Hege Pernille Trollerud

Posisjonsspesifikk analyse av intensitet og høyintensive aksjoner i smålagspill for kvinnelige håndballspillere
- Ulike format av smålagspill, sammenlignet med kamp

Masteroppgave i idrettsvitenskap
Seksjon for fysisk prestasjonslevel
Norges idrettshøgskole, 2016
Forord

Da er femårs utdannelse ferdig, og jeg er veldig glad og takknemlig for de fire årene jeg har hatt ved Norges Idrettshøyskole. Det siste har vært en krevende, men et utrolig lærerikt og spennende år, som jeg ikke ville verdt foruten.

I forbindelse med gjennomsføring av datainnsamlingen og selve skriveprosessen er det mange som fortjener en stor takk.

Først og fremst vil jeg gi en stor takk til min hovedveileder, Matt Spencer for gode tilbakemeldinger og oppfølgning gjennom hele året. Og takk, Live S. Luteberget for fine dager på testing, og at du alltid tar deg tid til å svare på gode og dårlige spørsmål. Takk til begge to for korrekturlesing, og generelt deres gode humør og engasjement. Håper dere begge vet hvor mye jeg setter pris all hjelp.

Takk til alle spillerne og trenerne i Rælingen og Njård håndballklubb for å ha stilt opp i prosjektet. Deres engasjement og innsats settes stor pris på.

Jeg vil også takke hele ”gjengen” fra masterkontoret, som har bidratt til et bra arbeidsmiljø, koselige lunsjer og ikke minst en god stemning på kontoret.

Sist, men ikke minst, takk til familie og venner for støtte og omsorg gjennom året. Og samboeren min, Jørgen for at du alltid stiller opp og har troen på meg.

Hege Pernille Trollerud,
Oslo, mai 2016
Sammendrag

Smålagspill (SS) er en anbefalt treningsmetode, som benyttes i stor grad i håndballtreninger. Hensikten med denne treningsmetoden er å forbedre fysiske egenskaper, sammen med taktiske og tekniske elementer. Selv om SS er en populær treningsmetode, finnes det lite vitenskapelig kunnskap om SS som treningsmetode i håndball. Formålet med denne studien er derfor å undersøke om antall spillere kan påvirke intensitet og antall høyt intensive aksjoner (HIA) for kvinnelige håndballspillere. I tillegg sammenligne disse variablene under SS med offisielle kamper ved bruk av mikrosensor teknologienheter (MTE).

31 kvinnelige håndballspillere fra to ulike lag ble utstyrt med MTE (OptimEye S5, Catapult Sports, Australia) under 5 treninger for hvert lag (10 totalt). Spillerne utførte to ulike SS formater, 3vs3 og 6vs6 (pluss målvakt). Disse ble utført i randomisert rekkefølge med en varighet på 5 minutter hver. I tillegg ble 10 offisielle seriekamper undersøkt. Variablene Player Load™ og HIA (>2,5 m·s⁻¹) ble hentet ut fra rådata filene. Ut i fra spillernes posisjon på banen, ble spillerne delt inn i fire spilleposisjoner: bakspillere (BS), kantspillere (KS), linjespillere (LS) og målvakt (MV).

Betydelig høyere Player Load™-min⁻¹ (13,6 ± 1,7 vs 10,6 ± 1,5) og antall HIA-min⁻¹ (4,8 ± 1,5 vs 3,1±1,5) ble funnet i 3vs3, sammenlignet med 6vs6 for alle utespillerne. 3vs3 og 6vs6 har betydelig høyere Player Load™-min⁻¹ sammenlignet med kampgjennomsnittet (9,1 ± 1,1) for alle utespillerne. 3vs3 viser betydelig flere HIA-min⁻¹ for alle utespillerne sammenlignet med kampgjennomsnittet (3,5 ± 1,2). BS viser ingen forskjell fra den høyeste fem minutters perioden i kamp (H5-min). 6vs6 viser ingen betydelige forskjeller for utespillerne i HIA-min⁻¹ sammenlignet med kampgjennomsnittet, og viser betydelig lavere verdier enn H5-min (4,4 ± 1,2).

3vs3 øker Player Load™-min⁻¹ og antall HIA-min⁻¹ for alle spilleposisjoner, sammenlignet med 6vs6. Begge SS formatene viser en generell økning i Player Load™-min⁻¹, sammenlignet med kampintensitet. I 3vs3 viser kun LS og KS en overbelastning i antall HIA-min⁻¹, mens 6vs6 overbelaster ikke HIA-min⁻¹ for noen av utespillerne. Det ser dermed ut til at SS ikke er tilstrekkelig for å overbelaste posisjonsspesifikk HIA.
Innhold

Forord ... 3
Sammendrag .. 4
Innhold ... 5
1. Introduksjon .. 8
 Formålet med studien ... 9
 Problemstilling ... 9
2. Teori .. 10
 2.1 Håndball – om spillet .. 10
 2.2 Bevegelsesanalyser .. 11
 2.2.1 Lagsjønnsnitt ... 11
 2.2.2 Posisjonsspesifikke bevegelsesanalyser ... 12
 2.2.3 Høyintensive aksjoner ... 13
 2.3 Fysiske krav i håndball ... 15
 2.4 Pacing i høyintensive lagidretter ... 15
 2.5 RPE .. 16
 2.6 Smålagspill .. 17
 2.6.1 Smålagspill i håndball .. 17
 2.6.2 Spillerantall ... 19
 2.7 Belastning i smålagspill sammenlignet med kamp ... 21
 2.7.1 Mikrosensor teknologienheter ... 23
 2.7.2 Player Load™ ... 23
 2.8 Oppsummering .. 24
3. Metode .. 26
 3.1 Eksementell design .. 26
 3.2 Catapult OptimEye S5 og inertial movement analysis (IMA) .. 26
 3.2.1 Kalkulering av akseralasjoner, deselerasjoner og retningsforandringer 27
 3.2.2 Kalkulering av Player Load™ ... 28
 3.3 Eksementell prosedyre ... 29
 3.3.1 Fysisk testing .. 29
 5 og 20 m sprint ... 30
1. Introduksjon

Håndball er en lagidrett som karakteriseres av repeterte høyintensive bevegelser, samt spesifikke tekniske bevegelsesmønstre som forekommer som en respons av ulike taktiske vurderinger i spillet (Karcher & Buchheit, 2014). Disse høyintensive bevegelsene er ikke godt dokumentert i tidligere studier på grunn av begrensede målemetoder, og derfor trolig underestimert i de tilgjengelige studiene (Karcher & Buchheit, 2014; Povoas et al., 2012). Utvikling av små bærbare mikrosensor teknologieneheter (MTE), har gjort det enklere å kvantifisere høyintensive bevegelser i håndball (Luteberget & Spencer, 2016).

Formålet med studien

Hovedformålet med denne studien er å undersøke om intensiteten (Player Load™\(\text{min}^{-1}\)) og HIA under SS blir påvirket av antall spillere, og i tillegg sammenligne de samme variablene under SS med offisielle håndballkamper for kvinnelig håndballspillere. Studien vil ha fokus på posisjonsspesifikke data. Dette for å vurdere hvorvidt SS er tilstrekkelig som en treningsmetode for å overbelaste den ekstern belastningen under en håndballkamp for de ulike spilleposisjonene. Resultatene i studien kan gi trenere og annet støttepersonell en bedre forståelse av den ekstern belastningen under SS og kamp. Dette kan være nyttig for optimalisering av trening, periodisering, og forbedring av fysiske håndballspesifikke prestasjonsvariabler i håndball.

Problemstilling

1) Er det forskjeller i intensitet og antall HIA når man spiller 3vs3 sammenlignet med 6vs6 under SS i håndball, når den absolutte banestørrelsen holdes konstant?

2) Er intensiteten og HIA ulik under SS enn offisielle kamper?
2. Teori

2.1 Håndball – om spillet

Håndball har vært en olympisk sommeridrett siden 1972, og blir spilt profesjonelt i mange land i Europa, og resten av verden. Populariteten for idretten har økt de siste tiårene, og i juni 2013, registrerte det internasjonale håndballforbundet (IHF) 27 millioner spillere i 1 952 00 lag, fordelt på 190 nasjoner (IHF, 2013).

I en håndball kamp er det to lag med syv spillere på hvert lag. Laget er oppbygd med en målvakt (MV), og som regel tre bakspillere (BS) to kantspillere (KS), og en linjespiller (LS). Banen er 20x40 m, og en kamp består av to omganger på 30 minutter, med en pause på normalt ti minutter (IHF, 2010). Fra 2012 fikk hvert lag lov til å ta time-out tre ganger i løpet av en kamp, og maksimalt to ganger i løpet av en omgang (Norges håndballforbund, 2012). Den absolutte varigheten av en kamp eller omgang, kan variere på grunn av stopp i spillet og time-out. Michalsik et al. (2014); Michalsik, Aagaard, og Madsen (2015) rapporterte den absolutte kamp varigheten til 71 ± 2,28 minutter i kvinnelige håndballkamper.

I løpet av spillet bytter lagene på om de står i forsvar eller angrep, som avhenger av hvilket lag som besitter ballen. I gjennomsnitt veksler forsvar og angrepsfasen hvert 22-36 sekund, og angrepsfasen deles inn i ankomstfasen og etablert angrep (Karcher & Buchheit, 2014). Ankomstfasen representerer 11,7 % av ballbesittelsene, og anses som høyst relevant for utfallet av kampen (Karcher & Buchheit, 2014). Denne fasen stiller høy krav til hastighet og repetert sprint evne, hvor KS som regel er mest involvert. Etablert angrep representerer den største andelen av ballbesittelser (88,2 %). Denne fasen kjennetegnes av mye kroppskontakt, og mange repetisjoner av høyintensive bevegelser, hvor mange spillere deler et lite spilleareal (Karcher & Buchheit, 2014). De fleste spillere står både i forsvar og angrep, men noen er spesialisert for enten forsvar eller angrepsspill, og bytter dermed deretter. Det er ingen restriksjoner om dette i regelverket, og ubegrenset bytting av spillere er tillatt (IHF, 2010).
2.2 Bevegelsesanalyser

2.2.1 Lagsgjennomsnitt

Total tilbakelagt distanse i løpet av en kamp for kvinnelige håndballspillere har blitt rapportert fra 2,0 – 5,2 km (Manchado, Tortosa-Martinez, Vila, Ferragut, & Platen, 2013; Michalsik et al., 2014), som er likt eller noe høyere enn hva som er rapportert for mannlige håndballspillere 3,3 – 4,4 km (Michalsik et al., 2013; Povoas et al., 2014b; Povoas et al., 2012). Den gjennomsnittlige løpshastigheten for kvinnelige håndballspillere er rapportert under kamp til 4,2-5,2 km·t⁻¹ (Manchado, Tortosa-Martinez, et al., 2013; Michalsik et al., 2014), som er noe lavere enn hva som er blitt rapportert for menn 3,2-4,6 km·t⁻¹ (Karcher & Buchheit, 2014; Michalsik et al., 2013). Sammenlignet med andre lagidretter er løpshastigheten lavere i håndball, og det kan skyldes en mindre banestørrelse, færre spillere, eller andre tekniske og taktiske egenskaper (Karcher & Buchheit, 2014). Bevegelser med lavintensitet, som stillståing og gåing, utgjør den største delen av spilletiden (73 % av total spilletid) for kvinnelige håndballspillere (Michalsik et al., 2014). Det har også blitt vist at kvinnelige håndballspillere bruker en lav prosentandel av spilletiden med høyintensive bevegelser. Ved å slå sammen kategoriene løp (>15,5 km·t⁻¹) og sprint (>22 km·t⁻¹), er det rapportert at kun 0,8 % av spilletiden er i denne kategorien, hvor sprint kun utgjør 0,1 % (Michalsik et al., 2014). For mannlige spillere har det blitt vist en endring mellom høy og lavintensitets bevegelser hvert 55 sekund (Povoas et al., 2012). Og det har blitt rapportert endring i
bevegelse hvert 2,1 – 5,9 sekund for kvinnelige, mannlige og unge spillere (Chelly et al., 2011; Michalsik et al., 2014; Michalsik et al., 2013; Povoas et al., 2012).

Hjertefrekvens (HF) er en av de mest vanlige metodene for å undersøke intensitet under håndballkamper. Studier har rapportert gjennomsnittlige HF mellom 70-87 % og høyeste HF mellom 93-98 % av individuell maksimal hjertefrekvens (HF\textsubscript{max}), med stor variasjon mellom spilleposisjoner (Cunniffe, Fallon, Yau, Evans, & Cardinale, 2015; Kruger, Pilat, Uckert, Frech, & Mooren, 2014; Manchado, Tortosa-Martinez, et al., 2013; Povoas et al., 2014b; Povoas et al., 2012). Fra estimering av HF målinger, har den gjennomsnittlig VO\textsubscript{2} blitt beregnet til å være 79,4 % av maksimal VO\textsubscript{2} (VO\textsubscript{2max}) for kvinnelige håndballspillere (Michalsik et al., 2014). Men validering av VO\textsubscript{2} estimering fra HF har begrensninger, fordi håndballspesifikke bevegelser/type muskel kontraksjon kan påvirke HF, uavhengig av det faktiske oksygenkravet (Karcher & Buchheit, 2014). HIA krever et høyt anaerob energibidrag og utnyttelse av muskelglykogen. Dette er støttet av gjennomsnittlig blodlaktat verdier under kamp som er rapportert til 3,6 mM og høyeste verdi 8,0 mM for mannlige håndballspillere (Povoas et al., 2014a). Men dette representerer sannsynligvis bare aktiviteten i forkant av prøven, og en akkumulering av laktat i blodet, i stedet for den faktiske glykolytiske aktiviteten i musklene (Bangsbo, Iaia, & Krustrup, 2007). Litteraturen viser at man kan måle intern intensitet ved HF, VO\textsubscript{2} og laktat, men man skal være oppmerksom på betydningen av disse data, da det ser ut til å ikke gi en fullstendig forståelse av det fysiske arbeidet for håndballspillere.

2.2.2 Posisjonsspesifikke bevegelsesanalyser
I tillegg til laggjennomsnittet, har det også blitt rapportert posisjonsrelaterte forskjeller ved bevegelsesanalyser i kamp. Studier som rapporterer posisjonsspesifikke forskjeller deles som regel inn i fire spilleposisjoner: BS, KS, LS og MV. MV har i noen studier blitt ekskludert fra analysene (Michalsik et al., 2014; Michalsik et al., 2013). MV har en annerledes bevegelsesprofil enn utespillerne, hvor MV tilbakelegger den korteste distansen i løpet av en kamp (Karcher & Buchheit, 2014) og er vist å bruke den høyeste prosentandelen med stilleståing (86 % av kampvarighet) (Sibila, 2004). Dette skyldes trolig at MV kun er involvert i den defensive fasen av spillet, og har et begrenset arbeidsområdet. MV har som hovedoppgave å hindre at ballen går i mål, og det kreves dermed en god reaksjonsevne for å utføre hurtige og eksplosive bevegelser på få sekunder (Srholj, Marinovic, & Rogulj, 2002).
Få studier har undersøkt posisjonsspesifikke forskjeller for kvinnelige håndballspillere og dataene er innhentet med videoanalyse. I de tilgjengelige studiene er det rapportert at både KS (Effekt størrelse (ES): 0,48) og LS (ES: 0,46) tilbakelegger en større total distanse i kamp enn BS. KS utfører flere høyintensive løp enn LS (ES: 0,87) og spesielt BS (ES: 1,86). Både KS (ES: 1,01) og LS (ES: 0,48) viser en høyere gjennomsnittlig løpshastighet under kamp, sammenlignet med BS (Michalsik et al., 2014). KS utførte færre taklinger i forsvar enn LS (ES: 1,81), og BS (ES: 2,49), (Michalsik et al., 2015).

Luteberget og Spencer (2016) målte kvinnelige landslagsspillene under ni internasjonale kamper. Spillernes intensitet (Player Load(TM)min⁻¹) og antall HIA-min⁻¹ (sammenlåing av antall akselerasjoner (Aks), Deselerasjoner (Des), Retningsforandring (RF) >2,5 m.s⁻¹) ble undersøkt med MTE (Catapult Sport, OptimEye S5) i de ulike spilleposisjonene. Player Load(TM)min⁻¹ er en indikator på intensitet, innhentet av et triaksial akselerometer (kap. 2.7.2). Studien viser at KS har betydelig lavere HIA-min⁻¹ enn BS, men har bare en liten forskjell i Player Load(TM)min⁻¹. Dette indikerer at KS utfører enn større andel av akselerasjonssbevegelserne med lavere intensitet, for eksempel løp på en jevn hastighet. BS og LS viser høyest andel av HIA-min⁻¹ og Player Load(TM)min⁻¹ som kan skyldes at disse spillerne er mer involvert i det taktiske spillet både i forsvar og angrep. De nevnte studiene bruker ulike metoder, og ser på ulike variabler. Sammenlignet med Michalsik et al. (2014) ser det ut som at HIA er en bedre variabel for å beskrive de fysiske kravene til BS. MV viser den laveste intensiteten og antall HIA-min⁻¹ for alle spilleposisjonene, men har den høyeste gjennomsnittlige spilletiden (42,2 ± 16,6 min) i kamp, og den akkumulerte belastningen i kamp bør derfor ikke underestimeres (Luteberget & Spencer, 2016). Litteraturen viser posisjonsspesifikke forskjeller i internasjonal kvinnehåndball, som trolig skyldes spilleposisjonens egenart, samt taktiske involveringer. Dette underbygger et behov for posisjonsspesifikke treningsprogrammer.

2.2.3 Høyintensive aksjoner
Definisjonen av høyintensive bevegelser er forskjellig blant studier, hvor noen inkluderer løping, sprint og høyintensive bevegelser sideveis (Povoas et al., 2014b; Povoas et al., 2012), mens andre inkluderer kun løping og sprint (Michalsik et al., 2014; Michalsik et al., 2013). I definisjonen av høyintensive bevegelser inkluderer ikke hopp, Aks, Des og RF, som er høyintensive mikrobevegelser som forekommer ofte i håndball. Disse bevegelsene krever en betydelig mengde energi og muskulær anstrengelse, på
grunn av et eksentrisk-relatert arbeid (Karcher & Buchheit, 2014; Michalsik et al., 2013; Osgnach, Poser, Bernardini, Rinaldo, & di Prampero, 2010), ikke bare under høyintensivt arbeid, men hver gang bevegelsene utføres (Michalsik et al., 2013; Osgnach et al., 2010). Dermed vil høyintensive bevegelsene referert til i litteraturen ikke gi en tilstrekkelig forståelse av de akselerasjonsbaserte aktivitetene i håndball. I tillegg har det blitt vist i andre lagidretter at en maksimal akselerasjon fra en lav hastighet er å anse som en krevende oppgave under en fotballkamp (Aughey & Varley, 2013). Det har også blitt vist i fotball at 98 % av maksimale akselerasjoner startet fra en hastighet lavere en hva som ble betraktet som høy hastighet (Aughey & Varley, 2013), som fører til en betydelig underestimering av andelen HIA under kamp (Aughey & Varley, 2013; Osgnach et al., 2010). Dette er trolig gjeldene i håndball også.

Data fra Luteberget og Spencer (2016) rapporterte også at BS hadde flest RF sammenlignet med de andre spilleposisjonene, med et antall på 2,9 ± 0,7 RF·min⁻¹. Dette tilsvårer 174 RF for en spiller som har 60 minutter effektiv spilletid. Studien rapporterte også antall HIA·min⁻¹ for hver spilleposisjon. BS viste 5,02 ± 1,5 HIA·min⁻¹, KS 3,2 ± 1,0 HIA·min⁻¹, LS 4,1 ± 0,7 HIA·min⁻¹, MV 1,3 ± 0,3 HIA·min⁻¹ av spilletid i kamp. Gjennomsnittlig antall Aks, Des og RF for alle spillerne kombinert var 0,7 ± 0,4 Aks·min⁻¹, 2,3 ± 0,9 Des·min⁻¹, og 1,0 ± 0,4 RF·min⁻¹. Selv om det er vanskelig å sammenligne disse studiene på grunn av metodiske ulikheter, underbygger studiene at HIA utføres ofte og er en sentral egenskap for kvinnelige håndballspillere, som ser ut til å være posisjonsspesifikk.
2.3 Fysiske krav i håndball

I lys av analyser av håndballkamper som er tilgjengelig, har forskere prøvd å belyse hvilke fysiske krav som foreligger for en håndballspiller, og i de ulike spilleposisjonene. På bakgrunn av HF og laktat analyser, gir det indikasjon på at det foreligger et behov for aerob og anaerob kapasitet i håndball, men gjennomsnittsverdiene fra slike målinger beskriver ikke fullt det komplekse fysiologiske arbeidet for lagidrettsutøvere (Glaister, 2005). Uansett er det vist at utøvere med en høy VO$_{2\text{max}}$ har en fordel under internasjonale håndballkamper, ved å optimalisere håndballspesifikk prestasjon under kamp (Manchado, Tortosa-Martinez, et al., 2013). En høy VO$_{2\text{max}}$ forbedrer også spillerens evne til å tolerere høyintensitet, og et høyt treningsvolum, samt at det er en viktig egenskap for å kunne restituere seg raskt mellom kamper/turneringer (Michalsik et al., 2014). VO$_{2\text{max}}$ erkjennes som en viktig fysisk egenskap, men er ikke ansett som den viktigste faktoren for prestasjon (Manchado, Tortosa-Martinez, et al., 2013; Michalsik et al., 2014).

Håndball karakteriseres av repeterte perioder med høyintensitetsarbeid og perioder med hvile og lavintensitets arbeid. Dette gjør håndball til en krevende idrett, og indikerer et behov for å kunne utføre gjentatte HIA, samt restituere seg raskt under mindre intense perioder (Povoas et al., 2012). Selv om det er utfordringer med å kvantifisere HIA i håndball, endrer ikke dette oppfatningen om at dette er viktige egenskaper for prestasjon. Manchado, Pers, et al. (2013); Luteberget og Spencer (2016); Povoas et al. (2014b) er studier som har vist at RF, Aks og Des av høyintensitet forekommer ofte under håndballkamp, og indikerer et behov for spesifikk trening for å tåle repeterte HIA, i tillegg til muskular styrke. Hopp, sprint, kasthastighet, styrke, eksplosivitet, koordinasjon, stabilitet, fleksibel er andre egenskaper som også nevnes i publiserte studier som viktige egenskaper for prestasjon i håndball (Karcher & Buchheit, 2014; Manchado, Tortosa-Martinez, et al., 2013; Michalsik et al., 2014; Michalsik et al., 2013; Povoas et al., 2014a; Povoas et al., 2012).

2.4 Pacing i høyintensive lagidretter

Med mer omfattende analyser og sporingssystemer av spillere, har konseptet pacing fått økende oppmerksomhet de siste årene. I lagidretter blir pacing ansett som bevisst og ubeviss variasjon av treningstilstand, for å mestre inntreden av tretthet og øke sannsynligheten for å fullføre aktiviteten i en rimelig fysiologisk tilstand (Edwards &

2.5 RPE

2.6 Smålagspill

2.6.1 Smålagspill i håndball
Tidligere studier har dokumentert den fysiologiske responsen og langtidseffekten av SS i fotball, men det er i dag mangel på slik informasjon om SS som en treningsmetode i håndball (Iacono et al., 2015). Til forfatterens bekjentskap er det kun tre studier som har
sett på hvordan SS virker inn på fysiologiske prestasjonsvariabler i håndball. Trening ved eller nær VO_{2max} er antatt å være et effektivt treningsstimul for å forbedre aerob utholdenhet (Midgley & Mc Naughton, 2006). Og den mest vanlige måten oppnå dette er gjennom høyintensitets intervalltrening (Laursen & Jenkins, 2002). I studien til Buchheit, Lepretre, et al. (2009), viste SS (4vs4) spilt på en vanlig banestørrelse å være en effektiv måte å oppnå en høy prosentandel av VO_{2max}. Spillerne i studien oppnådde gjennomsnittlig høyere VO_{2} og brukte signifikant mer tid over 90 % av VO_{2max}, sammenlignet med en 30-15 intermittent Fitness test (30-15IFT). Likevel fant studien at spillerne med den høyeste VO_{2max} hadde den laveste gjennomsnittlige VO_{2} og tid brukt over 90 % av VO_{2max}, som indikerer at de best trente spillerne ikke får et tilstrekkelig stimuli for å forbedre aerob utholdenhet (Buchheit, Lepretre, et al., 2009). Det ble i tillegg vist i den samme studien at estimering av VO_{2} via HF-målinger ikke et nøyaktig mål på det virkelige individuelle aerobe bidraget under SS.

I tillegg til aerob utholdenhet, er utvikling av håndballspesifikke fysiske egenskaper anbefalt (Buchheit et al., 2008) og er av interesse for både spillere og trenere. To studier har vist at SS også utvikler fysiske håndballspesifikke variabler i håndball etter en treningsperiode på 8-10 uker (Buchheit, Laursen, et al., 2009; Iacono et al., 2015). Buchheit, Laursen, et al. (2009) viste at SS (4vs4) hadde en lik forbedring av repetert sprint evne og aerob utholdenhet som høyintensitets intervalltrening for unge, godt trente håndballspillere. Studien til Iacono et al. (2015) rapporterte en signifikant forbedring i aerob, anaerob og styrke prestasjon, i både SS (3vs3) og høyintensitets intervalltrening for mannlige elitespillere. Men SS hadde en signifikant (p <0,05) større forbedring, sammenlignet med høyintensitets intervallene i variablene 10-m sprint (stor effekt), 20-m sprint (stor effekt), HAST (agilitytest) (stor effekt), 1RM i benkpress (stor effekt), svikthopp (moderat effekt), og svikthopp med armsving (stor effekt).

Forfatterne forslår at SS kan være en bedre treningsmetode for å forbedre fysiske håndballspesifikke variabler i sesong. Om variasjon av spillerantall eller banestørrelse er like effektive for å forbedre fysiske prestasjonsvariabler er foreløpig ukjent.

I håndball er det mangel på vitenskapelig kunnskap om hvordan man bør sette opp SS, men hensyn til antall spillere involvert, banestørrelse og varighet (Corvino et al., 2014). Kun en studie til forfatterens kjennskap har undersøkt hvordan treningsintensiteten kan manipuleres under SS i håndball, hvor formålet med studien var å undersøkte effekten
av tre forskjellige banestørrelser (24x12m, 30x15m, 32x16m) på spillernes eksterne og interne belastning under SS (Corvino et al., 2014). Seks amatørspillere deltok i studien, hvor de spilte 3vs3 (pluss målvakt). SPI pro elite GPS system 15hz (GPSports) ble brukt for å måle distanse og videoanalyse ble brukt for å måle asykliske aktiviteter, som tekniske utførelser og RF. RPE og HF var mål for intern intensitet. Resultatene viste en signifikant økning i total distanse ved økt banestørrelse. Analysene ble også delt inn i fire ulike hastighetssoner. Resultatene viser betydelig høyere distanse tilbakelagt i andre (1,4-3,5 m·s⁻¹) og tredje (3,4-5,2 m·s⁻¹) hastighetsonen ved økende banestørrelse. Og det ble ikke funnet noen signifikant forskjeller i den fjerde hastighetsonen (>5,2 m·s⁻¹).

Det var ingen signifikante effekt av banestørrelse på tekniske parametere, eller spesifike håndballbevegelser som hop og RF, eller HF. RPE viste at den største banestørrelsen var signifikant høyere (8,2 ±1,0) enn den minste (6,3 ± 0,5). Forfatterne konkluderer med at endring av banestørrelse under SS i håndball kan bli brukt for å manipulere både ekstern og intern belastning av spillerne.

2.6.2 Spillerantall
Antall spiller på hvert lag kan varieres for å manipulere treningsintensiteten. Til forfatternes bekjentskap er det ikke undersøkt i håndball hvordan spillerantallet påvirker intensitet, men det er gjort i andre idretter som blant annet fotball og rugby. Studier i fotball har undersøkt effekten av antall spillere på treningsintensiteten under SS, hvor HF er en av de mest brukte metodene for å måle intern intensitet. Studier som har holdt den absolutte banestørrelsen konstant, har vist at gjennomsnittlig HF reduseres når antall spillere øker (Duarte, Batalha, Folgado, & Sampaio, 2009; Owen, Twist, & Ford, 2004; Williams & Owen, 2007), som antagelig kan skyldes et mindre areal per spiller (Duarte et al., 2009). Uavhengig av banestørrelse har gjennomsnittlig HF også vist å reduseres ved flere spillere under SS hos unge rugbyspillere (C. D. Foster, Twist, Lamb, & Nicholas, 2010). Når den absolutte banestørrelsen endres, og den relative banestørrelsen blir holdt konstant, er det vist at HF, RPE og laktat også reduseres når antall spillere øker (Hill-Haas et al., 2009). På grunn av metodiske ulikheter mellom studiene blir det vanskelig å sammenligne, men studiene indikerer at både spillerantall og banestørrelse påvirker intern intensiteten i SS. Det er derfor foreslått at det er bedre å holde den absolutte banestørrelsen konstant, for å isolere effekten av antall spillere (Rampinini et al., 2007).
Få studier har undersøkt effekten av spillerantall i SS ved å måle den eksterne belastningen ved bruk av bevegelsesanalyser. I en studie på utrente menn ble effekten av antall spillere undersøkt for SS (3vs3, 5vs5, 7vs7) i fotball (Randers, Nielsen, Bangsbo, & Krustrup, 2014). Spillerens bevegelse ble målt med en 10 Hz GPS enhet (MinimaxX S4), og studien fant en signifikant moderat effekt på antall intense akselerasjoner (>1,5 m·s⁻¹) og akkumulert Player Load™ med høyere verdier ved 3vs3, enn 5vs5 og 7vs7. Dette er i kontrast til studien til Castellano, Casamichana, og Dellal (2013), som ikke fant en signifikant forskjell i akkumulert Player Load™, i henhold til antall spillere involvert ved bruk av samme antall spillere i SS. Dette kan skyldes at Castellano et al. (2013) brukte semi-profesjonelle fotballspillere, som kan gi ulik arbeidskapasitet mellom forsøkspersonene. Dette antydes ved at studien hadde 24-40 % høyere absolute verdier og 40 % høyere distanse tilbakelagt med høyintensitet løp, sammenlignet med Randers et al. (2014). En annen mulig forklaring til disse forskjellene kan være ulik lengde på intervallene, samt at Castellano et al. (2013) holdte den relative banestørrelsen konstant på 210 m² per spiller, mens Randers et al. (2014) hadde en relativ banestørrelse på 80 m² per spiller, som kan ha en påvirkning på spillestilen og aktivitets profilen til spillere (Randers et al., 2014). En økning i intense akselerasjoner og Player Load™ ved færre spillere er foreslått å skyldes flere ballberøringar, som resulterer i et høyere antall driblinger, og at spillere er mer involvert i spillet. Antall ballberøringar per spiller er vist vær to til tre ganger høyere under 3vs3 enn 7vs7 og 9vs9 i fotball (Owen, Wong del, McKenna, & Dellal, 2011). I de høyeste hastighetskategoriene (>21km·h⁻¹) ble det funnet signifikante forskjeller med henhold til antall spillere involvert, hvor en høyere distanse i denne hastighetskategorien ble tilbakelagt i 7vs7, sammenlignet med 3vs3 (Castellano et al., 2013). Det ble ikke rapportert noen forskjeller mellom SS formatene i antall eller distanse tilbakelagt med høyintensive løp (>13km·h⁻¹) eller sprint, eller intern intensitet (gjennomsnittlig og høyeste HF, blox laktat, NH₃ konsentrasjon, og RPE) (Randers et al., 2014).

For gode juniorspillere viste GPS (SPI-10, GPSports) dataene i studien til Hill-Haas et al. (2009) at 6vs6 hadde signifikant høyere gjennomsnittlig maksimal sprint (>18km·h⁻¹) varighet og lengde enn 2vs2 og 4vs4, og 4vs4 hadde signifikant høyere enn 2vs2. Dette mener forfatterne skyldes en større absolutt banestørrelsen, som ga bedre muligheter for løp med høyintensitet. 2vs2 formatet fremkalte høyest HF, laktat og RPE verdiene, og
studien konkluderer at færre spillere (2vs2 og 4vs4) gir høyere intensitet, og er dermed hensiktsmessig for å øke fysiologisk stress, mens flere spillere (6vs6) kan bli brukt for å for å stimulere kampspesifikke bevegelser (Hill-Haas et al., 2009). For unge basketballspillere resulterte 2vs2 i en høyere prosent av HF_{max}, RPE, og tekniske aksjoner sammenlignet med 4vs4 (Conte, Favero, Niederhausen, Capranica, & Tessitore, 2016). På grunn av ulike metoder, forsøkspersoner, og idrettspesifikke forskjeller er det vanskelig å sammenligne de tilgjengelige studiene. Det er foreløpig få studier og ikke enighet i litteraturen om hvorvidt spillerantall påvirker den eksterne belastningen under SS. Det er heller ingen studier tilgjengelig på dette i håndball.

2.6.3 Belastning i smålagspill sammenlignet med kamp

SS har vist å kunne forbedre aerob utholdenhet (Buchheit, Lepretre, et al., 2009) og håndballspsifikke egenskaper (Buchheit, Laursen, et al., 2009; Iacono et al., 2015), men det ikke forfatteren bekjent undersøkt hvordan eksterne belastning i SS er sammenlignet med hva spillere utfører i en håndballkamp. Det er noen studier som har undersøkt dette i fotball, hvor en studie rapporterte lik total distanse for 5vs5 og 11vs11, men 5vs5 viser en større prosentandel av høy (sprint) og lav/medium (gåing og jogging) intensitets aktiviteter sammenlignet med kamp (Allen, Butterly, Welsch, & Wood, 1998). I kontrast rapporterte Gabbett og Mulvey (2008) at 3vs3 og 5vs5 ikke simulerte det høyintensive repeterte sprint kravet til internasjonale kamper hos kvinnelige elitespiller, men fant at formatene simulerte bevegelsesmønsteret i innenriks, nasjonal og internasjonale kamper. Sammenlignet med tidligere rapportert gjennomsnittlig HF_{max} under nitten fotballkamper for juniorspillere (Reilly, 2007), viser studien til Hill-Haas et al. (2009), at 2vs2 overstiger kampintensitet, 4vs4 var lik, og 6vs6 er under intensiteten vist i kamp. For Australiske fotballutøvere ble det observert en lik eller høyere Player Load™-min^1 i SS sammenlignet med kamp ved bruk av MinimaxX 2.0 enhet. Player Load™-min^1 ble også delt inn i en lav hastighetskategori (>2 m s^-1), som viste betydelig høyere verdier under SS, sammenlignet med kamp for alle spilleposisjonene (Boyd, Ball, & Aughey, 2013). For kvinnelige landhockey spillere viste SS på en redusert banestørrelse å ikke reflektere de fysiske kravene i kamp, hvor spillere brukte mer tid med lavintensitet aktivitet, og mindre tid med høyintensive aktiviteter, sammenlignet med kamp (Gabbett, 2010). 5vs5 (på halv bane) har vist å ha betydelig lavere akkumulert fysisk belastning per minutt (ES: 1.17) enn i kamp for basketballspillere (Montgomery, Pyne, og Minahan (2010). Variabelen ble målt med et
triaksial akselerometer (MiniMaxX, Catapult Innovasjons Melbourne, Australia). Forfatterne anbefaler dermed å bruke 5vs5 (på halvbane) til å utvikle taktiske elementer. Det finnes foreløpig lite forskning og ingen overenstemmelse i litteraturen om SS simulere eller overbelaster den eksterne belastning, sammenlignet med kamp. Og det er til forfatterens kjentskap ikke gjort studier på dette i håndball.

2.7 Metoder for å måle fysisk prestasjon i lagidretter

I løpet av de siste par tiårene har det blitt utviklet ulike metoder for å kvantifiserere fysiske krav og belastning i lagidretter. Ekstern belastning har blitt brukt for å beskrive en utøvers treningsstimuli (Scott et al., 2013), og kan kvantifiseres av bevegelsesanalyser, som bruker videoanalyser, globalt posisjoneringssystem (GPS), eller MTE. Hjertefrekvensovervåking, blodprover av metabolitter og hormoner, og RPE blir brukt som mål på intern belastning, for å beskrive en utøvers fysiologiske respons på et gitt treningsstimuli (Scott et al., 2013). Disse målingene gir ulike aspekter av fysisk aktivitet, og en kombinasjon av disse gir en bedre forståelse for fysiske krav i lagidretter. Med bakgrunn i problemstillingen vil studien fokusere på metoder som har brukt bevegelsesbaserte målemetoder.

Bevegelsesanalyser har vært en foretrukket metode for å måle ekstern belastning i lagidretter, og er mest kjent for å måle forflytning, eller løpsbaserte bevegelser. De fleste tilgjengelige studiene gjort på håndballspillere rapporterer distanse, tid brukt i ulike hastighetssoner, med fokus på høyintensive løp eller sprint (Michalsik et al., 2014; Michalsik et al., 2013; Povoas et al., 2014b). På grunn av varierende klassifisering av hastighetssoner og definisjonen av en sprint mellom ulike studier, gjør det utfordrende å gjøre sammenligningar (Cummins, Orr, O’Connor, & West, 2013). I tillegg kan bevegelsesanalyser basert på tid brukt i ulike hastighetssoner, mangle sensitivitet for å fange opp korte energikrevende bevegelser (Karcher & Buchheit, 2014; Roberts, Trewartha, & Stokes, 2006) som RF, Aks, Des, og hopp. Disse bevegelsene har blitt registrert med håndnotasjon fra videoopptak i noen studier. Denne metoden er tidskrevende og reliabiliteten tvilsom, spesielt ved estimering av sprintaktivitet (Roberts et al., 2006), og kan ikke måle presist retningen og antallet av slike ikke-løpsbaserte bevegelser, som f.eks. HIA. Mangel på presise målinger av disse bevegelsene, kan føre til underestimering av viktige fysiske egenskaper i håndball (Karcher & Buchheit, 2014). For lagidretter har det derfor blitt introdusert MTE, som også kan mål disse ikke-
løps-basere bevegelsene. Sammen kan disse bevegelsesanalysene gi et nøyaktigere og en mer helhetlig forståelse av den sammensatte eksterne belastningen i håndball.

2.7.1 Mikrosensor teknologienheter
Utviklingen av små bærbare MTE har gitt nye muligheter for å undersøke fysiske krav i ulike lagidretter. MTE inkluderer et akselerometer, gyroskop og magnetometer som gir detaljert informasjon om idrettsbesifikke bevegelser, og er mer tidseffektiv enn arbeidsomfattende videoanalyser. Enhetene er praktiske å bruke og trenger kun en trådløs mottaker for å laste opp signaler.

Enhetene gir informasjon om både løpsbaserte og ikke-løpsbaserte bevegelser. MTE, OptimEye S5 (Catapult Sports, Australia) har en variabel som beskriver en utførels ikke-løpsbaserte bevegelser. Denne teknologien er kalt *Inertial movement analysis* (IMA), og kan estimere frekvens, men også kalkulere størrelsen og retningen av en Aks. IMA variablene kan være nyttig for å skille mellom individuelle spilleres bevegelsesmønster, men også oppdage viktige arbeidskrav i idrett. Forskning i andre lagidretter som basketball (Montgomery et al., 2010) og rugby (Jones, West, Crewther, Cook, & Kilduff, 2015) har allerede integrert bruken av MTE. Til forfatterens kjennskap er det hittil kun en studie (Luteberget & Spencer, 2016) som har brukt denne variabelen for å beskrive de ikke-løpsbaserte bevegelse i håndball.

IMA kan også måle antall hopp, som også anses som en viktig egenskap i håndball. Denne variabelen krever at utøverne lander på begge føttene, noe som ikke nødvendigvis er vanlig i håndball, hvor utøverne ofte lander på magen eller ryggen. Validiteten og reallabiliteten er ikke undersøkt i denne variabelen, og vil ikke bli diskutert videre i studien.

2.7.2 Player Load™
Player Load™ har blitt utviklet av Catapult Sport, og det Australiske idrettsinstituttet, hvor variabelen er et måle på fysisk anstrengelse som ikke er avhengig av distanse (CatapultSports, 2013b). Player Load™ kalkulerer både de løpsbaserte bevegelsene og de og måler anstrengelse basert på endring i Aks i tre bevegelsesplan (Catapult Sports, 2013a). Dette er høyst relevant for å måle den totale fysiske belastningen i lagidretter, som f.eks. håndball.
Nyere studier har vist en moderat korrelasjon \(r = 0,49 \) mellom Player LoadTM\textregisteredmin−1 og tilbakelagt distanse i kamp og under trening ved bruk av SS \(r = 0,63 \) for landhockey spillere (Polglaze, Dawson, Hiscock, & Peeling, 2015). Gallo, Cormack, Gabbett, Williams, og Lorenzen (2015) dokumenterte en sterk korrelasjon \(r = 0,97 \) mellom Player LoadTM\textregistered og distanse i Australisk fotball. Dette antyder en sensitivitet for løpsbaserte bevegelser, muligens på grunn av kraften i hæl frasparket genererer en vertikal Aks (CatapultSports, 2013b). Player LoadTM\textregistered har også vist en god korrelasjon med intern intensitet som HF, samt målinger av maksimalt oksygenopptak under løping på tredemølle (Barrett, Midgley, & Lovell, 2014). Det er også funnet en strekkorrelasjon \(r = 0,84 \) mellom Player LoadTM\textregistered og RPE under trening (Scott et al., 2013).

Studier som har brukt Player LoadTM\textregistered har rapporterte forskjeller mellom trening og kamp, spilleposisjoner og konkurransenivået mellom elite og sub-elite utøvere (Scott et al., 2013). I tillegg har Player LoadTM\textregistered vist forskjeller mellom spilleperioder i en lacrosse kamp (Polley, Cormack, Gabbett, & Polglaze, 2015). Det har også blitt vist at Player LoadTM\textregistered kan være et praktisk mål for å kvantifisere ekstern treningsbelastning (Gallo et al., 2015; Scott et al., 2013). Player LoadTM\textregisteredmin−1 har blitt validert som et nyttig mål på intensitet i Australisk fotball (Mooney, Cormack, O'Brien, Morgan, & McGuigan, 2013).

Med tanke på de ovennevnte studiene, kan Player LoadTM\textregistered bli ansett som en nyttig variabel, for å måle intensitet og belastning i lagidretter.

2.8 Oppsummering

Oppsummert er håndball en fysisk krevende lagidrett, karakterisert av intervallpreget arbeid, med lav og høyintensitets aktiviteter. Kortvarige, energikrevende bevegelser som Aks, Des, RF av høyintensitet forekommer ofte under håndballkamp, og er vist å være posisjonsspesifikk. Dette underbygger et behov for posisjonsspesifikk trening for å tåle repeterede håndballspezifiske bevegelser.

Ulike varianter og format av SS, er vist å påvirke treningsintensiteten. Det er foreløpig kun bevis at økning av absolutt banestørrelse i håndball manipulerer både ekstern belastning og intern intensitet under SS. Om spillerantall påvirker eksterne belastning under SS i håndball er foreløpig ikke undersøkt. I andre idretter ser det ut til at når den absolutte banestørrelsen holdes konstant, reduseres intern intensitet (HF) ved flere antall spillere. Det et foreløpig ingen enighet i litteraturen om spillerantall påvirker ekstern...
belastning. Det er uansett vanskelig å sammenligne de tilgjengelige studiene grunnet ulike metoder og forsøkspersoner, samt vanskelig å overføre til håndball, på grunn av idrettsspesifikke forskjeller.

SS i håndball er vist å være en effektiv metode for å forbedre aerob utholdenhet, samt håndballspesifikke fysiske egenskaper. Det foreløpig ikke undersøkt om SS er tilstrekkelig for å oppnå samme intensitet eller HIA, som utføres under offisielle håndballkamper. Med bakgrunn i litteraturen fra andre idretter en de foreløpig ingen enigheter på dette område. På grunn av idrettsspesifikke forskjeller er det uansett vanskelig å gjøre sammenligninger mellom idrettene.

Basert på en kompleks aktivitetsprofil er det vanskelig å måle den eksterne belastningen i håndball. De fleste tilgjengelige studier som har undersøkt ekstern belastning i håndball, har brukt videoanalyse, som ser ut å ikke gi en helhetlig forståelse av de fysiske kravene, grunnet metodiske begrensninger for å måle antall og retningen av HIA. Ny teknologi, som MTE (akselerometer, gyroskop og magnetometer) har blitt introdusert de siste årene for å utfylle tradisjonelle bevegelsesanalyser, ved kunne måle ikke- løpsbaserte bevegelsene. Dette anses som nyttige for en bedre forståelse av ekstern belastningen i håndball. Denne metoden er også mer praktisk og mindre tidskrevende sammenlignet med tradisjonelle bevegelsesanalyser.
3. Metode

3.1 Eksperimentell design
Dette er et observasjonsstudie, hvor MTE (OptimEye S5, Catapult Sports, Australia) ble brukt for å undersøke hvordan spillerantall påvirker intensiteten og HIA i ulike SS ved en konstant absolutt banestørrelse. Dette ble undersøkt for formatene 3vs3 og 6vs6 (pluss to målvakter) under ti treninger for kvinnelige håndballspillere. I tillegg ble lagene målt under ti offisielle seriekamper i første delen av sesongen (Høst 2015). Deltakerne ble verbalt informert om formålet og prosedyren av studien, og signerte samtykkeerklæring for å delta (Vedlegg I). Datalagringen ble godkjent av det norske samfunnsvitenskapelige datatjenesten.

3.2 Catapult OptimEye S5 og intertial movement analysis (IMA)
OptimEye S5 (Catapult Sports, Australia) er en elektronisk måleenhet, som blir brukt for å måle bevegelser, kraft, og orientering. Enheten er 9,6 cm høy, 5,2 cm tykk og veier 66,8g. Integrert i enheten er det et triaksial akselerometer (100 Hz), et magnetometer (100 Hz), og et gyroskop (200-2000 grader·sekund⁻¹) (CatapultSports, 2014). Triaksiale akselerometer måler frekvens og styrke av bevegelser i tre retninger: Den anterior-posterior, mediolaterale og longitudinale retning (Boyd, Ball, & Aughey, 2011; Boyd et al., 2013).

IMA benytter rådata fra akselerometer og gyroskop for å skape en gravitasjonsløs akselerasjonsvektor basert på avanserte algoritmer i Kalman filtrering. Triaksial akselerasjonsparametere, som ser bort i fra gravitasjonen, skaper grunnlaget for algoritmer, som gjor det mulig med spesifikk analyse av ulike idresspesifikke mikrobevegelser som Aks, Des og RF. Ettersom IMA Aks er grunnlaget for disse algoritменe, er ikke beregningene avhengig av enhetens orientering (CatapultSports, 2013a).
3.2.1 Kalkulering av akselerasjoner, deselerasjoner og retningsforandringer

Catapult OptimEye S5 kalkulerer størrelsen (akselerometer) og retningen (magnetometer og gyroskop) av hver bevegelse for å skille mellom de ulike idrettsspesifikke aktivitetene i IMA analysen. De ulike bevegelsene er kategorisert som Aks, Des, RF Høyre og RF Venstre (CatapultSports, 2013a), hvor alle bevegelsene over 2,5 m·s⁻¹ ble inkludert i denne studien. Hastighetskategoriene er basert på nåværende innstillinger fra produsenten, og studien slo sammen medium intensitets bevegelsel (2,5-3,5 m·s⁻¹), og høyintensitets bevegelsel (>3,5 m·s⁻¹). RF venstre og RF høyre er slått sammen til en kategori og refereres til som RF. Summen av alle Aks, Des, RF over 2,5 m·s⁻¹ er i studien referert til som HIA. Målet med denne hastighetskategoriene (>2,5 m·s⁻¹) er å ekskludere lav til moderat intensitets løping uten raske endringer i akselerasjoner fra IMA analysene (CatapultSports, 2013a) og har vist en god inter-enhets reliabilitet (kap 3.4.2). For å kalkulere størrelsen på bevegelsen blir start og sluttpunktet av bevegelsen identifisert i akselerasjonskurven, og område under kurven, for det anterior-posterior og mediolaterale området summeres. Det er summen av disse akselerasjonene som brukes for å beregne størrelsen på IMA bevegelsen (CatapultSports, 2013a).

Retningen på bevegelsen bestemmes av hvilken retningen utoveren legger kraft, og er delt inn i fire hovedkategorier. Med orienteringen av enheten tatt i betraktning før og under bevegelsen, blir bevegelsen enten definert som en Aks (-45° til 45°), RF til høyre (135° til 45°), Des (−135° til 135°), eller RF til venstre (−135° til −45°) (figur 1).

Generelt vil RF med bruk av høyre foten blir registret som en RF til venstre, og motsatt (CatapultSports, 2013a). Da det er posisjonen til enheten, og dermed den øvre den av overkroppen som er brukt for å definere retningen, vil retningen på kroppen på det tidspunktet RF utføres, være en viktig faktor for kalkuleringen av IMA retningen.
Figur 1. Viser hvordan IMA registrerer retningen på en bevegelse med kategoriene akselerasjoner, retningsforandringer til høyre (RF H), deselerasjoner, og retningsforandringer til venstre (RF V). Forenklet figur fra Catapult Sports (2013a)

3.2.2 Kalkulering av Player Load™

Player Load™ er en akselerasjonsbasert måling av fysisk ytre belastning, som er utviklet for overvåking og analysering innenfor lagidretter. I utgangspunktet ble den utviklet for rugby (CatapultSports, 2013b), men har i senere tid også blitt tatt i bruk innenfor fotball, Australisk fotball, lacrosse, basketball og hockey (Gallo et al., 2015; Montgomery et al., 2010; Polglaze et al., 2015; Scott et al., 2013). Player Load™ er definert som "momentane hastighetsforandringer av akselerasjoner, dividert med en skaleringsfaktor (CatapultSports, 2013b), eller "uttrykkes som kvadratroten av summen av de kvadrerte umiddelbare hastighetsendringene i akselerasjonen, for hver av de tre vektorene (x, y og z-aksen), og dividert med 100" (Boyd et al., 2011). Skaleringsfaktoren er inkludert for å gjøre tallene enklere å jobbe med (CatapultSports, 2013b). Akkumulert eller total Player Load™ er et mål på den totale eksterne belastningen utøverne utsettes for etter avsluttet trening eller kamp, mens Player Load™· min⁻¹ er et mål på ekster intensitet på et bestemt tidspunkt eller i en gitt periode. I denne studien ble det naturlig å se på Player Load™· min⁻¹ når vi skulle sammenligne kampdata mot SS formatene, ettersom SS periodene kun varte i 5 minutter.
Likningen for kalkulering av Player Load™ er beskrevet under:

$$\text{Player Load}^TM = \sqrt{\frac{(a_{j1} - a_{j-1})^2 + (a_{j-1} - a_{j+j-1})^2 + (a_{j+j-1} - a_{j})^2}{100}}$$

\(a_j\) = akCELERasjon forover, \(a_s\) = akCELERasjon sideveis, \(a_v\) = akCELERasjon vertikalt

3.3 Eksperimentell prosedyre

Første delen av studien besto av fysisk testing av spillerne. Treningsdata innsamlingen gikk over flere uker, hvor det av praktiske årsaker ikke var mulig å gjøre dette i en sammenhengende femukers periode. Kampdata innsamlingen ble gjort første delen av sesongen (høsten 2015), hvor vi fulgte kampoppsettet som Norges håndballforbund hadde satt opp for de to lagene som var undersøkt. Figur 2 viser en oversikt over tidsperioden for datainnsamlingen i studien.

Figur 2. En forenklet oversikt over datainnsamlingen i studien

3.3.1 Fysisk testing

Fysisk testing av spillerne fra begge lag ble gjort uken før treningsdata innsamlingen startet. Dette for å kartlegge det fysiske nivået til spillerne. Resultatet fra disse testene er kun brukt til å oppgi fysiske karakteristikk i metodedelen.
5 og 20 m sprint
Lineær akslerasjonsevne var testet ved å sprinte 20 meter, målt ved elektroniske fotoceller (SmartSpeed Pro, Fusion Sport, Australia) plassert ved 0,5,10 og 20m. Alle utøverne hadde en stående, standardisert start, 30 cm bak den første fotocellen. Forsøkspersonene fikk starte med en fot på merket, hvor det andre benet var plassert noe lengre bak. Utøverne ble instruert til å unngå å lene seg bakover i startposisjonen, før de startet å sprinte. Kjegler var plassert 1 meter bak siste fotocelle, og forsøkspersonene ble instruert til å løpe frem til kjeglene for å unngå å startet nedbremsingen for tidlig. Forsøkspersonene hadde tre godkjente forsøk der den gjeldende tiden var basert på gjennomsnittet av de to beste løpene, for å minimisere standard feil av målingene. Utøverne hadde 2 minutter hvile mellom hvert forsøk.

20-m Shuttle run test
For å måle spilleres aerobe utholdenhet ble det gjennomført en 20m Shuttle run test (også kalt Beep-test), basert på originale protokoll (Leger, Mercier, Gadoury, & Lambert, 1988). Utøverne løp frem og tilbake på en bane som måler 20 m, og spillerne måtte berøre 20 m linjen samtidig med lydsignalet fra lydbåndet. Frekvensen på lydsignalet økte med $0,5 \text{ km} \cdot \text{h}^{-1}$, hvert minutt, fra en starthastighet på $8,5 \text{ km} \cdot \text{h}^{-1}$. Når en utøver ikke lenger klarer å følge tempøet av lydsignalene eller frivillig trekker seg på grunn av utmattelse, blir det siste oppropte nivået brukt som sluttnivået. Testlederne fulgte nøye med på 20 m linjen, for å bestemme når forsøkspersonen ikke lengre klarer å følge hastigheten, og etter to påfølgende advarsler var utøveren ute om de ikke nådde 20m linjen.

3.3.2 Forsøkspersoner i treningsdata
Spillerens bevegelser ble observert for to semi–profesjonelle kvinnelige håndballlag, hvor et lag spilte i den øverste og det andre laget i den nest øverste divisjonen i Norge. På grunn av at det er vist forskjeller i fysiske prestasjonsvariable for kvinnelige håndballspillere med hensyn til konkurransenivå (Moss, McWhannell, Michalsik, & Twist, 2015) ble det gjort statistiske analyser mellom gruppane i de undersøkte variablene PlayerLoad™-min⁻¹, HIA-min⁻¹ og RPE. Statistiske forskjeller mellem lagene ble utført ved bruk av forhånds lagde Excel regneark (Hopkins, 2007). Det ble ikke funnet noen statistiske forskjeller, og vi slo derfor sammen dataene fra de to
lagene, og delte spillerne inn i fire forskjellige spilleplasser (BS, KS, LS, MV), ut ifra deres posisjon på banen. I treningsdataene (SS formatene), var det totalt 31 spillere (gjennomsnitt ± standardavvik (SD) alder: 22,2 ± 3,3 år) som ble inkludert, dette tilsvarte 12 BS, 11 KS, 3 LS og 5 MV. Antropometriske og fysiske variabler for spillere er presentert i tabell 1. For å bli inkludert i treningsdataene måtte forsøkspersonene ha gjennomført minst tre treningsbolker på tre ulike dager av hvert SS format. På grunn av feil på enheten, mistet vi HIA data på en av LS som derfor ikke er med i HIA gjennomsnittet. Oversikt over antall observasjoner fra 3vs3 og 6vs6 er presentert i tabell 2.

Tabell 1: Gjennomsnitt ± SD for antropometriske og fysiske variabler for de ulike spillerposisjon som er inkludert i treningsdataene (3vs3 og 6vs6). BS = bakspillere, KS = kantspillere, LS = linjespillere, MV = målvakt. BS høyde og 20-m shuttle run test (n=8), vekt og 20-m sprint (n=7). KS høyde og vekt (n=5), 20-shuttle run test (n=6), og 20–m sprint (n=7). LS (n=3) i alle parametere, og (n=4) i alle parametere for MV

<table>
<thead>
<tr>
<th>Spilleplass</th>
<th>Høyde (cm)</th>
<th>Vekt (kg)</th>
<th>20-m shuttle run test (desimal)</th>
<th>20-m sprint (sek)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td>173,9 ± 6,45</td>
<td>69,6 ± 6,14</td>
<td>11,56 ± 1,30</td>
<td>3,45 ± 0,15</td>
</tr>
<tr>
<td>KS</td>
<td>165,4 ± 5,59</td>
<td>63,9 ± 5,76</td>
<td>11,02 ± 0,78</td>
<td>3,40 ± 0,11</td>
</tr>
<tr>
<td>LS</td>
<td>173,2 ± 0,86</td>
<td>71,5 ± 7,52</td>
<td>10,97 ± 0,84</td>
<td>3,45 ± 0,11</td>
</tr>
<tr>
<td>MV</td>
<td>170,6 ± 6,36</td>
<td>69,9 ± 6,56</td>
<td>10,04 ± 1,59</td>
<td>3,53 ± 0,08</td>
</tr>
</tbody>
</table>

3.3.3 Treningsdata innsamling og dataanalyse

Før spillere startet med oppvarmingen, ble hver spiller utstyrt med en spesiell vest fra produsenten (Figur 3). En påskynt enhet (Catapult, OptimEye S5) ble plassert i en lomme på vesten, som er lokaliseret mellom skulderbladene. Spillerne har på seg vesten under treningen. Treneren organiserte oppvarmingen, som besto av skadeforebyggende øvelser, generelle løpsbaserte øvelser og håndballspesifikke (kast/skudd) oppvarmingsøvelser, som var kjente øvelser for laget. Studien overvåket...
totalt ti håndballtreninger, fem treninger per lag. Så langt det var praktisk mulig, ble en fast ukedag benyttet til måling. I randomisert rekkefølge gjennomførte lagene et minimum av to bolker med 3vs3 og en bolk av 6vs6, med en spilleperiode på fem minutter hver. Antall spillere på treningen, bestemte hvor mange SS bolker det ble utført, hvor hver utøver minimum måtte være med i en bolk. Under 3vs3 fikk de lagene som hadde spilt fem minutters pause mens to nye lag utførte 3vs3. Av hensyn til antall spillere på trening, måtte noen av spillerne vente lengre, slik at det kunne gå 10 minutter før neste utførelse av SS. Pausene var passive, med tillatelse for å kunne utføre skadeforebyggende øvelser med lavintensitet, som noen utøvere benyttet tiden til. Etter avsluttet 6vs6 ble neste bokl satt i gang etter drikkepause, innsamling av RPE, og ny organisering av treningsbolk. Dermed varierte pausen mellom 2-3 minutter i 6vs6.

![Figur 3. Enheten i den spesiallagde vesten fra produsenten (til venstre) og OptimEye S5 enheten (til høyre).](image)

Det var ønskelig at SS skulle være så likt kamp som mulig, så vanlige håndballregler ble benyttet. Det eneste som skilte seg fra en vanlig kamp, var at keeperne hadde muligheten til å ha baller liggende i mål, slik at det ikke var en fast ball som måtte benyttes. Dette gir keeperne muligheten til å sette i gang spillet raskere ved for eksempel redninger hvor ballen forsvinner langt fra mål. Ulike laginndelinger ble gjort mellom treningene, hvor treneren hadde ansvaret for å organisere laginndelingen av SS ved hver trening. Trenerens oppmuntring er vist å påvirke intensitet i SS (Rampinini et al., 2007). I studien ble trenerne instruert til å opptråd på lik linje som under en håndballkamp, som betyr at oppmuntring og tilbakemeldinger var tillatt.
Treningsdata innsamlingen ble målt via en spesialisert "live" funksjon i Catapult Sprint programvaren (Version 5.1.4, Catapult Sports, 2014), hvor informasjonen fra enhetene ble overført til programvaren via en trådløs mottaker. To observatører fulgte signalene under treningen, og lagde separerte perioder for de ulike bolkene i Catapult sprint programvaren. Spillerne som ikke spilte ble fjernet fra analysene. Treningsdataene ble lastet ned fra enhetene via Catapult Sprint. Videre ble dataene eksportert til Microsoft Excel gjennom en lagsrapport lagd fra produsenten, hvor variablene ble delt inn i kategorier. Fra rådata filene ble Player Load™, Aks, Des, og RF (>2,5 m·s⁻¹) hentet ut for videre analyser. For å kunne sammenligne SS med kamp, ble de absolutte verdiene i SS delt på total varighet (fem minutter), og oppgitt som per minutt.

![Skalaen mellom opplevd anstrengelse og den deskriptive vurderingen (Borg’s CR10-skala, modifisert av C. Foster et al. (2001).](image)

Table 1. Beschreibung

<table>
<thead>
<tr>
<th>Rating</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Hvile</td>
</tr>
<tr>
<td>1</td>
<td>Veldig lett</td>
</tr>
<tr>
<td>2</td>
<td>Lett</td>
</tr>
<tr>
<td>3</td>
<td>Moderat</td>
</tr>
<tr>
<td>4</td>
<td>Noe hardt</td>
</tr>
<tr>
<td>5</td>
<td>Hardt</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Veldig hard</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Maksimal</td>
</tr>
</tbody>
</table>
3.3.4 Forsøkspersoner i kampdata
I kampgjennomsnittet ble 9 BS, 8 KS, 3 LS og 2 MV inkludert. Disse 22 forsøkspersonene var også inkludert i treningsdataene, og oppfylte inklusjonskriteriet om minst tre kamper, med minimum fem minutters spilletid i hver kamp. Fra rådata filene ble også den høyeste fem minutters perioden (H5-min) i kamp analysert. 15 forsøkspersoner ble inkludert i denne analysen, hvor spillerne minst måtte ha to bolker med fem minutters sammenhengende spilletid, i minimum tre kamper. På grunn av feil på enheten mistet vi HIA data i en kamp for en LS. Oversikt over antall observasjoner fra kamp og H5-min er presentert i tabell 2.

3.3.5 Kampdata innsamling og dataanalyse
Tilsvarende som før trening, fikk hver spiller en vest med en påskrudd enhet som de hadde på seg gjennom hele oppvarmingen og kampen. Hvert av lagene hadde sin faste kampoppvarming, som besto av dynamiske og generelle løpsbaserte øvelser, samt håndballspesifikke øvelser (kast, skudd osv). Bortsett fra å utstyre spillerne med vest og enheter, påvirket ikke studien andre aspekter rundt kamp eller kampforberedelsene. Totalt ble ti offisielle seriekamper målt, fem kamper for hvert lag. Flertallet av kampe var ble målt på lagets hjemmebane, men av praktiske hensyn måtte noen bortekamper også inkluderes.

For å forsikre at alle enhetene var slått på, og fungerte som de skulle under kampen, var det alltid to observatører som satt på sidelinjen og fulgte signalene i Catapult Sprint programvaren (Version 5.1.4, Catapult Sports, 2014). Separerte perioder for 1.omgang og 2.omgang ble lagd i Catapult sprint Software, og alle bytter ble gjort kontinuerlig for å forsikre at kun tiden brukt på banen ble inkludert i analysene. Ved time-out ble alle spillerne inaktivert, og ved utvisinger ble den aktuelle spilleren inaktiv. Byttene ble gjort i Catapult Sprint programvaren, og for å dobbeltsjekke at dette ble gjort riktig, ble innbytterbenken filmet under kampen, og notater ble tatt. På denne måten kunne eventuelle feil bli korrigert etter kampen. Samme variablene som under SS analysene (Player LoadTM, Aks, Des, og RF (>2,5 m·s⁻¹), ble tatt ut for videre analyser. Absoluble verdiene ble delt på individuell spilletid og oppgitt som per minutt. I tillegg ble H5-min i kamp av Player LoadTM·min⁻¹ og HIA·min⁻¹, uavhengig av hverandre, tatt ut for videre analyser.
Tabell 2: Antall observasjoner per spilleplass for 3vs3, 6vs6, ti seriekamper, og høyeste fem minutters perioden i kamp (H5-min) for Player LoadTM·min−1 og i [n] HIA·min−1. BS = bakspillere, KS = kantspillere, LS = linjespillere, og MV = målvakt.

<table>
<thead>
<tr>
<th>Spilleplass</th>
<th>3vs3</th>
<th>6vs6</th>
<th>Kamp</th>
<th>H5- min</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td>63</td>
<td>78</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>KS</td>
<td>56 [55]</td>
<td>72 [71]</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>MV</td>
<td>47</td>
<td>32</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>110</td>
<td>110</td>
<td>80</td>
<td>63</td>
</tr>
</tbody>
</table>

*På grunn av tekniske problemer, ble ikke HIA dataene registret for alle forsøkspersonene. Observasjonene for HIA, der tallene skiller seg fra Player LoadTM·min−1 er oppgitt i [n].

3.4 Validitet og reliabilitet

3.4.1 Validitet av Catapult enhetene i en håndball kontekst

I ethvert forskningsprosjekt er det essensielt å diskutere validitet og reliabilitet av målingene, før man drar konklusjoner fra resultatet. Validitet omhandler om testen måler de egenskapene den er antatt å måle (Thomas, Nelson, & Silverman, 2011). Formålet i denne studien er å undersøke hvordan intensiteten og HIA endres når man endrer antall spillere på banen, og sammenligne de samme variablene med offisielle kamper. Player LoadTM·min−1 er som nevnt tidligere blitt validert som en hensiktsmessig metode for å måle intensitet (Mooney et al., 2013) og HIA som Aks, Des, og RF er vist å være sentrale egenskaper i håndball (Luteberget et al., 2016). Derav kan HIA variablene, sammen med Player LoadTM·min−1 betraktet som høyest relevante for å måle de variablene vi er interessert i å måle.

Et annet validitets aspekt er om enheten måler det den er ment å måle. Validiteten av Catapult Sport enheten (MinimaxX4, som er forgjengeren til OptimEye S5) har blitt undersøkt under en tredemølletest (Wundersitz, Gastin, Richter, Robertson, & Netto, 2015). Hvor et triaksial akselerometer (100Hz) målte Aks under alle bevegelsene,
samtidig som et 12-kamera bevegelsesanalyse system sporer posisjonen til en reflekterende markør, festet på enheten. Resultatene i studien viser at akselerometeret i enheten er i stand til å måle nøyaktig de høyeste Aks under gange og jogg, og i mindre grad ved løping. Studien viser også at når hastigheten på bevegelsene og omfanget øker, reduserer nøyaktigheten av akselerometeret.

En studie har sett på effektiviteten av MinimaxX s4 enheten (Catapult, Australia), til å automatisk oppdage taklinger og støt under elite australsk fotball under kamp (Gastin, McLean, Breed, & Spittle, 2014), som baserer seg på IMA lignende variabler. Av 352 observerte taklinger ved videoanalyse, ble 78 % av disse korrekt registrert som taklinger av produsentens programvare. Lavintensitets taklinger ble ikke like lett oppdaget som medium og høyintensitets taklinger, og taklinger gjort av en spiller var vanskeligere å registrere enn når en spiller ble taklet. Funnen er i kontrast med studien til Gabbett, Jenkins, og Abernethy (2010) som observerte en sterk korrelasjon ($r = 0,96, P <0,01$) mellom videoobservasjoner og programvarens registrering av en kollisjon. Studien rapporterte kollisjoner, men ved anvendelse av den samme takle algoritmen som Gastin et al. (2014) for rugbyspillere. Den sterke korrelasjonen indikerer at MinimaxX s4 enheten kan oppdage taklinger og kollisjoner, med at algoritmene som er utviklet for rugby ikke nødvendigvis er nøyaktige for andre idrett, grunnet idrettens egenart.

3.4.2 Reliabilitet av Catapult enhetene

En test er ikke valid hvis den ikke er reliable. Reliabiliteten av en test omhandler påliteligheten og nøyaktigheten av testresultatene. For å kvantifisere påliteligheten av en test er det vanlig å ta en re-test og identifisere den typiske målefeilen (Thomas et al., 2011). De første til å vurdere reliabiliteten til MinimaxX mikrosensorer og kalkulering av Player Load™, var Boyd et al. (2011). Ved å bruke en kalibreringsenhet utførte de statisk (oppreist posisjon) og dynamisk test (0,5 og 3,0 g). I den statiske testen viste resultatet en variasjonskoeffisient (CV) på 1,01 % innenfor enheten og 1,10 % mellom enhetene. CV i den dynamiske testen var innenfor enhetene 0,91 % til 1,05 % (0,5 og 3,0 g) og 1,04 % til 1,02 (0,5 og 3,0 g) mellom enhetene. I samme studie ble semi-profesjonelle fotballspillere utstyrt med to akselerometre under en Australisk fotballkamp og viste en CV mellom enhetene på 1,94 %. Studien foreslår dermed at MinimaxX enhetene er et reliabelt verktøy for å måle fysisk aktivitet i lagidrett, basert på Player Load™.
Relabiliteten av Player Load™ har også blitt undersøkt under en trinnvis tredemølle test (7-16 km·t) (Barrett et al., 2014). Resultatet viste en moderat til høy test-retest reliabilitet av Player Load™ og de individuelle komponentene som bidrar (CV: 5,3-14,8 %, intraklasse korrelasjonskoeffisient: 0.80 - 0.93). Studien konkluderer med at Player Load™ kan brukes for å måle ekstern belasting på individuell basis, og at enhetens plassering mellom scapula er egnet i treningssammenheng. På grunn av moderat til stor variasjoner mellom absolute Player Load™ verdier er det foreslått at man med forsiktighet sammenligner disse verdiene mellom utøvere.

Relabiliteten av OptimEye S5 har blitt undersøkt under håndballtreninger, hvor typiske håndballøvelser ble inkludert (Holme, 2015). Dataene demonstrerte at enhetene har en inter-enhet reliabilitet CV 3,9 %, og intraklasse korrelasjonskoeffisient 0,98 for antall HIA (>2,5 m·s⁻¹). Det var også observert en god reliabilitet av Player Load™ CV 0,9 %, og intraklasse korrelasjonskoeffisient 0,99. Oppsummert, antyder dette at antall HIA (>2,5 m·s⁻¹) og Player Load™ kan anses som reliable variabler for å måle håndballspesifikke bevegelser.

2.5 Statistiske analyser

Resultatene er presentert som gjennomsnitt ± SD. Forskjellen mellom SS og kampdata er kalkulert ved å bruke et tilpasset regneark (Hopkins, 2006) i Microsoft Excel 2011 for Mac. Data ble analysert ved bruk av Cohens D ES. En ES verdi på < 0,2 er triviell, 0,2 – 0,6 er en liten forskjell, 0,6 – 1,2 er moderat, 1,2 – 2,0 er stor og > 2,0 er en veldig stor forskjell. Sannsynligheten for en forskjell ble regnet ut og klassifisert som enten en triviell, negativ eller positive forskjell mot sammenligningen. Kvalitative konklusjoner ble gjort, basert på sannsynlighets kategoriene; meget usannsynlig (< 0,5 %), mest usannsynlig (0,5-5 %), usannsynlig (5-25 %), mulig (25-75 %), sannsynlig (75-95 %), mest sannsynlig (95–99,5 %), og meget sannsynlig (> 99,5), eller uklar dersom konfidenintervallet dekket over 5 % av positive og negative verdier (Hopkins, Marshall, Batterham, & Hanin, 2009). Forskjeller var ansett som betydelige når ES overstiger 0,2, og var > 75 % sannsynlig. En sannsynlighet for > 5 % i både en positiv og negativ retning, ble ansett som en uklar forskjell.
4.0 Resultat

4.1 Spilletid
Den gjennomsnittlige varigheten av de 10 offisielle seriekampene var 71,58 ± 2,96 minutter, som er en tilleggstid på 11,58 minutter av offisiell spilletid. Kampenes første omgang varte gjennomsnittlig 34,88 ± 1,63 minutter og andre omgang i 36,40 ± 1,46 minutter. Gjennomsnittlig spilletid for BS var på 40,56 ± 18,81 minutter (range 12,86–62,08), KS med spilletid 35,02 ± 18,56 minutter (range 7,44–63,69), LS med spilletid 42,62 ± 26,18 minutter (range 12,71–61,3) og MV med spilletid 58,85 ± 4,02 minutter, range (56,00–61,69).

4.2 Treningndata
Gjennomsnittet for Player Load™·min⁻¹ inkludert alle spilleposisjonene var 11,37 ± 4,03 for 3vs3, og 9,71 ± 2,60 for 6vs6. Gjennomsnittet for alle utespillerne (ekskluder MV) var 13,57 ± 1,66 for 3vs3 og 10,65 ± 1,49 i 6vs6. Gjennomsnitt ± SD og statistiske forskjeller for Player Load™·min⁻¹ i 3vs3 og 6vs6 presenteres i figur 5A. Tabell 5A viser at 3vs3 har betydelig høyere intensitet enn 6vs6 for BS (ES: 2,38, 100 %), KS (ES: 2,84, 100 %), LS (ES: 2,17, 100 %), MV (ES: 0,3, 76,3 %).

Gjennomsnittet for HIA·min⁻¹ inkludert alle spilleposisjoner var 4,28 ± 1,58 for 3vs3 og 3,01 ± 1,45 for 6vs6. Gjennomsnittet for alle utespillerne (ekskludert MV) var 4,76 ± 1,52 for 3vs3 og 3,18 ± 1,50 i 6vs6. Gjensomsnitt ± SD og statistiske forskjeller for HIA·min⁻¹ for 3vs3 og 6vs6 presenteres i figur 5B. Figur 5B viser at 3vs3 har et betydelig høyere antall HIA·min⁻¹ sammenlignet med 6vs6, for BS (ES: 0,62, 99,8 %), KS (ES: 1,6, 100 %), LS (ES: 0,97, 99,1 %), MV (ES: 0,53, 100 %).
Figur 5. Gjennomsnitt ± SD for 3vs3 og 6vs6 er presentert for A) Player LoadTM·min-1 B) HIA·min-1. Effekt størrelsen (ES) med sannsynlighet >75 % er presentert og viser statistiske forskjeller mellom 3vs3 og 6vs6. ES er markert som enten * liten, ** moderat, ***stor, ****veldig stor. BS = bakspiller, KS = kanespiller, LS = linjespillere, MV = målvakt. n= antall observasjoner.
4.3 Treningsdata vs kampdata

4.3.1 Player LoadTM-min-1

Gjennomsnitt for Player LoadTM-min-1 i kamp for alle spilleposisjonene var 8,73 ± 1,49, og 9,86 ± 1,76 for den H5-min i kamp. Gjennomsnittet for utespillerne (ekskludert MV) var 9,06 ± 1,12 i kamp og 10,38 ± 1,17 i H5-min i kamp.

Gjennomsnitt ± SD og statistiske forskjeller mellom treningsdataene og kamp er presentert i tabell 3 og 4. Tabell 3 viser at 3vs3 har betydelige høyere Player LoadTM-min-1 for alle utespillerne sammenlignet med kamp og H5-min (ES: 2,44-4,37). Kun MV viser en høyere Player LoadTM-min-1 i kamp og H5-min sammenlignet med 3vs3. Tabell 4 viser at 6vs6 gir en betydelig høyere Player LoadTM-min-1 for alle utespillerne sammenlignet med kamp. BS, KS og LS viser ingen betydelige forskjell mellom 6vs6 og H5-min. Kamp og H5-min viser en høyere Player LoadTM-min-1 sammenlignet med 6vs6 for MV.

Figur 6A fremstiller SS som prosentvis forskjell fra kamp i Player LoadTM-min-1. Intensiteten i 3vs3 for BS er 44 %, KS 57 %, LS 34 % høyere enn kamp intensiteten og MV 5 % lavere enn kamp. I 6vs6 er BS 13 %, KS 22 %, LS 10 % høyere enn i kamp, og for MV 7 % lavere enn kamp.

Figur 6B fremstiller SS som prosentvis forskjell fra H5-min i kamp for Player LoadTM-min-1. Intensiteten i 3vs3 for BS er 23 %, KS 31 %, LS 20 % høyere en H5-min i kamp, og 19 % lavere for MV. I 6vs6 er KS 3 % og LS 1 % høyere enn H5-min i kamp, mens BS er 3 % og MV 20 % lavere enn H5-min i kamp.
Tabell 3: Viser rådata (gjennomsnitt ± SD) og statistiske forskjeller for Player Load™ min⁻¹ mellom 3vs3 og kampdata og høyeste fem minutters periode i kamp for alle spilleposisjoner. BS = bakspillere, KS = kantspillere, LS = linjespillere, MV = målvakt

<table>
<thead>
<tr>
<th></th>
<th>Rådata Gj.snitt ± SD</th>
<th>ES</th>
<th>Kvalitativ vurdering</th>
<th>Prosent (%) sannsynlig</th>
<th>Kvalitativ vurdering</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3vs3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamp</td>
<td>13,33 ± 1,94</td>
<td>3,77</td>
<td>Veldig stor</td>
<td>100</td>
<td>Meget sannsynlig</td>
</tr>
<tr>
<td>H5-min</td>
<td>10,20 ± 1,27</td>
<td>2,72</td>
<td>Veldig stor</td>
<td>100</td>
<td>Meget sannsynlig</td>
</tr>
<tr>
<td>KS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3vs3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamp</td>
<td>13,96 ± 1,31</td>
<td>4,37</td>
<td>Veldig stor</td>
<td>100</td>
<td>Meget sannsynlig</td>
</tr>
<tr>
<td>H5-min</td>
<td>10,59 ± 1,02</td>
<td>2,93</td>
<td>Veldig stor</td>
<td>100</td>
<td>Meget sannsynlig</td>
</tr>
<tr>
<td>LS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3vs3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamp</td>
<td>13,22 ± 1,38</td>
<td>3,16</td>
<td>Veldig stor</td>
<td>100</td>
<td>Meget sannsynlig</td>
</tr>
<tr>
<td>H5-min</td>
<td>10,41 ± 1,25</td>
<td>2,44</td>
<td>Veldig stor</td>
<td>100</td>
<td>Meget sannsynlig</td>
</tr>
<tr>
<td>MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3vs3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamp</td>
<td>5,0 ± 0,7</td>
<td>0,60</td>
<td>Moderat</td>
<td>93,2</td>
<td>Sannsynlig</td>
</tr>
<tr>
<td>H5-min</td>
<td>6,67 ± 1,39</td>
<td>1,45</td>
<td>Stor</td>
<td>99,4</td>
<td>Mest sannsynlig</td>
</tr>
</tbody>
</table>
Tabell 4. Viser rådata (gjennomsnitt ± SD) og statistiske forskjeller for Player Load™ min⁻¹ mellom 6vs6, kamp og høyeste fem minutters periode i kamp for alle spillepositioner. BS = bakspillere, KS = kantspillere, LS = linjespillere, MV = målvakt

<table>
<thead>
<tr>
<th></th>
<th>Rådata Gj. snitt ± SD</th>
<th>ES</th>
<th>Kvalitativ vurdering</th>
<th>Prosent (%) sannsynlig</th>
<th>Kvalitativ vurdering</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6vs6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamp</td>
<td>10,59 ± 1,75</td>
<td>1,39</td>
<td>Stor</td>
<td>100</td>
<td>Meget sannsynlig</td>
</tr>
<tr>
<td>H5-min</td>
<td>0,34</td>
<td></td>
<td>lite</td>
<td>72,5</td>
<td>Mulig</td>
</tr>
<tr>
<td>KS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6vs6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamp</td>
<td>10,69 ± 1,22</td>
<td>1,53</td>
<td>Stor</td>
<td>100</td>
<td>Meget sannsynlig</td>
</tr>
<tr>
<td>H5-min</td>
<td>0,09</td>
<td></td>
<td>Triviell</td>
<td>51,7</td>
<td>Uklar</td>
</tr>
<tr>
<td>LS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6vs6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamp</td>
<td>10,73 ± 1,33</td>
<td>0,99</td>
<td>Moderat</td>
<td>95,9</td>
<td>Mest sannsynlig</td>
</tr>
<tr>
<td>H5-min</td>
<td>0,28</td>
<td></td>
<td>Lite</td>
<td>60,4</td>
<td>Uklar</td>
</tr>
<tr>
<td>MV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6vs6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kamp</td>
<td>4,66 ± 0,97</td>
<td>0,90</td>
<td>Moderat</td>
<td>98,7</td>
<td>Meget sannsynlig</td>
</tr>
<tr>
<td>H5-min</td>
<td>1,75</td>
<td></td>
<td>Stor</td>
<td>99,8</td>
<td>Meget sannsynlig</td>
</tr>
</tbody>
</table>
Figur 6. Gjennomsnitt ± SD for SS som prosentvis forskjell fra 0 som representerer A) gjennomsnitt i kamp B) gjennomsnitt for høyeste fem minutter perioden i kamp for Player LoadTMmin⁻¹. MV = målvakt, BS = bakspillere, KS = kantspillere, LS = linjespillere. n = antall forsøkspersoner
4.3.2 Høyintensive aksjoner (HIA⋅min⁻¹)

Gjennomsnitt for HIA⋅min⁻¹ i kamp for alle spilleposisjoner var 3,30 ± 1,26, og 4,14 ± 1,29 for den H5-min i kamp. Gjennomsnittet for alle utespillerne (ekskludert MV) var 3,46 ± 1,22 i kamp og 4,37 ±1,22 i H5-min i kamp.

Gjennomsnitt ± SD og statistiske forskjeller mellom treningsdataene og kamp er presentert i tabell 5 og 6. Tabell 5 viser at 3vs3 har betydelige flere HIA⋅min⁻¹ sammenlignet med kamp, for alle spilleposisjoner. KS og LS har vesentlige høyere HIA⋅min⁻¹ i 3vs3 sammenlignet med H5-min. BS og MV ingen betydelige forskjell mellom 3vs3 og H5-min i kamp. Tabell 6 viser at det er ingen forskjell i HIA⋅min⁻¹ mellom 6vs6 og kamp for BS, KS og LS. Og MV viser en betydelig høyere HIA⋅min⁻¹ i kamp kontra 6vs6. For alle spilleposisjonene viser 6vs6 et betydelige lavere antall HIA⋅min⁻¹ sammenlignet med H5-min i kamp (ES: 0,61-1,27).

Figur 7A fremstiller SS som prosentvis forskjell fra kamp i HIA⋅min⁻¹. I 3vs3 er HIA⋅min⁻¹ for MV 48 %, BS 13 %, KS 113 %, LS 24 % høyere enn i kamp. I 6vs6 er HIA⋅min⁻¹ for MV 10 %, KS 7 % høyere enn i kamp, mens for BS er 6vs6 9 % og LS 18 % lavere enn i kamp.

Figur 7B fremstiller SS som prosentvis forskjell fra den H5-min i kamp i HIA⋅min⁻¹. I 3vs3 er antall HIA⋅min⁻¹ for MV 2 %, KS 43 %, LS 14 % høyere sammenlignet med H5-min i kamp, og for BS 11 % lavere enn H5-min i kamp. I 6vs6 er HIA⋅min⁻¹ for MV 25 %, BS 38 %, KS 12, LS 37 % lavere en H5-min i kamp.
Tabell 5: Viser rådata (gjennomsnitt ± SD) og statistiske forskjeller for HIA min\(^{-1}\) mellom 3vs3, kamp, og høyeste fem minutter perioden i kamp for alle spilleposisjoner. BS = bakspiller, KS = kantspiller, LS = linjespillere, MV = målvakt

<table>
<thead>
<tr>
<th></th>
<th>Rådata</th>
<th>Kvalitativ vurdering</th>
<th>Prosent (%)</th>
<th>Kvalitativ vurdering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gj.snitt ± SD</td>
<td>ES</td>
<td>sannsynlighet</td>
<td></td>
</tr>
<tr>
<td>BS 3vs3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,71 ± 1,57</td>
<td>0,44</td>
<td>Moderat</td>
<td>97,2</td>
</tr>
<tr>
<td>Kamp</td>
<td>4,07 ± 0,72</td>
<td>0,44</td>
<td>Moderat</td>
<td>97,2</td>
</tr>
<tr>
<td>H5-min</td>
<td>5,08 ± 0,88</td>
<td>0,25</td>
<td>Liten</td>
<td>74,2</td>
</tr>
<tr>
<td>KS 3vs3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,65 ± 1,48</td>
<td>1,53</td>
<td>Stor</td>
<td>100</td>
</tr>
<tr>
<td>Kamp</td>
<td>2,41 ± 0,77</td>
<td>1,53</td>
<td>Stor</td>
<td>100</td>
</tr>
<tr>
<td>H5-min</td>
<td>3,26 ± 0,83</td>
<td>0,95</td>
<td>Moderat</td>
<td>100</td>
</tr>
<tr>
<td>LS 3vs3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5,52 ± 1,36</td>
<td>0,85</td>
<td>Moderat</td>
<td>96,8</td>
</tr>
<tr>
<td>Kamp</td>
<td>4,28 ± 1,53</td>
<td>0,85</td>
<td>Moderat</td>
<td>96,8</td>
</tr>
<tr>
<td>H5-min</td>
<td>4,84 ± 0,97</td>
<td>0,47</td>
<td>Liten</td>
<td>85</td>
</tr>
<tr>
<td>MV 3vs3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,92 ± 0,75</td>
<td>0,77</td>
<td>Moderat</td>
<td>100</td>
</tr>
<tr>
<td>Kamp</td>
<td>1,8 ± 0,25</td>
<td>0,77</td>
<td>Moderat</td>
<td>100</td>
</tr>
<tr>
<td>H5-min</td>
<td>2,76 ± 0,72</td>
<td>0,11</td>
<td>Trivell</td>
<td>43,4</td>
</tr>
</tbody>
</table>
Tabell 6. Viser rådata (gjennomsnitt ± SD) og statistiske forskjeller for HIA-min\(^{-1}\) mellom 6vs6, kamp og høyeste fem minutter perioden i kamp for alle spilleposisjoner. BS = bakspillere, KS = kantspillere, LS = linjespillere, MV = målvakt

<table>
<thead>
<tr>
<th></th>
<th>Rådata</th>
<th>ES</th>
<th>Kvalitativ vurdering</th>
<th>Prosent (%)</th>
<th>Kvalitativ vurdering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gj.snitt ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS 6vs6</td>
<td>3,81 ± 1,31</td>
<td>0,17</td>
<td>Triviell</td>
<td>62,8</td>
<td>Mulig</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,87</td>
<td>Moderat</td>
<td>100</td>
<td>Meget sannsynlig</td>
</tr>
<tr>
<td>KS 6vs6</td>
<td>2,32 ± 1,20</td>
<td>0,06</td>
<td>Triviell</td>
<td>65,4</td>
<td>Uklar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,64</td>
<td>Moderat</td>
<td>99,9</td>
<td>Meget sannsynlig</td>
</tr>
<tr>
<td>LS 6vs6</td>
<td>4,10 ± 1,45</td>
<td>0,12</td>
<td>Triviell</td>
<td>48,5</td>
<td>Uklar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,51</td>
<td>Moderat</td>
<td>88,5</td>
<td>Sannsynlig</td>
</tr>
<tr>
<td>MV 6vs6</td>
<td>2,15 ± 0,64</td>
<td>0,24</td>
<td>Liten</td>
<td>86</td>
<td>Sannsynlig</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,42</td>
<td>Moderat</td>
<td>94,6</td>
<td>Sannsynlig</td>
</tr>
</tbody>
</table>
Figur 7. Gjennomsnitt ± SD for SS som prosentvis forskjell fra 0 som representerer A) gjennomsnitt i kamp B) gjennomsnitt for høyeste fem minutter perioden i kamp for HIA min⁻¹. MV = målvakt, BS = bakspillere, KS = kantspillere, LS = linjespillere. n = antall forsøkspersoner.
4.4 Retningsfordeling av HIA·min⁻¹

Gjennomsnitt og ± SD for antall HIA·min⁻¹ for 3vs3, 6vs6, kamp og H5-min i kamp for alle spilleposisjoner, fordelt på i tre retninger a) Aks, b) Des, og c) RF er presentert i Figur 8. Figur 8A viser at KS har betydelig flere Aks·min⁻¹ i 3vs3 sammenlignet med 6vs6 og kamp. LS har en betydelig lavere Aks·min⁻¹ i H5-min sammenlignet med 3vs3. Det er ingen forskjeller for BS og MV.

Figur 8B viser at KS har vesentlig flere Des·min⁻¹ i 3vs3, sammenlignet med 6vs6 og kamp, mens MV viser betydelig flere Des·min⁻¹ i 3vs3, sammenlignet med kamp og H5-min i kamp. Det er ingen forskjeller for BS og LS.

Figur 8C viser at alle spilleposisjonene viser betydelig flere antall RF·min⁻¹ i 3vs3, sammenlignet med 6vs6 og kamp. Og alle spilleposisjonene viser at 6vs6 har betydelig færre RF·min⁻¹ sammenlignet med den H5-min i kamp. KS er den eneste spilleposisjonen som også viser betydelig høyere RF·min⁻¹ i 3vs3 sammenlignet med H5-min.
Figur 8. Retningsfordeling av gjennomsnittlig HIA⋅min⁻¹, A= Akselerasjoner⋅min⁻¹, B= Deselerasjoner⋅min⁻¹, C= Retningsforandringer⋅min⁻¹. Kun effekt størrelsen (ES) med sannsynlighet >75 % er presentert. ES er markert som enten * liten, ** moderat, *** stor, **** veldig stor. 6 = 6vs6, K = kamp, H5 = høyeste fem minutter perioden.
4.5 RPE

Gjennomsnitt og ± SD av RPE i 3vs3 og 6vs6 er presentert i figur 9. Det ble funnet en betydelig forskjell i RPE mellom 3vs3 og 6vs6 for BS (ES: 2,6,100 %) KS (ES:1,1,100 %), og LS (ES: 1,4, 94 %). For MV var det ingen forskjell. På grunn av at opplevd anstrengelse kan oppleves forskjellig (Morgan, 1973) er gjennomsnitts tallene utregnet fra gjennomsnitt av individuelle observasjoner.

Figur 9. Viser RPE i 3vs3 og 6vs6 for alle spilleposisjoner. BS = bakspillere, KS = kantspillere, LS = linjespillere, MV = målvakt. n = antall forsøkspersoner.
5. Diskusjon

Målet med studien er å undersøke om spillerantall kan påvirke intensiteten (Player Load™ min⁻¹) og HIA-min⁻¹ ved en konstant absolutt banestørrelse under SS i håndball. I tillegg sammenligner studien de samme variablene i SS med offisielle kamper ved bruk av MTE (OptimEye 5s, Catapult).

Hovedfunnene i studien viser at færre spillere (3vs3) øker intensiteten og antall HIA-min⁻¹ sammenlignet med 6vs6 for alle spilleposisjoner (BS, KS, LS og MV). Begge SS formatene viser betydelig høyere intensitet for alle utespillerne (BS, KS, LS) sammenlignet med gjennomsnittlig kampintensitet. Kun 3vs3 viser en overbelastning i intensitet sammenlignet med H5-min for alle utespillerne. 3vs3 viser et betydelig høyere antall HIA-min⁻¹ sammenlignet med kampgjennomsnittet for alle spilleposisjonene. BS viser ingen betydelig forskjeller i HIA-min⁻¹ under 3vs3, sammenlignet med H5-min. 6vs6 viser ingen forskjeller i antall HIA-min⁻¹ for alle utespillerne sammenlignet med kamp, og viser betydelig lavere HIA-min⁻¹ sammenlignet med H5-min. MV viser betydelig lavere intensitet i SS, sammenlignet med kamp og H5-min, men overstiger HIA-min⁻¹ i begge SS formatene, sammenlignet med kamp.

5.1 Spillerantall

HF er en av de vanligste metodene for å undersøke intensiteten i lagidretter. I håndball er HF vurdert til å bare være et delvis mål på intensitet. Dette på grunnlag av at HF ikke vil være tilstrekkelig for å måle ulike metabolske krav i håndball (Buchheit, Lepretre, et al., 2009). Direkte sammenligninger mellom HF og Player Load™ min⁻¹, som denne studien omtaler som intensitet bør gjøres med forsiktighet, ettersom dette er to ulike mål for intensitet. Uansett når den absolutte banestørrelsen har blitt holdt konstant viser litteraturen en økning i intern intensitet (HF) når man reduserer antall spillere. Lignende funn finner denne studien også for ekstern intensitet, hvor 3vs3 har en betydelig høyere intensitet (Player Load™ min⁻¹), sammenlignet med 6vs6. Dette underbygger at en reduksjon i antall deltagende spillere både kan øke intern og ekstern intensitet. Litteraturen forklarer at høyere HF antageligvis skyldes et større areal per spiller (Duarte et al., 2009). Dette kan trolig være gjeldende i denne studien også, hvor areal per spiller nesten blir halvert fra 3vs3, med 108,5 m² per spiller, til 54,2 m² under 6vs6, som kan være med å forklare økningen i intensitet. Det er foreslått at det er bedre å holde den absolutte banestørrelsen konstant for å isolere effekten av antall spillere (Rampinini et
al., 2007). Uansett når den absolutte banestørrelsen holdes konstant, og spillerantallet endres, vil en naturlig konsekvens være at den relative banestørrelsen endres per spiller. Litteraturen diskuterer relativ banestørrelse og spillerantall som to separate faktorer som påvirker intensitet, men det kan være bedre å anse disse faktorene som en sammensatt faktor som påvirker intensitet i videre forskning. Det kan derfor ikke konkluderes med i denne studien at det er kun spillerantall som påvirker intensitet ved en konstant absolutt banestørrelse, fordi den relative banestørrelsen også vil være en naturlig påvirkende faktor.

Når spillerantallet blir holdt konstant (3vs3), men den absolutte og relative banestørrelsen øker, er det vist å påvirke ekstern belastning ved økt total distanse og distanse i ulike hastighetskategorier i håndball (Corvino et al., 2014). Dette underbygger at den relative banestørrelsen per spiller kan påvirke ekstern belastning. Det ble derimot ikke funnet noen forskjeller på antall håndballspesifikke parametere, som hopp og RF. Dette er i kontrast med denne studien, hvor det ble observert betydelig flere antall HIA ved færre antall spillere. Det kan indikere at manipulering av spillerantall, kan påvirke håndballspesifikke variabler i større grad enn manipulering av banestørrelse og relativ banestørrelse. Sammenligninger bør uansett gjøres med forsiktighet, ettersom studiene brukte ulike måleenheter og metode for å kvantifisere håndballspesifikke variabler. I tillegg til ulik varighet på SS formatene.

Det er få studier som har brukt variablene Player Load™-min⁻¹ som et mål på intensitet, men et par studier har sett på akkumulert Player Load™. I studien til Castellano et al. (2013) gjort på godt trente fotballspillere, ble det ikke observert noen forskjeller i akkumulert Player Load™ ved ulike antall spillere. I motsetning til vår studie ble den absolutte banestørrelsen økt ved flere antall spillere involvert, men den relative banestørrelsen ble holdt konstant. Arealet per spiller var på 210 m², mens i vår studie var 108,5 m² per spiller under 3vs3 og 54,2 m² under 6vs6. Dette er nesten en dobbling og en firedobbling av areal per spiller, som kan ha en påvirkning på spillestilen og aktivitetsprofilen til spillere (Randers et al., 2014). Det er uansett vanskelig å direkte sammenligne studier med idrettsspesifikke forskjeller (med henhold til banestørrelse og antall spillere), i tillegg til ulike variabler som blir holdt konstant, som trolig vil ha en innvirkning på resultatene. Intern intensitet, total distanse, samt antall og distansen av høyintensive løp og sprinter har vist å påvirkes av antall spillere (Randers et al., 2014). Likevel har den akkumulerte Player Load™ og antall intense Aks (> 1,5 m·s⁻¹)
vist å øke ved færre antall spillere i den samme studien. En økning i akkumulert Player Load™ og antall intense akselerasjoner er foreslått å skyldes at utøverne er mer involvert i spillet, som resulterer i flere ballberøringer, og et høyere antall driblinger. Antall ballberøringer i fotball er vist å to-tre doblest ved 3vs3, sammenlignet med 7vs7 og 9vs9 (Owen et al., 2011). Dette kan man tenke seg er gjeldene i håndball også, hvor færre spillere stillere høyere krav til en mot et duellspill, gir flere ballberøringer, som igjen kan resulterer til flere høyintensive bevegelser. I tillegg hadde studien en mer tilsvarende lik relativ banestørrelse (80 m²) som i vår studie, som kan forklare disse likhetene. En annen mulig årsak til høyere intensitet og antall HIA min⁻¹ ved færre antall spillere i denne studien kan være at under 6vs6 får man en mer normal oppbygning av etablert angrepsspill. Ved færre spillere har man færre pasningsalternativer og man mister oppbygningen av det etablerte angrepsspillet. Dette kan føre til raskere avslutninger, som betyr kortere besittelsestid av ballen i angrep under 3vs3.

MV er vist å skille seg fra de andre spilleposisjonene ved å ha den laveste Player Load™ min⁻¹ og HIA min⁻¹ (Luteberget & Spencer, 2016), samt det korteste distansen tilbakelagt i løpet av en kamp (Karcher & Buchheit, 2014). MV er ofte ekskludert i studier (Michalsik et al., 2014; Michalsik et al., 2013) og dermed lite undersøkt i litteraturen. Det ble tidligere diskutert at relativ banestørrelse kunne spille inn på den økte intensiteten og HIA for utespilleren. For MV ble målvaktområdet holdt konstant under begge SS formatene, og det er dermed interessant at vi finner en økning i Player Load™ min⁻¹ og HIA min⁻¹ i 3vs3 sammenlignet med 6vs6. En mulig forklaring kan være som nevnt tidligere at det etablerte angrepsspillet trolig endres under 3vs3. Dette kan påvirke MV ved at utespillerne tar raskere avslutninger, som fører til hyppigere endringer i hvilket lag som besitter ballen. Dette gjør at MV blir mer involvert i spillet, og sannsynligvis utfører flere redninger.

Det ble funnet betydelige høyere RPE verdier 3vs3, sammenlignet med 6vs6 for alle utespillerne. Disse forskjellene underbygger at utøverne opplever 3vs3 som mer anstrengende sammenlignet med å spille 6vs6. Dette er i kontrast med studien til Randers et al. (2014) som ikke fant noe forskjell i RPE ved færre antall spillere. Dette kan skyldes metodiske ulikheter som innsamling av RPE, samt ulikt fysisk nivå på forsøkspersonene. Det er også observert en økning i RPE ved en økning i banestørrelse (Corvino et al., 2014). Det ser derfor ut til at når det eksterne belastningen øker, ser man en økning i subjektiv opplevd anstrengelse.
5.2 Kampdata vs treningsdata

5.2.1 Treningsintensitet mot kampintensitet

Det ble funnet en betydelig høyere intensitet (Player Load™ min⁻¹) for alle utespillerne (BS, KS, LS) i 3vs3 sammenlignet med kamp og H5-min og i 6vs6 sammenlignet med kamp. Det ble ikke funnet noen betydelig forskjeller i intensitet for utespillerne i H5-min, sammenlignet med 6vs6. Disse funnene indikerer at begge SS formatene er tilstrekkelig for å overstige gjennomsnittlig kampintensitet, men kun 3vs3 er tilstrekkelig for å overbelaste kampintensitet. Disse funnene på ekstern intensitet i SS er i kontrast med funn på intern intensitet. Basert på HF-målinger viser ulike format av SS at 2vs2 overstiger, 4vs4 er lik, og 6vs6 er under kampintensitet for unge fotballspillere (Hill-Haas et al., 2009). Dette er motsigende fra våre intensitets data hvor begge SS formatene overstiger kampintensitet. Det må derimot brukes forsiktighet med å sammenligne resultatene fra Hill-Haas et al. (2009), da studien brukte unge fotballspillere (ca 16 år), hadde kontinuerlig varighet på SS (24 min), og økte den totale banestørrelsen mellom SS formatene. Dette er variable som potensielt kan ha påvirket intensiteten. I tillegg må det tas hensyn til idrettsspesifikke forskjeller.

En høyere eller lik Player Load™ min⁻¹ under SS, sammenlignet med kamp er også observert i studien til Boyd et al. (2013), med stor variasjon mellom spilleposisjoner. I tillegg ble det observert en betydelig høyere Player Load™ min⁻¹ (<2m⁻¹s⁻¹) under SS, som indikerer betydelig flere bevegelser med lav hastighet i SS enn i kamp. I SS blir det ikke rapportert posisjonsspesifikk Player Load™ min⁻¹. Hvor gjennomsnittet av alle spillerne blir brukt for å sammenligne med posisjonsspesifikk Player Load™ min⁻¹ i kamp. Studien definerer SS som et modifisert spill som skal simulere kampsituasjoner, og som er mye brukt i australisk fotballtrening. Ellers er det lite spesifisitet om varighet i SS, antall spillere, regler osv. Dette gjør det vanskelig å sammenligne med våre resultater, i tillegg bør det tas hensyn til idrettsspesifikke forskjeller. To andre studier som brukte kvinnelige landhockey spillere og mannlig baskettspillere fant at SS gav lavere intensitet, og ikke reflekterte de fysiske kravene som utespiller utfører under kamp (Gabbett, 2010; Montgomery et al., 2010). Begge disse studiene reduserte banestørrelsen, som kan være med å forklare funnene. I studien til Gabbett (2010) er det ukjent hvor mange spiller de bruker, og ingen av studiene oppgir varigheten på SS boklene.

Kandidat 158
MA500 1 Masteroppgave Page 56 av 80
Det er et interessant funn at 6vs6, som er samme antall utespillere som blir brukt under håndballkamp, ligger betydelig høyere enn kampgjennomsnittet. Med bakgrunn i litteraturen er det vanskelig å forklare hva dette skyldes, men en sannsynlig årsak kan være valg av pacing-strategi. Varigheten av en treningsbolk (Waldron & Highton, 2014), og tidligere erfaring med oppgaven er vist å være viktig for den selvregulerende pacing-strategien. Ettersom SS formatene kun varte i fem minutter vil det være naturlig å velge en annen strategi enn under kamp. Utøvere som spiller hele kampen er vist å ha en lavere intensitet, for å optimalisere prestasjon, ved å fordele energiressursene, i motsetning til spillere som blir f.eks. byttet inn underveis i kampen, som har en all out strategi (Waldron et al., 2013). Basert på at utøverne er kjent med varigheten under SS, og at det er vesentlig kortere enn i kamp, kan det tenkes at dette tillater utøverne å kunne holde en høyere intensitet, og at utøverne derfor velger en mer tilsvarende lik strategi som all out strategien under 6vs6. Ulike valg av pacing-strategier under kamp og 6vs6 kan derfor tenkes å være en påvirkende faktor for forskjellig intensitet. Valg av pacing-strategi vil man kunne tenke seg påvirker intensitet i 3vs3 også.

5.2.2 Høyintensive aksjoner i trening mot kampdata
For alle utespillere er antall HIA-\(\tilde{\text{min}}\) betydelig høyere i 3vs3 sammenlignet med kamp. Dette skyldes trolig samme faktorer som nevnt tidligere, større areal, og mer involvering i spillet per spiller (Owen et al., 2011). HIA verdiene i begge SS formatene viser mindre forskjeller fra kampgjennomsnittet, sammenlignet med intensitetsdataene. Dette kan bety at den økte intensiteten observert i SS, trolig skyldes en økning av akselererende aksjoner med lav hastighet (\(> 2,5 \text{ m/s}^1\)), som f.eks. løp på en jevn hastighet. Dette er spesielt tydelig i 6vs6 formatet. Lignende funn er også observert i studien til Boyd et al. (2013). Sammenlignet med den H5-min, er BS den eneste av utespillerne som ikke viser betydelig forskjeller fra 3vs3 i HIA-\(\tilde{\text{min}}\). Dette understreker at BS trenger andre øvelser for å overbelaste HIA ytterligere.

Det ble funnet betydelig høyere intensitet i 6vs6 sammenlignet med gjennomsnittlig kampintensitet for alle utespillerne, men det ble ikke funnet noen betydelige forskjeller i HIA-\(\tilde{\text{min}}\) mellom 6vs6 og kamp. Dette indikerer at 6vs6 kan brukes for å simulere HIA i kamp. Alle utespillerne viser betydelig lavere HIA-\(\tilde{\text{min}}\) og ingen forskjeller i intensitet under 6vs6, sammenlignet H5-min. Dette indikerer at 6vs6 på trening kan simulere kampintensitet, men er ikke tilstrekkelig for å overbelaste viktige håndballspesifike egenskaper (Karcher & Buchheit, 2014; Luteberget & Spencer, 2015).
Dette er i tråd med en studie i fotball (Gabbett & Mulvey, 2008). Funnene indikerer at andre øvelser bør inkluderes for å overbelaste intensitet og håndballspesifikke fysiske variabler.

KS er en av utespillerne som viser den største forskjellen under 3vs3, sammenlignet med kampgjennomsnittet og H5-min. KS ligger 113 % (figur 7A) over kampgjennomsnittet, som er over en dobling av antall HIA-min⁻¹ under 3vs3. Dette skyldes trolig at KS kommer høyere opp i banen, og blir spillinge i en BS posisjon.

Under 3vs3 vil derfor KS få tilsvarende like verdier som BS, som har vist i litteraturen å ha et betydelig høyere antall HIA-min⁻¹ sammenlignet med KS (Luteberget & Spencer, 2016). Dette kan trolig forklare det store overbelastningen i antall HIA for KS. KS er også den eneste av utespillerne som viser betydelige høyere verdier i 3vs3 sammenlignet med 6vs6 og kamp i antall Aks og Des. Det er derfor lite tvil om at KS får en stor overbelastning av HIA under 3vs3. At KS blir spillinge i en annen posisjonen enn hva de gjør under kamp, kan derimot diskuteres om er hensiktsmessig for å utvikle posisjonsspesifikke egenskaper. I tillegg til posisjonsspesifikke tekniske og taktiske vurderinger, som SS har til hensikt å utvikle. KS har vist å utføre flere høyintensive løp, ha en høyere gjennomsnittlig løpshastighet (Michalsik et al., 2014), samt betydelig lavere HIA-min⁻¹ (Luteberget & Spencer, 2016) under kamp, sammenlignet med BS. Dette antyder at KS krever en annen fysisk trening enn BS, for å etterligne eller overbelaste den ytre belastningen som utføres under kamp. Selv om KS uten tvil overbelaster HIA, skal det også vurderes å legge til posisjonsspesifikke øvelser for KS, som har til hensikt å utvikle repetert sprint evne, samt å utvikle en høy løpshastighet.

RF er den HIA variabelen som viser største forskjell mellom trening og kamp, hvor 3vs3 har betydelige flere RF sammenlignet med 6vs6 og kamp for alle spilleposisjoner. 6vs6 viser ingen forskjell fra kamp, og har betydelig færre RF sammenlignet med H5-min for alle spilleposisjoner. Dette indikerer at 3vs3 er tilstrekkelig for å simulere kravet til antall RF, men 6vs6 i trening er ikke tilstrekkelig for å overstige antall RF i kamp. Aks og Des viser ingen eller liten forskjell fra kamp, sammenlignet SS formatene. KS er den eneste som viser en liten betydelig forskjell fra kampgjennomsnittet. Dette underbygger et behov for andre spesifikke og posisjonsrelaterte øvelser for alle spilleposisjonene. Spesielt for BS og LS, for å utvikle evnen til å utføre repeterte Aks og Des.
MV viser lavere intensitet under begge SS formatene, sammenlignet med kamp og H5-min, men har betydelig høyere HIA min⁻¹ i begge SS formatene sammenlignet med kamp. En mulig forklaring til dette funnet kan være at under SS var det tillatt med baller liggende ved mål, slik at MV skulle igangsette spillet raskt. Dette skiller seg fra en kampsituasjon, hvor kun en ball er i spill, og MV må løpe for å hente ballen. Dette kan være med å forklare den høyere intensitet observert under kamp. I tillegg er det mulig at MV gjør MV spesifikke bevegelser mens laget er i angrep, for å aktivere seg selv, og være mentalt i kampmodus. Dette kan potensielt gi en økt HIA i kamp. Videre studier på MV fysiske krav, er nødvendig for å få en bedre forståelse for belastning og HIA kravene under kamp og trening. Som nevnt tidligere skiller MV seg fra de andre spilleposisjonene, og andre IMA variabler kan være hensiktsmessig for en bedre og nøyaktigere forståelse av fysiske krav for MV.

5.3 Begrensninger ved studien
Ved gjennomføring av en studie er det alltid noen begrensinger som må tas med i betraktning ved tolkning og vurdering av resultatene. Faktorer som potensielt kunne ha påvirkning på intensitet og ytelse under kamp og trening (treningsbelastning, skader, ernæring), ble ikke kontrollert for. Ettersom denne studien har en del observasjoner per person som er inkludert, er utenomliggende faktorer til en viss grad tatt høyde for. For å begrense effekten av forskjeller mellom enhetene, ble spillerne så langt det var praktisk mulig, utstyrt med samme enhet under trening i kamp. Dette ble ikke overholdt i alle treninger og kamper, men ble vurdert som akseptabelt basert på god inter-enhet reliabilitet vist for enhetene (Holme, 2015).

5.3.1 Treningedata
Alle 10 treningene ble ikke overholdt på samme ukedag i hele testperioden, dette grunnet praktiske årsaker. Vi kommuniserte godt med klubbene slik at ved en større total belastning en vanlig, f.eks. treningskamp eller turnering, ble testdagen flyttet, slik at det ble nok hviledager i mellom. På en annen side karakteriserer oppkjøringsperioden med en stor belastning, som utover er kjent med. Derfor skal studien ikke ha utsatt spilleren for noen særlig større belastningen enn hva spillerne er vant med i den daglige treningen. At et fast oppvarmingsprogram for lagene ikke ble fulgt kan anses som en begrensning med studien. Oppvarmingsøvelsene var tilsvarende like fra gang til gang. Uansett er ulike oppvarmingsprogrammer i trening å anse som en naturlig del av den
daglige treningen, som gjør studien mer overførbar til de virkelige daglige håndballtreningene.

Det er nødvendig med et stort antall deltakere fra forskjellige lag, på grunn av ulike bevegelsesmønster mellom spilleposisjoner og lag (Michalsik et al., 2015). Det ble brukt to ulike lag i studien, som gjør at variasjoner i spillestil blant lagene og utøverne blir tatt høyde for. Likevel kunne det være ønskelig med enda flere lag, for å styrke dataene, men på grunn av tidsbegrensing og total belastning i antall observasjonsdager, ble to lag brukt i studien.

5.3.2 Kampdata
Det er mange ulike forsvarssystemer og ulike spilleformasjoner i et lag eller mellom lagene, som gjør at spilleoppgavene til de ulike spilleposisjonene kan variere både under og mellom kamper. Dette basert på forskjellige taktiske avgjørelser, og kan ha en stor innflytelse på tekniske, taktiske, bevegelsesmønster og fysisk belastning (Karcher & Buchheit, 2014). Det er observert at ulike forsvar formasjoner endrer bevegelsesmønsteret til ulike spilleposisjoner (Karcher & Buchheit, 2014). Det er derfor viktig med repeterte målinger for å si noe om den fysiske kravene i kamp. Vi inkluderte 10 kamper i studiet over første del av sesongen (4 måneder), med to ulike lag, så kampvariasjon er til en viss grad tatt høyde for. Alle kampene var offisielle kamper i norsk 1.divisjon og eliteserie, hvor det i hver kamp vil være aktuelt å gå for seier. Dette er reelt og overforbart til virkelig kampsituasjoner sammenlignet med treningskamper eller turneringer, hvor intensitet kan muligens være noe lavere grunnet ulike taktiske vurderinger.

Hvorvidt utvalget i vår studie er representativt til å representere intensitet og HIA for kvinnelige håndballspillere kan diskuteres. Det ble ikke observert noen forskjeller mellom konkurranse nivå i denne studien, og utvalget kan derfor antas å representere de respektive nivåene. Likevel skal man være forsiktig med og kvantifisere funnene mot de beste lagene i eliteserien, eller landslagsspillere. Ettersom Buchheit, Lepretre, et al. (2009) fant at de best trente spillerne (basert på VO\textsubscript{2\text{max}}) ikke oppnådde et tilstrekkelig stimuli for å forbedre aerob utholdenhet, kan man tenke seg at også andre variabler som f.eks. HIA ikke vil bli tilstrekkelig overbelastet under SS for de beste trente utøverne. Dermed kan det tenkes at godt trente utøvere trenger andre øvelser for å overbelaste HIA. Individuelle data ble ikke tatt høyde for i denne studien, som kan være en hensiktsmessig måte å se den enkelte spiller s stimuli.
Effektiv spilletid og taktikk i kamp kan ha innvirkning på intensitet og ubegrensede muligheter for spillerbytter kan ha konsekvens for resultatet (Manchado, Pers, et al., 2013; Michalsik et al., 2013). Ulik spilletid vil trolig påvirke valg av pacing-strategi, så en spiller som er på banen i kun 5 minutter vil trolig holde en høyere intensitet, sammenlignet med en spiller som har 45 minutter spilletid. Dette er vanskelig å kontrollere for, og hvor stor innvirkning dette har. Men det kan argumenteres for at ulik spilletid og ubegrensede bytter er en naturlig del av spillet i håndball. Våre inklusjonskriterier for spilletid i kamp er relativt lave i forhold til andre studier (Michalsik et al., 2014; Michalsik et al., 2015). 5 minutters inklusjonskriteriet betraktes likevel som nok til å ha innvirkning i kampen, i tillegg anses som nødvendig for å få en tilstrekkelig mengde kampdata. Det var noe ulik spilletid mellom spillerne, hvor enkelt spillere spilte nesten hele kamp. Dette førte til at i spilleposisjonene, LS og MV, gav et lite utvalg i kampdataene. Dette er helt klart en begrensning med studien, hvor det hadde vært ønskelig med et større utvalg i disse posisjonene.

5.4 Praktisk betydning

Denne studien viser at en reduksjon i antall deltagende spillere i SS, kan brukes som en effektiv måte å manipulere intensitet og HIA. Funnene i studien indikerer at 3vs3 overbelaster intensitet, og antall HIA i forhold til kamp. Dermed kan SS brukes for å utvikle fysiske variabler, som for eksempel å tåle flere repeterte bevegelser av HIA. På grunn av posisjonsspesifikke HIA profiler, må dette hensyn til når man planlegger treningen. Spesielt for BS som ser ut til å trenger et ytterliggere stimuli for å overbelaste posisjonsspesifik HIA, og at andre øvelser bør implementeres i treningsprogrammet, for å overbelaste denne egenskapen. Resultatene for 6vs6 antyder at 6vs6 i trening kan simulere kampintensiteten, og kan brukes for å vedlikeholde fysiske håndballspesifikke variabler i sesong. 6vs6 er også trolig bedre egnet for å utvikle taktiske og tekniske elementer, på grunn av lik oppbygning av etablert angrep og forsvar spill som under kamp. Det skal tas hensyn til at RF ser ut til å være den variablene i HIA som overbelastes mest under SS. Dette indikerer derfor et behov for egne øvelser for å utvikle evnene til å tåle flere Aks og Des i kamp for alle spilleposisjoner.

Funnene i denne studien gir økt innsikt og kunnskap om hvilken fysisk ytre belastning ulike treningsøvelser påfører. I tillegg til informasjon om posisjonsspesifikk belastning og HIA profil under SS. Ettersom den daglige treningen anses for å gi en
direkte effekt på fysiske variabler i kamp, kan dette hjelpe trenere og annet støttepersonell med optimalisering, periodisering og gjennomføring av treningsøvelser.

5.5 Fremtidig forskning

Videre analyser i henhold til manipuleringen av intensitet i ulike treningsøvelser, basert spilleposisjoner bør være fokus for videre studier. Denne studien valgte et utvalg av to SS format, og det gjenstår fortsatt å undersøke hvordan andre spillerantall, som f.eks. 2vs2, 4vs4, 5vs5 kan påvirke intensitet og HIA. Andre faktorer som banestørrelse, regelendringer, trenerens oppmuntring, og varighet på SS, er vist å påvirke treningsintensitet i andre idretter (kap 2.6). Disse faktorene er lite eller ikke undersøkt i håndball og bør derfor videre undersøkes.

Håndball består også av repeterte skudd, taklinger og dueller en mot en, som ofte er utført med maksimal intensitet, og som karakterisers som viktig fysiske arbeidsskrev (Michalsik et al., 2015). Ekskludering av disse variablene er hevdet å underestimere fysiske kravene i håndball (Michalsik et al., 2014). Det er fortsatt mangel på gode målemetoder for å undersøke dette, hvor utvikling av nye metoder som kan også måle disse variablene er hensiktsmessig. Dette vil også være aktuelt å undersøke i treningsbaserte øvelser og sammenligne med kamp.

Det er har blitt vist forskjeller mellom fysisk krav for kvinnelige og mannlige håndballspillere (Michalsik & Aagaard, 2015) og siden denne studien er gjort på kvinnelige håndballspillere, gjenstår det også å undersøke om dette er gjeldende for menn og yngre håndballspillere også.

Flere studier på treningsbaserte øvelser, kan føre til på sikt en bedre forståelse av periodisering av trening, samt hensiktsmessige og posisjonsspesifikke treningsøvelser for begge kjønn, og yngre spillere.
6. Konklusjon

I denne studien ble variablene Player Load\(^{TM}\)\(_{-1}\) og HIA\(_{-1}\) (Aks, Des, RF), undersøkt under to ulike SS format og offisielle seriekamper for kvinnelige håndballspillere. Hovedfunnene i denne studien viser at ved en reduksjon i antall spillede deltakere i SS gir en betydelig høyere Player Load\(^{TM}\)\(_{-1}\) og antall HIA\(_{-1}\) for alle spilleposisjoner, ved en konstant absolutte banestørrelse. På grunn av at den relative banestørrelsen ikke ble holdt konstant, kan man ikke konkludere med at det er spillerantall alene som fører til en økning i Player Load\(^{TM}\)\(_{-1}\) og HIA\(_{-1}\), men mest sannsynlig en kombinasjon av både spillerantall og et større areal per spiller.

En generell økning Player Load\(^{TM}\)\(_{-1}\) er tydelig i begge SS formatene sammenlignet med gjennomsnittlig kampintensitet for alle utespillere. HIA\(_{-1}\) verdiene viser mindre forskjeller fra gjennomsnittlig kampdata, sammenlignet med intensitetsdataene. Dette indikerer at mye av økningen i Player Load\(^{TM}\)\(_{-1}\) skyldes en økning i Aks som er under 2,5 \(m/s\), som for eksempel løping i et jevnt temp. Dette er spesielt tydelig i 6vs6. 3vs3 viser en betydelig overbelastning i antall HIA\(_{-1}\) for KS og LS, men viser ingen betydelig forskjeller for BS. 6vs6 kan vedlikeholde HIA\(_{-1}\), men gir ikke en overbelastning i disse variablene for noen av utespillere. MV viser generelt en lavere intensitet i SS formatene, sammenlignet med kamp, men høyere antall HIA\(_{-1}\).

Derved ser det ut til at ikke SS overbelaster posisjonsspesifike viktige fysiske egenskaper i håndball.
Referanser

64

Kruger, K., Pilat, C., Uckert, K., Frech, T., & Mooren, F. C. (2014). Physical performance profile of handball players is related to playing position and

Midgley, A. W., & Mc Naughton, L. R. (2006). Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. *J Sports Med Phys Fitness, 46*(1), 1-14.

Tabelloversikt

Tabell 1: Gjennomsnitt ± SD for antropometriske og fysiske variabler for de ulike spillerposisjon som er inkludert i treningsdataene (3vs3 og 6vs6). BS = bakspillere, KS = kantspillere, LS = linjespillere, MV = målvakt. BS høyde og 20-m shuttle run test (n=8), vekt og 20-m sprint (n=7). KS høyde og vekt (n=5), 20-shuttle run test (n=6), og 20 –m sprint (n=7). LS (n=3) i alle parametere, og (n=4) i alle parametere for MV 31

Tabell 2: Antall observasjoner per spilleplass for 3vs3, 6vs6, ti seriekamper, og høyeste fem minutters perioden i kamp (H5-min) for Player LoadTM·min⁻¹ og i [n] HIA·min⁻¹. BS= bakspillere, KS = kantspillere, LS = linjespillere, og MV = målvakt. 35

Tabell 3: Viser rådata og statistiske forskjeller for Player LoadTM·min⁻¹ mellom 3vs3 og kampdata og høyeste fem minutters periode i kamp for alle spilleposisjoner. BS = bakspillere, KS = kantspillere, LS = linjespillere, MV = målvakt.................................41

Tabell 4. Viser rådata og statistiske forskjeller for Player LoadTM·min⁻¹ mellom 6vs6, kamp og høyeste fem minutters periode i kamp for alle spilleposisjoner. BS = bakspillere, KS = kantspillere, LS = linjespillere, MV = målvakt.................................42

Tabell 5: Viser rådata og statistiske forskjeller for HIA·min⁻¹ mellom 3vs3, kamp, og høyeste fem minutter perioden i kamp for alle spilleposisjoner. BS = bakspiller, KS = kantspiller, LS = linjespiller, MV = målvakt.................................45

Tabell 6. Viser rådata og statistiske forskjeller for HIA·min⁻¹ mellom 6vs6, kamp og høyeste fem minutter perioden i kamp for alle spilleposisjoner. BS = bakspillere, KS = kantspillere, LS = linjespillere, MV = målvakt ...46
Figuroversikt

Figur 1. Viser hvordan IMA registrerer retningen på en bevegelse med kategoriene akselerasjoner, retningsforandringer til høyre (RF H), deselerasjoner, og retningsforandringer til venstre (RF V). Forenklet figur fra Catapult Sports (2013a) ...

Figur 2. En forenklet oversikt over datainnsamlingen i studien...

Figur 3. Enheten i den spesiallagde vesten fra produsenten (til venstre) og OptimEye S5 enheten (til høyre).

Figur 4. Skalaen mellom opplevelse anstrengelse og den deskriptive vurderingen (Borg’s CR10-skala, modifisert av C. Foster et al. (2001)).

Figur 5. Gjennomsnitt ± SD for 3vs3 og 6vs6 er presentert for A) Player LoadTM·min-1 B) HIA·min-1. Effekt størrelsen (ES) med sannsynlighet >75 % er presentert og viser statistiske forskjeller mellom 3vs3 og 6vs6. ES er markert som enten * liten, ** moderat, ***stor, ****veldig stor. BS = bakspiller, KS = kantspiller, LS = linjespiller, MV = målvakt. n= antall observasjoner.

Figur 6. Gjennomsnitt ± SD for SS som prosentvis forskjell fra 0 som representerer A) gjennomsnitt i kamp B) gjennomsnitt for høyeste fem minutter perioden i kamp for Player LoadTM·min-1. MV = målvakt, BS = bakspillere, KS = kantspillere, LS = linjespillere. n= antall forsøkspersoner.

Figur 7. Gjennomsnitt ± SD for SS som prosentvis forskjell fra 0 som representerer A) gjennomsnitt i kamp B) gjennomsnitt for høyeste fem minutter perioden i kamp for HIA·min-1. MV = målvakt, BS = bakspillere, KS = kantspillere, LS = linjespillere. n= antall forsøkspersoner.

Figur 8. Retningsfordeling av gjennomsnittlig HIA·min-1, A= Akselerasjoner·min-1, B= Deselerasjoner·min-1, C= Retningsforandringer·min-1. Kun effekt størrelsen (ES) med sannsynlighet >75 % er presentert. ES er markert som enten * liten, ** moderat, ***stor, ****veldig stor. 6 = 6vs6, K = kamp, H5 = høyeste fem minutter perioden

Figur 9. Viser RPE i 3vs3 og 6vs6 for alle spilleposisjoner. BS = bakspiller, KS = kantspiller, LS = linjespiller, MV = målvakt. n= antall forsøkspersoner.
Forkortelser

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aks</td>
<td>Akselerasjoner</td>
</tr>
<tr>
<td>BS</td>
<td>Bakspillere</td>
</tr>
<tr>
<td>CV</td>
<td>Variasjonskoeffisient</td>
</tr>
<tr>
<td>Des</td>
<td>Deselerasjoner</td>
</tr>
<tr>
<td>ES</td>
<td>Effekt størrelse</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>HF</td>
<td>Hjertefrekvens</td>
</tr>
<tr>
<td>HF_{max}</td>
<td>Maksimal hjertefrekvens</td>
</tr>
<tr>
<td>HIA</td>
<td>Høyintensive aksjoner</td>
</tr>
<tr>
<td>H5-min</td>
<td>Høyeste 5 minutters perioden i kamp</td>
</tr>
<tr>
<td>IMA</td>
<td>Inertial Movement Analyse</td>
</tr>
<tr>
<td>KS</td>
<td>Kantspillere</td>
</tr>
<tr>
<td>LS</td>
<td>Linjespillere</td>
</tr>
<tr>
<td>MTE</td>
<td>Mikrosensor teknologienheter</td>
</tr>
<tr>
<td>MV</td>
<td>Målvakt</td>
</tr>
<tr>
<td>RF</td>
<td>Retningsforandringer</td>
</tr>
<tr>
<td>RPE</td>
<td>Rating of perceived exertion</td>
</tr>
<tr>
<td>SD</td>
<td>Standardavvik</td>
</tr>
<tr>
<td>SS</td>
<td>Smålagsspill</td>
</tr>
<tr>
<td>VO_{2}</td>
<td>Oksygenopptak</td>
</tr>
<tr>
<td>VO_{2max}</td>
<td>Maksimalt oksygenopptak</td>
</tr>
</tbody>
</table>
Vedlegg

I. Infoskriv til forsøkpersone
I. Inforskriv til forsøkspersonene

"Effekten av spillerantall på belastningen i små lagspill"

Vi vil med dette informasjonsskrivet gi et kort innblikk i vårt prosjekt og be om din deltagelse i dette prosjektet. Norges idrettshøgskole (NIH) og Norges håndballforbund (NHF) har inngått et samarbeid for å øke kunnskapen rundt fysiske krav i håndball, og dette prosjektet er et ledd i dette samarbeidet.

Bakgrunn og hensikt

I dagens håndballspill er det flere fysiske egenskaper som er viktige for prestasjon. Vi ønsker å kunne bidra med mer kunnskap om fysisk trening i håndball, for å kunne lage spesifikk og hensiktsmessige treningsprogrammer. Det er derfor nødvendig å få kunnskap om ulike treningsovelser, og hvordan intensiteten i disse er sammenliknet med kamptrening. På bakgrunn av dette så vil denne studien se på to ulike speløvelser (3 mot 3, og 6 mot 6) og sammenligne dette mot intensitet i offisielle kamper. Vi ønsker også å se om spillerantallet påvirker belastningen forskjellig mellom spilleposisjonene. Dette vil kunne være et viktig verktøy for å optimalisere treninger, og forbedre den fysiske prestasjonen til spillerne.

Hva innebærer studien?

Studien vil inneholde tre ulike deler. Først vil vi gjennomgå fysiske tester, som innebærer 20 m sprint, spensttester på kraftplattform, og beep-test. Del 2 av studien inneholder gjennomføring av de ulike smålagsspillene som skal undersøkes. Her vil det være to ulike smålagsspill (3vs3 (5min x3) og 6vs6 (5min x2), som er ønskelig å gjennomføre en fast dag i uken, i en fem ukers periode. Smålagsspillene vil foregå på to mål, med en målvakt i hvert mål. Del 3 av studien innebærer målinger på offisielle kamper. Dette gjøres i sesongen. Det vil hovedsakelig være snakk om hjemmekamper, og det er ønskelig med et minimum av 5 kamper. For å måle fysisk belastning i kamp og trening vil spillerne ha på seg en vest med en måler på ryggen. Denne måleren måler alle bevegelser som skjer på banen (akselerasjoner, deselerasjoner, retningsforandringer, hopp).
Mulige ulemper og risiko

Deltakelse i prosjektet vil kreve en del tid og oppmerksomhet, og det kreves at du som forsøksperson er tilstede på treninger og testdager. De fysiske testene som utføres vil kreve maksimal innsats, og vil oppleves anstrengende. Dette kan medføre noe ubehag, men ikke mer en dere som idrettsutøvere er vant til gjennom deres daglige trening. Studien krever at du som spiller har på deg måleutstyr i trening og kamper, som noen kan synes er ubehagelig.

Om du skulle oppleve ubehag eller andre ting som du tror kan ha sammenheng med forsøkene, kan du når som helst nå oss på telefon.

Hva skjer med informasjonen og prøvene om deg?

Dataene og informasjonen som registres under testingen, skal brukes i henhold til formålet og hensikten med studien. Alle opplysningene vil bli behandlet uten direkte gjenkjennende opplysninger, som navn og fødselsnummer. Du vil ved forsøksstart få utdelt et forsøkspersonnummer som skal brukes under studien og det er bare dette nummeret som vil være knyttet til dine data. Det betyr at alle data vil bli behandlet anonymt.

Frivillig deltakelse

Dersom du ønsker å delta, underteigner du samtykkeerklæringen på siste side. Du kan senere når som helst og uten å oppgi noen grunn trekke ditt samtykke til å delta i studien. Dersom du ønsker å trekke deg, eller har spørsmål til studien kan du kontakte:

Hege Pernille Trollerud
Telefon: 958 82 045
Epost: hegep_123@hotmail.com

Live S. Luteberget
Telefon: 400 43 516
Epost: livesl@nih.no
Samtykke til deltakelse i studien

Jeg er villig til å delta i studien

(Signert av prosjektdeltaker, dato)

Jeg bekrer å ha gitt informasjon om studien

Signert, rolle i studien, dato)
Navn:

Fødselsdato:

Telefon:

Antall treningsstimer per uke:

<table>
<thead>
<tr>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kjenner du til at du har en hjertesykdom?</td>
</tr>
<tr>
<td>2.</td>
<td>Hender det at du får brystsmerte i livet eller i forbindelse med fysisk aktivitet?</td>
</tr>
<tr>
<td>3.</td>
<td>Kjenner du til at du har høyt blodtrykk?</td>
</tr>
<tr>
<td>4.</td>
<td>Bruker du for tiden medisiner for høyt blodtrykk eller hjertesykdom (f.eks. vanndrevne tabletter)?</td>
</tr>
<tr>
<td>5.</td>
<td>Har noen av dine forældre, søsken eller barn fått hjertesentralt eller død plutselig (for fylde 55 år for menn og 65 år for kvinner)?</td>
</tr>
<tr>
<td>6.</td>
<td>Røyker du?</td>
</tr>
<tr>
<td>7.</td>
<td>Kjenner du til om du har høyt kolesterolnivå i blodet?</td>
</tr>
<tr>
<td>8.</td>
<td>Har du besvikt i løpet av de siste 3 måneder?</td>
</tr>
<tr>
<td>9.</td>
<td>Hender det du mistet balansen på grunn av svimmelhet?</td>
</tr>
<tr>
<td>10.</td>
<td>Har du søkksyke (diabetes)?</td>
</tr>
<tr>
<td>11.</td>
<td>Kjenner du til noen innen grunn til at din deltagelse i prosjektet kan medføre helse- eller skadetilstand?</td>
</tr>
</tbody>
</table>

Gi beskjed straks dersom din helse-situation forandrer seg fra nå og til undersøkelsen er ferdig, f.eks. ved at du blir forkjetet, får feber, eller blir gravid.

Sted - dato

Underskrift