Heuristic Strategies for Solving Large-Scale Vehicle Routing Problems

Geir Hasle
Department of Applied Mathematics
SINTEF ICT, Oslo, Norway
http://www.sintef.no/

TRANSPORT OPTIMIZATION CHALLENGES IN CONTEMPORARY PRACTISE
Jyväskylä, Finland, May 12-14, 2009
Outline

Transport Optimization Challenges in Contemporary Practice
- Challenges for Routing Technology
- Heuristic Strategies for Large-Scale VRPs
- Newspaper distribution
- The Node Edge Arc Routing Problem (NEARP)
- Conclusions
Messages

- Many challenges for routing technology
- Computational complexity is one of them
- Several strategies for containing complexity
- The VRP research community should be careful
 - Solving the right problem
 - Speedup tricks are useful for world records and maximizing #publications
 - They may break down for real life problems
Challenges for Routing Technology

- Industrial awareness
- Information accessibility
- User interfaces
- Model adequacy and flexibility
- Software engineering
- Robustness
- Solution quality for large-size and complex problems
- Computational complexity
- Newspaper distribution
- City of Oslo
- 500k inhabitants
- 200k households
- 34.554 modules
Outline

- Challenges for Routing Technology
- Heuristic Strategies for Large-Scale VRPs
 - Olli Bräysy, Wout Dullaert, Pasi Porkka, Geir Hasle
- Newspaper and Media Product Distribution
- The Node Edge Arc Routing Problem
- Conclusions
How to contain complexity?

- High performance algorithms
- Decomposition
- Abstraction
- Parallel computing
- Search Reduction
Decomposition

- Top-down strategy
- Split the problem into manageable pieces
- Solve the subproblems
- Patch the solutions together
- You will typically lose optimality
- Basis for further improvement
VRP Decomposition

- Geographical
- Organizational
- Temporal
- Product
- Vehicle
- Assignment / Sequencing
- Location / Routing, Period / Routing
- Column Generation
- Cluster-first-route-second and vice versa
- Clustering methods useful for splitting

- Some 40 papers in the literature
Geographical decomposition
35.000 orders – 100 sub-areas
Abstraction

- Ignoring detail, bottom-up
- Always done, modelling
 - Euclidean distances
 - Cost is distance
 - Constant speeds
 - Identical vehicles
 - Triangle inequality
 - Linearization
 -
 - May reduce industrial relevance ...
- Aggregation
Aggregation of demand

- Collection of transportation demand
- Use of road topology
- Capacity threshold
- Other constraints

- De-aggregation and further improvement
- Multi-level aggregation / refinement

- < 10 papers in the literature
Demand aggregation based on road topology, proximity

- Oppen & Løkketangen [C&OR 2006]
- Distance/time, capacity may stop aggregation
- Issues on traversal possibilities, constraints
- Typical reduction factor of 5-20
- Needs extension to arc model (Node Edge Arc Routing Problem, NEARP)
- More comprehensive aggregation (Joni Brigatti’s talk)
Aftenposten 33.200 orders -> 5600 aggregates
Parallel computing

- Idea very old, Charles Babbage
- ”The Beach Law” (Gottbrath et al. 1999) does not hold these days
- Moore’s law still does
 - reduced clock speed
 - increasing # multiple cores
- Sequential programs run slower on multi-core computers
- Graphics Processing Unit
 - data parallelism, stream computing
 - rapid performance increase
 - general purpose programmability
- Hybrid computing
Parallel computing

- Some tasks in EA and LS are embarrassingly parallel
- "Simple" parallelization through multi-threading
 - fine-grained to medium level granularity
 - very interesting for routing technology
 - not so interesting for VRP research, no literature
- More interesting parallelization
 - Coarse-grained, asynchronous
 - Multi-search
 - Collaborative search
 - Parallel multi-level
- Recent review by Crainic, 80 references
- Additional 30 papers
- Hybrid computing not really investigated
Search speedup

- Local search: Delta evaluation
- Interesting LS neighborhoods do not scale well
- Restricted neighborhoods
 - Candidate list strategies (Glover)
 - Granular tabu search (Toth & Vigo)
 - Fast Local Search in Guided Local Search (Voudouris et al.)
- Restructuring of neighborhood exploration
 - First accept
 - Sequential search, decomposition of moves with pruning
 (old idea, Christofides & Eilon, Lin & Kernighan, revived by Irnich et al.)

- Some 15 VRP papers
Search speedup

- Fast propagation of constraints, important
- May be very effective, but use with care ...
- Real-life aspects, time-varying speeds?

- More aggressiveness / opportunism in Local Search?
- Better understanding of what is going on
 - search landscapes
 - design of operators
Outline

Transport Optimization Challenges in Contemporary Practice

- Challenges for Routing Technology
- Heuristic Strategies for Large-Scale VRPs
- Newspaper and Media Product Distribution
- The Node Edge Arc Routing Problem
 - Truls Flatberg, Oddvar Kloster, Eivind J. Nilssen, Morten Smedsrud, Geir Hasle
- Conclusions
<table>
<thead>
<tr>
<th>Ant. tømm</th>
<th>205</th>
<th>Ant. hekt og andre</th>
<th>0</th>
<th>Ant. presse</th>
<th>0</th>
<th>U</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avstand</td>
<td>0 km a kr.</td>
<td>25.50</td>
<td>0</td>
<td>Speider</td>
<td>0 kr.</td>
<td>0.00</td>
<td>0.49</td>
</tr>
<tr>
<td>Avstand</td>
<td>0 kr.</td>
<td>17.24</td>
<td>0</td>
<td>Vinterlegg</td>
<td>500.00</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Sum tømm</td>
<td>0.00</td>
<td>25.00</td>
<td>0.00</td>
<td>Sum tømm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sum tømm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Sum tømm, sos. kostn.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sum tømm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Sum tømm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Kostnad pr. abbonnement</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Kostnad pr. abbonnement</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Låntid</td>
<td>15 min</td>
<td>0.00</td>
<td>0.00</td>
<td>Låntid</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Avstand</td>
<td>3.5 km</td>
<td>0.00</td>
<td>0.00</td>
<td>Avstand</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0 oppg. uten nøkkel</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0 oppg. uten nøkkel</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.5 kg oppg. med nøkkel</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.5 kg oppg. med nøkkel</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>200 etasjer</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>200 etasjer</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0 lev. i emebolig</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0 lev. i emebolig</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.5 kg lev. i emebolig</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.5 kg lev. i emebolig</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4 lev. i lave</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4 lev. i lave</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1000 kg lev. i lave</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1000 kg lev. i lave</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Totalt</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Totalt</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Ruteutvalg

Distribusjon: M1-6

Velg geografi

Rutesøk:
Region: Velg-
Område: Velg-
Forfall: 02 Oslo Nord - RNO#300: FBVN gr1

Velg måltall / tidsmodus

Måltall

<table>
<thead>
<tr>
<th>LE</th>
<th>LT</th>
<th>OM</th>
<th>RL</th>
<th>TB</th>
<th>D%</th>
<th>LEV</th>
<th>Δ</th>
<th>OM</th>
<th>Δ</th>
<th>RL</th>
</tr>
</thead>
</table>

Tidsmodus

<table>
<thead>
<tr>
<th>Snitt</th>
<th>Man</th>
<th>Tirs</th>
<th>Ons</th>
<th>Tors</th>
<th>Fre</th>
<th>Lør</th>
<th>Søn</th>
</tr>
</thead>
</table>

Oversikt

<table>
<thead>
<tr>
<th></th>
<th>Lev.eff. (lev/min)</th>
<th>Lev.tett. (lev/km)</th>
<th>Omb.tid (min)</th>
<th>Rutelengde (km)</th>
<th>Tidsbuff. (min)</th>
<th>Dekn.grad (%)</th>
<th>Lev. (ant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production (5)</td>
<td>3,12</td>
<td>34,3</td>
<td>70 Σ:348</td>
<td>7,8 Σ:39,2</td>
<td>106</td>
<td>22,7</td>
<td>240,8</td>
</tr>
<tr>
<td>Optimized (5)</td>
<td>3,85</td>
<td>133,2</td>
<td>49 Σ:247</td>
<td>2,3 Σ:11,4</td>
<td>23,3</td>
<td>222,4</td>
<td>230,2</td>
</tr>
</tbody>
</table>
Node and Arc Routing

- For "Household routing problems" demand is located in a node
 - mail delivery
 - newspaper and other media products
 - waste collection
 - typically modelled as CARP in the literature

- Arc routing
 - snow removal, cleaning
 - gritting, salting, ...

- Abstraction, aggregation of demand
 - mix of nodes, arcs, edges
 - travel cost (deadheading), service cost

- Node Edge Arc Routing Problem (NEARP)
 - Christian Prins and Samir Bouchenoua 2004
 - Generalization of the CVRP, CARP, General Routing Problem
 - Definition, test problems, memetic algorithm
Aftenposten 33.200 orders -> 5600 aggregates
VRP solver - Spider

- Rich model
- Basically a single algorithmic machinery
 - construction phase
 - tour depletion phase(s)
 - iterative improvement
 - VND
 - destroy and rebuild

- Good results on benchmarks from the literature
- More computing time
Previous situation

- Every task (pickup, delivery, tour start/end...) has a location
- Topology Module (Guider) provides distance, cost and time services:
 - \(d(l_1, l_2), c(l_1, l_2), t(l_1, l_2) \)
 - Possibly time dependent
 - Not necessarily symmetric
 - Triangle inequality holds
- Special location *Anywhere*
- Tasks may have alternative locations
- One is selected in plan
Extending locations

- Previously: Only *Node Locations*
- New type of locations: *Edge Locations*
- **From**: Node location
- **To**: Node location
- **Reversible**: bool
Impact on topology

- $d(l_1, l_2)$, $c(l_1, l_2)$, $t(l_1, l_2)$

- When l_1 is edge, use l_1:To

- When l_2 is edge, use l_2:From

- Triangle inequality may not hold
Impact on operators

- When reversing subtours (2-opt, 3-opt), we reverse all reversible edge locations

- That’s it
Edge locations

- Aggregation along road segments
- Modelling Arc Routing Problems, mixed problems
- All model extensions may be used
 - Non-homogenous fleet
 - Linked tours with precedences
 - Mixture of order types: Deliveries, Pickups, Direct, Single Visits
 - Multiple time windows, soft time windows
 - Capacity in multiple dimensions, soft capacity
 - Alternative locations on tours and orders
 - Periodic orders, alternative time periods
 - Non-Euclidean, asymmetric, dynamic travel times
 - A variety of constraint types and cost components...
- Same algorithmic machinery, no ARP operators
- Performance?
CARP / NEARP experiments

- Intel Core2 Duo T7800 2.6 GHz, 3.5 Gb memory, MS XP Professional version 2002 Service Pack 2
- Insert, Relocate, 2-opt, Cross, Cross-exchange (2 variants), 3-opt, ruin and recreate
- 900 seconds timeout
Computational tests - CARP

- Benavent et al. (34 instances)
 - LB error 1.02%
 - UB error 0.60%
 - 16 best known solutions (13 optimal)
 - 176 seconds

- Golden et al. (23 instances)
 - LB error 0.83%
 - UB error 0.70%
 - 14 best known solutions (14 optimal)
 - 1 incomplete ...
 - 58 seconds

- Eglese et al. (24 instances)
 - LB error 3.63%
 - UB error 1.25%
 - 3 best known solutions (1 new)
 - 3 incomplete ...
 - 421 seconds
Computational tests - NEARP

- Prins & Bouchenoua CBMix (23 instances)
- No lower bounds, no proven optima
- Only one competitor
- UB error 0.94%
- 8 best known solutions (6 new), 0 incomplete ...
- 519 seconds

- Improvements needed, ARP-structure
Conclusions

Transport Optimization Challenges in Contemporary Practice
- More attention to rich, large-size problems
- More work on how to deal with computational complexity
- Combination of strategies
- More aggressive search
- More research on search

- The NEARP is an interesting model
- More attention should be devoted to it
- Algorithms for node-routing may work well

- We will not be out of work in a while
Messages

- Many challenges for routing technology
- Computational complexity is one of them
- Several strategies for containing complexity
- The VRP research community
 - should investigate them more
 - should be industrially relevant
- Clever speedup tricks are useful for breaking world records (minimizing travel cost and maximizing #publications)
- They may hinge on assumptions that make them break down for real life problems
Heuristic Strategies for Solving Large-Scale Vehicle Routing Problems

Geir Hasle
Department of Applied Mathematics
SINTEF ICT, Oslo, Norway
http://www.sintef.no/

TRANSPORT OPTIMIZATION CHALLENGES IN CONTEMPORARY PRACTISE
Jyväskylä, Finland, May 12-14, 2009
The conference where the sun never set

Hope to see you at

TRISTAN 7
Tromsø, Norway - 20.-25. June 2010
http://www.tristan7.org
Seventh Triennial Symposium on Transportation Analysis
Tromsø, Norway, June 20.-25., 2010
http://www.tristan7.org/
Deadline for abstract submission: October 31, 2009
Email to tristan@sintef.no with the following text in the Subject field: 'TRISTAN: your surname, your given name'
The Collab project

- High-performance transportation optimization through parallel and collaborative methods
- Rich VRP, Dynamic SPP
- 2009-2011
- Partners
 - Group of optimization, SINTEF ICT
 - Group of Heterogeneous Computing, SINTEF ICT
 - The Agora Innoroad Laboratory, University of Jyväskylä, Finland
 - ITMMA, University of Antwerp, Belgium
 - CIRRELT, Quebec, Canada
- Temporary researcher position at SINTEF
- Funded by the Research Council of Norway / SMARTRANS
- Extensions