Calibration of a Multi-Object Spectrometer with Programmable and Arbitrary Field of View

Presented by Marion O’Farrell
Authors: Britta Fismen, Trine Kirkhus, and Jon Tschudi

SINTEF ICT, Forsningsveien 1, N-0314 Oslo, Norway
www.sintef.no/omd
{britta.fismen, jon.tschudi, trine.kirkhus}@sintef.no
Outline

- **Motivation** (issues when taking spectral measurements from the lab out into producing industry)
- **Background** (show how reflections form other non-relevant object and multiple reflections form the surroundings interfere with the spectral measurements)
- **DMD setup** (tell how our setup solve this by controlling both the illumination and the measurement areas)
- **Calibration/referencing needs** (which needs for calibration is needed to do robust spectral measurements in general(?) and which challenges does this introduce to our dynamic system)
- **Idea** (present the idea of using a reference bank)
- **Implementation** (how we are thinking of and are solving this)
- **Tests** (how we have tested this idea)
- **Results** (present results for these tests)
- **Summary and conclusions** (what have been presented and which conclusions can we draw from this)
Industrial spectral measurements require flexibility

- In an industrial setting:
 - samples are seldom well-ordered
 - objects vary in size, shape and reflectance properties
 - background levels fluctuate
- Thorough analysis of the measurement situation:
 - spatial resolution
 - spectral resolution
 - wavelength band of interest
- Imaging spectrometer solutions:
 - scanning point measurement,
 - using dispersive element, a camera, and a scanning action, either by using a mirror device, for example a Digital Micro-mirror Device (DMD), or by moving the sample itself
A DMD (Digital Micro-Mirror Device) Based Multi-Object Quasi-Imaging Spectrometer
A DMD (Digital Micro-Mirror Device) Based Multi-Object Quasi-Imaging Spectrometer

1. The scene is illuminated and imaged onto a camera via two different DMDs.
A DMD (Digital Micro-Mirror Device) Based Multi-Object Quasi-Imaging Spectrometer

1. The scene is illuminated and imaged onto a camera via two different DMDs.
2. Based on image analysis, the region of interest is located, in this case the red apple.
A DMD (Digital Micro-Mirror Device) Based Multi-Object Quasi-Imaging Spectrometer

1. The scene is illuminated and imaged onto a camera via two different DMDs.
2. Based on image analysis, the region of interest is located, in this case the red apple.
3. A mask is generated for the illumination DMD to ensure that only the apple is illuminated, avoiding the background and the green leaf.
A DMD (Digital Micro-Mirror Device) Based Multi-Object Quasi-Imaging Spectrometer

1. The scene is illuminated and imaged onto a camera via two different DMDs.
2. Based on image analysis, the region of interest is located, in this case the red apple.
3. A mask is generated for the illumination DMD to ensure that only the apple is illuminated, avoiding the background and the green leaf.
4. The detection DMD picks up only the light reflected from the apple and this light is projected onto the entrance aperture of the spectrometer.
Digital Micro-mirror Devices are used to make a fully programmable quasi-imaging spectrometer

Lab setup: DMD with electronics form Visitech (LuxBeam SXGA+ DLP board) Optics from a standard low-cost office projector
Programmable field of view introduces challenges

- The spectrometer’s response is usually dependent on:
 - angle-of-incidence of the light entering
 - illumination intensity varies over the scene
 - illumination intensity varies with distance from the light source
 - the illumination’s spectral distribution may vary over the scene

- the spectrometer’s response is dependent on temperature
The sample contaminate the illumination source

- Adjacent objects influence the spectral measurements

- The surroundings and the object itself influence the spectral measurements
Nearby objects introduce spectral shifts

Yellow area: non-masked illumination, non-masked white references without interferrent

Pink area: non-masked illumination, non-masked white references
Stray light is avoided using designed illumination
Stray light is avoided using designed illumination

Yellow area: masked illumination, masked white references

Pink area: masked illumination, masked white references

wave length in nm

ICT

SINTEF
Stray light is avoided using designed illumination

![Image of yellow and pink areas with graphs showing spectral data]
Build a database to dynamically generate reference spectra

- Dividing the scene into cells and generating a reference spectrum for each cell.
- The cells must fill an xyz-volume covering the intersection between the field of view and the field of illumination in the system.
- The reference spectrum in each cell will be either measured or computed based on some references measured and knowledge about the physical properties of light and the system.
Fit reference spectra to the current region of interest

- Spectra in the cells corresponding to the object of interest are picked from the reference bank.
- These spectra are averaged to get the correct reference spectrum.
- This spectrum will thereby correspond to the size, position, and shape of the object of interest.
- The size of the cells must be large enough to get satisfactory signal-to-noise ratio, and small enough to provide adequate flexibility.
Adding reference from sub-areas is similar to using a one to one reference.
Spectral referencing databank meets the requirements of referencing in a dynamic system

- Shown the benefits of dynamic spectral measurements and how it reduces the effects of stray light in a realistic setting
- Introduced our DMD spectrometer set up
- Presented and demonstrated how a white referencing database can be made
- Measurements show that this approach meets the requirements of dynamic referencing
trine.kirkhus@sintef.no
Using a mean reference from sub-areas is similar to using a one to one reference.
Digital Micro-mirror Devices are used to make a fully programmable quasi-imaging spectrometer

1. The scene is illuminated and imaged onto a camera via two different DMDs.
2. Based on image analysis, the region of interest is located, in this case the red apple.
3. A mask is generated for the illumination DMD to ensure that only the apple is illuminated, avoiding the background and the green leaf.
4. The detection DMD picks up only the light reflected from the apple and this light is projected onto the entrance aperture of the spectrometer.