same method be acceptable? In many cases this is the only possibility to make an estimate. On the national Red List for Sri Lanka it would qualify at the Endangered level under criteria C2a(i), C2a(ii), and D1 (<250 mature individuals).

Nisaetus bartelsi (Paper VI)

The mean home-range size of the Javan Hawk-eagle on Java was estimated to be ca. 400 ha based on three different methods. The distance between nests of neighboring pairs was ca. 3 km in Gede-Pangrango and 2 km in the Salak Mountains. In the Halimun Mountains, the mean distance between territories was 1.8 km. Radiotracking of one adult male indicated a home-range size of 300 ha in the nonbreeding season. This finding suggested that earlier population estimates probably were too low, as they were based on home-range estimates of 2,000-5,000 ha per pair depending on habitat quality.

Our estimates of home-range sizes of 230-710 ha, suggesting a median value of ca. 400 ha are considerably lower than those given by other authors (Meyburg et al. 1989, Sözer & Nijman 1995, Thiollay & Meyburg 1988), which ranged from 1,200-12,000 ha. Relatively small home-ranges of ca. 650 ha have been documented in the Crowned Hawk-eagle *Stephanoaetus coronatus* (Shulz 2002). Our results from a single radio-tracked male probably represent the home-range size of a pair. We suggest that the male typically uses the combined home-ranges of the male and the female exploited during the breeding season. We repeatedly saw territorial interactions between neighboring pairs, suggesting that adjacent home-ranges were defended.

Van Balen et al. (2000) estimated the size of available Javan Hawk-eagle habitat on all Java at ca. 5,480 km² in 22 forest areas. Based on this finding and a density estimate of one pair per 2,000-5,000 ha, they estimated the total population of Javan Hawk-eagles to be between 137 and 200 pairs (van Balen 1999, Nijman et al. 2000). Our data indicated that this estimate probably was too conservative. Extrapolation of our Gede-Pangrango densities to the entire forest habitat would place the population size between 270-600 (median 435) pairs. However, we must admit that the accuracy of our home-range estimates are limited and our island-wide population estimate is based on a number of assumptions. Therefore, we recommend more studies to be carried out in different forest habitats in other parts of Java. Nevertheless, the species should still be regarded as Endangered under criterion C2a(i) (IUCN 2004) or C2a(ii) if we regard Java as one subpopulation; it is threatened by both habitat loss and illegal hunting. Because of this, we urge implementation of the Species Recovery Plan (Sözer et al. 1998) proposed by the Javan Hawk-eagle Working Group to ensure the future conservation of this species.
GENERAL DISCUSSION

SPECIES DELIMITATION

To delimitate species according to the guidelines of Helbig et al. (2002), we have to decide what distributional relationships there are between the taxa.

Sympatry. Taxa occurring in the same geographical area remain distinct if there is little or no gene flow between them. The taxa are reproductively isolated, either pre-zygotic (assortative mating) or post-zygotic (low hybrid fitness). *Nisaetus nipalensis* and *N. cirrhatus* can serve as an example of two sympatric eagle species occurring in the same area without hybridization.

Parapatry. Taxa that are strictly parapatric are distributed so close to each other that it infers visual and vocal contact, and thus the opportunity for physical contact between individuals of the two taxa (Amadon & Short 1992). Parapatric taxa are probably always in secondary contact after having diverged in allopatry, but have not evolved sufficient ecological differences to be able to co-occur sympatrically (Helbig et al. 2002). If they do not hybridize, they should be ranked as species, because it appears unlikely that such a situation can be maintained without reproductive isolation.

The taxa *Nisaetus (cirrhatus) limnaeetus* and *N. floris* are distributed on each side of the strait between Bali and Lombok. The longest distance of open sea between these islands is 24 km via Nusa Penida, but was even shorter (perhaps not more than 1 km) during the Pleistocene glacial sea-level depressions. Such distribution is normally regarded as allopatric, but we have argued that it better should be regarded as parapatric as this distance of open sea is no effective geographic barrier between these eagles. We regard these two eagles as different species (Paper II).

Hybrid zones. A hybrid zone is an area where the local populations contain one or both pure phenotypes plus first-generation and back-cross hybrids. There is a spectrum of natural variation in types of hybrid zones, from complete free interbreeding with no obvious fitness reduction, to occasional interbreeding with fitness reduction. Hybrid zones are therefore rather awkward for the taxonomist, because it is largely an arbitrary decision whether to call the hybridizing taxa subspecies or species (Newton 2003). Helbig et al. (2002) consider that such cases always indicate a substantial restriction of gene flow. They term diagnosable taxa with such distribution semispecies. This distinguishes it from a clinal transition zone, in which local populations are intermediate between populations on either side of the zone, but are phenotypically uniform. In these situations the taxa are regarded as subspecies. Isler et al. (1999) treat taxa meeting at a narrow, stable cline differently. They consider such taxa as conspecific.

Delimitation of the two *Nisaetus* taxa *cirrhatus* and *limnaeetus* in India can serve as an example of how difficult such taxonomical decisions can be (Paper III and Paper IV). Occurrence of birds with intermediate crest lengths together with normal *limnaeetus* without a crest should indicate a hybrid zone. The taxa should then be termed semispecies after the guidelines of Helbig et al. (2002), which regard all hybrid zones as indications of restricted gene flow.
An alternative hypothesis is that the restricted gene flow between *limnaeetus* and *cirrhatus* is a result of the geographic separation between them. In that case, we should perhaps regard their distribution as allopatric, and the two taxa should be termed allospecies if they have at least one character fully diagnostic and the level of divergence is equivalent to that of the most closely related sympatric species (Helbig *et al.* 2002). I am not convinced that these two taxa diverge enough to be regarded as different species.

Diagnosability is however, a purely practical undertaking of the taxonomist as it does not matter whether or not characters used in diagnosis are relevant to the birds themselves, for instance in mate recognition. The fact that there are differences between taxa indicates that there has been a period during which genetic differences have accumulated, but not necessarily that they are reproductively isolated. To regard two taxa as different species, I think there should be differences in characters that could be part of reproductive isolation mechanisms. This could be related to mate recognition (plumage, courtship behaviour and vocalization) or selection against hybrids with intermediate structure characters relating to foraging strategy (bills and feet). If there are no such indications, I think the taxa are better regarded as conspecific. Collar (2004) also argued that consistency in discrimination of taxonomic rank requires significance of the diagnostic characters. Hybrid sterility could also be a possible post-zygotic isolation mechanism, but do not occur between closely related taxa that have been separated less than 1 million years (Price & Bouvier 2002). Ecological isolation is not probable either, as the two taxa are very similar in structure.

One should expect to find all kind of gradation between pure parapatric and hybrid zones situations with populations in physical contact to pure allopatric situations with geographical barriers preventing gene flow.

Allopatry. To delimitate taxa that are geographically separated must be based on a hypothesis as reproductive isolation cannot be observed. To be regarded as separate species, the guidelines of Helbig *et al.* (2002) require that the taxa should be fully diagnosable in each of several characters related to different functional contexts, and the sum of the character differences should correspond to or exceed the levels of divergence seen in related species that coexist in sympaty. This last requirement is sometime difficult to meet if there are no close related sympatric species. This is the situation for the *Nisaetus* hawk-eagles. All close related taxa are either parapatric or allopatric. One of the few examples from other eagle genera is the partly sympatric distribution of the very similar Lesser Spotted Eagle *Aquila pomarina* and the Greater Spotted Eagle *A. clanga*. They could perhaps illustrate how similar two sympatric eagle species can be. There is at least some reproductive isolation between these two taxa (Helbig *et al.* 2005b).

To require that the differences in characters between allopatric species should be as large or exceed the level of divergence seen in related species that coexist in sympaty is perhaps unrealistic, as the differences normally increase in sympaty due to reinforcement. *Nisaetus nipalensis* and *N. kelaarti* can serve as an example of two allopatric species which meet the requirements of the guidelines (Paper V). With at least one character diagnostic and the level of divergence equivalent to that of the most closely related sympatric species, the taxa will be termed allospecies (Helbig *et al.* 2002). As discussed above, I do not think this is enough. There should be differences in characters that could be part of reproductive isolation mechanisms. All closely related allopatric species could be termed allospecies and be part of a superspecies regardless of the number of diagnostic characters as long as it is reasonable to believe that they are reproductively isolated. Delimitation of allopatric species will be
subjective regardless of use of guidelines. It will always remain a matter of opinion, much under the influence of recent precedent and current practice (Collar 2004). The most important reason for this is that the evolution and speciation are continuous biological processes, so there will inevitably be some borderline cases.

USE OF MOLECULAR ANALYSIS IN TAXONOMY

The use of molecular methods has revitalised taxonomic research, although they have not removed subjectivity from decision making, as it is still a matter of judgement how different two populations have to be before they are considered as species rather than as subspecies (Newton 2003). There will never be a fixed degree of genetic divergence which defines a speciation event (Knox 1994). DNA divergence merely provides a crude numerical measure of the length of time since cross-breeding between two separate populations became very uncommon. This may not happen at the same time as the speciation event (Avise & Ball 1991). Speciation in birds can occur in a very short period of time, involving very little genetic divergence (Collinson 2001).

The most important contribution of molecular analyses has been in constructing phylogenies. Earlier attempts based on morphological criteria have had problems with convergence. Although convergence can occur with use of DNA also, as the same mutation may occur independently in distantly related species giving a false impression of a close relationship (Maclean et al. 2005), this is probably negligible, as it is improbable that many such mutations should happen by chance.

Phylogenies can contribute to taxonomic decisions when they show that two taxa, thought to be conspecific, are not each other’s closest relatives. An example of such situation is the Tawny Eagle Aquila rapax and the Steppe Eagle A. nipalensis. The phylogenetic analyses of Wink (1998), Helbig et al. (2005) and Lerner & Mindell (2005) show that A. rapax are more related to the Imperial Eagle A. heliaca than to A. nipalensis. This confirm the split that was made on the basis of morphological characters (Sibley & Monroe 1990, Clark 1992). Another example is the two subspecies of the Little Eagle Hieraaetus m. morphnoides and H. m. weiskei. The phylogenies of Bunce et al. (2005) and Lerner & Mindell (2005) show that H. m. weiskei is more related to H. pennatus than to H. m. morphnoides. A split between these taxa has earlier been suggested by Parry (2001) based on morphological differences, and is included as a distinct species in Appendix B.

Paraphyly in gene trees do not, however, always indicate that the paraphyletic taxa are different species. DNA should not be used on its own to define a species, since different genes may give different results in a phylogenetic analysis (Avise & Wollenberg 1997, Zink & McKitrick 1995). Our gene tree in Fig. 2 and Fig. 4 (from Paper I), where Nisaetus cirrhatus appears to be paraphyletic can serve as an example. It may be a result of incomplete lineage sorting between young taxa, or it may be a result of the shortness of our sequences, as there are discrepancies between the cytochrome b and the CR trees. This illustrates that it is important to use as many characters as possible, including morphology and vocalization, when taxonomic status is evaluated. But there are also examples of real paraphyletic taxa, where the most genetically similar taxa are not their closest relatives (Funk & Omland 2003). To be regarded as a paraphyletic taxa, there should be no indication of reproductive isolation between populations.
Sometimes, discovery of considerable genetic distance between supposed con-specific taxa can initiate taxonomic research resulting in splitting of such taxa, as, e.g., our work on *N. nipalensis* and *N. kelaarti* (Paper V, Haring *et al.* submitted).

Another use of molecular analysis in taxonomic research is to compare mitochondrial and nuclear gene flow. Much higher nuclear than mitochondrial gene flow can indicate female hybrid sterility (Helbig *et al.* 2001, 2005).

Avian taxonomists have up to now primarily used a single locus (normally mtDNA cytochrome *b*) in analysis of avian phylogeny and divergence. Nuclear genes should also be used in questions of avian taxonomy, even if the interpretation of nuclear histories and the contrast with mtDNA histories will be challenging (Edwards *et al.* 2005).

USE OF VOCALIZATIONS IN TAXONOMY

As avian species typically retain hybrid viability and fertility for millions of years after speciation, reflecting a general lack of intrinsic isolation mechanisms among closely related species (Price & Bouvier 2002), reproductive isolation in birds will often depend on prezygotic (pre-mating) mechanisms. Thus, divergence in characters involved in mate choice, such as song, plumage, and behavioural displays, likely play a central role in avian speciation (Edwards *et al.* 2005).

Allopatric divergence of songs among suboscines and other birds in which differences in songs are genetically determined may evolve more slowly than in birds that learn their songs, but should also contribute to reproductive isolation. There is a current trend to recognise allopatric taxa with distinctive songs as species rather than subspecies (Sibley & Monroe 1990, Parker 1991, Price 1996, Peterson 1998, Alström & Ranft 2003, Rasmussen & Anderton 2005).

How different must vocalizations be to represent a barrier to gene flow? Isler *et al.* (1998) investigated this question in syntopic antbirds (Thamnophilidae), and found that different species were diagnosable in at least three characters of their song. They later used this criterion to delimitate allopatric taxa (Isler *et al.* 1999). Although this is a very important work, I am a little sceptical of using their criteria uncritically on other groups of birds with genetically determined and so-called “stereotyped” vocalizations. Diagnostic vocal characters can be used equally together with morphological and plumage characters in the evaluation of taxonomical status. But all subtle vocal differences should not uncritically be regarded as an indication of reproductive isolation. Use of play-back experiments can sometimes give a good indication of reproductive isolation, when birds respond to songs from their own taxon, but not to songs from another taxon. Although the lure of experimental playback trials is strong, assessment and interpretation of responses to playback are often problematic (Payne 1986, Kroodsma 1986, 1990).

It has been supposed that songs and calls in most non-passerines and suboscine passerines are stereotyped and innate, and are expected to show little or no vocal variation across their entire distributions (Rasmussen & Anderton 2005). There are, however, several examples of geographic variation in vocalizations in non-passerines, e.g. in the Pied Goshawk *Accipiter albogularis* and the Collared Kingfisher *Halcyon chloris* on different islands in Melanesia (Diamond 2002). Other examples of both learning of songs and geographic variation are
given by Baptista & Kroodsma (2001). Our study (Paper IV) showed that there is large intra-individual variation in the vocalization of *Nisaetus cirrhatus*, a variation depending on the motivation of the birds. This is far from stereotyped. When comparing the vocalizations from different taxa, it is important to compare homologous sounds which include the same levels of motivations.

There is still a need to refine and standardize the methodology for employing vocalization recordings as a taxonomist’s tool. Vocalization data alone should never be used in making taxonomic decisions. But together with morphological, DNA, and behavioural data, they are important in taxonomic work.

TAXONOMY AND CONSERVATION

A change of taxonomic status from subspecies to species will have great importance for their conservation status, because subspecies are not currently included in IUCN’s red lists. It is not advisable to propose species status for a taxon just for conservation reasons. All such decisions should be made as far as possible according to the same basic criteria (Collar 1997). However, there are some cases where taxonomic decisions are very uncertain and arbitrary. Evolution and speciation are continuous processes that give rise to some borderline cases. Mayr & Aslock (1991) recommended that allopatric taxa of doubtful rank should be treated as subspecies. They argued that it is just as serious an error to call a population a species, when it is really only a subspecies, as it is to do the opposite. In my opinion, it is a bigger mistake to call a population a subspecies when it is a species, than to do the opposite. If such taxa, as e.g., many islands endemics, are threatened with extinction, it would be better to follow the “precautionary principal” and treat them as allospecies. They should be given a lower rank only after convincing argumentation is given. In this way the burden of proof is reversed. It should lay on the shoulders of those who would reject these taxa. An alternative is to include threatened subspecies in the global red lists.

CONSERVATION STATUS

Our population size estimates are based on some assumptions:

1) That the population density estimate is representative for the whole distribution area. This is probably not reasonable as the quality of habitats may be variable.

2) That the species is evenly spaced over its distribution area. This may not be the situation.

If we use a maximum density estimate and the species is not evenly spaced over its distribution area, it gives a too large population estimate. On the other hand, if we use a minimum density estimate with the same spacing, it gives a too low population estimate. The solution is to get better density estimates from as many different areas as possible, and to get a measure of how evenly distributed the species is. This has not been possible in this study, and our estimates must be regarded as rough. However, our first rough estimates may call attention to possible low and threatened populations, and may initiate more thorough studies.
CONCLUSION AND FUTURE PERSPECTIVES

This thesis has, it is hoped, contributed to clarifying the taxonomic status of some of the many eagle taxa in South East Asia. The delimitation of *Nisaetus floris*, *N. pinskeri* and *N. kelaarti* as distinct species have great importance for their conservation attention. As they earlier were regarded as subspecies of rather common species, they were not included in IUCN’s Red List. The change in taxonomic status will place *N. floris* and *N. pinskeri* as Endangered in the Red List together with *N. bartelsi* and *N. nanus*. *N. kelaarti* will probably be listed as Near Threatened.

A change in the strategy of conservation management is required. The priority of species as the most important evolutionary significant unit (Ryder 1986, Moritz 1994) should not influence taxonomists with respect to their decisions in classification, except when the decisions are very uncertain and arbitrary. In these cases, I have argued for following the “precautionary principal” and to treat them as allospecies. It should not matter whether a particular bird is a species or a subspecies, all biological diversity merits conservation. (Collar 1997, Collinson 1999, Knox 1994). If some of the various taxa under consideration become extinct, academic discussions about the taxonomic status of its populations will no longer be relevant.

There is still much to be done, both on taxonomy and conservation in South-East Asia. The *Nisaetus nipalensis* complex should be investigated in more detail. The taxonomic status of the populations in Japan, south-eastern Russia and Taiwan are still uncertain. The last two populations may be distinct undescribed subspecies. The *Nisaetus cirrhatus* complex should also be investigated in more detail. Their conservation status is little known. It should be possible to get population estimates for these and other little known taxa by using similar methods as described here.

The next step after identifying threatened taxa, is to develop species action plans. An example of such plans is the species recovery plan for the Javan Hawk-eagle (Sözer *et al.* 1998), which was initiated as part of our work in Indonesia (Røv & Gjershaug 2000). The underlying intention of the project on the Javan Hawk-eagle was to focus on rainforest eagles as flagship species in the conservation of the remaining rainforests and their unique biodiversity in Indonesia. The Javan Hawk-eagle is particularly suitable as a flagship species, as it is the national bird of Indonesia, and is similar to the national symbol, Garuda, and therefore draws the attention of the public. Besides forest conservation, the other main topic was to reduce illegal bird trading. Another important output of the project was a greater awareness regarding conservation issues among local people living close to the forests and among NGOs participating in the project. Similar projects could be initiated in other parts of Asia. Involving local people who use the forest resources is a prerequisite for saving the forests and their biodiversity for the future.
LITERATURE

Sibley, C. G. & Monroe, B. L. 1990. *Distribution and taxonomy of birds of the world*. Yale University

Appendix A

List of all current species of booted eagles (tribe Aquilini. Nomenclature follows Ferguson-Lees & Christie (2005))

Genus *Ictinaetus* Blyth, 1843
Indian Black Eagle
Ictinaetus malayensis (Temminck, 1822)

Genus *Aquila* Brisson, 1760 (*Aquila chrysaetos*)
Lesser Spotted Eagle
Gymnogyps falcifera C. L. Brehm, 1831
Indian Spotted Eagle
Aquila pomarina C. L. Brehm, 1831
Greater Spotted Eagle
Aquila clanga Pallas, 1811
Tawny Eagle
Aquila rapax (Temminck, 1828)
Indian Tawny Eagle
Aquila vindhiana Franklin, 1831
Steppe Eagle
Aquila nipalensis Hodgson, 1833
Imperial Eagle
Aquila heliaca Savigny, 1809
Spanish Imperial Eagle
Aquila adalberti C. L. Brehm, 1861
Gurney’s Eagle
Aquila gurneyi G.R. Gray, 1860
Golden Eagle
Aquila chrysaetos (Linnaeus, 1758)
Wedge-tailed Eagle
Aquila audax (Latham, 1801)
Verreaux’s Eagle
Aquila verreauxii Lesson, 1830

Genus *Hieraaetus* Kaup, 1844 (*Hieraaetus pennatus*)
Wahlberg’s Eagle
Hieraaetus wahlbergi (Sundevall, 1851)
Bonelli’s Eagle
Hieraaetus fasciatus (Vieillot, 1822)
African Hawk Eagle
Hieraaetus spilogaster (Bonaparte, 1850)
Booted Eagle
Hieraaetus pennatus (Gmelin, 1788)
Little Eagle
Hieraaetus morphnoides (Gould, 1841)
Ayres’s Hawk Eagle
Hieraaetus ayresii (Gurney, 1862)
Rufous-bellied Hawk Eagle
Hieraaetus kienerii (Geoffroy Saint-Hilaire, 1835)

Genus *Polemaetus* Heine, 1890
Martial Eagle
Polemaetus bellicosus (Daudin, 1800)

Genus *Spizastur* G.R. Gray, 1841
Black-and-white Hawk Eagle
Spizastur melanoleucus (Vieillot, 1816)

Genus *Lophaetus* Kaup, 1847
Long-crested Eagle
Lophaetus occipitalis (Daudin, 1800)

Genus *Spizaetus* Viellot, 1816 (*Spizaetus ornatus*)
Cassin’s Hawk Eagle
Spizaetus africanus (Cassin, 1865)
Indian Crested Hawk Eagle
Spizaetus cirrhatus (Gmelin, 1788)
Dimorphic Hawk Eagle
Spizaetus limnaeetus Horsfield, 1821
Andaman Hawk Eagle
Spizaetus andamanensis Tytler, 1865
Simeulué Hawk Eagle
Spizaetus vanheurni Junge, 1936
Flores Hawk Eagle
Spizaetus floris Hartert, 1898
Mountain Hawk Eagle
Spizaetus nipalensis (Hodgson, 1836)
Blyth’s Hawk Eagle
Spizaetus alboniger (Blyth, 1845)
Javan Hawk Eagle
Spizaetus bartelsi Stresemann, 1924
<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulawesi Hawk Eagle</td>
<td>Spizaetus lanceolatus</td>
<td>Temminck & Schlegel, 1844</td>
</tr>
<tr>
<td>Philippine Hawk Eagle</td>
<td>Spizaetus philippensis</td>
<td>Gould, 1863</td>
</tr>
<tr>
<td>Wallace’s Hawk Eagle</td>
<td>Spizaetus nanus</td>
<td>Wallace, 1868</td>
</tr>
<tr>
<td>Black Hawk Eagle</td>
<td>Spizaetus tyrannus</td>
<td>Wied, 1820</td>
</tr>
<tr>
<td>Ornate Hawk Eagle</td>
<td>Spizaetus ornatus</td>
<td>Daudin, 1800</td>
</tr>
<tr>
<td>Genus Stephanoaetus</td>
<td>W.L. Sclater, 1922</td>
<td></td>
</tr>
<tr>
<td>Crowned Hawk Eagle</td>
<td>Stephanoaetus coronatus</td>
<td>Linnaeus, 1766</td>
</tr>
<tr>
<td>Genus Oroaetus</td>
<td>Ridgway, 1920</td>
<td></td>
</tr>
<tr>
<td>Isidor’s Eagle</td>
<td>Oroaetus isidori</td>
<td>Des Murs, 1845</td>
</tr>
</tbody>
</table>
Appendix B

Genus *Aquila* Brisson, 1760 (*Aquila chrysaetos*)
Aquila rapax (Temminck, 1828)
Aquila nipalensis Hodgson, 1833
Aquila heliaca Savigny, 1809
Aquila adalberti C.L. Brehm, 1861
Aquila gurneyi G.R. Gray, 1860
Aquila audax (Latham, 1801)
Aquila chrysaetos (Linnaeus, 1758)
Aquila verrauxii Lesson, 1830
Aquila fasciata Vieillot, 1822
Aquila spilogaster Bonaparte, 1850
Aquila pennata Gmelin, 1788
Aquila morphnoides Gould, 1841
Aquila weiskei (Reichenow, 1900)
Aquila wahlbergi Sundevall, 1851
Aquila africana (Cassin, 1865)
Aquila ayresii Gurney, 1862

Genus *Lophaetus* Kaup, 1847
Lophaetus occipitalis (Daudin, 1800)
Lophaetus malayensis (Temminck, 1822)
Lophaetus pomarinus (C.L. Brehm, 1831)
Lophaetus hastatus (Lesson, 1834)
Lophaetus clangus (Pallas, 1811)

Genus *Polemaetus* Heine, 1890
Polemaetus bellicosus (Daudin, 1800)

Genus *Kienastur* gen. nov. Haring et al. submitted
Kienastur kienerii (Geoffroy Saint-Hilaire, 1835)

Genus *Stephanoaetus* W.L. Sclater, 1922
Stephanoaetus coronatus (Linnaeus, 1766)

Genus *Spizaetus* Viellot, 1816 (*Spizaetus ornatus*)
Spizaetus tyrannus (Wied, 1820)
Spizaetus ornatus (Daudin, 1800)
Spizaetus melanoleucus (Vieillot, 1816)
Spizaetus isidori (Des Murs, 1845)

Genus *Nisaetus* Hodgson, 1836
Nisaetus cirrhatus (Gmelin, 1788)
Nisaetus floris (Hartert, 1898)
Nisaetus lanceolatus (Temminck & Schlegel, 1844)
Nisaetus philippensis (Gould, 1863)
Nisaetus pinskeri (Preleuthner & Gamauf, 1998)
Nisaetus nanus (Wallace, 1868)
Nisaetus bartelsi (Stresemann, 1924)
Nisaetus alboniger Blyth, 1845
Nisaetus nipalensis Hodgson, 1836
Nisaetus kelaarti (Legge, 1878)
Paper I
Species or subspecies? The dilemma of taxonomic ranking of some South-East Asian hawk-eagles (genus *Spizaetus*)

ANITA GAMAUF, JAN-OVE GJERSHAUG, NILS RØV, KIRSTI KVALØY and ELISABETH HARING

Summary

A molecular phylogeny of the *Spizaetus cirrhatus* complex is presented in this study, based on two sections of the mitochondrial genome: partial sequences of the *cytochrome b* gene and of the control region (CR). The topologies derived from the two sequences are in agreement. Within *S. cirrhatus* distances are rather low (0–1.5% in *cytochrome b*). Among the *cirrhatus* subspecies the island taxa *floris, vanheurni* and *andamanensis* form distinct haplogroups in the CR trees, conforming to the earlier subspecific divisions which were based on morphological characters. On the other hand, the most widespread subspecies, *linnaeetus*, does not represent a monophyletic group in the gene trees and its haplogroups do not cluster according to geographic affinities. An unambiguous resolution of relationships among haplotypes and haplogroups, respectively, was not achieved, suggesting a more recent radiation of this group of hawk-eagles in the course of the last ice ages. Concerning the outgroup taxa *Spizaetus philippensis* and *Spizaetus lanceolatus*, our data indicate a clear genetic distinction between the two subspecies *S. p. philippensis* and *S. p. pinskeri*, suggesting that they should be treated as distinct species. Yet the phylogenetic relationships of the three outgroup taxa with respect to *S. cirrhatus* are ambiguous in our trees. The taxonomic consequences of applying different species concepts (BSC, PSC) are discussed. The species concept chosen would result in different conservation strategies.

Introduction

With the advent of molecular methods in avian systematics (Sibley and Ahlquist 1990, Sibley and Monroe 1990), new interest in bird taxonomy arose in many regions of the world, and in recent years bird phylogeny has been revolutionized by a plethora of DNA sequence data. Moreover, the phylogenetic species concept (Cracraft 1983, Zink and McKittrick 1995), the general lineage concept (Helbig et al. 2002), and current trends in the application of the biological species concept (Haffer 1994), are now beginning to influence ornithologists' attitudes towards taxonomy of birds. Many bird taxa formerly treated as subspecies are now being considered full species by many authorities. The aim of national and international legislation, encouraged by conservation organizations, is to prevent the extinction of bird species as well as to reduce the number of globally threatened species by conserving crucial sites and habitats for birds and other fauna and flora (Stattersfield et al. 1998). Nevertheless, there are many cases where the level of conservation concern depends heavily on taxonomic decisions (Collar 1997, Frankham et al. 2002, Newton 2003). For example,
subspecies are included only exceptionally in conservation efforts, mostly regional or local in scale. Thus, even if population numbers are small and the areas restricted, there is no legislative basis for the protection of subspecies (even if these are arguably specifically distinct).

To escape from this “self-made dilemma”, some ornithologists prefer to consider distinctive taxa as species. In particular, taxa restricted to islands have been raised from subspecies to species level to intensify conservation efforts (e.g. Daugherty et al. 1999, Boon et al. 2000). Time pressure for conservation measures and limited scientific material have sometimes been responsible for such decisions, which were often made without extensive morphological investigations or DNA-based studies (Stattersfield et al. 1998, BirdLife International 2000, Gaston 2001). Recent examples among birds of prey are Cape Verde Kite Milvus fasciicuda, Juan Fernandez Hawk Buteo excal and Altai Falcon Falco altaicus (Ferguson-Lees and Christie 2001). On the other hand, there is a general problem with species concepts and their applicability to taxa which are in the dynamic process of speciation. The application of the Biological Species Concept (BSC: Mayr 1963) or the Phylogenetic Species Concept (PSC: Cracraft 1983) would result in a considerably different number of species.

In the present work we examine these problems in a genetic investigation of the phylogenetic relationships among South-East Asian hawk-eagles of the Changeable Hawk-eagle Spizaetus cirrhatus complex and the closely related taxa Spizaetus philippensis (Philippine Hawk-eagle) and Spizaetus lanceolatus (Sulawesi Hawk-eagle). This group of taxa are small to medium-sized eagles, largely sedentary, with a weight up to 1.8 kg. Changeable Hawk-eagle is the most widespread of the seven Spizaetus hawk-eagle species in South-East Asia, with a geographical distribution from India to the Lesser Sundas, and the Philippines. It inhabits savannah woodland, cultivation with trees, secondary and open primary forests from sea level up to 2,200 m a.s.l. (Thiollay in del Hoyo et al. 1994, Ferguson-Lees and Christie 2001). Of several described subspecies, six are currently recognized (Figure 1): S. c. cirrhatus in the Indian subcontinent, S. c. ceylanensis in Sri Lanka, S. c. limnaeetus from the Himalayan foothills through Indomalaya into the Greater Sundas and the Philippines, S. c. andamanensis on the Andaman Islands, S. c. vanheurni on Simeulue Island north-west of Sumatra and S. c. floris on Sumbawa and Flores (Brown and Amadon 1968, Thiollay in del Hoyo et al. 1994, Ferguson-Lees and Christie 2001). Since some of these subspecies are endemic to small oceanic islands it is very likely that they are severely threatened by habitat destruction, especially given the large areas required by large raptors. The other two species (S. philippensis, S. lanceolatus) are restricted to small islands, the Philippines and Sulawesi, respectively. They prefer primary and secondary forests from sea level to mountainous regions (Dickinson et al. 1991, Nurwatha et al. 2000, Thiollay and Rahman 2002).

S. cirrhatus differs from all the South-East Asian Spizaetus species by the feathering of the tarsi which terminates abruptly at the bases of the toes (Amadon 1953). Since its distribution range overlaps with all Asian Spizaetus representatives (after Amadon 1982), its classification as an independent species has been generally accepted, whereas all the other South-East Asian taxa (including S. philippensis and S. lanceolatus) were lumped together in a superspecies (Thiollay in del Hoyo et al. 1994). The various subspecies of S. cirrhatus are well differentiated in size and shape, and to a lesser degree in plumage. However, no published data are available about
differentiation in vocalizations, behaviour or ecology. The largest and heaviest subspecies occur on the mainland (cirrhatus, limnaetus) and on Sumbawa and Flores (floris), whereas populations of the smallest, with approximately less than half the weight (vanheurni), are found on the smallest island. The westernmost subspecies cirrhatus and ceylanensis are long-crested, andamanensis (P. Rasmussen pers. comm.) and the other subspecies are more or less un-crested. In most subspecies the ventral plumage is white with longitudinal streaks and more or less intensively barred thighs. Exceptions are the polymorphic limnaetus with colours ranging from pale to melanistic, and floris which is almost white with a faint pattern. Because of some special features (e.g. lack of a crest, presence of a melanistic morph, vocalization) limnaetus is occasionally considered to be a separate species (Amadon 1953, 1982, Stremann and Amadon 1979, Rasmussen and Anderton 2004). The differences in plumage pattern and morphological characters are much more pronounced between the subspecies of S. philippensis (philippensis, pinskeri) than among the subspecies of S. cirrhatus (Preleuthner and Gamauf 1998, Gamauf et al. 1998a).

In this paper we address the following questions:
(1) Do the morphologically well differentiated S. cirrhatus and S. philippensis subspecies also differ genetically?
(2) Is limnaetus a distinct species?
(3) How can the taxonomic status of the taxa investigated be interpreted using different species concepts?
(4) What would be the consequences of our data with respect to conservation?
Material and methods

Samples

Twenty-seven samples of *S. cirratus* with known geographical origin representing its six subspecies were examined. As outgroup taxa we used *S. philippensis* (six specimens representing two taxa) and *S. lanceolatus* (two specimens). Of the other *Spizaetus* species, these two species seem to be most closely related to *S. cirratus*, as will be described elsewhere (Haring et al. in prep.). Since it was not possible to obtain fresh tissue from most of the relevant taxa included in this study, we had to rely mainly on museum material (feathers or skin from the foot pads of study skins). Sample codes, source, collecting localities, museum inventory numbers, and GenBank accession numbers are listed in Table 1. In the case of *S. c. vanheurni* all specimens are paratypes. To assess genetic variability within taxa, up to 10 samples per taxon were analysed (e.g. *S. c. limnaeetus*). Two mitochondrial marker sequences were used which were isolated and analysed separately in two laboratories: (1) a section of the cytochrome *b* gene (*cyt b*), which was analysed at the Laboratory of the Institute for Nature Reserve (NINA, Trondheim); (2) a section of the control region (CR), which was analysed at the Laboratory of Molecular Systematics (NHM, Vienna).

DNA extraction

DNA extractions were performed following two different protocols. In one of the protocols (NHM, Vienna) a 10% Chelex (Biorad) solution containing proteinase K (0.5 mg/ml) was added. After incubation (4 h, 50°C, with agitation) solutions were heated to 95°C for 5 min and centrifuged for 1 min. For purification and to remove short fragments of degraded DNA the supernatant was purified using the QIA Quick PCR Purification Kit (Qiagen) with a final volume of 30–70 μl elution buffer. Using another extraction method (NINA, Trondheim), DNA from museum feathers was isolated according to Taberlet and Bouvet (1991) except that a Microcon YM-50 filter (Amicon) was used instead of a Centricon 30 (Amicon) to desalt and concentrate the sample. If retentate was not obtained, 10 μl of TEm: buffer (1 mM EDTA, 10 mM Tris-HCl, pH 8.0) was added to the Microcon YM-50 filter (Amicon), and left for 10 min before centrifugation was performed again. Control extractions with pure extraction buffer (without tissue) were prepared for the polymerase chain reaction (PCR) experiments.

PCR amplification

At the NHM, PCR was carried out with an Eppendorf Thermocycler, in a volume of 25 μl, containing 1 unit Dynazyme DNA polymerase (Finnzymes OY) 0.5 μM of each primer, and 0.2 mM of each dNTP. Initial denaturation (95°C, 2 min, was followed by 30 reaction cycles: 95°C (10 s), annealing temperature (10 s), 72°C (30 s); final extension at 72°C (5 min). At NINA PCR was performed in a 25 μl reaction mix containing 15 pmol of each primer, 2.0 mM MgCl₂, 0.8 mM of each dNTP, 1 μl 10× PCR buffer II and 1–1.25 U AmpliTaQ Gold polymerase (Applied Biosystems) or HotStar Taq (Qiagen). After denaturation and activation of AmpliTaq Gold (10 min at 95°C) or HotStar Taq (15 min at 95°C), 40 cycles of 30 s at 94°C, 45 s at 50°C and 90 s at 72°C were performed on a 2600 or 2700 thermocycler (Applied Biosystems).
Table 1. Sample list of *Spizaetus* hawk-eagles. *S. philippensis* and *S. pinskeri* are treated as distinct species as suggested in the present study.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Sample code</th>
<th>Tissue</th>
<th>Locality, Year</th>
<th>Source, Voucher</th>
<th>Marker</th>
<th>GenBank Accession nos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. c. cirrhatus</td>
<td>Scircir3</td>
<td>fe</td>
<td>India, Bombay, 1874</td>
<td>BMNH 1887.11.1.342</td>
<td>cyt b, CR</td>
<td>AY701097, AY701067</td>
</tr>
<tr>
<td></td>
<td>Scircir4</td>
<td>pa</td>
<td>India, –</td>
<td>NMW 85.060</td>
<td>CR</td>
<td>AY701068</td>
</tr>
<tr>
<td></td>
<td>Scircir5</td>
<td>fe</td>
<td>India, Seoni, 1869</td>
<td>BMNH 1885.8.19.1424</td>
<td>cyt b, CR</td>
<td>AY701069, AY701069</td>
</tr>
<tr>
<td>S. c. ceylanensis</td>
<td>Scircey1</td>
<td>pa</td>
<td>Sri Lanka</td>
<td>AMNH 534.913</td>
<td>cyt b</td>
<td>AY701099</td>
</tr>
<tr>
<td></td>
<td>Scircey5</td>
<td>fe</td>
<td>Sri Lanka</td>
<td>RMNH 5210</td>
<td>cyt b, CR</td>
<td>AY701100, AY701070</td>
</tr>
<tr>
<td>S. c. andamanensis</td>
<td>Scirandt1</td>
<td>fe</td>
<td>India, Andaman Is., 1874</td>
<td>BMNH 1885.8.19.1466</td>
<td>cyt b, CR</td>
<td>AY701113, AY701079</td>
</tr>
<tr>
<td></td>
<td>Scirand14</td>
<td>fe</td>
<td>India, Andaman Is., 1997</td>
<td>B. Miller</td>
<td>cyt b, CR</td>
<td>AY701112, AY701080</td>
</tr>
<tr>
<td>S. c. limnaeetus</td>
<td>Scirlim1</td>
<td>pa</td>
<td>Indonesia, Java, 1931</td>
<td>NMW 322</td>
<td>cyt b, CR</td>
<td>AY701101, AY701071</td>
</tr>
<tr>
<td></td>
<td>Scirlim2</td>
<td>pa</td>
<td>Indonesia, Borneo,</td>
<td>NMW 46.498</td>
<td>cyt b, CR</td>
<td>AY701103, AY701072</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bongas/Borabor, 1882</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scirlim3</td>
<td>pa</td>
<td>Indonesia, Sumatra,</td>
<td>NMW 71.242</td>
<td>cyt b, CR</td>
<td>AY701102, AY701073</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deli, 1886</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scirlim4</td>
<td>pa</td>
<td>Indonesia, Java, 1884</td>
<td>NMW 71.241</td>
<td>cyt b, CR</td>
<td>AY701104, AY701074</td>
</tr>
<tr>
<td></td>
<td>Scirlim9</td>
<td>fe</td>
<td>Nepal (before 1859)</td>
<td>BMNH 1859.3.4.603</td>
<td>cyt b</td>
<td>AY701105</td>
</tr>
<tr>
<td></td>
<td>Scirlim10</td>
<td>fe</td>
<td>Nepal (before 1859)</td>
<td>BMNH 1859.3.4.602</td>
<td>cyt b, CR</td>
<td>AY701106, AY701075</td>
</tr>
<tr>
<td></td>
<td>Scirlim11</td>
<td>pa</td>
<td>Indonesia, Java, 1924</td>
<td>RMNH 14000</td>
<td>cyt b, CR</td>
<td>AY701107, AY701076</td>
</tr>
<tr>
<td></td>
<td>Scirlim12</td>
<td>pa</td>
<td>Indonesia, Sumatra, 1919</td>
<td>RMNH 15387</td>
<td>cyt b</td>
<td>AY701108</td>
</tr>
<tr>
<td></td>
<td>Scirlim12a</td>
<td>pa</td>
<td>N India, Uttar Pradesh,</td>
<td>AMNH 461.932</td>
<td>cyt b, CR</td>
<td>AY701109, AY701077</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kalnahi, 1947</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scirlim13</td>
<td>fe</td>
<td>Indonesia, Sulawesi, 1935</td>
<td>RMNH 7208</td>
<td>cyt b, CR</td>
<td>AY701110, AY701078</td>
</tr>
<tr>
<td></td>
<td>Scirlim16a</td>
<td>fe</td>
<td>Philippines, Mindanao, 1933</td>
<td>P. v. Nievenhuis</td>
<td>cyt b</td>
<td>AY701111</td>
</tr>
<tr>
<td>S. c. vanheurni</td>
<td>Scirvan1</td>
<td>pa</td>
<td>Indonesia, Simalur Is. (= Simeulue), 1913</td>
<td>RMNH 87.258, paratype</td>
<td>cyt b, CR</td>
<td>AY701114, AY701081</td>
</tr>
<tr>
<td></td>
<td>Scirvan2</td>
<td>pa</td>
<td>Indonesia, Simalur Is., 1913</td>
<td>RMNH 87.259, paratype</td>
<td>cyt b, CR</td>
<td>AY701115, AY701082</td>
</tr>
<tr>
<td></td>
<td>Scirvan3</td>
<td>pa</td>
<td>Indonesia, Simalur Is., 1913</td>
<td>RMNH 87.257, paratype</td>
<td>cyt b, CR</td>
<td>AY701116, AY701083</td>
</tr>
<tr>
<td></td>
<td>Scirvan4</td>
<td>pa</td>
<td>Indonesia, Simalur Is., 1913</td>
<td>RMNH 87.260, paratype</td>
<td>cyt b, CR</td>
<td>AY701117, AY701084</td>
</tr>
<tr>
<td>S. c. floris</td>
<td>Scirfl01</td>
<td>pa</td>
<td>Indonesia, S Flores, –</td>
<td>AMNH 534.895</td>
<td>cyt b, CR</td>
<td>AY701118, AY701085</td>
</tr>
<tr>
<td>Taxon</td>
<td>Sample code</td>
<td>Tissue</td>
<td>Locality, Year</td>
<td>Source, Voucher</td>
<td>Marker</td>
<td>GenBank Accession nos.</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>Scirflo2</td>
<td>fe</td>
<td></td>
<td>Indonesia, Flores, Waeriko, 1976</td>
<td>RMNH 81.112</td>
<td>cyt b, CR</td>
<td>AY701119, AY701086</td>
</tr>
<tr>
<td>Scirflo3</td>
<td>fe</td>
<td></td>
<td>Indonesia, Flores, –</td>
<td>RMNH 66.257 (4)</td>
<td>cyt b, CR</td>
<td>AY701120, AY701087</td>
</tr>
<tr>
<td>Scirflo4</td>
<td>pa</td>
<td></td>
<td>Indonesia, Flores, Sika, 1891</td>
<td>RMNH 16 XIV 1892</td>
<td>cyt b, CR</td>
<td>AY701121, AY701088</td>
</tr>
<tr>
<td>Scirflo6</td>
<td>fe</td>
<td></td>
<td>Indonesia, Flores, 2002</td>
<td>J.-O. Gjershaug, N. Røv</td>
<td>cyt b, CR</td>
<td>AY701122, AY701089</td>
</tr>
<tr>
<td>S. lanceolatus</td>
<td>Slan1</td>
<td>pa</td>
<td>Indonesia, Sulawesi, 1931</td>
<td>ZMB 33.114</td>
<td>cyt b, CR</td>
<td>AY701129, AY701095</td>
</tr>
<tr>
<td></td>
<td>Slan3</td>
<td>fe</td>
<td>Indonesia, Sulawesi, 1887</td>
<td>BMNH 1887.11.1337</td>
<td>cyt b, CR</td>
<td>AY701130, AY701096</td>
</tr>
<tr>
<td>S. philippensis</td>
<td>Sphihi2</td>
<td>pa</td>
<td>Philippines, N Luzon, 1895</td>
<td>BMNH 1897.5.13.311</td>
<td>cyt b, CR</td>
<td>AY701124, AY701090</td>
</tr>
<tr>
<td></td>
<td>Sphihi6a</td>
<td>fe</td>
<td>Philippines, Luzon, Manila, 1985</td>
<td>J. A. James</td>
<td>cyt b, CR</td>
<td>AY701123</td>
</tr>
<tr>
<td>S. pinskeri</td>
<td>Sphiin8</td>
<td>fe</td>
<td>Philippines, Negros, –</td>
<td>NMW, F-399</td>
<td>cyt b, CR</td>
<td>AY701125, AY701091</td>
</tr>
<tr>
<td></td>
<td>Sphiin9</td>
<td>fe</td>
<td>Philippines, S Negros, –</td>
<td>NMW, F-400</td>
<td>cyt b, CR</td>
<td>AY701126, AY701092</td>
</tr>
<tr>
<td></td>
<td>Sphiin10</td>
<td>fe</td>
<td>Philippines, Negros, –</td>
<td>NMW, F-401</td>
<td>cyt b, CR</td>
<td>AY701127, AY701093</td>
</tr>
<tr>
<td></td>
<td>Sphiin11</td>
<td>fe</td>
<td>Philippines, ?Leyte, –</td>
<td>NMW, F-402</td>
<td>cyt b, CR</td>
<td>AY701128, AY701094</td>
</tr>
</tbody>
</table>

Tissue: fe, feathers; pa, skin of foot pad.
Optimal amounts of template DNA extracted from museum material were determined empirically (2–10 μl of the DNA solution) using occasionally dilutions from 1- to 50-fold (from control DNA extracted from blood samples 50 ng DNA template was used). If necessary, re-amplifications were performed with 1–2 μl template. Negative controls for PCR reactions were carried out to screen for contaminated reagents: (1) control extractions (without DNA) instead of template; (2) reaction with A.d. instead of template. Since the major part of the study was based on tissue of museum specimens, the expected maximum length of PCR fragments was < 400 bp.

The two primers that were used both for PCR amplification and direct sequencing of the cyt b gene were called mt-A and mt-I. Primer mt-A (L-14970) (5'-CAA CAT CTC AGC ATG ATG AAA CTT CG-3') was modified by Wink (1998) based on the cyt b sequence by Kocher et al. (1989). Primer mt-I (H-15350) (5'-TGC TGA GAA TAG GTT GGT GAT GAC-3') was isolated and optimized at NINA Trondheim; it was based on cyt b sequences of five Aquila species (Seibold et al. 1996). Of the 381 bp PCR product obtained, 264 bp corresponding to positions 15034 to 15298 of the Gallus gallus f. domesticus mitochondrial genome (Desjardins and Morais 1990) was used for sequence comparisons. For the control region two primer pairs were used: CR5+: 5'-CCC CCC CTT CCC CCC C-3', CR7-: 5'-GAC CGA CTA AGA GAT AAC CTA-3' (annealing temperature: 50°C), and (for specimens where no PCR product could be obtained with the primer pair CR5+/CR7-) two nested primers CR1+: 5'-ATG TAC TAT TGT ACA TTA AAC-3', CR2-: 5'-CAA GTG ATG ACC TGC TAC-3' (annealing temperature: 50°C).

Cloning and sequencing

PCR products were extracted from agarose gels using the QIAquick Gel Extraction Kit (Qiagen) and cloned (TOPO TA Cloning Kit, Invitrogen). At the NHM sequencing of cloned PCR products (both directions) was performed by MWG-Biotech (Ebersberg, Germany). At NINA direct sequencing of PCR products was performed (both strands). Successful amplification and approximate quantification of PCR products were checked by running one-fifth of the PCR samples on a 2% agarose gel. PCR products were purified using Qiagen QIAquick-spin PCR purification kits (Qiagen). Approximate yields of PCR products after purification were quantified by agarose gel electrophoresis. Purified PCR products were sequenced on an Applied Biosystems 310 DNA sequencer (Foster City, CA) with Taq DNA polymerase and Dye Terminators or Big Dye Terminators as instructed by the manufacturer. PCR conditions for sequencing of PCR products were 30 cycles with 30 s at 96°C, 15 s at 50°C and 4 min at 60°C. The sequence extension products were purified by ethanol precipitation according to the manufacturer’s instructions (Applied Biosystems) except that the ethanol was not chilled and the procedure was performed at room temperature. The sequences determined in the course of the present study are registered under the GenBank accession numbers listed in Table 1.

Sequence analysis

Alignments were produced manually. The alignments have lengths of 264 (cyt b) and 237 (CR) sites respectively. The reading frames of all cyt b sequences proved to be intact, suggesting that the sequences are derived from functional mitochondrial genes. Both distance (neighbor-joining algorithm, NJ: Saitou and Nei 1987) and maximum
parsimony (MP) methods were used to infer the phylogenetic relationships. All dendrograms were calculated with the software package PAUP (test version 4b6-10; Swofford 2002). For NJ trees uncorrected distances (p-distances) were used. MP trees were generated with heuristic search using the TBR (tree bisection reconnection) algorithm and a random taxon addition sequence (1,000 replicate). All characters were weighted equally.

Results

Since many samples consisted of only small pieces of tissue from old museum material, it was not possible in some cases to obtain sequences from both markers (Table 1). Thus, both marker sequences were sequenced from 29 samples, from five samples the cyt b fragment only was amplified, and from one sample the CR fragment only was obtained. The 29 samples from which both sequences could be analysed were used for the combined trees as well as for comparisons of distances and nucleotide diversity between markers.

As was expected, sequence variability of the protein-coding cyt b gene was lower than that of the non-coding CR sequence. For example, within the S. cirrhatus complex up to five substitutions (range of p-distances 0.0–1.9%; number of segregating sites: 8) were found among cyt b sequences (264 bp), and up to 17 substitutions (range 0.0–7.5%; number of segregating sites: 37) among the CR sections (237 bp). Nucleotide diversity per site was 4 times higher in the CR than in cyt b (3.4 vs 0.8). Almost no length variation was observed; only the CR sequence of the specimen Scirli3 carried a 2 bp deletion. Between ingroup and outgroup taxa (S. p. philippensis, S. p. pinskeri, S. lanceolatus) the p-distance range was 2.7–6.3% for cyt b and 3.9–10.4% for the CR. Comparing the ranges of p-distances within and between subspecies (Table 2) it becomes apparent that within S. c. limnaeetus the variability is in the same range as that found between subspecies.

Among the 34 cyt b sequences 11 haplotypes can be distinguished, eight of them within S. cirrhatus. As can be seen in the NJ tree calculated from these sequences (Figure 2), two of the island taxa possess their own haplotype (S. c. floris), or belong to the same haplogroup (S. c. vanheurni). Two of the remaining five haplotypes are shared by two taxa each (S. c. limnaeetus + S. c. andamanensis, S. c. cirrhatus + S. c. ceylanensis). The cirrhatus complex can be divided into two groups, one comprising S. c. cirrhatus, S. c. ceylanensis and S. c. floris, and the other comprising the other taxa (S. c. limnaeetus, S. c. vanheurni, S. c. andamanensis). Nevertheless, relationships between these groups as well as between haplogroups are only poorly supported in the bootstrap analyses (NJ and MP). The two shortest trees found in the MP analysis (TL = 29, Cl = 0.828, RI = 0.951, RC = 0.787) have the same topology as the NJ tree (differences between the two MP trees are found only with respect to the outgroup taxa).

Among the 30 CR sequences, 24 haplotypes were found, 21 of which were among the 23 individuals of S. cirrhatus. The NJ tree derived from the CR sequences is depicted in Figure 3. The haplotype distribution resembles that found for cyt b. Again S. c. floris and S. c. vanheurni belong to separate haplogroups. In addition, the haplotypes of S. c. andamanensis form a distinct branch. As with cyt b, S. c. cirrhatus and S. c. ceylanensis form a clade. But, in contrast to the cyt b tree, where these two taxa cluster with S. c.
Table 2. Ranges of pairwise p-distances within and between taxa. *S. philippensis* (Sphi) and *S. pinskeri* (Spin) are treated as distinct species as suggested in the present study.

<table>
<thead>
<tr>
<th></th>
<th>Scircir</th>
<th>Scirecy</th>
<th>Scirflo</th>
<th>Scirlim</th>
<th>Scirrand</th>
<th>Scirvan</th>
<th>Slan</th>
<th>Sphi</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyt b</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.4-1.2</td>
<td>0.8</td>
<td>1.1-1.5</td>
<td>4.3</td>
<td>3.1</td>
<td>4.7</td>
</tr>
<tr>
<td>Scircir</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.4-1.2</td>
<td>0.8</td>
<td>1.1-1.5</td>
<td>4.3</td>
<td>3.1</td>
<td>4.7</td>
</tr>
<tr>
<td>Scirecy</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8-1.9</td>
<td>1.1</td>
<td>1.5-1.9</td>
<td>4.7</td>
<td>3.5</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>Scirflo</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0-1.1</td>
<td>0.0-0.8</td>
<td>0.4-1.5</td>
<td>3.9-5.1</td>
<td>2.7-3.9</td>
<td>5.1-6.3</td>
<td></td>
</tr>
<tr>
<td>Scirlim</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4-0.8</td>
<td>4.3</td>
<td>3.1</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scirrand</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>0.4-0.9</td>
<td>7.5-8.4</td>
<td>4.8-5.7</td>
<td>7.5-8.9</td>
<td>7.5-9.8</td>
<td></td>
</tr>
<tr>
<td>Scirvan</td>
<td>1.3</td>
<td>1.3</td>
<td>2.1-3.9</td>
<td>2.1-3.9</td>
<td>7.5-8.0</td>
<td>5.7-6.1</td>
<td>7.1-9.4</td>
<td>7.1-9.4</td>
<td></td>
</tr>
<tr>
<td>Slan</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.4-0.9</td>
<td>7.5-8.4</td>
<td>4.8-5.7</td>
<td>7.5-8.9</td>
<td>7.5-9.8</td>
<td></td>
</tr>
<tr>
<td>Sphi</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>8.0</td>
<td>4.3-5.7</td>
<td>4.3-5.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spin</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>8.0</td>
<td>4.3-5.7</td>
<td>4.3-5.7</td>
<td>0.0-2.1</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Abbreviations according to Table 1.

floris, they appear as sister group of the remaining haplogroups of *S. cirratus*. The various *S. c. limnaeetus* haplotypes are scattered among the other haplogroups and do not form a monophyletic group nor do they cluster according to geographic affinities. Bootstrap support is generally low, especially for the relationships among the various haplogroups. The topologies of the NJ and MP trees are in agreement: the 155 shortest trees (TL = 87, CI = 0.655, RI = 0.820, RC = 0.537; bootstrap values are included in Figure 3) differ mainly with respect to the branching pattern of haplogroups within *S. c. cirratus*.

The topology of the combined tree (concatenated cyt b and CR sequences) is similar to the CR tree with slightly higher bootstrap support, but still the relationships among most haplogroups are poorly supported.

A surprising result of this investigation is the clear genetic distinction between *S. p. philippensis* (from Luzon) and *S. p. pinskeri* (from Negros, Leyte and Mindanao). Distances between these two taxa are within the range (cyt b: 3.4%, CR: 4.5-5.8%) observed between each of them and either *S. lanceolatus* or *S. cirratus* (cyt b: 2.7-5.3%, CR: 4.1-9.5%). The relationships among the three taxa used as outgroups are not unambiguously resolved. In the cyt b trees *S. p. philippensis* and *S. p. pinskeri* do not even form a monophyletic group.

Discussion

The molecular phylogeny of the *S. cirratus* complex established in this study is based on two sections of the mitochondrial genome. Despite their different levels of variability the topologies derived from the two sequences are in agreement.
Figure 2. NJ tree based on cyt b sequences (midpoint rooting). Bootstrap values (1,000 replicates) >50% are given at the nodes (left: NJ, right: MP). Assignment of sequences is according to specimens in Table 1.

Genetic differentiation at species level

Although current classification places S. lanceolatus and S. philippensis either within the S. nipalensis “Formenkreis” (Stresemann 1924) or considers them a superspecies together with the other South-East Asian species (Amadon 1982, Tholllay in del Hoyo et al. 1994), preliminary sequence comparisons with other Spizaetus species (Haring et al. unpublished data) revealed that they are rather closely related to S. cirrhatus. This association is also supported by the white juvenile plumage shared by this assemblage, whereas the remaining South-East Asian hawk-eagle taxa (S. nipalensis, S. alboniger, S. nanus, S. bartelsi) have buff to orange-brown plumage at this age (Brown and Amadon 1968, Ferguson-Lees and Christie 2001). Consequently, they were taken as outgroup taxa for this study. Moreover, the two taxa can be used for comparisons of intra- and interspecific variability within this genus. As our data show, there is a clear genetic distinction between S. p. philippensis and S. p. pinskeri. Yet the phylogenetic relationships of the three outgroup taxa with respect to S. cirrhatus are not unambiguous in our trees, and S. philippensis does not even form a monophyletic group in all trees. Because of the high sequence divergence between the two lineages of S. philippensis, together with their clear-cut morphological and plumage pattern
Figure 3. NJ tree based on CR sequences (midpoint rooting). Bootstrap values (1,000 replicates) >50% are given at the nodes (left: NJ, right: MP). Assignment of sequences is according to specimens in Table 1. *S. philippensis* and *S. pinskeri* are treated as distinct species as suggested in the present study.

Genetic differentiation within *S. cirratus*

Within *S. cirratus* the distances observed are in a range that can be expected at the intraspecific level. For example, within Eastern Honey-buzzard *Pernis ptilorhyncus* the distances for the same cyt b section measured 2.1–3.9% between subspecies groups and 1.5–1.8% between subspecies within groups (Gamauf and Haring 2004). In *S. cirratus* variability within subspecies is highest in *S. c. limnaeetus*, which has the widest geographical range including numerous islands and is also the taxon with the highest plumage variability. Lower variability is found within subspecies restricted to islands. In the cyt b sequences the number of parsimony-informative sites is rather low (0-5), providing only limited phylogenetic information. The relationships among cyt b haplogroups are not clearly resolved and bootstrap support is very low. With the exception of *floris* and *vanheurni* no clear separation of subspecies is obtained with this marker, and even these two subspecies are combined by only one synapomorphic substitution. Whether this substitution can be used as a diagnostic site has to be investigated in a larger sample of specimens. In the CR trees the island taxa *floris* and *vanheurni* (as in cyt b), as well as *andamanensis*, form separated haplogroups confirming the subspecific division based on morphological characters. Yet, even with
this highly variable section a clear resolution of relationships among haplotypes and haplogroups, respectively, was not achieved. The island forms appear as haplogroups within the bush-like tree of *limnaeetus* sequences, which does not represent a monophylum. There is no indication of recent gene flow between the island subspecies and *limnaeetus* or *cirrhatus*; however, the sample sizes are comparatively small. In any case, the differentiation of a western group formed by *cirrhatus* and *ceylanensis* becomes apparent, a pattern corresponding partly to that found in the *cyt b* trees. However, with the latter marker this group is associated with *floris*, although this affiliation is based on a single synapomorphic site only.

Phylogeographic considerations

The *S. c. cirrhatus-limnaeetus* complex may be another example of continuing speciation in birds in South-East Asia, apparently influenced by glacial processes. Similar scenarios have been described for the genus *Pernis* (Gamauf and Haring 2004) and several other bird groups (e.g. Dickinson et al. 1991). What kind of conclusions do the sequence data allow with respect to phylogeography? The close association of *S. c. cirrhatus* and *S. c. ceylanensis* (sequence identity within *cyt b*) reflects the geographic proximity of their ranges (India and Sri Lanka), assuming their rather recent separation from each other at the end of the last glaciation when the land connection was severed. The remaining taxa belong to a group that could be designated as "*limnaeetus* radiation", which can also be assumed to have occurred in the more recent past (in the course of one of the last glaciations). The division between the two groups may have occurred during glaciation of the Himalaya massif and its foothills, splitting up the ancestral population into a western (India) and an eastern (South-East Asia) range. In such cold periods with low sea level, the ancestral form of the *limnaeetus* group may have spread throughout the exposed land masses of the Sunda Shelf including the islands of Sumatra, Java and Borneo. These areas were presumably covered mainly by steppe habitats, and dispersed forest "islands" may have been located mainly on the former island areas (van Oosterzee 1997, Wilson et al. 2000). Such forest patches were already inhabited by the ancestors of the other South-East Asian *Spizaetus* representatives (e.g. *S. philippensis*, *S. pinskeri*, *S. lanceolatus*, *S. nanus*, *S. bartelsi*, *S. alboniger*). Supposing that the ancestor of the *limnaeetus* group was morphologically adapted to semi-open habitats as it is today (Brown and Amadon 1968, Thiollay 1988, 1996, 1998, Gamauf et al. 1998a, b), competition was minimized between the inhabitants of forests and the new invaders. At the end of the last glaciation this continuous geographical range may have split up again due to rising sea levels. Assuming that this species crosses only narrow sea passages, the populations became more or less isolated on their respective islands (e.g. Greater and Lesser Sundas, Andamans, Simeulue), which are at the outermost border of the distribution range. For *S. philippensis* and *S. pinskeri* it could be hypothesized that an ancestral population was subdivided earlier in the Pleistocene into two lineages, one on Greater Mindanao and the other on Greater Luzon. Factors identified as influencing species richness on the Philippines include island area, maximum elevation, and Pleistocene patterns of connection and isolation. In a similar way many other bird groups on the Philippines, especially endemic species, underwent differentiation on these two main island complexes (Peterson et al. 2000).
Regarding *limnaeetus*, so far there is no record of this subspecies on Sulawesi (White and Bruce 1986, Coates and Bishop 1997). The specimen Scirilm13 from Sulawesi (RMNH 7208), which had been originally designated as *S. lanceolatus*, turned out to belong to *S. c. limnaeetus* (based on comparisons of plumage characters and measurements carried out by R. Dekker, Naturalis, Leiden). Thus, it seems likely that *limnaeetus* is also distributed on that island. The misidentification had probably happened because of the white head and underparts of the juvenile plumage of this specimen, a character which both taxa share.

Species concepts and taxonomy of Changeable Hawk-eagle

Genetic diversity is recognized as the fundamental component of biodiversity (Moritz and Faith 1998). How can we use knowledge about genetic diversity and differentiation to draw conclusions concerning taxonomy or to answer the question of what a species is? A wide range of sequence divergences between pairs of presumably closely related bird species (0.1–0.6%, mitochondrial markers) and subspecies (0.1–2.6%) has been reported in Seibold and Helbig (1995). This indicates that, on the one hand, speciation may occur at different levels of sequence divergence. Moreover, species which, according to morphological similarities, appear to us as closely related may in fact have diverged a long time ago. Some examples for sequence divergences (cyt b) between birds of prey are 1.8% for Spanish Imperial Eagle *Aquila adalberti* versus Imperial Eagle *A. heliaca*, as well as Greater Spotted Eagle *A. clanga* versus Lesser Spotted Eagle *A. pomarina*. White-tailed Sea-eagle *Haliaeetus albicilla* and Bald Eagle *H. leucocephalus* differ by 2.5% (Seibold and Helbig 1995), and two honey buzzard species *Pernis celebensis* and *P. ptilorhyncus* by 4.0–5.7% (Gamauf and Haring 2004). Nevertheless, there is no direct way to deduce species status from observed sequence divergence values.

Although many definitions exist for the term “species” (Amadon and Short 1992, Haffer 1992, 1994), none of them are universally accepted. The Biological Species Concept (BSC: Mayr 1963) is that predominantly used in evolutionary ornithology. According to the BSC a species represents a group of interbreeding (or potentially interbreeding) natural populations that are reproductively isolated from other such groups. Since speciation can occur gradually over longer periods of time, the BSC also includes a dynamic aspect of gene pool differentiation allowing the designation of subspecies (Futuyma 1998). These are groups of populations that share a unique geographic range and/or habitat and are distinguishable from other subdivisions of the species by multiple, independent, genetically based traits (Avise and Ball 1990, O’Brien and Mayr 1991). The BSC has been increasingly challenged in recent years and a number of alternative species concepts have been proposed, which will not be treated here in detail. Island-rich South-East Asia represents a worst-case situation for the BSC, which meets its most serious challenges in insular situations (Zink and McKinitrick 1995, Peterson et al. 2000), where reproductive isolation cannot usually be tested. Although a recent interpretation of the BSC (AOU 1998, Helbig et al. 2002) allows recognition of allopatric forms as species units (in common with the PSC), classification based on molecular markers without knowledge of reproductive isolation is always arbitrary, especially if no additional data, e.g. concerning karyotypes, behaviour or vocalizations, exist (Frankham et al. 2002). Such additional information which could serve as hints for possible reproductive isolation between the allopatric
forms of the Changeable Hawk-eagle are not yet available. At the moment, the only known barrier between the taxa is due to the isolation on islands.

In practice, two morphologically differentiated allopatric populations are often considered as distinct species if their degree of genetic differentiation matches that of two well-recognized species in a related group (e.g. *Cyanopica: Fok et al. 2002*). Within the *cirrhatus* complex the differences between subspecies are in the lower range observed so far for other pairs of raptor species. However, low genetic differences do not exclude species status. Between *Haliaeetus leucogaster* and *Haliaeetus sanfordi*, for example, sequence divergence is only 0.3%, although species status of these taxa may be a matter of dispute.

Nevertheless, the low genetic diversity within *S. cirrhatus* could also be interpreted as intraspecific variation for two reasons: (1) the most widespread subspecies *S. c. limnaeetus* does not represent a monophyletic group in the gene trees, and (2) its haplogroups do not cluster according to geographic affinities. Although the subspecies are geographically isolated, there is no evidence for reproductive barriers. Thus, applying the BSC there is no good argument to split this taxon into separate species (as suggested by e.g. Stresemann and Amadon 1979), although morphological differences exist (e.g. between *S. c. cirrhatus* and *S. c. limnaeetus*). At best, the sequence data suggest a separation of the western forms (*S. c. cirrhatus, S. c. ceylanensis*) from the rest.

Concerning *S. philippensis*, sequence data as well as clear morphological differentiation would justify the split into two species according to the PSC. As is generally the case with most island taxa, no data about reproductive barriers required by the BSC are available. However, we know from other examples that the separation between the northern and southern Philippine islands (Greater Luzon and Greater Mindanao during periods of low sea level) has led to speciation in many bird taxa (e.g. Dickinson et al. 1991, Peterson et al. 2000).

In the Phylogenetic Species Concept (PSC: Cracraft 1983) a species is considered as the smallest diagnosable cluster of individual organisms within which there is a parental pattern of ancestry and descent. With this definition the PSC evades the problem of reproductive isolation between diagnosable allopatric forms by treating them all as species. Taking into account the clear morphological differences, the six taxa comprising the *S. c. cirrhatus* group would deserve species status under the PSC. Accordingly, the more or less erratic haplotype distribution would be the consequence of incomplete lineage sorting. Also the split of *S. philippensis* into two species would be in accordance with the PSC.

We have tried to show that two different species concepts (BSC, PSC) allow different conclusions. Since even among the authors there are different points of view concerning interpretation of species concepts, there is a dilemma how to come to a final decision concerning the taxonomy of this group. In this paper we advocate the maintenance of the current taxonomy of the *cirrhatus-limnaeetus* complex, which is more in accordance with the BSC. Nevertheless, in a separate paper three of the authors of the present paper (Gjershaug et al. 2004) will give additional information on the morphological differences and reproductive isolation between the subspecies *floris* and *limnaeetus*.

Conservation

“Correct” diagnosis of the taxonomic status of populations is critical with respect to conservation, because unrecognized species may – due to a lack of protection – become
extinct. Taking into account that species usually are given more importance in conservation measures as “evolutionary significant units” (ESU: Ryder 1986, Moritz 1994, Frankham et al. 2002), conservation would be more affected by further progress of the PSC than any other discipline (Collar 1997). What kind of consequences does the application of different species concepts have with respect to the conservation of the Spizaetus hawk-eagles? The status of the monotypic S. lanceolatus will not be influenced by our results, since Sulawesi still has a high proportion of rain forest (c. 60%; Collins et al. 1991), and this species still seems to be rather common (Nurwatha et al. 2000, Thiollay and Rahman 2002). The situation is different in the Philippines, where the splitting of Philippine Hawk-eagle into two species, S. philippensis and S. pinskeri, will lead to lower estimates of population sizes: about 200–220 pairs for S. philippensis on Luzon and 320–340 pairs for S. pinskeri on Mindanao (Preleuthner and Gamauf 1998). BirdLife International has already classified the “former” Philippine Hawk-eagle (inclusive S. pinskeri) as “Vulnerable” (BirdLife International 2000, Collar 2001). Meanwhile, since the mid-1990s, its rainforest habitat has continuously diminished, and it can be assumed that its population status corresponds to this decline. The populations of S. pinskeri endemic to Negros and a few other islands (e.g. Mindanao, Leyte, Samar) are probably also very small. In practice, the splitting of S. philippensis into two independent species means that, following the definition of BirdLife International (Stattersfield et al. 1998), both taxa should be included in the higher category “Endangered”.

The most far-reaching consequences of the application of different species concepts would concern the taxon of the cirrhatus-limnaeetus complex with its six morphologically distinct forms. Following the current taxonomy (Ferguson-Lees and Christie 2001) based on the BSC (no evidence for reproductive barriers). S. cirrhatus is classified as a single species comprising six subspecies, which as a whole would not be considered threatened. Applying the PSC and similar species concepts, which differentiate all diagnosable “lineages”, would lead to an upgrading of the six subspecies to species level, of which three or four would then be considered threatened. It is undisputed that they would deserve protection: three of the taxa are distributed over very small restricted ranges (Stattersfield et al. 1998). For example, andamanensis inhabits less than 6,475 km², vanheurni 1,600 km² and floris <50,000 km². Taking into account that birds of prey in general need large home-ranges (Newton 1979) they all appear to be scarce. The only exception is ceylanensis, which inhabits Sri Lanka with approximately 65,000 km², is still relatively common and presently not threatened (Harrison 1999). Only the nominate form cirrhatus and limnaeetus are distributed over larger ranges. Common to all taxa is that they are under more or less heavy pressure and declining (Thiollay 1996. van Balen and Nijman 1998) because of habitat loss. The population of floris, which is considered as rare (Butchart et al. 1996), is estimated to be 100 pairs maximum (Giershauq et al. 2004). Population numbers of the other island-restricted S. cirrhatus taxa are unknown, but at least vanheurni is probably rare as well. In general, the existing protected areas are too small, often not very well protected and represent only minor parts of the respective distribution areas (Collins et al. 1991, Stattersfield et al. 1998). Thus, protected areas do not guarantee protection of whole populations/subspecies. Moreover, there are many taxa, currently threatened and unambiguously good species, for which “immediate protection measures” are still wanting.
Nevertheless, it would not be advisable to propose species status for such comparatively young taxa just for conservation reasons. Such a practice, which could be termed the “conservation species concept”, would be a bad compromise and would have no scientific basis. High sequence similarity in one gene does not necessarily mean that these populations do not harbour genetic peculiarities which they maintain as an answer to specific environmental challenges. Morphological differences may only be the most obvious external indicators for such adaptive differentiation. Thus, even if these populations (subspecies) belonged to one biological species, they could contribute considerably to the genetic flexibility of the species and therefore should be managed as separate entities regardless of their formal taxonomic status.

The case of the S. cirrhatus complex may serve as an example that a change in the strategies of conservation management is required. The priority of “species” as the most important “evolutionarily significant units” should not influence taxonomists with respect to their decisions in classification. On the other hand the treatment of infraspecific taxonomic groups as evolutionarily significant units (Moritz 1994, Collar 1996) would enable the start of immediate protection measures even if taxonomic status is not clarified. When some of the various forms of Changeable Hawk-eagle have become extinct, academic discussions about the taxonomic status of its populations will no longer be relevant.

Acknowledgements

This investigation was supported by the Jubiläumsfonds der Österr. Nationalbank (no. 8077-BIO). Part of the work was supported by the Norwegian Research Council. Without tissues of museum specimens this study would have been impossible; therefore, we are grateful to R. Dekker (RMNH/Naturalis, Leiden, the Netherlands), R. Prŷs-Jones, M. Adams, F. Steinheimer (BMNH/The Natural History Museum, Tring, U.K.), E. Bauernfeind, H.-M. Berg (NMW Naturhistorisches Museum Wien, Vienna, Austria), G. Barrowclough, P. Sweet (AMNH American Museum of Natural History, New York, U.S.A.), R. McGowan (NMSZ, Scottish National Museum, Edinburgh, U.K.), S. Frahnert (ZMB Zoologisches Museum Berlin, Germany), R. Scholz (Staatliches Museum für Naturkunde, Braunschweig, Germany), R. v. d. Elzen (ZFMK Zoologisches Forschungsinstitut und Museum A. Koenig, Bonn, Germany). Furthermore, we thank J. A. James and P. v. Nievenhuis for providing moulted feathers. We are much obliged to N. Collar (BirdLife International), W. Mayer (NMW), W. Pinsker (University of Vienna) and S. J. Parry (Liverpool, UK) for helpful comments on the manuscript and valuable discussions, as well as P. Rasmussen (Michigan State University) and L. Fishpool (BirdLife International) for constructive reviews. We thank B. Däubl for excellent technical assistance and K. Repp for preparing the distribution map.

References

ANITA GAMAUF*, ELISABETH HARING
*Museum of Natural History Vienna, 1, Zoological Department, Burgring 7, 1014 Vienna, Austria

JAN-OVE GJERSHAUG, NILS RØV, KIRSTI KVALøy
*NINA – Norwegian Institute for Nature Research, Tungasletta 2, 7005 Trondheim, Norway

*Author for correspondence; e-mail: anita.gamauf@nhm-wien.ac.at; fax: +43-1-52177-364

Received 3 February 2004; revision accepted 31 August 2004
Paper II
The taxonomic status of Flores Hawk Eagle

Spizaetus floris

J. O. GJERSHAUG, K. KVALØY, N. RØV, D. M. PRAWIRADILAGA,
U. SUPARMAN and Z. RAHMAN

The Changeable Hawk Eagle Spizaetus cirrhatus complex ranges from India (cirrhatus) through South-East Asia (mainly limnaetus) to Flores, Sumbawa and Lombok, Indonesia (floris). The latter taxon is morphologically very distinct from the widespread limnaetus. It has diagnostic white patches on the upperside of the inner parts of the primaries, a juvenile-like adult plumage, and it is much larger than limnaetus. It is allopatric with limnaetus without any known geographical overlap. The large morphological differences indicate that the two taxa are reproductively isolated. We suggest that floris be treated as a distinct species with the English name of Flores Hawk Eagle.

INTRODUCTION

Taxonomic studies within conservation biology have become increasingly important. The IUCN Red List of threatened species (IUCN 2001) is commonly used to help focus conservation priorities on the species at greatest risk of extinction. At present, subspecies are not generally listed (e.g. BirdLife International 2000). In cases where the taxonomic status of rare subspecies has not been sufficiently clarified, there is a risk that potentially valid species could become extinct even before conservation action is initiated.

In Indonesia, the conservation of rainforest raptors has attracted increased attention during recent years. In this region, a number of closely related forest-living hawk eagles Spizaetus spp. are found. Changeable Hawk Eagle S. cirrhatus comprises a complex of subspecies occurring in two major groups, crested and crestless, but the taxonomic status of the different subspecies has been disputed (del Hoyo et al. 1994). Six taxa are normally recognised: two crested taxa comprising cirrhatus (India south of Rajasthan and Gangetic plain), and ceylanensis (Sri Lanka), and four uncrested taxa comprising andamanensis (Andaman islands), limnaetus (north India and Nepal through Myanmar, southern Indochina, Malay Peninsula to Greater Sundas and southern Philippines), vanheurni (Simeulue island west of Sumatra) and floris (Lombok, Sumbawa and Flores; Fig. 1).

Amadon (1953) divided the subspecies into two groups: the cirrhatus group (cirrhatus, ceylanensis and andamanensis) and the limnaetus group (limnaetus, vanheurni and floris). B. King (personal communication 1994 to Inskipp et al. 1996) suggested that floris was a separate species because its adult and juvenile plumages were identical, unlike other subspecies of S. cirrhatus which have distinct juvenile and adult plumages. The morphological differences between floris and limnaetus are so striking that it seems surprising that these forms have been lumped together. One reason could be that museum specimens of adult floris look quite similar to juvenile limnaetus (Fig. 2a), leading to the assumption that all museum specimens are juveniles, wrongly aged by the collectors. This has resulted in incorrect illustrations of adult floris in many current handbooks and fieldguides (e.g. Weick 1980, del Hoyo et al. 1994, Coates and Bishop 1997, Ferguson-Lees and Christie 2001). These all illustrate adult floris with a brown head. The first widely available illustration of an adult floris was made by Weick (1980). In his first draft he painted the eagle with a white head based on studies of museum specimens. However, Weick was advised by Amadon and Brown that adult floris should have a brown head as in other Spizaetus species, so the illustration was incorrectly changed (F. Weick in litt. 1999).

Another source of misunderstanding could be that ornithologists visiting the Lesser Sundas might have been confused by the presence of four other sympatric species of eagles with fairly similar juvenile plumages, including white underparts (Short-toed Snake Eagle Circaetus gallicus, Bonelli’s Eagle Hieraaetus fasciatus, Rufous-bellied Eagle H. kienerii and White-bellied Sea Eagle Haliaeetus leucogaster).

Here we give a detailed description of floris based on museum specimens and field studies, focusing on the morphological differences between floris and limnaetus, and we comment on the distribution, conservation and taxonomic status of floris. Elsewhere we describe the phylogenetic relationships within the Spizaetus cirrhatus complex based on analyses of mtDNA sequences (Gamauf et al. in prep) and provide
Plate 1a. Adult *floris* (right), juvenile *limnaeetus* (left).

Plate 1b. Head of *floris*.

Plate 1c. Wing-patch of adult *floris*.

Plate 1d. Tail of adult *floris* (right) and juvenile *limnaeetus* in moult (left).

Plate 1e. Tail of juvenile *floris*.

Plate 1f. Tail of adult *floris*.
Plate 2a. Ventral side of adult *floris* (right), juvenile *limnaeetus* (middle) and adult *limnaeetus* (left).

Plate 2b. Dorsal side of the same birds.

Plate 2c. Primaries of adult *floris*.

Plate 2d. Primaries of adult *limnaeetus*.

Plate 2e. Variation in *limnaeetus*, dorsal side. The two birds to left are juveniles.

Plate 2f. Ventral side of the same birds.
a detailed description of the distribution and population status of floris (Prawiradilaga et al. in prep).

METHODS

We studied four specimens of floris and 155 of limnaeetus at the National Museum of Natural History (Naturalis) in Leiden (formerly Rijksmuseum van Natuurlijke Historie, RMNH). One skin of a juvenile floris was studied in Bogor Museum (MZB). This individual we confidently identified as being juvenile because of a note on the label recording the lack of ossification of sternal foramina (Foramina im Brustbein noch nicht verknöchert: Rensch 1931). In addition we studied photos of two specimens of floris from the American Museum of Natural History (AMNH), including the holotype. We suggest that the holotype is a juvenile, because its tail pattern was similar to that of the Bogor specimen. Wing length was measured with the wing flattened and stretched (maximum wing chord). A list of the specimens of floris examined is given in Table 1.

A total of 609 hours of field observations were carried out in Lombok, Sumbawa and Flores on 98 days in August–October 2002, December 2002–February 2003 and June–July 2003. Altogether 42 individuals of floris were observed, most of which were adult birds of territorial pairs. During studies on Java, a considerable number of limnaeetus were observed in the field, as well as in captivity.

RESULTS

Morphological differences between floris and limnaeetus

The head of floris is white in both adults and juveniles, sometimes with fine brownish streaks on the crown (Plate 1a,b). The mantle and back are dark brown. The inner vanes of the tertials are pure white. On the inner parts of the outer primaries, the outer vanes are white, forming a large and well-defined white patch on the upperside of the wing (Plate 1c). In some individuals, this patch is less conspicuous and more greyish, but still contrasts with the dark colour of the rest of the upperside. The tail is brown with six dark bars, the outermost broader than the others (c.44 mm compared to 14 mm). The distance between the two outermost dark bars is slightly larger than between the other bars (23 and 14 mm respectively, Plate 1d). The inner part of the tail and the uppertail-coverts are white, producing a distinctive white patch (Plate 2a). The entire underside, including the thighs and legs, are pure white. One individual (AMNH 534895), described by Hartert (1898) as an adult, has some very faint pale rufous-brown bars on the breast, sides of the breast and thighs (Plate 1f).

In limnaeetus two distinct colour morphs are described, one being completely dark (del Hoyo et al. 1994). In the Philippines, Gamauf et al. (1998) found that 50% of 34 individuals were light morphs, 38% were dark morphs, and 12% were intermediate with a grey-brown breast. Among 155 skins from Indonesia, we found that 51% were light morphs, 48% dark and 1% were intermediate. Figs. 3e and 3f show some of the variation in limnaeetus from Indonesia.

In light morphs of adult limnaeetus, the mantle, back, uppewing-coverts and secondaries areumber-brown with paler edges. The paler-fringed secondary coverts form a narrow band. In contrast to the dark upperparts, the head and neck are pale with numerous fine but distinct streaks, occasionally brownish. The nape feathers are prominent although there is no crest. The chin and throat are white, usually with a black median stripe and lateral stripes. The long tail is concolorous with the upperparts. There is a wide dark subterminal bar, followed by 3–4 narrower dark brown bars towards the base. The distance between the two outer bars is much larger than between the other bars (Plates 1d, 2a,b). The breast and belly are white with bold, dark brown streaks. The long and powerful feathered legs and the uppertail-coverts are buff with fine

<table>
<thead>
<tr>
<th>Specimen Locality</th>
<th>Sex</th>
<th>Age</th>
<th>Wing (mm)</th>
<th>Tail (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMNH 534895</td>
<td>Flores</td>
<td>Male</td>
<td>Adult</td>
<td>430</td>
</tr>
<tr>
<td>AMNH 534896</td>
<td>Flores</td>
<td>Male</td>
<td>Juvenile</td>
<td>450</td>
</tr>
<tr>
<td>RMNH 81112</td>
<td>Flores</td>
<td>Female</td>
<td>Adult</td>
<td>456</td>
</tr>
<tr>
<td>RMNH cat. no. 1</td>
<td>Flores</td>
<td></td>
<td>Adult</td>
<td>441</td>
</tr>
<tr>
<td>RMNH cat. no. 2</td>
<td>Flores</td>
<td></td>
<td>Adult</td>
<td>462</td>
</tr>
<tr>
<td>RMNH 66257</td>
<td>Flores</td>
<td>Adult</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>MZB 11948</td>
<td>Sumbawa</td>
<td>Male</td>
<td>Juvenile</td>
<td>438</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characters</th>
<th>Spizaetus floris</th>
<th>S. cirrhatus limnaeetus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphs</td>
<td>Light</td>
<td>Light, dark and intermediate</td>
</tr>
<tr>
<td>Head</td>
<td>White, sometimes with fine brownish streaks on crown</td>
<td>Brown</td>
</tr>
<tr>
<td>Mantle and back</td>
<td>Blackish-brown</td>
<td>Umber-brown with paler edges</td>
</tr>
<tr>
<td>Primaries</td>
<td>Inner parts of the outer feathers are white, forming a white patch on the upperwing</td>
<td>Brown (no wing patch)</td>
</tr>
<tr>
<td>Inner webs of tertials</td>
<td>Pure white</td>
<td>Brown</td>
</tr>
<tr>
<td>Breast and belly</td>
<td>Pure white, sometimes with very faint pale rufous-brown bars</td>
<td>White with bold dark brown streaks</td>
</tr>
<tr>
<td>Thighs and legs</td>
<td>Pure white, sometimes with very faint pale rufous-brown bars</td>
<td>Buff with fine white bars</td>
</tr>
<tr>
<td>Tail</td>
<td>Brown with six dark bars. Distance between the outermost dark bars is only a little larger than between the other bars</td>
<td>Brown with 4–5 dark bars. Distance between the outermost dark bars is much larger than between the other bars</td>
</tr>
</tbody>
</table>
Table 3. Comparison of juvenile plumage of *Spizaetus floris* and *S. cirrhatus limnaeetus*.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Spizaetus floris</th>
<th>S. cirrhatus limnaeetus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphs</td>
<td>Light</td>
<td>Light, dark and intermediate</td>
</tr>
<tr>
<td>Mantle and back</td>
<td>Blackish-brown</td>
<td>Brown with a saddle-like band formed by lighter-coloured upperwing-coverts</td>
</tr>
<tr>
<td>Primaries</td>
<td>Distinctive white patch on the upperside of the primaries</td>
<td>No such patch</td>
</tr>
<tr>
<td>Tail</td>
<td>Terminal bar broader than the other bars</td>
<td>Terminal bar of the same width as the other bars</td>
</tr>
</tbody>
</table>

Table 4. Measurements of mean wing length in mm (range in parentheses) of *Spizaetus floris* and Javan specimens of *S. cirrhatus limnaeetus*.

<table>
<thead>
<tr>
<th></th>
<th>Spizaetus floris</th>
<th>S. cirrhatus limnaeetus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male (n=3)</td>
<td>Female (n=1)</td>
</tr>
<tr>
<td></td>
<td>Unknown (n=3)</td>
<td>Male (n=4)</td>
</tr>
<tr>
<td></td>
<td>Unknown (n=3)</td>
<td>Female (n=4)</td>
</tr>
<tr>
<td>Wing length</td>
<td>439–456</td>
<td>378–412</td>
</tr>
<tr>
<td>(430–450)</td>
<td>(441–462)</td>
<td>(365–387)</td>
</tr>
<tr>
<td></td>
<td>(407–426)</td>
<td></td>
</tr>
</tbody>
</table>

white bars. The primaries have more distinct dark bars than found in *floris* (Plate 2e,d).

In juvenile *floris*, the terminal dark bar of the tail is more diffuse compared with adult birds. This is most easily seen on the ventral side of the tail (Plate 1e,f). The juvenile plumage of *floris* is similar to that of juvenile *limnaeetus*, which also has a pure white head with small dark spots and a white underside. However, the colour of the mantle and back is darker in *floris*, lacking the light saddle-like band on the upperwing-coverts of *limnaeetus*. It also has distinctive white patches on the upperside of the primaries, not found in *limnaeetus*, and the dark terminal tail-bar of *floris* is broader than the other six bars (c.32 mm versus 15 mm), whereas in *limnaeetus* it is of the same width as the other bars (Plates 1d, 2b). The plumage differences between *floris* and *limnaeetus* are summarised in Tables 2–3.

Measurements indicate that *floris* has considerably longer wings than *limnaeetus* from Java (Table 4). However, the number of specimens is small and certainly does not represent the range of variation within each of the two taxa. Brown and Amadon (1968) reported wing lengths of 380–430 mm for male *limnaeetus* and 405–462 mm for females, probably based on measurements of Himalayan specimens. They recorded wing lengths of *floris* to be 485 mm for males and 495 mm for females, but we do not know which birds they measured, as these measurements are larger than on any museum specimens known to us.

Distribution
We found that *floris* was distributed in all parts of the islands of Lombok, Sumbawa and Flores, as well as on two satellite islands, Satonda near Sumbawa and Rinca near Komodo. Six of the seven known specimens of *floris* are from Flores (Table 1). On this island, the species was previously known from about ten sites and it has been assumed to be uncommon (C. Trainor in litt. 2000). A specimen at Bogor museum was collected by Rensch (1931) on Sumbawa, and Butchart et al. (1996) recorded an individual on Sumbawa in 1993. Verheijen (1961) listed the bird for Paloe, a small island 16 km off the north coast of Flores. Coates and Bishop (1997) also mentioned Komodo in the range for this species, but did not refer to any particular observation. These records do not contain further details that allow verification.

On Lombok, we observed *floris* in Sesaot at the border of Rinjani National Park on 18 September 2002. This is the first record from Lombok. The bird was identified by its white head and underside together with its diagnostic white patch on the upperside of the outer primaries, which distinguish it from immature *limnaeetus*. Later we observed the species at three other locations on the border of Rinjani National Park (Senaru, Pidana and Pusuk: Prawiradilaga et al. in prep). These observations are of particular importance since Lombok is just east of Bali, the easternmost extent of the distribution of *limnaeetus*.

Ecology
Verhoeve and Holmes (1998) described the habitat of this species as cultivated hills and woodland from sea level to 1,000 m. We observed it in lowland and submontane forest up to 1,600 m, but the majority of individuals were in lowland rainforest. Occasionally individuals were seen over cultivated areas, but always close to intact or semi-intact forest.

In all villages we visited we found that local people were familiar with an eagle with a white head that reportedly hunted chickens and small pigs around villages. However, the possibility of confusion with other raptors cannot be excluded. On one occasion we witnessed a Flores Hawk Eagle hunting in the middle of a village in the early morning, and on several occasion we observed individuals hunting over cultivated landscapes near forest.

In one village in Mbeliling, Flores we were informed about a large tree that was cut down in late August containing a nest with a largenesting hawk eagle. The bird was taken and sold to a bird market. This suggests breeding during the dry season. Verheijen (1964) listed one nest in March, two in April and one in August. However, there is a possibility of misidentification since other sympatric eagles are not mentioned in the paper. Display flight and copulation have also been observed on Flores in June–July 2003 (J.-M. Thiollay in litt. 2003).

DISCUSSION

Systematics
The longest distance of open sea between the islands in the Lombok strait between Bali (where *limnaeetus* occurs) and Lombok (where *floris* occurs) is 24 km (via Nusa Penida). This distance is of the same magnitude as the distances between other islands within the range
of *floris*. During the Pleistocene glacial sea-level depressions this distance was even shorter, perhaps not more than 1 km (Van Oostrerze 1997). A similar situation is found among other *Spizaetus* species within the islands of South-East Asia. For example, Javan Hawk Eagle *S. bartelsi* is separated by the narrow Sunda strait from the closely related Blyth’s Hawk Eagle *S. alboniger* and Wallace’s Hawk Eagle *S. nanus* on Sumatra.

It is possible that *limnaeetus* and *floris* might have come into secondary contact, after eastward expansion of *limnaeetus*. However, they may not yet have evolved sufficient ecological differences to avoid competition and/or hybridisation. If hybridisation between *floris* and *limnaeetus* commonly occurs, it would be expected that dark morphs (which are common in *limnaeetus* on Java) would have been recorded in the range of *floris*, particularly on Lombok. However, since only four individuals have been identified on Lombok so far, the possibility of a hybrid zone there cannot be rejected. On the other hand, it seems unlikely given the lack of dark morphs (or even dark-headed birds) recorded in a total of 42 field observations and seven specimens of *floris* from Flores and Sumbawa. Thus it is reasonable to conclude that hybridisation is not occurring, at least not frequently.

The distributions of *floris* and *limnaeetus* are commonly regarded as allopatric, being separated only by a narrow strait between Bali and Lombok. However, Changeable Hawk Eagle has a considerable ability to colonise distant islands. For example, Thillay (1996) found a dark morph *limnaeetus* on Nias 125 km west of Sumatra in 1992 (there had been no previous records), and we observed a light morph *limnaeetus* on Krakatau, 12 km from the Javan mainland, in 1997. The distributional boundary between Bali and Lombok could therefore arguably be considered parapatric. The argument that parapatric and ecologically incompatible taxa are best treated as subspecies because they are necessarily very closely related (Bock 1986, Amadon and Short 1992) is certainly not universally valid (Garcia-Moreno and Fjeldså 1999). Helbig *et al.* (2002) recommended that diagnosable taxa that are strictly parapatric and do not hybridise should be ranked as separate species, because it appears unlikely that such a situation can be maintained without intrinsic reproductive isolation. Natural selection would favour interbreeding between two populations that are in contact at an ecotone or trivial ecological barrier if hybrids have no fitness disadvantage. If such interbreeding does not occur despite the lack of an effective extrinsic barrier, mixing may be being prevented by intrinsic isolating mechanisms.

No mixing of *floris* (n=5) and *limnaeetus* (n=5) mtDNA haplotypes was observed among birds sampled from Indonesia, suggesting reproductive isolation, albeit based on small sample sizes (Gamauf *et al.* in prep.). The genetic distance between these two taxa was found to be only 1% (Gamauf *et al.* in prep.), indicating that they were separated during the Pleistocene. During that period there were several cool and dry periods (e.g. 80,000 and 190,000 years ago) and biogeographic evidence indicates that Asian rainforests were fragmented (Brandon-Jones 1996). The Flores Hawk Eagle probably evolved in a refuge somewhere in the Lesser Sundas. Theoretical models suggest that the evolution of reproductive isolation can be fast (Lande 1981, Barton and Charlesworth 1984), and that morphological character states can evolve within well under one million years (Nilsson and Pelger 1994), especially if there is strong selection combined with bottleneck effects and coalescence. This view is supported by empirical data on birds. For instance, mtDNA cyt b sequences differ between Sanford’s Sea Eagle *Haliaeetus sanfordi* and White-bellied Sea Eagle *H. leucogaster* by only 0.3% (Wink *et al.* 1996), but they are regarded as separate species. Recent studies indicate that avian speciation can involve little genetic change and occur rapidly in small populations (e.g. Grant *et al.* 2000).

More extensive morphological studies as well as observations on breeding biology, behaviour and vocalisation may lead to the detection of further difference between *floris* and *limnaeetus*. However, using the biological species concept, there exists sufficient evidence to consider *floris* as a full species, principally because of: (1) apparent reproductive isolation based on lack of an effective distribution barrier and apparently no significant hybridisation between *limnaeetus* and *floris*; (2) distinct morphological differences; (3) distinct plumage differences; (4) significant, albeit small, genetic differences between *floris* and *limnaeetus*; and (5) apparently no mixing of mtDNA haplotypes between *floris* and *limnaeetus*.

Etymology

Hartert (1889) named the species after the island Flores where the holotype was collected. We propose the English name Flores Hawk Eagle and the scientific name *Spizaetus floris* to draw attention to the species’s main distribution and restricted range. Sibley and Monroe (1990) used the name Sunda Hawk Eagle, which we find inappropriate, as it is unrecorded from the Greater Sunda islands.

Neoteny

Extensive field observations and examination of museum specimens confirmed that adult Flores Hawk Eagles have a number of traits (e.g. white head and underparts) that are typical of juveniles in other hawk eagle species e.g. Changeable, Sulawesi *S. lanceolatus*, and Philippine Hawk Eagles *S. philippensis* and the *stresemanni* race of Wallace’s Hawk Eagle *S. nanus*. This could be considered a case of neoteny. A similar case is provided by Sanford’s Sea Eagle, in which adults have a juvenile-like plumage that is very different from the adult plumage of the closely related White-bellied Sea Eagle (Wink *et al.* 1996).

Neoteny is often associated with increased body size (Gould 1977), and interestingly, Flores Hawk Eagle is much larger than Changeable Hawk Eagle. However, in all birds of prey the skeletal growth is completed before the final development of plumage in the late nesting stage. Thus, the development of the principal determinants of overall size are completed before plumage finishes developing. Neotenic morphology and behaviour is likely to reduce aggression from adults and facilitate sociality (Gould 1977, Lawton and Lawton 1986). This has been proposed as an explanation for neoteny in skuas *Catharacta* spp. (Andersson 1999), but it does not seem relevant to
Spizaetus eagles. We find no obvious explanation for why Changeable Hawk Eagle has evolved neoteny, but such a trait might perhaps arise by loss of genetic variation in small populations.

Conservation

On the basis of distances between three neighbouring territories, we estimate that the territory size for Flores Hawk Eagle is c.40 km². Given that it is primarily dependent on forest, this implies that the total population size for the species is probably less than 100 pairs (Prawiradilaga et al. in prep.). The species qualifies at least as Endangered on the IUCN Red List under criterion C2a(i) (total population <2,500 individuals and all subpopulations <250 individuals), and it may even qualify as Critically Endangered under criterion C1 (population <250 individuals and continuing decline >10% per 10 years or three generations) given current rates of habitat destruction in the Lesser Sundas.

Habitat degradation and destruction are the most important threats to Flores Hawk Eagle. Although the species could probably survive in a partly cultivated landscape, protected areas in the species' range are presently too small for its long-term survival. Persecution because of its habit of stealing chickens, and capture for the cagebird trade pose additional threats. We found evidence of a recently robbed nest, and capture for the cagebird trade was also reported by Trainor and Lesmana (2000). We observed a juvenile Short-toed Snake Eagle and an adult White-bellied Sea Eagle that had been similarly captured on Flores.

Flores Hawk Eagle used to be regarded as a totem ('empo') among the Manggarai people in western Flores, who considered it to be an ancestor of humans, and therefore did not hunt it. However, these traditions have now broken down. Fortunately, some work is now underway to inform local people of the importance of this species (C. Trainor in litt. 2000).

Acknowlegdements

We thank: C. Trainor, BirdLife International; F. Weick; R. Dekker, National Museum of Natural History (Naturalis), Netherlands, who also gave helpful comments on the first draft of the manuscript; J. Wecker and P. Capainolo, American Museum of Natural History; and staff at Bogor Museum, Indonesia. Fieldwork in Indonesia was supported by the Norwegian Institute for Nature Research and ProNatura Foundation, Japan. Laboratory work was funded by the Norwegian Research Council and the Norwegian Institute for Nature Research. Helpful comments on the manuscript were also made by A. Gamauf, E. Haring, J. Fjeldså and S. Parry. J.-M. Thiollay participated in the field work in 2003, P. Rasmussen and an anonymous referee greatly improved the manuscript.

References

Jan Ove Gjershaug, Kirsti Kvaløy and Nils Røv, Norwegian Institute for Nature Research, Tungasletta 2, 7485 Trondheim, Norway. Email: jan.o.gjershaug@nina.no
Devi M. Prawiradilaga, Research Centre for Biology-LIPI, Bogor, Indonesia.
Usep Suparman, KPB CIBA, Cianjur, Indonesia.
Zaini Rahman, YPAL, Bandung, Indonesia.
Paper III
On the taxonomic status of the Changeable Hawk Eagle *Nisaetus cirratus* in India

J. O. GJERSHAUG¹, O. DISERUD¹, P. C. RASMUSSEN² and Y. ESPMARK³

¹ Jan Ove Gjershaug and Ola Diserud
Norwegian Institute for Nature Research
Tungasletta 2
7485 Trondheim
Norway

² Pamela C. Rasmussen
Michigan State University Museum and department of Zoology
Michigan State University
West Circle Drive
East Lansing, MI 48824
USA

³ Yngve Espmark
Department of Biology
Norwegian University of Science and Technology (NTNU)
Realfagsbygget
7491 Trondheim
Norway

Corresponding author: jan.o.gjershaug@nina.no
Paper III is not included due to copyright.
INTRA-INDIVIDUAL AND GEOGRAPHICAL VARIATION IN THE CALLS OF THE CHANGEABLE HAWK-EAGLE NISAETUS CIRRHATUS IN INDIA

JAN OVE GJERSHAUG¹ AND YNGVE ESPMARK²

¹ Norwegian Institute for Nature Research
Tungasletta 2
7485 Trondheim
Norway

² Department of Biology
Norwegian University of Science and Technology (NTNU)
Realfagsbygget
7491 Trondheim
Norway

Corresponding author: jan.o.gjershaug@nina.no
Paper IV is not included due to copyright.
Paper V
An overlooked threatened eagle species: Legge’s Hawk-eagle *Nisaetus kelaarti*

J. O. GJERSHAUG,¹ O. DISERUD¹ and P. C. RASMUSSEN ²

¹Norwegian Institute for Nature Research
Tungasletta 2
7485 Trondheim
Norway

²Michigan State University Museum and Department of Zoology
Michigan State University
West Circle Drive
East Lansing, MI 48824
USA

Corresponding author
Email: jan.o.gjershaug@nina.no
Paper V is not included due to copyright.
Paper VI
Paper VI is not included due to copyright.
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Degree</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>Tor-Henning Iversen</td>
<td>Dr. philos</td>
<td>Botany: The roles of statoliths, auxin transport, and auxin metabolism in root gravitropism</td>
</tr>
<tr>
<td>1978</td>
<td>Tore Slagsvold</td>
<td>Dr. philos</td>
<td>Zoology: Breeding events of birds in relation to spring temperature and environmental phenology.</td>
</tr>
<tr>
<td>1978</td>
<td>Egil Sakshaug</td>
<td>Dr. philos</td>
<td>Botany: “The influence of environmental factors on the chemical composition of cultivated and natural populations of marine phytoplankton”</td>
</tr>
<tr>
<td>1980</td>
<td>Arnfinn Langeland</td>
<td>Dr. philos</td>
<td>Zoology: Interaction between fish and zooplankton populations and their effects on the material utilization in a freshwater lake.</td>
</tr>
<tr>
<td>1980</td>
<td>Helge Reinertsen</td>
<td>Dr. philos</td>
<td>Botany: The effect of lake fertilization on the dynamics and stability of a limnetic ecosystem with special reference to the phytoplankton</td>
</tr>
<tr>
<td>1982</td>
<td>Gunn Mari Olsen</td>
<td>Dr. scient</td>
<td>Botany: Gravitropism in roots of Pisum sativum and Arabidopsis thaliana</td>
</tr>
<tr>
<td>1982</td>
<td>Dag Dolmen</td>
<td>Dr. philos</td>
<td>Zoology: Life aspects of two sympartic species of newts (Triturus, Amphibia) in Norway, with special emphasis on their ecological niche segregation.</td>
</tr>
<tr>
<td>1984</td>
<td>Eivin Røskaft</td>
<td>Dr. philos</td>
<td>Zoology: Sociobiological studies of the rook Corvus frugilegus.</td>
</tr>
<tr>
<td>1984</td>
<td>Anne Margrethe Cameron</td>
<td>Dr. scient</td>
<td>Botany: Effects of alcohol inhalation on levels of circulating testosterone, follicle stimulating hormone and luteinizing hormone in male mature rats</td>
</tr>
<tr>
<td>1984</td>
<td>Asbjørn Magne Nilsen</td>
<td>Dr. scient</td>
<td>Botany: Alveolar macrophages from expectorates – Biological monitoring of workers exposed to occupational air pollution. An evaluation of the AM-test</td>
</tr>
<tr>
<td>1985</td>
<td>Jarle Mork</td>
<td>Dr. philos</td>
<td>Zoology: Biochemical genetic studies in fish.</td>
</tr>
<tr>
<td>1985</td>
<td>John Solem</td>
<td>Dr. philos</td>
<td>Zoology: Taxonomy, distribution and ecology of caddisflies (Trichoptera) in the Dovrefjell mountains.</td>
</tr>
<tr>
<td>1986</td>
<td>Bernt-Erik Sæther</td>
<td>Dr. philos</td>
<td>Zoology: Ecological and evolutionary basis for variation in reproductive traits of some vertebrates: A comparative approach.</td>
</tr>
<tr>
<td>1986</td>
<td>Torleif Holthe</td>
<td>Dr. philos</td>
<td>Zoology: Evolution, systematics, nomenclature, and zoogeography in the polychaete orders Oweniimorpha and Terebellimorpha, with special reference to the Arctic and Scandinavian fauna.</td>
</tr>
<tr>
<td>1987</td>
<td>Helene Lampe</td>
<td>Dr. scient</td>
<td>Zoology: The function of bird song in mate attraction and territorial defence, and the importance of song repertoires.</td>
</tr>
<tr>
<td>1987</td>
<td>Olav Hogstad</td>
<td>Dr. philos</td>
<td>Zoology: Winter survival strategies of the Willow tit Parus montanus.</td>
</tr>
<tr>
<td>1987</td>
<td>Jarle Inge Holten</td>
<td>Dr. philos</td>
<td>Botany: Autecological investigations along a coast-inland transect at Nord-Møre, Central Norway</td>
</tr>
<tr>
<td>1987</td>
<td>Rita Kumar</td>
<td>Dr. scient</td>
<td>Botany: Somaclonal variation in plants regenerated from cell cultures of Nicotiana sanderae and Chrysanthemum morifolium</td>
</tr>
<tr>
<td>Year</td>
<td>Name</td>
<td>Degree</td>
<td>Department</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>1987</td>
<td>Bjørn Åge Tømmerås</td>
<td>Dr. scient.</td>
<td>Zoology</td>
</tr>
<tr>
<td>1988</td>
<td>Marianne V. Nielsen</td>
<td>Dr. scient.</td>
<td>Zoology</td>
</tr>
<tr>
<td>1989</td>
<td>John W. Jensen</td>
<td>Dr. philos.</td>
<td>Zoology</td>
</tr>
<tr>
<td>1989</td>
<td>Helga J. Vivås</td>
<td>Dr. scient.</td>
<td>Zoology</td>
</tr>
<tr>
<td>1989</td>
<td>Reidar Andersen</td>
<td>Dr. scient.</td>
<td>Zoology</td>
</tr>
<tr>
<td>1989</td>
<td>Kurt Ingar Draget</td>
<td>Dr. scient.</td>
<td>Botany</td>
</tr>
<tr>
<td>1990</td>
<td>Bengt Finstad</td>
<td>Dr. scient.</td>
<td>Zoology</td>
</tr>
<tr>
<td>1990</td>
<td>Hege Johannesen</td>
<td>Dr. scient.</td>
<td>Zoology</td>
</tr>
<tr>
<td>1990</td>
<td>Åse Krøkje</td>
<td>Dr. scient.</td>
<td>Botany</td>
</tr>
<tr>
<td>1991</td>
<td>Tor Jørgen Almaas</td>
<td>Dr. scient.</td>
<td>Zoology</td>
</tr>
<tr>
<td>1991</td>
<td>Magne Husby</td>
<td>Dr. scient.</td>
<td>Zoology</td>
</tr>
<tr>
<td>1991</td>
<td>Asbjørn Moen</td>
<td>Dr. philos.</td>
<td>Botany</td>
</tr>
<tr>
<td>1991</td>
<td>Else Marie Løbersli</td>
<td>Dr. scient.</td>
<td>Botany</td>
</tr>
<tr>
<td>1991</td>
<td>Trond Nordtug</td>
<td>Dr. scient.</td>
<td>Zoology</td>
</tr>
<tr>
<td>1991</td>
<td>Thyra Solem</td>
<td>Dr. scient.</td>
<td>Botany</td>
</tr>
<tr>
<td>1991</td>
<td>Odd Terje Sandlund</td>
<td>Dr. philos.</td>
<td>Zoology</td>
</tr>
<tr>
<td>1991</td>
<td>Nina Jonsson</td>
<td>Dr. philos.</td>
<td>Zoology</td>
</tr>
</tbody>
</table>
1991 Atle Bones Dr. scient. Botany Compartmentation and molecular properties of thioglucoside glucohydrolase (myrosinase)
1992 Torgrim Breiehagen Dr. scient. Zoology Mating behaviour and evolutionary aspects of the breeding system of two bird species: the Temminck's stint and the Pied flycatcher.
1992 Anne Kjersti Bakken Dr. scient. Botany The influence of photoperiod on nitrate assimilation and nitrogen status in timothy (Phleum pratense L.)
1992 Tycho Anker-Nilssen Dr. scient. Zoology Food supply as a determinant of reproduction and population development in Norwegian Puffins Fratercula arctica
1992 Bjørn Munro Jenssen Dr. philos. Zoology Thermoregulation in aquatic birds in air and water: With special emphasis on the effects of crude oil, chemically treated oil and cleaning on the thermal balance of ducks.
1992 Arne Vollan Aarset Dr. scient. Zoology The ecophysiology of under-ice fauna: Osmotic regulation, low temperature tolerance and metabolism in polar crustaceans.
1993 Geir Slupphaug Dr. scient. Botany Regulation and expression of uracil-DNA glycosylase and O6-methylguanine-DNA methyltransferase in mammalian cells
1993 Tor Fredrik Næsje Dr. scient. Zoology Habitat shifts in coregonids.
1993 Yngvar Asbjørn Olsen Dr. scient. Zoology Cortisol dynamics in Atlantic salmon, Salmo salar L.: Basal and stressor-induced variations in plasma levels ans some secondary effects.
1993 Bård Pedersen Dr. scient. Botany Theoretical studies of life history evolution in modular and clonal organisms
1993 Ole Petter Thangstad Dr. scient. Botany Molecular studies of myrosinase in Brassicaceae
1993 Thrine L. M. Heggberget Dr. scient. Zoology Reproductive strategy and feeding ecology of the Eurasian otter Lutra lutra.
1993 Kjetil Bevanger Dr. scient. Zoology Avian interactions with utility structures, a biological approach.
1993 Kåre Haugan Dr. scient. Botany Mutations in the replication control gene trfA of the broad host-range plasmid RK2
1994 Peder Fiske Dr. scient. Zoology Sexual selection in the lekking great snipe (Gallinago media): Male mating success and female behaviour at the lek.
1994 Kjell Inge Reitan Dr. scient. Botany Nutritional effects of algae in first-feeding of marine fish larvae
1994 Nils Røv Dr. scient. Zoology Breeding distribution, population status and regulation of breeding numbers in the northeast-Atlantic Great Cormorant Phalacrocorax carbo carbo
1994 Annette-Susanne Hoepfner Dr. scient. Botany Tissue culture techniques in propagation and breeding of Red Raspberry (Rubus idaeus L.)
1994 Inga Elise Bruteig Dr. scient. Botany Distribution, ecology and biomonitoring studies of epiphytic lichens on conifers
1994 Geir Johnsen Dr. scient. Botany Light harvesting and utilization in marine phytoplankton: Species-specific and photoadaptive responses
1994 Morten Bakken Dr. scient. Zoology Infanticidal behaviour and reproductive performance in relation to competition capacity among farmed silver fox vixens, Vulpes vulpes.
1994 Arne Moksnes Dr. philos. Zoology Host adaptations towards brood parasitism by the Cockoo.
1994 Solveig Bakken Dr. scient. Botany Growth and nitrogen status in the moss Dicranum majus
1995 Olav Vadstein Dr. philos. Botany The role of hetotrophic planktonic bacteria in the cycling of phosphorus in lakes: Phosphorus requirement, competitive ability and food web interactions.
1995 Hanne Christensen Dr. scient. Zoology Determinants of Otter *Lutra lutra* distribution in Norway: Effects of harvest, polychlorinated biphenyls (PCBs), human population density and competition with mink *Mustela vision*.

1995 Svein Håkon Lorentsen Dr. scient. Zoology Reproductive effort in the Antarctic Petrel *Thalassiaica antarctica*; the effect of parental body size and condition.

1995 Chris Jørgen Jensen Dr. scient. Zoology The surface electromyographic (EMG) amplitude as an estimate of upper trapezius muscle activity.

1995 Martha Kold Bakkevig Dr. scient. Zoology The impact of clothing textiles and construction in a clothing system on thermoregulatory responses, sweat accumulation and heat transport.

1995 Vidar Moen Dr. scient. Zoology Distribution patterns and adaptations to light in newly introduced populations of *Mysis relicta* and constraints on Cladoceran and Char populations.

1995 Hans Haavardsholm Dr. philos Bothany A revision of the *Schistidium apocarpum* complex in Norway and Sweden.

1996 Ola Ugedal Dr. scient. Zoology Radiocesium turnover in freshwater fishes.

1996 Ingibjørg Einarsdottir Dr. scient. Zoology Production of Atlantic salmon (*Salmo salar*) and Arctic char (*Salvelinus alpinus*): A study of some physiological and immunological responses to rearing routines.

1996 Christina M. S. Pereira Dr. scient. Zoology Glucose metabolism in salmonids: Dietary effects and hormonal regulation.

1996 Jan Fredrik Børseth Dr. scient. Zoology The sodium energy gradients in muscle cells of *Mytilus edulis* and the effects of organic xenobiotics.

1996 Gunnar Henriksen Dr. scient. Zoology Status of Grey seal *Halichoerus grypus* and Harbour seal *Phoca vitulina* in the Barents sea region.

1997 Gunvor Øie Dr. scient. Botany Evaluation of rotifer *Brachionus plicatilis* quality in early first feeding of turbot *Scophtalmus maximus* larvae.

1997 Håkon Holien Dr. scient. Botany Studies of lichens in spruce forest of Central Norway. Diversity, old growth species and the relationship to site and stand parameters.

1997 Ole Reitan Dr. scient. Zoology Responses of birds to habitat disturbance due to damming.

1997 Jon Arne Grøttsdottir Dr. scient. Zoology Physiological effects of reduced water quality on fish in aquaculture.

1997 Per Gustav Thingstad Dr. scient. Zoology Birds as indicators for studying natural and human-induced variations in the environment, with special emphasis on the suitability of the Pied Flycatcher.

1997 Torgeir Nygård Dr. scient. Zoology Temporal and spatial trends of pollutants in birds in Norway: Birds of prey and Willow Grouse used as Biomonitor.

1997 Signe Nybø Dr. scient. Zoology Impacts of long-range transported air pollution on birds with particular reference to the dipper *Cinclus cinclus* in southern Norway.

1997 Atle Wibe Dr. scient. Zoology Identification of conifer volatiles detected by receptor neurons in the pine weevil (*Hylobius abietis*), analysed by gas chromatography linked to electrophysiology and to mass spectrometry.

1997 Rolv Lundheim Dr. scient. Zoology Adaptive and incidental biological ice nucleators.

1997 Kåre Magne Nielsen Dr. scient. Botany An evolution of possible horizontal gene transfer from plants to sail bacteria by studies of natural transformation in *Acinetobacter calcoaceti*us.

1997 Jarle Tufto Dr. scient. Zoology Gene flow and genetic drift in geographically structured populations: Ecological, population genetic, and statistical models

1997 Trygve Hesthagen Dr. philos. Zoology Population responses of Arctic char (*Salvelinus alpinus* (L.)) and brown trout (*Salmo trutta* L.) to acidification in Norwegian inland waters

1997 Trygve Sigholt Dr. philos. Zoology Control of Parr-smolt transformation and seawater tolerance in farmed Atlantic Salmon (*Salmo salar*) Effects of photoperiod, temperature, gradual seawater acclimation, NaCl and betaine in the diet

1997 Jan Østnes Dr. scient. Zoology Cold sensation in adult and neonate birds

1998 Seethaledsumy Visvalingam Dr. scient. Botany Influence of environmental factors on myrosinases and myrosinase-binding proteins.

1998 Thor Harald Ringsby Dr. scient. Zoology Variation in space and time: The biology of a House sparrow metapopulation

1998 Erling Johan Solberg Dr. scient. Zoology Variation in population dynamics and life history in a Norwegian moose (*Alces alces*) population: consequences of harvesting in a variable environment

1998 Sigurd Mjøen Saastad Dr. scient. Botany Species delimitation and phylogenetic relationships between the Sphagnum recurvum complex (Bryophyta): genetic variation and phenotypic plasticity.

1998 Bjarte Mortensen Dr. scient. Botany Metabolism of volatile organic chemicals (VOCs) in a head liver S9 vial equilibration system in vitro.

1998 Gunnar Austrheim Dr. scient. Botany Plant biodiversity and land use in subalpine grasslands. – A conservation biological approach.

1998 Bente Gunnveig Berg Dr. scient. Zoology Encoding of pheromone information in two related moth species

1999 Kristian Overskaug Dr. scient. Zoology Behavioural and morphological characteristics in Northern Tawny Owls *Strix aluco*: An intra- and interspecific comparative approach

1999 Hans Kristen Stenøien Dr. scient. Botany Genetic studies of evolutionary processes in various populations of nonvascular plants (mosses, liverworts and hornworts)

1999 Trond Arnesen Dr. scient. Botany Vegetation dynamics following trampling and burning in the outlying haylands at Sølendet, Central Norway.

1999 Ingvar Stenberg Dr. scient. Zoology Habitat selection, reproduction and survival in the White-backed Woodpecker *Dendrocopos leucotos*

1999 Stein Olle Johansen Dr. scient. Botany A study of driftwood dispersal to the Nordic Seas by dendrochronology and wood anatomical analysis.

1999 Trina Falck Galloway Dr. scient. Zoology Muscle development and growth in early life stages of the Atlantic cod (*Gadus morhua* L.) and Halibut (*Hippoglossus hippoglossus* L.)

1999 Torbjørn Forseth Dr. scient. Zoology Bioenergetics in ecological and life history studies of fishes.

1999 Marianne Giæver Dr. scient. Zoology Population genetic studies in three gadoid species: blue whiting (*Micromisistius poutassou*), haddock (*Melanogrammus aeglefinus*) and cod (*Gradus morhua*) in the North-East Atlantic

1999 Hans Martin Hanslin Dr. scient. Botany The impact of environmental conditions of density dependent performance in the boreal forest bryophytes *Dicranum majus*, *Hylocomium splendens*, *Plagiochila asplenigides*, *Ptilium crista-castrensis* and *Rhytidioadelphia lokeus*.
1999 Ingrid Bysveen
Mjølnerød Dr. scient. Aspects of population genetics, behaviour and performance of wild and farmed Atlantic salmon (*Salmo salar*) revealed by molecular genetic techniques

1999 Else Berit Skagen
Botany Dr. scient. The early regeneration process in protoplasts from *Brassica napus* hypocotyls cultivated under various g-forces

1999 Stein-Are Sæther
Zoology Dr. philos. Mate choice, competition for mates, and conflicts of interest in the Lekking Great Snipe

1999 Katrine Wangen Rustad
Zoology Dr. scient. Modulation of glutamatergic neurotransmission related to cognitive dysfunctions and Alzheimer’s disease

1999 Per Terje Smiseth
Zoology Dr. scient. Social evolution in monogamous families: mate choice and conflicts over parental care in the Bluethroat (*Luscinia s. svecica*)

1999 Gunnbjørn Bremset
Zoology Dr. scient. Young Atlantic salmon (*Salmo salar* L.) and Brown trout (*Salmo trutta* L.) inhabiting the deep pool habitat, with special reference to their habitat use, habitat preferences and competitive interactions

1999 Frode Ødegaard
Zoology Dr. scient. Host specificity as parameter in estimates of arthropod species richness

1999 Sonja Andersen
Botany Dr. scient. Expressional and functional analyses of human, secretory phospholipase A2

2000 Ingrid Salvesen, I
Botany Dr. scient. Microbial ecology in early stages of marine fish: Development and evaluation of methods for microbial management in intensive larviculture

2000 Ingvar Jostein Øien
Zoology Dr. scient. The Cuckoo (*Cuculus canorus*) and its host: adaptations and counteradaptations in a coevolutionary arms race

2000 Pavlos Makridis
Botany Dr. scient. Methods for the microbial econtrol of live food used for the rearing of marine fish larvae

2000 Sigbjørn Stokke
Zoology Dr. scient. Sexual segregation in the African elephant (*Loxodonta africana*)

2000 Odd A. Gulseth
Zoology Dr. philos. Seawater tolerance, migratory behaviour and growth of Charr, (*Salvelinus alpinus*), with emphasis on the high Arctic Diesel charr on Spitsbergen, Svalbard

2000 Pål A. Olsvik
Zoology Dr. scient. Biochemical impacts of Cd, Cu and Zn on brown trout (*Salmo trutta*) in two mining-contaminated rivers in Central Norway

2000 Sigurd Einum
Zoology Dr. scient. Maternal effects in fish: Implications for the evolution of breeding time and egg size

2001 Jan Ove Evjemo
Zoology Dr. scient. Production and nutritional adaptation of the brine shrimp *Artemia sp.* as live food organism for larvae of marine cold water fish species

2001 Olga Hilmo
Botany Dr. scient. Lichen response to environmental changes in the managed boreal forest systems

2001 Ingebrigt Uglem
Zoology Dr. scient. Male dimorphism and reproductive biology in corkwing wrasse (*Symphodus melops* L.)

2001 Bård Gunnar Stokke
Zoology Dr. scient. Coevolutionary adaptations in avian brood parasites and their hosts

2002 Ronny Aanes
Zoology Dr. scient. Spatio-temporal dynamics in Svalbard reindeer (*Rangifer tarandus platyrhynchos*)

2002 Mariann Sandsund
Zoology Dr. scient. Exercise- and cold-induced asthma. Respiratory and thermoregulatory responses

2002 Dag-Inge Øien
Botany Dr. scient. Dynamics of plant communities and populations in boreal vegetation influenced by scything at Sølendet, Central Norway

2002 Frank Rosell
Zoology Dr. scient. The function of scent marking in beaver (*Castor fiber*)

2002 Janne Østvang
Botany Dr. scient. The Role and Regulation of Phospholipase A2 in Monocytes During Atherosclerosis Development
2002 Terje Thun Dr. philos Biology
Dendrochronological constructions of Norwegian conifer chronologies providing dating of historical material

2002 Birgit Hafjeld Borgen Dr. scient Biology
Functional analysis of plant idioblasts (Myrosin cells) and their role in defense, development and growth

2002 Bård Øyvind Solberg Dr. scient Biology
Effects of climatic change on the growth of dominating tree species along major environmental gradients

2002 Per Winge Dr. scient Biology
The evolution of small GTP binding proteins in cellular organisms. Studies of RAC GTPases in Arabidopsis thaliana and

2002 Henrik Jensen Dr. scient Biology
Causes and consequences of individual variation in fitness-related traits in house sparrows

2003 Jens Rohloff Dr. philos Biology
Cultivation of herbs and medicinal plants in Norway – Essential oil production and quality control

2003 Åsa Maria O. Espmark Wibe Dr. scient Biology
Behavioural effects of environmental pollution in threespine stickleback Gasterosteus aculeatus L.

2003 Dagmar Hagen Dr. scient Biology
Assisted recovery of disturbed arctic and alpine vegetation – an integrated approach

2003 Bjørn Dahle Dr. scient Biology
Reproductive strategies in Scandinavian brown bears

2003 Cyril Lebogang Taolo Dr. scient Biology
Population ecology, seasonal movement and habitat use of the African buffalo (Syncerus caffer) in Chobe National Park, Botswana

2003 Marit Stranden Dr. scient Biology
Olfactory receptor neurones specified for the same odorants in three related Heliothine species (Helicoverpa armigera, Helicoverpa assulta and Heliothis virescens)

2003 Kristian Hassel Dr. scient Biology
Life history characteristics and genetic variation in an expanding species, Pogonatum dentatum

2003 David Alexander Rae Dr. scient Biology
Plant- and invertebrate-community responses to species interaction and microclimatic gradients in arpine and Artic environments

2003 Åsa A Borg Dr. scient Biology
Sex roles and reproductive behaviour in gobies and guppies: a female perspective

2003 Eldar Åsgard Bendiksen Dr. scient Biology
Environmental effects on lipid nutrition of farmed Atlantic salmon (Salmo Salar L.) parr and smolt

2004 Torkild Bakken Dr. scient Biology
A revision of Nereidinae (Polychaeta, Nereididae)

2004 Ingar Pareliussen Dr. scient Biology
Natural and Experimental Tree Establishment in a Fragmented Forest, Amboltanteely Forest Reserve, Madagascar

2004 Tore Brembu Dr. scient Biology
Genetic, molecular and functional studies of RAC GTPases and the WAVE-like regulatory protein complex in Arabidopsis thaliana

2004 Liv S. Nilsen Dr. scient Biology
Coastal heath vegetation on central Norway; recent past, present state and future possibilities

2004 Hanne T. Skiri Dr. scient Biology
Olfactory coding and olfactory learning of plant odours in heliothine moths. An anatomical, physiological and behavioural study of three related species (Heliothis virescens, Helicoverpa armigera and Helicoverpa assulta).

2004 Lene Østby Dr. scient Biology
Cytochrome P4501A (CYP1A) induction and DNA adducts as biomarkers for organic pollution in the natural environment

2004 Emmanuel J. Gerreta Dr. philos Biology
The Importance of Water Quality and Quantity in the Tropical Ecosystems, Tanzania

2004 Linda Dalen Dr. scient Biology
Dynamics of Mountain Birch Treelines in the Scandes Mountain Chain, and Effects of Climate Warming
<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Degree</th>
<th>Field</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>Lisbeth Mehli</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Polygalacturonase-inhibiting protein (PGIP) in cultivated strawberry (Fragaria x ananassa): characterisation and induction of the gene following fruit infection by Botrytis cinerea</td>
</tr>
<tr>
<td>2004</td>
<td>Børge Moe</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Energy-Allocation in Avian Nestlings Facing Short-Term Food Shortage</td>
</tr>
<tr>
<td>2005</td>
<td>Matilde Skogen</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Metabolic profiling and species discrimination from High-Resolution Magic Angle Spinning NMR analysis of whole-cell samples</td>
</tr>
<tr>
<td>2005</td>
<td>Sten Karlsson</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Dynamics of Genetic Polymorphisms</td>
</tr>
<tr>
<td>2005</td>
<td>Terje Bongard</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Life History strategies, mate choice, and parental investment among Norwegians over a 300-year period</td>
</tr>
<tr>
<td>2005</td>
<td>Tonette Røstelien</td>
<td>PhD</td>
<td>Biology</td>
<td>Functional characterisation of olfactory receptor neurone types in heliothine moths</td>
</tr>
<tr>
<td>2005</td>
<td>Erlend Kristiansen</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Studies on antifreeze proteins</td>
</tr>
<tr>
<td>2005</td>
<td>Eugen G. Sørmo</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Organochlorine pollutants in grey seal (Halichoerus grypus) pups and their impact on plasma thyrid hormone and vitamin A concentrations.</td>
</tr>
<tr>
<td>2005</td>
<td>Christian Westad</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Motor control of the upper trapezius</td>
</tr>
<tr>
<td>2005</td>
<td>Lasse Mork Olsen</td>
<td>PhD</td>
<td>Biology</td>
<td>Interactions between marine osmo- and phagotrophs in different physicochemical environments</td>
</tr>
<tr>
<td>2005</td>
<td>Åslaug Viken</td>
<td>PhD</td>
<td>Biology</td>
<td>Implications of mate choice for the management of small populations</td>
</tr>
<tr>
<td>2005</td>
<td>Ariaya Hymete Sahle Dingle</td>
<td>PhD</td>
<td>Biology</td>
<td>Investigation of the biological activities and chemical constituents of selected Echinops spp. growing in Ethiopia</td>
</tr>
<tr>
<td>2005</td>
<td>Ander Gravbrøt Finstad</td>
<td>PhD</td>
<td>Biology</td>
<td>Salmonid fishes in a changing climate: The winter challenge</td>
</tr>
<tr>
<td>2005</td>
<td>Shimane Washington Makabu</td>
<td>PhD</td>
<td>Biology</td>
<td>Interactions between woody plants, elephants and other browsers in the Chobe Riverfront, Botswana</td>
</tr>
<tr>
<td>2005</td>
<td>Kjartan Østbye</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>The European whitefish Coregonus lavaretus (L.) species complex: historical contingency and adaptive radiation</td>
</tr>
<tr>
<td>2006</td>
<td>Kari Mette Murvoll</td>
<td>PhD</td>
<td>Biology</td>
<td>Levels and effects of persistent organic pollutants (POPs) in seabirds Retinoids and α-tocopherol – potential biomakers of POPs in birds?</td>
</tr>
<tr>
<td>2006</td>
<td>Ivar Herfindal</td>
<td>Dr.scient</td>
<td>Biology</td>
<td>Life history consequences of environmental variation along ecological gradients in northern ungulates</td>
</tr>
<tr>
<td>2006</td>
<td>Nils Egil Tokle</td>
<td>PhD</td>
<td>Biology</td>
<td>Are the ubiquitous marine copepods limited by food or predation? Experimental and field-based studies with main focus on Calanus finmarchicus</td>
</tr>
</tbody>
</table>