Polyphenol metabolites display immune inhibiting effects on acute inflammation in human monocyte and macrophage cells

Sissel B. Rønning, Vibeke Voldvik, Silje Bergum, Kjersti Aaby, Grethe Iren Andersen Borge
Nofima AS, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway

Background: The dietary polyphenols ellagitannins, present in strawberry, raspberry and pomegranate, are catabolized to ellagic acid and further to urolithins by the colonic microbiota. Urolithin A is one of the main metabolites found in plasma. Ellagic acid is only found in minor amounts. Many studies support the positive effect on the immune system of polyphenols; however, usually the effects are of polyphenols only found in foods, and not of the metabolites present in circulation.

Aim: To examine and compare immune inhibiting effects on acute inflammation of ellagic acid and its catabolite urolithin A, which are both present in the circulation after consumption of certain fruits and berries.

Conclusion: Both ellagic acid and urolithin A displayed immune inhibiting effects on acute inflammation, however, urolithin A had a stronger effect than ellagic acid. The reason for this might be different regulation of NF-κB.

Results

1. Ellagic acid and urolithin A decreased NF-κB activity during acute inflammation

2. Urolithin A reduced the mRNA expression and cytokine secretion of both IL-6 and TNF-α, while ellagic acid only reduced the TNF-α cytokine secretion.

3. Ellagic acid and urolithin A did not affect the relative gene expression of the immune receptor TLR-4

4. Urolithin A reduced the nuclear localisation of phosphorylated NF-κB units p65 and p50, while ellagic acid only reduced the nuclear localisation of p65

Methods

Urolithin A that was kindly provided by partners in the EU-project BACCHUS (FP7, no. 312090), and ellagic acid were examined for their effects on acute inflammation responses caused by the bacterial endotoxin LPS in human monocyte and macrophage cells. U937 3×10^5-LUC cells and differentiated THP-1 cells were stimulated with 30 µM metabolites for 6 or up to 24 hours during acute inflammation induced by LPS. To measure the immune inhibiting effects, U937 was used to measure NF-κB activity with luminescence, and mRNA expression of the pro-inflammatory cytokines IL-6 and TNF-α, and the immune receptor TLR-4 using RT-PCR. In addition, THP-1 cells were measured for secretion of the pro-inflammatory cytokines IL-6 and TNF-α using sandwich ELISA, and for nuclear localisation of p65 and p65 using immunostaining. Dunnett’s Multiple Comparisons with a control was performed using the Minitab 17 software for calculation of significant difference between samples.

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 312090, and Norwegian Lysen on Agricultural Products under grant agreement no 224892.

Nofima AS, P. O. Box 210, Osloven 1, NO-1431 Ås, Norway, Tel: +47 02140, www.nofima.no, post@nofima.no - Norwegian Institute of Food, Fisheries and Aquaculture Research