Wafer-Level Packaged MEMS Switch with TSV

Nicolas Lietaer
SINTEF ICT, Norway

supported by the European ENIAC Joint Undertaking project ID:120016 JEMSiP-3D
Outline

Introduction
- MEMS acceleration switch
- Through-silicon vias
- Wafer-level packaging

Fabrication
- Through-silicon vias
- MEMS switches
- Wafer-level encapsulation
- Direct mounting on PCB

Characterization
- TSVs
- MEMS switches

Summary
Outline

- Introduction
 - MEMS acceleration switch
 - Through-silicon vias
 - Wafer-level packaging
- Fabrication
 - Through-silicon vias
 - MEMS switches
 - Wafer-level encapsulation
 - Direct mounting on PCB
- Characterization
 - TSVs
 - MEMS switches
- Summary
MEMS acceleration switch

- **Definition**: a device that closes (or opens) a circuit above a certain acceleration threshold

- **Types**: intermittent or persistent

- **Presented application**: safety and arming devices (SADs) in smart ammunition fuzes

- **Environmental conditions**:
 - Setback acceleration pulse > 60 000 g, centripetal acceleration up to 9 000 g/mm
 - Severe shock and vibrations
 - Severe climatic conditions (e.g. -54°C to +71°C)
MEMS acceleration switch

- Why MEMS?
 - Reduced size
 - Low cost

- Presented switch:
 - Intermittent switch
 - Centripetal acceleration threshold: 13 800 g (designed)
 - Operation: freestanding structure moves in lateral plane and makes contact with neighboring structure
 - Trenches in device layer used to isolate different parts
Through Silicon Vias

- **Main motivation**: miniaturization

- **TSV in device wafer**:
 - No electrical interconnect required between cap and device wafer
 - Visual inspection still possible after flip-chip mounting (if glass cap)
 - Via-first approach must be used
Wafer-level packaging

- Why WLP ?
 - Reduced packaging costs
 - Protection of fragile MEMS structures during wafer dicing

- Presented method :
 - Adhesive wafer bonding with BCB :
 → robust, low-cost, CMOS compatible
 → protects structures from liquids, particles and dust
 (but not fully hermetic)
Outline

- Introduction
 - MEMS acceleration switch
 - Through-silicon vias
 - Wafer-level packaging
- Fabrication
 - Through-silicon vias
 - MEMS switches
 - Wafer-level encapsulation
 - Direct mounting on PCB
- Characterization
 - TSVs
 - MEMS switches
- Summary
Through Silicon Vias

- **Via etch**:
 - SOI substrates (100 mm)
 - 7 x 70 µm trenches
 - Bosch DRIE process
 - Al etch mask and etch stop

- **Via filling**:
 - Thermal oxidation (1 µm)
 - LPCVD undoped polysilicon
 - Phosphorous gas phase doping (POCl₃)

- **Etchback**:
 - Removal excess polysilicon
Through Silicon Vias

- **Main challenges:**
 - High aspect ratio DRIE
 - BOX etch at the bottom of narrow trenches
 - Conformal polysilicon filling

- **Results:**
 - Multi-step etch recipe with excellent profile and AR 50:1
 - BOX etch recipe with LF bias
 - Seam left in the center but sealed at the wafer surfaces
Through Silicon Vias

- **Main challenges:**
 - High aspect ratio DRIE
 - BOX etch at the bottom of narrow trenches
 - Conformal polysilicon filling

- **Results:**
 - Multi-step etch recipe with excellent profile and AR 50:1
 - BOX etch recipe with LF bias
 - Seam left in the center but sealed at the wafer surfaces
Through Silicon Vias

- **Main challenges:**
 - High aspect ratio DRIE
 - BOX etch at the bottom of narrow trenches
 - Conformal polysilicon filling

- **Results:**
 - Multi-step etch recipe with excellent profile and AR 50:1
 - BOX etch recipe with LF bias
 - Seam left in the center but sealed at the wafer surfaces
Outline

- **Introduction**
 - MEMS acceleration switch
 - Through-silicon vias
 - Wafer-level packaging

- **Fabrication**
 - Through-silicon vias
 - MEMS switches
 - Wafer-level encapsulation
 - Direct mounting on PCB

- **Characterization**
 - TSVs
 - MEMS switches

- **Summary**
MEMS switches

- **Protection TSV sidewalls**
 - Stripping SiO₂ frontside
 - 100 nm poly deposition

- **DRIE device layer**:
 - 2.6 µm HiPR6517 photoresist mask

- **Release movable structures**:
 - 1 hr HF vapor release at 35°C

- **Au metallization**:
 - RIE 100 nm polySi
 - NiCr barrier/adhesion layer
 - 500 nm Au sputtering
MEMS switches

- **Main challenges:**
 - Vertical profile DRIE
 - Planarity of released structures after metallization

- **Results:**
 - DRIE process with vertical sidewalls and small scallops
 - Slight (< 1 μm) upwards bending of cantilever structures
Outline

- **Introduction**
 - MEMS acceleration switch
 - Through-silicon vias
 - Wafer-level packaging
- **Fabrication**
 - Through-silicon vias
 - MEMS switches
 - Wafer-level encapsulation
 - Direct mounting on PCB
- **Characterization**
 - TSVs
 - MEMS switches
- **Summary**
Wafer-level encapsulation

- **Etch cavities in glass wafer:**
 - TiW/Au etch mask
 - Wet etch of glass (49 % HF at room temp)
 - Etch depth: 20 µm
 - Stripping of TiW/Au

- **BCB coating glass cap wafers:**
 - Cyclotene 3022-35 (BCB)
 - Spray coating with airbrush pressurized with dry N₂
 - 1.4 µm thickness
 - Hotplate 90 sec 110 °C
Wafer-level encapsulation

- **Wafer bonding**:
 - Suss BA6 bond aligner
 - Suss SB6 thermo-compression bonder
 - Pre-heating 5 min 150 °C
 - Pressure: 300 mbar
 - 1 hr 250 °C

- **Patterning backside metal**:
 - AZ4562 photoresist mask
 - Wet etching of NiCr/Au

- **Dicing with conventional diamond saw**
Wafer-level encapsulation

- **Main challenges:**
 - Particles and defects
 - BCB reflow within the cavity

- **Results:**
 - Successful bond over the complete wafer
 - Particles and defects embedded in bond seal
 - Acceptable reflow
 - Efficient sealing/protection during dicing
Wafer-level encapsulation

Main challenges:
- Particles and defects
- BCB reflow within the cavity

Results:
- Successful bond over the complete wafer
- Particles and defects embedded in bond seal
- Acceptable reflow
- Efficient sealing/protection during dicing
Outline

- **Introduction**
 - MEMS acceleration switch
 - Through-silicon vias
 - Wafer-level packaging

- **Fabrication**
 - Through-silicon vias
 - MEMS switches
 - Wafer-level encapsulation
 - Direct mounting on PCB

- **Characterization**
 - TSVs
 - MEMS switches

- **Summary**
Direct mounting on PCB

- **Mounting of chips**:
 - Direct on FR-4 PCB
 - Novel isotropic conductive adhesive (ICA) with uniform Ag-coated polymer spheres
 - Dima HS-100 stencil printer
 - MyData My-9 pick and place
 - Curing 60 sec 150 ºC
 - Pad size: 250 x 440 µm
 - Pad pitch: 600 µm
Outline

- Introduction
 - MEMS acceleration switch
 - Through-silicon vias
 - Wafer-level packaging

- Fabrication
 - Through-silicon vias
 - MEMS switches
 - Wafer-level encapsulation
 - Direct mounting on PCB

- Characterization
 - TSVs
 - MEMS switches

- Summary
Characterization of TSVs

- **Results**:
 - Via resistance ~ 4.5 Ω
 - High yield also for daisy chains with 180 vias
Characterization of switches

- **Test system:**
 - FR-4 PCB with two MEMS chips
 - Test PCB with data logger
 - Placed in sample holder for centrifuge and filled with a powder consisting of 40 to 80 µm glass beads
 - Sorvall WX80 Ultra centrifuge

Ø 20 x 35 mm test system
Characterization of switches

- Results:
 - Closing threshold ~ 11 800 g (15 % lower than expected)
 - Opening threshold ~ 10 500 g (some stiction)
Outline

- **Introduction**
 - MEMS acceleration switch
 - Through-silicon vias
 - Wafer-level packaging
- **Fabrication**
 - Through-silicon vias
 - MEMS switches
 - Wafer-level encapsulation
 - Direct mounting on PCB
- **Characterization**
 - TSVs
 - MEMS switches
- **Summary**
Summary

- Polysilicon TSVs with 4.5 Ohm/via were successfully fabricated through 340 µm thick SOI wafers.

- A new RIE process based on LF substrate bias was successfully developed to etch a 2 µm BOX layer at the bottom of high aspect ratio ratio trenches.

- A simple and robust method for wafer-level encapsulation with non-photosensitive BCB adhesive was demonstrated.

- Direct mounting of MEMS devices onto a PCB using a novel isotropic conductive adhesive was demonstrated.

- A miniaturized wafer-level packaged MEMS acceleration switch with TSVs was successfully fabricated.
Acknowledgements

- T. Bakke, SINTEF ICT
- A. Summanwar, SINTEF ICT
- P. Dalsjø, Norwegian Defence Research Establishment (FFI)
- J. Gakkestad, Norwegian Defence Research Establishment (FFI)
- F. Niklaus, KTH – Royal Institute of Technology

- This work is supported by the European ENIAC Joint Undertaking project ID:120016 JEMSiP-3D