Kontroll av vannlekkasjer i Narvik

Geir Richard Hansen

Bygg- og miljøteknikk (2 årig)
Innlevert: Juni 2012
Hovedveileder: Sveinung Sægrov, IVM
Medveileder: Åse Soleng, Narvik VAR KF

Norges teknisk-naturvitenskapelige universitet
Institutt for vann- og miljøteknikk
Forord

I løpet av de siste årene har det blitt bygget ut et system av vannmålerer på ledningsnettet i Narvik til overvåkning av vannforbruket med inndeling i lekkasjesoner. For å drive effektiv lekkasjesøking og prioritere områder for sanering er det nødvendig å systematisere data fra vannmålerer og kartlegge hvordan lekkasjene fordeler seg på vannledningsnettet.

På ledningsnettet i Narvik er det tidligere beregnet et lekkasjetap på over 55 %. Av kapasitets- og sikkerhetsmessige grunner er det behov for å begrense lekkasjetapet.

Lekkasjemengden har nær sammenheng med trykket på ledningsnettet og det er derfor hensiktsmessig å kartlegge hvor det er mulig å iverksette trykkreduksjon for å redusere noe av lekkasjemengden.

Jeg vil takke min veileder for god hjelp med utformingen av oppgaven og arbeidet underveis. Vil også takke de ansatte ved Narvik VAR for å ha stilt de nødvendige ressurser tilgjengelig for å gjennomføre oppgaven. En spesiell takk rettes til senioringeniør Arne Blomli ved Narvik VAR for faglige råd og opplysninger i forbindelse med oppgaven.

Narvik, 11. juni 2012

Geir Richard Hansen
Innhold
Forord ... i
Innhold ... ii
Sammendrag .. iv
Abstract ... v
1. Innledning .. 1
2. Teori lekkasjetap ... 3
 Generelt .. 3
 Soneinndeling og overvåkning ... 4
 Beregning av lekkasjetap ... 5
 Indikatorer ... 8
 Planlegging av forbrukssoner/lekkasjesoner ... 11
 Step-test .. 12
 Finlokalisering av lekkasjer .. 12
 Trykkreduksjon ... 13
 Bruk av hydraulisk nettmodell til lekkasjekontroll .. 17
3. Ledningsnett og utstyr .. 19
 Kilde og ledningsnett ... 19
 Trykk-/forbrukssoner ... 19
 Vannmålerer ... 22
 Presentasjon av måleresultater for sonene ... 22
4. Vannbalanse og indikatorer .. 24
 Beregninger .. 24
 Resultater vannbalanse ... 25
 Minste nattforbruk .. 26
 Kommentar til resultatene .. 35
 Rangering av lekkasjesoner ... 38
5. Sammenligning av vanntap og ressursbruk ... 40
 Sammenligning av vanntap .. 40
 Lekkasjesøk ... 41
 Økonomi .. 42
 Situasjonen i Narvik ... 44
 Bemanning og organisering ... 44
6. Redusert lekkasjetap ved trykkreduksjon ... 46
 Trykkreduksjon sone 12 .. 46
 Trykkreduksjon i lavtrykksonen på Narvikhalvøya .. 52
 Kommentar .. 53
7. Diskusjon .. 55
8. Figurliste ... 56
9. Tabeller .. 57
Kilder ... 58
Sammendrag
Bakgrunnen for oppgaven er et ønske om å redusere lekkasjetapet på vannledningsnettet i Narvik by. Reduksjon av lekkasjetapet kan gjøres ved utskiftning/rehabilitering av ledninger, lokalisering og reparasjon av lekkasjer og trykkreduksjon.

Målet med prosjektet er å gi et grunnlag for videre arbeid med reduksjon av lekkasjer, ved hjelp av fin- lokalisering, trykkreduksjon og generell planlegging av hvilke ledningsstrek som skal saneres i de kommende åren.

I rapporten gjennomgås vannbalanse for lekkasjesonene på ledningsnettet i Narvik, lekkasjetap med ulike indikatorer presenteres og lekkasjesonene rangeres. Det utredes muligheter for reduksjon av lekkasjetapet ved å redusere trykket der det er praktisk gjennomførbart. Videre sammenlignes lekkasjetapet i Narvik med andre kommuner og forslag til organisering av lekkasjesøk fremstilles.

Utarbeidelsen av vannbalansen er gjort på grunnlag av foreliggende data om målt forbruk på kommunalt ledningsnett, innrapporterte målverdier fra større abonnenter og folkeregisterdata. Det er i enkelte tilfeller manglende data fra målere på ledningsnettet som har måttet blitt erstattet av erfaringsdata som gir visse muligheter for feil.

Resultatene viser et totalt vanntap på ca. 55 % for Narvik. Etter sonebalanse er satt opp og lekkasjesonene rangert er sone 7, 12, 10 og 4 rangert som verst. Disse tre sonene står for ca. halvparten av det totale lekkasjetapet. Resultatene fra simuleringene ved en trykkreduksjon i sone 12 gir en lekkasjereduksjon på ca. 13 % i denne sonen. Ut fra erfaringer fra andre kommuner og størrelsen på forsyningsområdet i Narvik anbefales det å benytte ca. et halvt årsverk til lekkasjelytting.
Abstract
The background for this masterthesis is a desire to reduce the leakage loss of the water distribution system in the town of Narvik. Reduction of leakage loss can be achieved by replacement of pipes, location and repair of leaks and pressure reduction.

The goal of this project is to provide a basis for further work to reduce leaks, using fine-positioning, pressure reduction and overall planning of the water distribution network in the coming years.

In this report the water balance of leakage zones in the distribution system in Narvik and different indicators related to leakage loss are presented. The potential for reducing leakage loss by reducing pressure where it is practicable is examined. Also leakage loss in Narvik is compared with other municipalities and proposed organization of the detecting leaks is presented.

The preparation of the water balance is made on the basis of the available data on measured consumption on municipal water mains, reported meter readings from major properties and population register data. It is in some cases lack of data from the gauges on the pipe network that has been replaced by empirical data that provide certain opportunities for error.

The results show a total water loss of approx. 55% in Narvik. After the zone balance is set up and leakage zones are rated zone 7, 12, 10 and 4 ranked as the worst. These three zones account for ca. half of the total leakage loss. The results of simulations of a pressure reduction in zone 12 provide a leakage reduction of approx. 13% in this zone. Based on the experiences of other municipalities and the size of the supply area in Narvik, it is recommended to use approx. half a man localizing leaks.
1. Innledning
Flere norske kommuner har utfordringer med høyt beregnet vanntap på vannledningsnettet. Det reelle tapet kan være høyere eller lavere enn det beregnede tapet på grunn av feil og unøyaktigheter med målesystemet eller feilaktig grunnlag for fastsettelse av forbruk. Høyt trykk har nær sammenheng med lekkasjetapet, og er spesielt en utfordring i norske vannverk med store høydeforskjeller i forsyningsområdet.

Det viktigste i drikkevannsammenheng er at vannet har en hygienisk betryggende kvalitet. I tillegg vil en høy lekkasjeandel medføre redusert kapasitet, spesielt på høydebassenger. Ved brudd på hovedledninger kan enkelte område bli avhengige av forsyning fra høydebasseng i en periode frem til skaden er utbedret. Med et høyt lekkasjetap vil kapasiteten på høydebassenget bli tilsvarende redusert.

Denne masteroppgaven bygger videre på semesteroppgave fra høsten 2011, hvor vannbalanse for Narvik ble satt opp for året 2010. Flere vannmåler i drift gjør det mulig å foreta en mer pålitelig gjennomgang av lekkasjenivået. Samtidig er det beregnet flere indikatorer og utarbeidet en oversikt over ledningsnettets sammensetning i forhold til ledningsmaterialer, anleggsår og bruddhistorikk.

Tidligere beregninger antyder et lekkasjetap på ca. 55 % for Narvik, noe som er betydelig over landsgjennomsnittet på ca. 30 % (Rådgivende Ingeniørers Forening, 2010). Med et godt råvann tilgjengelig er kostnadene til vannbehandling relativt lave, slik at aktiv lekkasjejølting og punktvis reparasjoner av lekkasjer vanskelig kan forsvares ut fra et økonomisk perspektiv alene. Av hensyn til sikkerhet i vannforsyningen og kapasitetsbegrensninger fra vannbehandlingsanlegget ved et eventuelt økt vannbehov i fremtiden, er det likevel nødvendig å redusere lekkasjetapet. Nye lekkasjer oppstår til enhver tid og eksisterende lekkasjer vil, avhengig av rørmateriale, kunne vokse i størrelse.

Narvik VAR har de senere år foretatt en inndeling av vannledningsnettet i soner ved å installere nye vannmålere. Man ønsker å videreføre dette arbeidet med en systematisering av data fra vannmåler og rangere lekkasjesoner for videre innsats med lekkasjesøk. For å få dette til er det nødvendig å beregne vannbalanse og overvåke nattforbruket for hver enkelt sone. I tillegg er det interessant å studere mulighetene for redusert lekkasjetap i form av trykkreduksjon samt å klarlegge hvor mye kapasitet som skal disponeres til fin-LOCALISERING av lekkasjer.

For å besvare problemstillingen er rapporten lagt opp på følgende måte:

- Først gjennomgås teoretisk grunnlag til vanntap og sammenhengen trykk – lekkasjer (kapittel 2). Ledningsnettets oppbygging i Narvik undersøkes (kapittel 3). Vannbalanse settes opp og lekkasjesonene rangeres ut fra indikatorer for lekkasjetap (Kapittel 4).
Videre sammenlignes lekkasjetapet Narvik med et utvalg andre kommuner. I tillegg vurderes det hvor mye ressurser som skal brukes til lekkasjesøk ut fra erfaringer fra andre vannverk (kapittel 5 og 6).

Det foretas også en utredning for å klarlegge muligheten for redusert lekkasjetap ved trykkreduksjon i deler av vannledningsnettet. Sone 12 (Fagernes) vurderes spesielt (kapittel 7).

Til slutt kommer en diskusjon som et supplement til kommentarer gitt underveis om resultatene (kapittel 8).
2. Teori lekkasjetap

Generelt
De vannmengder som går tapt gjennom utettheter i det offentlige og private vannledningsnettet kalles lekkasjetap eller vanntap. I det daglige angis som regel lekkasjetapet som en prosentandel av total vannmengde levert fra vannbehandlingsanlegget eller som liter pr. sekund og km ledning.

Lekkasjetap kan skrives som:

\[Q_l = Q_t - Q_m - Q_o \]

der:

- \(Q_l \) = lekkasjetapet
- \(Q_t \) = total vannmengde levert fra vannbehandlingsanlegg
- \(Q_m \) = sum målt forbruk
- \(Q_o \) = ikke målt forbruk

(Jacobsen & Mosevoll, 1985)

På vannledningsnettet vil det oppstå utettheter i skjøter, pakninger, anboringer og hull på ledningene forårsaket av enten korrosjon, mekaniske belastninger, setninger eller feil ved utførelse. Avhengig av trykket på ledningsnettet og størrelse på lekkasjeåpninger vil det tapes en viss mengde vann gjennom disse åpningene.

Vannledningene og avløpsledningene ligger oftest i samme grøft, noe som fører til to problemstillinger:

- Avløpsledningene er ofte også utette og lekker ut spillvann i ledningsgrøften. Når vannledningen samtidig er utett er det alltid en fare for inntrengning av avløpsvann ved en trykklos situasjon, og derfor er det særdeles viktig at vannledningen til enhver tid er trykksatt.
- I tillegg vil lekkasjevann fra vannledningen trenge inn i avløpsledningen og skape videre komplikasjoner for avløpsrenseanlegget. Fremmedvann som ledes inn til avløpsrenseanlegg går ut over kapasiteten og gjør det vanskeligere å oppnå tilstrekkelig rensegrad.
Faktorer som påvirker lekkasjetapet er:

- Grunnforhold
- Klima
- Rørmaterialer
- Alder på ledningsnett
- Grøfteutførelse
- Trykk på ledningsnettet
- Vannkvalitet (korrosivt vann)
- Trafikkbelastninger

Nye ledningsanlegg vil også ha lekkasjetap avhengig av utførelse og valg av materialer ut fra forholdene i grøften. Med mindre tiltak settes i verk i form av utskiftninger, trykkontroll eller punktwise reparasjoner av lekkasjer, vil lekkasjetapet øke, da det stadig vil oppstå nye lekkasjer.

Soneinndeling og overvåkning

Overvåkning av ledningsnettet er en nøkkelfaktor for å kunne jobbe effektivt med lekkasjereduksjon. Ledningsnettet er delt inn i trykksoner ut fra topografiske forskjeller. Trykksonene er avgrenset av:

- Høydebassenger
- Trykkreduksjonssventiler
- Stengte ventiler
- Vannpumper

Ofte er trykksonene for store til effektiv lekkasje-oversvåkning, og deles videre inn i forbrukssoner som avgrenses av:

- Stengte ventiler
- Vannmålerer

I forbrukssonene (DMA - district metered areas) oversvåkes forbruket av en, eller helst flere vannmengdemåler.

Vannledningen bør planlegges slik at den har et rettstrek på minimum 10 x diameter oppstrøms og 5 x diameter nedstrøms av vannmåleren. Dette er for å unngå at turbulens skal forårsake feil på målingen (Jacobsen & Mosevoll, 1985).

Netto levert vannmengde i en lekkasjesone er summen av +/- de vannmengder som er mått av vannmåler som enten gir vann til eller forsyner videre til en annen sone. Det er installert toveis vannmåler i de tilfeller hvor forbruks- og trykkvariasjoner over døgnet eller året fører til at vannstrømmen kan skifte retning.

I de fleste soner vil vannforbruket følge en typisk gjentagende døgnvariasjonskurve med topp om morgen og ettermiddag, samt laveste forbruk nattestid. En økning i lekkasjemengden merkes ved en økning i nattforbruket. En gradvis økning i
nattforbruk kan indikere at en lekkasje er under utvikling. Ved å definere et høyeste "tillatt" nattforbruk på sentralt driftskontrollanlegg, vil man få en alarm når verden overskrider og tiltak bør settes i verk.

Beregning av lekkasjetap
En kvantifisering av lekkasjemengden i de ulike lekkasjesonene brukes som et grunnlag for å beregne indikatorer for videre prioriteringer og beslutninger.

IWA (International Water Association) opererer i hovedsak med to metoder for beregning av lekkasjemengde:

- Vannbalansemetode (topp ned metode)
- Minimum-nattforbruk-metode (bunn-opp metode)

(AWWA, 2009)

Vannbalanse
En vannbalanse er en skjematisk fremstilling av vannforbruk og vanntap. Vannbalanse beregnes etter volum, typisk m³/år. De fleste kommuner i Norge fakturerer etter stipulert forbruk, og for å kunne foreta en korrekt sammenligning av lekkasjetap mellom kommunene, er det viktig at alle bruker samme spesifikk forbruk pr innbygger. På bakgrunn av gjennomsnittsverdier fra kommuner med god vannmålerdekning, brukes det i dag 150 l/pe*døgn (55m³/pe*år) (Norsk Vann, 2010).

Knapphet på vann og omfattende behandling kan føre til at flere vannverk i Norge i fremtiden vil innføre restriksjoner mot hagevanning og tettere kontroll av frost-tapping som virkemidler for å redusere vannforbruket. Det er også en tendens til at flere kommuner pålegger abonnentene å installere vannmåler, noe som motiverer til å redusere det spesifikk forbruket.

I en vannbalanse deles vannforbruket inn i følgende kategorier:

- Fakturert målt forbruk
- Fakturert ikke målt forbruk
- Ikke fakturert målt forbruk
- Ikke fakturert ikke målt forbruk

Vanntap deles inn i:

- Illegalt forbruk
- Vannmålerfeil
- Lekkasje overløp/bassenger
- Lekkasje kommunale ledninger
- Lekkasje private ledninger
For "fakturert ikke målt forbruk", tas det utgangspunkt, enten i antall bosatte i forsyningsområdet med et forbruk på 150 l/pe*døgn, eller beregnes et forbruk ut fra antall kvadratmeter fakturert.

![Figur 1: Vannbalanse](image-url)

Offentlige og næringsabonnenter fatteres hovedsakelig etter vannmåler og går under kategorien "faktureret målt forbruk" i vannbalansen.

Et vannverk med god vannmålerdekning vil ha godt grunnlag, både for å avdekke hvor stor vannmengde som er lekkasjetap og for å fordele forbruket innenfor de ulike kategorier nevnt ovenfor.

Minste nattforbruk

For å kunne fastsette minste nattforbruk for de enkelte forbrukssoner, kreves at data for hele året med tilstrekkelig oppløsning er tilgjengelig fra sentralt driftsvervåkningsanlegg.

Dataene over minste nattforbruk i den enkelte sone må studeres for et helt år og tolkes for å klarlegge hva som faktisk er det laveste forbruket. Feil på vannmåler kan gjøre at det minste registrerte nattforbruket er mindre enn det som er reelt i en sone. I soner hvor mange vannmåler enten måler vannmengde til eller fra blir det lett feil uten at det er åpenbart nok til å avdekkes ved første øyekast.

I noen tilfeller viser nattforbruken stigende tendens i de første månedene av året, før en eller flere lekkasjer er utbedret, og nattforbruket går ned.

Lekkasjesoner med vannkrevende industri som har aktivitet døgnet rundt, vil kunne være vanskelige å overvåke effektivt og registrere tendenser til et eventuelt økt nattforbruk som følge av nye lekkasjer.
Indikatorer
For å skaffe en oversikt og kunne sammenligne lekkasjesoner benyttes flere ulike indikatorer ut fra den beregnede lekkasjemengde.

- **Vanntap i % av vannmengde levert ut på distribusjonsnettet fra vannbehandlingsanlegg.** Vanntap i % er mest håndterlig når hele ledningsnettet betraktes og for å sammenligne med andre vannverk. Når lekkasjesesonene skal sammenlignes blir denne indikatoren mindre håndterbar.
- **Liter/s km ledning.** Denne indikatoren må også sees i sammenheng med tettheten på abonnenter i det aktuelle området. I lekkasjesoner med lange ledningsstrekk vil denne bli lavere, og motsatt i mer tett bebygde strøk.
- **Liter/anboring/døgn.** Denne indikatoren er presis, men tar ikke hensyn til trykket i ledningsnettet og kan lett bli misvisende når flere lekkasjesoner eller vannverk skal sammenlignes (Liemberger, 2005).
- **Minste nattvannforbruk.** Minste nattvannforbruk forekommer typisk mellom 0200 og 0400 når det legale forbruket er på sitt laveste, og lekkasjemengden utgjør størst mulig del av den totale vannmengden som forsynes ut i systemet. Legalt nattforbruk tilsvarer ca 25l/pe*døgn (Hafskjold, Lekkasjekontroll, 2010)
- **Midlere trykk på ledningsnettet.** Ved hjelp av hydraulisk nettmodell kan midlere trykk for hele ledningsnettet og hver lekkasjesone enkelt beregnes. Midlere trykk i en lekkasjesone kan i mange tilfeller gi en forklaring på hvorfor det er høy eller lav lekkasjeandel i det aktuelle området.
• **ILI (infrastructure leakage index)**. ILI er en parameter som benyttes internasjonalt, og er nyttig ved sammenligning mellom vannverk. ILI er en ytelsesfaktor som kvantifiserer hvor bra et vannledningsnett forvaltes (vedlikeholdes, repareres, rehabiliteres) for å kontrollere virkelig vanntap. Her tas det hensyn til lengden på ledningsnettet, tettheten på abonnenter og trykk.

Matematisk er dette forholdet mellom de nåværende årlig virkelige tap, "current annual real losses" (CARL), og uunngåelige årlige virkelige tap, "unavoidable annual real losses (UARL).

\[ILI = \frac{CARL}{UARL} \]

hvor:

CARL er vannvolumet som tapes gjennom lekkasjer, bakgrunnstap og overløp bassenger (l/d)

UARL er det laveste vanntapet som er teknisk mulig å oppnå på et vannledningsnett basert på dets sammensetning.

\[UARL(l/d) = (18 \times Lm + 0,8 \times Nc + 25 \times Lp) \times P \]

hvor:

Lm = lengde på hovedledninger (km)

Nc = Antall abonnenter

Lp = total lengde på private ledninger frem til abonnentens måler (km)

P = Midlere trykk (m)

(Liememberger, 2005)

Konstantene i denne empiriske ligningen er satt ut fra erfaringer fra ledningsnett i England og Wales og er kalibret med data fra veldrevne ledningsanlegg i en rekke land. I rundt 50 % av tilfellene på verdensbasis er de private vannmålerne (på stikkledningene) plassert ved fortauskant (Liememberger, 2005). For norske forhold vil UARL bli høyere siden vannmålerne er plassert inne i husene og "Lp" blir større. I tillegg er trykket på ledningsnettet i Narvik høytt (6.2 bar midlere trykk) sett i forhold til andre europeiske land hvor trykket vanligvis ligger fra 30-60 mVS (Kalleberg, Mosevoll, Jacobsen, & Tomren, 1995).

Beregning av ILI er ikke tatt med i denne rapporten siden ledningskartverket ikke inneholder komplett oversikt over stikkledninger i Narvik. Det er et fåttall av anboringene som er tatt med i det digitale ledningskartverket, slik at det kreves et
omfattende arbeid med å registrere disse med tilhørende stikkledninger for å kunne brukes til pålitelige beregninger av ILI.
Planlegging av forbrukssoner/lekkasjesoner

Den mest nøyaktige måten å kvantifisere enkeltkomponentene i vanntapet i forsyningsområdet er å innhente "bunn-opp" målinger av vannforbruk og trykk. Dette er også den mest ressurskrevende metoden, siden den krever at det installeres vannmengdemålere og nødvendige ventiler stenges for å dele opp ledningsnettet i mindre områder. Det må tas hensyn til at alle områder fortsatt vil ha tilstrekkelig kapasitet og å unngå en forringet vannkvalitet på grunn av stengte tilførselsledninger.

Avhengig av utformingen på forsyningsnettet, vil en forbruksson:

- Forsynes via en enkelt eller flere ledninger.
- Et enkelt område (ingen tilstøtende soner)
- Et område som leverer videre til tilstøtende sone
- En lekkasjesone med flere tilførselsledninger for å opprettholde redundans, hvor sekundære ledninger kun er åpnet i ekstraordinære tilfeller.

En rekke faktorer bør vurderes ved planlegging av lekkasjesoner:

- **Størrelse, geografisk og antall abonnenter.** Størrelse på lekkasjesoner er et omdiskutert tema. Større bykommuner opererer med lekkasjesoner på 3000-6000 personer pr sone (Flatin, 2009). En mindre bykommune vil gjerne ha mindre soner, for lettere å lokalisere lekkasjer. Med en mer spredt bebyggelse vil en få lengre ledningsnett pr sone, slik at vurderingen ikke utelukkende går på antall personer.
- **Måltall for redusert lekkasjemengde opp mot kostnader.** I et typisk norsk vannverk vil ikke en kostnadsmessig vurdering alene forsvare kostnadene ved etablering av lekkasjesoner.
- **Type abonnenter (industri, boligområder).** I områder med vannkrevende industri kan det være aktuelt å etablere online måling av abonnenter med svært høyt vannforbruk.
- **Hensyn til spesielle abonnenter som sykehus.** Hvis en aktuell lekkasjesone inkluderer sårbare abonnenter med tilhørende behov for ekstra brannvantdekning i tillegg til høyt forbruk, må plasseringen av tilførselsledningene til sonen gis spesiell oppmerksomhet.
- **Høydeforskjeller**
- **Minimumskrav til trykk og vannmengder (de hydrauliske forhold vil forandres når ventiler stenges).** Nok mengder vann til brannslukking, og tilstrekkelig resttrykk på ledningsnettet ved større uttak må tas høyde for.
- **Redundans.** En lekkasjesone bør ha minst to tilførselsledninger for å kunne opereres permanent, selv ved driftsavbrudd på deler av nettet.
- **Vannkvalitet.** Etablering av lekkasjesoner innebærer stengte ventiler for å avgrense mellom sonene. Det vil bli flere endeledninger enn tidligere og potensialet for forringet vannkvalitet på grunn av endringer i strømmingsretning (umiddelbar effekt) og forhøyet vannalder (permanent effekt).
En kalibrert hydraulisk nettmodell er nyttig for å simulere effekten en lekkasjesone vil få på ledningsnettet, og for å bekrefte at trykket vil bli tilstrekkelig ved maks døgn- og timeforbruk og ekstraordinære situasjoner, som ved branntapping.

Det er viktig å kjenne ledningsnettet godt og ha et oppdatert ledningskartverk og god dokumentasjon av systemet forevrig. Et oppdatert ledningskartverk med all nødvendig informasjon om ledningsmaterialer, dimensjon, anleggsår, høydebassenger, trykkreduksjoner, osv. er essensielt både til planlegging men også som grunnlag for en mest mulig korrekt hydraulisk nettmodell.

Step-test
Hensikten er å lokalisere hvilke deler av en enkelt sone hvor lekkasjene hovedsakelig forekommer. Fremgangsmåten er å isolere deler av en lekkasjesone stegvis om natten når tappingen er minst, ved å stenge utvalgte ventiler. Videre overvåkes endringer i forbruk enten via eksisterende online målere eller mobile målere som monteres midlertidig for testen. Hvis forbruket reduseres markant mindre enn størrelsen på den midlertidig avgrenselde sonen, indikerer det at majoriteten av lekkasjene forekommer her.

Finlokalisering av lekkasjer
For å lokalisere eksakt lekkasjested foretas fin-søk med ulike metoder som:

- Ventil- og marklytting
- Lytting i vannstrømmen
- Akustisk korrelasjon
- Gass
- Oppfyllingsmetoden
- Boblesøking på neddykkede ledninger
- Andre metoder

Trykkreduksjon

Generelt

Topografien i Norge, og spesielt i kystområdene med store høydeforskjeller i forsyningsområdet, fører til et behov for å dele vannledningsnettet inn i trykksoner. I Norge er det ikke uvanlig med et trykk fra 60-100 mVS på ledningsnettet (Kalleberg, Mosevoll, Jacobsen, & Tomren, 1995). Dette forårsakes dels av forskjeller i topografi, og dels at det i Norge ofte er høytliggende overflatevannkilder som gir et stort utgangstrykk til rådighet. For å gjøre vannledningsnettet mindre komplisert å håndtere i det daglige, ønsker man å ha færre trykksoner. Dette medfører at spranget i trykk innad i en trykkson kan bli svært stort der hvor høydeforskjellene er store. Når nettet inndeles i trykksoner må det ofte foretas avstengninger av ledninger som krysser trykksonsgrensene. Dette er for å unngå å anlegge for mange trykkreduksjonsventiler, med de kostnader og ekstra oppfølgning disse krever.

Følgene av avstengninger er redusert kapasitet og redundans, høyere vannalder på endeledninger, noe som kan føre til kvalitetsproblemer på drikkevannet.

En analyse av nettet med EDB-basert nettmodell, eks. MIKE Urban er nødvendig for å avdekke flaskehalsere samt klarlegge om tilstrekkelig trykk og kapasitet er tilstede over hele nettet etter eventuelle avstenging av ledninger. Analysen innebærer også å simulere effekten brannvannstapping har på nettet. Ledningsnettet er vanligvis dimensjonert for å levere nok trykk ved en normalsituasjon. Brannvannstapping innebærer på de fleste ledningsstrekk en mangedobling av det ordinære vannforbruket, med en merkbar nedgang i trykk på grunn av friksjonstapet som forårsakes.

Inninstallering av trykkreduksjonsventiler vil kunne forsterke de flaskehalsene som allerede finnes på vannledningsnettet. Reduksjonsventiler som er innstilt til å levere etter nedstrøms trykk, vil forårsake en tvangskjøring av vannet i nettet (Kalleberg, Mosevoll, Jacobsen, & Tomren, 1995).

En inndeling av trykksoner krever gjennomtenkte løsninger for å ivareta de hensyn som er nevnt ovenfor.

For høyt trykk kan gi følgende ulemper:

- Det vil lettere oppstå lekkasjer
- Lekkasjevolumet vil øke
- Lekkasjehull vokser hurtigere
- Lekkasjer i skjøter med gummipakninger øker med trykket
- Belastningene på nettet blir store
- Det blir nødvendig å installere reduksjonsventiler hos abonnentene
Definisjon av trykkbegrepet
Innen praktisk VA-teknikk er de mest brukte enhetene:

- Meter vannsøyle (mVS)
- Kilopond pr. cm² (kp/cm²)
- Bar (1bar = 1kPa)

Andre enheter når det er snakk om trykk er:

- Pascal (Pa)
- Kilopascal (kPa)
- Megapascal (MPa)
- Newton pr. m² (N/m²)
- Atmosfære (atm)

For omregning mellom enhetene gjelder:

- 1 kp/cm² = 10 mVS
- 1 Pa = 1 N/m² = 0,102 kp/m² = 0,102 \times 10^{-4} \text{ kp/cm}^2
- 1 kPa = 10³ Pa = 0,0102 kp/cm² = 0,102 mVS
- 1 MPa = 10⁶ Pa = 10,2 kp/cm² = 102 mVS
- 1 bar = 10⁵ N/m² = 100 kPa = 10,2 mVS
- 1 atm = 1,013 bar = 1,033 kp/cm² = 10,33 mVS

(Kalleberg, Mosevoll, Jacobsen, & Tomren, 1995).

Avhengig av om atmosfæretrykket tas med eller ikke, snakker vi om absolutt eller relativt trykk. Normalt angis relativt trykk når det er snakk om vanntrykk. Med relativt trykk forstås trykket i forhold til atmosfæretrykket. Hvis det relative trykket i en ledning er lavere enn atmosfæretrykket, sier vi at vi har undertrykk. Når trykk nevnes i denne rapporten, menes relativt trykk med mindre annet er nevnt.

Manometertrykk/Totaltrykk

- Totaltrykk = manometertrykket + stedshøyden
- Manometertrykket = vanntrykket målt med manometer på ledningsnettet (Roaldseth, 2003).

Ved vurdering av trykksoner er det hensiktsmessig å se på totaltrykket, da dette forteller oss hvor mye trykk en maksimalt har til rådighet på stedet som skal
undersøkes. For å finne manometertrykket, tas totaltrykket \(\div \) stedshøyden. I tillegg må det tas hensyn til friksjonstapet i ledningsettet.

Krav til trykk i vannledningsnettet
Ved inndeling i trykksoner tilstreber man å være innenfor akseptabelt trykk som er mellom 2 og 6 bar. Dette vil i praksis være vanskelig å oppnå i de områder som har store høydeforskjeller. Dersom normalt vanntrykk inne i en bygning overskrider 6 bar, skal det monteres reduksjonsventil (Kommuneforlaget AS, 2008). For minimumstrykk, vil forholdene i ugustigste punkt i forsyningssonen, ved maksimalt forbruk være dimensjonerende. (Kalleberg, Mosevoll, Jacobsen, & Tomren, 1995).

Laveste tappetrykk på 2-3 bar på hovedledning i boligfelt med lav-hus-bebyggelse bør være tilstrekkelig. Likevel kan abonnentene oppleve et for lavt trykk grunnet små dimensjoner, gjengroing eller lekkasje på stikkledningene. For å avklare om hovedledningen har for lavt trykk eller om det er stikkledningene som er flaskehalsen, bør det foretas trykkmåling på hovedledningen ved påkoblingspunktet. I Norge er det en tendens til at rørleggeren dimensjonerer det private ledningsanlegget noe knapt, siden det vanligvis er nok trykk tilgjengelig på det kommunale nettet.

Statisk trykk

Sammenheng trykk – lekkasjer
Vannføringen \(Q \) gjennom en åpning i et rør eller en ventil er avhengig av trykket i ledningen. Hvis åpningens størrelse ikke endrer seg med trykket, vil vannføringen være proporsjonal med kvadratroten av vanntrykket.

Vannføring gjennom en åpning er da gitt ved:

\[
Q = C_c \times A \times (2gH)^{0.5}
\]

hvor:

- \(Q \) = Vannføring (\(m^3/s \))
- \(C_c \) = kontraksjonskoeffisienten (0,5-0,95)
- \(A \) = areal av åpningen (\(m^2 \))
- \(H \) = vanntrykket (\(mVS \))
- \(g \) = tyngdeaksekselerasjonen (9,81 \(m/s^2 \))
For å forutsi sammenhengen mellom trykk og lekkasjemengde er det utviklet en ligning:

\[
\frac{L_1}{L_0} = \left(\frac{P_1}{P_0}\right)^{N_1}
\]

Hvor:

\(L_1\) = Lekkasjemengde etter endring av trykket

\(L_0\) = Lekkasjemengde før endring av trykket

\(P_1\) = Trykk etter

\(P_0\) = Trykk før

EkspONENTEN N₁ AVHENGER AV OM LEKKASJEÅPNINGEN HAR KONSTANT ELLER VARIERENDE AREAL, OG KAN VARIERE FRÅ 0,5 FOR STIVE RØR TIL 1,5 ELLER MER FOR FLEKSIBILE RØR OG SKJØTER. I ET PLASTRØR MED EN LANGSGÅENDE SPREKK, VIL LEKKASJEÅPNINGEN ØKЕ MED TRYKKT I LEDNINGEN. N₁ KAN LIGGE MELLOM 0,5 OG 2,5 FOR SMÅ OMRÅDER, MENS FOR STORE SYSTEMER MED EN BLANDING AV RØRMATERIALER KAN DEN LIGGE RUNDT 1, ALSÅ ET LINEÆRT FORHOLD MELLOM LEKKASJEMENGDE OG TRYKK (Thornton, 2003).

![Figur 2: L₁/L₀ som funksjon av P₁/P₀ ved forskjellige N₁](Thornton, 2003)

STØRRELSSEN PÅ N₁ KAN BESTEMMES VED Å REDUSERE TRYKKET PÅ LEDNINGEN INN TIL ET OMRÅDE OM NATTEN NÅR DET LEGALE FORBRUKET ER TILNÆRMET LIKT NULL. SAMTIDIG OBSERVERES
reduksjonen i forbruk og gjennomsnittlig trykk. En vil da se hvordan lekkasjemengden reduseres i forhold til reduksjonen i trykk. Figur 2 viser L_1/L_0 som funksjon av P_1/P_0 ved forskjellige verdier av $N1$.

Bruk av hydraulisk nettmodell til lekkasjekontroll

En nettmodell kan ikke benyttes til å lokalisere enkeltlekkasjer, men er et nyttig verktøy i planleggingen av trykk- og lekkasjesoner samt til videre arbeid med lekkasjekontroll.

Nettmodellen er en matematisk fremstilling av virkeligheten og det er viktig å sørge for at denne representerer vannledningsnettet så korrekt som mulig og kalibres før den tas i bruk til simuleringer. Oppbygging av modellen gjøres på grunnlag av ledningskartverket, og det er en fordel med god kjennskap til oppbyggingen av hele vannforsyningssystemet. Det er ikke alltid ledningskartverket inneholder all informasjon om detaljer, som nivåer på høydebassenger, styringsregler for pumper og trykkreduksjonsventiler. Modellen bør derfor gjennomgås og slike detaljer ettersees.

Til planlegging av trykk- og lekkasjesoner er en nettmodell nyttig da den synliggjør hvilke konsekvenser en ombygging av ledningsnettet vil ha. Endring av strømningsretninger og vannalder er to effekter som kan påvirke vannkvaliteten, henholdsvis på kort og lang sikt.

Trykket på ledningsnettet er den enkeltfaktoren som i størst grad påvirker lekkasjetapot. En reduksjon av trykket i et område vil også ha negative effekter som må tas hensyn til. Alle abonnenter skal fortsatt ha tilstrekkelig trykk ved høyeste time- og døgnforbruk, og resttrykket ved større uttak som brannvanntapping må også være nok til å unngå undertrykk på ledningsnettet. Faren for innsug av forurenset vann ved undertrykk på ledningene gjør at resttrykket ved spesielle hendelser må simuleres hvis et planlegges nye trykkreduksjoner. Slike simuleringer bør sees i sammenheng med brannvann-kart for å sikre at sårbare abonnenter tas hensyn til i vurderingen.

For å kunne si noe om effekten av å redusere trykket på mengden vann som tapes, kan det benyttes en forenklet ligning som tar utgangspunkt i lekkasjemengden i nå-situasjonen og det midlere trykket før og etter reduksjonen er satt i verk.

Hvis man benytter ligningen:
\[
\frac{L_1}{L_0} = \left(\frac{P_1}{P_0}\right)^{N_1}
\]

og antar en blanding av rørmaterialer og i tillegg tar til hensyn de langsiktige effektene av en trykkreduksjon, settes eksponenten N1 lik 1.

vi får da:

\[
\frac{L_1}{L_0} = \frac{P_1}{P_0}
\]

som gir:

\[
L_1 = L_0 \times \frac{P_1}{P_0}
\]

Altså en lineær sammenheng mellom forholdet trykk etter/trykk før og lekkasjemengde etter/ lekkasjemengde før.

Beregning av midlere trykk i området før og etter en trykkreduksjon har blitt satt i verk, gjøres i nettmodellen, og sammen med lekkasjemengden i nå-situasjonen kan lekkasjemengden etter iverksettelse av trykkreduksjon estimeres. Det må presiseres at dette likevel er til dels grove beregninger som må sees på som veiledende.
3. Ledningsnett og utstyr

Kilde og ledningsnett

Det kommunale ledningsnettet består av 102 km ledninger, inkludert hovedledninger, forsyningsledninger og fordelingsnett.

Trykk-/forbrukssoner
Vannledningsnettet er delt inn i en direktetrykkzone, redusert direktetrykk, hoytrykkzone, lavtrykkzone og tre mindre områder forsynt gjennom vannpumpestasjoner. Videre er de ulike trykksoner indelt i forbrukssoner ved hjelp av stengte ventiler og vannmengdemålere. De respektive forbrukssoner mates gjennom en til flere vannmengdemålere. Det er installert toveismålere når variasjoner i forbruks- og trykkmønster mellom to forbrukssoner fører til at vannstrømmen endrer retning i løpet av døgnet eller året.

Til drifts-oversvåkning benyttes Sentralt Driftsovervåkningsanlegg (SD-anlegg) levert av Normatic. I SD-anlegget er vannmengdemålere lagt inn med online oppdatering slik at vannledningsnettet kan overvåkes kontinuerlig og rapporter hentes ut for videre behandling av data. Det er ikke foretatt en systematisering av forbrukssoner i SD-anlegget, slik at en vannbalanse for hver enkelt lekkasjesone må settes opp manuelt i regneark.

Vannledningsnettet er delt inn i 16 lekkasje-/forbrukssoner med varierende størrelse. I denne rapporten blir vannbalanse satt opp for hver enkelt sone og total vannmengde samt nattvannforbruk gjennomgås for å få et mest mulig korrekt bilde av situasjonen. I løpet av et år vil det med ujevne mellomrom gå tapt data fra enkelte vannmengdemålere, enten grunnet feil på måleren, strøm, eller kommunikasjonen med sentral server. For å fange opp hull i datainnsamlingen, bør de beregnede vannmengder for hver enkelt forbrukssone gjennomgås og vurderes. Signifikante avvik fra en måned til en annen tyder på tapte data. I slike tilfeller er dataene for det aktuelle tidsrommet gjennomgått mer detaljert og med høyere opplysning for å kartlegge hvor data har manglet og for å supplere med erfaringsdata.

Trykk- og lekkasjesoner er skissert i Figur 3 og Figur 4 nedenfor.
Figur 3: Trykksoner Narvik

Figur 4: Lekkasjesoner Narvik
Direktetrykksonen (kt. 200)
Denne mottar vann direkte fra høydebassenget ved vannbehandlingsanlegget, og er delt opp i to forbrukssoner:

- Sone 1
- Sone 2

Direktetrykksonen leverer også vann videre til Sone Skistua (Sone 16 i kartet), kt. 237 via Skistua VP.

Høytrykksonen (kt. 136)
Består av:

Høytrykkson Oscarsborg:

- Sone 3
- Sone 4

Høytrykkson Storåsen/Framnes:

- Sone 9
- Sone 10

En høytrykksledning fra Sone 4 gjennom lavtrykksonen i sentrum forsyner Sone 9 og 10 gjennom Alleen VP. Pumpestanda er ikke i drift i en normalsituasjon, men fungerer som reserve hvis nevnte høytrykksledning skulle komme ut av drift. Sonene 9 og 10 vil da hente vann fra lavtrykssonen og gjennom Alleen VP.

Lavtrykksonen (kt. 100)
Omfatter:

- Sone 5
- Sone 6
- Sone 7
- Sone 8
- Sone 11
- Sone 12

Denne trykksonen forsynes fra Oscarsborg HB og gjennom Oterveien RK. Den leverer vann videre til Ankenes og Håkvik gjennom Nyborg VP.
Ankenes (kt. 91)

Trykksonen omfatter:

- Sone 13
- Sone 14

Mottar vann fra Ankenes HB som forsynes fra Sone 12 gjennom Nyborg VP.

Håkvik (kt. 85)

Trykksonen omfatter:

- Sone 15

Denne mottar vann fra Sone 14 via Håkvik HB.

Mindre pumpesoner

I tillegg er det to mindre områder forsynt gjennom vannpumpe i Sone 14 og Sone 15 som er slått sammen med sine respektive "modersoner" i beregningen av vannbalanse på grunn av manglende data fra vannmengdemålerne i pumpefasjonene.

Vannmålere

Presentasjon av måleresultater for sonene

Omfanget og utformingen av "software" på SD-anlegget er avhengig av hva den enkelte kommune ønsker av informasjon og presentasjon. I forbindelse med overvåkning av forbruket gir dagens programvare bare muligheter for å overvåke de enkelte vannmengdemåler, og har ikke et oppsett som gir ferdige rapporter eller presentasjoner av hvordan vannforbruket innen den enkelte forbrukssone varierer.

For å ha en god oversikt over hva som har hendt i løpet av et døgn, bør overvåkningsanlegget kunne presentere et oversiktsbilde med vannforbruk hver
måler og totalt for hver forbrukssone. Like viktig er det å kunne få presentert minste nattforbruk og kunne sammenligne dette i en periode bakover i tid. En permanent økning i minste nattforbruk indikerer at det har oppstått nye lekkasjer, og innsats kan settes inn raskt hvis dette fanges opp gjennom overvåkningen. Effektivt lekkasjarbeid er avhengig av denne daglige overvåkningen. Det er et klart behov for å videreutvikle dagens software for å få en god oversikt. Det bør være et oppsett med kart over alle forbrukssoners med tilhørende vannmengdemålere, samt en presentasjon av forbrukssonene i tabellform med nattvannforbruk for hver måler sammen med det minste nattvannforbruket innen hver sone. Ved å presentere dette sammen med trendkurver over forbruket i hver sone, vil det lettere fremgå når nye lekkasjer har oppstått eller eksisterende har vokst i størrelse.

Det kan lett bli gjort feil når vannbalansen for et år skal settes opp og det benyttes ferdig genererte rapporter for hver forbrukssone. Ut fra erfaringer vet man at vannmengdemålere i perioder kan være ute av drift, eller data av andre årsaker går tapt. Det vil da lett kunne bli unødvendige feil i beregningene som senere resulterer i feil prioriteringer enten ved lekkasjesøk eller ved saneringsplanlegging. Som en kvalitetskontroll bør det tas ut rapporter med månedsvverdier fra hver enkelt vannmengdemåler for et helt år, og kontrollere for manglende data når vannbalansen skal gjennomgås.
4. Vannbalanse og indikatorer

Beregninger
Sonebalansen utarbeidet i denne rapporten bygger videre på semesteroppgave fra høsten 2011. Noen vannmengdemålere er installert eller byttet ut siden forrige gjennomgang, samt at det nå eksisterer data for et helt år fra flere av målerne som tidligere år har manglet komplette data. Gjennom befaringer ute på målestasjoner og samtaler med driftspersonell har tidligere feil og mangler blitt rettet opp for å få et mer nøytaktig grunnlagsmateriale. Leverandøren av SD-anlegget har kontrollert samtige målerhoder og justert de målere hvor det ikke har vært samsvar mellom verdiene målerhodet viser, og de dataene serveren mottar.

Nattforbruket for de enkelte soner har også blitt gjennomgått for hele året og drøftet.

I Narvik kommune blir nesten samtlige husholdninger fakturert etter areal. Dette gjør det mer utfordrende å estimere hva forbruket hos husholdningene faktisk er. Erfaringer fra kommuner med full vannmålerdekning tilsier et personforbruk på 150 l/pe døgn, noe som tilsvarer 55 m³/år.

Det ble høsten 2011 innhentet folkeregisterdata som har blitt sortert etter forbrukssone, for videre å bli benyttet til beregning av personforbruk. I de tilfeller hvor bygårder og boligblokker har installert vannmålere, er antall folkeregistrerte tilknyttet de gjeldende lekkasjesoner trukket fra for å unngå å registrere forbruket dobbelt.

De fleste næringsabonnenter og offentlige institusjoner har installert vannmålere hvor målerstand rapporteres inn ved årets slutt. De to største forbrukerne, LKAB og REC Scancell har i tillegg hatt månedlige registreringer av målerstand.
Resultater vannbalanse

Nedenfor presenteres vannbalanse for hver enkelt lekkasjesone i tabellform, utarbeidet på grunnlag av de data som er tilgjengelige for leverte vannmengder i hver enkelt lekkasjesone, faktureret målt forbruk og folkeregisterdata. I tillegg er det tatt med midlere trykk i de ulike forbrukssoner og antall registrerte brudd/lekkasjer som er reparert de siste 13 år. Dette for å benytte til videre sammenligning og vurdering.

Tabell 1: Resultater vannbalanse 2011 Narvik

<table>
<thead>
<tr>
<th>Lekkasjesone</th>
<th>Vann levert inn i sone m³</th>
<th>Totalt forbruk m³</th>
<th>Tap i sone m³</th>
<th>Tap i sone %</th>
<th>Tap l/s km ledning</th>
<th>Midlere trykk i sone mV/s</th>
<th>Antall brudd 1999-2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skistua</td>
<td>12 368</td>
<td>15 890</td>
<td>3 678</td>
<td>30</td>
<td>0.15</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>1+2 *</td>
<td>215 481</td>
<td>158 920</td>
<td>58 541</td>
<td>26</td>
<td>0.23</td>
<td>67</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>47 198</td>
<td>35 193</td>
<td>12 005</td>
<td>25</td>
<td>0.13</td>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>230 953</td>
<td>70 211</td>
<td>160 742</td>
<td>70</td>
<td>0.67</td>
<td>65</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>219 667</td>
<td>114 279</td>
<td>105 388</td>
<td>48</td>
<td>0.44</td>
<td>58</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>202 770</td>
<td>98 200</td>
<td>104 570</td>
<td>52</td>
<td>0.64</td>
<td>52</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>764 619</td>
<td>414 706</td>
<td>369 913</td>
<td>47</td>
<td>1.33</td>
<td>68</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>76 944</td>
<td>55 154</td>
<td>21 790</td>
<td>28</td>
<td>0.14</td>
<td>59</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>157 430</td>
<td>53 099</td>
<td>104 331</td>
<td>66</td>
<td>0.73</td>
<td>68</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>195 935</td>
<td>66 578</td>
<td>129 357</td>
<td>66</td>
<td>1.00</td>
<td>56</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>350 404</td>
<td>333 867</td>
<td>16 537</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>408 002</td>
<td>74 123</td>
<td>333 879</td>
<td>82</td>
<td>0.80</td>
<td>87</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>131 443</td>
<td>63 178</td>
<td>68 265</td>
<td>52</td>
<td>0.28</td>
<td>70</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>343 217</td>
<td>117 155</td>
<td>226 062</td>
<td>66</td>
<td>0.53</td>
<td>67</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>119 346</td>
<td>49 674</td>
<td>69 672</td>
<td>58</td>
<td>0.21</td>
<td>52</td>
<td>1</td>
</tr>
<tr>
<td>Totalt</td>
<td>3 478 361</td>
<td>1 713 027</td>
<td>1 782 730</td>
<td>51</td>
<td>0.57</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

Vannmengde levert fra TAVBA: 3 789 242
Differanse: -310 881
Differanse %: -8 %

* Lekkasjesone 1 og 2 er slått sammen på grunn av defekt vannmengdemåler.

Den totale vanntapsprosenten ut fra sonevis vannbalanse, er på 51 %. I tillegg forekommer tap på hovedledninger og tilsynelatende tap på grunn av unøyaktigheter på vannmengdemåler.

Hvis det antas en 50/50 fordeling mellom tap på hovedledninger og vannmålerfeil, vil 4 % av total vannmengde levert fra Taraldsvikfossen vannbehandlingsanlegg tapes gjennom utettheter på hovedledningene.
Tabell 2: Nattvannforbruk 2011 Narvik

<table>
<thead>
<tr>
<th>Måned</th>
<th>Skistua</th>
<th>1+2</th>
<th>3</th>
<th>4</th>
<th>5+6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>0,2</td>
<td>20,2</td>
<td>1,8</td>
<td>5,1</td>
<td>11,8</td>
<td>19,3</td>
<td>1,8</td>
<td>4,1</td>
<td>4,7</td>
<td>9,5</td>
<td>13,9</td>
<td>3,7</td>
<td>8,8</td>
<td>1,7</td>
</tr>
<tr>
<td>Februar</td>
<td>0,4</td>
<td>11,0</td>
<td>1,7</td>
<td>4,8</td>
<td>16,0</td>
<td>20,8</td>
<td>1,3</td>
<td>3,8</td>
<td>4,5</td>
<td>10,2</td>
<td>14,6</td>
<td>3,8</td>
<td>8,2</td>
<td>1,5</td>
</tr>
<tr>
<td>Mars</td>
<td>0,4</td>
<td>3,6</td>
<td>1,4</td>
<td>5,7</td>
<td>14,2</td>
<td>22,2</td>
<td>2,7</td>
<td>3,8</td>
<td>4,7</td>
<td>8,1</td>
<td>14,5</td>
<td>3,7</td>
<td>8,1</td>
<td>1,7</td>
</tr>
<tr>
<td>April</td>
<td>0,4</td>
<td>2,3</td>
<td>1,3</td>
<td>5,2</td>
<td>14,6</td>
<td>25,2</td>
<td>3,4</td>
<td>3,9</td>
<td>5,2</td>
<td>5,4</td>
<td>13,3</td>
<td>2,9</td>
<td>10,1</td>
<td>1,9</td>
</tr>
<tr>
<td>Mai</td>
<td>0,4</td>
<td>2,8</td>
<td>0,7</td>
<td>5,7</td>
<td>13,7</td>
<td>27,0</td>
<td>3,9</td>
<td>3,8</td>
<td>4,9</td>
<td>6,0</td>
<td>8,5</td>
<td>2,5</td>
<td>11,0</td>
<td>2,8</td>
</tr>
<tr>
<td>Juni</td>
<td>0,1</td>
<td>2,7</td>
<td>0,7</td>
<td>5,7</td>
<td>13,8</td>
<td>28,4</td>
<td>3,9</td>
<td>3,8</td>
<td>5,1</td>
<td>6,5</td>
<td>9,1</td>
<td>2,1</td>
<td>7,6</td>
<td>3,5</td>
</tr>
<tr>
<td>Juli</td>
<td>0,1</td>
<td>3,1</td>
<td>0,7</td>
<td>5,8</td>
<td>7,7</td>
<td>19,6</td>
<td>3,0</td>
<td>4,0</td>
<td>5,2</td>
<td>12,3</td>
<td>9,2</td>
<td>1,9</td>
<td>7,4</td>
<td>4,2</td>
</tr>
<tr>
<td>August</td>
<td>0,1</td>
<td>2,8</td>
<td>0,7</td>
<td>5,7</td>
<td>9,9</td>
<td>12,3</td>
<td>3,0</td>
<td>3,8</td>
<td>5,1</td>
<td>12,6</td>
<td>9,7</td>
<td>1,8</td>
<td>7,5</td>
<td>2,3</td>
</tr>
<tr>
<td>September</td>
<td>0,1</td>
<td>3,2</td>
<td>0,7</td>
<td>5,4</td>
<td>9,1</td>
<td>11,4</td>
<td>3,2</td>
<td>3,6</td>
<td>4,9</td>
<td>13,9</td>
<td>9,3</td>
<td>2,5</td>
<td>7,1</td>
<td>2,0</td>
</tr>
<tr>
<td>Oktober</td>
<td>0,1</td>
<td>3,9</td>
<td>0,7</td>
<td>5,5</td>
<td>7,4</td>
<td>11,9</td>
<td>1,4</td>
<td>3,6</td>
<td>5,1</td>
<td>13,0</td>
<td>10,2</td>
<td>4,6</td>
<td>7,6</td>
<td>1,9</td>
</tr>
<tr>
<td>November</td>
<td>0,1</td>
<td>3,5</td>
<td>0,6</td>
<td>5,8</td>
<td>7,4</td>
<td>12,4</td>
<td>1,3</td>
<td>3,6</td>
<td>5,0</td>
<td>9,8</td>
<td>9,9</td>
<td>4,0</td>
<td>8,0</td>
<td>1,7</td>
</tr>
<tr>
<td>Desember</td>
<td>0,1</td>
<td>12,6</td>
<td>0,6</td>
<td>6,3</td>
<td>6,1</td>
<td>14,2</td>
<td>1,2</td>
<td>4,2</td>
<td>4,5</td>
<td>10,5</td>
<td>9,5</td>
<td>3,3</td>
<td>8,5</td>
<td>1,7</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0,1</td>
<td>2,3</td>
<td>0,6</td>
<td>4,8</td>
<td>6,1</td>
<td>11,4</td>
<td>1,2</td>
<td>3,6</td>
<td>4,5</td>
<td>5,4</td>
<td>8,5</td>
<td>1,8</td>
<td>7,1</td>
<td>1,5</td>
</tr>
<tr>
<td>Middel</td>
<td>0,2</td>
<td>6,0</td>
<td>1,0</td>
<td>5,6</td>
<td>11,0</td>
<td>18,7</td>
<td>2,5</td>
<td>3,8</td>
<td>4,9</td>
<td>9,8</td>
<td>11,0</td>
<td>3,1</td>
<td>8,3</td>
<td>2,2</td>
</tr>
<tr>
<td>Maks</td>
<td>0,4</td>
<td>20,2</td>
<td>1,8</td>
<td>6,3</td>
<td>16,0</td>
<td>28,4</td>
<td>3,9</td>
<td>4,2</td>
<td>5,2</td>
<td>13,9</td>
<td>14,6</td>
<td>4,6</td>
<td>11,0</td>
<td>4,2</td>
</tr>
<tr>
<td></td>
<td>134,7</td>
</tr>
</tbody>
</table>
I Tabell 2 er nattvannforbruket for alle soner tatt med. Til forskjell fra vannbalansen er sone 5 og 6 slått sammen i tabellen over nattvannforbruket. Dette skyldes feil med vannmåleren mellom de to sonene som har gjort det vanskelig å få pålitelige tall for hver enkelt av dem.

Tallene fra nattvannforbruket er brukt som en verifisering av resultatene i vannbalansen. I lekkasjesonene 3, 5+6, 7 og 13 viser nattforbruket tendenser til frost-tapping, mens det forhøyede forbruket i sommermånedene i sone 15 kan forklares med en lekkasje som ble utbedret i starten av august. For sone Skistua er de registrerte verdiene svært lave og er ikke troverdige. Sone 1+2 har hatt uttak til produksjon av snø vinterstid, noe som forklarer det høye forbruket i desember, januar og februar.
Midlere trykk i soner
For å finne midlere trykk i vannledningsnettet og hver enkelt forbrukssone er det i hovedsak tre metoder:

- Benytte en hydraulisk modell for å generere slike data. Denne metoden krever lite innsats hvis det allerede finnes en modell hvor det kan kjøres simuleringer med varierende forbruk.
- For flatte områder kan det foretas trykkmålinger på utvalgte steder fordelt utover forsyningsområdet og kalkulert et midlere trykk.
- I områder med store høydeforskjeller bør forsyningsområdet deles inn etter totaltrykk i ledningsnettet og kalkulere midlere trykk ut fra dette og data på høyder i terrenget vektet etter hvor mye ledninger som er anlagt hvor i området.

For Narvik vannverk er det benyttet hydraulisk nettmodell MIKE Urban til å generere data for midlere trykk. Det er kjørt simuleringer for normaldøgn og hentet ut rapporter med midlere trykk for alle kummer i hver enkelt lekkasjesone.

Statistikk over ledningsnettet
Narvik VAR benytter Gemini VA til håndtering av data over ledningsnett og driftshendelser. Som et ledd i vurderingen av lekkasjesonene er det hentet ut data over vannledningene og registrerte brudd/lekkasjer de siste 13 år.

Ledningsnettet tilhørende Narvik vannverk er i overkant av 102 km når kun de kommunale ledningene er tatt med.

Ledningsmaterialer og anleggsår
Basert på erfaringer kjenner vi til at de ulike ledningsmaterialer har historiske utviklingstrekk som påvirker kvaliteten (Hafskjold, 2008). I Tabell 3 defineres de ulike rørklasser basert på anleggsår/produksjonsår for ledningsmaterialene.

Tabell 3: Materialklasser (Sægrov & Selseth, 2000)

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Anleggsår</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1</td>
<td>PE<1975</td>
</tr>
<tr>
<td>PE2</td>
<td>PE>1975</td>
</tr>
<tr>
<td>PVC1</td>
<td>PVC<1980</td>
</tr>
<tr>
<td>PVC2</td>
<td>PVC>1980</td>
</tr>
<tr>
<td>SJK</td>
<td>SJK</td>
</tr>
<tr>
<td>SJK10</td>
<td>SJK<1975</td>
</tr>
<tr>
<td>SJK20</td>
<td>SJK 1975-90</td>
</tr>
<tr>
<td>SJK30</td>
<td>SJK>1990</td>
</tr>
</tbody>
</table>

Forbedrede produksjonsmetoder utover 1970- og begynnelsen av 1980-tallet definerer skillet mellom ulike typer av PE og PVC. Grått støpejern defineres som en klasse, mens duktilt støpejern er delt inn i tre klasser. SJK10 er duktilt støpejern uten
korrosjonsbeskyttelse, SJK20 har innvendig korrosjonsbeskyttelse mens SJK30 har både innvendig og utvendig korrosjonsbeskyttelse.

I Tabell 4 er ledningene sortert etter anleggsår og materialklasser. Tabellen viser hvor mange meter ledning som er anlagt innenfor hvert års-intervall og materialklasse. Søylediagrammene i Figur 5 illustrerer fordelingen.

Tabell 4 Ledningslengder fordelt på klasser og anleggsår

<table>
<thead>
<tr>
<th>[meter ledning]</th>
<th>PE1</th>
<th>PE2</th>
<th>PVC1</th>
<th>PVC2</th>
<th>SJG</th>
<th>SJK10</th>
<th>SJK20</th>
<th>SJK30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anleggsår</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1920-1924</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1925-1929</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1064</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1930-1934</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1935-1939</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>315</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1940-1944</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1945-1949</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950-1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3703</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955-1959</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6950</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1960-1964</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6887</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965-1969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970-1974</td>
<td>3940</td>
<td>7753</td>
<td>683</td>
<td>2721</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975-1979</td>
<td>56</td>
<td>351</td>
<td>34</td>
<td>4052</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1980-1984</td>
<td>1333</td>
<td>625</td>
<td>13823</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985-1989</td>
<td>23</td>
<td></td>
<td>9486</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990-1994</td>
<td>130</td>
<td></td>
<td></td>
<td>3142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995-1999</td>
<td>2974</td>
<td>3155</td>
<td>1637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-2004</td>
<td>7772</td>
<td>461</td>
<td>743</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005-2009</td>
<td>6172</td>
<td>115</td>
<td>1722</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-2014</td>
<td>1370</td>
<td></td>
<td>244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalt</td>
<td>3940</td>
<td>19829</td>
<td>8104</td>
<td>4356</td>
<td>28437</td>
<td>2755</td>
<td>27361</td>
<td>7487</td>
</tr>
</tbody>
</table>
Figur 5 Ledningslengder fordelt på anleggsår og materialklasser

Figur 6 viser fordelingen mellom rørmaterialer det fortsatt er grått støpejern som har den største andelen. Til sammen to tredeler av ledningsnettet består av grått og duktilt støpejern, hvorav syv prosent er duktilt med innvendig og utvendig korrosjonsbeskyttelse.
Driftsdata fra Gemini VA

Tabell 5: Brudd/lekkasjer pr år

<table>
<thead>
<tr>
<th>År</th>
<th>Antall brudd/lekkasjer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>6</td>
</tr>
<tr>
<td>2000</td>
<td>8</td>
</tr>
<tr>
<td>2001</td>
<td>14</td>
</tr>
<tr>
<td>2002</td>
<td>8</td>
</tr>
<tr>
<td>2003</td>
<td>6</td>
</tr>
<tr>
<td>2004</td>
<td>16</td>
</tr>
<tr>
<td>2005</td>
<td>14</td>
</tr>
<tr>
<td>2006</td>
<td>12</td>
</tr>
<tr>
<td>2007</td>
<td>4</td>
</tr>
<tr>
<td>2008</td>
<td>14</td>
</tr>
<tr>
<td>2009</td>
<td>11</td>
</tr>
<tr>
<td>2010</td>
<td>19</td>
</tr>
<tr>
<td>2011</td>
<td>10</td>
</tr>
</tbody>
</table>
Figur 7 viser en tendens til et økende antall lekkasjer de siste 12 år, samtidig enkelte år med markant færre lekkasjer enn årene før og etter. Det er stadig store variasjoner i antall rapporterte lekkasjer fra år til år, noe som kan forklares med hvor kalde vintre som har vært. Teledannelsen på høsten/tidlig vinter er også forskjellig fra år til år. Hvor raskt innfryisingen skjer, har noe å si for hvor dypt telen stikker ned i jorden.

For senere å kunne rangere de ulike lekkasjesoner for videre innsats med detaljlokalisering av lekkasjer, samt til bruk i arbeid med saneringsplaner, vil det være interessant å se på hvordan lekkasjene har fordelt seg mellom både lekkasjesonene og de ulike typer ledningsmaterialer.
Nedenfor er de rapporterte lekkasjene fra perioden 1999-2011 sortert etter ledningsmateriale

Tabell 6: Brudd/lekkasjer fordelt på ledningsmateriale

<table>
<thead>
<tr>
<th>Brudd/lekkasjer etter ledningsmaterial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SJG</td>
<td>96</td>
</tr>
<tr>
<td>SJK</td>
<td>31</td>
</tr>
<tr>
<td>PE</td>
<td>10</td>
</tr>
<tr>
<td>PVC</td>
<td>5</td>
</tr>
</tbody>
</table>

Figur 8: Brudd/lekkasjer fordelt på ledningsmateriale

To tredeler av lekkasjene forekommer på ledninger av grått støpejern, mens en femtedel er på ledninger av duktil støpejern. Dette er ikke uventet da disse ledningene er svært utsatt for korrosjon Grått støpejern er et sprøtt materiale og dermed ekstra utsatt for tverrbrudd eller utsprengte flak (Mosevoll, et al., 2011).
<table>
<thead>
<tr>
<th>Lekkasjesone</th>
<th>Antall brudd 1999-2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Hovednett</td>
<td>5</td>
</tr>
</tbody>
</table>
Kommentar til resultatene
Når vannbalansen betraktes, vil det komme frem visse variasjoner i de forskjellige indikatorer som bør vurderes nærmere. Som nevnt under teoridelen, vil alle indikatorer vurderes, og lekkasjemengden i prosent vektlegges i mindre grad, da den er svært avhengig av hvor stort forbruket er i den enkelte lekkasjesone.

Beregningene for sone 5 og 6 er noe usikre, da vannmåleren mellom de to (VM 6.1, Rådhuset MS) ikke har kontinuerlig historikk fra 2011 og vannmengden gjennom denne har blitt estimeret ut fra erfaringsdata.

Sone Skistua

Det knyttes også usikkerheter til om de målte verdier gjennom vannpumpestasjonen er korrekte de er svært lave nattestid, under 0,1 l/s.

Sone 1+2
Disse to lekkasjesonene utgjør direktetrykksonen, og har et midlere trykk på 67 mVS og enkelte deler av sonen er trykket opp mot 100 mVS. En lekkasjeandel på 26 % kan ved første øyekast virke lav, men tatt i betraktning et høyt forbruk, er lekkasjeandelen likevel stor i denne sonen. Medregnet i forbruket ligger vann til produkjon av snø i alpinanlegget, som er beregnet til 72 000 m³ for 2011. Hvis dette forbruket trekkes fra, er lekkasjeandelen på ca. 64 %.

Sone 3
Denne sonen har det laveste vanntapet, både målt i prosent og pr km ledningslengde, noe som ikke er overraskende med et midlere trykk på 56 mVS og tatt med i betraktningen sammensetningen av rørmaterialer.

Sone 4
Her viser beregningene et relativt lavt lekkasjetap både i prosent og i l/s og km ledning, noe som også samsvarer med et relativt lavt midlere trykk (56 mVS).

Sone 5
Både på lekkasjeprosent og l/s km ledning ligger denne sonen middels i forhold til gjennomsnittet. Sonen ligger i sentrum av Narvik, og dermed den mest tettbygde delen av ledningsnettet. Bruddhistorikken viser at det likevel forekommer mer rapporterte lekkasjer i denne sonen gjennomsnittlig på ledningsnettet. Tilfellet med bruddhistorikken kan også være på grunn av at lekkasjene i denne delen av nettet kommer lettere opp i dagen og blir synlige.
Sone 6
Sonen er i stor grad lik sone 5, bortsett fra et lavere midlere trykk, men likevel høyere beregnet lekkasjetap.

Sone 7
Vannforbruket til REC Scancells fabrikk, var i 2011 på over 300 000 m³, noe som bidrar til en lav lekkasjeprosent sett i forhold til tap i l/s km ledning. En høy andel grått støpejern (38 %) og et midlere trykk på 68 mVS gir også forutsetninger for et høyt lekkasjetap.

Sone 8
Et relativt lavt midlere trykk (59 mVS) bidrar til at denne lekkasjesonen er blant de med lavest lekkasjetap, både i prosent (28 %) og i l/s km ledning (0,14). Dette til tross for en andel av grått støpejern på 52 %.

Sone 9
Et tap på 0,73 l/s km ledning kan forklares med andelen grått og ubeskyttet duktilt støpejern på til sammen 60 %, kombinert med et midlere trykk på 68 mVS.

Sone 10
Denne sonen har den nest høyeste lekkasjemengden pr km ledning til tross for et relativt lavt midlere trykk. Forklaringen ligger sannsynligvis i at bortimot alle ledninger er i støpejern, hvorav 62 % grått og 37 % mellomklasse duktilt støpejern.

Sone 11
Den reelle lekkasjemengden i denne sonen er sannsynligvis langt høyere enn 5%, da den tilhører et industriselskap som faktureres for nesten all vannmengde levert inn i sonen. Ledningskartverk er ikke tilgjengelig for denne sonen.

Sone 12
Denne sonen har det høyeste midlere trykket i hele vannverket, noe som gir et grunnlag for en høy lekkasjeandel. Vanntapet målt i m³ fra denne sonen utgjør 17% av alt vanntap i hele vannverket.

Sone 13
Vanntapsprosenten ligger rundt gjennomsnittet for hele vannverket, mens tapet pr km ledning er relativt lavt, noe som kan forklares med at de fleste ledninger er nyere enn 30 år.

Sone 14
Sone 15
Spredt bebyggelse og lange ledningsstrekk gjør tapet pr km ledning lavt for denne sonen, mens tapsprosenten ligger litt over middels. Nattforbruket fra mai til juli var betydelig høyere enn resten av året, noe som sannsynligvis kan forklares med en lekkasje som ble rapportert i begynnelsen av august.

Figur 9 viser en gradvis økning i nattforbruk på sommeren 2011 i sone 15, hvor et større brudd ble rapportert i starten av august.

![Nattforbruk sone 15](image)

Figur 9: Økning i nattforbruk sone 15 med rapportert brudd
Rangering av lekkasjesoner

Lekkasjesonene har ulik sammensetning med varierende størrelse og ledningstetthet. For å vurdere hvilke lekkasjesoner som skal prioriteres først ved innsats med lekkasjesøk, er det valgt en vekting mellom følgende parametere:

- tap l/s km ledning 0,7
- tap m³/år 0,2
- tapsprosent 0,1

Tabell 8: Rangering av lekkasjesoner

<table>
<thead>
<tr>
<th>Prioritet etter vekting</th>
<th>Lekkasjesone</th>
<th>Tap i sone m³</th>
<th>Tap i sone %</th>
<th>Tap l/s km ledning</th>
<th>Midlere trykk i sone mVs</th>
<th>Antall brudd 1999-2012</th>
<th>Antel grått støpejern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>369 913</td>
<td>47,1</td>
<td>1,33</td>
<td>68</td>
<td>19</td>
<td>38 %</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>333 879</td>
<td>91,8</td>
<td>0,90</td>
<td>87</td>
<td>7</td>
<td>20 %</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>129 357</td>
<td>66,0</td>
<td>1,00</td>
<td>56</td>
<td>7</td>
<td>62 %</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>160 742</td>
<td>69,6</td>
<td>0,67</td>
<td>65</td>
<td>13</td>
<td>40 %</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>104 331</td>
<td>66,3</td>
<td>0,73</td>
<td>68</td>
<td>7</td>
<td>51 %</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>226 062</td>
<td>65,9</td>
<td>0,53</td>
<td>67</td>
<td>32</td>
<td>12 %</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>104 570</td>
<td>51,6</td>
<td>0,64</td>
<td>52</td>
<td>12</td>
<td>57 %</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>105 388</td>
<td>48,0</td>
<td>0,44</td>
<td>58</td>
<td>17</td>
<td>31 %</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>16 265</td>
<td>51,9</td>
<td>0,26</td>
<td>70</td>
<td>8</td>
<td>19 %</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>69 672</td>
<td>58,4</td>
<td>0,21</td>
<td>52</td>
<td>1</td>
<td>0 %</td>
</tr>
<tr>
<td>11</td>
<td>1+2</td>
<td>56 541</td>
<td>26,2</td>
<td>0,23</td>
<td>67</td>
<td>6</td>
<td>25 %</td>
</tr>
<tr>
<td>12</td>
<td>Skistua</td>
<td>3 678</td>
<td>29,7</td>
<td>0,15</td>
<td>53</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>21 790</td>
<td>28,3</td>
<td>0,14</td>
<td>59</td>
<td>7</td>
<td>52 %</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>12 005</td>
<td>25,4</td>
<td>0,13</td>
<td>56</td>
<td>1</td>
<td>19 %</td>
</tr>
</tbody>
</table>

Gjennomsnittlig antall rapporterte lekkasjer pr sone er 9,8 på denne 13-års perioden. I tre av de fem høyest rangerte soner er det rapportert færre lekkasjer enn dette.

I soner med høyest beregnet lekkasjetap må det også legges inn innsats for å avdekke om det er abonnenter som ikke registrerer forbruk.

I saneringsplanleggingen kommer det inn langt flere faktorer enn parameterne relatert til lekkasjer. Vann- avløps- og overvannsledningene ligger oftest i samme grøft, og alle må tas med i vurderingen når ledningsstrekk og områder skal prioriteres for utskiftninger.
På vannledningsnettet vil det også være vurderinger rundt kapasitetsforbedringer og restlevetid på ledningene som kommer inn. Ut fra statistikken hentet i Gemini, forekommer flertallet av rapporterte lekkasjer på ledninger av grått støpejern, som er den eldste ledningsklassen.

Det kan forekomme relativt store enkeltlekkasjer som ikke oppdages uten aktiv lekkasjesøk. Avhengig av forholdene i ledningsgrøftene og konduktiviteten på massene i områdene rundt, vil enkeltlekkasjer i noen tilfeller lettere bli synlige på overflaten. En lekkasje blir synlig enten ved at vann strømmer opp på overflaten eller at utvasking av masser forårsaker setninger i området rundt.

Nyere teknologi gjør det mulig å innhente en presis kunnskap om rørtilstanden og behovet for tiltak enten i form av utskiftning eller rehabilitering av eksisterende ledning. Firmaet Breivoll Inspection Technologies AS (BIT) tilbyr scanning av metalliske rør ved hjelp av akustisk resonansteknologi som er i stand til å identifisere svake områder og kan skille mellom innvendig og utvendig korrosjon samt gi en tilstandsvurdering av innvendig sementmørtelbelegg. Et godt beslutningsgrunnlag kan være svært kostnadsbesparende da ledningseier unngår å skifte ut en ledning som fortsatt har en betydelig restlevetid før det i faktisk er nødvendig.
5. Sammenligning av vanntap og ressursbruk
I dette avsnittet gjennomgås og vurderes vanntapet i Narvik sammenlignet med et utvalg norske kommuner. Videre gjennomgås innsatsen med lekkasjesøk hos enkelte kommuner samt en drøfting av hvilket nivå Narvik bør sikte mot.

Sammenligning av vanntap
Narvik VAR er med i den årlige tilstandsverderingen av norske vannverk i regi av Norsk Vann, som blant annet omfatter vanntap. Figur 10 viser vanntap i kommunene fra undersøkelsen, hvor Narvik er i kategorien med høyest andel ikke bokført vann. Narvik er for øvrig notert med ca. 45 % vanntap, noe som er lavere enn det reelle. I 2010 lå vanntapet på over 55 % for Narvik. Dette ble rapportert feil på grunn av for høyt spesifikt personforbruk i beregningene.

![Figur 10: Vanntap på ledningsnettet i norske kommuner 2010 (Norsk Vann, 2010)](image)

For husholdnings- og fritidsabonnenter, hvor vannforbruket ikke er målt, ble det for 2010 benyttet 150 l/pe og døgn i beregningene. I de foregående år ble det benyttet 180 l/pe og døgn, noe som fører til at kommuner med lav vannmålerdekning viser en økning i beregnet vanntap i forhold til tidligere.
Kommuner som det er hensiktsmessig å sammenligne Narvik med er kystkommuner med omtrent lik størrelse som Narvik. Antall innbyggere tilknyttet tjenesten i parentes:

Stjørdal (14000) 44 %,

Fjell (14750) 46 % (ved Bergen),

Harstad (20659) 61 %

Alle tre kommunene kommer inn under kategorien med høyest vanntap (over 40 %). Klepp kommune er også lokalisert ved kysten og har omtrent samme innbyggetall som Narvik, men har rapportert inn et vanntap på bare 8 % og har en flat topografi. Denne er dermed for forskjellig fra forholdene i Narvik til at det er hensiktsmessig å sammenligne med.

Lekkasjesøk

I Norsk Vann Rapport 171 fra 2009 ble det foretatt en spørreundersøkelse blant 11 kommuner, 2 interkommunale selskap, 1 privat vannverk og 1 rådgivende ingeniørfirma for å kartlegge status og erfaringer innen lekkasjesøk i Norge.

I tabellen nedenfor er de 5 vannverkene fra undersøkelsen som er nærmest Narvik vannverk i størrelse sammenlignet ut fra nøkkeltallene:

- Voss kommune
- Gjøvik kommune
- Hamar kommune
- Moss kommune
- Porsgrunn kommune

Tabell 9: Lekkasjenivå, ulike indikatorer

<table>
<thead>
<tr>
<th></th>
<th>Antall personer</th>
<th>Lengde ledn. nett [km]</th>
<th>Total vannforsynning [mill m³/år]</th>
<th>Lekkasjemengde [%]</th>
<th>Lekkasjemengde [l/s km ledning]</th>
<th>Antall meter ledn. pr person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voss</td>
<td>7000</td>
<td>124</td>
<td>1 189 200</td>
<td>297 000</td>
<td>25</td>
<td>0,08</td>
</tr>
<tr>
<td>Gjøvik</td>
<td>21000</td>
<td>240</td>
<td>3 000 000</td>
<td>1 200 000</td>
<td>40</td>
<td>0,16</td>
</tr>
<tr>
<td>Hamar</td>
<td>25530</td>
<td>227</td>
<td>3 091 000</td>
<td>1 136 000</td>
<td>37</td>
<td>0,16</td>
</tr>
<tr>
<td>Moss</td>
<td>28000</td>
<td>153</td>
<td>3 226 781</td>
<td>1 187 000</td>
<td>37</td>
<td>0,25</td>
</tr>
<tr>
<td>Porsgrunn</td>
<td>33000</td>
<td>310</td>
<td>6 600 000</td>
<td>2 640 000</td>
<td>40</td>
<td>0,27</td>
</tr>
<tr>
<td>Narvik</td>
<td>15300</td>
<td>102</td>
<td>3 794 326</td>
<td>2 029 374</td>
<td>53</td>
<td>0,63</td>
</tr>
</tbody>
</table>

Kommunene i utvalget ovenfor rapporterer en lekkasjemengde på mellom 25 og 40 %, mens "lekkasjemengden i l/s km ledning" varierer mellom 0,08 og 0,27. I Narvik er lekkasjemengden beregnet til 53 % og lekkasjemengden i l/s km ledning er 0,63.

En sammenligning mellom flere vannverk bør ikke gjøres ukritisk siden de ulike indikatorer bør vurderes ut fra hvordan det enkelte vannverk er proporsjonert. Et
vannverk kan ha en konsentrert bebyggelse, og dermed færre km ledningsnett pr innbygger mens et som er mer spredt bebygd vil ha flere km ledningsnett pr innbygger. Også typer av forbruk vil være forskjellig: Mens noen vannverk har vannkrevende industri, vil andre ha hovedsakelig personforbruk. Disse faktorene vil også være med på å innvirke hvordan de ulike parametere relatert til lekkasjetap varierer i størrelse.

Lekkasjeprosenten i Narvik er betydelig høyere sammenlignet med kommunene fra undersøkelsen og landsgjennomsnittet for øvrig. Ser man på "lekkasjemengden i l/s km ledning", er denne mer enn det dobbelte av gjennomsnittet blant de øvrige. Deler av forklaringen kan være tettheten på bebyggelsen, noe som bekreftes hvis man ser på parameteren "antall meter ledning, pr person" som for Narvik er markant lavere enn gjennomsnittet. I et bysentrum med få meter ledning pr person vil samtidig ha flere anboringer pr km ledningslengde og like mange stikkledninger. Den oppgitte lekkasjemengden omfatter hele ledningsnettet, inkludert private felles- og stikkledninger. Lekkåsene ved anboringer og på de private stikkledningene er ikke ubetydelig. Større vannverk med erfaringer fra systematisk lekkasjesøk både på kommunale og private ledninger, antyder at lekkåsene fra private ledninger står for mellom 30 og 50 % av det totale vanntapet.

Økonomi

Kommunene i undersøkelsen har også besvart spørsmål om hvilke budsjettall som benyttes årlig til lekkasjesøking. Det er knyttet en del usikkerheter til de oppgitte tallene da det er uklart hva som er tatt med i de oppgitte kostnadene. I noen besvarelser kan det være tatt med reparasjonskostnader i tillegg til kostnader til lekkasjesøk. I Tabell 10 nedenfor er samtlige av kommunene i undersøkelsen tatt med.
Det er en tydelig tendens til stordriftsfordeler for de større kommunene, mens de mindre kommunene, som Eide og Voss, har en langt større kostnad til lekkasjesøking i forhold til størrelsen på vannverket.

Samtlige kommuner benytter eget personell, Hamar og Trondheim leier i tillegg inn ekstern kapasitet til lekkasjelytting. Unntatt 3 kommuner, driver alle spurte kommuner med lekkasjelytting hele året.

Figur 11: Årsverk til lekkasjelytting i forhold til antall innbyggere

Erfaringer fra andre vannverk, viser en tilnærmet lineær sammenheng mellom antall innbyggere i forsyningsområdet og antall årsverk disponert til lekkasjelytting. Dette
blir en vurdering hver enkelt kommune må gjøre ut fra hvilke målsetninger man ønsker å ha med lekkasjearbeidet.

Situasjonen i Narvik

På grunn av lave produksjonskostnader i Narvik, er ikke motivet for å spare kostnader til produksjon av drikkevann ved å redusere lekkasjene tilstede. Produksjonskostnadene for Taraldsvikfossen vannbehandlingsanlegg ligger på ca. 0,3 kr/m3. En kostnadsbesparelse som følge av mindre produsert drikkevann etter en reduksjon av lekkasjemengde vil bli på mindre enn 0,3 kr/m3 fordi en del av kostnadene er faste og vil dermed være der uansett. Selv om en reduksjon av lekkasjene ikke kan forsvares ut fra rene økonomiske betraktninger, vil det likevel være besparelser ved å lokalisere lekkasjer tidlig, da lekkasjene over tid vil gi følgeskader som videre fører kostnader med seg. Vann fra lekkasjer transporterer bort masser og kan forårsake store skader, ofte på veg-overbygningen. Hensynet til sikkerhet gjør at lekkasjene uansett må holdes under kontroll da innlekkning av forurensset vann i en trykklos situasjon kan gjøre drikkevannet helsemessig utrygt.

Bemanning og organisering

Narvik vannverk benytter pr i dag korrelator og marklytting til fin- lokalisering av lekkasjer. Når et system for daglig overvåkning av alle lekkasjesoner er på plass, bør arbeidet med fin- lokalisering av lekkasjer deles i to:

- En systematisk gjennomgang av de lekkasjesoner som er rangert høyest til lekkasjelytting ut fra indikatorer på lekkasjetap. Ved hjelp av lytting med korrelator og marklytting, samt manøvrering av ventiler for å snevre inn søkeområdet. Gjennomlekte områder kan da ”friskmeldes” og innsatsen settes inn på neste område.

 Organiseringen av arbeidet kan enten gjøres med eget personell, eller innleid privat firma. Fordelen med innleid firma er at eget personell kan disponeres til andre oppgaver, og sårbarheten ved fravær ikke er like stor. Eget personell har derimot større oversikt og kjenner nettet bedre enn eventuelt innleid personell, noe som klart er en styrke. For å beholde kompetanse på lekkasjesøk i et område som flere kommuner kan dra nytte av er også interkommunalt samarbeid en mulighet. Løsningen kan være å ha en til to kompetente lekkasjesøkere som opererer på tvers av kommunegrenserne og blir assistert av en lokal driftsoperatør som fungerer som kjentmann.

Hvis det benyttes eget personell bør det være to operatører som har en bil innredet med lekkasjesøkeutstyr, digitalt ledningskartverk og tilkobling til SD-anlegg på PC. Utstyr til lekkasjesøking er spesialisert, og krever at operatøren behersker det godt for å kunne påvise lekkasjer nøyaktig. Det bør derfor være en person som arbeider fast med lekkasjer, mens den andre ikke nødvendigvis er like erfaren, men med som medhjelper for å gjøre jobben ute mer effektivt. Ved påvisning av lekkasjer på private ledninger, sendes det ut pålegg om utbedringer, mens lekkasjer på kommunalt ledningsnett tas hånd om av entreprenør innleid av vannverket.
• Overvåkning av vannforbruket med uttak av rapporter hver morgen for å se etter økning i nattforbruk og vurdere om det skal settes i verk lekkasjesøk. Den daglige overvåkningen med gjennomgang av nattforbruk bør innarbeides som en fast rutine, hvor flere av driftsoperatørene er involvert og har oversikt over når det skal settes i verk videre tiltak.

Det vil være essensielt å ha et godt innarbeidet system med rutiner for når det skal settes i verk fin-lokalisering av lekkasjer. Ved å definere grenseverdier i SD-anlegget for hvilket nattforbruk som tillates før aksjonering, vil man ha noe å gå etter i den daglige oppfølgingen. Individuelle grenseverdier for hver enkelte lekkasjesone kan fastsettes ut fra grunnlagstall for et helt år, og vil være gjenstand for justering etter hvert som lekkasjemengden går ned.

Tatt i betraktning vannverkets størrelse, vil det ut fra erfaringsdata fra andre kommuner være hensiktsmessig med ca. et halvt årsverk disponert til lekkasjesøk. Ved å avse to personer til lekkasjesøk i perioder på for eksempel 2 ukers intervaller flere ganger i sommerhalvåret, vil det kunne jobbes systematisk og søkes gjennom område for område. Operatøren med hovedansvaret for lekkasjelyttingen får dermed den nødvendige treningen gjennom jevnlig bruk for å oppretholde ferdighetene.
6. Redusert lekkasjetap ved trykkreduksjon

Topografi
På Narvikhalvøya og Ankenes er terrenget skrånende med høydeforskjeller på vannverket fra Taraldsvik vannbehandlingsanlegg på ca. kt.200 til lavest liggende abonnenter på ned mot kt.0. Høyest trykk forekommer i nedre deler av direktetrykksonen og lavest liggende områder i Taraldsvik og Vassvik, samt store deler av Fagernes (sone 12).

Trykkreduksjon sone 12
For sone 12 er det gjennom vannbalansen beregnet et lekkasjetall på 81,8 %, noe som bekreftes gjennom en høy nattvanntapping. Store deler av sonen ligger under kt.10, og har et trykk i ledningene på over 90 mVS. Flertallet av abonnentene ligger på mellom kt.5 – kt.20. Det vil være naturlig å vurdere trykkreduksjon i denne sonen spesielt, da det er størst potensiale i å få ned lekkasjetapet og samtidig øke sikkerheten i dette området. Ved en trykkreduksjon må spesielt følgende forhold tas i betraktning:

- Hensynet til tilstrekkelig trykk i de høyest liggende områder av sonen, også ved uttak av brannvann.
- Sonen leverer vann videre til sone 13 via Ankenes høydebasseng.
- Nyborg vannpumpe sørger for tilstrekkelig trykk til å fylle Ankenes høydebasseng, i tillegg til trykket fra sone 12.

En trykkreduksjon i hele sone 12 vil kunne medføre en ombygging av Nyborg vannpumpestasjon i tillegg til økete pumpekostnader. Et alternativ for å unngå dette er å foreta en reduksjon av trykket i deler av sone 12, og fortsatt beholde uredusert trykk på forsyningsledningen til sone 13 forutsatt en del ombygginger og omkoblinger av ledningsnettet i sone 12. For å gi en sikker forsyning til Ankenes høydebasseng, er det i dag delvis to ledninger gjennom sone 12 på henholdsvis 250 og 300mm. Pr dags dato foregår dublering av ledningene hvor det frem til i dag bare har vært en ledning langs fagernesveien. Dette gir muligheter for å kunne separere disse, slik at den ene forsyner området Fagernes/Kvitsandøra i sone 12, mens den andre forsyner Ankenes høydebasseng. På denne måten er det mulig å redusere trykket på mesteparten av sone 12, inkludert de laves liggende områdene uten å berøre Nyborg pumpestasjon.

En av utfordringene er hvis det blir behov for å benytte ledningen med redusert trykk som reserve på grunn av brudd på forsyningsledningen i sone 13. I en slik situasjon må enten Nyborg vannpumpestasjon klare å løfte trykkhøyden nok til å forsyne Ankenes Høydebasseng via den reduserte sone 12, eller trykket økes midlertidig på den samme ledningen.
Figur 12: Sone 12 oversikt
Alternativ 1 til trykkreduksjon i sone 12, Fagernes:

- Installere trykkreduksjonsventil med trykk ut på 80 mVS (totaltrykk) i kryset Havnegata/Kongens gate. Dette er en reduksjon på ca. 16 mVS i forhold til dagens situasjon.
- Separere de to hovedledningene langs Fagernesveien og over Fagernes, slik at forsyningen til Ankenes høydebasseng opprettholder dagens trykk. Dette kan gjøres med avstengning av ventiler slik dagens anlegg er oppbygget.
- Supplere med ca. 120 meter ledning mellom SID 13257 og SID 15376 for å få ringledning på Fagernes.
- Sanere ca. 480 meter ledning av grått støpejern for å minske friksjonstapet og øke kapasiteten ved store uttak.

Sistnevnte tiltak bør sees i sammenheng med saneringsplaner. Det nevnte ledningsstrekket er uansett gjenstand for utskiftning, uavhengig av om det skal settes i verk trykkreduksjon eller ikke.

Kritisk kum vil være SID 1068, ved uttak til brannvann. Høyest beliggende abonnent ved denne kummen ligger på kt. 45. Denne kummen bør minimum ha et totaltrykk på 55 mVS for å unngå undertrykk og samtidig ha en sikkerhetsmargin.
Alternativ 2 til trykkreduksjon i sone 12, Fagernes:
- Redusere trykket i hele sone 12 til 85 mVS (totaltrykk) med trykkreduksjonsventil i krysset Havnegata/Kongens gate. Dette er en reduksjon på ca. 11 mVS i forhold til dagens situasjon.

- Tillate et lavere inngangstrykk til Nyborg vannpumpestasjon.

Nyborg vannpumpestasjon har i dag kapasitet til å løfte trykket 2,5 bar. Ved å tillate et lavere inngangstrykk enn det som opereres i dag, vil det medføre økte strømkostnader og, hvis reduksjonen er stor nok, også en ombygging av pumpestasjonen.

Det er i denne utredningen tatt som utgangspunkt at eksisterende anlegg på Nyborg vannpumpestasjon benyttes videre.

Denne løsningen vil medføre økte pumpekostnader, siden trykket inn til Nyborg VP blir redusert fra ca. 88 mVS inn på stasjonen til ca. 81 mVS. Reduksjonen i trykkhøyde er på ca. 10 mVS, men siden et lengre ledningsstrek langs Fagernesveien også dubleres, vil friksjonstapet bli mindre og den reduserte trykkhøyden inn til Nyborg VP være på ca. 7 mVS.

Simuleringer i MIKE Urban

Simuleringene er kjørt med den oppdaterte nettmodellen til Narvik VAR fra 26.3.2012. Det er benyttet Scenario Manager til å simulere effekten en ombygging av ledningsnettet med trykkreduksjon vil ha på de hydrauliske forhold.

Høyeste tappepunkt ligger i en mindre boligblokk ovenfor kum SID 1068 i en østlig avgreining av nettet på Fagernes/Kvitsandøra. Resttrykket ved et brannvannuttak ved denne kummen vil være den kritiske faktoren ved en eventuell trykkreduksjon i denne sonen.

Det er tatt utgangspunkt i et krav på 20l/s brannvannuttak for boligområder, samt forbruket ved høyeste time- og døgnfaktor som ligger inne i modellen fra før. I tillegg til nevnte vannmengde, må det av hensyn til hygienisk sikkerhet ikke forekomme undertrykk verken på det kommunale eller private ledningsnettet. Derfor skal det være et resttrykk på minimum 1,0 bar ved høyest liggende abonnent. I dette tilfellet ligger abonnenten på kt. 45, noe som gir behov for et totaltrykk på 55 mVS ved kum SID 1068.
Resultater simuleringer

Det er foretatt simuleringer i MIKE Urban for trykkforholdene i nå-situasjonen og for begge foreslåtte alternativer for trykkreduksjon i sone 12.

Tabell 11: Resultater simuleringer sone 12

<table>
<thead>
<tr>
<th></th>
<th>Midlere trykk</th>
<th>Høyeste trykk mVs</th>
<th>Reduksjon i midlere trykk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nå-situasjon</td>
<td>87,6</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Alternativ 1</td>
<td>75,9</td>
<td>95</td>
<td>13 %</td>
</tr>
<tr>
<td>Alternativ 2</td>
<td>76,2</td>
<td>85</td>
<td>13 %</td>
</tr>
</tbody>
</table>

Midlere trykk ved dagens situasjon i sone 12 er beregnet til 87,6 mVS, noe som er 20 meter høyere enn gjennomsnittet for vannverket. Målsetningen er å unngå å ligge over 80 mVS i de områder det er mulig. Ved å gjennomføre trykkreduksjon i denne sonen med et av de to alternativene som er simulert vil midlere trykk reduseres med 13 %, noe som også vil gi en lekkasjereduksjon på ca. 13 % (Tabell 11).

Alternativ 1 og alternativ 2 gir omtrent samme resultat for midlere trykk når hele sonen tas med. Høyeste trykk i alternativ 1 blir 10 m høyere enn i alternativ 2 på grunn av at forsyningsledningen mot sone 13 fortsatt ureduisert i dette alternativet.

Sone 12 alternativ 1:

Figur 13: Lengdeprofi RK - SID 1068 Alt. 1

Figuren over viser lengdeprofiilet fra foreslått reduksjonsventil, og til kritisk kum (SID 1068). Sort linje viser terrenghøyden, mens blå linje indikerer simulert totaltrykk ved uttak av 20 l/s i SID 1068.
Sone 12 alternativ 2:

Figur 14: Lengdeprofil RK - SID 1068 Alt. 2

Figur 15: Lengdeprofil RK - SID 1068 Alt. 2 med sanerte ledninger.

I Figur 15 er det kjørt simuleringer av uttak på 20 l/s i SID 1068. Blå linje viser totaltrykk, mens sort linje viser terrenghøyde. Til forskjell for Figur 14 er det lagt inn nye ledninger fra PSID 7164 til PSID 7289 med dimensjon 225 PVC. De gamle ledningene er SJG 150 fra 1948 hvor det kan antas en betydelig ruhet.

Det burde minimum være 55 mVS resttrykk (totaltrykk) ved uttak av brannvann ved PSID 1068
Trykkreduksjon i lavtrykksonen på Narvikhalvøya

En trykkreduksjon i de lavest liggende områdene av Taraldsvik, Vassvik og Storåsen har vært diskutert tidligere i forbindelse med tidligere hovedplaner. I dag har enkelte abonnenter trykk opp i over 100 mVS, noe som bør unngås både for å redusere lekkasjemengden og øke sikkerheten.

Dette området skiller seg fra sone 12, som er omtalt ovenfor, med mindre areal og større lokale høydeforskjeller. For å få en ekstra trykkson, må det i tillegg til å installere minst to reduksjonsventiler, også stenges av en rekke ventiler siden nettet er mer sammenvevd i dette området. Fordelen ligger i at det nesten utelukkende er boligområder i dette området.

Figur 16: Alternativ trykkreduksjon i lavtrykksonen

Kartet ovenfor viser et alternativ for å senke trykket i deler av lavtrykksonen på Narvikhalvøya ved hjelp av to reduksjonsventiler. Ledningsnettet har i dag opp mot 100 mVS nede ved sjøkanten og abonnentene i samme område har trykk over målsettingen på 8,5 bar. Det kan vanskelig argumenteres ut fra en kost/nytte-betraktning for å iverksette en trykkreduksjon i dette området siden det krever anlegg av minst to trykkreduksjonsventiler. Men sikkerheten vil bli betydelig forbedret med en reduksjon på vel 20 mVS i dette området. I tillegg kan det forventes en nedgang i antall nye lekkasjer på ledningsnettet.

Påvirkning på resten av lavtrykksonen.

Etablering av en ny trykkson i eksisterende lavtrykkson vil redusere den hydrauliske kapasiteten i området Måseveien-Jaklamyra (tilgrensende til foreslått redusert lavtrykkson). En avstenging ved kum SID 267 i Lomveien vil føre til at det bare har blir tilførselsledning til dette området. Selv ved dagens situasjon er kapasiteten ved større uttak liten i denne delen av nettet. Det har tidligere vært
diskutert en løsning med å forsyne dette området gjennom en egen reduksjonsventil fra tilgrensende høytrykksone med et noe høyere trykk ut enn området har i dag.

En løsning kan være å iverksette trykkreduksjon som illustrert i Figur 16 og samtidig heve trykket på den eksisterende lavtrykksonen fra kt. 100 til kt. 115. Dette vil gi en forbedret situasjon for de høyest liggende områdene som allerede i dag har dårlig trykk ved høy tapping. En gjennomføring av dette alternativet krever at det også installeres reduksjonsventil inn til sone 12. I tillegg vil industriområdet Teknologibyen ved Ornesvika (se Figur 16) få et trykk på over 100 mVS med dette alternativet.

Kommentar

Trykkreduksjon i Sone 12
Kostnader og besparelser som bør tas med i en vurdering om trykkreduksjon skal settes i verk:

- Reduserte kostnader til reparasjoner av lekkasjer med tilhørende følgeskader
- En forlenget levetid på ledningsnettet, både kommunalt og privat
- Reduserte produksjonskostnader til vannbehandlingsanlegget
- Eventuelt høyere pumpekostnader ved Nyborg vannpumpestasjon hvis alternativ 2 velges.
- Kostnader til anlegg av reduksjonskum

En senkning av trykket vil ha en umiddelbar effekt med redusert vanntap i forhold til det som har vært tidligere. På lengre sikt vil en også dra nytte av å iverksette et slikt tiltak, da færre nye lekkasjer vil oppstå og de eksisterende lekkasjer, avhengig av rørmateriale og type brudd, vil kunne vokse saktere. Følgeskader må også tas med i betraktningen, selv om de vanskelig kan beregnes på forhånd med mindre det foreligger en erfaringsdatabank på slikt. Sikkerheten generelt vil bli forbedret umiddelbart. Kostnadene til etablering av reduksjonskum i dette området vil komme i størrelsosesorden 2,5-3,0 mill.kr.

Innlekking av lekkasjevann fra vannledninger og inn i avløpsledningene fører med seg økte pumpe- og rensekostnader for avløpsvann. Avløpsvannet fra størstedelen av sone 12 pumpes fra Fagernes, under Beisfjorden over til Ankenes, og ut til Hatteberget RA. Derfor er det også et potensiale for besparelser i form av reduserte pumpekostnader på avløp. Med mindre fremmedvann i avløpsledningene vil man også kunne oppnå bedre rensegrad ved Hatteberget avløpsrenseanlegg.

Trykkreduksjon i lavtrykksiden
En trykkreduksjon i det foreslåtte området vil få effekter på tilgrensende områder av nettet og bør sees på i sammenheng med saneringsplaner og kartlegging av brannvanndekning for området Måseveien-Jaklmyra. Siden kapasiteten allerede er liten i området, er det ikke tilrådelig å iverksette trykkreduksjoner før brannvanndekningen er ivaretatt.
Det er først og fremst sikkerheten som er motivet for en trykkreduksjon i denne delen av nettet. Området er relativt lite, og kostnadene til anlegg av to til tre nye reduksjonsventiler vil vanskelig kunne rettferdiggjøres gjennom besparelser i vannforbruk.

Videre utredning av trykkreduksjon i lavtrykksonen er ikke tatt med, siden det utløser flere tiltak for å ivareta et akseptabelt trykknivå og kapasitet i tilgrensende områder.

Øvrige tiltak
Som et ekstra tiltak er det mulig å redusere lekkasjemengden noe ved å senke trykket nattestid når forbruket er på det laveste. Hensynet til at høyest liggende abonnent har tilstrekkelig trykk begrenser hvor mye trykket kan reduseres. Vannkrevende industri bør også tas høye for, slik at ikke plutselige toppere i forbruk ikke forårsaker undertrykk i andre deler av nettet. Dette kan løses med motorstyrte ventiler som er stilt inn til å redusere trykket i et visst tidsrom nattestid og samtidig kan øke trykket hvis markante økninger i forbruk skulle inntreffe.
7. Diskusjon
Vannbalansen viser et tydelig behov for å iverksette målrettede tiltak for å få ned lekkasjeandelen. Narvik vannverk har et lekkasjetap betydelig over landsgjennomsnittet, noe som ikke er overraskende med en relativt høy andel grått støpejern og områder med høyt trykk. De største incentivene ligger i å sikre nok kapasitet på mengde produsert vann og den sikkerhetsmessige gevinsten ved å ha større kontroll med lekkasjeandelen.

Det bør foretas en systematisering av SD-anlegget for å kunne overvåke forbruket effektivt og med bedre oppfølging man har pr dags dato. Lekkasjesøk kan da gjøres mer effektivt, både med daglig oppfølg og mer konsentrerte aksjoner for å gjennomgå enkelte områder.

Trykkreduksjon lar seg gjøre flere steder, men i denne sammenhengen vil den kostnadmessige faktoren fort bli høy i forhold til nytten i et kort perspektiv.

En trykkreduksjon i området Taraldsvik - Vassvik - Storåsen krever oppmerksomhet på tilgrensende områder for å kunne gjennomføre. Kostnadene vil bli høye sett i forhold til størrelsen på området som reduseres.

I sone 12 er midlere trykk svært høyt og i store deler av sonen rundt 90 mVS. Et tiltak for å redusere trykket bør vurderes i dette området, selv om det måtte ligge et stykke frem i tid. Det burde være i bakhodet ved utarbeidelse av saneringsplan for å kunne legge til rette for enten en deling i to trykksoner i denne sonen, eller en reduksjon av hele sone 12.

Saneringstakten har de senere år økt og vil i utgangspunktet hjelpe med å redusere antallet lekkasjer. Likevel er det viktig å holde fokus på å innhente god sluttdokumentasjon ved overtakelse av nye ledninger, enten det er sanerte ledningsstrekk eller overtakelse av anlegg bygd ut i privat regi hvor det er søkt om kommunal overtakelse. Også oppfølging av entreprenør i anleggsfasen ved prosjekter i egen regi er viktig for å sikre en korrekt legging av ledningene. Nye anlegg vil også ha utettheter, men hvis det kan dokumenteres en solid utførelse på anlegget, vil man ha et bedre utgangspunkt. Ved prosjektering legges også et grunnlag for å kunne foreta effektiv lekkasjelytting. Det bør ikke være for stor avstand mellom kummer, og samtidig legges til rette for lekkasjelytting i kummene.
8. Figurliste

Figur 1: Vannbalanse .. 6
Figur 2: L_1/L_0 som funksjon av P_1/P_0 ved forskjellige N1 (Thornton, 2003) 16
Figur 3: Trykksoner Narvik ... 20
Figur 4: Lekkasjesoner Narvik .. 20
Figur 5 Ledningslengder fordelt på anleggsår og materialklasser ... 30
Figur 6: Fordeling etter materialklasser ... 31
Figur 7: Brudd/lekkasjer pr år ... 32
Figur 8: Brudd/lekkasjer fordelt på ledningsmaterialer ... 33
Figur 9: Økning i nattforbruk sone 15 med rapportert brudd ... 37
Figur 10: Vanntap på ledningsnettet i norske kommuner 2010 (Norsk Vann, 2010). 40
Figur 11: Årsverk til lekkasjelytting i forhold til antall innbyggere .. 43
Figur 12: Sone 12 oversikt ... 47
Figur 13: Lengdeprofil RK-SID 1068 Alt. 1 .. 50
Figur 14: Lengdeprofil RK-SID 1068 Alt. 2 .. 51
Figur 15: Lengdeprofil RK-SID 1068 Alt. 2 med sanerte ledninger. .. 51
Figur 16: Alternativ trykkreduksjon i lavtrykksonen ... 52
9. Tabeller
Tabell 1: Resultater vannbalanse 2011 Narvik ... 25
Tabell 2: Nattvannforbruk 2011 Narvik .. 26
Tabell 3: Materialklasser (Sægrov & Selseth, 2000) .. 28
Tabell 4 Ledningslengder fordelt på klasser og anleggsår ... 29
Tabell 5: Brudd/lekkasjer pr år .. 31
Tabell 6: Brudd/lekkasjer fordelt på ledningsmaterialer ... 33
Tabell 7: Antall brudd fordelt på lekkasjesoner ... 34
Tabell 8: Rangering av lekkasjesoner ... 38
Tabell 9: Lekkasjenivå, ulike indikatorer ... 41
Tabell 10: Lekkasjekostnader (Flatin, 2009) ... 43
Tabell 11: Resultater simuleringer sone 12 ... 50
Kilder

