


82 CHAPTER 9. WHY DOES XGBOOST WIN “EVERY” COMPETITION?

−2

−1

0

1

2

−6 −3 0 3 6
x

y

Figure 9.4: Boosted tree stumps fit to the simulated data.

has put very little effort into capturing any structure. In the region with more
complex structure however, more effort has been put in to capture it. Tree boosting
can thus be seen to use adaptive neighbourhood sizes depending on what seems
necessary from the data. In areas where complex structure is apparent from the
data, smaller neighbourhoods are used, whereas in areas where complex structure
seems to be lacking, a wider neighbourhood is used.

To better understand the nature of how local neighbourhoods are determined,
we will attempt make the notion of the neighbourhood more concrete. We will do
this by considering the interpretation that many models, including additive tree
models, local regression and smoothing splines, can be seen to make predictions
using a weighted average of the training data.

9.1.2 The Weight Function Interpretation
Many models can be written in the form

f̂(x) = ŵ(x)T y,

where ŵ(x) is a weight function, ŵ : X → Rn. For each x ∈ X , the weight function
ŵ(x) specifies the vector weights to use in the weighted average of the responses in
the training data.

We can write that variance of the model as

Var[f̂(x)] = Var[
n�

i=1
ŵi(x)Yi] =

n�

i=1
ŵi(x)2Var[Yi] = σ2

n�

i=1
ŵi(x)2.

From this, we can see that in order to keep the variance low, the weights should
be spread out as evenly as possible, thus keeping the neighbourhood wide. The
globally constant model keeps ŵi(x) = 1/n, ∀x ∈ X , i ∈ {1, ..., n} and thus keeps
the variance as low as possible. If the target function is sufficiently complex how-
ever, this model will be severely biased. To decrease the bias, the weights have to



9.1. BOOSTING WITH TREE STUMPS IN ONE DIMENSION 83

be shifted such that points which are similar or close to x receives larger weight,
while distant and dissimilar points receive lower weights.

Consider for example linear regression. Predictions are given by

f̂(x) = xT (XT X)−1XT y.

The weight can thus be written as

ŵ(x)T = xT (XT X)−1XT .

For local linear regression, the weight function is a simple modification of this. It
can be written

ŵ(x)T = xT (XT W (x)X)−1XT W (x),
where W (x) is a diagonal matrix where diagonal element i is κ(x, xi) (Hastie et al.,
2009). The weight functions for local linear regression at three different points
for two different degrees of flexibility are shown in Figure 9.5. The two different
degrees of flexibility are the same as those used in Figure 9.2. We observe that the
weight function has a particular shape, regardless of the position in x ∈ X . Also,
as expected, the less flexible the model is, the more spread out its weights are.

Another example is smoothing splines. The weight function can in this case be
written

ŵ(x)T = φ(x)T (ΦT Φ + λΩ)−1ΦT ,

where Ωjk =
�

φ
��
j (t)φ��

k(t)dt and λ is a regularization parameter which penalizes
lack of smoothness (Hastie et al., 2009). In Figure 9.6, the weight functions for
smoothing splines at three different points and for two different flexibilities are
shown. We here observe the same phenomenon as for local linear regression, namely
that the weight function takes the same form regardless of x ∈ X .

For these models, and many others, ŵ(x) is determined using only the location
of the predictors xi in the input space X , without regard for the responses yi.
These models can thus be seen to have made up their mind about which points are
similar beforehand. Similarity is often determined by some measure of closeness of
points in the input space X . Intuitively, most models will assign larger weights to
data points which are determined to be closer to x.

For additive tree models, on the other hand, the weight function can be seen to
be determined adaptively. That is, while the other methods only take the predictors
xi in the training data into account when determining ŵ(x), additive tree models
also considers the responses in the training data. This is in fact a property of tree
models, which adaptively determines neighbourhoods and fits a constant in each
neighbourhood. Additive tree models inherit this from tree models and uses it to
adaptively shift the weight functions at each iteration. At iteration m, boosting
updates the model according to

f̂ (m)(x) = f̂ (m−1)(x) + f̂m(x)
ŵ(m)(x)T y = ŵ(m−1)(x)T y + ŵm(x)T y.

Tree boosting can thus be seen to update the weight functions at each iteration. At
each iteration, the learning algorithm searches for splits that minimize the empirical



84 CHAPTER 9. WHY DOES XGBOOST WIN “EVERY” COMPETITION?

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.005

0.010

0.015

−6 −3 0 3 6
x

w

(a) Point 1, low flexibility.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.005

0.010

0.015

−6 −3 0 3 6
x

w

(b) Point 2, low flexibility.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.005

0.010

0.015

0.020

−6 −3 0 3 6
x

w

(c) Point 3, low flexibility.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.00

0.02

0.04

0.06

0.08

−6 −3 0 3 6
x

w

(d) Point 1, high flexibility.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.00

0.03

0.06

0.09

−6 −3 0 3 6
x

w

(e) Point 2, high flexibility.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.025

0.050

0.075

0.100

−6 −3 0 3 6
x

w

(f) Point 3, high flexibility.

Figure 9.5: The weight function at 3 points for local linear regression with 2 dif-
ferent degrees of flexibility.



9.1. BOOSTING WITH TREE STUMPS IN ONE DIMENSION 85

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.005

0.010

0.015

−6 −3 0 3 6
x

w

(a) Point 1, low flexibility.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.005

0.010

0.015

−6 −3 0 3 6
x

w

(b) Point 2, low flexibility.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.005

0.010

0.015

0.020

−6 −3 0 3 6
x

w

(c) Point 3, low flexibility.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.00

0.02

0.04

0.06

0.08

−6 −3 0 3 6
x

w

(d) Point 1, high flexibility.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.00

0.04

0.08

−6 −3 0 3 6
x

w

(e) Point 2, high flexibility.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.025

0.050

0.075

0.100

−6 −3 0 3 6
x

w

(f) Point 3, high flexibility.

Figure 9.6: The weight function at 3 points for smoothing spline with 2 different
degrees of flexibility.



86 CHAPTER 9. WHY DOES XGBOOST WIN “EVERY” COMPETITION?

risk. In this process, it can be seen to learn which points can be considered similar,
thus adaptively adjusting the weight functions in order to reduce empirical risk.
The additive tree model initially starts out as a global constant model with the
weights spread out evenly, and thus has low variance. At each subsequent iteration,
the weight functions are updated where it seems most necessary in order to reduce
bias.

Tree boosting can thus be seen to directly take the bias-variance tradeoff into
consideration during fitting. The neighbourhoods are kept as large as possible
in order to avoid increasing variance unnecessarily, and only made smaller when
complex structure seems apparent. Using smaller neighbourhoods in these areas
can thus dramatically reduce bias, while only introducing some variance.

We will now show how the weight functions are adjusted by tree boosting at
each iteration with the squared error loss. Consider the tree to be added at iteration
m,

f̂m(x) =
T�

j=1
θ̂jmI(x ∈ R̂jm).

The leaf weights for this tree is determined by

θ̂jm = −Gjm

njm
=

�
i∈Îjm

[yi − ŵ(m−1)(xi)T y]
njm

.

Manipulating this expression, we find that

θ̂jm =
n�

i=1
yi

� I(xi ∈ R̂jm) − �
k∈Îjm

ŵ
(m−1)
i (xk)

njm

�
.

The update of element i of the weight function at x at iteration m is thus given by

ŵ
(m)
i (x) = ŵ

(m−1)
i (x) +

T�

j=1
I(x ∈ R̂jm)

� I(xi ∈ R̂jm) − �
k∈Îjm

ŵ
(m−1)
i (xk)

njm

�
.

The weight functions for an additive tree model after 400 and 4000 iterations at
the three different points are shown in Figure 9.7. The additive tree model shown in
Figure 9.4 was for 4000 iterations. We see that the weight function is more spread
out for lower iterations. The main point to observe however, is that the weight
functions are different at different values of x. At the point in the flat region of the
target function in Figure 9.7e, the weight function is spread out over the similar
points nearby. This allows the model to calculate the prediction at this point with
low variance, without introducing much bias. At the point in the region where the
target function is most complex, shown in Figure 9.7f, the weight function is more
peaked around x. This keeps bias low, which seems appropriate in this region of
the input space. Finally, for the region where the target function is less complex,
shown in Figure 9.7d, the peakedness of the weight function is somewhere between
the two other. More interestingly however, the weight function is not centered
around x, but seems to assign more weight to points at higher values of x. This



9.2. BOOSTING WITH TREE STUMPS IN MULTIPLE DIMENSIONS 87

also seems appropriate as these points are more similar, whereas in the direction
of decreasing values of x, the target function changes more rapidly.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.0000

0.0025

0.0050

−6 −3 0 3 6
x

w

(a) Point 1, iteration 400.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.001

0.002

0.003

0.004

−6 −3 0 3 6
x

w

(b) Point 2, iteration 400.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.004

0.008

0.012

−6 −3 0 3 6
x

w

(c) Point 3, iteration 400.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.000

0.004

0.008

0.012

−6 −3 0 3 6
x

w

(d) Point 1, iteration 4000.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.0000

0.0025

0.0050

0.0075

−6 −3 0 3 6
x

w

(e) Point 2, iteration 4000.

−2

−1

0

1

2

−6 −3 0 3 6
x

y

0.00

0.01

0.02

0.03

0.04

−6 −3 0 3 6
x

w

(f) Point 3, iteration 4000.

Figure 9.7: The weight function at 3 points for boosted trees after 400 and 4000
iterations.

9.2 Boosting With Tree Stumps in Multiple Di-
mensions

In the last section, we considered tree boosting in one dimension. Some of the
greatest benefits of tree boosting are however not apparent when considering one-
dimensional problems, as tree boosting is particularly useful for high-dimensional



88 CHAPTER 9. WHY DOES XGBOOST WIN “EVERY” COMPETITION?

problems.
When the dimensionality of the problem increases, many methods break down.

This is, as discussed earlier, due to what is known as the curse of dimensionality.
Many methods rely on some measure of similarity or closeness between data points,
either implicitly or explicitly, in order to introduce locality in the models. Since
distance measures become less useful in higher dimensions, these methods tend to
not scale well with increasing dimensionality. Techniques such as feature selection
and stronger regularization might be employed to combat this. However, good
results still depends crucially on good transformations and relative scalings of the
features and specification of appropriate amount of flexibility for each feature. For
high-dimensional problems, this can be an almost impossible task.

Tree boosting “beats” the curse of dimensionality by not relying on any dis-
tance metric. Instead, the similarity between data points are learnt from the data
through adaptive adjustment of neighbourhoods. Tree boosting initially keeps the
neighbourhood global in all directions. The neighbourhoods are subsequently ad-
justed to be smaller where it seems most necessary. It thus starts out as a globally
constant model and decreases bias by decreasing neighbourhood size. The property
of adaptive neighbourhoods might not be needed as often for one-dimensional prob-
lems that we discussed in the last section. When the dimensionality is increased
however, it is likely to beneficial. This allows the model to adaptively determine
the amount of flexibility to use for each feature. In the extreme case, the method
might use no flexibility at all for some features, i.e. keep the neighbourhood glob-
ally constant along them. The additive tree model will be unaffected by these
features and can thus be seen to perform automatic feature selection.

It is thus the same property of adaptively determined neighbourhoods that we
discussed in the previous section that makes it “immune” to the curse of dimen-
sionality. By using adaptive neighbourhoods, the model also becomes invariant
under monotone transformations of the inputs. This can thus potentially save a
lot of work spent searching for appropriate transformations. Moreover, the relative
scalings features are irrelevant for the model.

So far, we have considered tree boosting using only tree stumps. Consequently,
our additive tree model would only be able to capture additive structure in the
data, not any interactions.

9.3 Boosting With Deeper Trees
To capture interactions, we need deeper trees. The deeper the trees are allowed
to be, the higher the orders of interactions we can capture. For an additive tree
model where the maximum number of terminal nodes is Tmax, the highest order
of interaction that can be captured is max(Tmax − 1, p). There are few other
methods which are able to capture high order interactions from high-dimensional
data without breaking down. This is one of the great benefits of additive tree
models. Again, it is due to the property of adaptive neighbourhoods that it does
not break down. That is, most interactions are not modeled at all, only interactions
which seem beneficial to the model is included.



9.4. WHAT XGBOOST BRINGS TO THE TABLE 89

Although deeper trees allow us to capture higher order interactions, which is
beneficial, they also give rise to some problems. With deeper trees, the number
of observations falling in each terminal node will tend to decrease. Thus, the
estimated leaf weights will tend to have higher variance. Stronger regularization
might therefore be required when boosting with deeper trees. Another related
problem is that the model may model interactions where they are not present.
Consider for simplicity a two-dimensional problem where only additive structure is
present. At early boosting iterations, a lot of the structure is still left in the data.
Thus, after the first split, the second split may be taken along the other feature,
thereby giving rise to an apparent interaction. It can thus confuse additive structure
for interactions. This will unnecessarily increase variance since the neighbourhood
is not kept as wide as it could have been. This might be an area where current
boosting methods might be improved.

9.4 What XGBoost Brings to the Table
All the discussion so far have been general to tree boosting and is therefore relevant
for both MART and XGBoost. In summary, tree boosting is so effective because it
fits additive tree models, which have rich representational ability, using adaptively
determined neighbourhoods. The property of adaptive neighbourhoods makes it
able to use variable degrees of flexibility in different regions of the input space.
Consequently, it will be able to perform automatic feature selection and capture
high-order interactions without breaking down. It can thus be seen to be robust
to the curse of dimensionality.

For MART, the number of terminal nodes is kept fixed for all trees. It is
not hard to understand why this might be suboptimal. For example, for high-
dimensional data sets, there might be some group of features which have a high
order of interaction with each other, while other features only have lower order
interactions, perhaps only additive structure. We would thus like to use deeper
trees for some features than for the others. If the number of terminal nodes is
fixed, the tree might be forced to do further splitting when there might not be a lot
of evidence for it being necessary. The variance of the additive tree model might
thus increase unnecessarily.

XGBoost uses clever penalization of the individual trees. The trees are conse-
quently allowed to have varying number of terminal nodes. Moreover, while MART
uses only shrinkage to reduce the leaf weights, XGBoost can also shrink them us-
ing penalization. The benefit of this is that the leaf weights are not all shrunk
by the same factor, but leaf weights estimated using less evidence in the data will
be shrunk more heavily. Again, we see the bias-variance tradeoff being taken into
account during model fitting. XGBoost can thus be seen to be even more adaptive
to the data than MART.

In addition to this, XGBoost employs Newton boosting rather than gradient
boosting. By doing this, XGBoost is likely to learn better tree structures. Since
the tree structure determines the neighbourhoods, XGBoost can be expected to
learn better neighbourhoods.



90 CHAPTER 9. WHY DOES XGBOOST WIN “EVERY” COMPETITION?

Finally, XGBoost includes an extra randomization parameter. This can be
used to decorrelate the individual trees even further, possibly resulting in reduced
overall variance of the model. Ultimately, XGBoost can be seen to be able to learn
better neighbourhoods by using a higher-order approximation of the optimization
problem at each iteration than MART and by determining neighbourhoods even
more adaptively than MART does. The bias-variance tradeoff can thus be seen to
be taken into account in almost every aspect of the learning.



Chapter 10

Conclusion

Tree boosting methods have empirically proven to be a highly effective and versa-
tile approach to predictive modeling. For many years, MART has been a popular
tree boosting method. In more recent years, a new tree boosting method by the
name XGBoost has gained popularity by winning numerous machine learning com-
petitions. In this thesis, we compared these tree boosting methods and provided
arguments for why XGBoost seems to win so many competitions.

We first showed that XGBoost employs a different form of boosting than MART.
While MART employs a form of gradient boosting, which is well known for its in-
terpretation as a gradient descent method in function space, we showed that the
boosting algorithm employed by XGBoost can be interpreted as Newton’s method
in function space. We therefore termed it Newton boosting. Moreover, we com-
pared the properties of these boosting algorithms. We found that gradient boosting
is more generally applicable as it does not require the loss function to be strictly
convex. When applicable however, Newton boosting is a powerful alternative as
it uses a higher-order approximation to the optimization problem to be solved at
each boosting iteration. It also avoids the need of a line search step, which can
involve difficult calculations in many situations.

In addition to using different boosting algorithms, MART and XGBoost also
offers different regularization parameters. In particular, XGBoost can be seen
to offer additional parameters not found in MART. Most importantly, it offers
penalization of the individual trees in the additive tree model. These parameters
will affect both the tree structure and leaf weights in order to reduce the variance
in each tree. Additionally, XGBoost provides an extra randomization parameter
which can be used to decorrelate the individual trees, which in turn can result in
reduction of the overall variance of the additive tree model.

After determining the different boosting algorithms and regularization tech-
niques these methods utilize and exploring the effects of these, we turned to pro-
viding arguments for why XGBoost seems to win “every” competition. To provide
possible answers to this question, we first gave reasons for why tree boosting in gen-
eral can be an effective approach. We provided two main arguments for this. First
off, additive tree models can be seen to have rich representational abilities. Pro-

91



92 CHAPTER 10. CONCLUSION

vided that enough trees of sufficient depth is combined, they are capable of closely
approximating complex functional relationships, including high-order interactions.
The most important argument provided for the versatility of tree boosting however,
was that tree boosting methods are adaptive. Determining neighbourhoods adap-
tively allows tree boosting methods to use varying degrees of flexibility in different
parts of the input space. They will consequently also automatically perform feature
selection. This also makes tree boosting methods robust to the curse of dimension-
ality. Tree boosting can thus be seen actively take the bias-variance tradeoff into
account when fitting models. They start out with a low variance, high bias model
and gradually reduce bias by decreasing the size of neighbourhoods where it seems
most necessary.

Both MART and XGBoost have these properties in common. However, com-
pared to MART, XGBoost uses a higher-order approximation at each iteration, and
can thus be expected to learn “better” tree structures. Moreover, it provides clever
penalization of individual trees. As discussed earlier, this can be seen to make
the method even more adaptive. It will allow the method to adaptively determine
the appropriate number of terminal nodes, which might vary among trees. It will
further alter the learnt tree structures and leaf weights in order to reduce variance
in estimation of the individual trees. Ultimately, this makes XGBoost a highly
adaptive method which carefully takes the bias-variance tradeoff into account in
nearly every aspect of the learning process.



Bibliography

Aggarwal, C. C., Hinneburg, A., and Keim, D. A. (2001). On the Surprising Behav-
ior of Distance Metrics in High Dimensional Space, pages 420–434. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Akaike, H. (1973). Information theory and an extension of the maximum likeli-
hood principle. In Kotz, S. and Johnson, N. L., editors, Second International
Symposium on Information Theory, pages 267–281. Springer-Verlag.

Allen, D. (1974). The relationship between variable selection and data agumenta-
tion and a method for prediction. Technometrics, 16(1):125–127.

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, classi-
fication, and risk bounds. Journal of the American Statistical Association,
101(473):138–156.

Bellman, R. and Bellman, R. (1961). Adaptive Control Processes: A Guided Tour.
Princeton Legacy Library. Princeton University Press.

Bickel, P. J., Li, B., Tsybakov, A. B., van de Geer, S. A., Yu, B., Valdés, T., Rivero,
C., Fan, J., and van der Vaart, A. (2006). Regularization in statistics. Test,
15(2):271–344.

Bousquet, O., Boucheron, S., and Lugosi, G. (2004). Introduction to Statistical
Learning Theory, pages 169–207. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

Breiman, L. (1996). Bagging predictors. Mach. Learn., 24(2):123–140.

Breiman, L. (1997a). Arcing the edge. Technical report.

Breiman, L. (1997b). Prediction games and arcing algorithms.

Breiman, L. (1998). Arcing classifier (with discussion and a rejoinder by the au-
thor). Ann. Statist., 26(3):801–849.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.

Breiman, L., Friedman, J., Stone, C., and Olshen, R. (1984). Classification and Re-
gression Trees. The Wadsworth and Brooks-Cole statistics-probability series.
Taylor & Francis.

93



94 BIBLIOGRAPHY

Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization, pre-
diction and model fitting. Statist. Sci., 22(4):477–505.

Bühlmann, P. and Yu, B. (2010). Boosting. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(1):69–74.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY,
USA. ACM.

Chen, T., He, T., and Benesty, M. (2016). xgboost: Extreme Gradient Boosting. R
package version 0.4-4.

Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: An ap-
proach to regression analysis by local fitting. Journal of the American Statis-
tical Association, 83:596–610.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Mach. Learn.,
20(3):273–297.

Cox, D. R. (1958). The regression analysis of binary sequences (with discussion).
J Roy Stat Soc B, 20:215–242.

Domingos, P. (2000). A unified bias-variance decomposition and its applications.
In IN PROC. 17TH INTERNATIONAL CONF. ON MACHINE LEARNING,
pages 231–238. Morgan Kaufmann.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist.,
7(1):1–26.

Efron, B. and Hastie, T. (2016). Computer Age Statistical Inference. Institute of
Mathematical Statistics Monographs. Cambridge University Press.

Evgeniou, T., Pontil, M., and Poggio, T. (2000). Statistical learning theory: A
primer. International Journal of Computer Vision, 38(1):9–13.

Freund, Y. and Schapire, R. E. (1995). A desicion-theoretic generalization of on-
line learning and an application to boosting, pages 23–37. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm.
In Saitta, L., editor, Proceedings of the Thirteenth International Conference
on Machine Learning (ICML 1996), pages 148–156. Morgan Kaufmann.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors).
Ann. Statist., 28(2):337–407.

Friedman, J. H. (1991). Multivariate adaptive regression splines. Ann. Statist.,
19(1):1–67.



BIBLIOGRAPHY 95

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting
machine. Ann. Statist., 29(5):1189–1232.

Friedman, J. H. (2002). Stochastic gradient boosting. Comput. Stat. Data Anal.,
38(4):367–378.

Geisser, S. (1975). The predictive sample reuse method with applications. J Am
Stat Assoc, 70(350):320–328.

Hastie, T. and Tibshirani, R. (1986). Generalized additive models. Statistical
Science, 1:297–310.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition. Springer
Series in Statistics. Springer.

Ho, T. K. (1998). The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–
844.

Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math.
Statist., 35(1):73–101.

Hyafil, L. and Rivest, R. L. (1976). Constructing optimal binary decision trees is
np-complete. Information Processing Letters, 5(1):15 – 17.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of
categorical data. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 29(2):119–127.

Kearns, M. (1988). Thoughts on hypothesis boosting. Unpublished.

Kearns, M. and Valiant, L. G. (1989). Crytographic limitations on learning boolean
formulae and finite automata. In Proceedings of the Twenty-first Annual ACM
Symposium on Theory of Computing, STOC ’89, pages 433–444, New York,
NY, USA. ACM.

Koenker, R. (2005). Quantile Regression. Econometric Society Monographs. Cam-
bridge University Press.

Kozumi, H. and Kobayashi, G. (2011). Gibbs sampling methods for bayesian
quantile regression. Journal of Statistical Computation and Simulation,
81(11):1565–1578.

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. SpringerLink :
Bücher. Springer New York.

Lichman, M. (2013). UCI machine learning repository.

Lin, Y. (2002). Support vector machines and the bayes rule in classification. Data
Min. Knowl. Discov., 6(3):259–275.



96 BIBLIOGRAPHY

Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (1999). Boosting algorithms
as gradient descent. In NIPS.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT
Press.

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability & Its
Applications, 9(1):141–142.

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models. Journal
of the Royal Statistical Society, Series A, General, 135:370–384.

Nguyen, T. and Sanner, S. (2013). Algorithms for direct 0–1 loss optimization
in binary classification. In Dasgupta, S. and Mcallester, D., editors, Proceed-
ings of the 30th International Conference on Machine Learning (ICML-13),
volume 28, pages 1085–1093. JMLR Workshop and Conference Proceedings.

Nielsen, F. and Garcia, V. (2009). Statistical exponential families: A digest with
flash cards. CoRR, abs/0911.4863.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer Series in
Operations Research and Financial Engineering. Springer New York.

Platt, J. (1998). Sequential Minimal Optimization: A Fast Algorithm for Training
Support Vector Machines. Technical report.

Quinlan, J. (1993). C4.5: Programs for Machine Learning. C4.5 - programs for
machine learning / J. Ross Quinlan. Morgan Kaufmann Publishers.

Quinlan, R. J. (1992). Learning with continuous classes. In 5th Australian Joint
Conference on Artificial Intelligence, pages 343–348, Singapore. World Scien-
tific.

R Core Team (2016). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria.

Rakotomamonjy, A. and Canu, S. (2005). Frames, reproducing kernels, regulariza-
tion and learning. J. Mach. Learn. Res., 6:1485–1515.

Ridgeway, Greg with others, c. f. (2015). gbm: Generalized Boosted Regression
Models. R package version 2.1.1.

Ridgeway, G. (2006). gbm: Generalized boosted regression models. R package
version, 1(3).

Rosset, S. (2003). Topics in Regularization and Boosting. PhD thesis, Stanford
university.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Neurocomput-
ing: Foundations of research. chapter Learning Representations by Back-
propagating Errors, pages 696–699. MIT Press, Cambridge, MA, USA.



BIBLIOGRAPHY 97

Schapire, R. E. (1990). The strength of weak learnability. Mach. Learn., 5(2):197–
227.

Schapire, R. E. and Freund, Y. (2012). Boosting: Foundations and Algorithms.
The MIT Press.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6(2):461–
464.

Shen, Y. (2005). Loss functions for binary classification and class probability esti-
mation. PhD thesis, University of Pennsylvania.

Shmueli, G. (2010). To explain or to predict? Statist. Sci., 25(3):289–310.

Silverman, B. W. (1984). Spline smoothing: The equivalent variable kernel method.
Ann. Statist., 12(3):898–916.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res., 15(1):1929–1958.

Steinwart, I. (2007). How to compare different loss functions and their risks. Con-
structive Approximation, 26(2):225–287.

Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Pre-
dictions. Journal of the Royal Statistical Society. Series B (Methodological),
36(2):111–147.

Strobl, C., laure Boulesteix, A., and Augustin, T. (2006). Unbiased split selection
for classification trees based on the gini index. Technical report.

Tewari, A. and Bartlett, P. L. (2014). Learning theory. In Diniz, P. S., Suykens,
J. A., Chellappa, R., and Theodoridis, S., editors, Signal Processing Theory
and Machine Learning, volume 1 of Academic Press Library in Signal Process-
ing, pages 775–816. Elsevier.

Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine.
J. Mach. Learn. Res., 1:211–244.

Torsten Hothorn, Kurt Hornik, A. Z. (2006). Unbiased recursive partitioning:
A conditional inference framework. Journal of Computational and Graphical
Statistics, 15(3):651–674.

Vapnik, V. N. (1999). An overview of statistical learning theory. Trans. Neur.
Netw., 10(5):988–999.

von Luxburg, U. and Schoelkopf, B. (2008). Statistical Learning Theory: Models,
Concepts, and Results. ArXiv e-prints.

Watson, G. S. (1964). Smooth regression analysis. SankhyÄĄ: The Indian Journal
of Statistics, Series A (1961-2002), 26(4):359–372.



98 BIBLIOGRAPHY

Wei-Yin Loh, Y.-S. S. (1997). Split selection methods for classification trees. Sta-
tistica Sinica, 7(4):815–840.

Young, G. and Smith, R. (2005). Essentials of Statistical Inference. Cambridge Se-
ries in Statistical and Probabilistic Mathematics. Cambridge University Press.

Zhang, T. and Yu, B. (2005). Boosting with early stopping: Convergence and
consistency. Ann. Statist., 33(4):1538–1579.

Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms. Chapman &
Hall/CRC, 1st edition.


