Revidert beregning av helikopterstøy for ny landingsplass ved St. Olavs hospital.

Idar Ludvig Nilsen Granøien

SINTEF IKT

Februar 2008
SAMMENDRAG

Støysoner er beregnet for to prognosesituasjoner, en for åpningsåret og en for en tiårs prognose basert på en fremskriving av trafikken fra 2005.

Det er foretatt en drøfting av faktorer som vil kunne spille inn på trafikkutviklingen og den usikkerhet dette har for resultatene.
INNHOLDSFORTEGNELSE

1. INNLEDNING ... 3

2. GENERELT OM FLYSTØY .. 4
 2.1 Flystøyens egenskaper og virkninger ... 4
 2.1.1 Søvnforstyrrelse som følge av flystøy ... 4
 2.1.2 Generell sjenanse som følge av flystøy ... 5

3. MILJØVERNDEPARTEMENTETS RETNINGSLINJER ... 6
 3.1 Måleenheter ... 6
 3.2 Støysoner til arealplanlegging .. 7
 3.2.1 Definisjon av støysoner ... 7
 3.2.2 Utarbeidelse av støysonekart og implementering i kommunale planer 8
 3.3 Beregningsmetode ... 8
 3.3.1 Dimensjonering av trafikkgrunnlaget ... 8
 3.3.2 Beregningsprogrammet NORTIM ... 9
 3.4 Kartlegging i henhold til forskrift til forurensningsloven 9

4. OMGIVELSER ... 11
 4.1 Digitalt kartgrunnlag .. 11
 4.2 Digital terrengmodell ... 11
 4.3 Bygningsdata ... 12

5. FLYTrafikk .. 13
 5.1 Trafikk i følge AMK-sentral og operatører ... 13

6. FLYTYPER .. 16
 6.1 Flytyper i bruk .. 16
 6.2 Kildedata for fly ... 16

7. DESTINASJONER, TRASÉER OG PROFILER ... 17
 7.1 Destinasjoner .. 17
 7.2 Flygeprosedyrer .. 17
 7.3 Rullebaner ... 17
 7.4 Flytraser .. 17
 7.5 Flygeprofiler .. 18

8. SKALERING AV TRAFIKK ... 19
 8.1 Trafikksskalering etter flytype ... 19
 8.2 Trafikksskalering etter prosedyrer og traséer .. 19
 8.3 Trafikksskalering etter tidspunkt .. 19

9. BEREGNINGSPARAMETERE .. 19
 9.1 Beregningsenheter .. 19
 9.2 Beregning i enkelpunkter .. 19
 9.3 NORTIM beregningskontroll ... 19

10. RESULTATER RELATERT TIL RETNINGSLINJE T-1442 .. 20
 10.1 Prognose for første hele driftsår .. 20
 10.2 Prognose med 1350 landinger ... 23

11. RESULTATER RELATERT TIL FORURENSNINGSFORSKRIFten 26
 11.1 Innendørs støyøvå – Kartlegging og tiltak .. 26

12. LITTERATUR ... 29
1. INNLEDNING

Prosjektet er utført ved SINTEF IKT avdeling akustikk med Idar Ludvig Nilsen Granøien som prosjektleder og Truls Gjestland som prosjektansvarlig.

Rapporten erstatter rapport STF40 A03041 fra 2003 [21], som var utarbeidet etter daværende retningslinje T-1277.
2. GENERELT OM FLYSTØY

Hensikten med dette kapitlet er å gi en forenklet innføring om hvordan flystøy virker på mennesker. Framstillingen baserer seg på anerkjent viten fra det internasjonale forskningsmiljøet.

2.1 Flystøyens egenskaper og virkninger

Flystøy har en del spesielle egenskaper som gjør den forskjellig fra andre typer trafikkstøy. Varigheten av en enkelt støyhendelse er forholdsvis lang, nivå variasjonene fra gang til gang er gjerne store og støylinjene kan være kraftige. Det kan også være lange perioder med opphold mellom støyhendelsene. Flystøyens frekvensinnhold er slik at de største bidrag ligger i ørets mest følsomme område og det er derfor lett å skille denne lyden ut fra annen bakgrunnsstøy; så lett at man ofte hører flystøy selv om selve støylinjen ikke beveger seg over bakgrunnsstøyet.

Folk som utsettes for flystøy rapporterer flere ulemper. De to viktigste typer er forstyrrelse av søvn eller hvile og generell irritasjon eller sjenan. Det er viktig å merke seg at fare for hørselsskader begrenser seg til de personer som jobber nær flyene på bakken.

2.1.1 Søvnforstyrrelse som følge av flystøy

Det er bred internasjonal enighet om at vekking som følge av flystøy kan medføre en risiko for helsevirkninger på lang sikt, se litteraturlisten ref. [1]. Det er ikke konsensus på hvorvidt endring av søvnstadium (søvndybde) har noen negativ effekt alene, dersom dette ikke medfører vekking. (Disse betraktninger kan ikke anvendes for andre typer trafikkstøy hvor støylinjen varierer mindre og ikke er totalt fraværende i perioder slik som flystøy kan være.)

Risiko for vekking er avhengig av hvor høyt støylinjen en utsettes for (maksimumsnivå) og hvor mange støyhendelser en utsettes for i løpet av natten. Det er normalt store individuelle variasjoner på når folk reagerer på støyen. Derfor brukes oftest en gitt sannsynlighet for at en andel av befolkningen vekker for å illustrere hvilke støylinje og antall hendelser som kan medføre vekking, som illustrert i Figur 2-1.

![Figur 2-1. 10 % sannsynlighet for vekking resp. søvnstadiumendring. Sammenheng mellom maksimum innendørs støylinje og antall hendelser [1].](image-url)
Figuren viser at man tåler høyere støynivå uten å vekkes dersom støynivået opptrer sjelden. Når det blir mer enn ca. 15 støyhendelser i søvnperioden er ikke antallet så kritisk lenger. Da er det 10 % sjanse for vekking dersom nivåene overstiger 53 dBA i soverommet.

2.1.2 Generell sjenanse som følge av flystøy

En stor undersøkelse fra Fornebu bekrer i store trekk både kurveform og rapportert sjenanse for flystøy ved de normalt forekommende belastningsnivåer i boligområder innenfor flystøysonene [4]. Tilsvarende funn er gjort ved Værnes og i Bodø [5].

![Figur 2-2. Middelkurve for prosentvis antall sterkt forstyrret av flystøy som funksjon av ekvivalent flystøynivå utendørs [3].](image-url)
3. MILJØVERNDEPARTEMENTETS RETNINGSLINJER

Miljøverndepartementet har i januar 2005 samlet retningslinjer for behandling av støy fra forskjellige støykilder i en ny retningslinje, T-1442 [7]. For flystøy erstatter denne T-1277 fra 1999 [8]. Den nye retningslinjen endrer både måleenheter og definisjoner av støysoner. Vi har i dette kapitlet valgt å sette de nye bestemmelsene i noen grad i sammenheng med de gamle som erstattes.

3.1 Måleenheter

En sammensatt støyindikator, som på en enkel måte skal karakterisere den totale flystøybelastning, og derved være en indikator for flest mulige virkninger, må ta hensyn til følgende faktorer ved støyet: Nivå (styrke), spektrum (farge), karakter, varighet, samt tid på døgnet. Måleenheten for flystøy må i rimelig grad samsvarer med de ulemper som vi vet flystøy medfører. Et høyt flystøynivå må indikere høy ulempe.

L_{den} er det mål som EU har innført som en felles måleenhet for ekvivalentnivå. I likhet med EFN legger måleenheten forskjellig vekt på en støyhendelse i forhold til når på døgnet hendelsene forekommer. På natt er vektfaktoren 10, på dag er den 1. Det gjelder for både EFN og L_{den}. Mens EFN har en gradvis avtrappende veiekurve på morgen og gradvis økende på kveld, har L_{den} en trinnvis overgang, se Figur 3-1. L_{den} adderer 5 dB til støyhendelser mellom kl 19 og 23. I antall operasjoner tilsvarer dette en vekting på 3.16. Dersom trafikken ved flyplassene var jevnt fordelt over døgnet, vil derfor EFN gi høyere (lineære) veieffektor for trafikken. Ved virkelige situasjoner (og omgjort til dB) viser det seg at støynivået målt i EFN i gjennomsnitt gir ca 1-1.5 dB høyere verdi.

![Figur 3-1. Veiekurve for EFN (sort linje hverdag, stiplet linje søndag) og L_{den} (rød linje) som funksjon av tid på døgnet [6, 7].](image)

MFN var definert som det høyeste A-veide lydnivå som regelmessig forekommer i et observasjonspunkt, og som klart kan tilskrives flyoperasjoner. “Regelmessig” ble definert til en hyppighet på minimum 3 ganger per uke. I T-1277 ble det regnet separat maksimumsnivå for natt
(22–07) og dag (07–22). MFN var ment å skulle gi utslag dersom maksimumsnivå skulle gi større ulemper enn det som beregnet ekvivalentnivå skulle innebære.

Retningslinjen definerer forovrig ikke begrepet "hendelse". Det betyr at det ikke er gitt hvor mye støy som skal til for at man skal inkludere noe som en hendelse. I veilederen til T-1442 [9] er dette imidlertid rettet på, slik at det er mulig å beregne størrelsen. Åpenheten i veilederen medfører at L₅AS beregnes som MFN på natt, med den forskjell at tidsrommet som betraktes er redusert med en time på kvelden, siden L₅AS beregnes for tidsrommet 23–07. Dette er i tråd med uttalt intensjon om at overgang fra MFN til L₅AS alene ikke skulle medføre endringer.

3.2 Støysoner til arealplanlegging

3.2.1 Definisjon av støysoner

Støysonene defineres slik at det i ytterkant av gul sone kan forventes at inntil 10 % av en gjennomsnitts befolkning vil føle seg sterkt plaget av støyen. Det betyr at det vil være folk som er plaget av støy også utenfor støysonene.

De to støysonene er i retningslinjen definert som vist i den følgende tabell. Det fremgår at hver sone defineres med 2 kriterier. Hvis ett av kriteriene er oppfylt på et sted, så faller stedet innenfor den aktuelle sonen – det er med andre ord et "eller" mellom kolonnene.

<table>
<thead>
<tr>
<th>Støykilde</th>
<th>Støyson</th>
<th>Gul sone</th>
<th>Rød sone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flyplass</td>
<td>Utendørs støynivå</td>
<td>52 Lden</td>
<td>80 L₅AS</td>
</tr>
<tr>
<td></td>
<td>Utendørs støynivå i nattperioden kl. 23 – 07</td>
<td>62 Lden</td>
<td>90 L₅AS</td>
</tr>
</tbody>
</table>

Sammenlignet med de 4 flystøysonene i T-1277 og tatt hensyn til at EFN kan være ca 1 dB høyere enn \(L_{den} \), går det frem at yttergrensen for gul sone ligger noe innenfor midten av den tidligere støysone I. Yttergrensen for rød sone vil ligge noe innenfor midten av den gamle støysone III.

3.2.2 Utarbeidelse av støysonekart og implementering i kommunale planer

Ansvar for utarbeidelse av kart som viser støysonene legges til tiltakshaver ved nye anlegg, mens anleggsseier eller driver har ansvar for eksisterende anlegg. De ansvarlige oversender kartene til kommunen og har også et ansvar for å oppdatere kartene dersom det skjer vesentlige endringer i støysituasjonen. Normalt skal kartene vurderes hvert 4.–5. år.

Det skal utarbeides støysonekart for dagens situasjon og aktivitetsnivå og en prognose 10–20 år fram i tid. Kartet som oversendes kommunen skal settes sammen som en verste situasjon av de to beregningsalternativene.

Kommunene skal inkludere og synliggjøre støysonekartene i kommuneplan. Retningslinjen har flere forslag til hvordan dette kan gjøres. For varige støykilder er det foreslått å legge sonene inn på selve kommuneplankartet som støybetinget restriksjonsområde. Det anbefales at kommunene tar inn bestemmelser tilknyttet arealutnyttelse innenfor støysonene og at det skal stilles krav til reguleringsplan for å utbygge av støyomfintlige bebyggelse innenfor rød og gul sone.

Følgende regler for arealutnyttelse er angitt i retningslinjen:

- **rød sone**, nærmest støykilden, angir et område som ikke er egnet til støyfølsomme bruksformål, og etablering av ny støyfølsom bebyggelse skal unngås.
- **gul sone** er en vurderingssone, hvor støyfølsom bebyggelse kan oppføres dersom avbøtende tiltak gir tilfredsstillende støyforhold.

3.3 Beregningsmetode

Vurdering av flystøy etter Miljøverndepartementets retningsliner gjøres kun mot støysonegrenser som er beregnet, dvs. at man ikke benytter målinger lokalt for å fastsette hvor grensene skal gå. Den beregningsmodellen som benyttes i Norge (se avsnitt 3.3.2), er imidlertid basert på en database som representerer en sammenfatning av et omfattende antall målinger. Under forutsetning av at beregningsmodellen nyttes innenfor sitt gyldighetsområde og at datagrunnlaget gir en riktig beskrivelse av flygemønsteret rundt flyplassen, så må det derfor gjøres meget lange målereser for å oppnå samme presisjonsnivå som det beregningsprogrammet gir.

Målinger kan nyttes som korrigierende supplement ved kompliserte utbredelsesforhold, ved spesielle flyprosedyrer, eller når beregningsprogrammet eller dets database er utilstrekkelig.

3.3.1 Dimensjonering av trafikkgrunnlaget

I retningslinje T-1277 ble det lagt til grunn at den travleste sammenhengende 3-måneders periode på sommerstid (mellom 1. mai og 30. september) skulle benyttes som trafikkgrunnlag. Sommeren har vært valgt siden EFN ble innført som måleenhet basert på en antakelse om at sommeren representerte den tid av året da støyen hadde størst negative utslag i forhold til utendørs aktivitet. Også det faktum at flere sover med åpent vindu om sommeren ble tillagt vekt.
Veilederen til den nye retningslinjen legger seg opp til reglene fra EU direktiv 2002/49/EC\(^1\) om at det skal benyttes et årsmiddel av trafikken. Det gis imidlertid en liten åpning for fortsatt å bruke 3 måneder på sommeren dersom trafikken er sterkt sesongpreget (turisttrafikk).

Militære øvelser som forekommer minst hvert 2. år, skal inngå i trafikkgrunnlaget.

3.3.2 Beregningsprogrammet NORTIM

Det unike med NORTIM er at det tar hensyn til topografiens påvirkning av lydutbredelse, samt lydutbredelse over akustisk reflekterende flater. NORTIM beregner i en og samme operasjon alle de aktuelle måleenheter som er foreskrevet i retningslinjene. Beregning av MFN og EFN er således suppleret med \(L_{den}\) og \(L_{5AS}\). Andre støymål som beregnes er blant annet ekvivalentnivået, \(L_{Aeq}\), for dag og for natt eller for hele det dimensjonerende middeldøgn.

Grensesnittet mellom operatør og program er betydelig forbedret slik at arbeidsbelastningen er redusert til under halvdelen. Nødvendige hjelpeprogram foretar statistisk behandling av trafikkdata, forenkler innlesing av beregningsgrunnlaget og uttegn av kart og resultater. Beregningsresultatene fremkommer som støykurver (sonograf) som kan tegnes i ønsket målestokk. Alle resultatene leveres på SOSI filformat.

3.4 Kartlegging i henhold til forskrift til forurensningsloven

\(^1\) EU Directive 2002/49/EC Assessment and management of environmental noise
Forurensningsforskriften fastsettergrenseverdier som skal utløse kartlegging og utredning av tiltak mot støy. Kartleggingsgrensen er satt tidøgnekvivalent nivå (%28L\textsubscript{eq,24h}%29) på 35 dBA innendørs når bare en støytype dominerer. Dersom flere likeverdige kilder er til stede, senkes kartleggingsgrensen for hver støykilde med 3 dB til 32 dBA.

\begin{tabular}{|l|l|l|l|}
\hline
Flyplassa & Støymessig dominerende flytype & Minimum fasadeisolasjon i vanlig bebyggelse & Kartleggingsgrense relativt til frittfeltnivå \\
\hline
Regionale flyplasser & Propellfly & 18 dBA & 53 dBA (35+18) \\
Stamruteplasser / militære flyplasser & Eldre jetfly / Jagerfly & 23 dBA & 58 dBA (35+23) \\
Stamruteplasser & Støysvake jetfly & 26 dBA & 61 dBA (35+26) \\
\hline
\end{tabular}

a Til forskjell fra tabell 3-1 er det i denne tabellen valgt å bruke mer generell betegnelse for flytyper i forskjellige flyplasser.
4. OMGIVELSER

4.1 Digitalt kartgrunnlag
Det er delvis benyttet samme kartunderlag som ved tidligere beregninger, dvs. et 2 x 2 km kart basert på forenklet grunnkart fra Trondheim kommune. Kartunderlaget som opprinnelig var i koordinatsystemet ”Trondheim lokalt” er konvertert til UTM Euref89 sone 32 og supplert med Statkart N50 utenom det nevnte utsnittet. I kartet er det lagt inn et rutemønster med linjeavstand 100 meter.

Figur 4-1 Kart over undersøkelsesområdet i målestokk 1:25.000.

4.2 Digital terrengmodell
Digital topografi er stilt til rådighet av Avinor. Terrenget er representert med en punkttetthet på 25 meter. Fasadene på de eksisterende og planlagte nærliggende bygg legges inn som støyskjermere.
4.3 Bygningsdata
Det er innhentet bygningsdata for hele Trondheim kommune fra databasen Norges Eiendommer (GAB) hos Norsk Eiendomsinformasjon as. Alle opplysninger i Norges Eiendommer er oppdatert pr. 2008-01-12.
5. FLYTRAFIKK

5.1 Trafikk i følge AMK-sentral og operatører

Som tidligere er de tre mest trafikkerte sommermåneder for 2002 benyttet som grunnlag for å fordele trafikken på flytyper, retninger og tidspunkt på døgnet. De to følgende tabeller viser den trafikkmengden som det skaleres opp fra.

| Tabell 5-1 Totalt antall landinger og avganger pr flytype på 3 måneder i 2002. |
|-------------------------------|---|---|
| ACtype | TO | LA | SumOper |
| AS65 | LA | 35 |
| AS65 | TO | 35 |
| Bo105 | LA | 83 |
| Bo105 | TO | 83 |
| SK61 | LA | 35 |
| SK61 | TO | 35 |

Antallet flyginger i denne perioden er deretter ganget opp til en årsaktivitet ut fra de tall for årlig aktivitet pr base som framgår av statistikk fra AMK-sentralen for 2005.

| Tabell 5-2 Antall landinger på St. Olav's hospital i 2005 fordelt på basene. |
|----------------------|----|---|---|
| | Rosten | Brønnøysund | Dombås | Alesund | Ørland | Totalt |
| | 479 | 30 | 55 | 125 | 147 | 836 |

AMK-sentralen har framskaffet statistikk for antall oppdrag pr år for de siste fire år. Oversikten er basert på rapporter fra helikopter til AMK sitt system og det er trukket ut aktivitet som har angitt St. Olav som landingsplass. Det er imidlertid noe usikkerhet knyttet til disse tall, særlig for 2004, i og med at noe varierende betegnelse for sykehuset er benyttet. Oversikten inneholder også de to årene som er påvirket av at den midlertidige landingsplassen ble stengt. Lineær trend for denne statistikken viser en årlig økning på 55 oppdrag/år, men R² verdien på 0.6 angir at påliteligheten for denne trenden er lav.

Statistikken viser en jevn økning i antall oppdrag med unntak av 2001 hvor det var en nedgang. Dette er forklart med at man la om disposisjonskriterier på basen til mer bruk av ambulansebil i nærområdet dette året. Dette ble omgjort igjen året etter. Den lineære tenden viser en økning på i underkant av 50 oppdrag pr år med en R² på 0.88. Dersom utviklingen i 2001 hadde vært midt mellom tallene for året før og etter, ville den årlige økningen droppet til 45 oppdrag pr år og R²
verdien ville blitt på 0.95, hvilket betyr at den lineære approksimasjonen har en akseptabel sikkerhet.

På denne bakgrunn legges det inn med basis i tallene fra AMK for 2005 en årlig økning på 50 oppdrag.

Økningen ut over tallene fra 2005 legges jevnt for alle basene vist i Tabell 5-2.

Usikkerheten i antall oppdrag har betydning for usikkerheten i beregnet ekvivalent støynivå. Resultatene er imidlertid ganske robuste overfor små endringer. Som illustrasjon nevnes at en økning på 25 % i trafikken medfører 1 dB i økt ekvivalentnivå. Dette er noe mer enn forskjellen mellom de to scenarier som skal beregnes.
6. FLYTYPER

6.1 Flytyper i bruk
Flytypene som er vist i Tabell 5-1 identifiseres i databasen for beregningsprogrammet. EC135 erstatter imidlertid Bo105 i beregningene ettersom NLA har skiftet ut helikoptertypen.

SK61 er redningshelikopteret Sea King som er stasjonert på Ørland, mens betegnelsen AS65 er en forkortelse for AS365 Dauphin, som er den typen som er stasjonert blant annet i Ålesund.

6.2 Kildedata for fly
Både AS365 og SK61 har data i beregningsprogrammets database. Data for AS365 er basert på målinger SINTEF foretok på Vigra, mens data for Sea King stammer fra INM databasen [15]. Støydata for den nye helikoptertypen EC135 er levert av Eurocopter og bearbeidet av SINTEF i oppdrag for NLA.
7. DESTinasjoner, Traséer og Profiler

7.1 Destinasjoner
Statistikken fra AMK-sentralen og operatorene viser hvor helikoptrene kommer fra når de lander på St. Olav. Dette er kombinert med oversikt fra NLA som også viser hvor deres helikopter drar når det går derfra. For redningshelikopteret antas det at det returnerer til Ørland etter endt oppdrag, mens helikopteret fra Ålesund antas å returnere dit hvis annet ikke er opplyst. Destinasjoner som ligger i samme retning samles i grupper med 45° oppløsning (N, NØ, Ø, SØ osv.).

7.2 Flygeprosedyrer
Det vil bli etablert to korridorer for inn- og utflyging til den nye landingsplassen. Korridorene vil ha retning 320°/140° og 345°/165°. Det legges derfor inn to prosedyrer for landing og to for avgang for hver helikoptertype til hver gruppe av destinasjoner. Retning velges delvis ut fra vind og hvor man skal. Normalt vil landing og avgang skje med en motvindskomponent, men en svak medvindskomponent er også mulig. Det er således antatt at redningsskvadronen vil komme inn fra nord og ta av mot nord i 90 % av tilfellene. For de to andre operatorer er det antatt en 50/50 fordeling på de to retningene, med unntak av NLA sin tilbaketransport til Rosten hvor det antas at 90 % av avgangene vil foregå mot syd.

7.3 Rullebaner
Helikopterlandingsplassen plasseres på taket av Akutten og representeres her med i alt 4 rullebaner, som i utstekning er like, men går to og to i motsatt retning. Lengde og bredde er satt til 20 meter og retning er valgt øst – vest. I beregningen vil denne rullebanen pluss 50 meter i samme bredde i begge retninger automatisk legges inn som en akustisk hard flate. Kotehøyde på landingsplassen er satt til 43.2 meter.

<table>
<thead>
<tr>
<th>RWY</th>
<th>FromEast</th>
<th>FromNorth</th>
<th>FromElevation</th>
<th>ToEast</th>
<th>ToNorth</th>
<th>ToElevation</th>
<th>Direction</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN</td>
<td>569185</td>
<td>7033125</td>
<td>43.2</td>
<td>569165</td>
<td>7033124</td>
<td>43.2</td>
<td>270</td>
<td>20</td>
</tr>
<tr>
<td>LAS</td>
<td>569185</td>
<td>7033125</td>
<td>43.2</td>
<td>569165</td>
<td>7033124</td>
<td>43.2</td>
<td>270</td>
<td>20</td>
</tr>
<tr>
<td>TON</td>
<td>569165</td>
<td>7033124</td>
<td>43.2</td>
<td>569185</td>
<td>7033125</td>
<td>43.2</td>
<td>90</td>
<td>20</td>
</tr>
<tr>
<td>TOS</td>
<td>569165</td>
<td>7033124</td>
<td>43.2</td>
<td>569185</td>
<td>7033125</td>
<td>43.2</td>
<td>90</td>
<td>20</td>
</tr>
</tbody>
</table>

7.4 Flytraséer
Det konstrueres flytraséer for inn- og utflyging til hver destinasjonsgruppe som følger de nevnte korridorer ut til 370 meter fra landingsplassen og deretter sving mot gjeldende retning. Innenfor bredden av korridorene, legges det inn spredning av trafikken med i alt 3 spredträséer på hver side av hovedtrasé som følger sentrum av korridorene. Fordeling av trafikken på disse traséene følger internasjonal anbefaling gitt i [20].

I den følgende figur er traséene for inn- og utflyging vist samlet.

7.5 Flygeprofiler
Mens traséene plasserer støykildene i x-y-planet, sørger flygeprofiler for å legge dem i den rette høyden. Flygeprofilene gir også informasjon om hastighet og støypådrag i de forskjellige posisjonene. Avgangsprofilene for helikoptrene er typeavhengige og hentes fra databasen for to av de tre typene. Det tredje er EC135 hvor profilene er basert på informasjon fra basen til NLA på Rosten.

Landingene er lagt inn med 4° høydevinkel for de to største helikoptrene, mens det for EC135 er benyttet en profil som baserer seg på en gjennomsynkningsrate på 300 fot pr minutt, med unntak av de som kommer inn over Byåsen hvor høyden 2-4 km før landing er fordoblet. Det gir en gjennomsynkningsrate på om lag 600 fpm på denne delen av flygingen.
8. SKALERING AV TRAFIKK
Dette kapittel angir den skalering som er gjort for å beregne for en annen trafikkmengde enn den som ble registrert i 2002.

8.1 Trafikkskalering etter flytype

8.2 Trafikkskalering etter prosedyrer og traséer
Det er ikke endret på fordelingen mellom retninger til oppdragssted i prognosene.

8.3 Trafikkskalering etter tidspunkt
Det er ikke foretatt noen vurdering eller endring av den døgnfordeling som ble registrert for sommermånedene i 2002.

9. BEREGNINGSPARAMETERE

9.1 Beregningsenheter
Det beregnes for de enheter som danner grunnlaget for støysonekartet og de enheter som inngår i kartlegging i forhold til forurensningsforskriften.

9.2 Beregning i enkelpunkter
Det foretas egne punktberegninger for hver bygning innenfor beregningsområdet som har et støyomfintlig bruksformål. Koordinater for slike bygninger er hentet fra eiendomsregisteret (GAB).

9.3 NORTIM beregningskontroll
Beregningene gjennomføres for et gjennomsnittsdøgn for en mottakerposisjon i 4 meters høyde i en beregningsgrid med 128 fot avstand mellom punktene.
10. RESULTATER RELATERT TIL RETNINGSLINJE T-1442

I dette kapitlet vises resultatene for de to størrelser som skal inngå i støysonekartet etter T-1442, nemlig L_{den} og L_{5AS}.

10.1 Prognose for første hele driftsår

Første hele driftsår er etter planene i 2011 og det er i prognosen lagt inn en aktivitet på 1150 landinger på sykehuset dette året.

![Figur 10-1 Vektet døgnekvivalent støynivå for første hele driftsår (2011). Kotene representerer L_{den} på 52 og 62 dBA. M 1:15.000.](image-url)
Figur 10-2 Representativt maksimum støynivå på natt i første hele driftsår (2011). Kotene representerer L50S på 80 og 90 dBA. M 1:10.000.

Ved konstruksjon av støysoner legges kotene fra disse to figurer oppå hverandre og rød sone dannes ved union av de to innerste kotene og gul av de ytterste. Det fremgår av kartene at det er det ekvivalente nivået som dimensjonerer bortsett fra et område på noen få meter omtrent rett nord for landingsplassen for rød sone. Støysonene er vist i den følgende figur.

<table>
<thead>
<tr>
<th>Støyson</th>
<th>Areal (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gul</td>
<td>1.55</td>
</tr>
<tr>
<td>Rød</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Figur 10-3 Støysoner for 2011 med 1150 landinger. M 1:15.000.
10.2 Prognose med 1350 landinger

Figur 10-5 Representativt maksimum støynivå på natt i prognoseåret (2015). Kotene representerer $L_{5,10}$ på 80 og 90 dBA. M 1:10.000.

For denne situasjonen vil ekvivalentnivået alene være dimensjonerende for støysonene.

Tabell 10-2 Areal innenfor støysonene for prognoseåret (1350 landinger).

<table>
<thead>
<tr>
<th>Støyzone</th>
<th>Areal (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gul</td>
<td>2.04</td>
</tr>
<tr>
<td>Rød</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Figur 10-6 Støysoner for 2015 med 1350 landinger. M 1:15.000.
11. RESULTATER RELATERT TIL FORURENSINGSFORSKRIFTEN

11.1 Innendørs støynivå – Kartlegging og tiltak
Kartleggingsgrenser i forhold til forskrift til forurensningsloven gjelder for innendørs støynivå, mens beregningene her gjøres for utendørs nivå. For omsetting til innendørsnivå benyttes verdiene i Tabell 3-2. Støy fra helikopter regnes i denne sammenheng å ha omtrent samme frekvensmessige sammensetning som propellfly. Kartleggingsgrensen går derfor på et utendørs døgnekvivalent støynivå på 53 dBA. Det skal tilsvare et innendørsnivå på 35 dBA med laveste standard støyisolasjon. Dersom andre støykilder er tilstede i området skal man også undersøke støyemfintlige bygninger ned til 32 dBA, tilsvarende utendørs nivå på 50 dBA. Tiltak utløses dersom innendørsnivå fra støykilden(e) overskriver 42 dBA. Det gir en tentativ tiltaksgrense på 60 dBA utendørs nivå. Hvorvidt tiltak skal iverksettes med hjemmel i forskriften til forurensningsloven, skal fremkomme gjennom en kartlegging av fasadeisolasjon for de aktuelle bygg.

![Figur 11-1 Kartleggingsgrenser for 2011. Kurvene viser L_{eq24h} på 50, 53 og 60 dBA. M 1:10.000.](image-url)
Figur 11-2 Kartleggingsgrenser for 2015. Kurvene viser L_{eq24h} på 50, 53 og 60 dBA. M 1:10.000.

Det er den midterste kurven i de to figurene som er den kartleggingsgrense som tiltakshaver i første rekke skal forholde seg til. Den ytterste kurven er fremstilt for å synliggjøre influensområdet i forhold til andre sterke støykilder. Det kan vel antas at slike ikke finnes innenfor den ytterste kurven og at det derfor kan ses bort fra en kartlegging sammen med andre kilder.

Det fremgår av figurene at det er bygninger innenfor kartleggingsgrensen som har støyomfintlig bruksformål, både boliger og, naturlig nok, helseinstitusjoner. En punktberegning på koordinatene til hvert enkelt bygning gir et mer nøyaktig resultat og benyttes som grunnlag for den videre behandling. Det to følgende tabeller viser hvor mange bygninger som ligger innenfor de tre viste kurvene for begge situasjoner. En liste med adresse og støynivå for de enkelte berørte bygninger er tilgjengelig for oppdragsgiver, men er unntatt offentlighet.
Tabell 11-1 Antall bygninger innenfor kartleggingsgrenser for første hele driftsår.

<table>
<thead>
<tr>
<th>Limits</th>
<th>NoOfResidences</th>
<th>NoOfSchoolBuildings</th>
<th>NoOfHealthInstitutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-53</td>
<td>57</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>53-60</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>60-</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Tabell 11-2 Antall bygninger innenfor kartleggingsgrenser for prognosen.

<table>
<thead>
<tr>
<th>Limits</th>
<th>NoOfResidences</th>
<th>NoOfSchoolBuildings</th>
<th>NoOfHealthInstitutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-53</td>
<td>82</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>53-60</td>
<td>11</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>60-</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
12. LITTERATUR

[1] B. Griefahn:
MODELS TO DETERMINE CRITICAL LOADS FOR NOCTURNAL NOISE.
Proceedings of the 6th International Congress on Noise as a Public Health Problem, Nice, Frankrike, juli 1993

[2] T. Gjestland:
VIRKNINGER AV FLYSTØY PÅ MENNESKER.
ELAB-rapport STF44 A82032, Trondheim, april 1982

[3] Flystøykommisjonen:
STØYBEGRENSNING VED BODØ FLYPLASS.
Rapportnr. TA-581, Oslo, mars 1983

RESPONSE TO NOISE AROUND OSLO AIRPORT FORNEBU.
ELAB-RUNIT Report STF40 A90189, Trondheim, november 1990

RESPONSE TO NOISE AROUND VÆRNES AND BODØ AIRPORTS.
SINTEF DELAB Report STF40 A94095, Trondheim, august 1994

[6] A. Krokstad, O. Kr. Ø. Pettersen, S. Å. Storeheier:
FLYSTØY; FORSLAG TIL MÅLEHENETER, BEREGNINGSMETODE OG
SONEINNDELING.
ELAB-rapport STF44 A81046, revidert utgave, Trondheim, mars 1982

[7] Miljøverndepartementet:
RETNINGSLINJE FOR BEHANDLING AV STØY I AREALPLANLEGGING.
Retningslinje T-1442. Oslo, 26. januar 2005
http://odin.dep.no/md/norsk/dok/regelverk/retningslinjer/022051-200016/dok-bn.html

[8] Miljøverndepartementet:
T-1277 RETNINGSLINjer ETTER PLAN- OG BYGNINGSLOVA OM AREALBRUK I
FLYSTØYSONER
http://odin.dep.no/md/norsk/regelverk/rikspolitiske/022005-990564
AREALBRUK I FLYSTØYSONER.

[9] Statens Forurensningstilsyn:
VEILEDER TIL MILJØVERNDEPARTEMEntETS RETNINGSLINJE FOR
BEHANDLING AV STØY I AREALPLANLEGGING (STØYRETNINGSLINJEN).
http://www.sft.no/publikasjoner/luft/2115/ta2115.pdf

TOPOGRAPHY INFLUENCE ON AIRCRAFT NOISE PROPAGATION, AS
IMPLEMENTED IN THE NORWEGIAN PREDICTION MODEL – NORTIM.
SINTEF DELAB Report STF40 A95038, Trondheim, April 1995

NORTIM VERSION 3.0. USER INTERFACE DOCUMENTATION.
SINTEF Report STF90 A04037, Trondheim, 22. April 2002

[12] Idar L N Grønboen, Rolf Tore Randeberg, Herold Olsen:
CORRECTIVE MEASURES FOR THE AIRCRAFT NOISE MODELS NORTIM AND
GMTIM: 1) DEVELOPMENT OF NEW ALGORITHMS FOR GROUND ATTENUATION
AND ENGINE INSTALLATION EFFECTS. 2) NEW NOISE DATA FOR TWO
AIRCRAFT FAMILIES.
SINTEF Report STF40 A02065, Trondheim, 16 December 2002

[13] B. Plovsing, J. Kragh:
Nord2000. COMPREHENSIVE OUTDOOR SOUND PROPAGATION MODEL.
DELTA Report, Lyngby, 31 Dec 2000

[14] S Å Storeheier, R T Randeberg, I L N Grønboen, H Olsen, A Ustad:
AIRCRAFT NOISE MEASUREMENTS AT GARDERMOEN AIRPORT, 2001. Part 1:
SUMMARY OF RESULTS.
SINTEF Report STF40 A02032, Trondheim, 3 March 2002

INTEGRATED NOISE MODEL (INM) VERSION 6.0 TECHNICAL MANUAL.
U.S. Department of Transportation, Report No.: FAA-AEE-01-04, Washington DC, June
2001

[16] W. R. Lundberg:
BASEOPS DEFAULT PROFILES FOR TRANSIENT MILITARY AIRCRAFT.
AAMRL-TR-90-028, Harry G. Armstrong, Aerospace Medical Research Laboratory,
Wright-Patterson AFB, Ohio, February 1990

[17] Miljøverndepartementet:
FORSKRIFT OM BEGRENSNING AV FORURENSNING
(FORURENSNINGSFORSKRIFTEN).
Forskrift FOR-2004-06-01-931, Oslo, juni 2004
http://www.lovdata.no/for/sf/md/md-20040601-0931.html
(Del 2, kapittel 5)

[18] Arild Brekke:
NYE RETNINGSLINJER FOR FLYSTØY. KONSEKVENSER VEDRØRENDE
STØYISOLERING AV BOLIGER I STØYSONE I OG II.
Norges byggforskningsinstitutt rapport 7939, revidert utgave, Oslo, juni 1998

[19] Kåre H. Liasjø:
MØTE OM KARTLEGGING AV FLYSTØY I HENHOLD TIL FORSKRIFten TIl
FORURENSNINGSLOVEN.
Referat fra møte i SFT Oslo, 25 juni 1999

[21] Idar Ludvig Nilsen Granøien:
BEREGNING AV HELIKOPTERSTØY FOR ENDRET POSISJON AVLANDINGSPLASS VED ST. OLAVS HOSPITAL
SINTEF rapport STF40 A03041, Trondheim juni 2003.