Rapport

Klima- og sårbarhetsanalyse for bygninger i Norge

Videreføring av rapport 3B0325

Forfattere
Tore Kvande (SINTEF)
Anders-Johan Almås (NTNU/SINTEF/Multiconsult)
Harold McInnes og Hans Olev Hygen (Meteorologisk Institutt)

Rapportnummer - Åpen

SINTEF Byggforsk
Kunnskapssystemer og sertifisering
2011-12-01
Rapport

Klima- og sårbarhetsanalyse for bygninger i Norge

Videreføring av rapport 380325

SAMMENDRAG

Hovedtrenden for klimaendringer fram mot år 2100 er et varmere, våtere og villere klima. Utviklingen kan få dramatiske konsekvenser for bygningsmassen dersom det ikke gjennomføres grundige sårbarhetsanalyser og iverksettes tiltak for å møte utfordringene.

Rapporten omfatter fylkesvis oversikter for havnivåstigning, årsmiddeltemperatur, årsnedbør, sesongnedbør (vinter, vår, sommer, høst), våt vinternedbør og risiko for råteskader.

UTARBEIDET AV

Tore Kvande

KONTROLLERT AV

Kim Robert Lisø

GODKJENT AV

Kim Robert Lisø

RAPPORTNR

380325

ISBN

GRADERING

Åpen

GRADERING DENNE SIDE

Åpen
Historikk

<table>
<thead>
<tr>
<th>VERSJON</th>
<th>DATO</th>
<th>VERSJONSBESKRIVELSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>2011-12-01</td>
<td></td>
</tr>
</tbody>
</table>
Innholdsfortegnelse

1 Innledning ... 5
2 Metode og gjennomføring ... 5
 2.1 Metodikk ... 5
 2.2 Klimadata og projeksjon ... 6
 2.3 Bygningsmassen .. 6
 2.4 Begrensninger .. 8
3 Havnivåstigning ... 8
 3.1 Prosesser ... 8
 3.2 Konsekvenser ... 8
 3.3 Anbefalte tiltak .. 11
4 Årsmiddeltemperatur .. 13
 4.1 Prosesser ... 13
 4.2 Konsekvenser ... 13
 4.3 Anbefalte tiltak .. 19
5 Årsnedbør .. 20
 5.1 Prosesser ... 20
 5.2 Konsekvenser ... 20
 5.3 Anbefalte tiltak .. 23
6 Sesongnedbør ... 24
 6.1 Prosesser ... 24
 6.2 Konsekvenser ... 24
 6.3 Anbefalte tiltak .. 34
7 Våt vinternedbør ... 35
 7.1 Prosesser ... 35
 7.2 Konsekvenser ... 35
 7.3 Anbefalte tiltak .. 38
8 Potensiell risiko for råteskader .. 38
 8.1 Prosesser ... 38
 8.2 Konsekvenser ... 38
 8.3 Anbefalte tiltak .. 41
9 Oppsummering ... 42
10 Litteratur .. 44
BILAG/VEDLEGG

Ingen
1 Innledning

På oppdrag for Statens bygningstekniske etat (BE) ved Kari-Anne Simenstad har SINTEF Byggforsk videreført klima- og sårbarhetsanalysen beskrevet i SINTEF-rapport 3B0325 ”Klima- og sårbarhetsanalyse for bygninger i Norge: Utredning som grunnlag for NOU om klimatilpassing”.

Rapport 3B0325 presenterer en overordnet klima- og sårbarhetsanalyse for Norge. Rapporten gir temarelaterte betraktninger i forhold til eksisterende bygd miljø og valgte klimascenario nedskalert for Norge. Når det gjelder risiko for råteskade, presenterer rapporten relativt gode data på fylkesnivå. I videreføringen av klima- og sårbarhetsanalysen har vi nå, på oppdrag fra BE, utarbeidet tilsvarende fylkesoversikter for følgende klimaparametere:

- Havnivåstigning
- Årsmiddeltemperatur
- Årsnedbør
- Sesongnedbør (vinter, vår, sommer og høst)
- Våt vinternedbør

Klimaendringer og de ulike klimaparametere sine konsekvenser på landets bygninger blir presentert i form av Norgeskart og fylkesvise oversikter. Presentasjonsform varierer noe for de ulike klimaparametere avhengig av hvordan det er mest hensiktsmessig å framstille konsekvensene. Oversikten baserer seg på klimamodell og -scenarioet HAD-A2 som er omhandlet i rapport 3B0325.

I etterkant av oppdraget til BE ser vi for oss publisering av en samlet rapport i SINTEF Byggforsk sin rapportserie. Grunnlaget for samlerapporten vil være 3B0325 og denne videreføringen. Det kan også være aktuelt å utarbeide anvisinger i Byggforskerien på grunnlag av arbeidet. Vi ønsker i tillegg å presentere analyserne i vitenskapelig sammenhenger.

Prosjektet har vært et samarbeidsprosjekt mellom Meteorologisk institutt og SINTEF Byggforsk med SINTEF Byggforsk som kontraktpartner overfor BE. Kapitlet om havnivåstigning baserer seg på arbeid gjennomført i doktorgradsstudiet til Anders-Johan Almås (NTNU/SINTEF Byggforsk/Multiconsult).

2 Metode og gjennomføring

2.1 Metodikk

Eiendommene i Matrikkelen er inn delt kommunevis med et visst antall gårder og underbruk. Hver gård har et gårdsnummer (gnr.), og hvert bruk har et bruksnummer (bnr.). Gårdsnumrene er unike innenfor hver...
kommune, mens bruksnumrene begynner på nytt for hver gård. Matrikkelbetegnelsen kan også inneholde festenummer (fnr.) og seksjonsnummer (snr.). For at hver enkelt eiendom skal ha et unikt nummer i hele landet, tilføyes også kommunenummeret før selve matrikkelnummeret. Hver unike bygning har også andre data registrert, som byggeår, materialbruk etc. Det er likevel stor variasjon i hva som er registrert for de ulike bygningene, bortsett fra parameteren "bygningstype", som er registrert for alle bygg. Derfor har vi valgt å fremstille data sortert etter bygningstyper.

Klimadata for dagens situasjon (normalperioden 1961-1990), samt grenseverdier for ulike klimaparametere, viser hvilke bygninger som er påvirket av dagens klima og hvordan de er påvirket. Når vi endrer klimadataene til scenarier for fremtidens klima, fremgår det i GIS-modellen hvilke bygninger som blir påvirket av endringene. Disse dataene hentes ut, sorteres og fremstilles her i tabeller, kart og figurer.

2.2 Klimadata og projeksjon

Projeksjonen HAD-A2 mangler data for enkelte ytterkanter av Norge. Disse områdene vil på endringskart fremstå med reduksjon i klimalaster.

2.3 Bygningsmassen

Både rapport 3B0325 og videreføringen baserer seg på bygningsinformasjon med uttrekk fra matrikkelen per januar 2010, og omfatter bygningsmassen i alle landets 430 kommuner. Våre analyser baserer seg dermed på en fordeling av den norske bygningsmassen i de ulike bygningskategoriene som vist i figur 2.3 a. Totalt omfatter datauttrekket 3 808 269 bygninger med fylkesvis fordeling som vist i figur 2.3 b.
Figur 2.3 a
Antall bygninger i Norge i Matrikkelen ulike bygningskategorier (datauttrekk januar 2010)

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Antall bygninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Småhus</td>
<td>1803945</td>
</tr>
<tr>
<td>Garasje, midlertidig bolig og annen bolig bygning</td>
<td>169771</td>
</tr>
<tr>
<td>Fiskeri- og landbruk bygning</td>
<td>508160</td>
</tr>
<tr>
<td>Hytter og friluftsbygning</td>
<td>462366</td>
</tr>
<tr>
<td>Logbygning</td>
<td>3854</td>
</tr>
<tr>
<td>Kontor- og forretningsbygning</td>
<td>37884</td>
</tr>
<tr>
<td>Industri</td>
<td>37158</td>
</tr>
<tr>
<td>Religisk bygning</td>
<td>36623</td>
</tr>
<tr>
<td>Hotell- og restauranterbygning</td>
<td>29002</td>
</tr>
<tr>
<td>Energiforsyningsbygning</td>
<td>19721</td>
</tr>
<tr>
<td>Undervisningsbygning</td>
<td>17917</td>
</tr>
<tr>
<td>Annoen kulturbygning</td>
<td>12008</td>
</tr>
<tr>
<td>Sanitet- og kommunikasjonsbygning</td>
<td>9431</td>
</tr>
<tr>
<td>Idrettsbygning</td>
<td>7732</td>
</tr>
<tr>
<td>Bygning for religiøse akademier</td>
<td>7172</td>
</tr>
<tr>
<td>Helsebygning</td>
<td>5382</td>
</tr>
<tr>
<td>Faglig og beredskapbygning</td>
<td>4610</td>
</tr>
</tbody>
</table>

Figur 2.3 b
Antall bygninger i de ulike fylkene (datauttrekk fra Matrikkelen januar 2010)

<table>
<thead>
<tr>
<th>Fylke</th>
<th>Antall bygninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sør-Trøndelag</td>
<td>41129</td>
</tr>
<tr>
<td>Nord-Trøndelag</td>
<td>343293</td>
</tr>
<tr>
<td>Nordland</td>
<td>232200</td>
</tr>
<tr>
<td>Møre og Romsdal</td>
<td>220751</td>
</tr>
<tr>
<td>Sogn og Fjordane</td>
<td>129724</td>
</tr>
<tr>
<td>Nordland</td>
<td>128703</td>
</tr>
<tr>
<td>Rogaland</td>
<td>111656</td>
</tr>
<tr>
<td>Vest-Agder</td>
<td>172323</td>
</tr>
<tr>
<td>Aust-Agder</td>
<td>128739</td>
</tr>
<tr>
<td>Trøndelag</td>
<td>255635</td>
</tr>
<tr>
<td>Nordland</td>
<td>278941</td>
</tr>
<tr>
<td>Troms</td>
<td>263224</td>
</tr>
<tr>
<td>Nordland</td>
<td>292727</td>
</tr>
<tr>
<td>Finnmark</td>
<td>200613</td>
</tr>
<tr>
<td>Sør-Trøndelag</td>
<td>125249</td>
</tr>
<tr>
<td>Sogn og Fjordane</td>
<td>200613</td>
</tr>
</tbody>
</table>
2.4 Begrensninger

Rapporten tar utgangspunkt i hvordan klimaendringer påvirker eksisterende bygninger på fastlands-Norge. Potensielle feilkilder er primært knyttet til mulige feilkilder i matrikkelen, i klimaprojektjonene og i forskyvning i grid mellom klimadata for normalperioden og projeksjonen.

Rapporten tar utelukkende for seg hvordan klimaendringer vil påvirke eksisterende bygninger, det er ikke gjort framskrivninger for økning i antall bygninger. Vi ser i analysen ikke på infrastruktur.

For flere av klimaparameterne er det gjort analyser på kommunenivå. Det betyr at en endring for kommunesenteret gjelder for alle bygninger i kommunen. Dette fordi de fleste målestasjonene er plassert i kommunesentrene. I tillegg er også de fleste bygningene plassert i nær omkrets av kommunesenteret. I kommuner hvor noen bygninger ligger langt fra kommunesenteret, og kanskje på en mye høyere eller lavere høydedeke, vil det være potensielle feilkilder i dataene. For å minimere feilkildene kreves analyser på kommunenivå (se anbefalinger senere i rapporten).

3 Havnivåstigning

3.1 Prosesser

Tradisjonelt sett har for det meste bare bebyggelse knyttet til sjøaktiviteter blitt lagt til sjøkanten. Men i senere tid har også hoteller, signalbygninger, hytter og hus blitt oppført i slike områder. Nærhet til sjøen er blitt en salgsvar. I dag ligger store deler av den norske bygningsmassen langs kysten, og de fleste store byene har kyststripe. Enkelte av bygningene ligger helt nede ved vannkanten og er dermed utsatt for havnivåstigning. Omfanget av hvor mange bygninger på nasjonalt nivå som ligger i faresonen har inntil nå vært uklart.

Ifølge scenarioer for framtidig klimautvikling skal havnivået stige frem mot 2100 (NOU 2010:10). I tillegg vil hyppigheten av ekstremvær øke. Allerede i dag medfører stormflo (kombinasjon av storm og flo) store skader på bygninger og installasjoner som ligger nær sjøkanten. Dersom havnivået stiger, vil bygninger som ligger nær havoverflaten bli påvirket i mye større grad enn i dag, for eksempel i form av vanntrykk og oversvømmelser. Noen bygninger vil bli stående permanent i vann, mens andre bare vil oppleve mer saltvannspåvirkning i form av hyppigere sjøsprøyt. Det siste kan likevel være alvorlig nok ved at det medfører korrosive skader. I tillegg vil hyppigere sjøsprøyt medføre at bygningene er utsatt for store vanntrykkskader.

En annen mulig effekt av havnivåstigning er utvasking og erosjon, som igjen kan gjøre grunnen ustabil og i verste fall føre til utglidning av bygninger. Utvasking av grunnen kan også gi setningsskader på bygningene, en skadevariant som ofte er meget kostnadsdrivende å utbedre. Det er med andre ord ingen tvil om at skader på bygninger i forbindelse med havnivåstigning vil kunne få store økonomiske konsekvenser.

3.2 Konsekvenser

Det er knyttet store usikkerheter til havnivåstigningen. Estimatene varierer mellom de ulike landsdelene. I tillegg må man forvente en generell landheving.

Konsekvensstudie av havnivåstigning inngår i doktorgradsarbeidet til Anders-Johan Almås (NTNU/SINTEF Byggforsk/Multiconsult). I kartleggingsarbeidet er bygningsdata og terrengdata satt sammen i en og samme modell (Almås og Hygen, 2011). Studien er en sårbarhetsanalyse for havnivåstigningens konsekvenser på bygningene i Norge. På grunn av usikkerheter i både klimamodeller, kartdata, bygningsdata og tidevannsdata
er det valgt å studere bygningsmassen som ligger mindre enn 1 meter over dagens havnivå. Antall bygninger, sortert på bygningskategori, som ligger i denne sonen er kartlagt for alle kommuner i Norge. Tallene er deretter sammenstilt med forventet havnivåstigning frem mot 2011 stipulert av Vasskog mfl. (2009). Til slutt er det laget et risikokart på fylkesnivå. Dersom tallet på bygninger er høyt og forventet havnivåstigning er høy gir dette "høy risiko" (se figur 3.2 c).

Figur 3.2 a viser en oversikt over alle bygninger i Norge som ligger mindre enn en meter over dagens havnivå. Hele 110.000 bygninger ligger i denne sonen. Som vi ser av figuren dominerer kategorien "Garasje, midlertidig bolig og annen bolig bygning" (63.000). I denne kategorien inngår blant annet naust, noe som forklarer den store mengden bygninger. Siden storparten av disse bygningene representerer mindre verdier, og i tillegg er ment å ligge så nær sjøkanten som mulig av praktiske årsaker, er konsekvensene av havnivåstigning små her. Dette kan til en viss grad også gjelde fiskeri- og landbruksbygninger (9.000), men her er nok andelen mye mindre. Når det gjelder de andre bygningskategoriene, vil de økonomiske konsekvensene av havnivåstigning kunne bli adskillig større. Hele 18.000 hytter og fritidshus, 6.000 småhus, 3.000 industribygg, 3.000 lagerbygg, 2.000 hotell- og restaurantbygninger og 1.600 kontor og forretningsbygninger ligger mindre enn en meter fra dagens havnivå. Det er med andre ord store verdier som ligger i fare for å bli påvirket i større eller mindre grad av forventet havnivåstigning frem mot år 2100.

Det er store variasjoner både i antall bygninger og forventet havnivåstigning når vi sammenligner de 17 ulike fylkene i Norge som har kystlinje. Figur 3.2 b viser antall bygninger plassert mindre enn 1 meter fra dagens havnivå sortert per fylke. Som vi ser, er det vestlandsfylkene, i tillegg til Troms og Nordland, som skiller seg ut i antall. Over 19.000 bygninger i Hordaland ligger i 1meters-sonen, mens tallet for Oslo er knappe 900 bygninger.

Figur 3.2 a
Antall bygninger i Norge som ligger mindre enn en meter over dagens havnivå (Almås og Hygen 2011)

Figur 3.2 b
Antall bygninger i ulike fylker som er plassert mindre enn en meter over dagens havnivå (Almås og Hygen 2011)
Figur 3.2 c
Risikokart basert på potensielle konsekvenser for bygninger i Norge ved forventet (worst case) fremtidig havnvåstigning (Almås og Hygen 2011)

3.3 Anbefalte tiltak

Når det gjelder aktuelle tiltak må vi skille mellom tiltak for eksisterende bebyggelse og nybygg. For eksisterende bebyggelse vil følgende tiltak være aktuelle:
- Fuktisikring
- Vannetting
- Endret bruk av kjeller/1.etasje
- Flytting av bygg
- Rivning
- Utbedring av fundamenter og byggegrunn
- Beredskap – byggeier (pumper, sandsekker, flomsikring)
- Beredskap – samfunn (trenet personell og tilstrekkelig materiell ved stormflo etc.)

Når det gjelder etablering av ny bebyggelse innenfor risikosonen for havnivåstigning, bør det innføres byggeforbud i risikosonen. Dersom dette ikke er mulig må det stilles strenge krav til for eksempel vannetthet og fundamentering for konstruksjoner som kan bli stående i vann. I tillegg må det gis retningslinjer for valg av materialer og orientering av bygningen. Aktuelle tiltak og omfang vil variere mellom kommunene.

En annen positiv effekt ved å innføre strenge regulering på bebyggelse i strandsonen er muligheten for allmenn atkomst til strandlinjen. Etablering av for eksempel promenader langs sjøkanten vil både fungere som tiltak for å møte klimaendringene samtidig som det gjør strandsonen tilgjengelig for allmennheten.

Ved planlegging av nye bygninger og installasjoner fokuseres det ofte på forventet levetid. For en bygning er denne typisk 60-100 år. Det kan derfor være vanskelig å forestille seg at havnivåstigningen i år 2100 skal ha noen betydning for bygninger som oppføres i dag, og som har nådd sin levetid lenge før år 2100. Da er det viktig å huske på at oppføring av et bygg også setter premisser for utvikling av omkringliggende bygninger og infrastruktur. Opparbeidet infrastruktur blir gjerne beholdt i ekstra lang tid. I tillegg vil havnivåstigningen være en kontinuerlig prosess, og er ikke resultat av at en bryter skrus på i år 2100. Dette, i kombinasjon med klimaforskernes varsom om hyppigere ekstremvær, tilsier at plassering av nye bygninger i fremtiden vil bli meget avgjørende for hvor bærekraftig bygningsmassen og infrastrukturen langs kysten blir for våre etterkommere.
4 Årsmiddeltemperatur

4.1 Prosesser

Krav i NS 3700:2010 til netto energibehov til oppvarming skiller mellom kommuner med årsmiddeltemperatur over og under 6,3 °C. For bolig over 250 m² gjelder følgende krav for passivhus:

- ≥ 6,3 °C: 15 kWh/(m²·år)
- < 6,3 °C: 15 + 2,1·(6,3-θym) kWh/(m²·år)

Dvs. at jo kaldere årsmiddeltemperatur under 6,3 °C, jo høyere netto energibehov til oppvarming tillater NS 3700:2010.

4.2 Konsekvenser
Vi har illustrert endring i årsmiddeltemperatur med konsekvensen for kravsnivået til tillatt energibehov til oppvarming for passivhusbøliger.

Endring i årsmiddeltemperatur er vist i figur 4.2 a. Figur 4.2 b viser effekten for norsk kommuner med bakgrunn i passivhuskravet til energibruk. Mens 70 kommuner har årsmiddeltemperatur ≥ 6,3 °C med dagens normalperiode, vil 341 kommuner passere denne grensa med scenariet for 2071-2100, se tabell 4.2 a. Konsekvens for passivhuskravet for noen utvalgte steder er vist i tabell 4.2 b. Tabellen oppgir krav til høyeste beregnede netto energibehov til oppvarming av boliger for de aktuelle stedene.

Årsmiddeltemperaturøkningen vist i figur 4.2 b har altså betydning for energikravet til boligbygninger. Potensielt berørt antall bygninger er vist i figur 4.2 c og d. I dag befinner ca. 360 000 boligbygninger seg i kommuner med årsmiddeltemperatur ≥ 6,3 °C. Det utgjør 25 % av det totale antallet boligbygninger i dag. Andelen vil øke til 90 % av boligbygningene for scenariet 2071-2100, dvs. i overkant av 1 300 000 boligbygninger. Tellingen av berørt boligbygninger forutsetter at alle eksisterende boligbygninger blir berørt av passivhuskravet, noe som selvsagt ikke er realistisk. Tallene illustrerer likevel omfanget av boligbygninger berørt av temperaturøkningen.
Figur 4.2 a
Luftas midlere årmiddeltemperaturer, θ_m ($^\circ$C), for normalperioden 1961-1990 og for scenario 2071-2100

Figur 4.2 b
Kommuner med årmiddeltemperatur $\geq 6,3$ $^\circ$C (kommunesentret) i normalperiode 1961-1990 og for scenario 2071-2100
<table>
<thead>
<tr>
<th>Fylke</th>
<th>Kommuner med årsmiddeltemperatur ≥ 6,3 °C (1961-1990)</th>
<th>Kommuner med årsmiddeltemperatur ≥ 6,3 °C (2071-2100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Østfold</td>
<td>- Haler</td>
<td>- Marker</td>
</tr>
<tr>
<td></td>
<td>- Moss</td>
<td>- Rømskog</td>
</tr>
<tr>
<td></td>
<td>- Sarpsborg</td>
<td>- Tregstad</td>
</tr>
<tr>
<td></td>
<td>- Fredrikstad</td>
<td>- Spydeberg</td>
</tr>
<tr>
<td></td>
<td>- Hvaler</td>
<td>- Askim</td>
</tr>
<tr>
<td></td>
<td>- Aremark</td>
<td>- Eidsberg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Skiptvet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rakkestad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Råde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rygge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Våler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Våler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Trøgstad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Spydeberg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Askim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Eidsberg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hobøl</td>
</tr>
<tr>
<td>Akershus</td>
<td>- Vestby</td>
<td>- Aurskog-Helend</td>
</tr>
<tr>
<td></td>
<td>- Ski</td>
<td>- Sørum</td>
</tr>
<tr>
<td></td>
<td>- Ås</td>
<td>- Fet</td>
</tr>
<tr>
<td></td>
<td>- Frogn</td>
<td>- Rælingen</td>
</tr>
<tr>
<td></td>
<td>- Nesodden</td>
<td>- Enebakk</td>
</tr>
<tr>
<td></td>
<td>- Oppegård</td>
<td>- Lørenskaog</td>
</tr>
<tr>
<td></td>
<td>- Bærum</td>
<td>- Skedsmo</td>
</tr>
<tr>
<td></td>
<td>- Asker</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nittedal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Gjerdrum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Ulensaker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Akershus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Eidsvoll</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nannestad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hurdal</td>
</tr>
<tr>
<td>Oslo</td>
<td>- Oslo</td>
<td></td>
</tr>
<tr>
<td>Hedmark</td>
<td>- Kongsvinger</td>
<td>- Nord-Odal</td>
</tr>
<tr>
<td></td>
<td>- Hamar</td>
<td>- Sør-Odal</td>
</tr>
<tr>
<td></td>
<td>- Løten</td>
<td>- Eidskog</td>
</tr>
<tr>
<td></td>
<td>- Stange</td>
<td>- Grue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Ånes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Våler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Elverum</td>
</tr>
<tr>
<td>Oppland</td>
<td>- Gjøvik</td>
<td>- Vestre Toten</td>
</tr>
<tr>
<td></td>
<td>- Østre Toten</td>
<td>- Jevnaker</td>
</tr>
<tr>
<td>Buskerud</td>
<td>- Drammen</td>
<td>- Sigdal</td>
</tr>
<tr>
<td></td>
<td>- Kongsvinger</td>
<td>- Kredsherd</td>
</tr>
<tr>
<td></td>
<td>- Ringerike</td>
<td>- Modum</td>
</tr>
<tr>
<td></td>
<td>- Hole</td>
<td>- Øvre Eiker</td>
</tr>
<tr>
<td></td>
<td>- Nes</td>
<td>- Nedre Eiker</td>
</tr>
<tr>
<td></td>
<td>- Gol</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Røyken</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hurum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Flesberg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rollag</td>
</tr>
<tr>
<td>Vestfold</td>
<td>- Tjeme</td>
<td>- Hvorten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Holmestrand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Tønsberg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Sandefjord</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Larvik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Svelvik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Sande</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Hof</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Re</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Andebu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Stokke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nøtterøy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Tjeme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lardal Hvaler</td>
</tr>
<tr>
<td>Telemark</td>
<td>- Porsgrunn</td>
<td>- Drangedal</td>
</tr>
<tr>
<td></td>
<td>- Skien</td>
<td>- Nome</td>
</tr>
<tr>
<td></td>
<td>- Notodden</td>
<td>- Bæ</td>
</tr>
<tr>
<td></td>
<td>- Siljan</td>
<td>- Sauderad</td>
</tr>
<tr>
<td></td>
<td>- Bamble</td>
<td>- Tinn</td>
</tr>
<tr>
<td></td>
<td>- Kragerø</td>
<td>- Hjartdal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Seljord</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Kviteseid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nissedal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fyresdal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Topke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Vinje</td>
</tr>
<tr>
<td>Aust-Agder</td>
<td>- Risør</td>
<td>- Tvedestrand</td>
</tr>
<tr>
<td></td>
<td>- Arendal</td>
<td>- Froland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lillesand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Birkenes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Åmli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Iveland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Evje og Hornnes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Bygland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Valle</td>
</tr>
</tbody>
</table>
Tabell 4.2 a, forts.

<table>
<thead>
<tr>
<th>Fylke</th>
<th>Kommuner med årsmiddeltemperatur ≥ 6,3 °C (1961-1990)</th>
<th>Kommuner med årsmiddeltemperatur ≥ 6,3 °C (2071-2100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vest-Agder</td>
<td>- Kristiansand - Mandal - Flekkefjord - Songdalen</td>
<td>- Kristiansand - Mandal - Sakrisøy - Farsund - Flekkefjord - Vennesla</td>
</tr>
<tr>
<td></td>
<td>- Søgne - Lindesnes - Lyngdal</td>
<td>- Songdalen - Søgne - Marnardal - Åseral - Audnedal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lindesnes - Lyngdal - Høgebostad - Kvinesdal - Sirdal</td>
</tr>
<tr>
<td>Rogaland</td>
<td>- Eigersund - Sandnes - Stavanger - Haugesund - Sokndal</td>
<td>- Eigersund - Strand - Hjelmeland - Finnøy - Rennesøy</td>
</tr>
<tr>
<td></td>
<td>- Ha - Klepp - Time - Sola - Randaberg</td>
<td>- Knarvik - Tromsø - Bodø - Trondheim - Oslo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Finnøy - Rennesøy - Kvitese - Bokn - Tysvær - Karmøy - Utsira - Vindafjord</td>
</tr>
<tr>
<td>Hordaland</td>
<td>- Bergen - Etne - Sveio - Bømlo - Fitjar - Tysnes - Kvinnherad - Fusa - Os - Austevoll</td>
<td>- Bergen - Sund - Fjell - Aske - Os - Austevoll - Sund - Fjell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Naustdal - Bremanger - Vågsøy - Selje - Eid - Hornindal - Gloppen - Stryn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Aukra - Frøna - Eide - Averøy - Gjøms - Tingvoll - Sundal - Surnadal - Rindal - Aure - Halsa - Smøla</td>
</tr>
</tbody>
</table>
Tabell 4.2 a, forts.
Kommuner med årsmiddeltemperatur ≥ 6.3 °C (kommunesentret) i 1961-1990 og scenario 2071-2100

<table>
<thead>
<tr>
<th>Fylke</th>
<th>Kommuner med årsmiddeltemperatur ≥ 6,3 °C (1961-1990)</th>
<th>Kommuner med årsmiddeltemperatur ≥ 6,3 °C (2071-2100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sør-Trøndelag</td>
<td>- Trondheim - Hemne - Snillfjord - Hitra - Frøya - Ørland - Agdenes</td>
<td>- Rissa - Bjugn - Åfjord - Roan - Osen - Orkdal - Selbu</td>
</tr>
<tr>
<td></td>
<td>- Harstad - Kvæfjord</td>
<td>- Skålånd - Ibestad - Karløy - Skjerøy</td>
</tr>
<tr>
<td>Finmark</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figur 4.2 c
Antall boligbygninger totalt for fastlands-Norge berørt av årsmiddeltemperatur ≥ 6,3 °C. Tallene gjelder for eksisterende boliger i 2010. Anslag for nybygg frem til år 2100 er ikke tatt med.

Figur 4.2 d
Antall boligbygninger i de ulike fylkene berørt av årsmiddeltemperatur ≥ 6,3 °C. Tallene gjelder for eksisterende boliger i 2010. Anslag for nybygg frem til år 2100 er ikke tatt med.
Tabell 4.2 b
Konsekvens for passivhuskravet på grunn av endring i årsmiddeltemperatur (1961-1990) til (2071-2100) for utvalgte steder

<table>
<thead>
<tr>
<th>Sted</th>
<th>1961-1990</th>
<th>2071-2100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>θ_{ym}</td>
<td>Krav i NS 3700:2010 til høyeste beregnede netto energibehov til oppvarming</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td>kWh/(m²·år)</td>
</tr>
<tr>
<td>Oslo</td>
<td>5,5</td>
<td>17</td>
</tr>
<tr>
<td>Bergen</td>
<td>7,2</td>
<td>15</td>
</tr>
<tr>
<td>Stavanger</td>
<td>6,9</td>
<td>15</td>
</tr>
<tr>
<td>Kristiansand</td>
<td>6,5</td>
<td>15</td>
</tr>
<tr>
<td>Ålesund</td>
<td>6,6</td>
<td>15</td>
</tr>
<tr>
<td>Molde</td>
<td>6,2</td>
<td>15</td>
</tr>
<tr>
<td>Trondheim</td>
<td>4,9</td>
<td>18</td>
</tr>
<tr>
<td>Bodø</td>
<td>4,3</td>
<td>19</td>
</tr>
<tr>
<td>Tromsø</td>
<td>2,4</td>
<td>23</td>
</tr>
<tr>
<td>Lillehammer</td>
<td>2,8</td>
<td>22</td>
</tr>
<tr>
<td>Jessheim</td>
<td>3,7</td>
<td>20</td>
</tr>
<tr>
<td>Hamar</td>
<td>3,2</td>
<td>22</td>
</tr>
<tr>
<td>Røros</td>
<td>-0,5</td>
<td>29</td>
</tr>
<tr>
<td>Alta</td>
<td>0,8</td>
<td>27</td>
</tr>
<tr>
<td>Karasjøk</td>
<td>-3,2</td>
<td>35</td>
</tr>
</tbody>
</table>

4.3 Anbefalte tiltak

Selv om projeksjonen viser en generell økning i temperaturen i hele Norge, og oppvarmingsbehovet dermed blir lavere, vil vi likevel anbefale at det stilles enda strengere krav til lavt energibehov for bygninger. Dette fordi målene om lavt energibehov vil bli enklere å nå. Innføring av passivhusstandard for bygninger er et av tiltakene som vil komme.

En annen effekt av økt temperatur, er større behov for kjøling. Komfortbehovene i samfunnet øker, og det er samtidig en kraftig økning i installering av kjøleeffekt i nye bygninger. Utviklingen er urovekkende med tanke på energibruken. Vi risikerer å måtte endre fokus fra å redusere behovet til oppvarming til å redusere behovet til kjøling når vi skal prosjektere og oppføre bygninger for fremtiden. Riktig design av bygningen, tekniske installasjoner og drift vil derfor bli enda viktigere i fremtiden.

Endring i årsmiddeltemperatur vil også få konsekvenser for frostmengder. Frostmengde brukes ved dimensjonering av frostskrings for ledninger, fundament og veier. Økt årsmiddeltemperatur vil gi reduserte frostmengder og dermed en reduksjon i behovet for markisolasjon såfremt dagens kravsnivå opprettholdes. Vi har ikke sett på klimaendringenes effekt på frostmengder i denne rapporten.
5 Årsnedbør

5.1 Prosesser

Årsnedbør (mm/år) gir et inntrykk av de utfordringer vi kan forvente for bygningsmassen knyttet til vann og fuktighet. Utfordringene er blant annet knyttet til flom, ras og nedbrytning av bygningsmaterialer. Tidligere studier anslår at 75 % av alle bygningsskader skyldes fuktighet i en eller annen form (Lisø og Kvande, 2007).

Etter lengre perioder med mer nedbør enn normalt vil naturlige vannføringskanaler (bekker og elver) også bli overbelastet. Konsekvensene kan være erosjon, ras og oversvømmelser. Økte nedbørs mengdenger i fremtiden vil øke risikoen for oversvømmelser av bekker og elver. Hyppigere ekstremnedbør vil i tillegg øke frekvensen av slike flommer.

5.2 Konsekvenser

Figur 5.2 a og b viser endring i normal årsnedbør fra dagens normalperiode 1961-1990 til projeksjonen for 2071-2100. De største økningene i mm nedbør kommer i områder som allerede har de største nedbørs mengdene i dag. Dette gjelder i første rekke for kysten langs Vestlandet og Nordland.

Ser vi på prosentvis endring, er det områder med mindre nedbørs mengdenger i dag som også får betydelige økninger i årsnedbør. Denne effekten er vist i figur 5.2 c-e hvor vi har sett på konsekvensene av nedbørsøkning på > 25 %. Figurene viser også en sammenligning med nedbørsøkning på >385 mm. Sammenligningen med > 385 mm er valgt fordi både > 25 % og > 385 mm i økt nedbør berører 58 kommuner, dvs. 13,5 % av landets kommuner. Fremstillingen viser at Buskerud, Oppland og Hedmark har en stort antall bygninger som blir berørt av en betydelig økning i årsnedbør (> 25 %).
Figur 5.2 a
Normal årsnedbør (mm) for normalperioden 1961-1990 og for scenario 2071-2100

Figur 5.2 b
Endring i mm (venstre) og relativt (høyre)
Figur 5.2 c
Kommuner med økning i årsnedbør på > 385 mm og > 25 % (kommunesentret) fra normalperioden 1961-1990 til scenario 2071-2100

Figur 5.2 d
Antall bygninger totalt for fastlands-Norge berørt av endring i årsnedbør på > 385 mm eller > 25 %. Tallene gjelder for eksisterende bygninger i 2010. Anslag for nybygg frem til år 2100 er ikke tatt med.
5.3 Anbefalte tiltak

Vi anbefaler utarbeidelse av beredskapsplaner for kommuner i Norge som er i risikosonen for flom. Dette gjelder ikke bare kommuner langs de største elvene på Østlandet, men også for kommuner langs mindre elver og vassdrag i det ganske land. Bygninger som ligger i risikosonen for flom de neste 100 årene bør gjennomføre tiltak for å reducere potensiell skade. Dette kan være å bytte til stikkrenger med større dimensjoner, etablere elfeløp for flømming eller barrikader for å reducere påvirkningen av flømmaget.

Når det gjelder nybygging må reguleringsspanene sette klare begrensninger på hvor et byggverk kan oppføres. De samfunnsøkonomiske konsekvensene av en flom er så store, at det bør ikke gis tillatelse til å oppføre byggverk i risikosonen for en 100års-flom.

De store norske byene og tettsteder som har en større infrastruktur for overvannshåndtering, bør også gjennomgå en evaluering med hensyn til fremtidige nedbørmengder. Vi anbefaler at overvannshåndteringen i mest mulig grad gjøres naturlig i byområder. Dette kan for eksempel gjøres ved å etablere grønne områder, naturlig drenering og andre lokale tiltak. Det er i mange urbane miljøer store problemer med håndtering av overvann ved ekstreme nedbør på grunn av underdimensjonerte rørsystemer. Resultatet er ofte vanskeligheter i kjellere og underetasjer. Selv om dette er en utfordring for infrastrukturen på vann og avloppssiden, påvirker det i stor grad bygningsmassen og påfører tidvis skader for store beløp.

Når det gjelder tiltak for selve bygningsmassen, er det helt klart at kravene til robuste konstruksjoner må bli strengere i fremtiden. Økt nedbør vil gi større risiko for inntrenging av vann, og derfor må ytterkonstruksjonene (vegger, tak, vinduer, kjeller) tåle den økte påkjenningen. Det må også stilles strenge krav til at produkter som benyttes, er dokumentert egnet for et fremtidig norsk klima. Grundig bygningsfysisk prosjektering blir enda viktigere i fremtiden.
6 Sesongnedbør

6.1 Prosesser
Nedbørsmønsteret innvirker i stor grad på planlegging av byggeprosess. For å unngå byggskader og samtidig oppnå en fuktsikker byggeprosess, må planleggingen av utførelse gjøres på basis av klimadata for nedbør. Nedbørsengdene varierer i dag til dels betydelig med årstiden.

6.2 Konsekvenser

6.2.1 Oppsummert
Figurene i pkt. 6.2.2–6.2.5 viser endring i nedbørsmengder for de ulike årstidene og endringer i antall dager med nedbør > 5 mm. Endringer i antall dager med nedbør > 5 mm er interessant fordi det påvirker tiltak for fuktsikker bygging.

Tabellene i pkt. 6.2.2–6.2.5 viser hvilke kommuner som får større endringer i den tørre byggeperioden i de ulike årstidene. Med tørr byggeperiode er her ment dager med < 5 mm nedbør. Med større endringer har vi lagt til grunn en endring på 7 dager eller mer i antall dager med nedbør > 5 mm. Konsekvensene for byggeperioden er oppsummert i tabell 6.2.1 Oversiktene er baserte på antall dager med nedbør i kommunensenterne. Sør-Norge opplever de største endringene om vinteren i form av økt antall dager med nedbør. Nord-Norge vil oppleve en reduksjon i antall nedbørsdager om vinteren, men en økning sommer og høst. Forventet endring i antall dager med nedbør om våren er liten for hele landet.

Tabell 6.2.1
Antall kommuner i hvert fylke berørt av betydelig økning eller reduksjon i antall dager med sesongnedbør (7 dager eller mer). Endringene er fra normalperioden 1961-1990 til scenario 2071-2100.

<table>
<thead>
<tr>
<th>Fylke</th>
<th>Antall kommuner med store endringer i antall dager med nedbør >5mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinter</td>
<td>Økning</td>
</tr>
<tr>
<td>Østfold</td>
<td>0</td>
</tr>
<tr>
<td>Akershus</td>
<td>1</td>
</tr>
<tr>
<td>Oslo</td>
<td>0</td>
</tr>
<tr>
<td>Hedmark</td>
<td>4</td>
</tr>
<tr>
<td>Oppland</td>
<td>11</td>
</tr>
<tr>
<td>Buskerud</td>
<td>10</td>
</tr>
<tr>
<td>Vestfold</td>
<td>3</td>
</tr>
<tr>
<td>Telemark</td>
<td>12</td>
</tr>
<tr>
<td>Aust-Agder</td>
<td>12</td>
</tr>
<tr>
<td>Vest-Agder</td>
<td>14</td>
</tr>
<tr>
<td>Rogaland</td>
<td>19</td>
</tr>
<tr>
<td>Hordaland</td>
<td>30</td>
</tr>
<tr>
<td>Sogn- og Fjordane</td>
<td>13</td>
</tr>
<tr>
<td>Møre og Romsdal</td>
<td>6</td>
</tr>
<tr>
<td>Sør-Trøndelag</td>
<td>0</td>
</tr>
<tr>
<td>Nord-Trøndelag</td>
<td>0</td>
</tr>
<tr>
<td>Nordland</td>
<td>0</td>
</tr>
<tr>
<td>Troms</td>
<td>0</td>
</tr>
<tr>
<td>Finnmark</td>
<td>0</td>
</tr>
</tbody>
</table>
6.2.2 Konsekvenser - Vinter

Figur 6.2.2 a
Normal vinternedbør (mm) for normalperioden 1961-1990 og for scenario 2071-2100

Figur 6.2.2 b
Antall dager med vinternedbør (> 5 mm) for normalperioden 1961-1990 og for scenario 2071-2100
Tabell 6.2.2
Kommuner fylkesvis som er berørt av betydelig økning eller reduksjon i antall dager med vinternedbør > 5 mm (7 dager eller mer). Endringene er fra normalperioden 1961-1990 til scenario 2071-2100.

<table>
<thead>
<tr>
<th>Fylke</th>
<th>Kommuner med reduksjon i tørr byggetid på ≥ 7 dager</th>
<th>Kommuner med økning i tørr byggetid på ≥ 7 dager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Østfold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akershus</td>
<td>- Ringsaker - Trysil</td>
<td>- Åmot - Engerdal</td>
</tr>
<tr>
<td>Oslo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedmark</td>
<td>- Lillehammer - Øyer - Gausdal - Østre Toten</td>
<td>- Lunner - Gran - Sandre Land - Nordre Land</td>
</tr>
<tr>
<td>Oppland</td>
<td>- Drammen - Flå - Gol - Ål</td>
<td>- Hol - Øvre Eiker - Lier - Flesberg - Rollag</td>
</tr>
<tr>
<td>Buskerud</td>
<td>- Sandefjord - Larvik</td>
<td>- Tjøme</td>
</tr>
<tr>
<td>Vestfold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telemark</td>
<td>- Skien - Siljan - Bamble - Kragerø</td>
<td>- Bø - Tinn - Hjartdal - Seljord - Tokke</td>
</tr>
</tbody>
</table>
Tabell 6.2.2, forts.

<table>
<thead>
<tr>
<th>Fylke</th>
<th>Kommuner med reduksjon i tørr byggetid på ≥ 7 dager</th>
<th>Kommuner med økning i tørr byggetid på ≥ 7 dager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aust-Agder</td>
<td>- Risør - Grimstad - Arendal - Tvedestrand</td>
<td>- Lillesand - Birkenes - Åmli - Iveland</td>
</tr>
<tr>
<td></td>
<td>- Evje og Homnes - Bygland - Valle - Bykle</td>
<td></td>
</tr>
<tr>
<td>Vest-Agder</td>
<td>- Kristiansand - Mandal - Farsund - Flekkefjord - Vennesla</td>
<td>- Songdalen - Søgne - Marnardal - Åseral - Audnedal</td>
</tr>
<tr>
<td></td>
<td>- Lindesnes - Lyngdal - Hægebostad - Kvinesdal</td>
<td></td>
</tr>
<tr>
<td>Rogaland</td>
<td>- Haugesund - Sokndal - Lund - Bjerkreim - Klepp</td>
<td>- Randaberg - Forsand - Strand - Hjelmeland - Suldal</td>
</tr>
<tr>
<td></td>
<td>- Karmøy - Utsira</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Vaksdal - Modalen - Osterøy - Meland - Øygarden - Radøy - Lindås - Austrheim - Fedje - Masfjorden</td>
<td></td>
</tr>
<tr>
<td>Sogn- og Fjordane</td>
<td>- Flora - Solund - Hyllestad - Høyanger - Vik</td>
<td>- Ardal - Luster - Fjaler - Førde</td>
</tr>
<tr>
<td></td>
<td>- Naustdal - Bremanger - Vågsøy - Selje</td>
<td></td>
</tr>
<tr>
<td>Møre og Romsdal</td>
<td>- Herey - Ulstein</td>
<td>- Hareid - Volda</td>
</tr>
<tr>
<td></td>
<td>- Ørsta - Midsund</td>
<td></td>
</tr>
<tr>
<td>Sør-Trøndelag</td>
<td>- Roan</td>
<td></td>
</tr>
<tr>
<td>Nord-Trøndelag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordland</td>
<td>- Øksnes</td>
<td></td>
</tr>
<tr>
<td>Troms</td>
<td>- Harstad - Tromsø</td>
<td>- Torsken - Berg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finnmark</td>
<td>- Loppa</td>
<td></td>
</tr>
</tbody>
</table>
6.2.3 Konsekvenser - Vår

Figur 6.2.3 a
Normal vårnedbør (mm) for normalperioden 1961-1990 og for scenario 2071-2100

Figur 6.2.3 b
Antall dager med vårnedbør (> 5 mm) for normalperioden 1961-1990 og for scenario 2071-2100
Figur 6.2.3 c
Endring i mm (venstre) og relativt (høyre)

Tabell 6.2.3
Kommuner fylkesvis som er berørt av betydelig økning eller reduksjon i antall dager med vårnedbør > 5 mm (7 dager eller mer). Endringene er fra normalperioden 1961-1990 til scenario 2071-2100.

<table>
<thead>
<tr>
<th>Fylke</th>
<th>Kommuner med reduksjon i tørr byggetid på ≥ 7 dager</th>
<th>Kommuner med økning i tørr byggetid på ≥ 7 dager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Østfold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akershus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oslo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oppland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buskerud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vestfold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telemark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aust-Agder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vest-Agder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogaland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hordaland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sogn- og Fjordane</td>
<td>- Høyanger</td>
<td>- Luster</td>
</tr>
<tr>
<td>Møre og Romsdal</td>
<td>- Midsund</td>
<td>- Smøla</td>
</tr>
<tr>
<td>Sør-Trøndelag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord-Trøndelag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finnmark</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2.4 Konsekvenser - Sommer

Figur 6.2.4 a
Normal sommernedbør (mm) for normalperioden 1961-1990 og for scenario 2071-2100

Figur 6.2.4 b
Antall dager med sommernedbør (> 5 mm) for normalperioden 1961-1990 og for scenario 2071-2100
Figur 6.2.4 c
Endring i mm (venstre) og relativt (høyre)

Tabell 6.2.4
Kommuner fylkesvis som er berørt av betydelig økning eller reduksjon i antall dager med sommernedbør > 5 mm (7 dager eller mer). Endringene er fra normalperioden 1961-1990 til scenario 2071-2100.

<table>
<thead>
<tr>
<th>Fylke</th>
<th>Kommuner med reduksjon i tørr byggetid på ≥ 7 dager</th>
<th>Kommuner med økning i tørr byggetid på ≥ 7 dager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Østfold</td>
<td>- Aremark</td>
<td>- Åskim</td>
</tr>
<tr>
<td></td>
<td>- Marker</td>
<td>- Eidsberg</td>
</tr>
<tr>
<td></td>
<td>- Rømskog</td>
<td>- Rakkestad</td>
</tr>
<tr>
<td>Akershus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oslo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oppland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buskerud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vestfold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telemark</td>
<td>- Hjartdal</td>
<td>- Sirdal</td>
</tr>
<tr>
<td></td>
<td>- Vinje</td>
<td></td>
</tr>
<tr>
<td>Aust-Agder</td>
<td>- Evje og Hornes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Bygland</td>
<td></td>
</tr>
<tr>
<td>Vest-Agder</td>
<td>- Åseral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Høgebostad</td>
<td></td>
</tr>
<tr>
<td>Rogaland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hordaland</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabell 6.2.4, forts.

<table>
<thead>
<tr>
<th>Fylke</th>
<th>Kommuner med reduksjon i tørr byggetid på ≥ 7 dager</th>
<th>Kommuner med økning i tørr byggetid på ≥ 7 dager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sogn- og Fjordane</td>
<td>- Høyanger</td>
<td>- Luster</td>
</tr>
<tr>
<td>Møre og Romsdal</td>
<td>- Ulstein</td>
<td>- Sandøy</td>
</tr>
<tr>
<td>Sør-Trøndelag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord-Trøndelag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordland</td>
<td>- Sørna</td>
<td>- Herøy</td>
</tr>
<tr>
<td></td>
<td>- Brønnøy</td>
<td>- Dønna</td>
</tr>
<tr>
<td></td>
<td>- Vega</td>
<td>- Lurøy</td>
</tr>
<tr>
<td></td>
<td>- Vevelstad</td>
<td>- Træna</td>
</tr>
<tr>
<td>Troms</td>
<td>- Kvaefjord</td>
<td>- Salangen</td>
</tr>
<tr>
<td></td>
<td>- Gratangen</td>
<td>- Skjervøy</td>
</tr>
<tr>
<td>Finnmark</td>
<td>- Hasvik</td>
<td>- Nordkapp</td>
</tr>
<tr>
<td></td>
<td>- Måsøy</td>
<td></td>
</tr>
</tbody>
</table>

6.2.5 Konsekvenser – Høst

Figur 6.2.5 a
Normal høstnedbør (mm) for normalperioden 1961-1990 og for scenario 2071-2100
Figur 6.2.5 b
Antall dager med høstnedbør (> 5 mm) for normalperioden 1961-1990 og for scenario 2071-2100

Figur 6.2.5 c
Endring i mm (venstre) og relativt (høyre)
Tabell 6.2.5
Kommuner fylkesvis som er berørt av betydelig økning eller reduksjon i antall dager med høstnedbør > 5 mm (7 dager eller mer). Endringene er fra normalperioden 1961-1990 til scenario 2071-2100.

<table>
<thead>
<tr>
<th>Fylke</th>
<th>Kommuner med reduksjon i tørr byggetid på ≥ 7 dager</th>
<th>Kommuner med økning i tørr byggetid på ≥ 7 dager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Østfold</td>
<td>Aremark</td>
<td></td>
</tr>
<tr>
<td>Akershus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oslo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oppland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buskerud</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vestfold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telemark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aust-Agder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vest-Agder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogaland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hordaland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sogn- og Fjordane</td>
<td></td>
<td>Høyanger</td>
</tr>
<tr>
<td>Møre og Romsdal</td>
<td></td>
<td>Midsund</td>
</tr>
<tr>
<td>Sør-Trøndelag</td>
<td></td>
<td>Meråker</td>
</tr>
<tr>
<td>Nord-Trøndelag</td>
<td></td>
<td>Narvik</td>
</tr>
<tr>
<td>Nordland</td>
<td>- Narvik</td>
<td>- Gildeskål</td>
</tr>
<tr>
<td></td>
<td>- Herøy</td>
<td>- Beiarb</td>
</tr>
<tr>
<td></td>
<td>- Vefsø</td>
<td>- Saltdal</td>
</tr>
<tr>
<td></td>
<td>- Hattfjelldal</td>
<td>- Sørfold</td>
</tr>
<tr>
<td></td>
<td>- Rana</td>
<td>- Steigen</td>
</tr>
<tr>
<td></td>
<td>- Lureøy</td>
<td>- Hamarey</td>
</tr>
<tr>
<td></td>
<td>- Rødøy</td>
<td>- Tysfjord</td>
</tr>
<tr>
<td></td>
<td>- Meleøy</td>
<td></td>
</tr>
<tr>
<td>Troms</td>
<td>- Harstad</td>
<td>- Lavangen</td>
</tr>
<tr>
<td></td>
<td>- Kvafljord</td>
<td>- Salangen</td>
</tr>
<tr>
<td></td>
<td>- Skånlind</td>
<td>- Måskev</td>
</tr>
<tr>
<td></td>
<td>- Bjarkøy</td>
<td>- Sørreisa</td>
</tr>
<tr>
<td></td>
<td>- Ibestad</td>
<td>- Dyrøy</td>
</tr>
<tr>
<td></td>
<td>- Gratangen</td>
<td>- Tranøy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finnmark</td>
<td>- Hasvik</td>
<td>- Nordkapp</td>
</tr>
<tr>
<td></td>
<td>- Måsøy</td>
<td></td>
</tr>
</tbody>
</table>

6.3 Anbefalte tiltak
Flest kommuner blir berørt av nedbørsøkning om vinteren. Flere dager med nedbør betyr behov for økt fokus på fuktsikker byggeprosess. Telt, eller såkalte Weather Protection Systems (WPS), bør benyttes i mye større grad enn i dag. Økt nedbør i tidligere tørre perioder på året fordrer også at man i større grad planlegger rekkefølge for utførelse av byggearbeider. Logistikk på byggeplassen blir av avgjørende betydning for å unngå lengre tids lagring utendørs av fuktsensitive materialer. Viktigheten av løsningsvalg som tåler fuktighet og som vil tørke opp igjen blir ytterligere forsterket. Mulighet for at det oppstår byggskader som et resultat av fuktpåkjenning i byggeperioden er et problem som vil øke i omfang med økt nedbørsøkning.
7 Våt vinternedbør

7.1 Prosesser

Snøen som faller om vinteren legger seg på hustak og andre horisontale konstruksjoner. Dette gir en belastning på taket som vi kaller snølast. Dersom snølasten blir større enn det takkonstruksjonen er dimensjonert for vil det være stor risiko for kollaps. Våt snø er tyngre enn tørr snø. Et milder e klima vil derfor kunne gi større snølaster i enkelte områder. I tillegg vil kombinasjonen av snø på taket og nedbør i form av regn gi økt belastning.

Et våtere vinterklima vil også medføre at snø og is demmer opp for større mengder vann som kan finne veien gjennom bygningskomponentene og trenge inn i bygningen. Om vinteren har bakken dårligere dreneringsevne på grunn av frost. Dermed må vannet finne andre veier. I verste fall finner vannet veien inn i en bygning. Dette kan også øke vanntrykket på grunn av skade og allerede er utsatt for frost sprengning. Kombinasjonen av økte forekomster av svingninger rundt 0 ºC med frost sprengning og inntrengning av fukt, mer våt nedbør om vinteren og smeltevann som renner ukontrollert, vil ha klart negativ innvirkning på konstruksjoner av puss og murverk, samt grunnmurskonstruksjoner. I tillegg vil utette ytterkonstruksjoner, som tak, vegger, vinduer, dører, terrasser og beslagsdetaljer, bli mer utsatt for vannlekkasjer.

7.2 Konsekvenser

Endring i våt vinternedbør er vist i figur 7.2 a. Økningen blir størst langs sør- og vestkysten. Trenden framkommer tydeligere når vi ser på økning i kommuner med mye nedbør, figur 7.2 b. Vi har her tatt utgangspunkt i klimadatapunkt i kommunesentret.

I sonen med 100-200 mm økning i våt vinternedbør finner vi 135 kommuner og ca. 1 300 000 bygninger, mens sonen < 100 mm berører 241 kommuner og ca. 2 200 000 bygninger. Oslo, Hedmark, Oppland, Buskerud, Sør-Trøndelag og Nord-Trøndelag er i mindre grad utsatt for økning i våt vinternedbør.
Figur 7.2 a
Våt vinternedbør i mm for normalperioden 1961-1990 og scenario 2071-2100.

Figur 7.2 b
Kommuner (kommunesentret) med økning i våt vinternedbør fra normalperioden 1961-1990 til scenario 2071-2100.
Figur 7.2 c
Antall bygninger totalt for fastlands-Norge berørt av endring i våt vinternedbør. Tallene gjelder for eksisterende bygninger i 2010. Anslag for nybygg frem til år 2100 er ikke tatt med.

Figur 7.2 d
Antall bygninger i de ulike fylkene berørt av endringer i våt vinternedbør i tre ulike klasser. Tallene gjelder for eksisterende bygninger i 2010. Anslag for nybygg frem til år 2100 er ikke tatt med.
7.3 Anbefalte tiltak

Snølaststandarden som benyttes for dimensjonering av tak bør ta hensyn til fremtidig klimaendring. En gjennomgang og eventuell revisjon av denne anbefales. Et tillegg med snølast for klimasenarioer kan være aktuelt. Det er helt klart at det må stilles strenge krav til utførelse og design av bygninger i fremtiden. Robuste konstruksjoner som tåler hard belastning fra is, vann og snø må velges. Valg av løsninger må baseres både på dagens klima og fremtidens klima for det aktuelle området. Dette setter krav til videre utvikling av anvisninger og erfaringsdokumentasjon.

I en videreutvikling av klima- og sårbarhetsanalysen bør en framstilling av våt vinternedbør når samtidig snødekke prioriteres. En slik sammenstilling vil gi en tydeligere oversikt over konsekvensene for snølast på tak i de ulike kommunene.

8 Potensiell risiko for råteskader

8.1 Prosesser

Levetiden til en trekledning er avhengig av kvaliteten på treverket, overflatebehandling, design og ikke minst klimapåkjenning. Når organisk materiale (for eksempel treverk) står i et varmt og fuktig miljø over en lengre periode vil det bli påvirket av nedbrytning i form av mugg- eller råtesopp. Råte betegner i bygningssammenheng svekkelse av teknisk betydning i trevirke på grunn av soppangrep.

Fremtidens klima er forventet å bli varmere og våtere, noe som vil gi bedre vekstmuligheter for mugg- og råtesopp. Antallet småhus med trekledning er stort i Norge. Et våtere og varmere klima kan derfor gi betydelige konsekvenser for det bygde miljø.

8.2 Konsekvenser

Faren for råte i utvendige trekonstruksjoner over bakken er i stor grad avhengig av lokale klimaførhold, se kart over potensiell råtefare i Norge (figur 8.2 a). Kartet fungerer som en generell veiledning til geografisk differensierede valg av trebeskyttelse i form av overflatebehandling, impregnering eller konstruktiv trebeskyttelse (Lisø og Kvande, 2007). Det er ikke tatt hensyn til topografien ved utarbeidelse av kartet. Lokale områder kan derfor være mer eller mindre beskyttet enn det kartet gir uttrykk for.

Figur 8.2 a-d viser at områder med potensiell høy risiko for råteskader utvides dramatisk i fremtiden (rødt område). Utvidelsen omfatter blant annet flere av de store norske byene med forsteder, hvor antall bygninger er stort. Med bakgrunn i dagens normalperiode ligger ca. 615 000 bygninger i områder med høy råterisiko. I år 2100 vil antall bygninger i klasse "høy" være over 2,4 millioner.
Figur 8.2 a

Figur 8.2 b
Antall bygninger totalt for fastlands-Norge i de ulike risikosonene for dagens normalperiode og for år 2100. Tallene gjelder kun for dagens bygninger, anslag for nybygg frem til år 2100 er ikke tatt med.
Figur 8.2 c
Antall bygninger fordelt etter fylker (Hordaland – Finnmark) og råterisikoklasser i de ulike risikosonene for dagens normalperiode og for år 2100. Tallene gjelder kun for dagens bygninger, anslag for nybygg frem til år 2100 er ikke tatt med.
8.3 Anbefalte tiltak

9 Oppsummering

Havnivåstigning

- Omtrent 110 000 bygninger i Norge ligger i sonen "mindre enn én meter over dagens havnivå".
- Konsekvensnivået er minst for Buskerud, Oslo, Akershus, Finnmark og Østfold

Årsmiddeltemperatur

- Projeksjonen viser en generell økning i temperaturen i hele Norge. Konsekvensen er at oppvarmingsbehovet blir lavere mens kjølebehovet vil øke.
- Mens 70 kommuner har årsmiddeltemperatur ≥ 6,3 °C med dagens normalperiode, vil 341 kommuner passere denne grensa med scenariot for 2071-2100.
- I dag befinner ca. 360 000 boligbygninger seg i kommuner med årsmiddeltemperatur ≥ 6,3 °C. Det utgjør 25 % av det totale antallet boligbygninger. Andelen vil øke til 90 % av alle boligbygningene i Norge for scenariot 2071-2100, dvs. i overkant av 1 300 000 boligbygninger.
- Endring i årsmiddeltemperatur vil også få konsekvenser for frostmengder. Vi har ikke sett på klimaendringenes effekt på frostmengder i denne rapporten.

Årsnedbør

- De største økningene i mm nedbør per år kommer i områder som allerede har de største nedbørs mengdene i dag. Dette gjelder i første rekke kysten langs Vestlandet og Nordland.
- 58 kommuner vil bli berørt av en økning i årsnedbør på > 385 mm. Til sammen utgjør det i overkant av 400 000 bygninger.
- Også områder med mindre nedbørs mengdene i dag vil få en betydelig økning i årsnedbør (> 25 %). Dette gjelder i første rekke kommuner i Buskerud, Oppland og Hedmark.
- 58 kommuner vil bli berørt av en økning i årsnedbør på >25 %. Til sammen utgjør det nærmere 480 000 bygninger.

Sesongnedbør

- De største økningene i mm nedbør kommer om vinteren og høsten i områder som allerede har de største nedbørs mengdene i dag. Dette gjelder i første rekke for kysten langs Vestlandet og Nordland.
- Sør-Norge oppler de største endringene i økt antall dager med nedbør om vinteren.
- Nord-Norge vil oppleve en reduksjon i antall nedbørsdager om vinteren og en økning sommer og høst.
- Forventet endring i antall dager med nedbør er liten for hele landet om våren.
Våt vinternedbør

- 135 kommuner og ca. 1 300 000 bygninger vil bli berørt av 100-200 mm økning i våt vinternedbør.
- Oslo, Hedmark, Oppland, Buskerud, Sør-Trøndelag og Nord-Trøndelag er i mindre grad utsatt for økning i våt vinternedbør.

Potensiell risiko for råteskader

- I dag ligger omtrent 615 000 bygninger i Norge i råterisikoklasse "høy".
- I år 2100 vil hele 2,4 millioner av dagens bygninger ligge i klassen "høy".
- For Oslo vil stort sett alle bygningene gå fra klasse "moderat råterisiko" til "høy råterisiko". Dette omfatter over 125 000 bygninger.
- Ca. 190 000 bygninger i Hordaland fylke, dvs. godt over halvparten av bygningene, ligger i dag i områder med potensiell høy råterisiko
- I år 2100 vil rundt 220 000 bygninger av dagens bygninger i Hordaland ligge i høy råterisikoklasse.

Vi vil avslutningsvis få påpeke at denne rapporten fortsatt er å betrakte som et første steg i kartleggingen av klimaendringenes konsekvenser for den norske bygningsmassen. Ytterligere forskning på området vil gi nøyaktigere estimer for konsekvensene både når det gjelder kostnader og tiltak. Vi vil anbefale at det i det videre arbeidet gjennomføres detaljerte case studier i ulike kommuner, slik at det kan utarbeides en felles metodikk og tiltaksplaner som hver enkelt kommune kan implementere på en effektiv måte. Det bør også vurderes å utvikle tverrfaglige klima- og sårbarhetsanalyser som også favner om andre objekter enn bygninger, for eksempel infrastruktur. Skredkompetanse og hydrologikompetanse bør tilknyttes arbeidet.
10 Litteratur

Almås, A.J. og Hygen, H.O.:

Lisø, K.R. og Kvande, T., 2007:
Klimatilpasning av bygninger, SINTEF Byggforsk, Oslo. Sluttrapport fra Klima 2000

Lisø, K.R., Hygen, H.O., Kvande, T. and Thue, J.V., 2006:
Decay potential in wood structures using climate data, in Richard Lorch (ed.) Building Research & Information, 34(6), 546-551

NOU 2010:10
Tilpassing til eit klima i endring. Noregs offentlege utgreiingar, Oslo

NS 3031:2007
Beregning av bygningers energiytelse - Metode og data. Norsk Standard, Oslo

NS 3700:2010
Kriterier for passivhus og lavenerghus – Boligbygninger. Norsk Standard, Oslo

Scheffer, T.C., 1971:

Øyen, C., Almås, A-J., Hygen, H.O. og Sartori, I., 2010:
Klima- og sårbarhetsanalyse for bygninger i Norge. Utredning som grunnlag for NOU om klimatilpassing. Oppdragsrapport 3B0325, SINTEF Byggforsk, Oslo