The aim of the Integrated Navigation System (INS) on a ship bridge should be to provide the navigator with added value and aid in the complex task of conducting a safe and efficient passage in high speeds in demanding waters. This article presents a method for analysing eye tracking data to reveal sub-optimal design in the bridge layout and in the software graphical user interface on a maritime navigation display. The analysis of eye tracking data with focus on scan path events indicates sub-optimal design, and the paper provides suggestions for improvement in design and interface. Pros and cons of using Eye Tracking Glasses in a maritime environment is presented. The importance of not affecting the normal behaviour of the navigator by collecting data is stressed, and also how the software should provide good visualisation and interpretation of the eye tracking data.

KEYWORDS

1 INTRODUCTION
Maritime ship bridges are getting increasingly complex (Luraas, 2016), and INS are being fitted on most new ships coming out from the yards. The International Maritime Organization (IMO) recognize the need to “enhance the safety of navigation by providing integrated and augmented functions to avoid geographic, traffic and environmental hazards” (IMO, 2007, P.1). This provide the navigator with added value when it comes to planning, monitoring and controlling the safe progress of a ship. The information presented by the INS should be correct, timely and unambiguous. In addition, the design of the INS “should ease the workload of the bridge team and pilot in safely and effectively carrying out the navigation functions incorporated therein” (ibid., P.8).

With new technology aiding the situational awareness (SA) of the navigator, the bridge layout has evolved. On state-of-the-art ship bridges information is presented on Multi-Function Displays (MFD), which consist of several applications that can be chosen based on what information is necessary for the navigator. The modern maritime ship bridge consists of several screens, most common is the Electronic Chart Display and Information System (ECDIS), Radar and Conning display, which is part of the INS. It could also be a variety of other MFDs which present essential navigation information such as position, heading, speed, Automatic Identification of Shipping (AIS) information, wind data and more. The ship bridge has thus evolved from stand-alone analogue information with the use of paper charts to a digital display based presentation of all relevant maritime information in one MFD screen.

A concern from both government institutions and industry is that this technological evolution actually decreases the SA of the navigator (Wingrove, 2016). It has also been raised concern with the navigator addressing to much of the attention to the digital displays (Norris, 2010, Hareide et al., 2016, MAIB, 2008).

This paper presents a usability study conducted on board the world’s fastest littoral combat ship, the Royal Norwegian Navy Corvettes. Collected eye tracking data is analysed with regards to the usability
of the bridge layout and the graphical user interface (GUI) of the software incorporated in the INS. Eye tracking data is used and presented to conduct a usability study of the working environment of the navigator on the ship bridge. The eye tracking data is collected with two different types of Eye Tracking Glasses (ETGs). The advantages and challenges of collecting eye tracking data is presented together with a method for collecting, analysing and interpreting eye tracking data with regards to understanding usability. The objective of the research is to identify any specific issues with regards to usability in the bridge design and GUI in the working environment of the navigator.

1.1 Previous Findings And Limitations
In the maritime community there is not much research when it comes to understanding the visual perception and utilization of the navigators’ visual perception and time distribution with regards to areas of interest (AOIs). The authors have earlier written an article presenting a comparative study of bridge- and simulator navigation training (Hareide and Ostnes, 2016), with a follow up on understanding the visual perception and time distribution of the navigator (Hareide et al., 2016).

Limitations in the data set are related to the use of bridge navigation equipment on board the Corvette which has been defined as AOIs for the navigator. This includes the ECDIS, Radar, trip meter, controls (conning information) and the surroundings of the ship (outside). The data was collected during day time with good visual detection range, and the use of radar is thus not representative. The data presented is collected from the navigator. Military navigation does not solely rely on Global Navigation Satellite Systems (GNSS), and consists of traditional navigation techniques (Hareide, 2013, Appendix G).

There are more than 30 different ECDIS producers in the marked today (ECDIS Ltd, 2016), all with different GUIs. This study is undertaken on the Kongsberg ECDIS version 3.4.

2 BACKGROUND
Eye tracking has shown to be promising in the analysis and development of a human-centred bridge design approach of an advanced Dynamic Positioning bridge (Bjørneseth et al., 2014), where eye tracking data has been used with regards to usability study of the Dynamic Positioning Operator (DPO) workstation. The use of eye tracking has also proven to be useful in differentiating the performance between expert and novice high speed navigators (Forsman et al., 2012). Analysing scan path events such as look-backs (revisits), indicates differences between experts and novices. A higher amount of look-backs can indicate a larger degree of control and thus novice mistakes can be avoided (Rosengrant et al., 2009). Van Westeren (1999) reports of the visual perception on pilots in Rotterdam, which concludes that in times with high workload up to 90% of the time is used to observe the surroundings of the ship (fairway in front of the ship), while Bjørneseth et al. (2014) reveals that the DPO spent in average 35% of their time looking outside the window. Depending on type of operation, the amount of time spent in looking out the window will be differentiated.

Several studies have also been conducted in other safety critical domains, such as power plant control rooms and aviation (Holmqvist et al., 2011). It has also been outlined the effectiveness of using eye tracking data in a Multi-Model approach in usability evaluation of the ship’s bridge (Papachristos et al., 2012). Car industry has used eye tracking data for optimisation of design and layout with good results (Chisholm et al., 2008).

Eye tracking is widely used for user interface design, and the purpose and usefulness of it is not much questioned (Bergstrom and Schall, 2014). If the goal of the usability evaluation is to assess if a user interface enables a human to conduct a specific task or operation, eye movements might provide a valuable insight into human behaviour. However, it should be noted that it might also provide limited
information on evaluating whether a particular design facilitates task resolution (Groen and Noyes, 2010). Bergstrom and Schall (2014) points out some general considerations and drawbacks when it comes to using eye tracking in usability studies. They highlight that it is a time consuming process, that it is an investment in both hardware and software, and that by purely using the equipment one could affect the techniques and user groups in a usability study.

There are several Original Equipment Manufacturers (OEMs) which produce different supportive equipment to be used in the conduct of safe navigation on board the ship bridge. The lack of standardisation of this equipment on the ship bridge has been pointed out as a concern (Meck et al., 2014). Kataria et al. (2015) points out the use of human centred design and evolving it to crew-centred design as a solution in designing a better integrated navigation system. The International Organization for Standardisation (ISO) has published a standard on the “Human-centred design for interactive systems” (ISO 9241-210). This standard provides requirements and recommendations for human-centred design principles and activities, which outlines terms and definitions and the principles of human-centred design, and the importance of an iterative process in the plan and activities of designing for a human centred system (ISO, 2010).

Weiner (1989) introduced the term clumsy automation to describe automation that places additional and unevenly distributed workload, communication and coordination demands on pilots without adequate support. In short clumsy automation is automation that makes easy tasks easier and hard tasks harder in challenging situations.

3 EXPERIMENTAL DESIGN AND METHODS

The eye tracking data is valuable because it shows both conscious and unconscious processes of people looking at a specific area (Bergstrom and Schall, 2014).

3.1 Study Design

Collection of the data was undertaken on board the Royal Norwegian Navy Corvettes. The Corvettes INS consists of Radar, ECDIS, Trip meter with navigation information and the Consoles with conning information concerning the ships propulsion and manoeuvring system. This is illustrated in Figure 1.

Based on the INS and the navigators use of the different sub-systems, AOIs were identified in a pre-study (Hareide and Ostnes, 2016), and five areas of interest were identified:

1. Outside (AOI_O): Consists of the surroundings of the ships, and are defined by the boundaries of the windows at the ships bridge.
2. ECDIS (AOI_E): The Electronic Chart Display and Information System (ECDIS) which is presented on the MFD in front of the navigator.
 a. Route Monitor (AOI_R) window is in the lower right corner of the ECDIS software
3. Radar (AOI_R): The radar picture, presented on the centre MFD on the ships bridge
4. Trip Meter (AOI_T): The Electromagnetic Log (EML) which presents speed and distance is located on a display above the navigator.
5. Consoles (AOI_C): Ships propulsion control (water jets) and autopilot (AP).

White Space (AOI_W): The other areas than those defined by the AOIs.

The areas of interest are illustrated in Figure 1. The navigation team of the Corvettes consists of two persons, the Officer of the Watch (OOW) and the Navigator.
3.2 Eye Tracking
The eye tracking data was collected with two different sets of Eye Tracking Glasses, as shown in Figure 2 and 3.

The two different technologies are compared in Table 1 (Tobii, 2016, SMI, 2016).
Table 1: Comparison of Eye Tracking Glasses

<table>
<thead>
<tr>
<th></th>
<th>SMI ETG 2w</th>
<th>Tobii Pro Glasses 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling rate</td>
<td>60Hz/120Hz</td>
<td>50Hz/100Hz</td>
</tr>
<tr>
<td>Field of View</td>
<td>60° horizontal, 46 vertical</td>
<td>82° horizontal / 52 vertical</td>
</tr>
<tr>
<td>Calibration</td>
<td>1/3-point calibration</td>
<td>1 point calibration</td>
</tr>
<tr>
<td>Gaze tracking accuracy</td>
<td>0,5 °</td>
<td>0,5 °</td>
</tr>
<tr>
<td>Gaze tracking range</td>
<td>80° horizontal, 60° vertical</td>
<td>>160° horizontal, 70° vertical</td>
</tr>
<tr>
<td>Scene camera resolution</td>
<td>Resolution:1280x960p@24 fps 960x720p @30 fps</td>
<td>1920 x1080 at 25 fps</td>
</tr>
<tr>
<td>Frame dimension (WxH)</td>
<td>173 mm x 58 mm</td>
<td>179 mm x 57 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>47g</td>
<td>45g</td>
</tr>
<tr>
<td>Interchangeable nose piece</td>
<td>Yes (3)</td>
<td>Yes (3)</td>
</tr>
</tbody>
</table>

3.2.1 Eye Tracking Data Collected With Tobii Pro Glasses 2

The dataset collected with the Tobii Pro Glasses 2 was collected on board one of The Royal Norwegian Navy Corvettes in spring 2016, and the outside surroundings and weather conditions are corresponding to those collected with the SMI 2W ETGs (Hareide and Ostnes, 2016).

A precondition for interpreting the two datasets are that the outside surroundings and weather conditions are similar.

3.3 Eye Tracking Metrics And Data

Fixation is defined as the state when the eye is remaining still over a period of time on a specific point (Holmqvist et al., 2011), and in this data set the period is given as more than 80 milliseconds (ms). Fixation time is the time period of a specific fixation.

Saccade is defined as the rapid eye motion between two fixations, understood as from one fixation to another (ibid.).

A **Dwell** is defined as one visit in an AOI, from entry to exit (ibid.) The **dwell time** is defined as the total amount of time spent in the specific AOI. The dwell time in each of the AOIs from the eye tracking dataset is presented in Figure 4.

![Figure 4: Dwell time in the AOIs.](image-url)
White space is all the area that is not defined by the AOIs in Figure 1 where the participant’s eye movements are recorded. Dwell time in all the above AOIs and white space should sum up to 100%, but there could be a 10-13% deficit due to eye tracking data loss. The reason for this loss could be blinking, eye’s position outside the tracking range of the eye tracker and connection losses in the device.

Attention maps are visualisations and representations of the eye tracking data, and could also be defined as the presentation of spatial distribution of eye-movement data. Examples of attentions maps are *heat maps* or *focus maps*. These attention maps are generated by the eye tracking software. Heat maps shows area with many fixations or data samples highlighted with warm colours (red) and regions with less data are marked with colder colours (blue), with reference to Figure 5.

![Figure 5: Heat Map of Eye Tracking data.](image)

Focus maps are similar, but they present areas with few or no fixations as blind zones, with reference to Figure 6.

![Figure 6: Focus Map of Eye Tracking data.](image)

Scan path is defined as the route of oculomotor events through space within a certain timespan (Holmqvist et al., 2011). A fixation is shown as a circle, which size defines the period of the given fixation. The lines between the fixations represents a saccade. This is shown in Figure 7.
Figure 7: Scan Path presentation of the collected Eye Tracking data.

Sequence chart is a representation for the AOIs over time. The sequence chart shows the order and duration of dwells in the AOIs, and is shown in Figure 8 (ibid.).

![Sequence chart](image)

Figure 8: AOI Sequence Chart from Eye Tracking data from SMI software.

Look-back are operationalized as saccades to AOIs already looked at, and is also known as returns and refixation. Look-backs are closely related to “inhibition of return” which is the observation that attention is unlikely to be re-directed to previously inspected areas (ibid.). A look-back could constitute a failure of memory (Gilchrist and Harvey, 2000), but one must also account for that working memory has a limited temporal capacity. When using look-backs one must define how long ago the AOI was previously looked at for fixations there to count as a look-back, which is typically 10 seconds. In web-page interaction interpretation of the number of times a user looks at a link before clicking it, represent confusion over the purpose of that link. The user looks back at the link (revisits) several time to make sure it is the correct link for their task (Bergstrom and Schall, 2014). Look-backs can also indicate that the user is double checking the information in the given area, and could be interpreted as importance of information in the given area (Mitzner et al., 2010). Whether and when looking at how often a participant is looking back/rechecking the content they were seeking in a given AOI, could imply a difficulty in understanding it’s content or a specific user attraction to the AOI (Bergstrom and Schall, 2014). The number of returns could also indicate an semantically informative area, which is the same reason as number of dwells (Holmqvist et al., 2011). In a complex environment like the maritime bridge, the look-back or return/refixation will indicate the importance of the AOI. The look-backs for the eye tracking data collected in this study are presented in Figure 9.
A Backtrack is the specific relationship between two subsequent saccades where the second goes in the opposite direction of the first (Holmqvist et al., 2011). It is also known as a regressive saccade which is rapid eye movements that are backtracked such that a user looks back at content previously seen. This behaviour can be indicative of confusion or uncertainty (Bergstrom and Schall, 2014). Holmqvist et al. (2011) points out that backtracks are notoriously ambiguous events, and must be related to other scan path events or eye tracking data when analysed.

For usability studies, one could argue that use of backtracks is a better representation due to changes in goals and an indication of a mismatch between the users’ expectation and the interface layout (Goldberg and Kotval, 1999). With the AOIs defined in this study (Figure 1), a backtrack will be interpreted as an eye movement from a specific AOI to another, and back to the specific AOI. This can indicate that the navigator finds it challenging to interpret the information in that AOI, and thus needs to backtrack to the AOI to validate the assumption. The amount of backtracks in Figure 10 is given in percentage to identify the relative relationship between the different backtracks. More than 50% of the backtracks is concerning outside and the ECDIS, which could represent a challenge for the navigator to interpret or understand and to memorize the information given from the ECDIS.

![Look-backs in percentage in AOIs](image)
3.4 Methods
In order to conduct a usability study to identify usability issues in the bridge layout and in the GUI, the following methods were selected:

1. Analysis of ocular behaviour (visual perception).
 a. Dwell time.
 b. Attention maps.
 c. Sequence charts.
2. Analysis of scan path events.
 a. Look-backs.
 b. Backtracks.
3. Identify sub-optimal design and GUI solutions in the working environment of the navigator.
 a. Present a possible solution to compensate for the sub-optimal design.

This should be conducted as an iterative process in accordance with the principles in ISO 9241-210.

4 FINDINGS
In the findings three interesting observations are presented from the eye tracking data regarding the bridge layout and software GUI together with the pros and cons with the use of eye tracking data in maritime usability studies.

4.1 Maritime Usability Study Of Bridge Design And Software GUI With Eye Tracking Data
The design of a bridge should be conducted in accordance with Human-Centered Design (HCD) principles. To understand how the bridge is laid out, it is important to understand the context of use. The context of use is defined as “hardware, software and materials, and the physical and social environments in which a product is used” (ISO, 2010). The Corvettes are warships, and it’s use in navigation is outlined in earlier work (Hareide and Ostnes, 2016).

4.1.1 Heading Repeater
When analysing AOI Radar (AOIs), an interesting observation is done in the attention maps in Figure 5, 6 and 7. All the attention maps indicate an extra attention drawn to the upper right corner of the AOIs. Looking at the GUI of AOIs, the upper right corner is presenting the current heading and speed, shown in Figure 11.
Comparing dwell time and look-back in Figure 2 and 9 for AOI_R, there is a ratio of 4.4 in advantage of look-backs compared with dwells for AOI_R. 23.1% of all backtracks (Figure 10) were conducted to AOI_R, indicating difficulty in interpreting the information. To understand if this is due to difficulties to understand or interpreting the AOI, or if it is due to double checking, the context of use has to be known. The context of use in AOI_R is during the turn and control phase of the navigation, when the navigator conducts the turn as a helmsman and controls the heading of the vessel. This is done by the navigator after every turn, and the frequency is high when navigating in high speeds in littoral waters. The navigator compares the planned course with the current heading, and assesses whether the ship is in the correct and expected position. This is an important control mechanism for high speed navigators in littoral waters, and it is thus essential that the heading is easily available for the navigator. Based on the amount of look-backs and backtracks, the context of use does not explain the high numbers even though one should expect a high number of look-backs due to the frequency of turns. The eye tracking data has revealed a challenge for the navigator to understand and interpret the heading information, which is compensated by revisiting (look-back) and backtracking to the AOI to avoid a misunderstanding.

To better provide heading information for the navigator, a more accessible heading repeater should be integrated in the navigation system.

4.1.2 Trip Meter Layout

The context of use of AOI_T is as a distance measurement tool for the navigator. When conducting a turn, the navigator should plan and conduct the turn with more than one turning indication, known as primary and secondary turning indication. This could be the trip meter and a visual bearing. The
navigator uses the trip meter on each leg to verify the distance before starting on a new leg, which is known as a primary or secondary turning indicator. The EML could also be used in position fixing by the means of bearing calculations known as a 4 point bearing (Hareide, 2013, Appendice G).

Figure 2 shows AOI₁ consuming 1.9% of the navigators’ visual attention. Analysing backtracks in Figure 10, points out that 12.9% of the backtracks is between AOI₁ and AOI₀, and this could indicate poor usability. Looking at the ratio of look-backs compared with the dwell time, the ratio is 5.2. This ratio also indicates either confusion or double checking from the navigator.

The attention maps and the sequence chart also indicates that the AOI₁ is drawing the navigators’ attention.

The physical placement of AOI₁ is above the navigator shown in Figure 1. The navigator interacts with the display by reading out the values of the trip counter and by resetting the trip counter. This is shown in Figure 12.

![Figure 12: HMI Electromagnetic Log](image)

The EML display is designed with six soft key buttons, which has the same size and shape, on a line at the bottom of the display. One of the buttons is used for resetting the trip meter. Both during day time and especially during night time it is difficult for the navigator to select the correct button without giving the AOI₁ visual attention. The procedure of resetting the trip metre is safety critical as it has a function as a primary or secondary turn indicator, the navigator puts extra effort into doing this task. To be sure that the trip meter is reset, the navigator changes his focus and shifts the head position to monitor that the trip meter is reset. In addition, the button needs to be pressed for 2 seconds in order to reset it, which further hampers the procedure.

From the eye tracking metrics of look-backs and backtracks, together with an understanding of the context of use, it is shown that the navigator must double check AOI₁. The scanpath events of backtrack and lookbacks has identified poor usability and sub-optimal bridge design. A possible solution for this challenge is a reset button and read out display for the trip metre which is more available and efficient for the navigator.

4.1.3 Usability Study Of Software GUI

The dwell time could represent the importance of an AOI (Jacob and Karn, 2003). In the challenging environment of high speed navigation in littoral waters, the main focus of the navigator must be in the surroundings of the ship. This is supported by navigation techniques, such as the Dynamic Navigation (DYNAV) concept (Forsman et al., 2011). Related to the eye tracking data, most of the
navigators’ attention should be in AOI\textsubscript{O}. Dwell time identifies which AOIs the navigator spends the most time focusing on. 24.8\% of the navigators’ attention is drawn to the ECDIS, making it the largest contributor for visual attention drawn away from the outside of the ship.

When analysing look-backs in Figure 8 compared with dwell time in Figure 3, it is identified that the navigator revisits the AOI\textsubscript{E} more than the AOI\textsubscript{O} with a ratio of 1.9. This ratio could indicate a difficulty in interpreting information in AOI\textsubscript{E}, or simply a need to verify the information for the navigator. This double-checking could also be an indication of problems with collecting the relevant information from the ECDIS GUI. One could also argue that the ratio of 1.9 is not significant compared to the ratios from AOI\textsubscript{R} and AOI\textsubscript{T}. Analysis of backtracks in Figure 9 reveal that more than 50\% of all backtracks are between AOI\textsubscript{O} and AOI\textsubscript{E}, which could indicate a challenge in the usability of the ECDIS GUI. Backtracks must be used with care due to the ambiguity of the event, but used together with other scan path events or eye tracking data provides accumulated information pointing towards an GUI usability challenge.

For further analysing the AOI\textsubscript{E}, we use the scan pattern in Figure 6. Most of the attention is drawn towards the chart, but it is also identified that the navigator’s attention is attracted to the lower right corner of the AOI\textsubscript{E} GUI. Usability studies should be an iterative process, and based on this finding, a need for redefining the AOI is identified and conducted as shown in Figure 14.

![Figure 13: Redefining AOIs with AOI Route Monitor](image-url)

Redefining the AOI identifies the new AOI Route Monitor (AOI\textsubscript{M}) window. The purpose of the Route Monitor window is to present the position of the ships against the planned route for the navigator. When looking at the dwell time in Figure 3, it is identified that the navigator spends 1.8\% of the time
interpreting the data from this AOI. AOI\textsubscript{M} is attracting the navigators’ attentions shown by the visual distribution of time in the sequence chart in Figure 7.

The navigators’ context of use of the route monitor window is to collect information regarding turning information (1), heading mark information (1), time to wheel-over-point (WOP) (2), course information (3), distance on leg information (4) and cross-track distance (5) which is the shortest distance between the own-ship and the intended route. This is shown in Figure 14. This information is also incorporated in a voice procedure in the navigation team.

![Content of the Route Monitor Window](image)

Figure 14: Content of the Route Monitor Window

The Route Monitor Window is in the bottom right corner of the ECDIS GUI, and is at a distance of approximately 2 metres from the navigator. The numbers and letters are too small for the navigator to read, and the navigator must use extra attention and focus on interpreting these data. The large amount of backtracks also indicates a challenge in usability in the AOI, and a redesign of the GUI should be considered. A better GUI with regards to presentation of relevant information to the navigator would reduce the effort and time for the navigator in collecting this vital information for the voyage.

4.2 Maritime Usability Study With The Use Of ETGs

It is important not to disturb the techniques and behaviour of the user group when collecting eye tracking data with ETGs. A challenge is identified when it came to loss of data due to the participants looking outside the frame dimension. This is caused by the navigator looking over or under the glasses, mostly under due to the angles from the operator to the screens. The physical reasons for this is the size of the frame where the eye movements are collected, in addition to the distance from the eye to the lenses. From Figure 2 and 3 it is also shown a difference in the thickness of the frames, which could influence the navigator. If the distance is too long, it is a higher risk of the participant looking under the glasses. This can also be adjusted by the different nose pieces that comes with the ETG, but they are primarily used to conduct a calibration of the equipment before starting the recording and should not be changed. From the producers it was suggested to set up a physical barrier so that the participant did not look outside the frame of the ETG, but this was not conducted as it was considered to affect the natural behaviour of the navigator.
The use of ETGs together with a binocular is challenging. Especially for those who is not accustomed with wearing glasses. The use of binoculars is safety critical in high speed operations in littoral waters, and the subject has to be trained and comfortable with using ETGs together with binoculars before collection of the dataset to prevent interruptions in the data collection.

When using the ETGs in twilight, the light pollution from the scene cameras are distressing for the navigator. During dusk the binocular is frequently used to identify objects during the passage. The light pollution in addition to the challenges with the use of binoculars makes the use of current generation ETGs impossible in twilight and during night time.

Using the ETGs during daytime, especially when the sun is close to the horizon, a glare in the ETGs occurs which is shown in Figure 15. This is disruptive for the navigator, and makes the use of ETGs a challenge.

![Figure 15: Glare in ETGs](image)

Collecting eye tracking data, especially in a field study with a dynamic environment as on board the Norwegian Corvettes, is challenging with limited battery capacity and the use of cables for ETG connection and charging. This can be mitigated with the use of power banks and wireless connections, but has to be accounted for in the design of the study.

When collecting data in a dynamic environment on board a ship, it is important that the calibration process is simple, accurate and quick. The calibration process can be challenging if there is a considerable contrast in the brightness of the light between the environment and the background of the calibration. This is often the case on board a ship where the bridge is more dimmed than the outside during daytime. This could result in lost calibration, and thus extra post-process work which also could make some of the data ambiguous.

The software presentation concerning visual presentation of the attention maps is important to better understand and analyse the eye tracking data. The use of sequence chart, shown in Figure 7, is an important feature which not all producers provide. The sequence chart is a good visualization of time stealing displays and areas when optimising the design of the bridge layout and software GUI on an integrated navigation system.

When using the automatic eye tracking data processing, there are indications that this process is not thorough and can be experienced as not fully developed. The manual work of analysing eye tracking data is a time consuming job, where approximately 60 minutes of processing goes into every 10
minute of recorded eye tracking data. When the automatic eye tracking data processing function is fully developed, this will make the use of eye tracking data more accessible.

5 CONCLUSION
The work as a navigator on a high speed craft is a demanding job, and in the past years several new displays and technologies has been introduced to aid and provide added value for the navigator. When introducing new technology to the navigator, it is important to make a good interface in accordance with the human-centred design concept. The design of the bridge must facilitate the attention of the navigator to the surroundings of the ship, for continuous control and monitoring of the safe passage of the ship.

This article shows how eye tracking data, with a method utilizing scan path events and attention maps, can be used to identify which areas of interest attracts the navigator the most. Three examples of areas of interest which draws too much of the visual attention of the navigator is presented, with suggestions for improvements in the bridge layout and software GUI. Eye tracking data shows a good potential in analysing the usability of a bridge layout and software GUI on a ship bridge, when using the correct methods.

The advantages and challenges with using ETGs are laid down, with emphasize on the importance of not affecting the normal behaviour of the navigator by collecting data, and also how the software should provide good visualisation and interpretation of the eye tracking data.

5.1 Further Work
Implement the current findings on board with development and optimization of software GUI and bridge layout.

Contextualize and develop a recommended navigator scanning pattern when conducting navigation on an integrated navigation system.

Concept and development of graphical user interface for presentation of relevant information for the navigator.

6 ACKNOWLEDGEMENT
A special thanks to:

- the crew of the Royal Norwegian Navy Corvettes which participated in the collection of the dataset both in the field study and in the simulator.
- the Norwegian University of Science and Technology (NTNU) Aalesund for providing the Eye Tracking Glasses from Tobii.
- the Institute for Energy Technology (IFE) for providing the SMI ETGs and assisting in processing the data collected by the SMI Eye Tracking data.

6.1 Financial Support
The work was sponsored by the Royal Norwegian Naval Academy.

6.2 Ethical Standards
The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. Consent forms is used in all data collection.
REFERENCES

Hareide, O. S. 2013. *Control of position sensor input to ECDIS on High Speed Craft*. Master of Science (MSc), University of Nottingham.

Smi 2016. iViewETG User Guide.