Rapport

Støysoner etter T-1442/2012 for Ringedalen/Skjeggedal Helikopterplass

Forfatter(e)
Idar Ludvig Nilsen Granøien
Femke Berre Gelderblom

Foto: Statkraft
Støysoner etter T-1442/2012 for Ringedalen/Skjeggedal Helikopterplass

Det er utarbeidet støysonekart for Helikopterlandingsplass Ringedalen/Skjevdal i henhold til reglene i Miljøverndepartementets retningslinje T-1442/2012. Støyberegningene foretas med NORTIM, verktøyet som tar hensyn til topografi ved beregning av lydutbredelse.

Resultatene viser at det er ingen bygninger innenfor støysonene som har et støyommfintlig bruksformål.
Historikk

<table>
<thead>
<tr>
<th>VERSJON</th>
<th>DATO</th>
<th>VERSIONSBESKRIVELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2013-01-31</td>
<td>Første utkast til rapport</td>
</tr>
<tr>
<td>0.2</td>
<td>2013-02-01</td>
<td>Andre utkast til rapport, redaksjonelle endringer</td>
</tr>
<tr>
<td>0.3</td>
<td>2013-02-01</td>
<td>Tredje utkast til rapport, små oppretninger</td>
</tr>
<tr>
<td>1.0</td>
<td>2013-02-15</td>
<td>Endelig versjon</td>
</tr>
</tbody>
</table>
Innholdsfortegnelse

1 **INNLEDNING** ... 5

2 **GENERELT OM FLYSTØY** .. 6
 2.1 Flystøysens egenskaper og virkninger .. 6
 2.1.1 Søvnforstyrrelse som følge av flystøy .. 6
 2.1.2 Generell sjenanse som følge av flystøy ... 7

3 **MILJØVERNDEPARTEMENTETS RETNINGSLINJE** ... 8
 3.1 Måleenheter .. 8
 3.2 Støysoner til arealplanlegging .. 9
 3.2.1 Definisjon av støysoner ... 9
 3.2.2 Utarbeidelse av støysonekart og implementering i kommunale planer 9
 3.3 Beregningsmetode .. 10
 3.3.1 Dimensjonering av trafikkgrunnlaget .. 10
 3.3.2 Beregningsprogrammet NORTIM .. 10

4 **KARTLEGGING I HENHOLD TIL FORSKRIFT TIL FORURENSNINGSLOVEN** .. 12
 4.1 Innendørs støy ... 12
 4.1.1 Strategisk støykartlegging.. 12

5 **OMGIVELSER** .. 13
 5.1 Digitalt kartgrunnlag .. 13
 5.2 Digital terrengmodell ... 13
 5.3 Rullebaner .. 13

6 **FLYTRAFIKK** ... 14
 6.1 Prognoser ... 14

7 **FLYTYPE** .. 15
 7.1 Flytyper i bruk .. 15
 7.2 Kildedata for fly ... 15

8 **DESTINASJONER, TRASÉER OG PROFILER** .. 16
 8.1 Destinasjoner ... 16
 8.2 Flygeprosedyrer og Flytraséer ... 16
 8.3 Flygeprofiler .. 16

9 **BEREGNINGSPARAMETERE** ... 17
 9.1 Beregningsenheter ... 17
9.2 Beregning i enkeltpunkter ... 17
9.3 NORTIM beregningskontroll .. 17

10 RESULTATER RELATERT TIL RETNINGSLINJE T-1442 ... 18

11 RESULTATER RELATERT TIL FORURENSINGSFORSKRIFTEN ... 19

12 LITTERATUR .. 20
1 INNLEDNING

Prosjektet er utført ved SINTEF IKT av Femke B. Gelderblom og Idar L. N. Granøien med sistnevnte som prosjektleder. Prosjektansvarlig i SINTEF IKT har vært Odd Kr. Ø. Pettersen.

Denne rapporten har et standard format med gjennomgang av grunnlagsmateriale for regelverket i Norge, presentasjon av beregningsprogrammet, beskrivelse av dataunderlaget og til slutt resultatene fra beregningene.
2 GENERELT OM FLYSTØY

Hensikten med dette kapitlet er å gi en forenklet innføring om hvordan flystøy virker på mennesker. Framstillingen baserer seg på anerkjent viten fra det internasjonale forskningsmiljøet.

2.1 Flystøyens egenskaper og virkninger

Flystøy har en del spesielle egenskaper som gjør den forskjellig fra andre typer trafikkstøy. Varigheten av en enkelt støyhendelse er forholdsvis lang, nivåvariasjonene fra gang til gang er gjerne store og støynivåene kan være kraftige. Det kan også være lange perioder med opphold mellom støyhendelsene. Flystøyens frekvensinnhold er slik at de største bidrag ligger i ørets mest følsomme område og det er derfor lett å skille denne lyden ut fra annen bakgrunnsstøy; så lett at man ofte hører flystøy selv om selve støynivået ikke beveger seg over nivået bakgrunnsstøyet.

Folk som utsettes for flystøy rapporterer flere ulemper. De to viktigste typer er forstyrrelse av søvn eller hvile og generell irritasjon eller sjenanse. Det er viktig å merke seg at fare for hørselsskader begrenser seg til de personer som jobber nær flyene på bakken.

2.1.1 Søvnforstyrrelse som følge av flystøy

Det er bred internasjonal enighet om at vekking som følge av flystøy kan medføre en risiko for helsevirkninger på lang sikt, se litteraturlisten ref. [1]. Det er ikke konsensus på hvorvidt endring av søvnstadium (søvndybde) har noen negativ effekt alene, dersom dette ikke medfører vekking. (Disse betraktninger kan ikke anvendes for andre typer trafikkstøy hvor støynivået varierer mindre og ikke er totalt fraværende i perioder slik som flystøy kan være.)

Risiko for vekking er avhengig av hvor høyt støynivå en utsettes for (maksimumsnivå) og hvor mange støyhendelser en utsettes for i løpet av natten. Det er normalt store individuelle variasjoner på når folk reagerer på støyet. Derfor brukes oftest en gitt sannsynlighet for at en andel av befolkningen vekkes for å illustrere hvilke støynivå og antall hendelser som kan medføre vekking, som illustrert i Figur 2-1.

![Figur 2-1. 10 % sannsynlighet for vekking resp. søvnstadiumsendring. Sammenheng mellom maksimum innendørs støynivå og antall hendelser [1].](image)

Figuren viser at man måler høyere støynivå uten å vekkes dersom støynivået optrer sjelden. Når det blir mer enn ca. 15 støyhendelser i søvnperioden er ikke antallet så kritisk lenger. Da er det 10 % sjanse for vekking dersom nivåene overstiger 53 dBA i soverommet.
2.1.2 Generell sjenanse som følge av flystøy

En stor undersøkelse fra Fornebu bekreftet i store trekk både kurveform og rapportert sjenanse for flystøy ved de normalt forekommende belastningsnivåer i boligområder innenfor flystøysonene [4]. Tilsvarende funn ble gjort ved Værnes og i Bodø [5].

![Figur 2-2. Middelkurve for prosentvis antall sterkt forstyrret av flystøy som funksjon av ekvivalent flystøyutstyr utendørs [3].](image)
3 MILJØVERNDEPARTEMENTETS RETNINGSLINJE

3.1 Måleenheter

En sammensatt støyindikator, som på en enkel måte skal karakterisere den totale flystøybelastning, og derved være en indikator for flest mulige virkninger, må ta hensyn til følgende faktorer ved støyen: Nivå (styrke), spektrum (farge), karakter, varighet, samt tid på døgnet. Måleenheten for flystøy må i rimelig grad samsvarer med de ulemper som vi vet flystøy medfører. Et høyt flystøynivå må indikere høy ulempe.

L_{den} er det mål som EU har innført som en felles måleenhet for ekvivalentnivå. Måleenheten legger forskjellig vekt på en støyhendelse i forhold til når på døgnet hendelsene forekommer. På natt er vektfaktoren 10, på dag er den 1. På kveld adderer L_{den} 5 dB til støyhendelsene. Et tillegg på 5 dB tilstår at ett fly på kveld teller som døyt 3 på dagtid, mens et fly på natt teller som 10 på dag. T-1442 følger den internasjonalt mest vanlige inndelingen av døgnet ved at dagtid er definert fra kl. 07 til 19, kveld er mellom kl. 19 og 23, mens natta strekker seg fra kl. 23 til 07.

Maksimumsnivået $L_{5\text{AS}}$ er i [7] definert som det lydnivå ”som overskrides av 5 % av hendelsene i løpet av en nærmere angitt periode, dvs. et statistisk maksimalnivå i forhold til antall hendelser”. Denne enheten kommer bare til anvendelse for hendelser som forekommer på natt mellom 23 og 07, og var ment å skulle erstatte MFN på natt. $L_{5\text{AS}}$ vil imidlertid ikke identifisere de nivå som kan skape problem for søvnforstyrrelse relatert til Figur 2-1. Antallet ”hendelser” vil kunne variere fra flyplass til flyplass og fra område til område ved en og samme flyplass. Når dimensjonerende nivå defineres til å være en prosentsats, vil man derfor ikke uten videre vite hvor mange hendelser dette representerer.

Retningslinje T-1442/2012 definerer forøvrig ikke begrepet ”hendelse”. Det betyr at det ikke er gitt hvor mye støy som skal til for at man skal inkludere noe som en hendelse. I veilederen til T-1442/2012 [8] er dette imidlertid rettet på, slik at det er mulig å beregne størrelsen. Avklaringen i veilederen medfører at $L_{5\text{AS}}$ beregnes som MFN på natt, med den forskjell at tidsrommet som betraktas er redusert med en time på kvelden, siden $L_{5\text{AS}}$ beregnes for tidsrommet 23–07. Dette er i tråd med uttalt intensjon om at overgang fra MFN til $L_{5\text{AS}}$ alene ikke skulle medføre endringer.
Tabell 3-1. Oppsummering av måleenheter.

<table>
<thead>
<tr>
<th>Måleenhet</th>
<th>Forklaring</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>den</sub></td>
<td>A-veiет ekvivalent lydtrykknivå for et helt døgn, korrigert for dag-, kveld- og nattperioder, henholdsvis 0 dB, 5 dB og 10 dB.</td>
</tr>
<tr>
<td>L<sub>SAS</sub></td>
<td>Det A-veide nivå målt med tidskonstant «Slow» på 1 sek som overskrides i 5 % av hendelsene i løpet av en nærmere angitt periode (T-1442 benytter 8-timers nattperiode 23-07) dvs et statistisk maksimalnivå i forhold til antall hendelser.</td>
</tr>
<tr>
<td>L<sub>p,Aeq,T</sub></td>
<td>Det ekvivalent lydnivået (angis også som L<sub>Aeq</sub>) er et mål på gjennomsnittlig (energimidlet) nivå for støy over en bestemt periode T (oftest 24 timer).</td>
</tr>
<tr>
<td>L<sub>night</sub></td>
<td>A-veiет ekvivalentnivå for 8-timers nattperiode 23-07.</td>
</tr>
<tr>
<td>L<sub>p,AFmax</sub></td>
<td>A-veiет maksimalt nivå målt med tidskonstant «Fast».</td>
</tr>
</tbody>
</table>

3.2 Støysoner til arealplanlegging

T-1442/2012 definerer 2 støysoner, gul og rød sone til bruk i arealplanlegging. I tillegg benyttes betegnelsen “hvit sone” om området utenfor støysonene. Kommunene anbefales også å etablere ”grønne soner” på sine kart for å markere ”stille områder som etter kommunens vurdering er viktige for natur- og friluftsinteresser”. Hvit og grønn sone skal med andre ord ikke betraktes som støysoner.

3.2.1 Definisjon av støysoner

Støysonene defineres slik at det i ytterkant av gul sone kan forventes at inntil 10 % av en gjennomsnitts befolkning vil føle seg sterkt plaget av støyen. Det betyr at det vil være folk som er plaget av støy også utenfor støysonene.

De to støysonene er i retningslinjen definert som vist i den følgende tabell. Det fremgår at hver sone defineres med 2 kriterier. Hvis ett av kriteriene er oppfylt på et sted, så faller stedet innenfor den aktuelle sonen – det er med andre ord et ”eller” mellom kolonnene.

<table>
<thead>
<tr>
<th>Støykilde</th>
<th>Gul sone</th>
<th>Rød sone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utendørs støylinje</td>
<td>Utendørs støylinje i nattperioden kl. 23 – 07</td>
<td>Utendørs støylinje i nattperioden kl. 23 – 07</td>
</tr>
<tr>
<td>Flyplass</td>
<td>52 L<sub>den</sub></td>
<td>80 L<sub>SAS</sub></td>
</tr>
</tbody>
</table>

3.2.2 Utarbeidelse av støysonekart og implementering i kommunale planer

Ansvar for utarbeidelse av kart som viser støysonene legges til tiltakshaver ved nye anlegg, mens anleggseier eller driver har ansvar for eksisterende anlegg. De ansvarlige oversender kartene til kommunen og har også et ansvar for å oppdatere kartene dersom det skjer vesentlige endringer i støysituasjonen. Normalt skal kartene vurderes hvert 4.–5. år.

Det skal utarbeides støysonekart for dagens situasjon og aktivitetsnivå og en prognose 10–20 år fram i tid. Kartet som oversendes kommunen skal settes sammen som en verste situasjon av de to beregningsalternativene.
Kommunene skal inkludere og synliggjøre støysonekartene i kommuneplan. Retningslinjen har flere forslag til hvordan dette kan gjøres. For varige støykilder er det foreslått å legge sonene inn på selve kommuneplankartet som støybetinget restriksjonsområde. Det anbefales at kommunene tar inn bestemmelser tilknyttet arealutnyttelse innenfor støysone og at det skal stilles krav til regulariseringsplan for all utbygging av støyomfintlig bebyggelse innenfor rød og gul sone.

Følgende regler for arealutnyttelse er angitt i retningslinjen:

- **rød sone**, nærmest støykilden, angir et område som ikke er egnet til støyfølsomme bruksformål, og etablering av ny støyfølsom bebyggelse skal unngås.
- **gul sone** er en vurderingssone, hvor støyfølsom bebyggelse kan oppføres dersom avbøtende tiltak gir tilfredsstillende støyforhold.

3.3 Beregningsmetode

Vurdering av flystøy etter Miljøverndepartementets retningslinjer gjøres kun mot støysonegrenser som er beregnet, dvs. at man ikke benytter målinger lokalt for å fastsette hvor grensene skal gå. Den beregningsmodellen som benyttes i Norge (se avsnitt 3.3.2), er imidlertid basert på en database som representerer en sammenfatning av et omfattende antall målinger. Under forutsetning av at beregningsmodellen nyttet innenfor sitt gyldeområde og at datagrunnlaget gir en riktig beskrivelse av flygemonsteret rundt flyplassen, så må det derfor gjøres mange målereser for å oppnå samme presisjonsnivå som det beregningsprogrammet gir.

Målinger kan nyttes som korrigierende supplement ved kompliserte utbredelsesforhold, ved spesielle flygeprosedyrer, eller når beregningsprogrammet eller dets database er utilstrekkelig.

3.3.1 Dimensjonering av trafikkgrunnlaget

I retningslinje T-1277 ble det lagt til grunn at den travleste sammenhengende 3-måneders periode på sommerstid (mellem 1. mai og 30. september) skulle benyttes som trafikkgrunnlag. Sommeren har vært valgt siden EFN ble innført som måleenhet, basert på en antakelse om at sommeren representerer den tid av året å da støyn hadde størst negative utslag i forhold til utendørs aktivitet. Også det faktum at flere sover med åpnet vindu om sommeren ble tillagt vekt.

Militære øvelser som forekommer minst hvert 2. år, skal inngå i trafikkgrunnlaget.

3.3.2 Beregningsprogrammet NORTIM

Det unike med NORTIM er at det tar hensyn til topografienes påvirkning av lydutbredelse, samt lydutbredelse over akustisk reflekterende flater. NORTIM beregner i en og samme operasjon alle de aktuelle måleenheter som er foreskrevet i retningslinjene. Beregning av MFN og EFN er således supplert med L_den og L_SAS. Andre støy mål som beregnes er blant annet ekvivalentnivået, L_Aeq, for dag og for natt eller for hele det dimensjonerende middeldøgn. Beregningsresultatene fremkommer som støykurver (sonegrenser) som kan tegnes i ønsket målestokk. Alle resultatene leveres på SOSI filformat.

4 KARTLEGGING I HENHOLD TIL FORSKRIFT TIL FORURENSNINGSLOVEN

4.1 Innendørs støy

Forurensningsforskriften fastsetter grenseverdier som skal utløse kartlegging og utredning av tiltak mot støy. Kartleggingsgrensen er satt til døgnekvivalent nivå (LAeq,24h) på 35 dBA innendørs når bare en støytype dominerer. Dersom flere likeverdige kilder er til stede, senkes kartleggingsgrensen for hver støykilde med 3 dB til 32 dBA.

<table>
<thead>
<tr>
<th>Flyplasstype</th>
<th>Støymessig dominerende flytype</th>
<th>Minimum fasadeisolasjon i vanlig bebyggelse</th>
<th>Kartleggingsgrense relativt til frittfeltsnivå</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regionale flyplasser</td>
<td>Propellfly</td>
<td>18 dBA</td>
<td>53 dBA (35+18)</td>
</tr>
<tr>
<td>Stamruteplasser / militære flyplasser</td>
<td>Jagerfly</td>
<td>23 dBA</td>
<td>58 dBA (35+23)</td>
</tr>
<tr>
<td>Stamruteplasser</td>
<td>Støysvake jetfly</td>
<td>26 dBA</td>
<td>61 dBA (35+26)</td>
</tr>
</tbody>
</table>

Tiltak på bygninger skal gjøres dersom innendørs støynivå overstiger 42 dBA døgnekvivalent nivå. En tentativ tiltaksgrense vil derfor ligge 7 dB over den kartleggingsgrense som for hvert tiltall framkommer av tabellen over.

4.1.1 Strategisk støykartlegging

Strategisk støykartlegging gjennomføres for å tilfredsstille EU direktiv 2002/49/EC, befolkningens behov for informasjon og som grunnlag for handlingsplaner. Forskriften gir i vedlegg minstekrav til hva som skal beregnes og rapporteres. Denne del av kartleggingen gjelder for utendørs nivå og det er krav til flere støykart, opptelling av antall boliger og andre bygninger med støyomfintlig bruksområde innenfor intervaller av støynivå for både Lden og Lnight.

Strategisk støykartlegging skal utføres på flyplasser med mer enn 50 000 sivile bevegler pr år. I dette tallet inngår ikke militær trafikk eller skoleflyging, men denne trafikken skal likevel regnes med når kartleggingen foretas.
5 OMGIVELSER

5.1 Digitalt kartgrunnlag
Kartet er skannet inn fra papir og er i koordinatsystemet UTM Euref 89 i sone 32.

Figur 5-1. Oversikt over helikopterplassens omgivelser. Målestokk 1: 50 000.

5.2 Digital terrengmodell
Digital terrengmodell er tidligere levert av Avinor for hele landet. Et utsnitt av dette benyttes for å beregne topografiens betydning for lydutbredelsen. Topografidata består av høydeinformasjon i (desi)meter over havet for et punktmønster med 50 meter avstand mellom hvert punkt i nordlig og østlig retning.

5.3 Rullebaner
Helikopterplassen landingsplattform legges inn som en rullebane i NORTIM. Koordinater er mottatt pr e-post fra Statkraft Energi AS (Finn Arve Berget) av 23.10.2012. De gitte retningene for rullebanen er relativ til nord i kartgrunnlaget, dvs. UTM Euref 89, sone 32. Rullebanen er lagt inn med høyde 500 m.

Tabell 5-1. Koordinater for rullebanene.

<table>
<thead>
<tr>
<th>RWY</th>
<th>FromEast</th>
<th>FromNorth</th>
<th>ToEast</th>
<th>ToNorth</th>
<th>Direction</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>H27</td>
<td>369373</td>
<td>6667920</td>
<td>369343</td>
<td>6667920</td>
<td>270</td>
<td>30</td>
</tr>
</tbody>
</table>

2 Statens Kartverk, M711 serien, Kartblad 1315-2 Ringedalsvatnet, Utgjeve 2010
6 FLYTRAFIKK

Tabell 6-1. Totalt antall landinger og avganger.

<table>
<thead>
<tr>
<th>TO_LA</th>
<th>SumOper</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA</td>
<td>164</td>
</tr>
<tr>
<td>TO</td>
<td>164</td>
</tr>
</tbody>
</table>

Helikopterplassen brukes i daglys, så det er antatt at fordeling pr tid på døgnet er:

- Dagtid (07-19): 90 %
- Kveld (19-23): 10 %
- Natt (23-07): 0 %

6.1 Prognoser

Flystøy skal beregnes kun for den angitte mengde, fordi det regnes med at trafikken vil holde seg på dette nivå\(^3\).

\(^3\) Finn Arve Berget bekrefter at trafikken vil holde seg i en epost til Idar L.N. Granøien av 23.10.2012
7 FLYTYPER

7.1 Flytyper i bruk

Helikoptertyper i bruk på helikopterplassen er AS350, AS32, og B214. ICAO kode oversettes til databasenavn og helikoptertyper som ikke finnes i databasen substitueres. For B214 som ikke har egne data er det benyttet betegnelsene THEL (tungt helikopter). Denne klassen modelleres med data for SK61.

Oversettingen er vist i Tabell 7-1 sammen med antall operasjoner på de 3 helikoptertyper.

Tabell 7-1. Oversetting av flytypenavn fra ICAO kode til betegnelse i database.

<table>
<thead>
<tr>
<th>ACtype</th>
<th>NewACtyp</th>
<th>SumOper</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS32</td>
<td>SA330</td>
<td>11</td>
</tr>
<tr>
<td>AS350</td>
<td>SA350</td>
<td>314</td>
</tr>
<tr>
<td>B214</td>
<td>THEL</td>
<td>3</td>
</tr>
</tbody>
</table>

7.2 Kildedata for fly

Støydata hentes fra databasen til beregningsprogrammet.
8 DESTINASJONER, TRASÉER OG PROFILER

8.1 Destinasjoner
Det er ikke angitt hvor trafikk typisk kommer fra eller går til. Derimot er inn- og utflygingsretninger angitt.

8.2 Flygeprosedyrer og Flytraséer
Landinger og avganger på helikopterplassen skjer med 40/60 og 30/70 fordeling over flytraséer og retninger. Flytraséer er tatt ut fra tilsendt epost\(^4\) hvor inn- og utflygingskorridorer i samsvar med BSL E 3-6 er tegnet inn.

Figur 8-1. Flytraséer med angivelse av trafikkfordeling på disse. Målestokk 1: 50 000.

8.3 Flygeprofiler
Med flygeprofiler menes normalt høyde, hastighet og motorsetting som funksjon av avstand. For helikopter benyttes ikke motorsetting, men operasjonsmodus (climb, level, descend). Avgangsparten for helikoptrene som inngår er basert på klatring med hastighet for beste klatrerate og maksimum avgangsvekt. For de to traséene som går nordover er profilene koblet til stigende terrenge slik at de stiger med terrenget i en høyde på 1000 fot ved avgang, 1500 fot ved landing.

Landingsprofillen for AS32 og AS350 er beregnet med 6\(^\circ\) glidebanevinkel, mens B214 (THEL) er lagt inn med 4\(^\circ\).

\(^4\) Fra Finn Arve Berget til Idar L.N. Granøien, 23.10.2012
9 BEREGNINGSPARAMETERE

9.1 Beregningsenheter
Det beregnes for de enheter som er relatert til retningslinje T-1442 og forurensningsforskriften.

9.2 Beregning i enkeltpunkter

9.3 NORTIM beregningskontroll
Beregningene foretas med en oppløsning på 64 fot (ca. 19,5 meter) mellom hvert punkt med mottakerhøyde 4 meter over bakken. For alle beregningene tas det hensyn til topografien.
10 RESULTATER RELATERT TIL RETNINGSLINJE T-1442

Støysonekartet i henhold til retningslinjen settes sammen som en kombinasjon av de to måleenhetene L$_{5AS}$ og L$_{den}$, men det er ikke trafikk på natt. Måleenheten L$_{5AS}$ får derfor ingen verdier siden den representerer maksimumsnivå innenfor døgnsegmentet 23:00 – 06:59. Beregningen gir derfor bare resultat for L$_{DEN}$.

Figur 10-1. Gul og rød støysone. Målestokk 1:15 000.

Det er ingen bygninger innenfor støysonene.

Tabell 10-1. Areal i dagens støysoner

<table>
<thead>
<tr>
<th>Støysone</th>
<th>Areal (da)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gul</td>
<td>47,9</td>
</tr>
<tr>
<td>Rød</td>
<td>3,2</td>
</tr>
</tbody>
</table>
11 RESULTATER RELATERT TIL FORURENSNINGSFORSKRIFTEN

I dette kapittel vises beregninger relatert til forurensningsforskriften normalt i form av kotekart og tabeller med antall berørte støyomfintlige bygninger og antall bosatte. Antall bygninger beregnes først. Deretter, ut fra et fylkesjustert, gjennomsnittlig antall personer bosatt pr boligtype, anslås antall berørte personer.

I forhold til krav om kartlegging av innendørs støynivå henvises til bakgrunnsbeskrivelse i kapittel 4. Beregningene med NORTIM gjelder bare for utendørs støynivå i fritfelt, men kan omsettes til innendørs nivå for de dårligste støyisolerte boliger, som likevel har standard utførelse, ved hjelp av Tabell 4-1.

Jarmålt med tabellen korresponderer kartleggsgrense i henhold til forurensningsforskriften med et utendørs nivå på $L_{Aeq,24h}$ på 53 dBA for propellfly. Denne grensen er også benyttet for helikopter ettersom de to rotorene er de dominerende støykildene.

I de følgende figurer vises 3 kurver for $L_{Aeq,24h}$. Den midterste er kartleggingsgrensen for flystøy alene, den ytterste er kartleggingsgrensen for flystøy og annen støy som er like sterk, mens den innerste er en tentativ tiltaksgrense. Innenfor den innerste må man normalt kunne forvente at bolighus som ikke allerede er gjort tiltak på, kan ha behov for det.

Ingen bygninger er beregnet å ligge innenfor de tre intervallene.

Figur 11-1. Kartleggsgrenser i henhold til forurensningsforskriften. Kotene viser $L_{Aeq,24h}$ 50, 53 og 60 dBA. Målestokk 1:15 000.
12 LITTERATUR

