ORGANIZATION
The Centre Klima 2050 has an active and dedicated Board lead by Grethe Bergly, Multiconsult. She highlights the central role of the building and transportation sector in adapting the built environment and infrastructure to the future climate changes.

Climate adaption requires that we actively search for new knowledge and skills in how society, technology, organizations and people interact to achieve the good solutions for the future.

– The success factor for climate adaptation and risk reduction may be found in the acknowledgement that tomorrow’s solutions is not necessarily found in the present solutions and way of working, says Bergly.

REFLECTIONS FOR THE FUTURE

Klima 2050 will develop solutions for tomorrow in areas which will have great impact on society and the building, construction and transport industry.
CLIMATE CHANGES AFFECT US

Society therefore has to cope with future negative effects of climate change. Scenarios for climate change in Norway indicate an increased occurrence of extreme weather. Together with a warmer climate, intense precipitation over parts of Norway will also increase. We must prepare for increased precipitation with subsequent increased strain on drainage systems, more water damage to buildings, several landslides and more flooding.

Unfortunately, the built environment is particularly vulnerable to climate change. Changes in climate will enhance the need for maintenance and the renewal of robust key societal infrastructure. New knowledge, methods and tools for implementing solutions is of utmost importance for a safe, sustainable and cost-effective development of the Norwegian society.

Klima 2050 - Risk reduction through climate adaptation of buildings and infrastructure is a Centre for Research-based Innovation (SFI) financed by the Research Council of Norway and the consortium partners. The SFI status enables long-term research in close collaboration with private and public sector, as well as other research partners aiming to strengthen Norway’s innovation ability and competitiveness within climate adaptation. The composition of the consortium is vital in order to being able to reduce the societal risks associated with climate change.

The Centre will strengthen companies’ innovation capacity through a focus on long-term research. It is also a clear objective to facilitate close cooperation between R&D-performing companies and prominent research groups.

«The Intergovernmental Panel on Climate Change concluded that most of the global warming observed over the last 50 years is attributable to human activities, and that anthropogenic climate change is likely to persist for centuries to come»

Hanne Rønneberg, SINTEF
VISION
The Centre for Research-based Innovation Klima 2050 shall be synonymous with excellence within risk reduction through climate adaptation of buildings and infrastructure exposed to enhanced precipitation and flood water. Klima 2050 shall be an effective instrument for the development and implementation of adaptive innovations for the Centre partners and society.

MAIN GOAL
Klima 2050 will reduce the societal risks associated with climate changes and enhanced precipitation and flood water exposure within the built environment. Emphasis will be placed on development of moisture-resilient buildings, stormwater management, blue-green solutions, measures for prevention of water-triggered landslides, socio-economic incentives and decision-making processes. Both extreme weather and gradual changes in the climate will be addressed.

The Centre will be recognised for its research training within the field of climate adaptation of the built environment. Through education of graduate students, training of highly qualified research personnel through PhDs and training of professionals in the sector, the Centre will stimulate new solutions and further research and development in the building, construction and transportation (BCT) sector long after the term of the Centre’s existence.

«Both extreme weather and gradual changes in the climate are addressed»
Berit Time, SINTEF

THE RESEARCH IS DIVIDED INTO FOUR MAIN AREAS:
WP1 Climate exposure and moisture-resilient buildings
WP2 Stormwater management in small catchments
WP3 Landslides triggered by hydro-meteorological processes
WP4 Decision-making processes and impact
The user partners represent important parts of Norwegian building industry; consultants, entrepreneurs, property developers, producers of construction materials and authorities. Three partners joined the consortium in 2016, and the value chain within Klima 2050’s fields of research is complete.

The host institution for SFI Klima 2050 is SINTEF, and the Centre is directed in cooperation with NTNU. BI Norwegian Business School, Norwegian Geotechnical Institute (NGI) and Norwegian Meteorological Institute (MET Norway) are research partners.
THE ORGANIZATION

CENTRE MANAGEMENT
Berit Time, chief scientist at SINTEF, Centre Director
Tore Kvande, professor at NTNU, Principal Investigator (WP1)
Edvard Sivertsen, senior research scientist SINTEF (WP2)
José Cepeda, senior advisor at NGI (WP3)
Bjørn Kalsnes, senior engineer at NGI (WP3)
Åshild L. Hauge, senior research scientist SINTEF (WP4)
Lena Bygballe, associate professor at BI Norwegian Business School (WP4, IA)
Anders-Johan Almås, senior research scientist SINTEF (IA)
Randi I. Henriksen, administrative coordinator at SINTEF (adm)

CENTRE BOARD
Grethe Bergly, Multiconsult (Chairwoman)
Anne Britt Leifseth, NVE
Håvard Zachariassen, Statsbygg
Marit Brandtsegg, Statens vegvesen
Dag Runar Båtvik, Norgeshus
Rune Stene, Skanska
Anders Solheim, NGI
Carl Thodesen, NTNU
Hanne Renneberg, SINTEF
Svein Erik Moen, The Research Council of Norway (observer)
Chairman of General Assembly: Kim Robert Lise, Skanska
THE ORGANIZATION

General Assembly
All partners

Centre Board

Centre Management Team

Research Training Committee

International Scientific Advisory Committee

WP1: Climate exposure and moisture-resilient buildings

WP2: Stormwater management in small catchments

WP3: Landslides triggered by hydro-meteorological processes

WP4: Decision-making processes and impact

Klima 2050 Innovation Arena (IA)
A priority for Klima 2050 is the education and training of highly qualified research personnel, says Ragnhild Kvålshaugen, BI.

This will be accomplished through education of a number of Ph.D. candidates, improved and intensified graduate and undergraduate education at NTNU and BI, and the establishment of a new adjunct professorship, promoted by the industry, in climate adaptation of buildings and infrastructure at the Faculty of Engineering Science and Technology – NTNU. In addition, extensive competence enhancement will take place through the R&D activities, conferences, seminars and thematic meetings inside the Centre and in collaboration with external partners.

The activity concerning researcher training focus three main areas; 1. publication activity, 2. Ph.D.-gatherings, and 3. the ambition to include the industry and public partners of the Centre into the research activity through the work of the Ph.D.’s.

The first Ph.D.-gathering took place in Stokkøya in October, 2016, and the team is established.
International collaboration is one of the success criteria for SFI centres defined by the Research Council of Norway.

One example of Klima 2050s international cooperation is with Chalmers University of Technology on the project “Storm water flooding in urban areas: risk mitigation by utilizing roofs as storm water buffers”. Another example is the contact with VTT in Finland: Mutual visits have led to cooperation on stormwater management and possible exchange of master students. Finally, two post.doc researchers from University of Rome and University of Salerno have stayed at NGI in 2016. The cooperation is linked to the work on an event based inventory for landslides triggered by water.

The International Scientific Advisory Committee designated to give advices related to the research and the overall progress and achievement of the Centre. Photo (from the left) Kristina Mjörnell, Hallie Eakin, Rafaela Matos and Thomas Glade.
Reduction of landslide risk can be achieved using a wide range of mitigation measures that have to be technically suitable and socio-economically feasible. Klima 2050 is preparing a web portal as a tool for assisting NVE, Multiconsult and others in decision making.

A barrier to implement climate adaptation in local planning is lack of collaboration within the municipality and between municipalities. Trondheim municipality has taken a leading role in the region by assisting neighbouring municipalities, which do not participate in networks and centres like Klima 2050.

Together with Norgeshus and Isola we are developing a pilot project with the use of a smart vapour barrier to increase robustness in compact wooden roofs. The solution gives reduced material use and a more efficient construction process, which gives economic benefits.

Klima 2050 has tested a new filter material and examined how effectively filter removes chemicals used at airports. Hopefully the filter can also clean the stormwater from roads. Key players in the development are Saint-Gobain Weber, Avinor and Statens vegvesen.

Key players in the development are Saint-Gobain Weber, Avinor and Statens vegvesen.
WHY KLIMA 2050 IS IMPORTANT
THE INSURANCE INDUSTRY LIVING WITH CLIMATE CHANGE

Director of insurance at Finans Norge, Geir Trulserud, hopes that Klima 2050 will come up with many good solutions to reduce the risk and damage to buildings caused by climate change.

– The insurance industry has been working with climate adaptation for a long time. We were, for instance, involved in Klima 2000 where the perspective was to see how climate changes affect existing buildings, says Geir Trulserud, director of insurance at Finans Norge.

The insurance industry is living with the consequences of climate change. According to Trulserud, after the torrential rain in Asker and Bærum in August 2016, the reconstruction bill for that alone came to more than half billion Norwegian kroner.
Stormwater problems
According to the Natural Perils Insurance Act, all buildings and personal property insured against fire damage are also automatically insured against natural hazards. The growing problem of stormwater is usually covered by contents insurance and home insurance.

Although there is more damage to buildings now than before, until now no insurance premiums have increased.

– It’s interesting for us that Klima 2050 looks at how existing building structures are affected and suggests solutions and possibilities for improvement, says Trulserud.

Health consequences
The insurance industry is concerned not only with the damaging effects of more extreme weather conditions on buildings. Rot, fungus and mould also affect health and, consequently, personal insurance.

– What do you see as important for reducing risks associated with climate change?
– Finding new methods of handling large amounts of precipitation, such as green roofs, is important for us. In the future, those who take measures to counter the effects of climate change when building and renovating could possibly be rewarded with a better insurance premium.

Meeting future challenges
– What does it mean for Finans Norge to be a partner in Klima 2050?
– We gain access to inside information, cooperate with highly skilled people and establish important networks. We also hope that we contribute positively with our knowledge to the research.

The hope is that Klima 2050 will produce these results:
– Provide useful knowledge which government, local authorities, businesses, the general public, and not least the insurance industry can use to meet future climatic challenges, says Geir Trulserud.
– Without mutual support, no climate adaptation will be achieved. I hope that Klima 2050 will be a national effort, says Gordana Petkovic of Statens vegvesen Vegdirektoratet (SVV).

Gordana Petkovic, who has been working with climate adaptation in SVV since 2007, led a project which investigated the impact of climate change on Norwegian roads, such as more frequent landslides and flooding.

– In all new projects we take into account climate change and the need for adaptation. Our regulatory framework is constantly being updated with stricter requirements which also apply to suppliers.
Knowledge. The challenge is going from knowledge to action.

When the research project is completed, our job is to implement the findings, for example by building a drainage solution in a new way. To manage this, good dialogue between research and users is absolutely essential.

Uncertainty and flexibility
– What challenges do you face when working with climate adaptation?
– Within strict timeframes and budgets, it’s not easy to calculate in an economically responsible manner for the uncertainty of climate change and what it will mean for the future. Petkovic also thinks that a task for SVV projects is to accept that there are no ‘blueprint’ models for future conditions and that this situation requires flexible contracts.
– Uncertainty must be met with flexibility, says Gordana Petkovic.

Shared concerns
– What opportunities do cooperation and partnership in Klima 2050 offer you?
– We have great expectations for the partnership. We hope that it will result in a framework for communication and collaboration which will benefit everyone, that we will function more like a unified family with common interests.
– The more we know about the climate adaptation tasks and challenges of other partners, the easier it will be to cooperate. We face, for instance, many of the same challenges as Jernbanedirektoratet and Avinor, continues Petkovic.

Better dialogue with scientists
Petkovic hopes that there will be opportunities in Klima 2050 for testing new solutions in pilot projects.
– Klima 2050 is a response to the urgent need for more knowledge. The challenge is to convert knowledge into action. When the research project is completed, our job is to implement the findings, for example by building a drainage solution in a new way. To manage this, good dialogue between research and users is absolutely essential.
Climate adaptation has acquired status as a strategically important topic in line with reduction of greenhouse gas emissions and environment issues at Avinor. Through Klima 2050, Avinor benefits from the experiences of other partners.

Avinor first worked with climate adaptation in connection with the National Transport Plan in 2001. Some years later, they started improving safety at seaside airports in response to more uncertain weather conditions, higher water levels and storm surge.

– For many years, we have been working on adapting runways, but more systematic work with climate adaptation and buildings is relatively new to us. We try now to embed standards for climate adaptation both when upgrading and building new constructions, says Kristin Fjellheim at Avinor.

Climate adaptation belongs to everyone
– What does participation in Klima 2050 mean for you?
– Through the partnership, it gives us a sense of how others are working, which is very useful. We need new knowledge and practical advices.
– Climate adaptation is a topic that does not really belong to one specific department, but to all of them in some way. It is useful for us to see how others deal with the organisational challenges, continues Fjellheim.

Testing new solutions
Avinor finds it useful to test new solutions and participates in a pilot project through Klima 2050. This project investigates how to meet the challenges created by increased runoff water from runways and how to clean this water. In another study dealing with climate adaptation in existing buildings, an Avinor building is one of the cases.

– How do you work to reduce risks resulting from climate change?

– We have carried out risk assessment for all airports based on the consequences of climate change. We have examined the major airports in detail and the smaller ones more generally.

The need for more expertise among employees
Fjellheim says that work with climate adaptation is well established and that the topic is now considered as strategically important as reduction of greenhouse gas emissions and environment issues. However, Avinor is a large organisation.

– We have 46 airports, and it can be difficult to involve the right people throughout the country because so far there has been a lack of knowledge. It’s easier to work with more familiar topics like climate change and environmental issues. Managers and other employees need to become more aware of the need for climate adaptation and need to acquire expertise.
Major floods and landslides which put the railroad out of operation get wide media coverage. When we rebuild after such events, we also make the railway more robust, says Ragnhild Wahl from the Jernbanedirektoratet.

Wahl emphasises how huge the consequences are for society when the railway is disrupted. And because the railway is single track and because there are no possible detours in the event of floods or landslides, the railway is particularly vulnerable to natural hazards. This is particularly challenging for goods traffic which is dependent on reliable solutions.

A MORE ROBUST RAILWAY

Natural disasters such as floods and landslides which affect the railways have immense consequences for society. Ragnhild Wahl believes that climate adaptation must be planned and managed collectively.

Partner Jernbaneverket reorganised in 2016. Partner from 2017 is Jernbanedirektoratet.
Another challenge for the railway is that the infrastructure is old and was built with materials available from the surrounding areas, many of which were finer sediments which are easily washed out.

– A third challenge is that the lines were often built at the lowest point in the landscape, below later road and housing developments. Drainage was planned before all these new developments and water has now found new paths, says Wahl.

Adaptation through collaboration

– What opportunities do cooperation and partnership in Klima 2050 offer you?

– Adaptation needs to be addressed and planned jointly and Klima 2050 creates an arena where we can discuss both academic matters and practical measures. Collaboration is rewarding and it should contribute to good innovative solutions for the future. Everything is connected, says Wahl.

She also thinks it is important that NTNU and SINTEF, which are involved in education and research, develop greater understanding of the challenges faced by the Jernbanedirektoratet and other partners. It is they who will generate new knowledge and train future professionals in this field.

Need for smart solutions

– What does the job reducing risks involve for the Jernbaneverket?

– Natural disaster are both costly and time consuming. What we hope and believe is that Klima 2050 will provide us with knowledge and good solutions which will help to make the railway more reliable, says Ragnhild Wahl.

Wahl thinks it is a paradox that, because the infrastructure of roads with detour options is considered more reliable, climate change may lead to more goods being transported by road. To strengthen its credibility as a reliable way of transporting goods, the railway must be more robust.

«Klima 2050 creates an arena where we can discuss both academic matters and practical measures»

Ragnhild Wahl, Jernbanedirektoratet
The drainage network is not designed to handle the large amounts of rainfall we experience today and which we know will increase even more in the future. Reidar Øye, business manager of Powel, wants to develop digital solutions for improving stormwater management.

Global solutions

Powel is well known for its Gemini VA mapping solution which monitors and documents water and sewage systems and which is currently being used by more than 250 municipalities. The company wants to continue improving these solutions for councils and, at the same time, to expand and offer the solutions to an international market.

– As a result of climate change, urbanisation and the increasing demands of society, finding robust, climate adapted solutions for coping with stormwater is a global challenge. The trend is towards internationalisation and we hope we can provide global solutions, says Øye.

MANAGING STORMWATER

With more rainfall the need to find ways to manage stormwater also increases. Reidar Øye in Powel believes there is an urgent need for better digital solutions.
“Everyone knows that we must adapt to the future climate, but it must be prioritised in a busy everyday life”

Reidar Øye, Powel

Data model
Øye sees Klima 2050 as a meeting ground where partners can learn from each other and create together. Powel hopes to take part in joint pilot projects where various partners work together.
The company aims to develop a computer model which describes the different types of stormwater infrastructure which must be established in order to handle increased rainfall, ranging from streams, piping, rain gardens and green roofs.
– Currently, there is no software which describes stormwater structure and stormwater solutions in general. We hope Klima 2050 can contribute to developing such software for the international market.

Adaptation on hold
– What are the challenges of working with climate adaptation?
– When we talk to our customers, the municipalities, they do not always have clear requirements about how stormwater systems should be documented. Perhaps some local authorities are not yet well enough informed about handling future quantities of stormwater. Everyone knows that we must adapt to cope with future climate demands, but adaptation must be prioritised in busy everyday life, says Reidar Øye.
We are fighting a climate battle on two fronts. On the one hand, we must reduce greenhouse gas emissions. On the other, we have to deal with the fact that we have not managed to reduce emissions in time and, that as a result, we must actively work with climate adaptation, says Rune Stene, Chief of Skanska Technology and member of the board in Klima 2050.

Much to learn from the partners

It is useful for Skansa to be a partner in Klima 2050 since there is, for instance, much to learn from the experience of other partners, says Stene. Skansa uses Klima 2050 to verify that the internal standard building technique is as climate adapted as possible. He expects that Klima 2050 will contribute to good, innovative solutions.

More rain creates the need for more robust drainage pipe networks. But it is both costly and resource intensive to just keep on adding larger dimensions and more material to the infrastructure.

Rune Stene from Skansa believes there is a need for public mechanisms to support climate adapted infrastructure. He hopes Klima 2050 will contribute to new innovative solutions.
What we need are new types of materials and innovative solutions and methods to deal with the pressure on infrastructure, says Stene. In fact, the solution can sometimes be to reduce the use of materials. Because the climate is getting warmer, in many places it may be possible to use less building insulation yet maintain thermal comfort.

Wetter in Eastern Norway

Stene points out that the climate maps which have been used in building plans in various parts of the country are changing.
- A wetter and warmer climate in Eastern Norway affects buildings, leading to problems such as rot and damp. There is much to be learned from Western Norway, where heavy precipitation is already a familiar problem.

More long-term thinking

- What are the challenges of working with climate adaptation? Financially, it’s easier to be more proactive, for example, to get funding for climate-neutral buildings. It is more difficult, however, to reach an understanding that it can be an advantage to bear the extra costs of making a building more resilient to moisture. Getting to terms with the long-term effect of climate change also requires a change of mindset, says Stene.
GLIMPSES FROM THE RESEARCH ACTIVITIES
In Norway today, it already rains 20 percent more than it did 100 years ago. Scenarios for climate change indicate that rainfall will continue to increase and that there will be more extreme weather such as storms and heavy rainfall. While 600,000 buildings are currently located in areas where there is a high risk of rot decay, this number will increase to 2.4 million between 2070 and 2100. Moisture is the cause of about 75 percent of damage to buildings. There is no set definition of a climate-adapted building. In 2016, Klima 2050 partners began the process of specifying the meaning of the concept with the aim of agreeing on a definition.

Lack of definition
- There is a lot of talk about climate-adapted buildings, but it’s not specific enough. And it’s not easy to agree on a definition of what a climate adapted building is. One reason for this is that weather and climate vary considerably in Norway, so what’s a good measure of

Durable buildings
With a lifetime of 40 to 100 years, buildings are exposed to climate variations over decades. Leader of the project Climate exposure and moisture resilient-buildings is Tore Kvande.

BUILDING FOR THE CLIMATE OF THE FUTURE

Since construction and maintenance should last for several decades, it is important to have climate change and future climate in mind. But what exactly is a climate-adapted building?

In Norway today, it already rains 20 percent more than it did 100 years ago. Scenarios for climate change indicate that rainfall will continue to increase and that there will be more extreme weather such as storms and heavy rainfall. While 600,000 buildings are currently located in areas where there is a high risk of rot decay, this number will increase to 2.4 million between 2070 and 2100. Moisture is the cause of about 75 percent of damage to buildings.
climate adaptation for Western Norway may not be good for Northern Norway, says Tore Kvande, Professor of building materials at NTNU and principal investigator in SFI Klima 2050.

Kvande finds it interesting that while traditional Norwegian building culture was adapted to the local climate, nowadays we build more or less the same regardless of where we live. Regulations do not take into account differences between the climate in Oslo and Bergen.

Adapting houses to different climates
Elisabeth Bjaanes, Chief technology officer at Mesterhus, agrees with Kvande that “one size fits all” is not a good long term solution.

– Our goal is to be able to offer climate adapted homes at competitive prices,’ says Bjaanes. The 150 members of the Mesterhus chain, she says, are very interested in being able to build safe and climate adapted buildings. Mesterhus has now begun the process of developing a model of a standard house which can be adapted locally to different climatic conditions in Norway.

Currently, knowledge within the construction industry about the topic is limited, but Bjaanes maintains that Klima 2050 can change this.

– The attempt to define a climate adapted building is a good starting point. It entails looking at and discussing many issues, but it is difficult to agree on a final definition. For us, while taking into account climate change adaptation and protecting against moisture, it is important to retain good living qualities, such as daylight and attractive design.

Models from Unikus
Towards the end of 2016, Unikus, which is part of Mestergruppen with architects and engineers, developed models of a possible climate adapted building.

– To make things as easy as possible, we started with a model of a detached house, but much of what we learned can apply to other types of home, such as tower blocks. It is much easier to come up with specific content for ‘climate adapted’ when you work with a specific building, says Kvande.

Now several other Klima 2050 partners are in the process of developing prototypes for climate adapted buildings.

Stamp of quality
When standards for a climate adapted building are set, these will also make it be easier for firms to gain a competitive edge. In her Master thesis on climate adaptation of buildings, Torun Krangålás Vikann found that economy was often an obstacle, that climate adaptation was considered to be expensive. This
negative impression can be countered by demonstrating clearly for contractors, builders and advisors what adaptation has to offer and what the long term benefits are. Climate adaptation must be promoted as a market advantage.

The thesis concludes that adaptation must be user-friendly and that it may arouse more positive attention from the building industry by being identified as a stamp of quality.

Need for regulations
Bjaanes believes that it will be an advantage if demands for climate adaptation are regulated.

– If more specific requirements for adaptation become part of the technical regulations, that will be a step in the right direction. Perhaps some Klima 2050 results can provide a driving force for new regulatory requirements, says Bjaanes.

– And perhaps the ones that have a good climate adapted house can be rewarded with a lower insurance premium. Then it's crucial that we have clear criteria for what a good climate adapted building is, continues Bjaanes.

Market advantage
According to Kvande, it is only a matter of time before climate adapted housing becomes a well-known concept and being able to supply such houses constitutes a market advantage.

– In the beginning, no one knew what a Passive House was, so we advertised it as ‘a house with extra insulation’. Today many label a climate adapted building as ‘moisture robust’, but in the future there may be a market advantage in calling it climate adapted. Should it take a long time to develop a definition, Kvande does not see that as a problem.

– ZEB, the research centre for zero emission buildings, worked for eight years on its definition. Similarly, work with our definition of climate adapted buildings can provide an impetus for constantly gaining knowledge and insight in the research and innovation.
For a long time, the usual way of leading rainwater off a roof has been with gutters and downspouts to the ground. In 2016, in cooperation with companies in Klima 2050, researchers started focusing instead at how to delay runoff while at the same time converting the roof into an attractive terrace.

Traditional stormwater management faces two major challenges today. The first is more precipitation in general and more frequent short periods of torrential rain which result in large quantities of water overloading stormwater and sewage networks. The second is densification of urban areas and fewer natural areas for absorbing water.

GREEN, BLUE AND GREY ROOFING SOLUTIONS

New solutions for delaying water runoff when it rains are being tested out on the roof of Høringen sewage treatment plant in Trondheim. The new roofing solutions are green, grey and blue.

Høringen pilot project is owned by Trondheim kommune. The pilot is part of the project Stormwater management in small catchments lead by Edvard Sivertsen, SINTEF.
The traditional way of handling stormwater is simply by redirecting the water problems to a new location. We must rather find solutions which make it possible for people to handle rainfall on their own property, says CEO of Storm Aqua, Per Møller-Pedersen.

Three experimental roof plots
Storm Aqua (part of Skjæveland Group) and Leca Norway (part of Saint-Gobain Construction materials) are partners in the new pilot project which tests stormwater solutions on the roof of Hørvingen sewage treatment plant in Trondheim. The project manager is Tone Muthanna, Associate Professor at the Department of Hydraulic and Environmental Engineering, NTNU. She is PhD adviser to Vladimir Hamouz, who is writing his thesis on the Hørvingen project.

The roof at Hørvingen is divided into three experimental fields, each measuring 90 square meters. Storm Aqua and Leca started work on the first field in the autumn of 2016.

They have created a roof consisting of a permeable cover which is made of paving stones with wide joints which allow water to penetrate and which is placed on top of a special Leca material.
Leca is a building material made of burnt Norwegian clay transformed into small, porous beads with a hard surface. The second field will be made with sedum which is widely used on green roofs. The third field is covered with black roofing membrane so as to make it possible to compare the traditional roofing solution with the new ones.

Weather station
The roof is equipped with a weather station which measures temperature, wind and rain. There are walls along the perimeter to facilitate control of water flow, so the roof itself is an isolated unit. A sophisticated system measures the amount of water which flows into the drains of each of the three experimental plots. The system can measure the full range of precipitation from drizzle to torrential downpour.

– We have added a 20 cm layer of finely crushed Leca under paving stones with wide joints which are also filled with Leca so that water can filter through. Leca absorbs water temporarily and then releases it gradually. What we mostly want to control is water resulting from short, intense periods of rain, says Jaran Wood from Leca Norway.

He continues:
– Increased quantities of stormwater constitute a socioeconomic burden because they make it more expensive and less energy efficient to run sewage treatment plants. In addition, stormwater which is out of control can cause traffic and pollution problems as well as damage to property.

Leca cleans stormwater
Wood also believes that the research findings can be used to
develop stormwater solutions for more than just roofs. Leca, which is frost-resistant, can also be used under both parking lots and pavements. The advantage of using an area of roofing for the research is that the amount of rain which falls on the roof and the amount that goes out from it can be measured.

– Leca functions as a filter which can remove pollutants and is used in systems for cleaning tap water and in sewage treatment plants. Part of the project is to explore the possibility of cleaning different types of stormwater with Leca, says Wood.

Municipalities need stormwater solutions
Høvringen sewage treatment plant treats wastewater from two thirds of Trondheim local municipality.

– It will be exciting to see the results from the Høvringen project. Finding solutions for dealing with stormwater is important for us, says Håkon Pedersen, from Trondheim municipality technical department.

The municipality is aware that increasing rainfall is already causing problems and damage to infrastructure.

– Trondheim is part of a joint project on climate mitigation with other Nordic cities, which constantly strive to separate wastewater from cleaner stormwater. There are also several on-going projects aimed at re-opening old, closed streams. In addition to other environmental benefits, getting the water up to the surface increases capacity and improves flood security, continues Pedersen.

Developing solutions together
– The Høvringen project is a good example of how Klima 2050 cooperation makes it possible to develop solutions together. The idea of water retention on the roof surfaced at one of the thematic meetings during a conversation with Leca, explains Møller-Pedersen.

He sees great potential in utilising roofs. Høvringen shows that permeable cover, which is currently used in industry and parking spaces, can also be used on roofs. There has been a lot of focus on green roofs, but Møller-Pedersen thinks that a roofing solution where grey is combined with green and blue may provide an even better solution and possibly also result in new and attractive outdoor spaces in urban areas.

– It is interesting to observe the significant effect of water retention at Høvringen where the infrastructure is not designed to handle short bursts of heavy rainfall, says Møller-Pedersen.

For documentation of the quality and the characteristics of their materials, projects such as the one at Høvringen are important for both Skjæveland Group and Leca.

– After seeing the first results from Høvringen, Skjæveland Group has started trial production of a new type of paving stone which is lighter and better suited for rooftops, says Møller-Pedersen, adding that they have also started developing new fields of research in collaboration with Leca near Stavanger.

«The Høvringen project is a good example of how Klima 2050 cooperation makes it possible to develop solutions together. The idea of water retention on the roof surfaced at one of the thematic meetings during a conversation with Leca»

Per Møller-Pedersen, Storm Aqua
The idea of further developing an event based database for landslides stems from a Klima 2050 thematic meeting in January 2016. In the future, we must expect more frequent landslides, triggered primarily by extreme precipitation and snowmelt, says Jose Cepeda from the Norwegian Geotechnical Institute (NGI) and leader of this sub-project of Klima 2050. He considers Klima 2050 to be an important arena for finding practical solutions to the consequences of climate change.

A better understanding of what causes landslides and how the risks associated with them can be reduced are important topics within climate adaptation. Landslides can cause significant damage to infrastructure such as railways and roads as well as to buildings. As precipitation increases so also does the danger of landslides and the need for cost effective safety measures.

During 2016, Klima 2050 has further developed the most complete event based database for landslides triggered by meteorological factors in Norway. It is based on two specific debris flow events in Kvam in 2011 and 2013.
Debris flows and floods in Kvam

In cooperation with Norges vassdrag og energidirektorat (NVE), NGI has been involved in implementing safety measures in Kvam following landslide incidents caused by heavy rainfall and floods in 2011 and 2013. The decision to start collection of data from these events was a result of both the scale of the damage and the extent of the landslides.

The village of Kvam in Gudbrandsdal is built on sediments produced by previous floods and landslides (alluvial fans). Loose sediments in the sides of the steep valley upstream from Kvam make the area especially hazard prone.

In 2011, large quantities of rainfall triggered landslides in Veikvedalen, upstream from Kvam. The landslide masses flowed along the river at the bottom of the valley and resulted in flooding which caused a large amount of damage. Although, on estimate, such events occur on average once in every hundred years, a similar event occurred only two years later in 2013.

Water triggered landslides cost most

A warmer climate and more extreme weather will lead to more water triggered landslides, particularly soil slides, which can be triggered by intense rainfall, long periods of lower intensity precipitation or by rapid snow melting and thawing of frozen soil.

In addition to NGI and NVE, the team lead by Cepada involved the University of Rome and also made use of scientific input from the Geological Survey of Norway (NGU). Starting with the work that had previously been carried out to register and evaluate the events in Kvam, the team set about developing the database.

– In order to understand the area and what actually happened in Kvam, we have done a lot of fieldwork. We have documented
several additional, previously unmapped landslides and based on field observations, interpretations of results from remote sensing and geophysical surveys, we have calculated a model for bedrock depth. We have also separately identified both initiation and runout zones over the whole landslide footprint for each event, which has not been done before.

Responsibility for the landslide warnings
In Norway, NVE issues warnings for both floods and landslides. The warning system is based on conditions such as precipitation and snow melting.

In addition, NVE has a national landslide database comprising 60,000 registered events, very few of which, however, contain details about the landslide footprint. Many events come from Norwegian Public Roads Administration records of landslides which blocked roads.

– We want to improve landslide warning methodology for debris slides and debris flows. A complete database like the one developed here will be useful for that,' says Odd Are Jensen from NVE.

– The type of data gathered in Kvam is the kind we would like to see more of in the national landslide database, he adds, and mentions too that the structural mitigation measures in Kvam are scheduled for completion in spring 2017.

Local knowledge for landslide mapping
The damage caused by landslides and floods in Kvam shows how important it is to have complete mapping of the consequences of expected climate effects in an area, in order to adapt and secure infrastructure and buildings.

– Of course, no database will ever be complete but we have come a long way, says Cepeda. He believes that the Kvam database will provide an important basis for future predictions and for identifying necessary safety measures.

– When mapping landslide hazards, one of the most fundamental things to investigate is landslides which have previously occurred in the area. It is useful to speak to local farmers who perhaps know about landslides which occurred in the 18th century or just three years ago. Nowadays, such local knowledge is about to vanish, so incorporating information about historical events in the database has become more and more important, says Jensen. He encourages people to register landslides on www.skredregistrering.no.

Predicting landslides at other locations
The Kvam database can be useful in risk analyses for landslide prone areas in other parts of the country which are similar to Kvam in terms of terrain and ground conditions. It should be possible to use analyses based on the data to predict landslides and recommend mitigation measures.

– More complete databases can help us to prepare for future landslide events and to optimise mitigation measures, says Cepeda.
GUIDELINES LACK PRACTICAL KNOWLEDGE

In general, many guidelines on climate adaptation are not practical enough and there is a lack of material on how to conduct decision making processes. These are among the conclusions of a project which has analysed 84 guidelines.

In 2016, Klima 2050 analysed 84 guidelines and web portals which offer an introduction and training in practical and organisational climate adaptation of buildings and infrastructure.

– Most of the material describes climate adaptation on a basic level and contains a lot of general background information about climate change, but offers little when it comes to practical implementation. There is a need for guidelines which explain practical measures in depth, says the leader of the project, Åshild Lappegard Hauge, researcher at SINTEF.

Local government lacks capacity
A third of the guidelines are aimed at local authority employees. According to the report, these employees often lack the time and
capacity to search for and read guidelines on climate adaptation. Hauge believes that employees in smaller municipalities who often lack specialist knowledge need material which describes practical measures.

None of the material describes decision-making process and collaboration in depth. There is a lack of guidance on how to plan for adaptation and how to coordinate sectors.

Defining the target audience
– Today, there is overload of information about everything and getting through to people can be difficult. It may be better to develop guidelines which target a specific group with very specific information, says Hauge.

Research on communication strategies shows that the more specific information is, the more likely it is to reach its target audience. In addition, guidelines should be adapted to fit the tools and working methods which users already possess.

On the other hand, some specific guidelines may also be relevant for others groups. A simple and reasonable form of dissemination of information would be to adapt existing guidelines for new target audiences and to spread them through appropriate channels.

Surprised about high quantity
Researchers were positively surprised at the vast number of guidelines, mostly from the last five years.
 – Interviews confirm that the number of guidelines is overwhelming. The impression is that this can lead to confusion and uncertainty among users, which itself may be a barrier to achieving climate adaptation, says Hauge.

Need for practical examples
Senior Engineer at Statsbygg, Jonas Vevatne, agrees and thinks it is important that the guidelines should contain some basic knowledge about the consequences of climate change, such as the expected rise in sea levels and greater risk of floods.
 – We have distanced ourselves from natural conditions and have

84 guidelines and web portals have been analysed by Klima 2050 in 2016.

«There is a need for guidelines which explain practical measures in depth»
Åshild Lappegard Hauge, SINTEF
been confident that we can build in conflict with the natural forces. The fact that there are so many guidelines around can be taken as a sign that this is a new field and that many want to contribute and explore possible solutions, even though climate adaptation, to a large extent, is about retrieving the knowledge of previous generations. In the past, building styles around the country were more adapted to local conditions, said Vevatne.

Good guidelines, in his opinion, should contain good practical examples of adaptation to make the topic more real and easier to work with.

– Climate adaptation involves finding specific local solutions to abstract global climate changes which have local impact. Measures must be assessed on the basis of actual local contexts.

Guidelines for private developers
The report concludes that networks and training play major roles in determining whether guidelines are applied.

– We must make sure that guidelines are not simply kept in a drawer. There must be a capacity for continued effort and a network for development. Responsibility cannot simply be placed on individuals, says Vevatne.

Another important point is that users must have a real need for the information offered in guidelines.

Hauge thinks there is a special need for guidelines directed at private developers, who are behind 80 % of the zoning proposals in Norwegian local municipalities.

What training is needed?
The study is intended to provide Klima 2050 with the basis for further case studies on guidelines in local authorities and businesses.

– Relevant issues to investigate further include looking at how guidelines on climate adaptation can be compiled to ensure rapid implementation of efficient measures for climate adaptation in both private and public sectors.

– We should also investigate the kind of training and networking needed to ensure that guidelines are used, says Hauge.

«We must make sure that guidelines are not simply kept in a drawer. There must be a capacity for continued effort and a network for development. Responsibility cannot simply be placed on individuals»

Jonas Vevatne, Statsbygg
Weather events throughout the year have shown the relevance of Klima 2050, and the general interest from media has been high.

The policy of the Centre is to publish at least one user-oriented/public-oriented publication for each scientific publication. The counting by the end of 2016 shows following distribution of publications.
COMMUNICATION
AND VISIBILITY

All publications in 2016 are listed on www.klima2050.no

«Klima 2050 gives us an opportunity to be ahead in developing robust building technology that can prevent the consequences of more rain and an increase in temperature»

Jørgen Young, Isola and Snorre Bjørkum, Norgeshus

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific journal articles</td>
<td>5</td>
</tr>
<tr>
<td>Conference papers</td>
<td>13</td>
</tr>
<tr>
<td>Klima 2050 Report</td>
<td>2</td>
</tr>
<tr>
<td>Master Theses</td>
<td>14</td>
</tr>
<tr>
<td>Klima 2050 Note</td>
<td>20</td>
</tr>
<tr>
<td>Technical journals</td>
<td>36</td>
</tr>
<tr>
<td>Presentations and lectures</td>
<td>10</td>
</tr>
<tr>
<td>Popular scientific articles and chronicles</td>
<td>3</td>
</tr>
<tr>
<td>Press releases and news stories</td>
<td>32</td>
</tr>
<tr>
<td>Other publications</td>
<td>3</td>
</tr>
</tbody>
</table>
COMMUNICATION AND VISIBILITY

Some examples from publications in 2016
RECRUITMENT

Klima 2050’s PhD candidates financed by the Centre in 2016:
Petter Fornes, NTNU
Lars Gullbrekken, NTNU
Vladimir Hamouz, NTNU
Aynalem Tasachew, NTNU
Bridget O’Brien Thodesen, NTNU
Ola Eggen Thorseth, BI

Associated PhD candidates in 2016:
Manuel Franco Torres, NTNU/ Multiconsult
Birgitte Gisvold Johannessen, Trondheim kommune / NTNU
Kaj Pettersson, Chalmers University of Technology

Post.docs 2016:
Åshild Lappegard Hauge, SINTEF
Jardar Lohne, NTNU
Luca Piciullo, University of Salerno
Luca Schiliro, University of Rome

14 master students were associated with the Centre in 2016.
ANNUAL ACCOUNT

2016

<table>
<thead>
<tr>
<th>FUNDING</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Research Council</td>
<td>SINTEF (host institution)</td>
</tr>
<tr>
<td>13 430</td>
<td>13 542</td>
</tr>
<tr>
<td>SINTEF (host institution)</td>
<td>Research partners</td>
</tr>
<tr>
<td>2 317</td>
<td>11 493</td>
</tr>
<tr>
<td>Research partners</td>
<td>Private partners</td>
</tr>
<tr>
<td>2 676</td>
<td>8 342</td>
</tr>
<tr>
<td>Private partners</td>
<td>Public partners</td>
</tr>
<tr>
<td>10 042</td>
<td>349</td>
</tr>
<tr>
<td>Public partners</td>
<td></td>
</tr>
<tr>
<td>5 299</td>
<td></td>
</tr>
<tr>
<td>Transfer to coming years</td>
<td></td>
</tr>
<tr>
<td>-38</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>Sum</td>
</tr>
<tr>
<td>33 726</td>
<td>33 726</td>
</tr>
</tbody>
</table>

All figures in 1000 NOK
For more information about Klima 2050 go to our webpage:
www.klima2050.no