Four decades of observations from NGI’s full-scale avalanche test site Ryggfonn—Summary of experimental results

Peter Gauer*, Krister Kristensen
Norwegian Geotechnical Institute, Norway

ABSTRACT
The Norwegian Geotechnical Institute (NGI) has run full-scale avalanche experiments at the Ryggfonn test-site in Western-Norway for close to 40 years. The construction of an avalanche catching dam in 1981 laid the cornerstone of the so-called “Ryggfonn project”. Over these years of operation, various kinds of instrumentation and structures have been placed along the avalanche path to gain in-depth understanding of avalanche dynamics and the interaction of avalanches with structures. Avalanche measurements provide benchmarks for the development and calibration of numerical avalanche models. Increasingly, these models are used for hazard zoning to estimate runout distances or impact pressures with varying return periods for assessing endangered areas. However, these models are imperfect and require a high degree of expert judgment for specifying the required model parameters. At this point, it is valuable to have reference events to evaluate simulation results.

In this paper, we summarize runout, velocity, and impact pressure observations from the Ryggfonn test site as well as some derived quantities such as the retarding acceleration or density estimates. We try to relate the measurements to ambient (in-situ) conditions during the events. For Ryggfonn, the runout observations suggest a 10 to 15% increase in runout distance comes along with a decrease of a factor 10 in probability. The expected front velocity of an avalanche as it enters the runout area at Ryggfonn is about $27 \pm 10 \text{ ms}^{-1}$, but may reach 50 ms^{-1}. The impact pressures at the beginning of the runout area are typically of the order of 100 kPa, but may reach several hundred kPa. Observations from a power line assembly give some insight in the vertical pressure distribution and its dependency of the avalanche velocity. The combination of these measurements provides some implications for the avalanche density suggesting a range of flowing densities. Our observations affirm a dependency of dynamical parameters on the ambient conditions, which were made at other locations.

1. Introduction
In many mountainous areas with seasonal or year round snow cover, snow avalanches are spectacular natural phenomena. However, avalanches constitute a deadly threat if humans or animals come in their way. Recorded history chronicles recurring catastrophic avalanche cycles with many fatalities and events that have even destroyed whole villages. Fig. 1 shows an example from Lourtier, Switzerland, during the avalanche cycle of February 1999, which affected large parts of the Alps (Gruber and Margreth, 2001; Heumader, 2000; Rapin and Ancey, 2000).

In many countries, hazard zoning and extensive construction of mitigation measures (such as supporting structures in the starting zones or avalanche dams in the runout areas), which were increasingly implemented in the second half of the last century, have reduced the number of fatalities in settlements and on roads. In countries that are lagging behind with the implementation of this kind of measures, for whatever reason, the death toll from avalanches is periodically high, as a recent example from Afghanistan in February 2015 shows (“Avalanches kill more than 300 in Afghanistan”, The Telegraph, 2015).

Norway too has a long and tragic history with avalanche accidents (Furseth, 2006) and snow avalanches are one of the most frequent and deadly natural hazards in the country. Just in the last 40 years (1972–2014), avalanches have claimed 44 lives, either on roads or in houses. This number does not include those who died in the backcountry working or during recreational activities. Following a number of serious accidents in the 1960s and early 1970s, The
Fig. 1. Several avalanches from Bec des Rosses (3723 m a.s.l.) hit the village Lourtier (1075 m a.s.l.), Switzerland, on 20–21 February 1999. Miraculously, these avalanches caused no fatalities. Large parts of the orographic left hand side of the alluvial fan were impacted by the powder part of at least one of these avalanches.

Norwegian Parliament designated the Norwegian Geotechnical Institute (NGI) as the center of expertise on snow and avalanche research in Norway in 1972. The importance of establishing a field research station was emphasized by the parliament (Stortingsmelding Nr. 9 1972-73 Innst. S. nr. 68, 1973). With that in mind, NGI established the snow research station Fonnbu (Jaedicke et al., 2008) and the nearby full-scale avalanche test-site Ryggefonna (RGF). The official start of “The Ryggfonna Project” was in 1981, although, first preparations for artificial avalanche releases at the site were already done in 1972. The first successful release with recorded measurements was performed on 25 February 1975 (Tøndel, 1977). The aim of the test-site, was and still is, to gain in-depth understanding of avalanche flow dynamics, which is a prerequisite for effective hazard zoning and the design of protection measures.

The main focus of this paper is to provide practitioners and model developers a set of reference data. To this end, we provide a summary of observations and measurements from the Ryggfonna test-site recorded over the last 40 years. We focus on runout, velocity, and impact pressure observations as well as some derived quantities. The outcomes are organized from simple to more complicated, that is, we start with observations that are directly based on the field observations, such as volume, runout, and the corresponding probabilities and end with derived quantities, like density profiles, that require the combination of various single observations to obtain a consistent result. As far as possible, we try to link the measurements to the snow and weather conditions during the events.

2. The research infrastructure

The full-scale avalanche test-site Ryggfonna in Western-Norway (61.96 N, 7.275 E) can be compared with test sites of various sizes around the world. An overview of the (European) avalanche test sites can be found in Issler (1999) and Barbolini and Issler (2006). In addition, one can find some information on specific sites, e.g., in Ammann (1999), Maggioni et al. (2012), and Thibert et al. (2015).
Ryggfonn is one of only two operational full-scale test sites in the world where avalanches size 4 in the Canadian Avalanche Size Classification (i.e. typical mass 10^7 kg or typical path length 2000 m) can be triggered and investigated under, more or less, controlled conditions. Avalanches of size 4 are characterized by “Could destroy a railway car, large truck, several buildings or forest with an area up to 4 hectares (ha)” (McClung and Schaerer, 2006, Table D.1). Therefore, avalanches of this size and larger are most relevant with respect to hazard zoning. Nonetheless, size 3 avalanches have already serious destructive potential.

Fig. 2 provides an overview of the Ryggfonn avalanche path. The upper half of the north-facing track is a cirque with the main starting zone at the upper end. In addition, several release areas to the left and right of the main track (PR000) also drain into the common
runout area. The profiles of the most frequent tracks are shown in the inset. The total vertical drop height of the main path is about 900 m and the horizontal runout distances typically range between 1500 and 1850 m with a maximum up to 2100 m. The β-angle of the main track is about 29° and might be regarded as mean slope angle. It is measured from the point where the tangent to the profile drops below 10° to the top of the starting zone (Lied and Bakkehøi, 1980). The track itself is slightly channeled. Typical avalanche masses range from 10^2 to 10^3 kg, but may reach up to 10^8 kg. An avalanche catching dam in the runout area makes the Ryggfonn facility unique. It is the only place where the efficiency of this kind of an avalanche mitigation measure is studied in full-scale. The β-angle was determined from the original terrain, before the dam was built.

Table 1 summarizes the history of the test site and gives an impression of the difficulties to obtain consistent measurements over a long period. More detailed description of the present-day instrumentation can be found in Gauer et al. (2010a).

3. Data

3.1. Avalanche data

In the following, we focus on observations and measurements from Ryggfonn during the last four decades. As indicated above, due to the changes in instrumentation and the often destructive conditions during the events, the quality of the data may vary. Nonetheless, they give reliable trends. Records comprise around 160 naturally released avalanches and about 30 artificially released ones. For this analysis, we used approximately 40 avalanches, which had sufficient observations, as core data. Most of the experiments at the site are documented in reports: (Gauer and Kristensen, 2004, 2005; Kristensen, 1996, 1997, 2001; Lied, 1984; Norem, 1995; Norem and Kristensen, 1985, 1986a,b; Norem et al., 1988a,b, 1989, 1991).

3.2. Meteorological data

The closest weather station to Ryggfonn is at the nearby snow research station Fonnbu, located 4.5 km north east from the test site. Unfortunately, the weather records from Fonnbu are incomplete or lacking for parts of the considered period. Therefore, we supplement these data with data derived from seNorge (Saloranta, 2012). The seNorge snow model operates with 1 x 1 km resolution. It uses gridded observations of daily air temperature and precipitation as input forcing, and simulates snow water equivalent (SWE) and snow depth (HS), among other factors. Although comparison between the available measurements from Fonnbu and the data from seNorge suggests a reasonable consistency, one has to keep the basic differences between the two data sets in mind. The first one provides point measurements whereas seNorge provides spatial averages based on assimilation of data from mostly low elevation weather stations.

In the following, we use the air temperature measured at the Fonnbu station, which are supplemented with “corrected” data from seNorge (i.e. the correlation between Fonnbu data and data from seNorge was used to complement missing data). We, specifically, consider the mean air temperature, T_a, of a 48 h period around the avalanche event. This period may also embrace episodes with temperatures above zero degrees, which may have had major effects on the snow properties. Furthermore, we refer directly to the three-day new-snow water equivalent HNW$_{3d}$ obtained from seNorge for a model elevation corresponding to the release area of Ryggfonn (\approx1600 m a.s.l.), partly adjusted with measurements from Fonnbu using the correlation between Fonnbu data and data from seNorge.

Fig. 3 provides a brief overview of these data for the events that we have analyzed in more detail. The figure gives an impression of the distribution of the temperature and precipitation that influenced the avalanche measurements.

![Fig. 3. Cumulative distribution function of the mean air temperature, T_a, of a 48 h period around the avalanche event (top panel) and the survival function (1-CDF) of the three-day new-snow water equivalent, HNW$_{3d}$ for Ryggfonn (RGF) (bottom panel). Color coding reflects the air temperature. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)](image-url)
4. Observations and measurements

4.1. Avalanche volume

During field campaigns, the volumes of the avalanche deposition (V_{Dep}) were measured by traditional surveying methods or more recently, using terrestrial lidar scanning, or they were estimated based on expert judgment. The volumes of the observed/surveyed avalanches involve about three orders of magnitude ranging from about 10^3 to 475×10^3 m3. The estimated error is of the order of $\pm 10\%$. Fig. 4 shows the boxplot of the avalanche size $\log_{10}(V_{Dep}/V_0)$. Here, $V_0 = 10^3$ m3 is chosen as a reference volume.

To give an impression how snow and weather conditions may influence the avalanche size, Fig. 5 displays the order of magnitude of the deposition volume, $\log_{10}(V_{Dep}/V_0)$, vs. air temperature, T_a, and three-day new-snow water equivalent, HNW$_3$. Looking at the Spearman rank correlation, there is almost no correlation between $\log_{10}(V_{Dep}/V_0)$ and T_a ($\rho_{xy,z} \approx 0.07$, where $\rho_{xy,z}$ is the partial correlation controlling for HNW$_3$) and a rather weak correlation between $\log_{10}(V_{Dep}/V_0)$ and HNW$_3$ ($\rho_{xy,z} \approx 0.33$, where $\rho_{xy,z}$ is the partial correlation controlling for T_a). The weak correlation between the avalanche size and the new-snow amount might be explained by the fact that the new-snow is only one part of the available mass as it does not account for the depth of old-snow layers or snow-drifts that formed the initial volume nor for the snow that was entrained during the avalanches descent.

4.2. Observed runout patterns

Fig. 2 shows the relative frequency (= counts/total counts) of the areas overrun by the avalanches that were surveyed during the last 40 years. Minor events, which stopped in the upper part of the track, were not always recorded and these exemptions may cause a slight bias. The affected area was either determined from visual observations of the deposits or from photos or videos. The presented perimeters may also include areas that were overrun by a powder cloud without leaving very distinctive traces. For comparison the so-called α, α-1, and α-2 points of the well known α-β model are shown (Lied and Bakkehei, 1980). Despite the presence of the catching dam, several avalanches reached α-1, at least their powder clouds did.

Fig. 6 presents the nominal return period (i.e. the calculated return period based on the observed runout probability during the observation period) for a raster point to be reached by an avalanche/covered by deposits. Here, we used the survey data of the observed deposits, which may cause some inconsistencies as one may expect the nominal return period for an avalanche to be lower as one goes up the track. This inconsistency is caused by the fact that we only consider areas of the surveyed deposits in the runout area, since observations of the upper track were often impossible due to weather and visibility.

Looking at the location of the α point, the data suggests a nominal return period of 10 to 30 years for the Ryggfonn path and looking at the α-1 point, a return period of about 50 to 100 years. Regarding these return periods, one should, however, keep in mind that these observations include artificially triggered avalanches, which otherwise may not have released. Therefore, the return periods may be slightly biased.

Following the main track, we are able to determine the runout probability ("survival probability") for all avalanche events that reached the runout area (i.e. surpassed at least the elevation of the transmission line). A plot of the runout probability vs. horizontal distance, x, is shown in the inset of Fig. 6. On the flat area downstream of the dam, the runout probability decreases nearly exponentially. In our case, a factor 10 in runout probability corresponds to approximately a difference of 230 m in runout distance.

A more detail discussion on runout probability and the efficiency of the catching dam can be found in Gauer et al. (2009) or Faug et al. (2008).

4.3. Mean retarding acceleration based on energy considerations

Gauer et al. (2010b) tried to link observation of "extreme runouts" (i.e. avalanches with return periods of the order of 100 years) with some dynamical parameters. To this end, they used the concept of the mean retarding acceleration, which is a measure for the energy dissipation per unit mass (it also accounts for effects due to mass entrainment, but does not employ assumptions on the rheology), and is given by

$$|\vec{a}_{ret}| = \frac{gH}{S}$$

(1)

The equation basically states that the potential energy, gH, where H is the total fall height of the avalanche and g the gravitational acceleration, is dissipated along the total travel distance, S (measured along the track), at a mean rate of $|\vec{a}_{ret}|$. Here, we use the \bullet operator to indicate that we consider a mean value along the track. It is
reasonable to assume that $\langle a_{ret} \rangle$ depends on the ambient conditions, like topography or snow and weather conditions.

Gauer et al. (2010b) found that $\langle a_{ret} \rangle$ for a data set of several hundred avalanches is linearly correlated with the $g \sin \beta$ (correlation coefficient $\rho_{xy} \approx 0.82$):

$$|\langle a_{ret} \rangle| \approx g (0.82 \sin \beta + 0.052),$$ \hspace{1cm} (2)

where we use the subscript α to mark the link to the α-β model (Lied and Bakkehøi, 1980).

Fig. 7 shows the “survival probability” of $\langle a_{ret} \rangle$ for 37 observed avalanches at Ryggfonn. Considering that lower absolute values suggest longer runouts, the figure gives some indication of the change in runout probability. In our case, a factor 10 in probability corresponds to $\Delta(\langle a_{ret} \rangle)/g \approx 0.08$.

Fig. 6. Nominal return period for a raster point to be reached by an avalanche / covered by deposits (10 m contour lines). For comparison the β and the so-called α and α–1 points of the well known α-β model (Lied and Bakkehøi, 1980) are shown. The small red dots mark some of the instrumented locations. The inset shows the runout probability along the main track for avalanches that surpassed the transmission line. The dashed line provides a reference with exponential decay. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Survival probability of the retarding acceleration, $|a_{ret}|$. The top axis shows $\Delta a = (a_{ret}) - (a_{0})$. The size of the marker indicates the relative size of the estimated deposition volume and the marker color reflects the air temperature, T_a. The red dashed line provides a reference with exponential decay. The inset shows a boxplot for Δa. The median is shown by the red central mark, the 25th–75th percentile as edges of the blue box, the whiskers extend to the most extreme data points not considered outliers and outliers are marked with a red cross (points larger than $q_3 + 1.5(q_3 - q_1)$ or smaller than $q_1 - 1.5(q_3 - q_1)$, where q_1 and q_3 are the 25th and 75th percentiles). The notched area signifies a 95% confidence interval for the median. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Using Eq. (1) one obtains an estimate of the change in runout length ΔS:

$$\Delta S = \frac{\Delta a_{ret}}{g},$$

Assuming an avalanche that had reached the valley bottom, in which case a_{ret} becomes approximately zero, then

$$\Delta S \approx \frac{g}{H_0} \cdot \Delta H,$$

where H_0 and S_0 are defined by a known reference point. Now using, for example, the $H_0 \approx 900 m$, $S_0 \approx 1940 m$, $(a_{ret})/g = (a_{0})/g \approx 0.46$, we obtain an estimated runout difference that corresponds to factor 10 in probability of $\Delta S \approx 335 m$. This estimate gives a somewhat higher value than that estimated from the direct runout observation above ($\approx 230 m$). One reason for this difference is probably that the observed runouts are more affected by the presence of the catching dam than reflected by (a_{0}).

That temperature and especially snow temperature may have an influence on the mobility of avalanches has been recognized for a long time. Oechslin (1938) for example distinguished between: “ground avalanches”, “surface avalanches”, and “powder avalanches” in his avalanche velocity observations. Recently, Steinkogler et al. (2014) investigated the influence of snow cover properties on avalanche dynamics in more detail. Also Naaim et al. (2013) put a focus on the correlation between snow characteristics and the parameters of an avalanche model.

In Fig. 8, we show the detrended mean retarding acceleration Δa_{ret} vs. the air temperature, T_a, of a series of observed avalanches at Ryggfonn, where

$$\Delta a_{ret} = a_{ret} - \langle a_{ret} \rangle.$$

Fig. 8. Detrended mean retarding acceleration, $\Delta a_{ret}/g$, vs. the air temperature, T_a. The size of the marker indicates the relative size of the estimated deposition volume and the open triangle depicts one event for which no reliable estimates exist. The marker color reflects the air temperature, T_a. The dashed lines indicate the linear trend and the dotted lines mark the ±1σ range. The inset shows boxplots for $\Delta a_{ret}/g$ and $\Delta a_{ret}/g$. Box plot features are the same as in Fig. 7. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Here, a positive sign of $\Delta a_{ret}/g$ implies higher retardation and consequently shorter runout distances.

Unfortunately, we do not have sufficient snow temperature measurements from near the Ryggfonn path, which would be more representative for the snow conditions during the event. Instead, we use here and in the following, the mean air temperature, T_a, of a 48 h period around the avalanche event as an indicator for the snow conditions. Then again, air temperature series are more often available or obtainable than snow temperature measurements when it comes to estimate return periods for hazard zoning, for example. Also, the temperature of the ambient air may affect the avalanche if air is entrained. The temperature data are derived from measurements from Fonbu and supplemented by data from seNorge. The elevation of Fonbu (950 m a.s.l.) corresponds roughly to the middle section of the Ryggfonn path. Just as a reminder, the common averaged atmospheric lapse rate of 0.65 °C/100 m implies a temperature difference of approximately 6 °C between the release and the runout area. Therefore, avalanches may have started as dry-snow avalanche and run into moist snow in the valley.

Seemingly, there is a slight trend that Δa_{ret} increases as the air temperature increases (correlation coefficient $\rho_{T_a, z} \approx 0.39$, where $\rho_{T_a, z}$ is the partial correlation controlling for V_{Dep}), that means, the runout length is expected to decrease. However, the boxplot in the inset shows that the reduction of the spreading is rather low (i.e. the reduction of the inter quartile range, IQR = $q_3 - q_1$). In addition, the trend is less significant than the following one.

In the next step, Fig. 9 presents the detrended mean retarding acceleration Δa_{ret} vs. the order of magnitude of the estimated deposition volume, $\log_{10}(V_{Dep}/V_0)$. In this case, Δa_{ret} shows a decreasing trend with increasing deposition volume (correlation coefficient $\rho_{V_{Dep}, z} \approx -0.58$), which means large avalanches tended to have longer runouts. If we assume that a possible correlation between T_a and $\log_{10}(V_{Dep}/V_0)$ can be neglected ($\rho_{T_a, V_{Dep}} \approx -0.12$), we obtain the linear regression model:

$$\Delta a_{ret}/g = \Delta a_{0}/g + b_1 T_a + b_2 \log_{10}(V_{Dep}/V_0),$$

where $\Delta a_{0}/g = 0.0085$, $b_1 = 0.0034 \text{ °C}^{-1}$, and $b_2 = -0.033$. The comparison of the boxplots in Figs. 8 and 9 indicates a marked reduction of the spreading.
Using Eq. (4) with the β-point as reference one can get an impression of the contributions of the various terms to the change in runout length ΔS. For instance, one could expect an increase in runout length ΔS ≈ 140 m per 1°C temperature decrease—or looking at Fig. 7, corresponding to a reduction in probability of approximately a factor 0.4. The same difference could be expected for an increase of one order of magnitude in deposition volume.

Unfortunately, the deposition volume is not a predictive variable and is instead a rather dynamic value so that it cannot be used directly to estimate the runout distance. The deposition volume depends largely on the entrainment of mass along the track.

A better predictor (i.e. a value that could be estimated a-priori) might be the ratio between release mass and the averaged track width, shown in Fig. 10. The partial correlation coefficient however is lower in this case (ρxy ≈ −0.42, controlling for Tα).

Of course, one should keep in mind that a correlation does not necessarily imply a causality.

4.4. Mass balance

To give an impression of how the deposited mass relates to the released mass, boxplots of the release mass and deposit mass for a sample of 28 avalanches are presented in Fig. 11. For these avalanches, sufficient observations on the release area/volume and densities were available to obtain estimates of the release mass, Mrel, the deposit mass, Mdep, and on the entrained mass, Ment = Mdep − Mrel. Here, we employed a Monte Carlo approach for calculating Mrel, Mdep, Ment, and Mrel/Mdep to include base data uncertainty. To this end, we used probability distributions that reflect the uncertainty of the base data, which are the release and deposition volume, the snow density in the release area/path and the density of the deposit. Based on these distributions we simulated probability distributions for our response variables Mrel, Mdep, Ment, and Mrel/Mdep.

Fig. 11 shows that entrainment plays an important role for the mass balance—on average entrainment contributed to about 60% of the deposit. Or in other words, on average, the mass increased by a factor of approximately 3 to 3.5 in these events, although the spreading is considerable, which is partly caused by the differences in the overrun area during the descent. To give a more informative value, Fig. 12 provides the corresponding entrainment per square meter projected area of the track and the corresponding vertical erosion depth. The observed erosion depths are comparable to those measured by Sovilla (2004) or Sovilla et al. (2001). One should, however, keep in mind that these values are averages and are not necessarily uniform along the track. Furthermore, it is reasonable to assume that the erosion process is influenced by the snowpack conditions. Fig. 13 displays the entrainment, M′z, per square meter vs. air temperature, Tα, and three-day new-snow water equivalent, HNW3d. The data suggest higher entrainment with increasing temperature (correlation coefficient ρyz ≈ 0.5, where ρyz is the partial correlation controlling for HNW3d). The correlation between M′z and the new-snow water equivalent is rather low (ρyz ≈ 0.3, where ρyz is the partial correlation controlling for Tα).

A slightly better correlation seems to exist between entrained mass, M′z, per square meter, the air temperature, Tα, and release mass, Mrel, per mean track width, w, which is shown in Fig. 14.
In this case, the reduction in unexplained variance is about 0.65. The partial correlation coefficients between pairs of variables in M_e' and $[T_a, M_{rel}/W, HNW_{3d}]$, while adjusting for the remaining ones are: [0.43, 0.47, −0.07]. The later actually suggests that HNW$_{3d}$ is negligible to a first approximation. The corresponding linear regression model using robust fitting is

$$M_e' = M_o' + b_1 T_a + b_2 M_{rel}/W + b_3 T_a M_{rel}/W,$$

with $M_o' = 37.5$ kg m$^{-2}$, $b_1 = 1.71$ kg m$^{-2} \cdot$C$^{-1}$, and $b_2 = 1.71$ m$^{-1}$ and $b_3 = 0.12$ C$^{-1}$ m$^{-1}$.

In this case, M_{rel}/W is the most significant predictor variable. However, the amount of available data is still too low and uncertain to draw definite conclusions.

4.5. Front velocity observations

In several cases, it was possible to derive avalanche front velocities along the track or at least extended parts of it using time lapse photos or videos (for more detailed information on these events see e.g. Gauer, 2012, 2013, 2014). In recent years, the velocity was also measured using pulsed Doppler radar (Gauer et al., 2007b, 2008b).

Fig. 12. Entrainment, M_e', per square meter projected area of the impacted track (excluding the release area). The right axis ordinate shows the corresponding averaged vertical erosion depth, h_e. Box plot features are the same as in Fig. 11.

Fig. 13. Entrainment, M_e', in relation to air temperature, T_a, and three-day new-snow water equivalent, HNW$_{3d}$. Open markers indicate a higher uncertainty. The surface plot and the contour lines depict the linear regression model. Colors reflect the entrainment, M_e'. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 14. Entrainment, M_e', in relation to air temperature, T_a, and release mass, M_{rel}, per mean track width, W. Open markers indicate a higher uncertainty. The surface plot and the contour lines depict the linear regression model. Colors reflect the entrainment, M_e'. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15 presents the mean observed front velocity along the track and the corresponding ±σ range derived from the available measurements. In addition, the observed maximum speed is also shown. However, it should be noted that the maximum does not belong to a single event, which is partly due to the lack of data in the upper part of the track from one of the major events. In all shown cases, the avalanche reached at least the position of LC54. The plot is supplemented by a distribution of all front velocities, U_{LC}, that could be derived from the timing of the impact between sensor pairs at LC54 and LC321 and a distribution of the front velocity, U_{DP}, at the base of the catching dam. These distributions also include measurements from natural releases and show therefore a slightly different behavior—especially in front of the dam, as the natural releases involved more avalanches that stopped in the area upstream of the dam. Field campaigns are usually undertaken when the probability to observe a decent size avalanche is high. This “human factor” may cause a bias in the observations.

Fig. 15 suggests quite a bit of variation in the flow behavior influenced by varying ambient conditions. How the ambient conditions may influence the avalanche front velocity is presented in Fig. 16. It shows the observed front velocity U_{LC} vs. T_a and versus the three-day new snow water equivalent, HNW$_{3d}$ (vertical planes). The bottom plane shows the corresponding scatter plot of HNW$_{3d}$ vs. T_a.

Although there is a considerable scatter, Fig. 16 suggests that:

- U_{LC} decreases with increasing air temperature T_a($\rho_{xy,z} \approx −0.32$) — possibly caused by increased wetness of the snow-pack and larger clod size.
- U_{LC} increases with the amount of new snow HNW$_{3d}$($\rho_{xy,z} \approx 0.15$).

Taken for themselves each of these trends are significant and they are consistent with the observed mean retarding accelerations (see Section 4.3).

However, the background story might be more complicated, as for example T_a and HNW$_{3d}$ are seemingly (slightly) correlated. A multiple regression analysis gives

$$U_{LC} = U_{LO} + b_1 T_a + b_2 HNW_{3d} + b_3 T_a HNW_{3d}$$

(8)
Fig. 15. Front velocity along the track. The blue line shows the mean, the shaded area the ± standard deviation range and the red dashed line the observed maximum derived from observations along the track. In addition, error-bars indicate the distribution of the front velocity U_L measured between LC54 and LC321 and the front velocity U_b at the base of the catching dam. The red crosses mark the measured maxima. (For references to color in this figure, the reader is referred to the web version of this article.)

In Section 4.3, we presented the mean retarding acceleration derived from observation of the runout length. Fig. 17 displays the retarding acceleration, $a_{ret,LD}$, at the base of the dam vs. the base of the dam vs. the mean speed, U_{av}, along this stretch and with avalanche type as classifier. The dashed line shows the mean value and the dotted lines plot plus or minus one standard deviation for all considered events. The full lines in the error bars mark avalanches that overflowed the dam, dotted lines mark those that stopped at the dam (20 m from the top), and dashed lines mark those that stopped upstream of the dam. The size of the markers indicates the relative size of the deposition and open markers show those events with unknown volume. The marker color reflects the air temperature, T_a. Two avalanches that occurred before the dam was built are marked with asterisks. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Retarding acceleration, $a_{ret,LD}/g$, between LC and the base of the dam vs. the average speed, U_{av}, along this stretch and with avalanche type as classifier. The dashed line shows the mean value and the dotted lines plot plus or minus one standard deviation for all considered events. The full lines in the error bars mark avalanches that overflowed the dam, dotted lines mark those that stopped at the dam (20 m from the top), and dashed lines mark those that stopped upstream of the dam. The size of the markers indicates the relative size of the deposition and open markers show those events with unknown volume. The marker color reflects the air temperature, T_a. Two avalanches that occurred before the dam was built are marked with asterisks. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. U_L vs. HNW_{54} left vertical panel; U_C vs. T_a, right vertical panel, and HNW_{54} vs. T_a. The dashed lines indicate the respective linear trend and the dotted lines mark the corresponding ± standard deviation range. Colors indicate the air temperature and the size of the markers indicates the relative size of the deposition volume. Open markers indicate the events where no volume data are available. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.6. Retarding acceleration derived from front velocity observations

with $U_{LC} = 23.5 \text{ m s}^{-1}$, $b_1 = -0.64 \text{ m s}^{-1} \cdot ^\circ \text{C}^{-1}$, and $b_2 = 0.022 \text{ m s}^{-1} (\text{mm w.e.})^{-1}$ and $b_3 = -0.004 \text{ m s}^{-1} \cdot ^\circ \text{C}^{-1}(\text{mm w.e.})^{-1}$.

In this case, T_a is the most significant variable.

Velocity measurements including velocities from within the avalanche body can be found in Gauer et al. (2007a,b).

For those avalanches that were classified as dry-snow avalanches (marked as squares), there is no significant correlation between the retarding acceleration, $a_{ret,LD}$, and U_{av}. Spearman rank correlation coefficient $\rho_{ss} = 0.06$. In contrast, the Spearman rank correlation for those events classified as wet-snow avalanches (marked as triangles) suggests a relationship (Spearman rank correlation coefficient $\rho_{sw} > 0.9$). These events can be fitted to a parabola $a_{ret,sw}/g = -7.4 \times 10^{-4} U^2 - 0.32$, as indicated in the figure. Incidentally, all dry-snow events with $U_{av} < 20 \text{ m s}^{-1}$ are close to this curve too. This distinction may indicate two different flow regimes (for explanation of flow regimes see, e.g., Gauer et al., 2008a) with a transition occurring at velocities of about 20 m s$^{-1}$ in our case, but temperature may also influence the transition.

The boxplots in Fig. 18 give an overview of the retarding accelerations $a_{ret,LD}$ for different event types, that is the events are classified as:

- all dry-snow avalanche (dry);
- only those dry-snow avalanches that reached the dam crown or surpassed it (topped);
- wet-snow avalanche (wet);
- all avalanches combined.

For comparison, the mean retarding acceleration, $\langle a_{ret} \rangle$, as well as the averaged retarding acceleration derived from front velocity
observations along the full track and based on a simple energy model approach (see for details Gauer, 2013) are included and marked \(\langle \text{amdr} \rangle\). Although derived by different means and partly biased due to incomplete data, the values seem to be consistent. The data are also in accordance with instantaneous values from within the avalanche derived from pulsed Doppler radar measurements (cf. Gauer et al., 2007a, b). As additional reference, \(\langle \text{aret} \rangle\) derived from a-\(b\) model (Gauer et al., 2010b; Lied and Bakkehøi, 1980) and the corresponding \(\pm s\) range are given in Fig. 18. At this point it is worthwhile to mention that the spreading for the Ryggfonn events is primarily caused by the ambient conditions at the time, whereas the variance in the a-\(b\) model data is, supposedly, influenced to a large degree by the diversity of the path topographies and vegetation cover and only secondarily by the ambient conditions.

4.7. Impact pressure

Avalanche risk is a function of the impact pressure, which can be regarded as a measure of the destructiveness. As early as 1983, a concrete wedge was installed at the test site (LC321, see Fig. 19) and was equipped with load plates to measure pressure time series. In 2001, two additional load plates were mounted at the present-day pylon, LC54.

Fig. 20 shows boxplots of the maximum measured impact pressure of all avalanches for which more or less reliable data are available. A major problem in this kind of measurements is pre-existing deposition in front of the load plate. The maximum is calculated for a time period of 0.1 s. Short term impacts from snow clods, stones or debris caused higher pressure peaks. Furthermore, the relatively large size of the load plate (1.2 \(\times\) 0.6 = 0.72 m\(^2\)) implies a certain spatial average. Nonetheless, impact pressures as high as 720 kPa have been measured.

It is common to express the impact pressure as function of the dynamic pressure (see, e.g., Jóhannesson et al., 2009, and discussion therein)

\[
p = C_B \frac{U_\infty^2}{2},
\]

where \(p\) is the flow density and \(U_\infty\) the flow velocity upstream of the obstacle. \(C_B\) is the effective drag factor, which depends on the flow regime and might be split into two terms. One representing the combined dynamic and frictional effect on the obstacle and the other the static force. In this case, \(C_B\) is given by

\[
C_B = C_d + f_s \frac{Fr^2_\infty}{U_\infty^2},
\]

where \(Fr^2_\infty = U_\infty / \sqrt{gh_\infty}\) is the Froude number and \(h_\infty\) the upstream flow depth. \(C_d\) and \(f_s\) are functions depending on the flow regime and the geometry of the flow and obstacle, e.g., on the ratio of particle size to obstacle width.

In Fig. 21, the observed maximum pressures are plotted vs. front velocity, \(U_L\), which is used as reference. It should be noted that the maximum pressures did not necessarily occur at the front and

Fig. 18. Comparison of derived retarding accelerations, \(\text{aret}_{LD}\), based on front velocity measurements for different event types. In addition, the mean retarding acceleration, \(\langle \text{aret} \rangle\), based on runout observations (see Section 4.3) as well as the averaged retarding acceleration, \(\langle \text{amdr} \rangle\), based on a simple energy model approach (see for details Gauer, 2013) are shown. The width of the box indicates the relative sample size (\(N_{\text{total}} = 40\)); the median is shown by the red central mark, the 25th–75th percentile as edges of the blue box, the whiskers extend to the most extreme data points not considered outliers and outliers are marked with a red cross. The notched area signifies a 95% confidence interval for the median. The dashed line corresponds to the retarding acceleration derived from \(a-b\) model (cf. Eq. (2)) and the shaded area is the corresponding \(\pm s\) range. (For references to color in this figure, the reader is referred to the web version of this article.)

Fig. 19. Load plates LC1 (top) and LC2 mounted on the concrete wedge after a wet-snow avalanche event. LC3 is covered by deposition (Avalanche event 1991-03-20).

Fig. 20. Measured maximum pressure. Note the log-scale. The width of the box indicates the relative number of measurements with a maximum number of 73 measurements. Numbers in parentheses give the height of the midpoint of the plates above ground.
that the velocity within the avalanche might be significantly different/lower than in the frontal part, especially in the case of wet-snow avalanches. Therefore, the velocity here should only be regarded as a weak indication of the flow state. Nevertheless, to give some impression how the measurements relate to Eq. (10), the figure shows pairs of lines with parameters, which could be representative for wet- or dry-snow avalanches and which are intended to give an upper envelope. We do not have direct flow height observations to calculate the Froude number. Therefore, we use an estimate for the flow height based on reported flow heights (cf. Gauer, 2014, Table 2) and on the estimate of the mean mass per square meter footprint (see Section 4.9). In either case, an error of factor two in the flow height estimate or in the density estimate, respectively, will reduce to a factor $\sqrt{2}$ in the estimation of the Froude number.

A more detailed discussion on the factor C_D and its dependency on avalanche type and velocity can be found, e.g., in Gauer et al. (2007a, 2008b) or in Sovilla et al. (2008a,b), Baroudi et al. (2011), and Faug (2013).

4.8. Pressure on transmission line cables

At an early stage, the Ryggfonn test site was equipped with a transmission line assembly (see Fig. 22). Although only a limited set of data could be obtained, the data are valuable as no comparable data exist. They can be informative for engineers involved in planning of power lines or cable cars.

For the analysis, we assume that the measured maximum tension force, F_m, in the cables can be directly related to the maximum impact pressure of the avalanche or powder cloud onto the cables. Fig. 23 gives an overview of the measured maximum pressure F_m/A on the cables, where A is the projected area of a cable. As can be expected, there is a marked decrease with increasing height above the ground. As reference, a line representing an exponential decrease with a rate factor $e_c = -0.21 \text{ m}^{-1}$ is shown. The maximum pressures reached approximately 65, 40, and 22 kPa on the lower, middle and upper cable, respectively.

It should be mentioned that in all events the avalanche caused flutter in the transmission lines/of the assembly as whole.

Fig. 24 presents the vertical profiles of $2F_m/(AU_L^2)$. As a reference, the corresponding value at the upper load plate, LC1, at the concrete wedge is also shown. Assuming that the maximum tension force can be expressed by

$$F_m = C_D \rho \left(\frac{c_1 U_L}{2}\right)^2 A,$$

the profiles in the figure give some indications for the combination of $C_D \rho c_1^2$ and its decrease with height. Here, ρ is the flowing density and c_1 is a parameter describing the vertical velocity profile. C_D is the drag coefficient, which may depend on the flow regime and geometries, such as the ratio of particle size to cable diameter (cf. Bharadwaj et al., 2006; Chehata et al., 2003). In all events, a marked decrease with height is observed. As a first guess, it might be reasonable to assume an exponential decrease. In this case, one notices that the absolute value of the rate factor decreases with increasing velocity. That means $C_D \rho c_1^2$ decreases slower with increasing avalanche velocity, which seems reasonable considering a turbulent flow. There might be one exception, however, in which case $C_D \rho c_1^2$ was already small at the lowest cable and one could imagine a rather dilute homogenous cloud.

Assuming a pronounced velocity profile with significantly slower velocities higher up in the powder cloud ($c_1 < 1$) would imply a slower decrease of $C_D \rho$ with height, which seems less intuitive.

Fig. 21. Measured maximum pressure vs. U_L. Note the log-log-scale. Measurements originate from load plates at LC321 and LC54. Colors indicate the air temperature. Lines may give a kind of upper envelope for the wet- (dotted and dash-dotted) and dry-snow events (dashed and solid), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 22. View from the Y-mast (now LC54) down to the catching dam and the transmission line assembly after the avalanche event 1989-03-04. The cables were 4 m apart and their diameters were ϕ 34 mm. The concrete wedge (LC321) is the snow covered hump just left of the mast.

Fig. 23. Maximum pressure on cable. Note the log-scaling of the abscissa. As reference, a line representing an exponential decrease with a rate factor $e_c = -0.21 \text{ m}^{-1}$ is shown. Numbers in parentheses give the respective mounting height above ground.
Taking an effective C_D of approximately 1 to 4, the measurements suggest a flowing density in the range of 1 to 100 kg m$^{-3}$ within the cloud that hit the cables—decreasing with height.

4.9. Mean mass per square meter footprint

Unfortunately, we do not have flow height or density measurements. However, using the estimates for the mass of the deposition, the time of passage, t_w at the concreted wedge (LC321) as well as for the velocity U_{LC} and avalanche width, w, it is possible to gain a rough estimate of the mean mass per square meter footprint of the avalanche:

$$M'_{m} = \frac{1}{4} M_{dep} \frac{U_{LC} t_w}{w},$$

where h_f is the flow height of the avalanche, f_c is a correction factor accounting for the uncertainties in the estimates, e.g., due to varying velocity distributions. We assume f_c to be in the order of 1 ± 0.4. Fig. 25 shows our estimates plotted versus U_{LC} just to have a reference. We used a Monte Carlo approach involving probability distributions, which reflect our uncertainty of the base data, to quantify the error range of our estimates. The figure suggests a temperature influence with a tendency to lower M'_{m} for cooler temperatures, which seems reasonable as one would expect higher flow densities for, e.g., wet-snow avalanches. Furthermore, some of the estimates for the dry-snow events suggest flow densities appreciably lower than 300 kg m$^{-3}$, which is commonly used as flow density in numerical models, using typical flow height estimates (cf. Gauer, 2014, Table 2). This outcome is substantiated by the estimation of density profiles presented in the next section. It is also noteworthy that these estimates are in mutual agreement with estimates that can be derived from the impact pressure measurement on the transmission lines (cf. Fig. 24) or with estimates of the flow densities based on the impact pressure measurements at LC321 (cf. Fig. 21).

4.10. Estimated density profiles

Information on flow densities of avalanches, especially with vertical profiles, is scarce. To gain some insights, we combine our results from the transmission line measurements and our estimates of the mean mass per square meter footprint. If one assumes that an avalanche consists of a core with a height h_0 and density ρ_0 accompanied by a cloud in which the density decreases rather quickly with increasing height as implied in Fig. 24, it is possible to get an estimate of the density profile based on the supposed mean mass, M'_{m}, per square meter footprint (see Section 4.9). To this end, we assume, to a first approximation, that the density in the cloud decreases exponentially as suggested by the observations. In this case, M'_{m} is given by

$$M'_{m} = \rho_0 (h_0 + 1/|\epsilon_c|).$$ \hspace{1cm} (14)

where ϵ_c rate factor, which depends among other things on the velocity (see inset Fig. 24). While the velocity decreases, $|\epsilon_c|$ increases and the density and/or height of the core will increase as expected towards the tail of the avalanche. We deployed the pressure measurements at LC321, to obtain an initial guess on the density ρ_0 and h_0.

Again, we used a Monte Carlo approach to include our uncertainty of the base data. Fig. 26 shows our estimated density profiles for those avalanches for which we have measurements from the transmission line. Here, we focused on the frontal part of the avalanche, in which case the front velocity U_{LC} is a good proxy for the velocity. A comparison with the measurements at the transmission line suggests that the decrease with height may be slightly underestimated in the cases where the air temperature was around zero degree. These cases distinguish themselves also with higher estimates of ρ_0. Nonetheless, the fits seem to comprise the right range as the following comparison suggests.

Fig. 27 shows boxplots of the density estimates based on the tension measurements assuming $\epsilon_c C_D \approx 1$ (see Section 4.8) and for comparison the calculated density according to Eq. (14). Despite the uncertainties behind each of these approaches, the match is reasonably good.

5. Concluding remarks

In this paper, we have presented measurements and observations made at the full-scale avalanche test-site Ryggfonn during the last four decades as well as some derived measures. We focussed
on runout, velocity, and impact pressure observations as well as on some derived quantities, such as the retarding acceleration or the frontal density. Often, a single measurement/observation may give ambiguous results, however, the combination of results from different measurements—a combination of results from different measurement techniques—provides, despite all difficulties, a consistent picture of avalanche dynamics. In this way, our observations reveal, for example, (to a certain extent) the complex dependency ofavalanches on the ambient conditions. A fact that was also emphasized by Steinkogler et al. (2014) recently. Furthermore, some of our observations allow estimating the vertical density profile in the frontal part of an avalanche.

Observations and measurements as presented here are important to improve our understanding of avalanche flow, such as the dependency on the ambient conditions, the entrainment of mass, and the development of different flow regimes.

Furthermore, this type of measurements combined with runout observations provides constraints for the development and validation of physically-based numerical avalanche models. These models are increasingly used in the process of hazard zoning to obtain estimates of expected runout distances and impact pressures with varying return periods to delimitate endangered areas in land-use planning (Christen et al., 2010; Naaim et al., 2013; Sampl and Granig, 2009). However, these models are still far from perfect and require a high degree of expert judgment for choosing the required model parameters. Therefore, it is important to have reliable reference data.

Measurements and observations should serve as benchmarks, especially for the probabilistic calibration of numerical models as presented by Fischer et al. (2014, 2015) or for probabilistic design methods such as proposed by Eckert et al. (2009). Probabilistic design methods, however, need reliable input distributions of the influencing parameters.

Avalanche measurements as presented here give direct indications of the forces that can be expected in avalanches and the efficiency of certain mitigation measures, like the catching dam at Ryggfonna. In this context, the measurements are directly relevant with respect to avalanche hazard zoning (e.g., Jóhannesson et al., 2009; Lied and Norem, 1986; Norem, 1991). The measurements on the transmission line provided a few unique data that can be informative for engineers involved in planning of power lines or cable cars.

However, further cross-comparisons between different avalanche paths (test sites) are desirable in the future to uncover possible scaling relations. Full-scale avalanche tests are also required for proper interpretation of results from small-scale granular as well as for snow chute experiments. Especially, the complex dependency of avalanches on the ambient conditions, which cannot be reproduced in small-scale experiments, make full-scale experiments invaluable. At the same time, the harsh conditions within an avalanche make measurements a demanding task, the involved costs are very high, and the difficult (non-) reproducibility of the experiments makes the results difficult to interpret. Therefore, a combination of full-scale and small-scale experiments as well as theoretical work is indispensable to understand the flow of avalanches.

Challenges that still exist with respect to avalanche hazard zoning are, amongst others, the influence of mass entrainment or the transition between different flow regimes and their dependency on the ambient conditions. With a better understanding, estimates of runout distances and their corresponding return periods could be better linked to prevailing snow and weather conditions.

Acknowledgments

Parts of this research were carried out through a snow avalanche research grant to NGI from Norwegian Water Resources and Energy Directorate (NVE). We like to thank all those who were involved in any way in the Ryggfonna Project throughout the years, particularly those in the background such as T. Kvistørey, K. Tronstad, and E. Lied. We also thank L. McKittrick for his comments to the manuscript and A. Stoffel for some GIS hints. The comments and suggestions of the two reviewers, B. Sovilla and T. Jóhannesson, and the editor-in-chief J. Schweizer were appreciated and helped to improve the paper.

References

