Atmospheric deposition of heavy metals in Norway

National moss survey 2015
Executive institution
NILU - Norwegian Institute for Air Research
P.O. Box 100, 2027 Kjeller
978-82-425-2859-9 (electronic)

Project manager for the contractor
Hilde Thelle Uggerud (NILU)

Contact person in the Norwegian Environment Agency
Malene Vågen Dimmen

Project number
594

Year
2016

Pages
53

Contract number
16078032

Publisher
NILU - Norwegian Institute for Air Research
NILU Report 28/2016
NILU project no. O-115064

The project is funded by
Norwegian Environmental Agency

Author(s)
Eilliv Steinnes (NTNU), Hilde Thelle Uggerud, Katrine Aspmo Pfaffhuber (NILU), Torunn Berg (NTNU)

Title - Norwegian and English
Atmosfærisk nedfall av tungmetaller over Norge, Landsomfattende moseundersøkelse 2015
Atmospheric deposition of heavy metals in Norway, National moss survey 2015

Summary - sammendrag

Commissioned by the Norwegian Environment Agency, NILU - Norwegian Institute for Air Research in collaboration with Norwegian University of Science and Technology (NTNU), collected moss from 230 sites and determined the content of 53 metals in these. The purpose of the survey is to map atmospheric deposition of heavy metals in Norway. Compared with data from 2005, a decrease is observed in the deposition of vanadium and lead. For chromium, nickel, copper, zinc, arsenic, cadmium and antimony, there is no appreciable change in deposition from 2005 to 2015

4 emneord
Langtransportert luftforurensing, tungmetaller, mose, deposisjon

4 subject words
Long-range atmospheric transport, heavy metals, moss, deposition

Front page photo
Hilde Th. Uggerud
Content

1. Introduction .. 2
 1.1 Previous work ... 2
 1.2 Moss survey ... 3
2. Experimental ... 3
 2.1 Sampling and sample preparation .. 3
 2.2 Analysis ... 3
3. Results .. 4
4. Discussion .. 17
 4.1 General trends .. 17
 4.2 Discussion of elements clearly related to air pollution 18
 4.2.1 Vanadium (V) .. 18
 4.2.2 Chromium (Cr) ... 18
 4.2.3 Nickel (Ni) ... 19
 4.2.4 Copper (Cu) ... 19
 4.2.5 Zinc (Zn) .. 19
 4.2.6 Arsenic (As) ... 19
 4.2.7 Cadmium (Cd) .. 19
 4.2.8 Antimony (Sb) .. 19
 4.2.9 Mercury (Hg) ... 19
 4.2.10 Lead (Pb) ... 19
 4.2.11 Other elements ... 20
 4.3 Temporal trends in selected areas ... 26
 4.3.1 Background areas ... 26
 4.3.2 Southernmost Norway vs. Oslofjord region ... 26
 4.3.3 Border areas to Russia ... 26
 4.4 Influence from domestic industries ... 28
5. Conclusion ... 28
6. References .. 29
Annex results of moss survey 2015 ... 31
1. Introduction

Long-range atmospheric transport contributes still significantly to deposition of heavy metals in Norway. The geographical distribution of heavy metal deposition has been mapped in 2015 by analysing samples of moss collected from 230 localities throughout the country. This report presents the results from the Norwegian survey in 2015 and a comparison with the results from earlier surveys back to 1977. The Norwegian moss survey is part of a European research programme called “International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops (ICP-Vegetation)”, which includes a large part on Europe. The survey primarily applies to ten elements that are prioritized in the European programme: Vanadium, chromium, iron, nickel, copper, zinc, arsenic, cadmium, mercury and lead. In addition, content of 43 other elements in moss are reported. The discussion of the individual elements is primarily focused on what is related to air pollution. Nevertheless, possible natural sources of metal content in moss and how this might influence the data interpretation is also discussed.

1.1 Previous work

Mosses generally lack a root system and therefore absorb trace elements from the atmosphere, in dissolved as well as in particulate form. This was first utilized by Swedish scientists, who showed that contents of some heavy metals in moss samples in Sweden corresponded to known geographical distributions of these metals in atmospheric deposition (Rühling & Tyler, 1971; 1973). Following this work, moss sampling was introduced in heavy metal deposition surveys in Sweden (1975), in Norway (1977), for Scandinavia (1985) and for greater parts of Europe (1995, cfr. Rühling et al., 1996; Rühling and Steinnes, 1998). Starting in 2000 a moss survey on the European level is carried out every five years (Harmens et al., 2007; 2008; 2010).

In Norway, following the 1977 survey, subsequent moss surveys have been carried out in 1985, 1990, 1995, 2000, 2005, and 2010, covering around 500 sites. The results have been documented in national reports and in numerous international publications (Steinnes, 1980; Schaug et al., 1990; Steinnes et al., 1991; Berg et al., 1995; Steinnes et al., 2009). More over a linear relation between concentration in moss and wet deposition rate has been well established for several elements (Berg et al., 1995; Berg and Steinnes, 1997b).

On the other hand, some practical limitations of the technique have been revealed and reported in the literature (Steinnes, 1995). It appears that elements that are essential nutrients in plants or have a similar behaviour may move from the current annual growth segment of moss into next year’s segment. Among the elements of priority in the moss survey, this is particularly important for Zn, where it leads to natural “background” levels of around 30 ppm, and in the case of Cu a corresponding level of about 3 ppm (Berg & Steinnes, 1994). For the remaining elements of priority in this report, this effect seems to be negligible.

Another effect to be mentioned is the competition of cations from airborne marine aerosols (Na, Mg, etc.) for exchange sites on the moss surface (Steinnes, 1995). This disturbing factor
is very evident for Mn, which appears to be strongly depleted in moss samples from coastal areas, but apparently not serious for any of the priority elements discussed in this report.

1.2 Moss survey

Based on the experience from previous moss surveys in Norway, it was decided to carry out another nationwide survey in 2015. As previous surveys had shown that large parts of the country are exposed to low levels of heavy metal deposition often showing small variations within a given geographical region, the Norwegian Environment Agency decided to reduce the number of sampling sites by 50%.

2. Experimental

2.1 Sampling and sample preparation

The protocol for sampling is described in the “Heavy metals, Nitrogen and POPs in European mosses: survey 2015, Monitoring manual (ICP-Vegetation, 2015)” and is followed by all the nations that report results from their national surveys to the European survey. A list of principles for sampling in different terrain is given, such as distance from trees to avoid influence from canopy drip and not to sample in slopes with running water. However, a certain degree of flexibility is built in to take into account that there is significant variation in climate, topography, season duration and land use across Europe. During the period 1.6 - 1.9 2015 samples of Hylocomium splendens were collected at 230 sites all over mainland Norway.

The sampling sites were selected among the previous 460 sampling sites used in the 1995, 2000, 2005, and 2010 moss surveys, considering existing knowledge about differences in deposition levels and gradients. Sampling sites were located at least 300 m from main roads and densely populated areas, and at least 100 m from any local road, single house, or agricultural field. At each site 5-10 sub-samples of moss were taken within an area of ca. 50m X 50m and collected in a 2-litre paper bag. Disposable polyethylene gloves were employed during sampling as well as in further sample preparation. If possible, moss sampling under the crown projection of trees was avoided. Coordinates at each site were recorded by GPS. A map showing the 2015 sampling locations is presented in Fig. 1 a).

In the laboratory the samples were air-dried on bench at room temperature and further cleaned by hand. The part of the moss corresponding to the previous three years’ growth was separated for analysis.

2.2 Analysis

Digestion of moss samples was performed with a microwave technique system (UltraCLAVE, Milestone, Italy). Dry moss (0.5-0.6 g) was accurately weighed and HNO₃ (5 ml, supra pure) was added. The samples were digested according to a 65 minutes long temperature programme, with stepwise heating to 250 °C and a holding time of 30 minutes at 250 °C.
After cooling, the digests were quantitatively transferred to polypropylene tubes and diluted to 50 ml with deionized water.

For determination of metals, aliquots of 1.0 ml and 0.1 ml, respectively, were diluted to 10 ml. Rhenium at 1 ng ml\(^{-1}\) was used as internal standard.

For determination of mercury, aliquots of 25 ml were diluted to 50 ml and added 5 ml BrCl for stabilisation.

A high resolution inductively coupled plasma mass spectrometer (ICP-HRMS), ELEMENT2 from Thermo Scientific, Bremen, was used for determination of metals. All calibration standards, blank samples and reference materials contained 1%(v/v) HNO3 (s.p) and 1 ng ml\(^{-1}\) rhenium as internal standard.

A cold-vapour atomic fluorescence spectrophotometer (CV-AFS), Tekran, Canada, was used for determination of mercury.

In this way satisfactory results were obtained for 53 elements, including the 10 elements of priority in the European moss survey organized by the UN ICP Vegetation (Harmens et al. 2007).

The moss reference samples M-2 and M-3 prepared and distributed by the Finnish Forest Research were used to assess the accuracy of the results. Moss material in sample M-2 is collected in the vicinity of a metal smelter, while the moss material in M-3 is sampled in a forest to represent background levels. Based on an international intercomparison of results (Steinnes et al., 1997) recommended values exist for all 10 elements of priority in the moss survey as well as many other elements. The values obtained for M-2 and M-3 in 2015 are generally in good agreement with corresponding reference values where available (Table A.1).

The statistical methods used is Mann-Kendall test (Gilbert, 1987) and Sen’s method. The Mann-Kendall test is widely used to assess trends in datasets where variables are not normally distributed. The Sen’s slope estimate is used to calculate the trend lines shown in figures 13-17. The Mann-Kendall test is used to indicate significance level of these trends. Software used for the calculations is MAKESENSE (Salmi et al., 2001).

3. Results

In addition to the ten elements of priority (V, Cr, Fe, Ni, Cu, Zn, As, Cd, Hg, Pb) results for additional 43 elements are reported (Table A.2). Not all of these elements occur in the moss only because of atmospheric deposition (Steinnes, 1995), but many of them may have the atmosphere as the primary source. In Table A.3 selected median values from the present survey are compared with corresponding values from the moss surveys in 2005, 1995, 1985, and 1977. Colour maps showing the geographical distributions of the ten priority elements in the different sampling years considered are presented in Figs. 2-12.
Figure 1 a) Site map b) Location of sampling sites selected for discussion of temporal trends in areas with respectively higher (Sørlandet/Indre Oslofjord) and lower (Dove rundt/Indre Tromsø/Vest Finnmark) metal deposition than average
Figure 2 Concentration of vanadium in moss in Norway (mg kg⁻¹) at five different years in the time period 1977 - 2015. The colour scheme applies to all maps.
Figure 3 Concentration of chromium in moss in Norway (mg kg⁻¹) at five different years in the time period 1977-2015. The colour scheme applies to all maps.
Figure 4 Concentration of iron in moss in Norway (mg kg$^{-1}$) at five different years in the time period 1977-2015. The colour scheme applies to all maps.
Figure 5 Concentration of nickel in moss in Norway (mg kg⁻¹) at five different years in the time period 1977-2015. The colour scheme applies to all maps.
Figure 6 Concentration of copper in moss in Norway (mg kg⁻¹) at five different years in the time period 1977-2015. The colour scheme applies to all maps.
Figure 7 Concentration of zinc in moss in Norway (mg kg$^{-1}$) at five different years in the time period 1977-2015. The colour scheme applies to all maps.
Figure 8 Concentration of arsenic in moss in Norway (mg kg⁻¹) at five different years in the time period 1977-2015. The colour scheme applies to all maps.
Figure 9 Concentration of cadmium in moss in Norway (mg kg$^{-1}$) at five different years in the time period 1977-2015. The colour scheme applies to all maps.
Figure 10 Concentration of antimony in moss in Norway (mg kg⁻¹) at five different years in the time period 1977-2015. The colour scheme applies to all maps.
Figure 11 Concentration of mercury in moss in Norway (mg kg⁻¹) at five different years in the time period 1977-2015. The colour scheme applies to all maps.
Figure 12 Concentration on lead in moss in Norway (mg kg⁻¹) at five different years in the time period 1977-2015. The colour scheme applies to all maps.
Moss data from more than 40 years of moss surveys reveal four regions that stand out compared to the rest of the country. From the maps it appears that several elements show the highest relative levels in two specific areas at all times, one in the far south where the contribution from long-range atmospheric transport is higher than elsewhere in Norway, and another around the inner part of the Oslo fjord where the population density in Norway is highest. Ten sampling sites in each of these areas sampled in every moss survey since 1977 were selected for a closer study of temporal trends in atmospheric deposition. These sites are marked on the map in Fig. 1 b) and their coordinates are listed in Table A.4. Blue Colour: Sørlandet. Green Colour: Oslofjord area. Contrary there are two areas where the influence of air pollution appears to be particularly low at all monitoring times: Dovre region in mid Norway and Indre Troms/Vest-Finnmark in the north. Mean values of the priority elements in the four selected areas at different times are shown in table A.5. Time trends for some elements are shown in Fig. 13-17.

Concentration of the ten priority elements in moss from each sampling location is given in Table A.6, which also includes the coordinates of the sampling sites.

4. Discussion

Temporal trends for mean concentrations of priority elements in selected areas are shown in figures 13-17.

4.1 General trends

Concentrations of elements in moss do not depend only on atmospheric deposition of pollutants from local and more distant sources (Steinnes, 1995). The following natural sources may also contribute to the observed results:

- Natural cyclic processes, in particular long-range atmospheric transport of substances from the marine environment.
- Root uptake in higher plants and transfer to the moss e.g. through leaching of elements from living or dead plant material.
- Mineral particles released to the air e.g. from wind erosion of local soil.
- Uptake from the ground in periods where the ground is covered with water.

Some elements are essential to the moss plant, e.g. Zn. Essential elements or other elements with similar chemical behaviour may be transferred from one annual growth segment to the next, and thus contribute to a natural background level of the element in the moss.

All this means that there will always be a certain background level of all naturally occurring elements in moss samples. This level may vary among sampling sites depending on the above processes. In spite of this it is normally quite simple to identify the additional contributions from air pollution. Experience from previous surveys employing multivariate statistics on the moss data (e.g. Schaug et al., 1990; Berg et al., 1995a) identifies relatively higher levels of metals such as V, Zn, As, Cd, Sb, and Pb in areas subject to long-range atmospheric transport of Pollutants from other parts of Europe (cfr. Figs. 2, 7, 8, 9, 10, 12). Mo, Ag, Tl, and Bi also
belong to this group of elements. The content of Hg in moss is most probably related to air pollution (Steinnes et al., 2003), but in this case the deposition is more evenly distributed geographically, indicating a substantial contribution from Hg\(^0\), which is evenly distributed in air over the Northern Hemisphere. The geographical distribution of elements such as Cr, Ni, Cu, and to a lesser extent V, Fe, Co, Zn, As, Cd, and Hg are to some extent influenced by deposition from industrial point sources (Steinnes et al., 2011).

For many elements, geographical distributions with no connection to air pollution are observed. Distributions of Mg and Sr show geographical patterns indicating marine aerosols as an important source. Supply to the moss via direct uptake from the soil solution or via uptake in higher plants and subsequent transfer to the moss appears to be dominating for Mn and probably important also for Mg, Ca, Zn, Rb, and Cs. It also appears to play a role for Cu and possibly for Cd. Contribution from wind erosion of natural mineral material (agricultural fields, gravel roads, etc.), is assumed to be a generally dominant source for Li, Al, Ga, Y, lanthanides, Th, and U, and outside influence areas for local pollution sources also for V, Cr, Fe, and Co (Berg et al., 1995a). This factor is probably also important for elements not already mentioned, such as Be, Ti, Zr, Nb, Hf, Ta, and W.

Notably, the levels in moss of some elements assumed to be of local geogenic origin (e.g. Al) have also declined regularly over the period since the first moss survey in Norway, whereas the elements assumed to be supplied to the moss mainly via higher plants (Mg, Ca, Mn, Rb) have not shown a similar decline in the moss samples. This may indicate that the first mentioned group is also supplied from sources not related to local geochemistry, e.g. long-range transport of fly ash particles from coal combustion. This assumption was supported by an investigation of moss samples collected respectively in 1977 and 2005 at the same sites in south Norway using electron microscopy combined with x-ray microanalysis (Weinbruch et al., 2010), where spheric microparticles were observed. These particles most probably originating from high-temperature processes such as coal combustion were much less abundant in the 2005 moss samples.

4.2 Discussion of elements clearly related to air pollution

In the following is a more specific discussion of elements in moss either dominated by long-range transport or known to be released in significant amounts from domestic sources of air pollution. A more detailed discussion of metal pollution from Norwegian industries is available elsewhere (Steinnes et al., 2011).

4.2.1 Vanadium (V)
Deposition of V from long-range transport has decreased to about 20% of the 1977 value in Sørlandet, and Oslofjord area. The 2015 levels are about 70% of corresponding values in 2005.

4.2.2 Chromium (Cr)
Deposition of Cr from long-range transport has decreased to about 20% of the 1977 value in Sørlandet and 35 % in Oslofjord area. 2015 levels are similar to those in 2005.
4.2.3 Nickel (Ni)
Deposition of Ni in Sørlandet decreased by a factor of 5 from 1977 to 2005, presumably because of reduced emissions from a nickel smelter in Kristiansand. For comparison the Ni level in Oslofjord area was stable during the period, at about 30% of the 1977 level in Sørlandet. No appreciable change was observed from 2005 to 2015, and presently the highest level is observed in the Oslofjord area.

4.2.4 Copper (Cu)
Copper is an essential element in moss, and a baseline level of about 3 ppm must be subtracted from the observed values before evaluating the contribution from atmospheric deposition (Berg & Steinnes, 1994). The excess Cu level has stayed constant over time in the Oslofjord area. In Sørlandet Cu deposition decreased by 50% until 2005 to reach a similar level as in the Oslofjord area.

4.2.5 Zinc (Zn)
The current level of 20-30 ppm Zn in the low deposition area may reflect a baseline value (Berg & Steinnes, 1994) because Zn is an essential element in moss. Considering the excess Zn amount the 2005 values have decreased to about 50% of the 1977 level and stayed constant from 2005 to 2015, indicating that there is still atmospheric deposition of Zn from transboundary transport.

4.2.6 Arsenic (As)
Deposition in Sørlandet, mainly from long-range transport, decreased by almost a factor of 10 from 1977 to 2005, and is currently at the 2005 level. In Oslofjord area the 1977 As level was about half of the value in Sørlandet, but in 2005 same level was observed in the two areas. No appreciable change was observed from 2005 to 2015.

4.2.7 Cadmium (Cd)
The present Cd level in Sørlandet is about 20% of the 1977 value, but still 5 times higher than in the low-deposition areas. In Oslofjord area the current level is similar to the Sørlandet value, and about 50% of the 1977 level. No appreciable changes in Cd levels were observed during the period 2005-2015.

4.2.8 Antimony (Sb)
The contribution from long-range transport has decreased appreciably all over the country. In Sørlandet the 2005 value was about 15% of the 1977 level. In the Oslofjord area the 2005 level was slightly higher than in Sørlandet, and about 40% of the corresponding 1977 value. The 2015 values were similar to those from 2005. At present the main source of Sb in air is presumably automobile traffic (brake linings) - in Norway and elsewhere.

4.2.9 Mercury (Hg)
Levels of Hg in moss show little variation with time as well as geographically. This confirms experience from previous moss surveys in Norway. The main reason for this even distribution may be that the main source is deposition of Hg0 from the hemispheric pool, (Steinnes et al., 2003), where the residence time of Hg is around one year.

4.2.10 Lead (Pb)
There has been a substantial decrease of Pb deposition all over Norway since 1977, mainly because of the international and domestic facing out of leaded gasoline. The 2005 levels in moss was about 5% of the 1977 level in Sørlandet, 10% in Oslofjord area, and 10-15% in the background areas. Further decline is observed from 2005 to 2015. The Mann-Kendall test
indicates that level of significance for the declining trends is high (0.001) for all four regions. In fig 17 Sen’s slope estimates are calculated from 1990 when lead no longer was added to petrol in Norway and Western Europe. By using regression equations (Berg and Steinnes, 1997), moss concentrations are converted to deposition rates. Through the national survey on Long Range transported air pollution-atmospheric supply, metals in precipitation are measured at 5 different locations in mainland Norway. The observatory at Birkenes is a representative measurement site for Sørlandet. Average deposition rates for lead from year 2012-2014 at Birkenes correlates well with average lead concentration in moss obtained from Sørlandet in 2015. High correlation between lead concentration in moss and deposition rates is also evident for Indre Oslofjord and Hurdal, even though Hurdal is not a particularly representative measurement site for the region Indre Oslofjord.

4.2.11 Other elements
Among the additional elements determined in 2015 are Ag, Tl, and Bi associated with long-range atmospheric transport and partly to releases from local sources, but the levels are generally low. The remaining elements reported are present in the moss samples mainly because of natural processes, cfr. discussion in 4.1.
Figure 13 Mean values for vanadium and chromium in moss from selected regions, given for moss survey from 1977-2015. Trend lines and level of significance are included.
Figure 14 Mean values for nickel and copper in moss from selected regions, given for moss surveys from 1977-2015. Trend lines and level of significance are included.
Figure 15 Mean values for zinc and arsenic in moss from selected regions, given for moss surveys from 1977-2015. Trend lines and level and significance are included.
Figure 16 Mean values for cadmium and antimony in moss from selected regions, given for moss surveys from 1977-2015. Trend lines and level of significance are included.
Figure 17 Mean values for mercury and lead in moss from selected regions, given for moss surveys from 1977-2015. Trend lines and level of significance are included.
4.3 Temporal trends in selected areas

4.3.1 Background areas
From the results shown it is clear that the air pollution of most elements discussed above has been substantially reduced over the last 40 years also in areas initially regarded as “clean” with respect to atmospheric deposition of metals.

4.3.2 Southernmost Norway vs. Oslofjord region
For most of the elements discussed in 4.2 the highest deposition levels over time are evident in Sørlandet and Oslofjord areas. During the 1970s and 1980s most metal levels were substantially higher in Sørlandet. However, the decline of several metals (e.g. Cr, Ni, Cu, As, Sb) has generally been greater in Sørlandet than in Oslofjord area. Two possible reasons for this may be suggested. Possibly Oslofjord area receives a proportionally higher part of transboundary pollution from countries in eastern Europe than what is the case in Sørlandet. This assumption is supported by a previous study showing that the ratio between stable lead isotopes (206Pb/207Pb) in the south-east of Norway differs from the value generally observed in the country and is more similar to the ratio found in Eastern Europe/Russia (Steinnes et al, 2004). The same is the case for the region far north-east in Norway. These findings indicate an East Europe/Russia origin of lead deposited in regions south-east and far north-east in Norway. It may also be that the fast urbanization of the Oslofjord area may have contributed to less emission reduction of some elements. This issue should be further considered.

4.3.3 Border areas to Russia
Ever since the start of the moss surveys in Norway substantial deposition of metals from two copper-nickel smelters in Russia were recorded in eastern Finnmark near the Russian border. Concentrations of Cu and Ni in moss at the most affected sites as a function of time are shown in Fig. 18. As evident from the figure the deposition appeared to increase substantially until 2005 and then a slight decrease appeared in the following surveys. The influence from these smelters on Norwegian territory is limited to the nearest 200 km from the smelters.
Figure 18 Concentration of copper and nickel in moss at selected sites in Eastern Finnmark as a function of time.
4.4 Influence from domestic industries

Still some influence of domestic industries can be seen in some samples from the 2015 national moss survey, such as Cr at Mo i Rana, and Zn at Odda. A specific moss survey around Norwegian industries was carried out simultaneous with the present national survey, and the results are presented and discussed in a separate report.

5. Conclusion

In 2015, the number of sampling sites were reduced by 50%. Even so, there is good agreement between this years dataset and previous datasets, indicating that the selected sampling points are those which provide the essential information. Comparison of average value of the priority elements from four selected regions show that deposition in the region Indre Oslofjord is on the same level as in the most deprived region Sørlandet. Overall, there has been small changes in deposition level in Norway in the time period 2005 to 2015.
6. References

Annex results of moss survey 2015
Table A.1 Results from analysis of reference moss M-2 and M-3 obtained by NILU in 2015 are given in column 2 and 4. The recommended values for M-2 and M-3 based on an international intercomparison (Steinnes et al., 1997) are given in column 3 and 5. Reference values with less statistical quality than recommended values are indicative and marked yellow. Recommended values listed are based on results from ICP-MS. Where ICP-MS results are missing, recommended values from other techniques are listed.

<table>
<thead>
<tr>
<th>Element</th>
<th>Reference Moss M-2</th>
<th>Reference Moss M-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NILU (mg kg⁻¹)</td>
<td>M2 Recommended values (mg kg⁻¹)</td>
</tr>
<tr>
<td>Be</td>
<td>0.012 ± 0.003</td>
<td>0.143 ± 0.012</td>
</tr>
<tr>
<td>B</td>
<td>19.0 ± 2.0</td>
<td>16.1</td>
</tr>
<tr>
<td>Na</td>
<td>227 ± 11</td>
<td>160 ± 15</td>
</tr>
<tr>
<td>Mg</td>
<td>830 ± 70</td>
<td>775</td>
</tr>
<tr>
<td>Al</td>
<td>310</td>
<td>190</td>
</tr>
<tr>
<td>S</td>
<td>1000 ± 40</td>
<td>963 ± 93</td>
</tr>
<tr>
<td>K</td>
<td>7510 ± 400</td>
<td>6980 ± 350</td>
</tr>
<tr>
<td>Ca</td>
<td>2290 ± 140</td>
<td>1920</td>
</tr>
<tr>
<td>Sc</td>
<td>0.06 ± 0.01</td>
<td>0.067 ± 0.029</td>
</tr>
<tr>
<td>V</td>
<td>1.60 ± 0.10</td>
<td>1.42</td>
</tr>
<tr>
<td>Cr</td>
<td>1.14 ± 0.07</td>
<td>0.99</td>
</tr>
<tr>
<td>Mn</td>
<td>353 ± 17</td>
<td>357</td>
</tr>
<tr>
<td>Fe</td>
<td>289 ± 13</td>
<td>273</td>
</tr>
<tr>
<td>Co</td>
<td>1.10 ± 0.08</td>
<td>0.98</td>
</tr>
<tr>
<td>Ni</td>
<td>17 ± 1</td>
<td>16.3</td>
</tr>
<tr>
<td>Cu</td>
<td>68 ± 4</td>
<td>69.1</td>
</tr>
<tr>
<td>Zn</td>
<td>32 ± 1</td>
<td>36</td>
</tr>
<tr>
<td>Ga</td>
<td>0.11 ± 0.01</td>
<td>0.113 ± 0.020</td>
</tr>
<tr>
<td>Ge</td>
<td>0.017 ± 0.004</td>
<td>0.023</td>
</tr>
<tr>
<td>As</td>
<td>0.94 ± 0.06</td>
<td>0.97</td>
</tr>
<tr>
<td>Se</td>
<td>0.27 ± 0.06</td>
<td>0.33</td>
</tr>
<tr>
<td>Rb</td>
<td>46 ± 4</td>
<td>39.8</td>
</tr>
<tr>
<td>Sr</td>
<td>5.6 ± 0.4</td>
<td>5.26</td>
</tr>
<tr>
<td>Y</td>
<td>0.100 ± 0.005</td>
<td>0.099 ± 0.014</td>
</tr>
<tr>
<td>Ag</td>
<td>0.13 ± 0.01</td>
<td>0.13 + 0.014</td>
</tr>
<tr>
<td>Cd</td>
<td>0.445 ± 0.020</td>
<td>0.445</td>
</tr>
<tr>
<td>Sb</td>
<td>0.17 ± 0.01</td>
<td>0.212</td>
</tr>
<tr>
<td>Cs</td>
<td>0.48 ± 0.03</td>
<td>0.53</td>
</tr>
<tr>
<td>Ba</td>
<td>20.0 ± 1.2</td>
<td>17.2</td>
</tr>
<tr>
<td>La</td>
<td>0.19 ± 0.03</td>
<td>0.189</td>
</tr>
<tr>
<td>Element</td>
<td>Reference Moss M-2</td>
<td>Reference Moss M-3</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>NILU (mg kg⁻¹)</td>
<td>M2 Recommended values (mg kg⁻¹)</td>
</tr>
<tr>
<td>Ce</td>
<td>0.35 ± 0.05</td>
<td>0.35 ± 0.03</td>
</tr>
<tr>
<td>Sm</td>
<td>0.024 ± 0.005</td>
<td>0.031</td>
</tr>
<tr>
<td>Hg</td>
<td>0.058 ± 0.005</td>
<td>0.059</td>
</tr>
<tr>
<td>Tl</td>
<td>0.045 ± 0.002</td>
<td>0.048 ± 0.004</td>
</tr>
<tr>
<td>Pb</td>
<td>7.2 ± 0.3</td>
<td>6.62</td>
</tr>
<tr>
<td>Th</td>
<td>0.06 ± 0.01</td>
<td>0.042</td>
</tr>
<tr>
<td>U</td>
<td>0.025 ± 0.003</td>
<td>0.021 ± 0.005</td>
</tr>
</tbody>
</table>
Table A. 2 Arithmetic mean, median, minimum and maximum values of 51 elements in 229 moss samples collected in 2015 (mg kg\(^{-1}\)).

<table>
<thead>
<tr>
<th>Element</th>
<th>Mean</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>0.20</td>
<td>0.16</td>
<td>0.04</td>
<td>2.02</td>
</tr>
<tr>
<td>Be</td>
<td>0.02</td>
<td>0.02</td>
<td>0.002</td>
<td>0.300</td>
</tr>
<tr>
<td>B</td>
<td>3.0</td>
<td>2.5</td>
<td>< 0.2</td>
<td>20</td>
</tr>
<tr>
<td>Na</td>
<td>240</td>
<td>210</td>
<td>60</td>
<td>800</td>
</tr>
<tr>
<td>Mg</td>
<td>1380</td>
<td>1350</td>
<td>470</td>
<td>3280</td>
</tr>
<tr>
<td>Al</td>
<td>570</td>
<td>460</td>
<td>100</td>
<td>3050</td>
</tr>
<tr>
<td>S</td>
<td>850</td>
<td>820</td>
<td>470</td>
<td>1860</td>
</tr>
<tr>
<td>K</td>
<td>3640</td>
<td>3560</td>
<td>1770</td>
<td>6400</td>
</tr>
<tr>
<td>Ca</td>
<td>3250</td>
<td>3030</td>
<td>1820</td>
<td>7230</td>
</tr>
<tr>
<td>Sc</td>
<td>0.1</td>
<td>0.09</td>
<td>0.02</td>
<td>1.4</td>
</tr>
<tr>
<td>Ti</td>
<td>34</td>
<td>24</td>
<td>6</td>
<td>152</td>
</tr>
<tr>
<td>V</td>
<td>1.6</td>
<td>1.2</td>
<td>0.3</td>
<td>14</td>
</tr>
<tr>
<td>Cr</td>
<td>1.1</td>
<td>0.7</td>
<td>0.2</td>
<td>17</td>
</tr>
<tr>
<td>Mn</td>
<td>450</td>
<td>400</td>
<td>40</td>
<td>1660</td>
</tr>
<tr>
<td>Fe</td>
<td>490</td>
<td>310</td>
<td>78</td>
<td>8125</td>
</tr>
<tr>
<td>Co</td>
<td>0.5</td>
<td>0.2</td>
<td>0.06</td>
<td>23</td>
</tr>
<tr>
<td>Ni</td>
<td>5.1</td>
<td>1.1</td>
<td>0.4</td>
<td>550</td>
</tr>
<tr>
<td>Cu</td>
<td>7.2</td>
<td>4.2</td>
<td>1.8</td>
<td>370</td>
</tr>
<tr>
<td>Zn</td>
<td>36</td>
<td>31</td>
<td>8</td>
<td>409</td>
</tr>
<tr>
<td>Ga</td>
<td>0.16</td>
<td>0.13</td>
<td>0.03</td>
<td>0.88</td>
</tr>
<tr>
<td>As</td>
<td>0.17</td>
<td>0.13</td>
<td>0.04</td>
<td>4.72</td>
</tr>
<tr>
<td>Se</td>
<td>0.3</td>
<td>0.3</td>
<td>0.009</td>
<td>2</td>
</tr>
<tr>
<td>Rb</td>
<td>13.7</td>
<td>12.4</td>
<td>1.4</td>
<td>81</td>
</tr>
<tr>
<td>Sr</td>
<td>116</td>
<td>13.6</td>
<td>3.8</td>
<td>60</td>
</tr>
<tr>
<td>Y</td>
<td>0.26</td>
<td>0.18</td>
<td>0.02</td>
<td>1.55</td>
</tr>
<tr>
<td>Nb</td>
<td>0.10</td>
<td>0.07</td>
<td>0.01</td>
<td>1.4</td>
</tr>
<tr>
<td>Rh</td>
<td>0.003</td>
<td>0.003</td>
<td>< 0.001</td>
<td>0.027</td>
</tr>
<tr>
<td>Ag</td>
<td>0.03</td>
<td>0.02</td>
<td>0.007</td>
<td>0.40</td>
</tr>
<tr>
<td>Cd</td>
<td>0.12</td>
<td>0.08</td>
<td>0.02</td>
<td>1.33</td>
</tr>
<tr>
<td>Element</td>
<td>Mean</td>
<td>Median</td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Sb</td>
<td>0.08</td>
<td>0.07</td>
<td>0.007</td>
<td>0.38</td>
</tr>
<tr>
<td>Te</td>
<td>0.02</td>
<td>0.01</td>
<td>< 0.007</td>
<td>0.31</td>
</tr>
<tr>
<td>Cs</td>
<td>0.22</td>
<td>0.16</td>
<td>0.02</td>
<td>1.63</td>
</tr>
<tr>
<td>Ba</td>
<td>30</td>
<td>25</td>
<td>5.3</td>
<td>130</td>
</tr>
<tr>
<td>La</td>
<td>0.48</td>
<td>0.32</td>
<td>0.07</td>
<td>3.5</td>
</tr>
<tr>
<td>Ce</td>
<td>0.93</td>
<td>0.61</td>
<td>0.10</td>
<td>4.78</td>
</tr>
<tr>
<td>Pr</td>
<td>0.09</td>
<td>0.06</td>
<td>< 0.001</td>
<td>0.55</td>
</tr>
<tr>
<td>Nd</td>
<td>0.37</td>
<td>0.23</td>
<td>0.01</td>
<td>2.24</td>
</tr>
<tr>
<td>Sm</td>
<td>0.07</td>
<td>0.05</td>
<td>0.004</td>
<td>0.38</td>
</tr>
<tr>
<td>Eu</td>
<td>0.05</td>
<td>0.04</td>
<td>0.01</td>
<td>0.19</td>
</tr>
<tr>
<td>Gd</td>
<td>0.09</td>
<td>0.06</td>
<td>0.004</td>
<td>0.62</td>
</tr>
<tr>
<td>Tb</td>
<td>0.02</td>
<td>0.01</td>
<td>< 0.001</td>
<td>0.09</td>
</tr>
<tr>
<td>Dy</td>
<td>0.05</td>
<td>0.03</td>
<td>< 0.001</td>
<td>0.26</td>
</tr>
<tr>
<td>Ho</td>
<td>0.008</td>
<td>0.006</td>
<td>< 0.001</td>
<td>0.05</td>
</tr>
<tr>
<td>Er</td>
<td>0.04</td>
<td>0.03</td>
<td>0.002</td>
<td>0.22</td>
</tr>
<tr>
<td>Tm</td>
<td>0.004</td>
<td>0.003</td>
<td>< 0.001</td>
<td>0.016</td>
</tr>
<tr>
<td>Yb</td>
<td>0.004</td>
<td>0.003</td>
<td>< 0.001</td>
<td>0.016</td>
</tr>
<tr>
<td>Lu</td>
<td>0.02</td>
<td>0.02</td>
<td>< 0.001</td>
<td>0.16</td>
</tr>
<tr>
<td>Ir</td>
<td>0.008</td>
<td>0.006</td>
<td>0.002</td>
<td>0.08</td>
</tr>
<tr>
<td>Pt</td>
<td>0.02</td>
<td>0.01</td>
<td>0.005</td>
<td>0.09</td>
</tr>
<tr>
<td>Hg</td>
<td>0.08</td>
<td>0.05</td>
<td>0.005</td>
<td>0.53</td>
</tr>
<tr>
<td>Tl</td>
<td>2.2</td>
<td>1.6</td>
<td>0.28</td>
<td>22</td>
</tr>
<tr>
<td>Pb</td>
<td>0.06</td>
<td>0.05</td>
<td>0.001</td>
<td>0.4</td>
</tr>
<tr>
<td>Bi</td>
<td>0.1</td>
<td>0.08</td>
<td>< 0.001</td>
<td>0.5</td>
</tr>
<tr>
<td>Th</td>
<td>0.04</td>
<td>0.03</td>
<td>0.007</td>
<td>1.5</td>
</tr>
<tr>
<td>U</td>
<td>0.008</td>
<td>0.006</td>
<td>0.002</td>
<td>0.08</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Li</td>
<td>0.16</td>
<td>0.12</td>
<td>0.098</td>
<td>0.10</td>
</tr>
<tr>
<td>Be</td>
<td>0.02</td>
<td>0.008</td>
<td>0.02</td>
<td>0.008</td>
</tr>
<tr>
<td>B</td>
<td>2.5</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>208</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>1350</td>
<td>1340</td>
<td>1390</td>
<td>1540</td>
</tr>
<tr>
<td>Al</td>
<td>461</td>
<td>280</td>
<td>260</td>
<td>350</td>
</tr>
<tr>
<td>S</td>
<td>820</td>
<td>815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>3560</td>
<td>3870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>3030</td>
<td>2790</td>
<td>2740</td>
<td>3120</td>
</tr>
<tr>
<td>Sc</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>24</td>
<td>25</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>V</td>
<td>1.20</td>
<td>1.40</td>
<td>1.40</td>
<td>1.35</td>
</tr>
<tr>
<td>Cr</td>
<td>0.66</td>
<td>0.59</td>
<td>0.58</td>
<td>0.69</td>
</tr>
<tr>
<td>Mn</td>
<td>400</td>
<td>290</td>
<td>320</td>
<td>330</td>
</tr>
<tr>
<td>Fe</td>
<td>310</td>
<td>280</td>
<td>270</td>
<td>360</td>
</tr>
<tr>
<td>Co</td>
<td>0.20</td>
<td>0.22</td>
<td>0.19</td>
<td>0.17</td>
</tr>
<tr>
<td>Ni</td>
<td>1.10</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Cu</td>
<td>4.2</td>
<td>4.0</td>
<td>4.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Zn</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>Ga</td>
<td>0.13</td>
<td>0.10</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>As</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>Rb</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>9.9</td>
</tr>
<tr>
<td>Sr</td>
<td>13</td>
<td>15</td>
<td>13</td>
<td>11.5</td>
</tr>
<tr>
<td>Y</td>
<td>0.18</td>
<td>0.17</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>Nb</td>
<td>0.07</td>
<td>0.11</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>Mo</td>
<td>____</td>
<td>0.19</td>
<td>0.18</td>
<td>0.11</td>
</tr>
<tr>
<td>Ag</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Cd</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Sb</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>Te</td>
<td>0.01</td>
<td>< 0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>Ba</td>
<td>25</td>
<td>25</td>
<td>22</td>
<td>19.2</td>
</tr>
<tr>
<td>La</td>
<td>0.32</td>
<td>0.33</td>
<td>0.26</td>
<td>0.28</td>
</tr>
<tr>
<td>Element</td>
<td>1st</td>
<td>2nd</td>
<td>3rd</td>
<td>4th</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Ce</td>
<td>0.61</td>
<td>0.59</td>
<td>0.48</td>
<td>0.54</td>
</tr>
<tr>
<td>Pr</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>Nd</td>
<td>0.23</td>
<td>0.23</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td>Sm</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Eu</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Gd</td>
<td>0.060</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Tb</td>
<td>0.01</td>
<td>0.007</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Dy</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Ho</td>
<td>0.006</td>
<td>0.004</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>Er</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Yb</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Lu</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ir</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>Tl</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>Pb</td>
<td>1.6</td>
<td>1.5</td>
<td>2.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Bi</td>
<td>0.05</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Th</td>
<td>0.08</td>
<td>0.10</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>U</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Selected regions

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Sørlandet</th>
<th>Dovre rundt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site name</td>
<td>N.latitude</td>
<td>E.longitude</td>
</tr>
<tr>
<td>Lillesand</td>
<td>58.15.437</td>
<td>08.24.107</td>
</tr>
<tr>
<td>Skiftenes</td>
<td>58.24.038</td>
<td>08.30.681</td>
</tr>
<tr>
<td>Iveland</td>
<td>58.23.969</td>
<td>07.55.389</td>
</tr>
<tr>
<td>Froland</td>
<td>58.33.929</td>
<td>08.35.096</td>
</tr>
<tr>
<td>Tromøy</td>
<td>58.29.194</td>
<td>08.52.380</td>
</tr>
<tr>
<td>Risør</td>
<td>58.45.316</td>
<td>09.12.714</td>
</tr>
<tr>
<td>Lyngdal</td>
<td>58.09.813</td>
<td>07.11.973</td>
</tr>
<tr>
<td>Konsmo</td>
<td>58.16.402</td>
<td>07.23.208</td>
</tr>
<tr>
<td>Hidreskog</td>
<td>58.17.527</td>
<td>07.02.049</td>
</tr>
<tr>
<td>Lillesand</td>
<td>58.15.437</td>
<td>08.24.107</td>
</tr>
</tbody>
</table>

Indre Oslofjord

<table>
<thead>
<tr>
<th>Site name</th>
<th>N.latitude</th>
<th>E.longitude</th>
<th>Site name</th>
<th>N.latitude</th>
<th>E.longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hvaler</td>
<td>59.06.0</td>
<td>10.53.878</td>
<td>Andenes</td>
<td>69.17.330</td>
<td>16.02.333</td>
</tr>
<tr>
<td>Drøbak</td>
<td>59.38.7</td>
<td>10.40.344</td>
<td>Gratangen</td>
<td>68.40.105</td>
<td>17.31.018</td>
</tr>
<tr>
<td>Nesodden</td>
<td>59.48.130</td>
<td>10.40.331</td>
<td>Dividalen</td>
<td>68.46.996</td>
<td>19.42.469</td>
</tr>
<tr>
<td>Høvik</td>
<td>59.53.350</td>
<td>10.33.448</td>
<td>Salangen</td>
<td>69.03.721</td>
<td>17.44.526</td>
</tr>
<tr>
<td>Kjelsås</td>
<td>59.58.051</td>
<td>10.45.723</td>
<td>Gibostad</td>
<td>69.26.526</td>
<td>17.58.660</td>
</tr>
<tr>
<td>Konnerud</td>
<td>59.43.621</td>
<td>10.04.684</td>
<td>Bilto</td>
<td>69.28.826</td>
<td>21.29.107</td>
</tr>
<tr>
<td>Hvittingfoss</td>
<td>59.30.782</td>
<td>09.53.727</td>
<td>Kvaløya</td>
<td>69.46.091</td>
<td>18.50.024</td>
</tr>
<tr>
<td>Brunlanes</td>
<td>59.04</td>
<td>09.55</td>
<td>Kvaenangbotn</td>
<td>69.43.635</td>
<td>22.04.507</td>
</tr>
<tr>
<td>Slagen</td>
<td>58.18.572</td>
<td>10.30.973</td>
<td>Øksfjord</td>
<td>70.13.657</td>
<td>22.22.803</td>
</tr>
<tr>
<td>Botne</td>
<td>59.26.978</td>
<td>10.13.082</td>
<td>Stilla</td>
<td>69.53.865</td>
<td>23.34.077</td>
</tr>
</tbody>
</table>

Indre Troms / Vest-Finnmark
Table A. 5 Mean values (mg kg⁻¹) for vanadium, chromium, copper, zinc, arsenic, cadmium, antimony, mercury, and lead from selected areas in the period 1977-2015.

<table>
<thead>
<tr>
<th>Element</th>
<th>Year</th>
<th>Sørlandet</th>
<th>Indre Oslofjord</th>
<th>Dovre Rundt</th>
<th>Indre Troms/vest-Finmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>1977</td>
<td>11.8 ± 4.1</td>
<td>8.9 ± 3.3</td>
<td>1.6 ± 0.7</td>
<td>1.6 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>1985</td>
<td>9.5 ± 3.2</td>
<td>6.1 ± 1.8</td>
<td>1.6 ± 0.7</td>
<td>2.8 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td>5.5 ± 1.4</td>
<td>4.6 ± 1.2</td>
<td>1.3 ± 0.4</td>
<td>1.4 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>6.1 ± 1.3</td>
<td>5.4 ± 1.3</td>
<td>1.57 ± 0.73</td>
<td>1.32 ± 0.53</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>3.3 ± 1.3</td>
<td>2.80 ± 0.95</td>
<td>0.99 ± 0.43</td>
<td>0.79 ± 0.46</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>3.3 ± 1.4</td>
<td>3.2 ± 1.3</td>
<td>1.1 ± 0.2</td>
<td>1.2 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>3.2 ± 1.4</td>
<td>3.3 ± 1.4</td>
<td>0.95 ± 0.53</td>
<td>0.95 ± 0.40</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>2.2 ± 0.6</td>
<td>2.2 ± 0.3</td>
<td>0.9 ± 0.2</td>
<td>0.3 ± 0.2</td>
</tr>
<tr>
<td>Cr</td>
<td>1977</td>
<td>5.6 ± 1.9</td>
<td>3.6 ± 1.7</td>
<td>1.2 ± 0.5</td>
<td>1.2 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>1985</td>
<td>3.2 ± 0.9</td>
<td>3.0 ± 0.8</td>
<td>1.6 ± 0.8</td>
<td>1.8 ± 1.2</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td>1.4 ± 0.4</td>
<td>2.3 ± 1.8</td>
<td>0.9 ± 0.6</td>
<td>0.7 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>1.7 ± 0.4</td>
<td>1.3 ± 0.5</td>
<td>1.5 ± 0.8</td>
<td>0.8 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>1.2 ± 0.8</td>
<td>1.7 ± 1.5</td>
<td>0.7 ± 0.3</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>1.1 ± 0.6</td>
<td>1.3 ± 1.0</td>
<td>0.5 ± 0.2</td>
<td>0.8 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>0.8 ± 0.3</td>
<td>1.1 ± 0.5</td>
<td>0.5 ± 0.3</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>1.0 ± 0.3</td>
<td>1.3 ± 0.4</td>
<td>0.7 ± 0.3</td>
<td>0.4 ± 0.2</td>
</tr>
<tr>
<td>Ni</td>
<td>1977</td>
<td>8.8 ± 4.9</td>
<td>2.7 ± 1.0</td>
<td>1.1 ± 0.4</td>
<td>1.2 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>1985</td>
<td>4.7 ± 1.1</td>
<td>4.6 ± 2.3</td>
<td>1.4 ± 0.6</td>
<td>2.2 ± 1.1</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td>2.9 ± 1.3</td>
<td>2.5 ± 1.3</td>
<td>1.3 ± 0.6</td>
<td>0.99 ± 0.26</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>2.9 ± 0.7</td>
<td>2.4 ± 0.7</td>
<td>1.2 ± 0.4</td>
<td>1.3 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>1.6 ± 0.5</td>
<td>1.97 ± 1.03</td>
<td>1.0 ± 0.6</td>
<td>0.9 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>1.6 ± 0.4</td>
<td>3.2 ± 2.0</td>
<td>1.2 ± 0.7</td>
<td>1.1 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>2.3 ± 1.3</td>
<td>1.97 ± 1.00</td>
<td>0.89 ± 0.45</td>
<td>0.95 ± 0.24</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>1.5 ± 0.5</td>
<td>2.0 ± 1.4</td>
<td>0.93 ± 0.23</td>
<td>0.88 ± 0.12</td>
</tr>
<tr>
<td>Cu</td>
<td>1977</td>
<td>16 ± 3.2</td>
<td>8.2 ± 3.8</td>
<td>4.8 ± 1.3</td>
<td>6.0 ± 1.9</td>
</tr>
<tr>
<td></td>
<td>1985</td>
<td>10.3 ± 3.7</td>
<td>9.7 ± 3.4</td>
<td>4.1 ± 1.2</td>
<td>4.1 ± 1.1</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td>9.4 ± 2.4</td>
<td>8.2 ± 2.4</td>
<td>4.29 ± 0.76</td>
<td>3.9 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>9.9 ± 1.9</td>
<td>9.0 ± 2.5</td>
<td>3.8 ± 0.5</td>
<td>4.1 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>7.0 ± 1.3</td>
<td>8.4 ± 2.9</td>
<td>3.33 ± 0.65</td>
<td>2.93 ± 0.31</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>7.5 ± 1.7</td>
<td>8.0 ± 2.7</td>
<td>3.6 ± 0.8</td>
<td>3.7 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>7.0 ± 2.5</td>
<td>8.2 ± 3.9</td>
<td>3.07 ± 0.98</td>
<td>3.16 ± 0.72</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>7.4 ± 0.7</td>
<td>7.9 ± 2.7</td>
<td>3.4 ± 1.2</td>
<td>3.2 ± 0.6</td>
</tr>
<tr>
<td>Zn</td>
<td>1977</td>
<td>93 ± 21</td>
<td>85 ± 48</td>
<td>25.4 ± 3.6</td>
<td>30.5 ± 17.5</td>
</tr>
<tr>
<td></td>
<td>1985</td>
<td>70 ± 19</td>
<td>93 ± 41</td>
<td>28 ± 11</td>
<td>25 ± 18</td>
</tr>
<tr>
<td>Year</td>
<td>Cd</td>
<td>As</td>
<td>Cd</td>
<td>As</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>61 ± 19</td>
<td>73 ± 30</td>
<td>29 ± 12</td>
<td>27 ± 11</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>61 ± 19</td>
<td>73 ± 30</td>
<td>29 ± 12</td>
<td>27 ± 11</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>47 ± 22</td>
<td>50 ± 16</td>
<td>23 ± 8</td>
<td>23 ± 7</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>48 ± 17</td>
<td>52 ± 23</td>
<td>25 ± 9</td>
<td>21 ± 7</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>55 ± 15</td>
<td>53 ± 14</td>
<td>28 ± 11</td>
<td>33 ± 19</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>47.2 ± 0.26</td>
<td>51.8 ± 15.9</td>
<td>20.6 ± 4.6</td>
<td>29.1 ± 5.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>As</th>
<th>Cd</th>
<th>As</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>2.44 ± 0.86</td>
<td>1.28 ± 0.33</td>
<td>0.25 ± 0.11</td>
<td>0.18 ± 0.07</td>
</tr>
<tr>
<td>1985</td>
<td>1.24 ± 0.44</td>
<td>0.74 ± 0.29</td>
<td>0.24 ± 0.10</td>
<td>0.28 ± 0.18</td>
</tr>
<tr>
<td>1990</td>
<td>0.67 ± 0.21</td>
<td>0.66 ± 0.35</td>
<td>0.16 ± 0.04</td>
<td>0.17 ± 0.07</td>
</tr>
<tr>
<td>1995</td>
<td>0.90 ± 0.26</td>
<td>0.59 ± 0.11</td>
<td>0.3 ± 0.2</td>
<td>< 0.15</td>
</tr>
<tr>
<td>2000</td>
<td>0.28 ± 0.08</td>
<td>0.30 ± 0.12</td>
<td>0.07 ± 0.02</td>
<td>0.06 ± 0.03</td>
</tr>
<tr>
<td>2005</td>
<td>0.3 ± 0.1</td>
<td>0.22 ± 0.07</td>
<td>0.05 ± 0.02</td>
<td>0.095 ± 0.03</td>
</tr>
<tr>
<td>2010</td>
<td>0.22 ± 0.06</td>
<td>0.25 ± 0.07</td>
<td>0.10 ± 0.03</td>
<td>0.10 ± 0.02</td>
</tr>
<tr>
<td>2015</td>
<td>0.20 ± 0.02</td>
<td>0.26 ± 0.10</td>
<td>0.06 ± 0.02</td>
<td>0.07 ± 0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Cd</th>
<th>As</th>
<th>Cd</th>
<th>As</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>1.17 ± 0.15</td>
<td>0.63 ± 0.28</td>
<td>0.06 ± 0.04</td>
<td>0.12 ± 0.08</td>
</tr>
<tr>
<td>1985</td>
<td>0.50 ± 0.17</td>
<td>0.50 ± 0.17</td>
<td>0.14 ± 0.09</td>
<td>0.08 ± 0.04</td>
</tr>
<tr>
<td>1990</td>
<td>0.38 ± 0.15</td>
<td>0.33 ± 0.13</td>
<td>0.07 ± 0.02</td>
<td>0.07 ± 0.04</td>
</tr>
<tr>
<td>1995</td>
<td>0.41 ± 0.12</td>
<td>0.56 ± 0.26</td>
<td>0.07 ± 0.03</td>
<td>0.07 ± 0.03</td>
</tr>
<tr>
<td>2000</td>
<td>0.27 ± 0.13</td>
<td>0.22 ± 0.10</td>
<td>0.05 ± 0.02</td>
<td>0.05 ± 0.03</td>
</tr>
<tr>
<td>2005</td>
<td>0.31 ± 0.08</td>
<td>0.3 ± 0.1</td>
<td>0.07 ± 0.03</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td>2010</td>
<td>0.32 ± 0.1</td>
<td>0.22 ± 0.05</td>
<td>0.04 ± 0.01</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>2015</td>
<td>0.22 ± 0.04</td>
<td>0.24 ± 0.07</td>
<td>0.05 ± 0.02</td>
<td>0.04 ± 0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>As</th>
<th>Cd</th>
<th>As</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>1.40 ± 0.34</td>
<td>0.73 ± 0.26</td>
<td>0.12 ± 0.03</td>
<td>0.09 ± 0.02</td>
</tr>
<tr>
<td>1985</td>
<td>0.71 ± 0.18</td>
<td>0.54 ± 0.16</td>
<td>0.11 ± 0.03</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>1990</td>
<td>0.36 ± 0.10</td>
<td>0.37 ± 0.13</td>
<td>0.04 ± 0.02</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>1995</td>
<td>0.32 ± 0.07</td>
<td>0.32 ± 0.11</td>
<td>0.05 ± 0.02</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>2000</td>
<td>0.19 ± 0.05</td>
<td>0.22 ± 0.10</td>
<td>0.03 ± 0.01</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>2005</td>
<td>0.22 ± 0.04</td>
<td>0.28 ± 0.16</td>
<td>0.032 ± 0.007</td>
<td>0.031 ± 0.010</td>
</tr>
<tr>
<td>2010</td>
<td>0.22 ± 0.06</td>
<td>0.21 ± 0.12</td>
<td>0.035 ± 0.011</td>
<td>0.028 ± 0.011</td>
</tr>
<tr>
<td>2015</td>
<td>0.17 ± 0.05</td>
<td>0.22 ± 0.09</td>
<td>0.04 ± 0.02</td>
<td>0.018 ± 0.007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Hg</th>
<th>Hg</th>
<th>Hg</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>1985</td>
<td>0.14 ± 0.04</td>
<td>0.12 ± 0.05</td>
<td>0.07 ± 0.02</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>1990</td>
<td>0.09 ± 0.03</td>
<td>0.11 ± 0.04</td>
<td>0.05 ± 0.03</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>1995</td>
<td>0.09 ± 0.02</td>
<td>0.07 ± 0.01</td>
<td>0.06 ± 0.02</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td>2000</td>
<td>0.07 ± 0.02</td>
<td>0.07 ± 0.02</td>
<td>0.04 ± 0.01</td>
<td>0.04 ± 0.03</td>
</tr>
<tr>
<td>2005</td>
<td>0.08 ± 0.02</td>
<td>0.08 ± 0.02</td>
<td>0.05 ± 0.01</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>2010</td>
<td>0.07 ± 0.02</td>
<td>0.08 ± 0.04</td>
<td>0.06 ± 0.01</td>
<td>0.04 ± 0.01</td>
</tr>
<tr>
<td>2015</td>
<td>0.06 ± 0.02</td>
<td>0.07 ± 0.01</td>
<td>0.04 ± 0.02</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td>Pb</td>
<td>1977</td>
<td>127 ± 30</td>
<td>59 ± 20</td>
<td>8.9 ± 4.1</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>1985</td>
<td>52 ± 16</td>
<td>40 ± 14</td>
<td>5.3 ± 3.5</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td>36 ± 9</td>
<td>38 ± 21</td>
<td>4 ± 2</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>23 ± 5</td>
<td>19 ± 5</td>
<td>2.4 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>9.5 ± 3.6</td>
<td>7.1 ± 1.3</td>
<td>1.1 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>7.8 ± 2.9</td>
<td>6.3 ± 2.1</td>
<td>0.9 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>6.4 ± 2.9</td>
<td>5.1 ± 1.0</td>
<td>0.82 ± 0.38</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>5.6 ± 1.0</td>
<td>3.9 ± 1.1</td>
<td>0.56 ± 0.06</td>
</tr>
</tbody>
</table>

Few samples from each region. Listed values are average of 2-5 samples.
Table A.6 Coordinates and results for each sampling site.

<table>
<thead>
<tr>
<th>Site name</th>
<th>N. Latitude</th>
<th>E. Longitude</th>
<th>V (mg kg(^{-1}))</th>
<th>Cr (mg kg(^{-1}))</th>
<th>Fe (mg kg(^{-1}))</th>
<th>Ni (mg kg(^{-1}))</th>
<th>Cu (mg kg(^{-1}))</th>
<th>Zn (mg kg(^{-1}))</th>
<th>As (mg kg(^{-1}))</th>
<th>Cd (mg kg(^{-1}))</th>
<th>Sb (mg kg(^{-1}))</th>
<th>Hg (mg kg(^{-1}))</th>
<th>Pb (mg kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kornsjø</td>
<td>58.56.980</td>
<td>11.38.872</td>
<td>2.0</td>
<td>1.2</td>
<td>432</td>
<td>1.3</td>
<td>6.1</td>
<td>28</td>
<td>0.23</td>
<td>0.15</td>
<td>0.18</td>
<td>0.076</td>
<td>3.4</td>
</tr>
<tr>
<td>Aremark</td>
<td>59.13.723</td>
<td>11.43.247</td>
<td>2.6</td>
<td>0.75</td>
<td>661</td>
<td>1.0</td>
<td>4.2</td>
<td>45</td>
<td>0.13</td>
<td>0.16</td>
<td>0.11</td>
<td>0.041</td>
<td>2.2</td>
</tr>
<tr>
<td>Rømskog</td>
<td>59.40.141</td>
<td>11.49.012</td>
<td>1.0</td>
<td>0.57</td>
<td>185</td>
<td>0.90</td>
<td>3.4</td>
<td>38</td>
<td>0.12</td>
<td>0.19</td>
<td>0.09</td>
<td>0.056</td>
<td>2.1</td>
</tr>
<tr>
<td>Hvaler</td>
<td>59.06.060</td>
<td>10.53.787</td>
<td>1.6</td>
<td>0.98</td>
<td>338</td>
<td>0.99</td>
<td>7.5</td>
<td>46</td>
<td>0.21</td>
<td>0.27</td>
<td>0.22</td>
<td>0.088</td>
<td>3.7</td>
</tr>
<tr>
<td>Tune</td>
<td>59.22.392</td>
<td>11.00.613</td>
<td>1.8</td>
<td>1.1</td>
<td>372</td>
<td>1.4</td>
<td>5.7</td>
<td>56</td>
<td>0.19</td>
<td>0.30</td>
<td>0.17</td>
<td>0.061</td>
<td>3.5</td>
</tr>
<tr>
<td>Jeløy</td>
<td>59.27.295</td>
<td>10.39.172</td>
<td>1.9</td>
<td>1.4</td>
<td>423</td>
<td>1.6</td>
<td>7.7</td>
<td>36</td>
<td>0.17</td>
<td>0.17</td>
<td>0.19</td>
<td>0.046</td>
<td>3.1</td>
</tr>
<tr>
<td>Degernes</td>
<td>59.24.656</td>
<td>11.28.031</td>
<td>1.8</td>
<td>1.0</td>
<td>405</td>
<td>0.98</td>
<td>5.7</td>
<td>47</td>
<td>0.18</td>
<td>0.13</td>
<td>0.14</td>
<td>0.061</td>
<td>3.1</td>
</tr>
<tr>
<td>Drøbak</td>
<td>59.38.784</td>
<td>10.40.225</td>
<td>2.3</td>
<td>1.3</td>
<td>527</td>
<td>1.3</td>
<td>5.6</td>
<td>53</td>
<td>0.23</td>
<td>0.14</td>
<td>0.23</td>
<td>0.048</td>
<td>2.9</td>
</tr>
<tr>
<td>Enebakk</td>
<td>59.43.914</td>
<td>11.08.664</td>
<td>2.2</td>
<td>0.99</td>
<td>753</td>
<td>1.2</td>
<td>6.3</td>
<td>49</td>
<td>0.21</td>
<td>0.17</td>
<td>0.17</td>
<td>0.066</td>
<td>3.2</td>
</tr>
<tr>
<td>Nesodden</td>
<td>59.50.031</td>
<td>10.40.333</td>
<td>2.2</td>
<td>1.4</td>
<td>590</td>
<td>1.4</td>
<td>9.5</td>
<td>40</td>
<td>0.22</td>
<td>0.15</td>
<td>0.28</td>
<td>0.069</td>
<td>2.9</td>
</tr>
<tr>
<td>Høvik</td>
<td>59.53.377</td>
<td>10.33.237</td>
<td>5.6</td>
<td>6.7</td>
<td>1710</td>
<td>4.9</td>
<td>18.4</td>
<td>58</td>
<td>0.52</td>
<td>0.20</td>
<td>0.33</td>
<td>0.060</td>
<td>4.5</td>
</tr>
<tr>
<td>Sollihøgda</td>
<td>59.57.822</td>
<td>10.21.560</td>
<td>1.3</td>
<td>0.87</td>
<td>304</td>
<td>0.81</td>
<td>5.5</td>
<td>40</td>
<td>0.13</td>
<td>0.34</td>
<td>0.14</td>
<td>0.040</td>
<td>2.0</td>
</tr>
<tr>
<td>Bogstad</td>
<td>59.59.175</td>
<td>10.37.755</td>
<td>1.3</td>
<td>0.83</td>
<td>319</td>
<td>1.4</td>
<td>6.8</td>
<td>51</td>
<td>0.13</td>
<td>0.19</td>
<td>0.13</td>
<td>0.037</td>
<td>3.0</td>
</tr>
<tr>
<td>Kjelsås</td>
<td>59.57.998</td>
<td>10.45.389</td>
<td>2.6</td>
<td>2.1</td>
<td>758</td>
<td>4.2</td>
<td>15</td>
<td>88</td>
<td>0.26</td>
<td>0.39</td>
<td>0.38</td>
<td>0.092</td>
<td>4.9</td>
</tr>
<tr>
<td>Hakadal</td>
<td>60.06.309</td>
<td>10.50.426</td>
<td>2.1</td>
<td>1.1</td>
<td>704</td>
<td>1.2</td>
<td>6.9</td>
<td>60</td>
<td>0.18</td>
<td>0.13</td>
<td>0.18</td>
<td>0.082</td>
<td>3.0</td>
</tr>
<tr>
<td>Asak</td>
<td>59.58.621</td>
<td>11.06.657</td>
<td>1.0</td>
<td>0.70</td>
<td>270</td>
<td>0.86</td>
<td>4.2</td>
<td>31</td>
<td>0.15</td>
<td>0.10</td>
<td>0.21</td>
<td>0.045</td>
<td>4.4</td>
</tr>
<tr>
<td>Aurskog</td>
<td>59.58.693</td>
<td>11.29.910</td>
<td>1.3</td>
<td>0.75</td>
<td>313</td>
<td>1.0</td>
<td>3.9</td>
<td>47</td>
<td>0.16</td>
<td>0.14</td>
<td>0.10</td>
<td>0.056</td>
<td>1.9</td>
</tr>
<tr>
<td>Nordmoen</td>
<td>60.15.087</td>
<td>11.06.870</td>
<td>1.2</td>
<td>0.85</td>
<td>311</td>
<td>1.0</td>
<td>6.0</td>
<td>18</td>
<td>0.19</td>
<td>0.07</td>
<td>0.11</td>
<td>0.046</td>
<td>1.9</td>
</tr>
<tr>
<td>Site name</td>
<td>N. Latitude</td>
<td>E. Longitude</td>
<td>V</td>
<td>Cr</td>
<td>Fe</td>
<td>Ni</td>
<td>Cu</td>
<td>Zn</td>
<td>As</td>
<td>Cd</td>
<td>Sb</td>
<td>Hg</td>
<td>Pb</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>Magnor</td>
<td>60.00.009</td>
<td>12.22.058</td>
<td>1.6</td>
<td>0.95</td>
<td>405</td>
<td>0.90</td>
<td>5.3</td>
<td>35</td>
<td>0.15</td>
<td>0.08</td>
<td>0.14</td>
<td>0.101</td>
<td>2.5</td>
</tr>
<tr>
<td>Kongsvinger</td>
<td>60.10.123</td>
<td>12.08.776</td>
<td>1.2</td>
<td>0.81</td>
<td>280</td>
<td>1.1</td>
<td>3.5</td>
<td>39</td>
<td>0.15</td>
<td>0.09</td>
<td>0.13</td>
<td>0.074</td>
<td>2.3</td>
</tr>
<tr>
<td>Nord-Odal</td>
<td>60.24.969</td>
<td>11.34.174</td>
<td>1.4</td>
<td>0.99</td>
<td>403</td>
<td>0.84</td>
<td>4.0</td>
<td>31</td>
<td>0.10</td>
<td>0.09</td>
<td>0.12</td>
<td>0.266</td>
<td>2.3</td>
</tr>
<tr>
<td>Røgna</td>
<td>60.23.379</td>
<td>12.33.328</td>
<td>1.1</td>
<td>0.70</td>
<td>259</td>
<td>1.5</td>
<td>4.0</td>
<td>53</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
<td>0.065</td>
<td>2.3</td>
</tr>
<tr>
<td>Våler</td>
<td>60.41.674</td>
<td>11.59.053</td>
<td>1.1</td>
<td>0.59</td>
<td>271</td>
<td>1.1</td>
<td>3.1</td>
<td>26</td>
<td>0.16</td>
<td>0.07</td>
<td>0.10</td>
<td>0.061</td>
<td>2.3</td>
</tr>
<tr>
<td>Kise</td>
<td>60.47.169</td>
<td>10.47.216</td>
<td>2.1</td>
<td>1.7</td>
<td>661</td>
<td>3.2</td>
<td>4.9</td>
<td>30</td>
<td>0.18</td>
<td>0.09</td>
<td>0.11</td>
<td>0.078</td>
<td>1.9</td>
</tr>
<tr>
<td>Mesnali</td>
<td>61.03.642</td>
<td>10.49.889</td>
<td>2.3</td>
<td>1.3</td>
<td>1015</td>
<td>1.1</td>
<td>3.3</td>
<td>34</td>
<td>0.21</td>
<td>0.07</td>
<td>0.10</td>
<td>0.110</td>
<td>2.2</td>
</tr>
<tr>
<td>Trysil</td>
<td>61.25.266</td>
<td>12.22.928</td>
<td>1.0</td>
<td>0.39</td>
<td>339</td>
<td>0.44</td>
<td>3.8</td>
<td>23</td>
<td>0.10</td>
<td>0.05</td>
<td>0.07</td>
<td>0.064</td>
<td>1.1</td>
</tr>
<tr>
<td>N. Osen</td>
<td>61.19.294</td>
<td>11.47.923</td>
<td>0.73</td>
<td>0.43</td>
<td>289</td>
<td>0.55</td>
<td>3.2</td>
<td>21</td>
<td>0.12</td>
<td>0.05</td>
<td>0.07</td>
<td>0.060</td>
<td>1.0</td>
</tr>
<tr>
<td>Stal</td>
<td>61.27.981</td>
<td>10.59.972</td>
<td>0.65</td>
<td>0.40</td>
<td>189</td>
<td>0.67</td>
<td>3.6</td>
<td>28</td>
<td>0.09</td>
<td>0.09</td>
<td>0.12</td>
<td>0.050</td>
<td>1.3</td>
</tr>
<tr>
<td>Atnasjøen</td>
<td>61.53.283</td>
<td>10.10.150</td>
<td>0.57</td>
<td>0.38</td>
<td>162</td>
<td>0.99</td>
<td>3.2</td>
<td>43</td>
<td>0.08</td>
<td>0.12</td>
<td>0.07</td>
<td>0.085</td>
<td>1.1</td>
</tr>
<tr>
<td>Jutulhogget</td>
<td>61.59.908</td>
<td>10.53.296</td>
<td>0.66</td>
<td>0.46</td>
<td>210</td>
<td>0.78</td>
<td>2.3</td>
<td>26</td>
<td>0.09</td>
<td>0.06</td>
<td>0.07</td>
<td>0.066</td>
<td>1.0</td>
</tr>
<tr>
<td>Sørådal</td>
<td>62.06.057</td>
<td>11.38.606</td>
<td>0.52</td>
<td>0.32</td>
<td>185</td>
<td>0.50</td>
<td>2.0</td>
<td>23</td>
<td>0.05</td>
<td>0.04</td>
<td>0.06</td>
<td>0.044</td>
<td>0.6</td>
</tr>
<tr>
<td>Narbuoll</td>
<td>62.21.942</td>
<td>11.28.853</td>
<td>0.77</td>
<td>0.48</td>
<td>262</td>
<td>0.77</td>
<td>1.8</td>
<td>17</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.034</td>
<td>0.6</td>
</tr>
<tr>
<td>Dalsbygda</td>
<td>62.31.552</td>
<td>11.04.765</td>
<td>1.0</td>
<td>0.83</td>
<td>326</td>
<td>0.71</td>
<td>2.8</td>
<td>20</td>
<td>0.10</td>
<td>0.03</td>
<td>0.05</td>
<td>0.044</td>
<td>0.5</td>
</tr>
<tr>
<td>Brandbu</td>
<td>60.25.972</td>
<td>10.34.505</td>
<td>3.6</td>
<td>2.1</td>
<td>1358</td>
<td>1.7</td>
<td>5.3</td>
<td>47</td>
<td>0.22</td>
<td>0.10</td>
<td>0.18</td>
<td>0.046</td>
<td>2.2</td>
</tr>
<tr>
<td>Sanderstalen</td>
<td>60.52.261</td>
<td>09.13.207</td>
<td>0.90</td>
<td>0.59</td>
<td>266</td>
<td>1.7</td>
<td>2.9</td>
<td>20</td>
<td>0.12</td>
<td>0.06</td>
<td>0.08</td>
<td>0.052</td>
<td>1.0</td>
</tr>
<tr>
<td>Dokka</td>
<td>60.49.969</td>
<td>09.57.792</td>
<td>0.88</td>
<td>0.51</td>
<td>224</td>
<td>0.83</td>
<td>4.1</td>
<td>32</td>
<td>0.15</td>
<td>0.10</td>
<td>0.10</td>
<td>0.061</td>
<td>1.8</td>
</tr>
<tr>
<td>Synnfjell</td>
<td>61.06.677</td>
<td>09.41.605</td>
<td>0.51</td>
<td>0.30</td>
<td>135</td>
<td>0.88</td>
<td>3.2</td>
<td>41</td>
<td>0.09</td>
<td>0.09</td>
<td>0.07</td>
<td>0.051</td>
<td>1.0</td>
</tr>
<tr>
<td>Øst-Sildre</td>
<td>61.09.575</td>
<td>09.03.220</td>
<td>1.1</td>
<td>0.62</td>
<td>360</td>
<td>0.92</td>
<td>2.8</td>
<td>31</td>
<td>0.17</td>
<td>0.04</td>
<td>0.06</td>
<td>0.047</td>
<td>0.9</td>
</tr>
<tr>
<td>Vang i V.</td>
<td>61.09.626</td>
<td>08.25.211</td>
<td>0.92</td>
<td>0.45</td>
<td>261</td>
<td>2.4</td>
<td>3.4</td>
<td>26</td>
<td>0.15</td>
<td>0.07</td>
<td>0.11</td>
<td>0.086</td>
<td>1.3</td>
</tr>
<tr>
<td>Ringebu</td>
<td>61.36.920</td>
<td>10.04.212</td>
<td>0.70</td>
<td>0.45</td>
<td>211</td>
<td>0.74</td>
<td>2.7</td>
<td>31</td>
<td>0.09</td>
<td>0.07</td>
<td>0.07</td>
<td>0.052</td>
<td>1.0</td>
</tr>
<tr>
<td>Site name</td>
<td>N. Latitude</td>
<td>E. Longitude</td>
<td>V mg kg(^{-1})</td>
<td>Cr mg kg(^{-1})</td>
<td>Fe mg kg(^{-1})</td>
<td>Ni mg kg(^{-1})</td>
<td>Cu mg kg(^{-1})</td>
<td>Zn mg kg(^{-1})</td>
<td>As mg kg(^{-1})</td>
<td>Cd mg kg(^{-1})</td>
<td>Sb mg kg(^{-1})</td>
<td>Hg mg kg(^{-1})</td>
<td>Pb mg kg(^{-1})</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Skåbu</td>
<td>61.36.723</td>
<td>09.27.125</td>
<td>0.68</td>
<td>0.51</td>
<td>200</td>
<td>1.3</td>
<td>3.0</td>
<td>23</td>
<td>0.09</td>
<td>0.07</td>
<td>0.06</td>
<td>0.050</td>
<td>0.5</td>
</tr>
<tr>
<td>Gjendeshim</td>
<td>61.29.030</td>
<td>08.50.068</td>
<td>1.2</td>
<td>0.66</td>
<td>280</td>
<td>1.4</td>
<td>3.2</td>
<td>20</td>
<td>0.13</td>
<td>0.07</td>
<td>0.08</td>
<td>0.049</td>
<td>1.3</td>
</tr>
<tr>
<td>Leirdalen</td>
<td>61.39.595</td>
<td>08.10.882</td>
<td>4.8</td>
<td>2.4</td>
<td>1167</td>
<td>1.4</td>
<td>4.3</td>
<td>47</td>
<td>0.09</td>
<td>0.05</td>
<td>0.05</td>
<td>0.073</td>
<td>0.6</td>
</tr>
<tr>
<td>Heidal</td>
<td>61.46.802</td>
<td>09.14.666</td>
<td>1.6</td>
<td>1.1</td>
<td>488</td>
<td>1.2</td>
<td>3.6</td>
<td>25</td>
<td>0.11</td>
<td>0.05</td>
<td>0.08</td>
<td>0.066</td>
<td>0.8</td>
</tr>
<tr>
<td>Dombås</td>
<td>62.02.464</td>
<td>09.07.475</td>
<td>1.1</td>
<td>1.3</td>
<td>347</td>
<td>1.4</td>
<td>3.1</td>
<td>20</td>
<td>0.07</td>
<td>0.03</td>
<td>0.08</td>
<td>0.059</td>
<td>0.7</td>
</tr>
<tr>
<td>Bjorli</td>
<td>62.16.920</td>
<td>08.08.061</td>
<td>0.60</td>
<td>0.46</td>
<td>210</td>
<td>0.55</td>
<td>3.1</td>
<td>17</td>
<td>0.04</td>
<td>0.02</td>
<td>0.05</td>
<td>0.046</td>
<td>0.3</td>
</tr>
<tr>
<td>Røyken</td>
<td>59.44.896</td>
<td>10.27.005</td>
<td>1.9</td>
<td>1.2</td>
<td>463</td>
<td>1.4</td>
<td>7.6</td>
<td>56</td>
<td>0.29</td>
<td>0.36</td>
<td>0.20</td>
<td>0.052</td>
<td>3.6</td>
</tr>
<tr>
<td>Konnerud</td>
<td>59.43.602</td>
<td>10.07.032</td>
<td>2.3</td>
<td>1.4</td>
<td>593</td>
<td>1.3</td>
<td>7.3</td>
<td>37</td>
<td>0.33</td>
<td>0.27</td>
<td>0.23</td>
<td>0.050</td>
<td>5.8</td>
</tr>
<tr>
<td>Hvittingfoss</td>
<td>59.43.602</td>
<td>10.07.032</td>
<td>2.1</td>
<td>0.98</td>
<td>642</td>
<td>2.0</td>
<td>6.9</td>
<td>66</td>
<td>0.18</td>
<td>0.30</td>
<td>0.14</td>
<td>0.065</td>
<td>3.8</td>
</tr>
<tr>
<td>Kongsgs</td>
<td>59.40.911</td>
<td>09.40.987</td>
<td>1.3</td>
<td>0.58</td>
<td>361</td>
<td>0.72</td>
<td>3.8</td>
<td>18</td>
<td>0.10</td>
<td>0.06</td>
<td>0.07</td>
<td>0.039</td>
<td>1.6</td>
</tr>
<tr>
<td>Åmot i M.</td>
<td>59.55.035</td>
<td>09.55.132</td>
<td>1.6</td>
<td>0.81</td>
<td>553</td>
<td>1.1</td>
<td>5.1</td>
<td>34</td>
<td>0.23</td>
<td>0.11</td>
<td>0.12</td>
<td>0.066</td>
<td>2.2</td>
</tr>
<tr>
<td>Flesberg</td>
<td>59.56.611</td>
<td>09.30.207</td>
<td>0.85</td>
<td>0.50</td>
<td>239</td>
<td>0.74</td>
<td>4.7</td>
<td>29</td>
<td>0.12</td>
<td>0.08</td>
<td>0.05</td>
<td>0.048</td>
<td>1.4</td>
</tr>
<tr>
<td>Hønefoss</td>
<td>60.11.525</td>
<td>10.11.589</td>
<td>2.0</td>
<td>1.4</td>
<td>638</td>
<td>1.9</td>
<td>7.1</td>
<td>35</td>
<td>0.22</td>
<td>0.10</td>
<td>0.13</td>
<td>0.068</td>
<td>2.2</td>
</tr>
<tr>
<td>Flå</td>
<td>60.25.944</td>
<td>09.27.224</td>
<td>1.5</td>
<td>0.93</td>
<td>530</td>
<td>1.1</td>
<td>4.2</td>
<td>34</td>
<td>0.15</td>
<td>0.12</td>
<td>0.11</td>
<td>0.039</td>
<td>1.6</td>
</tr>
<tr>
<td>Vassulalen</td>
<td>60.19.881</td>
<td>08.29.329</td>
<td>0.49</td>
<td>0.28</td>
<td>137</td>
<td>0.65</td>
<td>4.4</td>
<td>59</td>
<td>0.08</td>
<td>0.07</td>
<td>0.02</td>
<td>0.049</td>
<td>0.8</td>
</tr>
<tr>
<td>Ål</td>
<td>60.37.208</td>
<td>08.32.561</td>
<td>1.2</td>
<td>0.80</td>
<td>495</td>
<td>0.99</td>
<td>4.5</td>
<td>29</td>
<td>0.11</td>
<td>0.08</td>
<td>0.10</td>
<td>0.093</td>
<td>2.2</td>
</tr>
<tr>
<td>Strandevatn</td>
<td>60.43.605</td>
<td>07.44.601</td>
<td>1.8</td>
<td>0.78</td>
<td>552</td>
<td>1.3</td>
<td>3.7</td>
<td>24</td>
<td>0.19</td>
<td>0.07</td>
<td>0.06</td>
<td>0.075</td>
<td>1.5</td>
</tr>
<tr>
<td>Hemsedal</td>
<td>60.51.390</td>
<td>08.33.181</td>
<td>1.2</td>
<td>0.65</td>
<td>347</td>
<td>1.1</td>
<td>3.9</td>
<td>18</td>
<td>0.09</td>
<td>0.07</td>
<td>0.08</td>
<td>0.042</td>
<td>2.1</td>
</tr>
<tr>
<td>Tjame</td>
<td>59.05.411</td>
<td>10.25.646</td>
<td>1.1</td>
<td>0.66</td>
<td>314</td>
<td>0.70</td>
<td>5.0</td>
<td>19</td>
<td>0.13</td>
<td>0.05</td>
<td>0.05</td>
<td>0.040</td>
<td>5.2</td>
</tr>
<tr>
<td>Brunlanes</td>
<td>58.59.857</td>
<td>09.53.344</td>
<td>2.4</td>
<td>1.5</td>
<td>889</td>
<td>1.1</td>
<td>6.3</td>
<td>34</td>
<td>0.30</td>
<td>0.05</td>
<td>0.08</td>
<td>0.069</td>
<td>4.9</td>
</tr>
</tbody>
</table>
Atmospheric deposition of heavy metals in Norway

<table>
<thead>
<tr>
<th>Site name</th>
<th>N. Latitude</th>
<th>E. Longitude</th>
<th>V (mg kg(^{-1}))</th>
<th>Cr (mg kg(^{-1}))</th>
<th>Fe (mg kg(^{-1}))</th>
<th>Ni (mg kg(^{-1}))</th>
<th>Cu (mg kg(^{-1}))</th>
<th>Zn (mg kg(^{-1}))</th>
<th>As (mg kg(^{-1}))</th>
<th>Cd (mg kg(^{-1}))</th>
<th>Sb (mg kg(^{-1}))</th>
<th>Hg (mg kg(^{-1}))</th>
<th>Pb (mg kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinsholt</td>
<td>59.18.090</td>
<td>09.49.493</td>
<td>1.2</td>
<td>0.58</td>
<td>216</td>
<td>1.1</td>
<td>5.1</td>
<td>38</td>
<td>0.15</td>
<td>0.11</td>
<td>0.11</td>
<td>0.060</td>
<td>3.1</td>
</tr>
<tr>
<td>Slagen</td>
<td>59.18.475</td>
<td>10.30.965</td>
<td>2.2</td>
<td>1.3</td>
<td>535</td>
<td>2.0</td>
<td>6.2</td>
<td>48</td>
<td>0.21</td>
<td>0.26</td>
<td>0.18</td>
<td>0.059</td>
<td>5.3</td>
</tr>
<tr>
<td>Botne</td>
<td>59.26.353</td>
<td>10.13.845</td>
<td>1.9</td>
<td>0.97</td>
<td>550</td>
<td>1.4</td>
<td>7.6</td>
<td>50</td>
<td>0.16</td>
<td>0.25</td>
<td>0.13</td>
<td>0.064</td>
<td>4.2</td>
</tr>
<tr>
<td>Levang</td>
<td>58.50.298</td>
<td>09.26.110</td>
<td>2.2</td>
<td>2.0</td>
<td>551</td>
<td>1.9</td>
<td>7.0</td>
<td>44</td>
<td>0.20</td>
<td>0.26</td>
<td>0.12</td>
<td>0.057</td>
<td>4.4</td>
</tr>
<tr>
<td>Eidanger</td>
<td>59.07.145</td>
<td>09.41.780</td>
<td>2.4</td>
<td>2.4</td>
<td>834</td>
<td>2.1</td>
<td>13</td>
<td>60</td>
<td>0.33</td>
<td>0.29</td>
<td>0.25</td>
<td>0.029</td>
<td>5.9</td>
</tr>
<tr>
<td>Neslandsvatn</td>
<td>58.58.173</td>
<td>09.10.841</td>
<td>1.7</td>
<td>0.81</td>
<td>377</td>
<td>1.3</td>
<td>6.0</td>
<td>35</td>
<td>0.19</td>
<td>0.18</td>
<td>0.12</td>
<td>0.024</td>
<td>4.6</td>
</tr>
<tr>
<td>Raørholt</td>
<td>59.04.339</td>
<td>09.21.234</td>
<td>1.2</td>
<td>0.58</td>
<td>233</td>
<td>0.87</td>
<td>5.8</td>
<td>41</td>
<td>0.14</td>
<td>0.18</td>
<td>0.10</td>
<td>0.054</td>
<td>3.6</td>
</tr>
<tr>
<td>Treungen</td>
<td>59.00.409</td>
<td>08.32.978</td>
<td>1.1</td>
<td>0.55</td>
<td>301</td>
<td>0.80</td>
<td>4.4</td>
<td>45</td>
<td>0.12</td>
<td>0.14</td>
<td>0.10</td>
<td>0.045</td>
<td>2.1</td>
</tr>
<tr>
<td>Drangedal</td>
<td>59.05.965</td>
<td>08.58.246</td>
<td>1.1</td>
<td>0.47</td>
<td>205</td>
<td>1.4</td>
<td>6.0</td>
<td>70</td>
<td>0.15</td>
<td>0.27</td>
<td>0.08</td>
<td>0.027</td>
<td>3.3</td>
</tr>
<tr>
<td>Flåbygd</td>
<td>59.18.667</td>
<td>09.01.654</td>
<td>0.90</td>
<td>0.47</td>
<td>252</td>
<td>0.76</td>
<td>4.2</td>
<td>25</td>
<td>0.14</td>
<td>0.12</td>
<td>0.09</td>
<td>0.026</td>
<td>2.0</td>
</tr>
<tr>
<td>Veum</td>
<td>59.16.938</td>
<td>08.04.501</td>
<td>1.1</td>
<td>0.50</td>
<td>284</td>
<td>0.80</td>
<td>3.8</td>
<td>31</td>
<td>0.09</td>
<td>0.08</td>
<td>0.06</td>
<td>0.039</td>
<td>1.4</td>
</tr>
<tr>
<td>Åmot</td>
<td>59.30.109</td>
<td>07.58.105</td>
<td>1.5</td>
<td>0.66</td>
<td>472</td>
<td>1.5</td>
<td>5.1</td>
<td>35</td>
<td>0.11</td>
<td>0.08</td>
<td>0.04</td>
<td>0.040</td>
<td>1.9</td>
</tr>
<tr>
<td>Sauland</td>
<td>59.37.027</td>
<td>08.55.230</td>
<td>0.86</td>
<td>0.47</td>
<td>240</td>
<td>1.4</td>
<td>6.5</td>
<td>33</td>
<td>0.13</td>
<td>0.08</td>
<td>0.10</td>
<td>0.068</td>
<td>1.6</td>
</tr>
<tr>
<td>Rjukan</td>
<td>59.51.074</td>
<td>08.26.290</td>
<td>0.66</td>
<td>0.43</td>
<td>178</td>
<td>1.0</td>
<td>4.1</td>
<td>24</td>
<td>0.13</td>
<td>0.04</td>
<td>0.05</td>
<td>0.028</td>
<td>1.1</td>
</tr>
<tr>
<td>Vågslid</td>
<td>59.46.518</td>
<td>07.25.405</td>
<td>0.61</td>
<td>0.33</td>
<td>184</td>
<td>0.87</td>
<td>3.6</td>
<td>83</td>
<td>0.07</td>
<td>0.12</td>
<td>0.12</td>
<td>0.030</td>
<td>1.0</td>
</tr>
<tr>
<td>Tinn</td>
<td>59.58.301</td>
<td>08.52.478</td>
<td>0.69</td>
<td>0.45</td>
<td>181</td>
<td>1.3</td>
<td>4.1</td>
<td>26</td>
<td>0.14</td>
<td>0.06</td>
<td>0.08</td>
<td>0.032</td>
<td>1.5</td>
</tr>
<tr>
<td>Lillesand</td>
<td>58.15.417</td>
<td>08.24.267</td>
<td>2.9</td>
<td>1.1</td>
<td>637</td>
<td>2.4</td>
<td>8.5</td>
<td>40</td>
<td>0.18</td>
<td>0.21</td>
<td>0.11</td>
<td>0.067</td>
<td>5.8</td>
</tr>
<tr>
<td>Birkeland</td>
<td>58.23.218</td>
<td>08.14.956</td>
<td>2.0</td>
<td>0.72</td>
<td>316</td>
<td>1.3</td>
<td>7.0</td>
<td>46</td>
<td>0.18</td>
<td>0.20</td>
<td>0.22</td>
<td>0.060</td>
<td>7.0</td>
</tr>
<tr>
<td>Skiftenes</td>
<td>58.23.678</td>
<td>08.31.408</td>
<td>2.2</td>
<td>0.86</td>
<td>321</td>
<td>1.2</td>
<td>7.2</td>
<td>35</td>
<td>0.19</td>
<td>0.25</td>
<td>0.26</td>
<td>0.048</td>
<td>7.1</td>
</tr>
<tr>
<td>Iveland</td>
<td>58.24.05</td>
<td>07.54.475</td>
<td>1.9</td>
<td>0.95</td>
<td>500</td>
<td>1.1</td>
<td>6.2</td>
<td>36</td>
<td>0.17</td>
<td>0.19</td>
<td>0.14</td>
<td>0.044</td>
<td>3.5</td>
</tr>
<tr>
<td>Site name</td>
<td>N. Latitude</td>
<td>E. Longitude</td>
<td>V mg kg(^{-1})</td>
<td>Cr mg kg(^{-1})</td>
<td>Fe mg kg(^{-1})</td>
<td>Ni mg kg(^{-1})</td>
<td>Cu mg kg(^{-1})</td>
<td>Zn mg kg(^{-1})</td>
<td>As mg kg(^{-1})</td>
<td>Cd mg kg(^{-1})</td>
<td>Sb mg kg(^{-1})</td>
<td>Hg mg kg(^{-1})</td>
<td>Pb mg kg(^{-1})</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Mykland</td>
<td>58.38.365</td>
<td>08.19.949</td>
<td>2.2</td>
<td>0.89</td>
<td>456</td>
<td>1.3</td>
<td>5.9</td>
<td>61</td>
<td>0.15</td>
<td>0.17</td>
<td>0.10</td>
<td>0.044</td>
<td>2.6</td>
</tr>
<tr>
<td>Froland</td>
<td>58.33.928</td>
<td>08.35.117</td>
<td>1.7</td>
<td>0.75</td>
<td>251</td>
<td>1.0</td>
<td>6.8</td>
<td>44</td>
<td>0.18</td>
<td>0.27</td>
<td>0.16</td>
<td>0.044</td>
<td>5.2</td>
</tr>
<tr>
<td>Tromøy</td>
<td>58.29.214</td>
<td>08.52.349</td>
<td>3.7</td>
<td>1.6</td>
<td>941</td>
<td>2.6</td>
<td>9.1</td>
<td>65</td>
<td>0.23</td>
<td>0.28</td>
<td>0.09</td>
<td>0.059</td>
<td>5.6</td>
</tr>
<tr>
<td>Risør</td>
<td>08.45.518</td>
<td>09.12.554</td>
<td>2.1</td>
<td>1.0</td>
<td>339</td>
<td>1.3</td>
<td>8.0</td>
<td>37</td>
<td>0.21</td>
<td>0.23</td>
<td>0.20</td>
<td>0.062</td>
<td>5.7</td>
</tr>
<tr>
<td>Åmli</td>
<td>58.48.203</td>
<td>08.30.417</td>
<td>1.0</td>
<td>0.41</td>
<td>197</td>
<td>0.77</td>
<td>4.1</td>
<td>30</td>
<td>0.10</td>
<td>0.23</td>
<td>0.10</td>
<td>0.036</td>
<td>2.2</td>
</tr>
<tr>
<td>Bygland</td>
<td>58.50.246</td>
<td>07.48.450</td>
<td>1.0</td>
<td>0.39</td>
<td>200</td>
<td>0.82</td>
<td>3.9</td>
<td>33</td>
<td>0.12</td>
<td>0.23</td>
<td>0.09</td>
<td>0.038</td>
<td>2.3</td>
</tr>
<tr>
<td>Solhomfjell</td>
<td>58.55.713</td>
<td>08.52.297</td>
<td>1.3</td>
<td>0.50</td>
<td>265</td>
<td>0.90</td>
<td>3.7</td>
<td>29</td>
<td>0.14</td>
<td>0.08</td>
<td>0.12</td>
<td>0.059</td>
<td>2.4</td>
</tr>
<tr>
<td>Hylestad</td>
<td>59.06.494</td>
<td>07.30.895</td>
<td>0.72</td>
<td>0.36</td>
<td>215</td>
<td>0.62</td>
<td>4.3</td>
<td>31</td>
<td>0.08</td>
<td>0.08</td>
<td>0.12</td>
<td>0.052</td>
<td>1.1</td>
</tr>
<tr>
<td>Lista</td>
<td>58.07.641</td>
<td>06.38.682</td>
<td>1.1</td>
<td>0.51</td>
<td>193</td>
<td>0.84</td>
<td>5.0</td>
<td>40</td>
<td>0.15</td>
<td>0.21</td>
<td>0.07</td>
<td>0.041</td>
<td>2.9</td>
</tr>
<tr>
<td>Mandal</td>
<td>58.01.552</td>
<td>07.31.124</td>
<td>3.0</td>
<td>1.8</td>
<td>913</td>
<td>1.8</td>
<td>6.4</td>
<td>23</td>
<td>0.23</td>
<td>0.14</td>
<td>0.14</td>
<td>0.047</td>
<td>5.8</td>
</tr>
<tr>
<td>Vennesla</td>
<td>58.15.176</td>
<td>07.51.213</td>
<td>1.7</td>
<td>1.7</td>
<td>302</td>
<td>1.9</td>
<td>6.9</td>
<td>40</td>
<td>0.21</td>
<td>0.19</td>
<td>0.15</td>
<td>0.048</td>
<td>6.5</td>
</tr>
<tr>
<td>Kvinesdal</td>
<td>58.15.792</td>
<td>06.52.856</td>
<td>1.1</td>
<td>0.55</td>
<td>218</td>
<td>0.77</td>
<td>5.1</td>
<td>39</td>
<td>0.14</td>
<td>0.09</td>
<td>0.10</td>
<td>0.045</td>
<td>2.5</td>
</tr>
<tr>
<td>Lyngdal</td>
<td>58.09.829</td>
<td>07.11.784</td>
<td>1.7</td>
<td>0.75</td>
<td>292</td>
<td>1.2</td>
<td>6.5</td>
<td>42</td>
<td>0.20</td>
<td>0.19</td>
<td>0.18</td>
<td>0.051</td>
<td>5.8</td>
</tr>
<tr>
<td>Konsmo</td>
<td>58.16.840</td>
<td>07.22.704</td>
<td>2.3</td>
<td>1.2</td>
<td>789</td>
<td>1.4</td>
<td>7.1</td>
<td>57</td>
<td>0.18</td>
<td>0.17</td>
<td>0.21</td>
<td>0.092</td>
<td>5.5</td>
</tr>
<tr>
<td>Hidreskog</td>
<td>58.17.610</td>
<td>07.02.023</td>
<td>2.2</td>
<td>0.99</td>
<td>458</td>
<td>1.4</td>
<td>7.3</td>
<td>70</td>
<td>0.24</td>
<td>0.16</td>
<td>0.17</td>
<td>0.089</td>
<td>5.1</td>
</tr>
<tr>
<td>Sporkland</td>
<td>58.30.773</td>
<td>06.44.475</td>
<td>1.0</td>
<td>0.36</td>
<td>176</td>
<td>0.72</td>
<td>3.7</td>
<td>39</td>
<td>0.10</td>
<td>0.09</td>
<td>0.07</td>
<td>0.049</td>
<td>2.4</td>
</tr>
<tr>
<td>Eiken</td>
<td>58.30.676</td>
<td>07.09.693</td>
<td>1.1</td>
<td>0.55</td>
<td>327</td>
<td>0.65</td>
<td>4.2</td>
<td>28</td>
<td>0.14</td>
<td>0.12</td>
<td>0.09</td>
<td>0.063</td>
<td>2.1</td>
</tr>
<tr>
<td>Åseral</td>
<td>58.34.786</td>
<td>07.32.767</td>
<td>1.7</td>
<td>0.64</td>
<td>426</td>
<td>1.1</td>
<td>6.0</td>
<td>36</td>
<td>0.17</td>
<td>0.11</td>
<td>0.11</td>
<td>0.080</td>
<td>3.1</td>
</tr>
<tr>
<td>Knaben</td>
<td>58.40.293</td>
<td>07.02.714</td>
<td>1.3</td>
<td>0.55</td>
<td>314</td>
<td>0.75</td>
<td>5.4</td>
<td>58</td>
<td>0.14</td>
<td>0.38</td>
<td>0.07</td>
<td>0.059</td>
<td>2.7</td>
</tr>
<tr>
<td>Åkenes</td>
<td>58.48.640</td>
<td>07.27.979</td>
<td>1.1</td>
<td>0.60</td>
<td>240</td>
<td>0.72</td>
<td>7.4</td>
<td>39</td>
<td>0.17</td>
<td>0.16</td>
<td>0.07</td>
<td>0.050</td>
<td>2.3</td>
</tr>
<tr>
<td>Site name</td>
<td>N. Latitude</td>
<td>E. Longitude</td>
<td>V (mg kg(^{-1}))</td>
<td>Cr (mg kg(^{-1}))</td>
<td>Fe (mg kg(^{-1}))</td>
<td>Ni (mg kg(^{-1}))</td>
<td>Cu (mg kg(^{-1}))</td>
<td>Zn (mg kg(^{-1}))</td>
<td>As (mg kg(^{-1}))</td>
<td>Cd (mg kg(^{-1}))</td>
<td>Sb (mg kg(^{-1}))</td>
<td>Hg (mg kg(^{-1}))</td>
<td>Pb (mg kg(^{-1}))</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Skredå</td>
<td>58.50.568</td>
<td>06.46.098</td>
<td>1.2</td>
<td>0.42</td>
<td>226</td>
<td>0.82</td>
<td>3.8</td>
<td>29</td>
<td>0.10</td>
<td>0.09</td>
<td>0.07</td>
<td>0.046</td>
<td>2.1</td>
</tr>
<tr>
<td>Håhelleren</td>
<td>59.01.873</td>
<td>07.08.098</td>
<td>1.5</td>
<td>0.45</td>
<td>367</td>
<td>0.91</td>
<td>4.5</td>
<td>30</td>
<td>0.10</td>
<td>0.11</td>
<td>0.07</td>
<td>0.055</td>
<td>1.9</td>
</tr>
<tr>
<td>Mydland</td>
<td>58.24.813</td>
<td>06.25.362</td>
<td>2.2</td>
<td>0.83</td>
<td>558</td>
<td>1.9</td>
<td>7.1</td>
<td>97</td>
<td>0.14</td>
<td>0.44</td>
<td>0.09</td>
<td>0.090</td>
<td>4.5</td>
</tr>
<tr>
<td>Ogna</td>
<td>58.31.815</td>
<td>05.48.187</td>
<td>0.9</td>
<td>0.51</td>
<td>221</td>
<td>1.1</td>
<td>4.7</td>
<td>32</td>
<td>0.12</td>
<td>0.08</td>
<td>0.05</td>
<td>0.065</td>
<td>2.1</td>
</tr>
<tr>
<td>Lund</td>
<td>58.32.267</td>
<td>06.22.702</td>
<td>1.4</td>
<td>0.77</td>
<td>294</td>
<td>0.89</td>
<td>6.4</td>
<td>23</td>
<td>0.16</td>
<td>0.11</td>
<td>0.13</td>
<td>0.074</td>
<td>3.3</td>
</tr>
<tr>
<td>Algård</td>
<td>58.45.269</td>
<td>05.51.890</td>
<td>1.2</td>
<td>0.55</td>
<td>330</td>
<td>0.64</td>
<td>5.1</td>
<td>69</td>
<td>0.16</td>
<td>0.16</td>
<td>0.09</td>
<td>0.107</td>
<td>2.9</td>
</tr>
<tr>
<td>Byrkjedal</td>
<td>58.46.681</td>
<td>05.19.883</td>
<td>2.4</td>
<td>0.96</td>
<td>524</td>
<td>1.9</td>
<td>6.0</td>
<td>19</td>
<td>0.20</td>
<td>0.10</td>
<td>0.14</td>
<td>0.091</td>
<td>4.5</td>
</tr>
<tr>
<td>Sola</td>
<td>58.51.220</td>
<td>05.34.665</td>
<td>2.1</td>
<td>1.1</td>
<td>561</td>
<td>0.93</td>
<td>5.3</td>
<td>30</td>
<td>0.21</td>
<td>0.09</td>
<td>0.15</td>
<td>0.139</td>
<td>3.2</td>
</tr>
<tr>
<td>Forsand</td>
<td>58.55.652</td>
<td>05.16.801</td>
<td>1.2</td>
<td>0.52</td>
<td>223</td>
<td>1.0</td>
<td>4.3</td>
<td>71</td>
<td>0.16</td>
<td>0.08</td>
<td>0.08</td>
<td>0.064</td>
<td>2.1</td>
</tr>
<tr>
<td>Lyse</td>
<td>59.02.697</td>
<td>05.38.927</td>
<td>1.9</td>
<td>0.65</td>
<td>434</td>
<td>1.5</td>
<td>6.0</td>
<td>24</td>
<td>0.14</td>
<td>0.09</td>
<td>0.07</td>
<td>0.075</td>
<td>3.0</td>
</tr>
<tr>
<td>Skudesnes</td>
<td>59.10.518</td>
<td>05.16.271</td>
<td>12</td>
<td>6.5</td>
<td>2912</td>
<td>3.1</td>
<td>6.7</td>
<td>32</td>
<td>0.21</td>
<td>0.13</td>
<td>0.02</td>
<td>0.069</td>
<td>1.7</td>
</tr>
<tr>
<td>Laugaland</td>
<td>59.14.119</td>
<td>05.16.038</td>
<td>1.2</td>
<td>0.45</td>
<td>246</td>
<td>0.62</td>
<td>3.0</td>
<td>27</td>
<td>0.11</td>
<td>0.11</td>
<td>0.09</td>
<td>0.048</td>
<td>1.9</td>
</tr>
<tr>
<td>Nedstrand</td>
<td>59.20.239</td>
<td>05.14.549</td>
<td>1.0</td>
<td>0.44</td>
<td>247</td>
<td>1.1</td>
<td>6.4</td>
<td>73</td>
<td>0.14</td>
<td>0.15</td>
<td>0.08</td>
<td>0.060</td>
<td>3.8</td>
</tr>
<tr>
<td>Blåsja</td>
<td>59.24.758</td>
<td>06.36.191</td>
<td>1.3</td>
<td>0.40</td>
<td>254</td>
<td>0.92</td>
<td>5.1</td>
<td>35</td>
<td>0.13</td>
<td>0.06</td>
<td>0.08</td>
<td>0.053</td>
<td>2.1</td>
</tr>
<tr>
<td>Suldal</td>
<td>59.29.305</td>
<td>05.26.500</td>
<td>1.1</td>
<td>0.46</td>
<td>273</td>
<td>0.82</td>
<td>4.9</td>
<td>26</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.061</td>
<td>1.8</td>
</tr>
<tr>
<td>Saudasjæn</td>
<td>59.38.145</td>
<td>05.17.887</td>
<td>1.6</td>
<td>1.3</td>
<td>491</td>
<td>1.2</td>
<td>6.0</td>
<td>35</td>
<td>0.24</td>
<td>0.29</td>
<td>0.11</td>
<td>0.070</td>
<td>6.4</td>
</tr>
<tr>
<td>Roaldkvam</td>
<td>59.39.194</td>
<td>06.53.517</td>
<td>1.2</td>
<td>0.40</td>
<td>276</td>
<td>1.1</td>
<td>4.4</td>
<td>40</td>
<td>0.10</td>
<td>0.08</td>
<td>0.08</td>
<td>0.056</td>
<td>1.6</td>
</tr>
<tr>
<td>Ølen</td>
<td>59.35.526</td>
<td>05.48.702</td>
<td>2.1</td>
<td>0.94</td>
<td>621</td>
<td>1.7</td>
<td>7.2</td>
<td>33</td>
<td>0.18</td>
<td>0.06</td>
<td>0.11</td>
<td>0.071</td>
<td>2.8</td>
</tr>
<tr>
<td>Fitjar</td>
<td>59.52.803</td>
<td>05.20.660</td>
<td>1.1</td>
<td>0.42</td>
<td>204</td>
<td>0.70</td>
<td>6.0</td>
<td>25</td>
<td>0.18</td>
<td>0.12</td>
<td>0.11</td>
<td>0.055</td>
<td>2.1</td>
</tr>
<tr>
<td>I. Matre</td>
<td>59.52.259</td>
<td>06.02.016</td>
<td>1.3</td>
<td>0.43</td>
<td>249</td>
<td>0.75</td>
<td>4.0</td>
<td>32</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.060</td>
<td>4.5</td>
</tr>
<tr>
<td>Site name</td>
<td>N. Latitude</td>
<td>E. Longitude</td>
<td>V (mg kg⁻¹)</td>
<td>Cr (mg kg⁻¹)</td>
<td>Fe (mg kg⁻¹)</td>
<td>Ni (mg kg⁻¹)</td>
<td>Cu (mg kg⁻¹)</td>
<td>Zn (mg kg⁻¹)</td>
<td>As (mg kg⁻¹)</td>
<td>Cd (mg kg⁻¹)</td>
<td>Sb (mg kg⁻¹)</td>
<td>Hg (mg kg⁻¹)</td>
<td>Pb (mg kg⁻¹)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Odda</td>
<td>60.03.360</td>
<td>06.32.078</td>
<td>1.7</td>
<td>1.02</td>
<td>514</td>
<td>0.66</td>
<td>6.8</td>
<td>409</td>
<td>0.55</td>
<td>1.33</td>
<td>0.05</td>
<td>0.115</td>
<td>22</td>
</tr>
<tr>
<td>Valldalseter</td>
<td>59.57.120</td>
<td>06.58.086</td>
<td>0.90</td>
<td>0.45</td>
<td>251</td>
<td>1.5</td>
<td>4.3</td>
<td>74</td>
<td>0.09</td>
<td>0.13</td>
<td>0.05</td>
<td>0.033</td>
<td>1.1</td>
</tr>
<tr>
<td>Måge</td>
<td>60.12.332</td>
<td>06.33.552</td>
<td>3.1</td>
<td>6.5</td>
<td>1308</td>
<td>9.3</td>
<td>6.9</td>
<td>187</td>
<td>0.70</td>
<td>0.58</td>
<td>0.04</td>
<td>0.066</td>
<td>7.0</td>
</tr>
<tr>
<td>Tarvikbygd</td>
<td>60.18.153</td>
<td>06.10.415</td>
<td>1.0</td>
<td>0.82</td>
<td>267</td>
<td>1.3</td>
<td>5.6</td>
<td>46</td>
<td>0.12</td>
<td>0.13</td>
<td>0.07</td>
<td>0.047</td>
<td>1.7</td>
</tr>
<tr>
<td>Holthus</td>
<td>60.13.946</td>
<td>05.50.478</td>
<td>1.4</td>
<td>0.56</td>
<td>295</td>
<td>0.92</td>
<td>5.3</td>
<td>49</td>
<td>0.12</td>
<td>0.08</td>
<td>0.11</td>
<td>0.075</td>
<td>4.3</td>
</tr>
<tr>
<td>Os</td>
<td>60.10.950</td>
<td>05.24.250</td>
<td>3.0</td>
<td>3.8</td>
<td>924</td>
<td>2.3</td>
<td>6.7</td>
<td>36</td>
<td>0.19</td>
<td>0.16</td>
<td>0.15</td>
<td>0.056</td>
<td>2.9</td>
</tr>
<tr>
<td>Espeland</td>
<td>60.22.114</td>
<td>05.29.582</td>
<td>1.9</td>
<td>1.1</td>
<td>801</td>
<td>2.1</td>
<td>7.1</td>
<td>29</td>
<td>0.14</td>
<td>0.06</td>
<td>0.13</td>
<td>0.050</td>
<td>2.0</td>
</tr>
<tr>
<td>Ulvik</td>
<td>60.35.479</td>
<td>06.51.512</td>
<td>0.68</td>
<td>0.33</td>
<td>166</td>
<td>0.62</td>
<td>4.3</td>
<td>28</td>
<td>0.10</td>
<td>0.08</td>
<td>0.04</td>
<td>0.048</td>
<td>1.5</td>
</tr>
<tr>
<td>Bulken</td>
<td>60.37.727</td>
<td>06.15.661</td>
<td>2.8</td>
<td>1.4</td>
<td>1045</td>
<td>1.5</td>
<td>5.0</td>
<td>46</td>
<td>0.21</td>
<td>0.05</td>
<td>0.07</td>
<td>0.058</td>
<td>1.7</td>
</tr>
<tr>
<td>Åsane</td>
<td>60.29.591</td>
<td>05.23.264</td>
<td>1.3</td>
<td>0.80</td>
<td>499</td>
<td>1.4</td>
<td>6.5</td>
<td>30</td>
<td>0.22</td>
<td>0.09</td>
<td>0.10</td>
<td>0.067</td>
<td>1.7</td>
</tr>
<tr>
<td>Modalen</td>
<td>60.54.911</td>
<td>05.58.025</td>
<td>0.56</td>
<td>0.26</td>
<td>131</td>
<td>0.74</td>
<td>4.8</td>
<td>20</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td>0.043</td>
<td>1.2</td>
</tr>
<tr>
<td>Sørvåg</td>
<td>60.50.780</td>
<td>05.06.269</td>
<td>1.7</td>
<td>0.50</td>
<td>584</td>
<td>0.78</td>
<td>2.4</td>
<td>18</td>
<td>0.11</td>
<td>0.06</td>
<td>0.03</td>
<td>0.031</td>
<td>2.8</td>
</tr>
<tr>
<td>Aurland</td>
<td>60.54.508</td>
<td>07.13.012</td>
<td>0.82</td>
<td>0.33</td>
<td>257</td>
<td>0.68</td>
<td>2.6</td>
<td>21</td>
<td>0.07</td>
<td>0.04</td>
<td>0.03</td>
<td>0.048</td>
<td>0.64</td>
</tr>
<tr>
<td>Hovlandsdal</td>
<td>61.14.918</td>
<td>05.24.578</td>
<td>1.0</td>
<td>0.29</td>
<td>170</td>
<td>0.58</td>
<td>2.8</td>
<td>14</td>
<td>0.09</td>
<td>0.06</td>
<td>0.07</td>
<td>0.040</td>
<td>2.4</td>
</tr>
<tr>
<td>Hafslo</td>
<td>61.18.609</td>
<td>07.07.876</td>
<td>0.50</td>
<td>0.26</td>
<td>153</td>
<td>0.53</td>
<td>2.4</td>
<td>22</td>
<td>0.06</td>
<td>0.07</td>
<td>0.04</td>
<td>0.041</td>
<td>0.87</td>
</tr>
<tr>
<td>Viksdalen</td>
<td>61.19.575</td>
<td>06.16.011</td>
<td>0.62</td>
<td>0.24</td>
<td>179</td>
<td>0.49</td>
<td>3.7</td>
<td>22</td>
<td>0.07</td>
<td>0.06</td>
<td>0.03</td>
<td>0.057</td>
<td>1.3</td>
</tr>
<tr>
<td>Eikefjord</td>
<td>61.37.009</td>
<td>05.37.609</td>
<td>0.61</td>
<td>0.22</td>
<td>108</td>
<td>0.46</td>
<td>3.3</td>
<td>23</td>
<td>0.07</td>
<td>0.10</td>
<td>0.03</td>
<td>0.041</td>
<td>1.1</td>
</tr>
<tr>
<td>Jostedal</td>
<td>61.37.829</td>
<td>07.15.710</td>
<td>0.65</td>
<td>0.35</td>
<td>202</td>
<td>0.95</td>
<td>4.0</td>
<td>48</td>
<td>0.07</td>
<td>0.06</td>
<td>0.04</td>
<td>0.040</td>
<td>0.81</td>
</tr>
<tr>
<td>Vågsøy</td>
<td>61.59.101</td>
<td>05.07.299</td>
<td>2.2</td>
<td>1.43</td>
<td>625</td>
<td>1.8</td>
<td>6.3</td>
<td>9</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
<td>0.039</td>
<td>1.5</td>
</tr>
<tr>
<td>Eid</td>
<td>61.55.155</td>
<td>06.05.670</td>
<td>0.76</td>
<td>0.42</td>
<td>229</td>
<td>0.49</td>
<td>3.4</td>
<td>25</td>
<td>0.07</td>
<td>0.08</td>
<td>0.04</td>
<td>0.048</td>
<td>0.83</td>
</tr>
<tr>
<td>Site name</td>
<td>N. Latitude</td>
<td>E. Longitude</td>
<td>V mg kg⁻¹</td>
<td>Cr mg kg⁻¹</td>
<td>Fe mg kg⁻¹</td>
<td>Ni mg kg⁻¹</td>
<td>Cu mg kg⁻¹</td>
<td>Zn mg kg⁻¹</td>
<td>As mg kg⁻¹</td>
<td>Cd mg kg⁻¹</td>
<td>Sb mg kg⁻¹</td>
<td>Hg mg kg⁻¹</td>
<td>Pb mg kg⁻¹</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Oppstryn</td>
<td>61.54.818</td>
<td>07.10.523</td>
<td>1.8</td>
<td>0.95</td>
<td>637</td>
<td>2.0</td>
<td>4.4</td>
<td>14</td>
<td>0.07</td>
<td>0.04</td>
<td>0.05</td>
<td>0.039</td>
<td>1.0</td>
</tr>
<tr>
<td>Kvalsvik</td>
<td>62.21.890</td>
<td>05.32.356</td>
<td>0.95</td>
<td>0.59</td>
<td>217</td>
<td>0.99</td>
<td>3.1</td>
<td>8</td>
<td>0.17</td>
<td>0.04</td>
<td>0.04</td>
<td>0.065</td>
<td>0.93</td>
</tr>
<tr>
<td>Velledalen</td>
<td>62.19.553</td>
<td>06.45.607</td>
<td>0.73</td>
<td>0.34</td>
<td>205</td>
<td>0.54</td>
<td>3.5</td>
<td>23</td>
<td>0.08</td>
<td>0.04</td>
<td>0.04</td>
<td>0.040</td>
<td>0.68</td>
</tr>
<tr>
<td>Valderøy/ Godøy</td>
<td>62.28.565</td>
<td>06.00.947</td>
<td>1.1</td>
<td>0.49</td>
<td>217</td>
<td>0.71</td>
<td>3.4</td>
<td>10</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.047</td>
<td>1.1</td>
</tr>
<tr>
<td>Isfjorden</td>
<td>62.35.128</td>
<td>07.47.893</td>
<td>1.1</td>
<td>0.57</td>
<td>249</td>
<td>0.76</td>
<td>4.0</td>
<td>21</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.026</td>
<td>0.57</td>
</tr>
<tr>
<td>Molde</td>
<td>62.43.391</td>
<td>07.00.972</td>
<td>1.2</td>
<td>1.1</td>
<td>274</td>
<td>1.1</td>
<td>4.5</td>
<td>13</td>
<td>0.05</td>
<td>0.07</td>
<td>0.02</td>
<td>0.087</td>
<td>0.56</td>
</tr>
<tr>
<td>Kårvatn</td>
<td>62.46.991</td>
<td>08.49.881</td>
<td>1.0</td>
<td>0.65</td>
<td>262</td>
<td>0.57</td>
<td>2.8</td>
<td>21</td>
<td>0.07</td>
<td>0.05</td>
<td>0.01</td>
<td>0.049</td>
<td>0.56</td>
</tr>
<tr>
<td>Kvisvik</td>
<td>63.03.008</td>
<td>08.01.411</td>
<td>1.7</td>
<td>1.2</td>
<td>444</td>
<td>1.4</td>
<td>3.6</td>
<td>23</td>
<td>0.12</td>
<td>0.06</td>
<td>0.05</td>
<td>0.087</td>
<td>0.71</td>
</tr>
<tr>
<td>Kongsvoll</td>
<td>62.16.798</td>
<td>09.36.167</td>
<td>1.4</td>
<td>1.6</td>
<td>448</td>
<td>1.7</td>
<td>3.5</td>
<td>41</td>
<td>0.09</td>
<td>0.05</td>
<td>0.04</td>
<td>0.048</td>
<td>0.67</td>
</tr>
<tr>
<td>Oppdal</td>
<td>62.35.770</td>
<td>09.46.172</td>
<td>7.3</td>
<td>8.3</td>
<td>2107</td>
<td>4.3</td>
<td>5.8</td>
<td>22</td>
<td>0.21</td>
<td>0.04</td>
<td>0.08</td>
<td>0.043</td>
<td>5.2</td>
</tr>
<tr>
<td>Budal</td>
<td>62.49.333</td>
<td>10.27.148</td>
<td>1.0</td>
<td>2.6</td>
<td>314</td>
<td>2.0</td>
<td>4.8</td>
<td>30</td>
<td>0.42</td>
<td>0.06</td>
<td>0.01</td>
<td>0.021</td>
<td>0.50</td>
</tr>
<tr>
<td>Vauldalen</td>
<td>62.38.585</td>
<td>12.01.126</td>
<td>0.9</td>
<td>0.57</td>
<td>266</td>
<td>1.2</td>
<td>3.4</td>
<td>41</td>
<td>0.09</td>
<td>0.10</td>
<td>0.03</td>
<td>0.057</td>
<td>0.76</td>
</tr>
<tr>
<td>Hølonda</td>
<td>63.05.104</td>
<td>10.05.117</td>
<td>1.9</td>
<td>1.2</td>
<td>533</td>
<td>1.6</td>
<td>3.7</td>
<td>28</td>
<td>0.34</td>
<td>0.06</td>
<td>0.04</td>
<td>0.058</td>
<td>0.60</td>
</tr>
<tr>
<td>Tydal</td>
<td>63.04.206</td>
<td>11.26.001</td>
<td>1.1</td>
<td>0.78</td>
<td>308</td>
<td>0.86</td>
<td>3.3</td>
<td>45</td>
<td>0.08</td>
<td>0.06</td>
<td>0.01</td>
<td>0.050</td>
<td>0.74</td>
</tr>
<tr>
<td>Søvassli</td>
<td>63.13.517</td>
<td>09.18.625</td>
<td>1.3</td>
<td>1.1</td>
<td>357</td>
<td>1.0</td>
<td>3.4</td>
<td>16</td>
<td>0.06</td>
<td>0.05</td>
<td>0.01</td>
<td>0.039</td>
<td>0.62</td>
</tr>
<tr>
<td>Snifjord</td>
<td>63.24.971</td>
<td>09.31.486</td>
<td>1.8</td>
<td>1.1</td>
<td>630</td>
<td>1.1</td>
<td>3.4</td>
<td>23</td>
<td>0.08</td>
<td>0.09</td>
<td>0.06</td>
<td>0.070</td>
<td>0.72</td>
</tr>
<tr>
<td>Malvik</td>
<td>63.22.698</td>
<td>10.36.347</td>
<td>6.1</td>
<td>2.7</td>
<td>1390</td>
<td>1.5</td>
<td>6.1</td>
<td>33</td>
<td>0.23</td>
<td>0.04</td>
<td>0.02</td>
<td>0.069</td>
<td>1.8</td>
</tr>
<tr>
<td>Trola</td>
<td>63.26.972</td>
<td>10.17.756</td>
<td>2.2</td>
<td>1.5</td>
<td>541</td>
<td>1.7</td>
<td>3.9</td>
<td>32</td>
<td>0.20</td>
<td>0.05</td>
<td>0.05</td>
<td>0.116</td>
<td>0.82</td>
</tr>
<tr>
<td>Forsnes</td>
<td>63.25.233</td>
<td>08.25.233</td>
<td>1.0</td>
<td>0.45</td>
<td>203</td>
<td>0.58</td>
<td>3.4</td>
<td>14</td>
<td>0.09</td>
<td>0.04</td>
<td>0.02</td>
<td>0.060</td>
<td>0.84</td>
</tr>
<tr>
<td>Åfjord</td>
<td>63.58.169</td>
<td>10.01.872</td>
<td>2.1</td>
<td>0.94</td>
<td>721</td>
<td>1.1</td>
<td>3.6</td>
<td>19</td>
<td>0.09</td>
<td>0.10</td>
<td>0.03</td>
<td>0.097</td>
<td>0.71</td>
</tr>
<tr>
<td>Site name</td>
<td>N. Latitude</td>
<td>E. Longitude</td>
<td>V (mg kg(^{-1}))</td>
<td>Cr (mg kg(^{-1}))</td>
<td>Fe (mg kg(^{-1}))</td>
<td>Ni (mg kg(^{-1}))</td>
<td>Cu (mg kg(^{-1}))</td>
<td>Zn (mg kg(^{-1}))</td>
<td>As (mg kg(^{-1}))</td>
<td>Cd (mg kg(^{-1}))</td>
<td>Sb (mg kg(^{-1}))</td>
<td>Hg (mg kg(^{-1}))</td>
<td>Pb (mg kg(^{-1}))</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Flora</td>
<td>63.27.124</td>
<td>11.20.873</td>
<td>0.8</td>
<td>0.56</td>
<td>216</td>
<td>2.9</td>
<td>4.1</td>
<td>24</td>
<td>0.09</td>
<td>0.04</td>
<td>0.02</td>
<td>0.093</td>
<td>0.75</td>
</tr>
<tr>
<td>Åsen</td>
<td>63.41.008</td>
<td>11.02.098</td>
<td>1.9</td>
<td>1.2</td>
<td>500</td>
<td>1.0</td>
<td>4.1</td>
<td>34</td>
<td>0.11</td>
<td>0.03</td>
<td>0.03</td>
<td>0.107</td>
<td>0.69</td>
</tr>
<tr>
<td>Sandvika</td>
<td>63.39.324</td>
<td>12.14.999</td>
<td>1.1</td>
<td>0.74</td>
<td>301</td>
<td>1.1</td>
<td>3.4</td>
<td>29</td>
<td>0.13</td>
<td>0.05</td>
<td>0.02</td>
<td>0.070</td>
<td>0.82</td>
</tr>
<tr>
<td>Verrabotn</td>
<td>63.48.104</td>
<td>10.35.694</td>
<td>5.6</td>
<td>2.2</td>
<td>1754</td>
<td>1.4</td>
<td>3.2</td>
<td>21</td>
<td>0.17</td>
<td>0.04</td>
<td>0.04</td>
<td>0.073</td>
<td>1.2</td>
</tr>
<tr>
<td>Hammer</td>
<td>64.10.157</td>
<td>12.02.260</td>
<td>1.2</td>
<td>0.63</td>
<td>299</td>
<td>0.71</td>
<td>3.7</td>
<td>33</td>
<td>0.09</td>
<td>0.04</td>
<td>0.05</td>
<td>0.114</td>
<td>1.2</td>
</tr>
<tr>
<td>Namdalseid</td>
<td>64.13.521</td>
<td>11.01.329</td>
<td>1.5</td>
<td>0.87</td>
<td>472</td>
<td>0.73</td>
<td>3.2</td>
<td>27</td>
<td>0.10</td>
<td>0.04</td>
<td>0.02</td>
<td>0.080</td>
<td>0.88</td>
</tr>
<tr>
<td>Aglen</td>
<td>64.37.939</td>
<td>11.04.025</td>
<td>1.8</td>
<td>1.0</td>
<td>628</td>
<td>0.94</td>
<td>3.7</td>
<td>26</td>
<td>0.12</td>
<td>0.07</td>
<td>0.11</td>
<td>0.081</td>
<td>1.2</td>
</tr>
<tr>
<td>Ueland</td>
<td>64.17.517</td>
<td>13.38.145</td>
<td>1.5</td>
<td>0.88</td>
<td>474</td>
<td>1.1</td>
<td>3.3</td>
<td>36</td>
<td>0.05</td>
<td>0.07</td>
<td>0.02</td>
<td>0.091</td>
<td>1.0</td>
</tr>
<tr>
<td>Muru</td>
<td>64.28.397</td>
<td>14.05.335</td>
<td>0.42</td>
<td>0.31</td>
<td>122</td>
<td>0.77</td>
<td>2.8</td>
<td>49</td>
<td>0.04</td>
<td>0.07</td>
<td>0.01</td>
<td>0.043</td>
<td>0.48</td>
</tr>
<tr>
<td>Joma</td>
<td>64.53.304</td>
<td>13.55.656</td>
<td>0.73</td>
<td>0.46</td>
<td>188</td>
<td>1.3</td>
<td>2.8</td>
<td>27</td>
<td>0.11</td>
<td>0.09</td>
<td>0.02</td>
<td>0.039</td>
<td>1.0</td>
</tr>
<tr>
<td>Trones</td>
<td>64.44.576</td>
<td>12.51.069</td>
<td>1.0</td>
<td>1.7</td>
<td>282</td>
<td>1.2</td>
<td>6.5</td>
<td>50</td>
<td>0.45</td>
<td>0.08</td>
<td>0.06</td>
<td>0.061</td>
<td>0.97</td>
</tr>
<tr>
<td>Foldered</td>
<td>64.57.589</td>
<td>12.12.278</td>
<td>2.0</td>
<td>0.73</td>
<td>696</td>
<td>0.86</td>
<td>3.1</td>
<td>15</td>
<td>0.09</td>
<td>0.07</td>
<td>0.04</td>
<td>0.064</td>
<td>1.3</td>
</tr>
<tr>
<td>Smalåsen</td>
<td>65.05.841</td>
<td>13.20.125</td>
<td>0.75</td>
<td>0.43</td>
<td>206</td>
<td>0.66</td>
<td>3.5</td>
<td>38</td>
<td>0.07</td>
<td>0.08</td>
<td>0.02</td>
<td>0.039</td>
<td>0.87</td>
</tr>
<tr>
<td>Vennesund</td>
<td>65.12.975</td>
<td>12.02.089</td>
<td>1.0</td>
<td>0.60</td>
<td>282</td>
<td>0.86</td>
<td>3.1</td>
<td>22</td>
<td>0.10</td>
<td>0.07</td>
<td>0.03</td>
<td>0.062</td>
<td>0.83</td>
</tr>
<tr>
<td>Harvasstua</td>
<td>65.19.740</td>
<td>14.24.712</td>
<td>0.3</td>
<td>0.24</td>
<td>82</td>
<td>0.94</td>
<td>3.0</td>
<td>43</td>
<td>0.06</td>
<td>0.08</td>
<td>0.01</td>
<td>0.041</td>
<td>0.53</td>
</tr>
<tr>
<td>Krutå</td>
<td>65.41.121</td>
<td>14.28.745</td>
<td>0.3</td>
<td>0.27</td>
<td>78</td>
<td>1.4</td>
<td>2.4</td>
<td>35</td>
<td>0.06</td>
<td>0.08</td>
<td>0.01</td>
<td>0.032</td>
<td>0.52</td>
</tr>
<tr>
<td>Grane</td>
<td>65.35.237</td>
<td>13.24.521</td>
<td>1.2</td>
<td>0.84</td>
<td>433</td>
<td>4.3</td>
<td>4.1</td>
<td>25</td>
<td>0.12</td>
<td>0.08</td>
<td>0.04</td>
<td>0.076</td>
<td>1.3</td>
</tr>
<tr>
<td>Alstahaug</td>
<td>65.56.825</td>
<td>12.29.276</td>
<td>3.6</td>
<td>2.4</td>
<td>1560</td>
<td>2.4</td>
<td>3.5</td>
<td>40</td>
<td>0.14</td>
<td>0.11</td>
<td>0.01</td>
<td>0.078</td>
<td>1.1</td>
</tr>
<tr>
<td>Vassvatnet</td>
<td>66.23.784</td>
<td>13.10.418</td>
<td>1.6</td>
<td>0.98</td>
<td>430</td>
<td>1.1</td>
<td>4.5</td>
<td>36</td>
<td>0.18</td>
<td>0.10</td>
<td>0.04</td>
<td>0.090</td>
<td>2.9</td>
</tr>
<tr>
<td>Umbukta</td>
<td>66.10.876</td>
<td>14.33.078</td>
<td>2.4</td>
<td>2.1</td>
<td>791</td>
<td>1.7</td>
<td>4.6</td>
<td>19</td>
<td>0.06</td>
<td>0.07</td>
<td>0.03</td>
<td>0.050</td>
<td>1.1</td>
</tr>
<tr>
<td>Site name</td>
<td>N. Latitude</td>
<td>E. Longitude</td>
<td>V mg kg(^{-1})</td>
<td>Cr mg kg(^{-1})</td>
<td>Fe mg kg(^{-1})</td>
<td>Ni mg kg(^{-1})</td>
<td>Cu mg kg(^{-1})</td>
<td>Zn mg kg(^{-1})</td>
<td>As mg kg(^{-1})</td>
<td>Cd mg kg(^{-1})</td>
<td>Sb mg kg(^{-1})</td>
<td>Hg mg kg(^{-1})</td>
<td>Pb mg kg(^{-1})</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Koksverket</td>
<td>66.19.536</td>
<td>14.10.112</td>
<td>7.0</td>
<td>17</td>
<td>8125</td>
<td>3.9</td>
<td>8.2</td>
<td>86</td>
<td>0.28</td>
<td>0.17</td>
<td>0.14</td>
<td>0.073</td>
<td>5.6</td>
</tr>
<tr>
<td>Eiterå</td>
<td>66.23.733</td>
<td>14.39.427</td>
<td>1.3</td>
<td>2.5</td>
<td>743</td>
<td>1.4</td>
<td>4.5</td>
<td>57</td>
<td>0.12</td>
<td>0.11</td>
<td>0.05</td>
<td>0.077</td>
<td>2.6</td>
</tr>
<tr>
<td>Glomfjord</td>
<td>66.47.587</td>
<td>14.00.368</td>
<td>1.5</td>
<td>0.77</td>
<td>391</td>
<td>0.80</td>
<td>3.0</td>
<td>24</td>
<td>0.12</td>
<td>0.12</td>
<td>0.04</td>
<td>0.065</td>
<td>0.84</td>
</tr>
<tr>
<td>Junkerdal</td>
<td>66.48.790</td>
<td>15.25.404</td>
<td>1.8</td>
<td>1.1</td>
<td>650</td>
<td>1.1</td>
<td>3.4</td>
<td>33</td>
<td>0.16</td>
<td>0.06</td>
<td>0.07</td>
<td>0.086</td>
<td>1.2</td>
</tr>
<tr>
<td>Børvassstind</td>
<td>67.09.972</td>
<td>14.26.152</td>
<td>0.90</td>
<td>0.49</td>
<td>283</td>
<td>0.58</td>
<td>3.0</td>
<td>27</td>
<td>0.09</td>
<td>0.08</td>
<td>0.04</td>
<td>0.066</td>
<td>0.87</td>
</tr>
<tr>
<td>Øvrevatn</td>
<td>67.13.100</td>
<td>15.35.491</td>
<td>0.93</td>
<td>0.56</td>
<td>272</td>
<td>1.5</td>
<td>5.2</td>
<td>33</td>
<td>0.09</td>
<td>0.13</td>
<td>0.01</td>
<td>0.044</td>
<td>0.98</td>
</tr>
<tr>
<td>Festvåg</td>
<td>67.24.687</td>
<td>14.44.201</td>
<td>1.5</td>
<td>0.89</td>
<td>473</td>
<td>1.1</td>
<td>4.2</td>
<td>28</td>
<td>0.15</td>
<td>0.08</td>
<td>0.06</td>
<td>0.082</td>
<td>1.7</td>
</tr>
<tr>
<td>Mørsvikbotn</td>
<td>67.41.505</td>
<td>15.50.980</td>
<td>0.89</td>
<td>0.62</td>
<td>333</td>
<td>0.70</td>
<td>3.4</td>
<td>22</td>
<td>0.10</td>
<td>0.09</td>
<td>0.04</td>
<td>0.075</td>
<td>0.90</td>
</tr>
<tr>
<td>Skjomen</td>
<td>68.09.771</td>
<td>17.33.961</td>
<td>0.82</td>
<td>0.54</td>
<td>353</td>
<td>0.88</td>
<td>3.8</td>
<td>35</td>
<td>0.09</td>
<td>0.06</td>
<td>0.06</td>
<td>0.066</td>
<td>0.73</td>
</tr>
<tr>
<td>Kanstadbotn</td>
<td>68.27.516</td>
<td>15.52.334</td>
<td>1.0</td>
<td>0.40</td>
<td>251</td>
<td>0.69</td>
<td>2.8</td>
<td>18</td>
<td>0.12</td>
<td>0.08</td>
<td>0.03</td>
<td>0.042</td>
<td>1.4</td>
</tr>
<tr>
<td>Svolvør</td>
<td>68.14.024</td>
<td>14.30.470</td>
<td>1.7</td>
<td>1.0</td>
<td>494</td>
<td>1.0</td>
<td>7.3</td>
<td>18</td>
<td>0.16</td>
<td>0.06</td>
<td>0.05</td>
<td>0.076</td>
<td>1.8</td>
</tr>
<tr>
<td>Moskenes</td>
<td>67.54.799</td>
<td>13.04.275</td>
<td>5.6</td>
<td>2.4</td>
<td>2146</td>
<td>1.5</td>
<td>4.9</td>
<td>21</td>
<td>0.17</td>
<td>0.07</td>
<td>0.02</td>
<td>0.074</td>
<td>1.6</td>
</tr>
<tr>
<td>Bø</td>
<td>68.46.359</td>
<td>14.40.368</td>
<td>1.1</td>
<td>0.63</td>
<td>286</td>
<td>1.1</td>
<td>3.1</td>
<td>12</td>
<td>0.10</td>
<td>0.05</td>
<td>0.03</td>
<td>0.062</td>
<td>1.1</td>
</tr>
<tr>
<td>Andenes</td>
<td>69.17.341</td>
<td>16.02.583</td>
<td>0.71</td>
<td>0.36</td>
<td>210</td>
<td>0.66</td>
<td>3.1</td>
<td>25</td>
<td>0.06</td>
<td>0.07</td>
<td>0.01</td>
<td>0.079</td>
<td>0.54</td>
</tr>
<tr>
<td>Gratangen</td>
<td>68.40.201</td>
<td>17.30.894</td>
<td>0.86</td>
<td>0.53</td>
<td>302</td>
<td>0.88</td>
<td>2.0</td>
<td>31</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
<td>0.081</td>
<td>0.53</td>
</tr>
<tr>
<td>Harstad</td>
<td>68.44.604</td>
<td>16.25.352</td>
<td>0.85</td>
<td>0.53</td>
<td>306</td>
<td>0.94</td>
<td>3.0</td>
<td>28</td>
<td>0.07</td>
<td>0.07</td>
<td>0.04</td>
<td>0.106</td>
<td>0.78</td>
</tr>
<tr>
<td>Dividalen</td>
<td>68.47.032</td>
<td>19.42.325</td>
<td>0.58</td>
<td>0.28</td>
<td>212</td>
<td>0.85</td>
<td>3.0</td>
<td>23</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.079</td>
<td>0.40</td>
</tr>
<tr>
<td>Salangen</td>
<td>69.03.721</td>
<td>17.44.526</td>
<td>0.87</td>
<td>0.54</td>
<td>223</td>
<td>0.73</td>
<td>3.1</td>
<td>28</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>0.027</td>
<td>0.51</td>
</tr>
<tr>
<td>Øverbygd</td>
<td>69.00.640</td>
<td>18.59.016</td>
<td>0.85</td>
<td>0.50</td>
<td>290</td>
<td>0.82</td>
<td>3.6</td>
<td>28</td>
<td>0.08</td>
<td>0.04</td>
<td>0.04</td>
<td>0.050</td>
<td>0.67</td>
</tr>
<tr>
<td>Galgojavre</td>
<td>69.07.479</td>
<td>20.44.842</td>
<td>0.93</td>
<td>0.59</td>
<td>277</td>
<td>0.95</td>
<td>3.0</td>
<td>43</td>
<td>0.07</td>
<td>0.03</td>
<td>0.04</td>
<td>0.036</td>
<td>0.59</td>
</tr>
<tr>
<td>Site name</td>
<td>N. Latitude</td>
<td>E. Longitude</td>
<td>V (mg kg(^{-1}))</td>
<td>Cr (mg kg(^{-1}))</td>
<td>Fe (mg kg(^{-1}))</td>
<td>Ni (mg kg(^{-1}))</td>
<td>Cu (mg kg(^{-1}))</td>
<td>Zn (mg kg(^{-1}))</td>
<td>As (mg kg(^{-1}))</td>
<td>Cd (mg kg(^{-1}))</td>
<td>Sb (mg kg(^{-1}))</td>
<td>Hg (mg kg(^{-1}))</td>
<td>Pb (mg kg(^{-1}))</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Gibostad</td>
<td>69.26.522</td>
<td>17.58.512</td>
<td>0.73</td>
<td>0.45</td>
<td>189</td>
<td>0.82</td>
<td>3.3</td>
<td>40</td>
<td>0.06</td>
<td>0.10</td>
<td>0.01</td>
<td>0.043</td>
<td>0.54</td>
</tr>
<tr>
<td>Laksvatn</td>
<td>69.23.441</td>
<td>19.25.807</td>
<td>0.75</td>
<td>0.44</td>
<td>202</td>
<td>0.58</td>
<td>2.8</td>
<td>29</td>
<td>0.08</td>
<td>0.05</td>
<td>0.02</td>
<td>0.051</td>
<td>0.51</td>
</tr>
<tr>
<td>Bilto</td>
<td>69.28.675</td>
<td>21.29.106</td>
<td>0.67</td>
<td>0.39</td>
<td>200</td>
<td>0.98</td>
<td>2.9</td>
<td>25</td>
<td>0.08</td>
<td>0.03</td>
<td>0.02</td>
<td>0.062</td>
<td>0.53</td>
</tr>
<tr>
<td>Kvaloya</td>
<td>69.46.527</td>
<td>18.49.308</td>
<td>0.85</td>
<td>0.47</td>
<td>214</td>
<td>0.96</td>
<td>3.2</td>
<td>33</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
<td>0.049</td>
<td>0.64</td>
</tr>
<tr>
<td>Storstines</td>
<td>69.35.710</td>
<td>19.59.080</td>
<td>1.4</td>
<td>3.9</td>
<td>2672</td>
<td>3.2</td>
<td>8.7</td>
<td>37</td>
<td>0.15</td>
<td>0.05</td>
<td>0.02</td>
<td>0.070</td>
<td>0.62</td>
</tr>
<tr>
<td>Kvaenangsbotten</td>
<td>69.43.334</td>
<td>22.04.024</td>
<td>1.0</td>
<td>0.76</td>
<td>284</td>
<td>1.1</td>
<td>3.3</td>
<td>23</td>
<td>0.14</td>
<td>0.03</td>
<td>0.02</td>
<td>0.040</td>
<td>0.49</td>
</tr>
<tr>
<td>Øksfjord</td>
<td>70.13.665</td>
<td>22.22.643</td>
<td>0.51</td>
<td>0.28</td>
<td>144</td>
<td>0.86</td>
<td>3.4</td>
<td>33</td>
<td>0.06</td>
<td>0.09</td>
<td>0.01</td>
<td>0.033</td>
<td>0.69</td>
</tr>
<tr>
<td>Stilla</td>
<td>69.53.859</td>
<td>23.34.062</td>
<td>0.41</td>
<td>0.26</td>
<td>113</td>
<td>0.93</td>
<td>4.3</td>
<td>19</td>
<td>0.08</td>
<td>0.03</td>
<td>0.01</td>
<td>0.035</td>
<td>0.40</td>
</tr>
<tr>
<td>Skaidi</td>
<td>70.26.177</td>
<td>24.30.282</td>
<td>0.70</td>
<td>0.55</td>
<td>187</td>
<td>1.2</td>
<td>3.7</td>
<td>30</td>
<td>0.11</td>
<td>0.04</td>
<td>0.03</td>
<td>0.032</td>
<td>0.49</td>
</tr>
<tr>
<td>Havøysund</td>
<td>70.59.528</td>
<td>24.38.678</td>
<td>1.1</td>
<td>0.51</td>
<td>247</td>
<td>1.2</td>
<td>2.9</td>
<td>16</td>
<td>0.14</td>
<td>0.05</td>
<td>0.02</td>
<td>0.088</td>
<td>0.73</td>
</tr>
<tr>
<td>Slåtten</td>
<td>70.44.007</td>
<td>24.32.364</td>
<td>1.4</td>
<td>0.72</td>
<td>368</td>
<td>1.9</td>
<td>3.2</td>
<td>25</td>
<td>0.20</td>
<td>0.04</td>
<td>0.02</td>
<td>0.096</td>
<td>0.91</td>
</tr>
<tr>
<td>Lakselv</td>
<td>69.49.662</td>
<td>25.09.911</td>
<td>2.5</td>
<td>3.1</td>
<td>704</td>
<td>2.8</td>
<td>3.4</td>
<td>19</td>
<td>0.11</td>
<td>0.03</td>
<td>0.03</td>
<td>0.045</td>
<td>0.60</td>
</tr>
<tr>
<td>Karasjok</td>
<td>69.25.756</td>
<td>25.47.029</td>
<td>0.46</td>
<td>0.50</td>
<td>119</td>
<td>1.5</td>
<td>3.0</td>
<td>18</td>
<td>0.07</td>
<td>0.03</td>
<td>0.01</td>
<td>0.027</td>
<td>0.28</td>
</tr>
<tr>
<td>Jergul</td>
<td>69.24.228</td>
<td>24.38.978</td>
<td>0.35</td>
<td>0.24</td>
<td>80</td>
<td>1.6</td>
<td>3.2</td>
<td>27</td>
<td>0.07</td>
<td>0.03</td>
<td>0.01</td>
<td>0.038</td>
<td>0.41</td>
</tr>
<tr>
<td>Kautokeino</td>
<td>69.03.139</td>
<td>22.52.745</td>
<td>0.73</td>
<td>0.49</td>
<td>199</td>
<td>1.9</td>
<td>6.7</td>
<td>42</td>
<td>0.09</td>
<td>0.10</td>
<td>0.02</td>
<td>0.076</td>
<td>0.90</td>
</tr>
<tr>
<td>Aiddjejavre</td>
<td>68.44.005</td>
<td>23.13.474</td>
<td>0.65</td>
<td>0.50</td>
<td>185</td>
<td>1.8</td>
<td>3.3</td>
<td>22</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.035</td>
<td>0.63</td>
</tr>
<tr>
<td>Lønvajokk</td>
<td>69.55.931</td>
<td>26.27.021</td>
<td>0.50</td>
<td>0.25</td>
<td>94</td>
<td>3.0</td>
<td>4.7</td>
<td>43</td>
<td>0.09</td>
<td>0.08</td>
<td>0.20</td>
<td>0.042</td>
<td>0.55</td>
</tr>
<tr>
<td>Børselv</td>
<td>70.21.389</td>
<td>25.39.720</td>
<td>0.44</td>
<td>0.26</td>
<td>99</td>
<td>2.1</td>
<td>3.7</td>
<td>32</td>
<td>0.07</td>
<td>0.04</td>
<td>0.05</td>
<td>0.040</td>
<td>0.67</td>
</tr>
<tr>
<td>Hopseidet</td>
<td>70.47.950</td>
<td>27.43.069</td>
<td>1.7</td>
<td>1.0</td>
<td>446</td>
<td>2.6</td>
<td>4.1</td>
<td>21</td>
<td>0.16</td>
<td>0.05</td>
<td>0.03</td>
<td>0.052</td>
<td>1.1</td>
</tr>
<tr>
<td>Vestertana</td>
<td>70.28.396</td>
<td>27.56.975</td>
<td>0.62</td>
<td>0.30</td>
<td>129</td>
<td>5.0</td>
<td>4.9</td>
<td>28</td>
<td>0.16</td>
<td>0.06</td>
<td>0.02</td>
<td>0.054</td>
<td>0.89</td>
</tr>
<tr>
<td>Site name</td>
<td>N. Latitude</td>
<td>E. Longitude</td>
<td>V mg kg(^{-1})</td>
<td>Cr mg kg(^{-1})</td>
<td>Fe mg kg(^{-1})</td>
<td>Ni mg kg(^{-1})</td>
<td>Cu mg kg(^{-1})</td>
<td>Zn mg kg(^{-1})</td>
<td>As mg kg(^{-1})</td>
<td>Cd mg kg(^{-1})</td>
<td>Sb mg kg(^{-1})</td>
<td>Hg mg kg(^{-1})</td>
<td>Pb mg kg(^{-1})</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Syltefjord</td>
<td>70.32.042</td>
<td>29.59.145</td>
<td>1.3</td>
<td>0.57</td>
<td>310</td>
<td>6.5</td>
<td>6.9</td>
<td>21</td>
<td>0.19</td>
<td>0.04</td>
<td>0.03</td>
<td>0.053</td>
<td>2.2</td>
</tr>
<tr>
<td>Ekkerøy</td>
<td>70.06.603</td>
<td>30.11.039</td>
<td>3.8</td>
<td>1.9</td>
<td>1259</td>
<td>28</td>
<td>24</td>
<td>20</td>
<td>0.54</td>
<td>0.10</td>
<td>0.04</td>
<td>0.061</td>
<td>2.3</td>
</tr>
<tr>
<td>Grasbakken</td>
<td>70.04.087</td>
<td>28.50.515</td>
<td>3.1</td>
<td>3.0</td>
<td>920</td>
<td>13</td>
<td>11</td>
<td>23</td>
<td>0.28</td>
<td>0.07</td>
<td>0.05</td>
<td>0.046</td>
<td>1.3</td>
</tr>
<tr>
<td>Neiden</td>
<td>69.38.775</td>
<td>29.28.009</td>
<td>0.79</td>
<td>0.66</td>
<td>245</td>
<td>25</td>
<td>19</td>
<td>37</td>
<td>0.33</td>
<td>0.09</td>
<td>0.02</td>
<td>0.030</td>
<td>0.81</td>
</tr>
<tr>
<td>Svanvik</td>
<td>69.27.212</td>
<td>30.03.294</td>
<td>5.9</td>
<td>7.6</td>
<td>2885</td>
<td>547</td>
<td>374</td>
<td>55</td>
<td>4.7</td>
<td>0.42</td>
<td>0.29</td>
<td>0.118</td>
<td>6.7</td>
</tr>
<tr>
<td>Ø. Pasvik</td>
<td>69.09.467</td>
<td>28.58.812</td>
<td>0.83</td>
<td>0.59</td>
<td>174</td>
<td>27</td>
<td>19</td>
<td>14</td>
<td>0.39</td>
<td>0.07</td>
<td>0.05</td>
<td>0.037</td>
<td>1.2</td>
</tr>
<tr>
<td>Gr. Jakobselv</td>
<td>69.46.269</td>
<td>30.50.424</td>
<td>4.8</td>
<td>5.2</td>
<td>1711</td>
<td>229</td>
<td>149</td>
<td>20</td>
<td>1.9</td>
<td>0.15</td>
<td>0.09</td>
<td>0.089</td>
<td>3.4</td>
</tr>
<tr>
<td>Rauhelleren</td>
<td>60.17.300</td>
<td>07.43.113</td>
<td>0.50</td>
<td>0.19</td>
<td>188</td>
<td>0.82</td>
<td>3</td>
<td>57</td>
<td>0.06</td>
<td>0.37</td>
<td>0.04</td>
<td>0.039</td>
<td>0.95</td>
</tr>
</tbody>
</table>
The Norwegian Environment Agency is working for a clean and diverse environment. Our primary tasks are to reduce greenhouse gas emissions, manage Norwegian nature, and prevent pollution.

We are a government agency under the Ministry of Climate and Environment and have 700 employees at our two offices in Trondheim and Oslo and at the Norwegian Nature Inspectorate’s more than sixty local offices.

We implement and give advice on the development of climate and environmental policy. We are professionally independent. This means that we act independently in the individual cases that we decide and when we communicate knowledge and information or give advice.

Our principal functions include collating and communicating environmental information, exercising regulatory authority, supervising and guiding regional and local government level, giving professional and technical advice, and participating in international environmental activities.