Yan-Lin Shao
Numerical Potential-Flow Studies on Weakly-Nonlinear Wave-Body Interactions with/without Small Forward Speeds
Numerical Potential-Flow Studies on Weakly-Nonlinear Wave-Body Interactions with/without Small Forward Speeds

Thesis for the degree of doctor philosophiae
Trondheim, August 2010
Norwegian University of Science and Technology
Faculty of Engineering Science and Technology
Department of Marine Technology
Abstract

A two-dimensional Quadratic Boundary Element Method (QBEM) and a three-dimensional cubic Higher-order Boundary Element Method (HOBEM) are developed to study respectively the two-dimensional and three-dimensional weakly-nonlinear wave-body interactions with/without forward speed within potential flow theory of an incompressible liquid.

A direct method based on a two-dimensional polar-coordinate system transformation for the evaluation of the Cauchy Principle Value (CPV) integrals for the diagonal terms of the influence matrix in the 3D HOBEM is presented.

A numerical module based on the Fast Multipole Method (FMM) is developed, which can be used as an option to speed up the present 3D HOBEM solver. Both the operation count and the required memory of a FMM accelerated BEM is asymptotically O(N), where N is the total number of the unknowns. Suggestion on the selection of a proper matrix solver for a specific problem is given.

A direct method based on a two-dimensional polar-coordinate system transformation for the evaluation of the Cauchy Principle Value (CPV) integrals for the diagonal terms of the influence matrix in the 3D HOBEM is presented.

A new approach based on domain decomposition using body-fixed coordinate system in the inner domain and the inertia reference frame in the outer domain is proposed for the weakly-nonlinear wave-body analysis. Consistent theoretical description of the new method based on second-order theory is presented. The new method does not require any derivatives on the right-hand sides of the body boundary conditions and thus avoid the m_j-like terms and their derivatives. Furthermore, because the body boundary condition is formulated on the instantaneous position of the body, the resulting integral equations are valid for both smooth bodies and bodies with sharp corners. In order to improve the convergence of the second-order force/moments on a body with sharp corners in the near-field approach, a re-formulation of the quadratic force is suggested. This re-formulation transfers the integrals on the body into the sum of two groups of integrals. The first group consists integrals on body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface in the inner domain.

A one-dimensional third-order numerical wave tank (NWT) is developed. The effect of the Stokes drift in the second-order solution is discussed. A two-time scale approach is proposed as a secularity (solvability) condition in order to avoid unphysical third-order results. The numerical results for the second-order drift/momentum on a body with sharp corners in the near-field approach, a re-formulation of the quadratic force is suggested. This re-formulation transfers the integrals on the body into the sum of two groups of integrals. The first group consists integrals on body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface in the inner domain.

A two-dimensional Quadratic Boundary Element Method (QBEM) and a three-dimensional cubic Higher-order Boundary Element Method (HOBEM) are developed to study respectively the two-dimensional and three-dimensional weakly-nonlinear wave-body interactions with/without forward speed within potential flow theory of an incompressible liquid.

A direct method based on a two-dimensional polar-coordinate system transformation for the evaluation of the Cauchy Principle Value (CPV) integrals for the diagonal terms of the influence matrix in the 3D HOBEM is presented.

A two-dimensional third-order numerical wave tank (NWT) is developed, which can be used as an option to speed up the present 3D HOBEM solver. Both the operation count and the required memory of a FMM accelerated BEM is asymptotically O(N), where N is the total number of the unknowns. Suggestion on the selection of a proper matrix solver for a specific problem is given.

A direct method based on a two-dimensional polar-coordinate system transformation for the evaluation of the Cauchy Principle Value (CPV) integrals for the diagonal terms of the influence matrix in the 3D HOBEM is presented.

A numerical module based on the Fast Multipole Method (FMM) is developed, which can be used as an option to speed up the present 3D HOBEM solver. Both the operation count and the required memory of a FMM accelerated BEM is asymptotically O(N), where N is the total number of the unknowns. Suggestion on the selection of a proper matrix solver for a specific problem is given.

A new approach based on domain decomposition using body-fixed coordinate system in the inner domain and the inertia reference frame in the outer domain is proposed for the weakly-nonlinear wave-body analysis. Consistent theoretical description of the new method based on second-order theory is presented. The new method does not require any derivatives on the right-hand sides of the body boundary conditions and thus avoid the m_j-like terms and their derivatives. Furthermore, because the body boundary condition is formulated on the instantaneous position of the body, the resulting integral equations are valid for both smooth bodies and bodies with sharp corners. In order to improve the convergence of the second-order force/moments on a body with sharp corners in the near-field approach, a re-formulation of the quadratic force is suggested. This re-formulation transfers the integrals on the body into the sum of two groups of integrals. The first group consists integrals on body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface in the inner domain.

A one-dimensional third-order numerical wave tank (NWT) is developed. The effect of the Stokes drift in the second-order solution is discussed. A two-time scale approach is proposed as a secularity (solvability) condition in order to avoid unphysical third-order results. The numerical results for the second-order drift/momentum on a body with sharp corners in the near-field approach, a re-formulation of the quadratic force is suggested. This re-formulation transfers the integrals on the body into the sum of two groups of integrals. The first group consists integrals on body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface in the inner domain.

A two-dimensional third-order numerical wave tank (NWT) is developed. The effect of the Stokes drift in the second-order solution is discussed. A two-time scale approach is proposed as a secularity (solvability) condition in order to avoid unphysical third-order results. The numerical results for the second-order drift/momentum on a body with sharp corners in the near-field approach, a re-formulation of the quadratic force is suggested. This re-formulation transfers the integrals on the body into the sum of two groups of integrals. The first group consists integrals on body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface in the inner domain.

A two-dimensional third-order numerical wave tank (NWT) is developed, which can be used as an option to speed up the present 3D HOBEM solver. Both the operation count and the required memory of a FMM accelerated BEM is asymptotically O(N), where N is the total number of the unknowns. Suggestion on the selection of a proper matrix solver for a specific problem is given.

A direct method based on a two-dimensional polar-coordinate system transformation for the evaluation of the Cauchy Principle Value (CPV) integrals for the diagonal terms of the influence matrix in the 3D HOBEM is presented.

A numerical module based on the Fast Multipole Method (FMM) is developed, which can be used as an option to speed up the present 3D HOBEM solver. Both the operation count and the required memory of a FMM accelerated BEM is asymptotically O(N), where N is the total number of the unknowns. Suggestion on the selection of a proper matrix solver for a specific problem is given.

A new approach based on domain decomposition using body-fixed coordinate system in the inner domain and the inertia reference frame in the outer domain is proposed for the weakly-nonlinear wave-body analysis. Consistent theoretical description of the new method based on second-order theory is presented. The new method does not require any derivatives on the right-hand sides of the body boundary conditions and thus avoid the m_j-like terms and their derivatives. Furthermore, because the body boundary condition is formulated on the instantaneous position of the body, the resulting integral equations are valid for both smooth bodies and bodies with sharp corners. In order to improve the convergence of the second-order force/moments on a body with sharp corners in the near-field approach, a re-formulation of the quadratic force is suggested. This re-formulation transfers the integrals on the body into the sum of two groups of integrals. The first group consists integrals on body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface in the inner domain.

A two-dimensional third-order numerical wave tank (NWT) is developed. The effect of the Stokes drift in the second-order solution is discussed. A two-time scale approach is proposed as a secularity (solvability) condition in order to avoid unphysical third-order results. The numerical results for the second-order drift/momentum on a body with sharp corners in the near-field approach, a re-formulation of the quadratic force is suggested. This re-formulation transfers the integrals on the body into the sum of two groups of integrals. The first group consists integrals on body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface in the inner domain.

A direct method based on a two-dimensional polar-coordinate system transformation for the evaluation of the Cauchy Principle Value (CPV) integrals for the diagonal terms of the influence matrix in the 3D HOBEM is presented.
other analytical and numerical results (if any) show good agreement. The influences of a small forward speed on the second-order wave loads on floating bodies are investigated.

The complete third-order wave diffraction of a stationary three-dimensional body is studied by the time-domain HOBEEM, which means that the solution contains not only the triple-harmonic effect but also the third-order contribution with fundamental frequencies of the incident waves. Careful convergence studies and alternative way of calculating the force have been made with very satisfactory results.
Here, first and foremost I would like to express my sincere gratitude to my supervisor, professor Odd M. Faltinsen, for the great guidance, inspiration and supervision he has shown in helping me complete this research. It has been difficult for me with a background on structural mechanics to start a doctoral study on hydrodynamics. It was his patience and encouragement which helped me make through in every way.

I want to thank all the lecturers for their excellent courses that I have learnt during the first year. These courses laid helpful basis for me on marine hydrodynamics in the later stage of the PhD study. I also appreciate the important guidance provided by Prof. Greco Marilena during this work.

I also wish to thank the help from the staff at CeSOS and the Department of Marine Technology, in particular Sigbrit Bakken Wold, Marianne Kjelseth and Kareke Gilbert.

My love and gratitude go to my wife, Huirong, whose endless understanding and support made this work possible. Her sacrifices for our small family during the past several years leave debts I can only hope to repay. I am very grateful to my parents. Without their love, constant support and prayer, I could never have come to this far. Through this work, I also wish to express my love to my dear daughter, Tingting.

Here, first and foremost I would like to express my sincere gratitude to my supervisor, professor Odd M. Faltinsen, for the great guidance, inspiration and supervision he has shown in helping me complete this research. It has been difficult for me with a background on structural mechanics to start a doctoral study on hydrodynamics. It was his patience and encouragement which helped me make through in every way.

I want to thank all the lecturers for their excellent courses that I have learnt during the first year. These courses laid helpful basis for me on marine hydrodynamics in the later stage of the PhD study. I also appreciate the important guidance provided by Prof. Greco Marilena during this work.

I also wish to thank the help from the staff at CeSOS and the Department of Marine Technology, in particular Sigbrit Bakken Wold, Marianne Kjelseth and Kareke Gilbert.

My love and gratitude go to my wife, Huirong, whose endless understanding and support made this work possible. Her sacrifices for our small family during the past several years leave debts I can only hope to repay. I am very grateful to my parents. Without their love, constant support and prayer, I could never have come to this far. Through this work, I also wish to express my love to my dear daughter, Tingting.

I also want to mention Dr. Wei Zhu, Dr. Hui Sun, Dr. Trygve Kristiansen and Dr. David Kristiansen for sharing the experiences from their research and providing valuable references. Csaba Pakizoli and Trygve Kristiansen are acknowledged for their help with the computer set up.

My love and gratitude go to my wife, Huirong, whose endless understanding and support made this work possible. Her sacrifices for our small family during the past several years leave debts I can only hope to repay. I am very grateful to my parents. Without their love, constant support and prayer, I could never have come to this far. Through this work, I also wish to express my love to my dear daughter, Tingting.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Scope and objective</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Previous studies</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Present study</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1 Outline of the thesis</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2 Major contributions of the present study</td>
<td>12</td>
</tr>
<tr>
<td>2 Theoretical Description</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Coordinate systems</td>
<td>16</td>
</tr>
<tr>
<td>2.3 The definition of the motions</td>
<td>17</td>
</tr>
<tr>
<td>2.4 Formulation of the second-order wave-body problem in the inertial coordinate system</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1 General description of the boundary conditions</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2 Second-order approximations of the boundary conditions</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3 Forces and moments calculation</td>
<td>28</td>
</tr>
<tr>
<td>2.5 Formulation of the third-order diffraction problem in the Earth-fixed coordinate system</td>
<td>28</td>
</tr>
<tr>
<td>2.5.1 Free-surface conditions</td>
<td>28</td>
</tr>
<tr>
<td>2.5.2 Body boundary condition</td>
<td>29</td>
</tr>
<tr>
<td>2.5.3 Forces and moments calculation</td>
<td>33</td>
</tr>
<tr>
<td>2.6 Formulation of the second-order wave-body problem in the body-fixed coordinate system</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1 Free-surface conditions</td>
<td>30</td>
</tr>
<tr>
<td>2.6.2 Body boundary condition</td>
<td>33</td>
</tr>
<tr>
<td>2.6.3 Forces and moments calculation</td>
<td>33</td>
</tr>
<tr>
<td>2.7 Governing equations of steady rigid-body motions</td>
<td>35</td>
</tr>
<tr>
<td>2.7.1 Rigid-body motion equations in the inertial frame</td>
<td>35</td>
</tr>
<tr>
<td>2.7.2 Rigid-body motion equations in the body-fixed frame</td>
<td>38</td>
</tr>
<tr>
<td>2.8 Incident wave field</td>
<td>39</td>
</tr>
<tr>
<td>3 Basis of the Time-Domain HOBEM in 2D</td>
<td>41</td>
</tr>
<tr>
<td>3.1 Boundary integral equation</td>
<td>41</td>
</tr>
<tr>
<td>3.2 Quadratic boundary element method</td>
<td>42</td>
</tr>
<tr>
<td>3.3 Time marching of the free-surface conditions</td>
<td>45</td>
</tr>
<tr>
<td>3.4 Numerical damping zone and active wave absorber</td>
<td>45</td>
</tr>
<tr>
<td>3.5 Formulation of the second-order wave-body problem in the inertial coordinate system</td>
<td>22</td>
</tr>
<tr>
<td>3.4.1 General description of the boundary conditions</td>
<td>22</td>
</tr>
<tr>
<td>3.4.2 Second-order approximations of the boundary conditions</td>
<td>23</td>
</tr>
<tr>
<td>3.4.3 Forces and moments calculation</td>
<td>28</td>
</tr>
<tr>
<td>3.5 Formulation of the third-order diffraction problem in the Earth-fixed coordinate system</td>
<td>28</td>
</tr>
<tr>
<td>3.5.1 Free-surface conditions</td>
<td>28</td>
</tr>
<tr>
<td>3.5.2 Body boundary condition</td>
<td>29</td>
</tr>
<tr>
<td>3.5.3 Forces and moments calculation</td>
<td>33</td>
</tr>
<tr>
<td>3.6 Formulation of the second-order wave-body problem in the body-fixed coordinate system</td>
<td>30</td>
</tr>
<tr>
<td>3.6.1 Free-surface conditions</td>
<td>30</td>
</tr>
<tr>
<td>3.6.2 Body boundary condition</td>
<td>33</td>
</tr>
<tr>
<td>3.6.3 Forces and moments calculation</td>
<td>33</td>
</tr>
<tr>
<td>3.7 Governing equations of unsteady rigid-body motions</td>
<td>35</td>
</tr>
<tr>
<td>3.7.1 Rigid-body motion equations in the inertial frame</td>
<td>35</td>
</tr>
<tr>
<td>3.7.2 Rigid-body motion equations in the body-fixed frame</td>
<td>38</td>
</tr>
<tr>
<td>3.8 Incident wave field</td>
<td>39</td>
</tr>
</tbody>
</table>

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Scope and objective</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Previous studies</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Present study</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1 Outline of the thesis</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2 Major contributions of the present study</td>
<td>12</td>
</tr>
<tr>
<td>2 Theoretical Description</td>
<td>15</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Coordinate systems</td>
<td>16</td>
</tr>
<tr>
<td>2.3 The definition of the motions</td>
<td>17</td>
</tr>
<tr>
<td>2.4 Formulation of the second-order wave-body problem in the inertial coordinate system</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1 General description of the boundary conditions</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2 Second-order approximations of the boundary conditions</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3 Forces and moments calculation</td>
<td>28</td>
</tr>
<tr>
<td>2.5 Formulation of the third-order diffraction problem in the Earth-fixed coordinate system</td>
<td>28</td>
</tr>
<tr>
<td>2.5.1 Free-surface conditions</td>
<td>28</td>
</tr>
<tr>
<td>2.5.2 Body boundary condition</td>
<td>29</td>
</tr>
<tr>
<td>2.5.3 Forces and moments calculation</td>
<td>33</td>
</tr>
<tr>
<td>2.6 Formulation of the second-order wave-body problem in the body-fixed coordinate system</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1 Free-surface conditions</td>
<td>30</td>
</tr>
<tr>
<td>2.6.2 Body boundary condition</td>
<td>33</td>
</tr>
<tr>
<td>2.6.3 Forces and moments calculation</td>
<td>33</td>
</tr>
<tr>
<td>2.7 Governing equations of steady rigid-body motions</td>
<td>35</td>
</tr>
<tr>
<td>2.7.1 Rigid-body motion equations in the inertial frame</td>
<td>35</td>
</tr>
<tr>
<td>2.7.2 Rigid-body motion equations in the body-fixed frame</td>
<td>38</td>
</tr>
<tr>
<td>2.8 Incident wave field</td>
<td>39</td>
</tr>
<tr>
<td>3 Basis of the Time-Domain HOBEM in 2D</td>
<td>41</td>
</tr>
<tr>
<td>3.1 Boundary integral equation</td>
<td>41</td>
</tr>
<tr>
<td>3.2 Quadratic boundary element method</td>
<td>42</td>
</tr>
<tr>
<td>3.3 Time marching of the free-surface conditions</td>
<td>45</td>
</tr>
<tr>
<td>3.4 Numerical damping zone and active wave absorber</td>
<td>45</td>
</tr>
</tbody>
</table>
General rules

- The symbols are defined in the text for the first time they appear
- Only the most used symbols are declared here
- The same symbol may have different interpretations in different problems
- The vectors are represented by an arrow above the symbols
- The matrices are represented by bold face characters
- An overdot means time derivative
- A vector with a prime is described in the body-fixed coordinate system

Abbreviations

- 2D Two-dimensional
- 3D Three-dimensional
- BVP Boundary Value Problem
- BIE Boundary Integral Equation
- BEM Boundary Element Method
- CPV Cauchy Principle Value
- COG Centre of Gravity
- FEM Finite Element Method
- FDM Finite Difference Method
- HOBEM Higher-Order Boundary Element Method
- QTF Quadratic Transfer Function
- RAO Response Amplitude Operator

Subscripts

- b indicates the transformation matrix from body-fixed coordinate system to inertial coordinate system
- g indicates translatory and rotational motions with respect to a coordinate system with origin at the Centre of Gravity
- i $i=1, \ldots, 3$. The i-th component of a vector
- i $i=1, \ldots, 3$. The i-th component of a vector
- j $j=1, \ldots, 3$. The j-th component of a vector
- $i\sigma$ indicates variables for incident waves

Nomenclature

General rules

- The symbols are defined in the text for the first time they appear
- Only the most used symbols are declared here
- The same symbol may have different interpretations in different problems
- The vectors are represented by an arrow above the symbols
- The matrices are represented by bold face characters
- An overdot means time derivative
- A vector with a prime is described in the body-fixed coordinate system

Abbreviations

- 2D Two-dimensional
- 3D Three-dimensional
- BVP Boundary Value Problem
- BIE Boundary Integral Equation
- BEM Boundary Element Method
- CPV Cauchy Principle Value
- COG Centre of Gravity
- FEM Finite Element Method
- FDM Finite Difference Method
- HOBEM Higher-Order Boundary Element Method
- QTF Quadratic Transfer Function
- RAO Response Amplitude Operator

Subscripts

- b indicates the transformation matrix from body-fixed coordinate system to inertial coordinate system
- g indicates translatory and rotational motions with respect to a coordinate system with origin at the Centre of Gravity
- i $i=1, \ldots, 3$. The i-th component of a vector
- i $i=1, \ldots, 3$. The i-th component of a vector
- j $j=1, \ldots, 3$. The j-th component of a vector
- $i\sigma$ indicates variables for incident waves
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_e</td>
<td>Inertia matrix, its elements being the moments and products of inertia of the body</td>
</tr>
<tr>
<td>k</td>
<td>Wave number</td>
</tr>
<tr>
<td>M</td>
<td>Moment vector</td>
</tr>
<tr>
<td>n</td>
<td>Normal vector on a surface</td>
</tr>
<tr>
<td>N_e</td>
<td>The k-th shape function</td>
</tr>
<tr>
<td>N_e</td>
<td>Total number of elements</td>
</tr>
<tr>
<td>N_0</td>
<td>Total number of nodes</td>
</tr>
<tr>
<td>$OXYZ$</td>
<td>Earth-fixed coordinate system</td>
</tr>
<tr>
<td>$OXYZ$</td>
<td>Inertial coordinate system</td>
</tr>
<tr>
<td>\mathbf{R}_{in}</td>
<td>Transformation matrix from body-fixed coordinate system to inertial coordinate system</td>
</tr>
<tr>
<td>SB_{0}</td>
<td>Free body surface</td>
</tr>
<tr>
<td>SB_{0}</td>
<td>Mean wetted body surface</td>
</tr>
<tr>
<td>n_{sea}</td>
<td>Sea bottom</td>
</tr>
<tr>
<td>n_{sea}</td>
<td>Free surface</td>
</tr>
<tr>
<td>SB_{0}</td>
<td>Calm water surface</td>
</tr>
<tr>
<td>U</td>
<td>Forward speed vector in the inertial coordinate system</td>
</tr>
<tr>
<td>$C^{(1)}$</td>
<td>The k-th order component of forward speed vector described in the body-fixed coordinate system</td>
</tr>
<tr>
<td>$U_x^{(k)}$</td>
<td>k-th order displacement of a point, with its components as $x_1^{(k)}$, $x_2^{(k)}$, and $x_3^{(k)}$</td>
</tr>
<tr>
<td>$U_y^{(k)}$</td>
<td>k-th order displacement of a point, with its components as $y_1^{(k)}$, $y_2^{(k)}$, and $y_3^{(k)}$</td>
</tr>
<tr>
<td>$\dot{U}_x^{(k)}$</td>
<td>Translatory velocity of the body</td>
</tr>
<tr>
<td>$\omega^{(k)}(\theta_e)$</td>
<td>A coefficient of the connectivity matrix, which represents the global index of the j-th node of e-th element</td>
</tr>
<tr>
<td>$L_{o,\theta}$</td>
<td>Offset distance in the desingularized BEM. $L_{o,\theta} = (\mathbf{D}_o)^{\top}$</td>
</tr>
<tr>
<td>I_e</td>
<td>A constant coefficient in the definition of $L_{o,\theta}$</td>
</tr>
<tr>
<td>$D_{e,\theta}$</td>
<td>Size of the mesh which can be approximated by the square root of the area of the local element.</td>
</tr>
<tr>
<td>β</td>
<td>A constant coefficient in the definition of $L_{o,\theta}$</td>
</tr>
</tbody>
</table>

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_e</td>
<td>Inertia matrix, its elements being the moments and products of inertia of the body</td>
</tr>
<tr>
<td>k</td>
<td>Wave number</td>
</tr>
<tr>
<td>M</td>
<td>Moment vector</td>
</tr>
<tr>
<td>n</td>
<td>Normal vector on a surface</td>
</tr>
<tr>
<td>N_e</td>
<td>The k-th shape function</td>
</tr>
<tr>
<td>N_e</td>
<td>Total number of elements</td>
</tr>
<tr>
<td>N_0</td>
<td>Total number of nodes</td>
</tr>
<tr>
<td>$OXYZ$</td>
<td>Earth-fixed coordinate system</td>
</tr>
<tr>
<td>$OXYZ$</td>
<td>Inertial coordinate system</td>
</tr>
<tr>
<td>\mathbf{R}_{in}</td>
<td>Transformation matrix from body-fixed coordinate system to inertial coordinate system</td>
</tr>
<tr>
<td>SB_{0}</td>
<td>Free body surface</td>
</tr>
<tr>
<td>SB_{0}</td>
<td>Mean wetted body surface</td>
</tr>
<tr>
<td>n_{sea}</td>
<td>Sea bottom</td>
</tr>
<tr>
<td>n_{sea}</td>
<td>Free surface</td>
</tr>
<tr>
<td>SB_{0}</td>
<td>Calm water surface</td>
</tr>
<tr>
<td>U</td>
<td>Forward speed vector in the inertial coordinate system</td>
</tr>
<tr>
<td>$C^{(1)}$</td>
<td>The k-th order component of forward speed vector described in the body-fixed coordinate system</td>
</tr>
<tr>
<td>$U_x^{(k)}$</td>
<td>k-th order displacement of a point, with its components as $x_1^{(k)}$, $x_2^{(k)}$, and $x_3^{(k)}$</td>
</tr>
<tr>
<td>$U_y^{(k)}$</td>
<td>k-th order displacement of a point, with its components as $y_1^{(k)}$, $y_2^{(k)}$, and $y_3^{(k)}$</td>
</tr>
<tr>
<td>$\dot{U}_x^{(k)}$</td>
<td>Translatory velocity of the body</td>
</tr>
<tr>
<td>$\omega^{(k)}(\theta_e)$</td>
<td>A coefficient of the connectivity matrix, which represents the global index of the j-th node of e-th element</td>
</tr>
<tr>
<td>$L_{o,\theta}$</td>
<td>Offset distance in the desingularized BEM. $L_{o,\theta} = (\mathbf{D}_o)^{\top}$</td>
</tr>
<tr>
<td>I_e</td>
<td>A constant coefficient in the definition of $L_{o,\theta}$</td>
</tr>
<tr>
<td>$D_{e,\theta}$</td>
<td>Size of the mesh which can be approximated by the square root of the area of the local element.</td>
</tr>
<tr>
<td>β</td>
<td>A constant coefficient in the definition of $L_{o,\theta}$</td>
</tr>
</tbody>
</table>
Greek symbols:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>Velocity potential</td>
</tr>
<tr>
<td>a</td>
<td>Small parameter related to wave steepness and unsteady body motions</td>
</tr>
<tr>
<td>δ</td>
<td>Small parameter related to the forward speed/current velocity</td>
</tr>
<tr>
<td>δ_{k}</td>
<td>Kronecker delta function</td>
</tr>
<tr>
<td>η</td>
<td>Total wave elevation</td>
</tr>
<tr>
<td>ξ</td>
<td>Local intrinsic coordinates of the 3D boundary element in computational domain</td>
</tr>
<tr>
<td>ξ_{1}</td>
<td>Wave elevation observed in the inertial coordinate system OXYZ</td>
</tr>
<tr>
<td>ξ_{2}</td>
<td>Translatory motion vector of the origin of OXYZ system, its components being ξ_{1}, ξ_{2}, and ξ_{3}</td>
</tr>
<tr>
<td>ξ_{3}</td>
<td>Local intrinsic coordinates of the boundary element in computational domain</td>
</tr>
<tr>
<td>α_{n}</td>
<td>Amplitude of ξ_{1}, ξ_{2}, and ξ_{3}</td>
</tr>
<tr>
<td>ω</td>
<td>Angular velocity vector</td>
</tr>
<tr>
<td>ω_{0}</td>
<td>Wave frequency, frequencies of the oscillations</td>
</tr>
<tr>
<td>ω_{0}</td>
<td>Fundamental frequency of incident wave without forward speed or current</td>
</tr>
<tr>
<td>ω_{0}</td>
<td>Frequency of encounter</td>
</tr>
<tr>
<td>τ</td>
<td>The reduced frequency defined as $\tau = \omega U / g$</td>
</tr>
<tr>
<td>ρ</td>
<td>Linear wave length</td>
</tr>
<tr>
<td>ρ</td>
<td>Fluid mass density</td>
</tr>
<tr>
<td>ρi</td>
<td>Jacobian of the i-th element in 2D HOBEM</td>
</tr>
<tr>
<td>ρ_{0}</td>
<td>Non-dimensional damping coefficient in the numerical damping zone</td>
</tr>
<tr>
<td>γ</td>
<td>Empirical coefficient in the damping coefficient of the numerical damping zone</td>
</tr>
<tr>
<td>Ω_{1}</td>
<td>Rotational velocity of the body</td>
</tr>
<tr>
<td>Ω_{2}</td>
<td>Subproblems of Ω_{1} in the modal decomposition method</td>
</tr>
<tr>
<td>ψ</td>
<td>Spatial gradient</td>
</tr>
<tr>
<td>ψ</td>
<td>Spatial gradient in the horizontal plane</td>
</tr>
<tr>
<td>ΔS</td>
<td>The fluctuation of the wetted body surface due to wave elevation</td>
</tr>
<tr>
<td>Δt</td>
<td>Time increment in the time-domain simulations</td>
</tr>
</tbody>
</table>

Special symbols:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{V}</td>
<td>Spatial gradient</td>
</tr>
<tr>
<td>\mathcal{E}</td>
<td>Spatial gradient in the horizontal plane</td>
</tr>
<tr>
<td>ΔS</td>
<td>The fluctuation of the wetted body surface due to wave elevation</td>
</tr>
<tr>
<td>Δt</td>
<td>Time increment in the time-domain simulations</td>
</tr>
</tbody>
</table>
1.1. Scope and objective

Nonlinear free-surface body problems can be divided into strongly- and weakly-nonlinear problems. Slamming (e.g. Zhao & Faltinsen (1995) and Zhao et al. (1996)), green water on deck (e.g. Greco, 2001), crossing of ships (e.g. Kong, 2016) and violent sloshing (e.g. Faltinsen & Timokha, 2009) are examples on strongly nonlinear problems. A linear solution proportional to the incident wave amplitude is a basis of the weakly-nonlinear wave-body interaction problems for the exterior flow around a ship and an ocean structure. Second-order nonlinear effects according to potential flow theory cause mean, sum- and difference-frequency effects (Faltinsen, 1996). Examples on weakly-nonlinear problems are added resistance of ships, mean wave loads on floating sea structures, slow-drift motions of moored floating structures, resonant vertical sum-frequency loading of Tension Leg Platforms (TLPs).

Super-harmonic ringing loads matter in survival conditions of offshore platforms with natural periods in the range of approximately 3 to 5 seconds (Faltinsen et al., 1995). Higher-order wave forces at an offshore platform can be significant, see for instance Blåsten (2005a), and must be considered in assessing the probability of slamming against the wetdeck. Higher-order springing loads on ships may strongly reduce the fatigue life of ships (see e.g. Storbaug, 2007). Wave-induced extremal hull-girdle loading causes important nonlinearities in the design wave bending moment amplitudes (Jennin et al., 2000).

The focus of this study is on the weakly-nonlinear wave-body interaction problems, which means that the strongly-nonlinear problems are out of the scope of this study. The fact that flow separation is neglected in this work implies that the present study is most appropriate for large-volume structures (Faltinsen, 1990). Potential flow theory will be used, by assuming that the water is incompressible and inviscid, and the flow is irrotational. The perturbation scheme will be used throughout the present study. A perturbation scheme makes the frequency-domain analysis possible. Another advantage of using the perturbation scheme is that the computational domain is invariant with time when a time-domain method is followed. Therefore, the influence matrices need only to be set up and

Super-harmonic ringing loads matter in survival conditions of offshore platforms with natural periods in the range of approximately 3 to 5 seconds (Faltinsen et al., 1995). Higher-order wave forces at an offshore platform can be significant, see for instance Blåsten (2005a), and must be considered in assessing the probability of slamming against the wetdeck. Higher-order springing loads on ships may strongly reduce the fatigue life of ships (see e.g. Storbaug, 2007). Wave-induced extremal hull-girdle loading causes important nonlinearities in the design wave bending moment amplitudes (Jennin et al., 2000).

The focus of this study is on the weakly-nonlinear wave-body interaction problems, which means that the strongly-nonlinear problems are out of the scope of this study. The fact that flow separation is neglected in this work implies that the present study is most appropriate for large-volume structures (Faltinsen, 1990). Potential flow theory will be used, by assuming that the water is incompressible and inviscid, and the flow is irrotational. The perturbation scheme will be used throughout the present study. A perturbation scheme makes the frequency-domain analysis possible. Another advantage of using the perturbation scheme is that the computational domain is invariant with time when a time-domain method is followed. Therefore, the influence matrices need only to be set up and

Super-harmonic ringing loads matter in survival conditions of offshore platforms with natural periods in the range of approximately 3 to 5 seconds (Faltinsen et al., 1995). Higher-order wave forces at an offshore platform can be significant, see for instance Blåsten (2005a), and must be considered in assessing the probability of slamming against the wetdeck. Higher-order springing loads on ships may strongly reduce the fatigue life of ships (see e.g. Storbaug, 2007). Wave-induced extremal hull-girdle loading causes important nonlinearities in the design wave bending moment amplitudes (Jennin et al., 2000).

The focus of this study is on the weakly-nonlinear wave-body interaction problems, which means that the strongly-nonlinear problems are out of the scope of this study. The fact that flow separation is neglected in this work implies that the present study is most appropriate for large-volume structures (Faltinsen, 1990). Potential flow theory will be used, by assuming that the water is incompressible and inviscid, and the flow is irrotational. The perturbation scheme will be used throughout the present study. A perturbation scheme makes the frequency-domain analysis possible. Another advantage of using the perturbation scheme is that the computational domain is invariant with time when a time-domain method is followed. Therefore, the influence matrices need only to be set up and
involved once, and can be used in all the time steps.

Using a perturbation scheme implies that the free-surface elevation is a single-valued function of the lateral coordinates, i.e., we cannot describe the effect of planing breakers. The water entry of a body with non-vertical wall at the free surface creates a jet flow at the intersection between the body surface and free surface. The latter fact causes that the free surface is not a unique function of the horizontal coordinate. The general problem involves both a water entry and exit phase.

The finite-order theory, e.g., second-order and third-order theory, based on perturbation scheme have been extensively studied in marine hydrodynamics in the last four decades. However, most of the studies are limited to zero Froude number. When the forward speed or current velocity is considered, only the studies on the second-order wave deflection of a body restrained from unsteady body motions are reported in the literature. However, fluctuating lift and drag are caused by unsteady body motions that must be accounted for. Recent studies (Storhaug, 2007) on nonlinear springing indicate that the second-order velocity potential may be an important excitation source, which is still ignored in the state-of-the-art nonlinear ship hull girder load analyses. These necessitate the second-order analysis for floating bodies with the presence of forward speed or current effects, which is the objective of this study.

An alternative to the perturbation scheme based method is the fully non-linear time-domain analysis (see e.g. Fermor (1998, 2001), Greco (2001), Bai & Eatock Taylor (2007, 2009)). The first-order, second-order and even higher-order results, e.g., the forces, can be obtained by Fourier analysis of the fully-nonlinear results. However, the fully non-linear analysis is very time-consuming due to the fact that the computational domain changes with time. One has to build up the influence matrices at each time step and solve the matrix equation by a proper matrix solver.

1.2. Previous studies

When a weakly-nonlinear free-surface body problem is theoretically studied, the wave slopes and the body motions are assumed asymptotically small. Inertial flow of an incompressible liquid is considered. A perturbation scheme based on Taylor expansion of the free surface and body boundary condition about the mean position of the free surface and body surface is commonly applied. One can obtain the boundary value problems for any order of the velocity potential by expanding the velocity potential, wave elevation and body motions into perturbation series by Stokes expansion and consistently collecting terms at each order. This section reviews the analytical and numerical studies of the weakly-nonlinear free-surface-body interactions based on perturbation scheme, which is relevant to the study in this thesis.

Non-dimensional second-order studies, Fr=0

Maruo (1960) introduced the well-known formula of the drifting force which enables us to calculate it by the reflected wave amplitude of the linear solutions. Ogilvie (1963) obtained the second-order mean forces on a submerged circular cylinder, which could be achieved without explicitly solving the second-order boundary value problem. Ogilvie (1963) and Lee (1966) showed independently the complete solution of the second-order forces on a cylindrical body moving at the free surface, Lee by the method of multipole expansions, Patinkin by the method of integral equations. Patinkin (1971) invented once, and can be used in all the time steps.

Using a perturbation scheme implies that the free-surface elevation is a single-valued function of the lateral coordinates, i.e., we cannot describe the effect of planing breakers. The water entry of a body with non-vertical wall at the free surface creates a jet flow at the intersection between the body surface and free surface. The latter fact causes that the free surface is not a unique function of the horizontal coordinate. The general problem involves both a water entry and exit phase.

The finite-order theory, e.g., second-order and third-order theory, based on perturbation scheme have been extensively studied in marine hydrodynamics in the last four decades. However, most of the studies are limited to zero Froude number. When the forward speed or current velocity is considered, only the studies on the second-order wave deflection of a body restrained from unsteady body motions are reported in the literature. However, fluctuating lift and drag are caused by unsteady body motions that must be accounted for. Recent studies (Storhaug, 2007) on nonlinear springing indicate that the second-order velocity potential may be an important excitation source, which is still ignored in the state-of-the-art nonlinear ship hull girder load analyses. These necessitate the second-order analysis for floating bodies with the presence of forward speed or current effects, which is the objective of this study.

An alternative to the perturbation scheme based method is the fully non-linear time-domain analysis (see e.g. Fermor (1998, 2001), Greco (2001), Bai & Eatock Taylor (2007, 2009)). The first-order, second-order and even higher-order results, e.g., the forces, can be obtained by Fourier analysis of the fully-nonlinear results. However, the fully non-linear analysis is very time-consuming due to the fact that the computational domain changes with time. One has to build up the influence matrices at each time step and solve the matrix equation by a proper matrix solver.

1.2. Previous studies

When a weakly-nonlinear free-surface body problem is theoretically studied, the wave slopes and the body motions are assumed asymptotically small. Inertial flow of an incompressible liquid is considered. A perturbation scheme based on Taylor expansion of the free surface and body boundary condition about the mean position of the free surface and body surface is commonly applied. One can obtain the boundary value problems for any order of the velocity potential by expanding the velocity potential, wave elevation and body motions into perturbation series by Stokes expansion and consistently collecting terms at each order. This section reviews the analytical and numerical studies of the weakly-nonlinear free-surface-body interactions based on perturbation scheme, which is relevant to the study in this thesis.

Non-dimensional second-order studies, Fr=0

Maruo (1960) introduced the well-known formula of the drifting force which enables us to calculate it by the reflected wave amplitude of the linear solutions. Ogilvie (1963) obtained the second-order mean forces on a submerged circular cylinder, which could be achieved without explicitly solving the second-order boundary value problem. Ogilvie (1963) and Lee (1966) showed independently the complete solution of the second-order forces on a cylindrical body moving at the free surface, Lee by the method of multipole expansions, Patinkin by the method of integral equations. Patinkin (1971) introduced the well-known formula of the drifting force which enables us to calculate it by the reflected wave amplitude of the linear solutions. Ogilvie (1963) obtained the second-order mean forces on a submerged circular cylinder, which could be achieved without explicitly solving the second-order boundary value problem. Ogilvie (1963) and Lee (1966) showed independently the complete solution of the second-order forces on a cylindrical body moving at the free surface, Lee by the method of multipole expansions, Patinkin by the method of integral equations. Patinkin (1971) introduced the well-known formula of the drifting force which enables us to calculate it by the reflected wave amplitude of the linear solutions. Ogilvie (1963) obtained the second-order mean forces on a submerged circular cylinder, which could be achieved without explicitly solving the second-order boundary value problem. Ogilvie (1963) and Lee (1966) showed independently the complete solution of the second-order forces on a cylindrical body moving at the free surface, Lee by the method of multipole expansions, Patinkin by the method of integral equations. Patinkin (1971)
working with the close-to technique, extended the studies to sway, heave and roll, including their coupling effects, and to arbitrary section shapes.

Faltinsen (1975) and Faltinsen & Lonok (1976) obtained the second-order force through a fictitious radiation potential without solving for the second-order velocity potential. The idea is the same as that of Lighthill (1970) and Molin (1979) for three-dimensional problems. Later, this idea was used by Kyrkova (1980, 1982) and Wu & Eitack Taylor (1989) in solving second-order diffraction/radiation problems of two-dimensional bodies in incident waves. It is understood that this method is a good choice only if one is interested in the integrated forces on the body. However, this technique cannot be used for calculating other quantities such as the hydrodynamic pressures, the sectional force and bending moment or the wave train due to the second-order effects. These facts necessitate the complete second-order solution with the second-order velocity potential.

In two dimensions, the second-order wave diffraction problem is more complicated than the radiation problem. The difficulty arises from the fact that the reflected waves by the body make partial standing waves with the interaction of the incident waves. Consequently, the forcing term in the second-order free-surface condition does not decay with horizontal distance away from the body on the weather side. Consequently, the forcing term in the second-order free-surface condition can be regarded as a pressure distribution over the free surface, Mia & Liu (1989) constructed analytically a particular solution for the second-order velocity potential which satisfies the inhomogeneous free-surface condition. The solution was obtained in the frequency domain. A representation for the potential due to an arbitrary pressure distribution available in Wehausen & Laitone (1960) was used in their construction of the particular solution. One can add a second-harmonic function which satisfies the homogeneous free-surface condition and a radiation condition and is constructed in such a way that the total potential satisfies the condition of no-flow through the body surface. An alternative particular solution was obtained by McIver (1994) based on the theory of analytic functions. Consequently, McIver (1994) was able to get the high-frequency approximations for the second-order results, e.g. the forces on an arbitrary two-dimensional body with vertical wall at the free-surface zone.

A time-domain second-order model based on perturbation scheme was proposed by Inoue and his associates to study the interactions between the waves and two-dimensional bodies (see e.g. Inoue & Chang (1996, 1991), Cheung & Iacono (1993), Iacono & Ng (1993a) and Ng & Iacono (1993)). A constant Boundary Element Method (BEM) was adopted. The Sommerfeld-Orlanski radiation condition (Orlanski, 1976) was used to enforce the first-order and second-order radiation conditions. Wong & Wu (2008) employed a second-time-step time-domain method to analyze the resonant oscillation of the liquid confined within two two-dimensional floating bodies. A finite element method (FEM) with quadratic shape functions was used as a numerical tool. The radiation conditions are satisfied through a combination of the damping-zones method and the Sommerfeld-Orlanski equation. A second-order wave tank was developed by Zhang & Wang (1995) based on a boundary element method. A novel second-order radiation condition was applied on a vertical control surface at the end of the wave tank.

In two dimensions, the second-order wave diffraction problem is more complicated than the radiation problem. The difficulty arises from the fact that the reflected waves by the body make partial standing waves with the interaction of the incident waves. Consequently, the forcing term in the second-order free-surface condition does not decay with horizontal distance away from the body on the weather side. Consequently, the forcing term in the second-order free-surface condition can be regarded as a pressure distribution over the free surface, Mia & Liu (1989) constructed analytically a particular solution for the second-order velocity potential which satisfies the inhomogeneous free-surface condition. The solution was obtained in the frequency domain. A representation for the potential due to an arbitrary pressure distribution available in Wehausen & Laitone (1960) was used in their construction of the particular solution. One can add a second-harmonic function which satisfies the homogeneous free-surface condition and a radiation condition and is constructed in such a way that the total potential satisfies the condition of no-flow through the body surface. An alternative particular solution was obtained by McIver (1994) based on the theory of analytic functions. Consequently, McIver (1994) was able to get the high-frequency approximations for the second-order results, e.g. the forces on an arbitrary two-dimensional body with vertical wall at the free-surface zone.

A time-domain second-order model based on perturbation scheme was proposed by Inoue and his associates to study the interactions between the waves and two-dimensional bodies (see e.g. Inoue & Chang (1996, 1991), Cheung & Iacono (1993), Iacono & Ng (1993a) and Ng & Iacono (1993)). A constant Boundary Element Method (BEM) was adopted. The Sommerfeld-Orlanski radiation condition (Orlanski, 1976) was used to enforce the first-order and second-order radiation conditions. Wong & Wu (2008) employed a second-time-step time-domain method to analyze the resonant oscillation of the liquid confined within two two-dimensional floating bodies. A finite element method (FEM) with quadratic shape functions was used as a numerical tool. The radiation conditions are satisfied through a combination of the damping-zones method and the Sommerfeld-Orlanski equation. A second-order wave tank was developed by Zhang & Wang (1995) based on a boundary element method. A novel second-order radiation condition was applied on a vertical control surface at the end of the wave tank.

A time-domain second-order model based on perturbation scheme was proposed by Inoue and his associates to study the interactions between the waves and two-dimensional bodies (see e.g. Inoue & Chang (1996, 1991), Cheung & Iacono (1993), Iacono & Ng (1993a) and Ng & Iacono (1993)). A constant Boundary Element Method (BEM) was adopted. The Sommerfeld-Orlanski radiation condition (Orlanski, 1976) was used to enforce the first-order and second-order radiation conditions. Wong & Wu (2008) employed a second-time-step time-domain method to analyze the resonant oscillation of the liquid confined within two two-dimensional floating bodies. A finite element method (FEM) with quadratic shape functions was used as a numerical tool. The radiation conditions are satisfied through a combination of the damping-zones method and the Sommerfeld-Orlanski equation. A second-order wave tank was developed by Zhang & Wang (1995) based on a boundary element method. A novel second-order radiation condition was applied on a vertical control surface at the end of the wave tank.

A time-domain second-order model based on perturbation scheme was proposed by Inoue and his associates to study the interactions between the waves and two-dimensional bodies (see e.g. Inoue & Chang (1996, 1991), Cheung & Iacono (1993), Iacono & Ng (1993a) and Ng & Iacono (1993)). A constant Boundary Element Method (BEM) was adopted. The Sommerfeld-Orlanski radiation condition (Orlanski, 1976) was used to enforce the first-order and second-order radiation conditions. Wong & Wu (2008) employed a second-time-step time-domain method to analyze the resonant oscillation of the liquid confined within two two-dimensional floating bodies. A finite element method (FEM) with quadratic shape functions was used as a numerical tool. The radiation conditions are satisfied through a combination of the damping-zones method and the Sommerfeld-Orlanski equation. A second-order wave tank was developed by Zhang & Wang (1995) based on a boundary element method. A novel second-order radiation condition was applied on a vertical control surface at the end of the wave tank.

A time-domain second-order model based on perturbation scheme was proposed by Inoue and his associates to study the interactions between the waves and two-dimensional bodies (see e.g. Inoue & Chang (1996, 1991), Cheung & Iacono (1993), Iacono & Ng (1993a) and Ng & Iacono (1993)). A constant Boundary Element Method (BEM) was adopted. The Sommerfeld-Orlanski radiation condition (Orlanski, 1976) was used to enforce the first-order and second-order radiation conditions. Wong & Wu (2008) employed a second-time-step time-domain method to analyze the resonant oscillation of the liquid confined within two two-dimensional floating bodies. A finite element method (FEM) with quadratic shape functions was used as a numerical tool. The radiation conditions are satisfied through a combination of the damping-zones method and the Sommerfeld-Orlanski equation. A second-order wave tank was developed by Zhang & Wang (1995) based on a boundary element method. A novel second-order radiation condition was applied on a vertical control surface at the end of the wave tank.
Stasinou et al. (1998) found that the third-order forces are not significant if a se securability (solubility) condition is not used. Molin & Stasinou (1998) proposed a technique with stretched coordinates in order to obtain a physical third-order solution. It was shown by Stasinou et al. (1998) that the phase shift between the measurement and the second-order model can be significantly reduced by adopting the third-order model with the stretching technique of Molin & Stasinou (1994).

Three-dimensional second-order studies, FEM & FRF & MR

For simple geometries, for instance the bottom-mounted vertical circular cylinder and the truncated vertical circular cylinder, it is possible to find the second-order analytical/semi-analytical solutions. Among others, Eaton Taylor & Huang (1987), Chau & Eaton Taylor (1992), Eaton Taylor & Huang (1997) developed the semi-analytical solution for the second-order wave diffraction of a bottom-mounted vertical circular cylinder. The semi-analytical solution for the second-order wave diffraction by an array of vertical circular cylinders was developed by, e.g. Moubayed & Williams (1995), Molin & Stasinou (1999), Huang & Eaton Taylor (1996, 1997) and Chatjigeorgiou & Mavrakos (2007) solved the second-order wave diffraction of a truncated vertical circular cylinder semi-analytically. A semi-analytical solution for the second-order wave diffraction by arrays of elliptical cylinders was obtained by Chatjigeorgiou & Mioradaros (2009).

For a floating body of arbitrary shape, it is not possible to find an analytical solution up to second order. We then have to rely on numerical methods. The numerical analysis for the second-order wave diffraction of three-dimensional bodies in the frequency domain can be found in, for instance Molin & Stasinou (1979), Loken (1986), Scolan (1989), Chau (1990), Kim & Yoo (1990, 1998), Chen et al. (1995) and Choi et al. (2001). Isaacson & Cheung (1992) has investigated the second-order wave diffraction problems by means of time-domain boundary element methods. Wang & Wu (2007) studied the second-order diffraction of an array of bottom-mounted vertical circular cylinders by a Finite Element Method (FEM) in the time domain.

The forced oscillations of a free-surface piercing body with no ambient flow have been studied up to second order by e.g. Teng (1995) in the frequency domain and by e.g. Isaacson & Ng (1993b), Bai (2001) and Tang et al. (2002) in the time domain.

When the forward speed or the current effects are considered, only linear semi-analytical (e.g. Molinica et al., 1995) was found in the literature. The presence of the forward speed or the current velocity makes the second-order solution in the frequency domain complicated. It is more straightforward to apply a time-domain approach to study the second-order wave-body interaction problem when the forward speed or the current effect is to be included. However, solving a second-order wave-body interaction problem is a highly non-linear problem and most of the studies on the second-order waves are carried out considering the forward speed or the current effect. However, it does not mean that the influence of forward speed on the second-order results, e.g. the second-order forces and moments, are not important. Zhao & Faltinsen (1989) found that the wave drift forces are significantly affected even by a low current speed. Further, the influence on the wave elevation is important. Molin & Stasinou (1999) showed that the presence of a current speed (or quasi-steady slow-drift velocity) has significant influence on the wave elevation around a Tension Leg Platform (TLP). The experimental results were consistent with the linear predictions based on the theoretical model developed by Zhao & Faltinsen (1998b). Sasaki et al. (2000) investigated the second-order wave diffraction with the presence of a weak current by using a semi-analytical solution for the second-order wave diffraction by arrays of elliptical cylinders obtained by Chatjigeorgiou & Mioradaros (2009).

When the forward speed or the current effects are considered, only linear semi-analytical (e.g. Molinica et al., 1995) was found in the literature. The presence of the forward speed or the current velocity makes the second-order solution in the frequency domain complicated. It is more straightforward to apply a time-domain approach to study the second-order wave-body interaction problem when the forward speed or the current effect is to be included. However, solving a second-order wave-body interaction problem is a highly non-linear problem and most of the studies on the second-order waves are carried out considering the forward speed or the current effect. However, it does not mean that the influence of forward speed on the second-order results, e.g. the second-order forces and moments, are not important. Zhao & Faltinsen (1989) found that the wave drift forces are significantly affected even by a low current speed. Further, the influence on the wave elevation is important. Molin & Stasinou (1999) showed that the presence of a current speed (or quasi-steady slow-drift velocity) has significant influence on the wave elevation around a Tension Leg Platform (TLP). The experimental results were consistent with the linear predictions based on the theoretical model developed by Zhao & Faltinsen (1998b). Sasaki et al. (2000) investigated the second-order wave diffraction with the presence of a weak current by using a semi-analytical solution for the second-order wave diffraction by arrays of elliptical cylinders obtained by Chatjigeorgiou & Mioradaros (2009).

When the forward speed or the current effects are considered, only linear semi-analytical (e.g. Molinica et al., 1995) was found in the literature. The presence of the forward speed or the current velocity makes the second-order solution in the frequency domain complicated. It is more straightforward to apply a time-domain approach to study the second-order wave-body interaction problem when the forward speed or the current effect is to be included. However, solving a second-order wave-body interaction problem is a highly non-linear problem and most of the studies on the second-order waves are carried out considering the forward speed or the current effect. However, it does not mean that the influence of forward speed on the second-order results, e.g. the second-order forces and moments, are not important. Zhao & Faltinsen (1989) found that the wave drift forces are significantly affected even by a low current speed. Further, the influence on the wave elevation is important. Molin & Stasinou (1999) showed that the presence of a current speed (or quasi-steady slow-drift velocity) has significant influence on the wave elevation around a Tension Leg Platform (TLP). The experimental results were consistent with the linear predictions based on the theoretical model developed by Zhao & Faltinsen (1998b). Sasaki et al. (2000) investigated the second-order wave diffraction with the presence of a weak current by using a semi-analytical solution for the second-order wave diffraction by arrays of elliptical cylinders obtained by Chatjigeorgiou & Mioradaros (2009).
time-domain boundary element method (BEM). The numerical results indicate that the second-order loads can be strongly influenced by the current effects. However, to the author’s knowledge, for a floating body with forward speed, no study based on consistent second-order theory has been reported. This may partly be due to the numerical difficulties associated with the higher-order derivatives in both the free surface and the body boundary conditions.

Three-dimensional third-order studies, Fr=0.0

The analysis of the third-order problem has also been attempted by some researchers. Malenica & Molin (1995) made a pioneering study of the triple-harmonic part of the third-order diffraction problem for a bottom-mounted vertical circular cylinder. The triple-harmonic part of the third-order diffraction problem for the truncated vertical circular cylinder was investigated by Kinoshita & Bao (2000), who was able to reproduce Malenica & Molin’s (1995) results by studying a bottomless truncated cylinder with draft equal to the water depth. Malenica & Molin’s (1995) and Kassoulides & Bao’s (2006) approaches are analytically based. Faltinsen et al. (1995) obtained an asymptotic solution to the third-order diffraction problem with a long wave length approximation. Tong & Kato (1997) adopted a numerical approach and obtained the approximate solutions of the third-order diffraction problem by solving the integral equations numerically. Without solving the third-order problem explicitly, Markiewicz et al. (1999) obtained the third-order hydrodynamic loads on an oscillating vertical circular cylinder by an indirect method with the assistance of the Green’s 2nd identity and an artificial radiation velocity potential. Zhu (1997) studied the third-harmonic diffraction problem by a 3D higher-order panel method. A few approximations have been made in her study in order to simplify the numerical procedure.

Considerations on the calculations of higher-order derivatives in the boundary conditions

One of the difficulties when solving the nonlinear problem, e.g. second-order or third-order problem is how to calculate the second-order or third-order derivatives of the potential quantities or the wave elevations in the body-boundary and free-surface conditions.

From a numerical point of view, the higher-order derivatives in the free-surface conditions are easier to deal with than that in the boundary boundary conditions, because the bodies are in general of complex geometries and may be of high surface-curvatures. Their may partly be due to the numerical difficulties associated with the higher-order derivatives in both the free surface and the body boundary conditions.

Three-dimensional third-order studies, Fr=0.0

The analysis of the third-order problem has also been attempted by some researchers. Malenica & Molin (1995) made a pioneering study of the triple-harmonic part of the third-order diffraction problem for a bottom-mounted vertical circular cylinder. The triple-harmonic part of the third-order diffraction problem for the truncated vertical circular cylinder was investigated by Kinoshita & Bao (2000), who was able to reproduce Malenica & Molin’s (1995) results by studying a bottomless truncated cylinder with draft equal to the water depth. Malenica & Molin’s (1995) and Kassoulides & Bao’s (2006) approaches are analytically based. Faltinsen et al. (1995) obtained an asymptotic solution to the third-order diffraction problem with a long wave length approximation. Tong & Kato (1997) adopted a numerical approach and obtained the approximate solutions of the third-order diffraction problem by solving the integral equations numerically. Without solving the third-order problem explicitly, Markiewicz et al. (1999) obtained the third-order hydrodynamic loads on an oscillating vertical circular cylinder by an indirect method with the assistance of the Green’s 2nd identity and an artificial radiation velocity potential. Zhu (1997) studied the third-harmonic diffraction problem by a 3D higher-order panel method. A few approximations have been made in her study in order to simplify the numerical procedure.

Considerations on the calculations of higher-order derivatives in the boundary conditions

One of the difficulties when solving the nonlinear problem, e.g. second-order or third-order problem is how to calculate the second-order or third-order derivatives of the potential quantities or the wave elevations in the body-boundary and free-surface conditions.

From a numerical point of view, the higher-order derivatives in the free-surface conditions are easier to deal with than that in the boundary boundary conditions, because the bodies are in general of complex geometries and may be of high surface-curvatures. Their may partly be due to the numerical difficulties associated with the higher-order derivatives in both the free surface and the body boundary conditions.

Three-dimensional third-order studies, Fr=0.0

The analysis of the third-order problem has also been attempted by some researchers. Malenica & Molin (1995) made a pioneering study of the triple-harmonic part of the third-order diffraction problem for a bottom-mounted vertical circular cylinder. The triple-harmonic part of the third-order diffraction problem for the truncated vertical circular cylinder was investigated by Kinoshita & Bao (2000), who was able to reproduce Malenica & Molin’s (1995) results by studying a bottomless truncated cylinder with draft equal to the water depth. Malenica & Molin’s (1995) and Kassoulides & Bao’s (2006) approaches are analytically based. Faltinsen et al. (1995) obtained an asymptotic solution to the third-order diffraction problem with a long wave length approximation. Tong & Kato (1997) adopted a numerical approach and obtained the approximate solutions of the third-order diffraction problem by solving the integral equations numerically. Without solving the third-order problem explicitly, Markiewicz et al. (1999) obtained the third-order hydrodynamic loads on an oscillating vertical circular cylinder by an indirect method with the assistance of the Green’s 2nd identity and an artificial radiation velocity potential. Zhu (1997) studied the third-harmonic diffraction problem by a 3D higher-order panel method. A few approximations have been made in her study in order to simplify the numerical procedure.

Considerations on the calculations of higher-order derivatives in the boundary conditions

One of the difficulties when solving the nonlinear problem, e.g. second-order or third-order problem is how to calculate the second-order or third-order derivatives of the potential quantities or the wave elevations in the body-boundary and free-surface conditions.

From a numerical point of view, the higher-order derivatives in the free-surface conditions are easier to deal with than that in the boundary boundary conditions, because the bodies are in general of complex geometries and may be of high surface-curvatures. Their may partly be due to the numerical difficulties associated with the higher-order derivatives in both the free surface and the body boundary conditions.

The second-order derivatives in the body-boundary conditions are analogous to the so-called m2-terms for the linear wave-induced ship motion problem at forward speed (e.g. Ogilvie & Tuck, 1969) and time-domain boundary element method (BEM). The numerical results indicate that the second-order loads can be strongly influenced by the current effects. However, to the author’s knowledge, for a floating body with forward speed, no study based on consistent second-order theory has been reported. This may partly be due to the numerical difficulties associated with the higher-order derivatives in both the free surface and the body boundary conditions.
the linear wave-current-body interaction problem (e.g. Zhao & Faltinsen, 1998a). When a wave-current-body problem is considered, the interaction of the local steady flow and unsteady wave field is taken into account by both the body boundary condition and the free-surface conditions. The so-called m_j-terms in the linear wave-current-body analysis take into account partly the interaction of the local steady flow and the unsteady wave field through the body boundary condition. One should note that the m_j-terms also contain the angle of attack effect due to the ambient steady flow for the unsteady pitch and yaw motions. This effect is always included through the m_j-terms even when the local steady flow effect is neglected. The influence of the m_j-terms was studied by Lo (1995a), who studied numerically the added mass and damping coefficients of the ships by using both the formulas of Ogilvie & Tuck (1969) and Salvesen et al. (1970). The importance of the local steady flow in the forward-speed seakeeping calculation has been revealed by for instance Inglis & Price (1989), and Duan & Price (2001). The direct calculation of m_j-terms was early attempted by Zhao and Faltinsen (1989a). In a second-order radiation problem, Teng et al. (2002) used a similar technique to reduce the second-order derivatives in their studies of the local steady flow effect. Iwashita & Bertram (1997) and Iwashita & Ito (1998) found a clear influence of the local steady flow on the wave pressure near the bow region. It was also mentioned by Chen et al. (2000) that the local steady flow could play a great role in the results of the added mass and damping coefficients, especially for a large Freede number. Duan & Price (2002) found that the local steady flow has significant contribution near the bow and stern regions, even for a submerged slender body. See also the summary of Kim (2005) on the importance of the local steady flow.

There are basically two ways to handle the m_j-terms, i.e. the indirect way and the direct way. The indirect way of treating the m_j-terms is to use Stokes-like theorem. By assuming that the body surface is without sharp corner, the ship bow is well-sathed, and the steady wave field can be approximated by the double-body flow, Ogilvie and Tuck (1969) used a modified Stokes theorem (which is referred as Ogilvio-Tuck theorem or Tuck's theorem in the literature) to rewrite the effect of the second-order derivatives in the m_j-terms in terms of first-order derivatives in their studies of the linear wave-current-body problem. A similar method was suggested by Chen & Malenica (1998) based on the idea of Wu (1991). There are also successful examples by using a Higher-Order Boundary Element Method (HOBEM) for the calculations of the m_j-terms, see for instance Bingham & Mamar (1996) and Chen et al. (2000). The direct calculation of m_j-terms was early attempted by Zhao and Faltinsen (1989a). Based on the fact that the singularity of the Rankine sources is weakened away from the body surface, they firstly calculated the second-order derivatives on some points far away from the body surface and then obtained through extrapolation. This technique has been shown to be accurate for smooth bodies without sharp corners. Wu (1991) proposed to solve a series of Dirichlet-type problems using the first-order derivatives of velocity potential as the right-hand-side term to reduce the second-order derivatives in the m_j-terms. Salvesen et al. (1970) calculated the second-order derivatives on some points offset from the body. The m_j-terms are then approximated by the double-body flow, Ogilvie and Tuck (1969) used a modified Stokes theorem (which is referred as Ogilvio-Tuck theorem or Tuck's theorem in the literature) to rewrite the effect of the second-order derivatives in the m_j-terms in terms of first-order derivatives in their studies of the linear wave-current-body problem. A similar method was suggested by Chen & Malenica (1998) based on the idea of Wu (1991). There are also successful examples by using a Higher-Order Boundary Element Method (HOBEM) for the calculations of the m_j-terms, see for instance Bingham & Mamar (1996) and Chen et al. (2000).
For many kinds of floating marine structures there are often corners and edges at the intersections of different planes (e.g. the corners of pontoons in some semisubmersibles). Although in reality there may be a small bilge radius at a corner/edge, it is convenient to represent them as sharp corners or edges in a mathematical description of the body surface. However, theoretical and numerical difficulties arise in the linear/nonlinear wave-body interaction analysis with/without forward speed or current effects.

At the sharp corner/edge, it is known that the fluid velocity is singular. Consequently the gradient of the fluid velocity is singular and not integrable. Therefore, the boundary integral equations for a linear wave-body interaction problem with forward speed (or current speed) or a nonlinear wave-body interaction problem with forward speed (or current speed) or a nonlinear wave-body interaction problem are not integrable. This difficulty is not numerical but theoretical. In fact, it is known that one is to write Taylor expansion of the body boundary conditions around the sharp corner/edges. In a linear wave-body interaction problem, Zhao & Faltinsen (1990) decomposed the boundary integral equations into two parts, with the first part satisfying the body boundary condition associated with the \(m_j \)-terms, and the second part satisfying the body boundary condition with the \(m_j \)-terms excluded. By doing that, they finally obtained an integral equation which is valid for cases with sharp corners. Eatock Taylor & Teng (1993) investigated the effect of corners on the diffraction/radiation forces and wave drift damping. Truncated vertical circular cylinders with the same radius and draft but different corner radii were studied. A small current speed was considered. The Ogilvie-Tuck theorem was applied to avoid direct calculation of the \(m_j \)-terms. It was shown by Eatock Taylor & Teng (1993) that the most important hydrodynamic forces and amplitudes of the body motion do not change significantly when the radius of the corner approaches zero. Bai (2001) and Teng et al. (2002) studied the second-order radiation of a truncated vertical circular cylinder in otherwise calm water. A Stokes-like theorem was used to avoid direct calculation of the second-order derivatives in the second-order boundary body condition. Another possible way to handle the theoretical difficulties associated with the sharp corner is that one introduces a local solution consistent with the singular nature of the problem at the corner in the solution of the integral equation.

When the nonlinear wave-body interaction with presence of forward speed/current is studied, the application of the Stokes-like theorems is not straightforward, due to the fact that third-order derivatives of the steady velocity potential are involved in the second-order body boundary conditions. The method proposed by Zhao & Faltinsen (1990) may in principle be extended to get proper integral equations. However, we then have to divide the velocity potential into several parts since the second-order body boundary condition contains some terms similar to the \(m_j \)-terms and terms involving the third-order derivatives. It may also be difficult to find the corresponding artificial velocity potential for all the \(m_j \)-like terms.

A numerical difficulty associated with the sharp corners is due to the fact that the normal vectors at the corner/edges are ill-defined. A dual-mode technique (e.g. Grilli & Svendsen, 1990) is often used in a boundary-element-method solution. Another numerical difficulty is how to get consistent quadratic forces/moments for a body with sharp corners. In theory, the quadratic terms in the Bernoulli's equation are not integrable. The corresponding difficulties arise in the linear/nonlinear wave-body interaction analysis with/without forward speed or current effects.

For many kinds of floating marine structures there are often corners and edges at the intersections of different planes (e.g. the corners of pontoons in some semisubmersibles). Although in reality there may be a small bilge radius at a corner/edge, it is convenient to represent them as sharp corners or edges in a mathematical description of the body surface. However, theoretical and numerical difficulties arise in the linear/nonlinear wave-body interaction analysis with/without forward speed or current effects.

The method proposed by Zhao & Faltinsen (1990) may in principle be extended to get proper integral equations. However, we then have to divide the velocity potential into several parts since the second-order body boundary condition contains some terms similar to the \(m_j \)-terms and terms involving the third-order derivatives. It may also be difficult to find the corresponding artificial velocity potential for all the \(m_j \)-like terms.
more robust and efficient. The same problem was re-investigated by Liu et al. (1995) in the frequency domain by the near-field method which resulted in uniform convergence giving a unique result. A Higher-Order BEM (HOBEM) was used. However, their results confirmed neither the near-field nor the far-field results of Zhao & Faltinsen (1998). A re-investigation of the same problem using a time-domain HOBEM by the near-field method in this thesis (see Chapter 8) will be shown to support the far-field results of Zhao & Faltinsen (1998). Actually, it has been pointed out by Newman & Lee (2002) and Lee et al. (2002) that the HOBEM is more sensitive to the singularity at the sharp corner in the near-field approach. In order to minimize this problem, they suggested a nonuniform geometric mapping near the corner for the HOBEMs. This idea is similar to the nonuniform spacing of the panels near the corner adopted by Newman & Lee (1992) in the low-order panel method. Unfortunately, the computational results can still be inaccurate especially when the bodies experience large motions. The momentum analysis based on time-averaging has been shown in the literature to be very accurate and efficient for the calculation of the mean wave force/moments on a single body. However, the momentum approach is not limited to the mean wave loads analysis. Actually, the momentum analysis can still be powerful for the general purpose of the forces/moments calculations. See for instance Faltinsen (1997), Lee (2007) and Xiang & Faltinsen (2010).

By using the variants of the Stokes’s theorem given by Dui (1986), Chen (2004), Dui et al. (2005) and Chen (2007) proposed to use the middle-field formulation, which results in much faster convergence than the original near-field approach in the calculation of nonlinear wave forces. The middle-field formulation rewrites the integral of the pressure on the body surface into the sum of a set of integrals on the free surface as well an artificial control surface. In principle, the middle-field approach is applicable for not only the mean wave loads but also the super-frequency and difference-frequency forces/moments. Lee (2007) obtained consistent expressions for the quadratic forces/moments with that of Dui et al. (2005) by using the conservation of momentum.

Considerations on the singularities at the intersection between the free surface and body surface

Zhao & Faltinsen (1998) studied a two-dimensional linear wave-body-collision interaction problem in the frequency domain. The bodies studied by them are vertical in the free-surface zone. Two different free-surface conditions with the free-stream flow and the double-body flow as the basic flow respectively have been used in the near-field close to the body. It was found that the free-surface condition with double-body basic flow is a much better choice than that with a free-stream basic flow. The reason was that the free-stream basic flow implies a steady flow through the body, while there is a stagnation point at the intersection between the body and the free surface. The mathematical consequence of using a free-surface condition with a two-stream basic flow is likely to be singularities at the intersection points.

Isaacson (1977) considered the second-order diffraction theory for a bottom-mounted vertical circular cylinder without current. Taking the radial-derivative of the second-order free-surface condition, Isaacson (1977) found an inconsistency of the body boundary condition and the second-order free-surface condition. He concluded that a nonlinear theory does not exist and has to rely primarily on the empirical or semi-empirical approach. It was later shown by Hunt & Balachandar (2000) that Isaacson’s apparent inconsistency follows from a non-analytic property of the solution at the intersection of the body surface and the mean free surface. Hunt & Balachandar (1989) concluded that the momentum approach is not limited to the mean wave loads analysis. Actually, the momentum analysis can still be powerful for the general purpose of the forces/moments calculations. See for instance Faltinsen (1997), Lee (2007) and Xiang & Faltinsen (2010).

By using the variants of the Stokes’s theorem given by Dui (1986), Chen (2004), Dui et al. (2005) and Chen (2007) proposed to use the middle-field formulation, which results in much faster convergence than the original near-field approach in the calculation of nonlinear wave forces. The middle-field formulation rewrites the integral of the pressure on the body surface into the sum of a set of integrals on the free surface as well an artificial control surface. In principle, the middle-field approach is applicable for not only the mean wave loads but also the super-frequency and difference-frequency forces/moments. Lee (2007) obtained consistent expressions for the quadratic forces/moments with that of Dui et al. (2005) by using the conservation of momentum.

Considerations on the singularities at the intersection between the free surface and body surface

Zhao & Faltinsen (1998) studied a two-dimensional linear wave-body-collision interaction problem in the frequency domain. The bodies studied by them are vertical in the free-surface zone. Two different free-surface conditions with the free-stream flow and the double-body flow as the basic flow respectively have been used in the near-field close to the body. It was found that the free-surface condition with double-body basic flow is a much better choice than that with a free-stream basic flow. The reason was that the free-stream basic flow implies a steady flow through the body, while there is a stagnation point at the intersection between the body and the free surface. The mathematical consequence of using a free-surface condition with a two-stream basic flow is likely to be singularities at the intersection points.

Isaacson (1977) considered the second-order diffraction theory for a bottom-mounted vertical circular cylinder without current. Taking the radial-derivative of the second-order free-surface condition, Isaacson (1977) found an inconsistency of the body boundary condition and the second-order free-surface condition. He concluded that a nonlinear theory does not exist and has to rely primarily on the empirical or semi-empirical approach. It was later shown by Hunt & Balachandar (2000) that Isaacson’s apparent inconsistency follows from a non-analytic property of the solution at the intersection of the body surface and the mean free surface. Hunt & Balachandar (1989) concluded that the momentum approach is not limited to the mean wave loads analysis. Actually, the momentum analysis can still be powerful for the general purpose of the forces/moments calculations. See for instance Faltinsen (1997), Lee (2007) and Xiang & Faltinsen (2010).

By using the variants of the Stokes’s theorem given by Dui (1986), Chen (2004), Dui et al. (2005) and Chen (2007) proposed to use the middle-field formulation, which results in much faster convergence than the original near-field approach in the calculation of nonlinear wave forces. The middle-field formulation rewrites the integral of the pressure on the body surface into the sum of a set of integrals on the free surface as well an artificial control surface. In principle, the middle-field approach is applicable for not only the mean wave loads but also the super-frequency and difference-frequency forces/moments. Lee (2007) obtained consistent expressions for the quadratic forces/moments with that of Dui et al. (2005) by using the conservation of momentum.

Considerations on the singularities at the intersection between the free surface and body surface

Zhao & Faltinsen (1998) studied a two-dimensional linear wave-body-collision interaction problem in the frequency domain. The bodies studied by them are vertical in the free-surface zone. Two different free-surface conditions with the free-stream flow and the double-body flow as the basic flow respectively have been used in the near-field close to the body. It was found that the free-surface condition with double-body basic flow is a much better choice than that with a free-stream basic flow. The reason was that the free-stream basic flow implies a steady flow through the body, while there is a stagnation point at the intersection between the body and the free surface. The mathematical consequence of using a free-surface condition with a two-stream basic flow is likely to be singularities at the intersection points.

Isaacson (1977) considered the second-order diffraction theory for a bottom-mounted vertical circular cylinder without current. Taking the radial-derivative of the second-order free-surface condition, Isaacson (1977) found an inconsistency of the body boundary condition and the second-order free-surface condition. He concluded that a nonlinear theory does not exist and has to rely primarily on the empirical or semi-empirical approach. It was later shown by Hunt & Balachandar (2000) that Isaacson’s apparent inconsistency follows from a non-analytic property of the solution at the intersection of the body surface and the mean free surface. Hunt & Balachandar (1989) concluded that the momentum approach is not limited to the mean wave loads analysis. Actually, the momentum analysis can still be powerful for the general purpose of the forces/moments calculations. See for instance Faltinsen (1997), Lee (2007) and Xiang & Faltinsen (2010).

By using the variants of the Stokes’s theorem given by Dui (1986), Chen (2004), Dui et al. (2005) and Chen (2007) proposed to use the middle-field formulation, which results in much faster convergence than the original near-field approach in the calculation of nonlinear wave forces. The middle-field formulation rewrites the integral of the pressure on the body surface into the sum of a set of integrals on the free surface as well an artificial control surface. In principle, the middle-field approach is applicable for not only the mean wave loads but also the super-frequency and difference-frequency forces/moments. Lee (2007) obtained consistent expressions for the quadratic forces/moments with that of Dui et al. (2005) by using the conservation of momentum.

Considerations on the singularities at the intersection between the free surface and body surface

Zhao & Faltinsen (1998) studied a two-dimensional linear wave-body-collision interaction problem in the frequency domain. The bodies studied by them are vertical in the free-surface zone. Two different free-surface conditions with the free-stream flow and the double-body flow as the basic flow respectively have been used in the near-field close to the body. It was found that the free-surface condition with double-body basic flow is a much better choice than that with a free-stream basic flow. The reason was that the free-stream basic flow implies a steady flow through the body, while there is a stagnation point at the intersection between the body and the free surface. The mathematical consequence of using a free-surface condition with a two-stream basic flow is likely to be singularities at the intersection points.

Isaacson (1977) considered the second-order diffraction theory for a bottom-mounted vertical circular cylinder without current. Taking the radial-derivative of the second-order free-surface condition, Isaacson (1977) found an inconsistency of the body boundary condition and the second-order free-surface condition. He concluded that a nonlinear theory does not exist and has to rely primarily on the empirical or semi-empirical approach. It was later shown by Hunt & Balachandar (2000) that Isaacson’s apparent inconsistency follows from a non-analytic property of the solution at the intersection of the body surface and the mean free surface. Hunt & Balachandar (1989) concluded that the
Inconsistency at the intersection does not invalidate the Stokes’s expansion method. Miloh (1986) indicated that Wehausen (1980) has also used a similar argument to refute the heaacson assertion.

The inconsistency is actually due to the confluence of the boundary conditions at the intersection. For a vertical (wall-sided) intersection, it was shown that the linear potential for horizontal motions has a weak, $\ln(r)$-type singularity, while those for vertical motions or wave diffraction are regular at the intersection point. See e.g. Krychkunich (1954), Miloh (1986) and Sclavounos (1988). Here r is the distance to the intersection position. For a two-dimensional flow in the vicinity of a body section with the free surface, Sclavounos (1988) showed that leading-order singularity of the second-order velocity potential is $\ln(r)$. The analysis was made for a wall-sided intersection. Taking the zero-frequency limit of Sclavounos (1988) one can see that it can be shown that the fluid is static at the intersection. This is relevant to the double-sided process flow used in this thesis. One should note that the second-order derivatives of the linear velocity potential (e.g. surge radiation potentials) and the first-order derivatives of the second-order velocity potential are integrable. Therefore, the evaluating of the integrals on the computational boundaries in the boundary integral equation (BIE) presents no theoretical difficulties. Alternatively, in order to avoid the direct evaluation of the second-order derivatives at the intersection in the free-surface integral of the BIE, one may use a weak formulation after integrating by parts (see e.g. Chau & Enach Taylor, 1988).

The applications of the second-order theory based on perturbation scheme to bodies with non-vertical wall in the free-surface zone have also been attempted numerically by, for instance, Papanikolaou & Nowacki (1980), Kim (1989) and Kim & Yue (1989). Papanikolaou & Nowacki (1980) studied the forced oscillations of a two-dimensional triangular sail with large positive flare at the waterline. Kim (1989) and Kim & Yue (1989) considered the second-order wave diffraction on a fixed truncated vertical cone. The excitation forces, overturning moments and the wave elevations along the waterline are presented. It was mentioned in Kim (1989) that the validity of his results for non-vertical intersection cases was established through careful convergence tests.

The applications of the second-order theory based on perturbation scheme to bodies with non-vertical wall in the free-surface zone have also been attempted numerically by, for instance, Papanikolaou & Nowacki (1980), Kim (1989) and Kim & Yue (1989). Papanikolaou & Nowacki (1980) studied the forced oscillations of a two-dimensional triangular sail with large positive flare at the waterline. Kim (1989) and Kim & Yue (1989) considered the second-order wave diffraction on a fixed truncated vertical cone. The excitation forces, overturning moments and the wave elevations along the waterline are presented. It was mentioned in Kim (1989) that the validity of his results for non-vertical intersection cases was established through careful convergence tests.

Papanikolaou & Nowacki (1980) studied the forced oscillations of a two-dimensional triangular sail with large positive flare at the waterline. Kim (1989) and Kim & Yue (1989) considered the second-order wave diffraction on a fixed truncated vertical cone. The excitation forces, overturning moments and the wave elevations along the waterline are presented. It was mentioned in Kim (1989) that the validity of his results for non-vertical intersection cases was established through careful convergence tests.
in its mean oscillatory position.

1.3.1. Outline of the thesis

Chapter 2 gives the theoretical descriptions. The definitions of body motions in different coordinate systems and their relationships are described. The formulations of the second-order Boundary Value Problem (BVP) in both the inertial coordinate system and the body-fixed coordinate system are presented. A small forward speed effect is included. The formulations are based on a perturbation scheme, which are accurate to second order of the wave slope and first order of the forward speed. The BVP for the second-order differentiation of a fixed body in incident waves is also provided. The rigid-body motion equations in both the inertial and body-fixed reference frames are given.

Chapter 3 describes the basis of the time-domain HOBEM in two dimensions. The discretization of the Boundary Integral Equations (BIEs) by using 5-node quadratic boundary elements is introduced. Other numerical details include: numerical scheme for the time-evolution of the free-surface conditions, the treatment of the t-term in the Bernoulli’s equation, calculation of higher-order derivatives in the boundary conditions and the Fourier analysis of the time domain results.

Chapter 4 describes the basis of the time-domain HOBEM in three dimensions. The discretization of the BIEs by using 12-node cubic boundary elements is introduced. Different methods for the evaluation of the solid angle and Cauchy Principle Value (CPV) integrals are presented. Other numerical details include: the selection of the grid types and a proper matrix solver. The treatment of t-term and the time integration of body motion equations, the low-pass filter applied on the free-surface in order to suppress the numerical instabilities, methods of direct calculation of the higher-order derivatives and the selection of the grid types and a proper matrix solver.

Chapter 5, the advantages and disadvantages of the formulations of BVP in the inertial and body-fixed coordinate systems are discussed. Then we propose a domain decomposition based method taking advantages of the body-fixed coordinate system in the inner domain in order to avoid evaluating the higher-order derivatives in the body boundary condition of the second-order wave-body problem with a small forward speed. The inertial reference frame is used in the outer domain. Taking the HOBEM as an example, the discretized BIEs in the inert and outer domain are shown. In order to demonstrate the consistency between the body-fixed and inertial coordinate system, we have derived analytical (semi-analytical) calculations for two different oscillations: oscillate a circle in infinite fluid and the forced oscillation of a 2D rectangular tank with a free surface. The analytical (semi-analytical) results obtained in the body-fixed coordinate system and that in the inertial coordinate system are consistent.

In Chapter 6, with the purpose of verification, studies were carried out in some two-dimensional cases, including: the third-order steady-state solution of a sloshing tank, the free oscillations and forced oscillations in a rectangular tank, reproduction of the Stokes second-order and third-order waves in a Numerical Wave Tank (NWT), and the second-order diffraction and radiation of a horizontal cylinder. All the studied are based on the formulation in the inertial coordinate system. The robustness and accuracy of the numerical methods are demonstrated by the comparisons between the present numerical results and the some other analytical, numerical or experimental results.

Chapter 7 describes the basis of the time-domain HOBEM in two dimensions. The discretization of the Boundary Integral Equations (BIEs) by using 5-node quadratic boundary elements is introduced. Other numerical details include: the selection of the grid types and a proper matrix solver. The treatment of the t-term in the Bernoulli’s equation, calculation of higher-order derivatives in the boundary conditions and the Fourier analysis of the time domain results.

Chapter 8 gives the theoretical descriptions. The definitions of body motions in different coordinate systems and their relationships are described. The formulations of the second-order Boundary Value Problem (BVP) in both the inertial coordinate system and the body-fixed coordinate system are presented. A small forward speed effect is included. The formulations are based on a perturbation scheme, which are accurate to second order of the wave slope and first order of the forward speed. The BVP for the second-order differentiation of a fixed body in incident waves is also provided. The rigid-body motion equations in both the inertial and body-fixed reference frames are given.
In Chapter 7, the numerical methods are verified in three dimensions. Zero Froude number is considered. Both the traditional method based on a formulation in the inertial coordinate system and the new method with a body-fixed coordinate system in the near field are used. The second-order diffraction of a bottom-mounted vertical circular cylinder, a hemisphere and a truncated vertical circular cylinder in monochromatic waves are studied, with good agreement with the other semi-analytical or numerical results. The Quadratic Transfer Functions (QTFs) of the sum-frequency forces and difference-frequency diffraction forces on a bottom-mounted vertical circular cylinder are recovered from the present time-domain results. Third-order wave diffraction of a bottom-mounted vertical circular cylinder is also investigated by the present time-domain HOBEM. The third-order forces on the bottom-mounted vertical circular cylinder contributed by the first-order and second-order velocity potentials are consistent with the semi-analytical results, while differences were observed for the component due to the third-order velocity potential. Careful convergence studies and alternative way of calculating the forces have been made with very satisfactory results, indicating that the present results are consistent. Forced oscillations of some floating bodies in otherwise calm water are also investigated. For a vertical circular cylinder with the draft equal to the water depth, the linear hydrodynamic coefficients, e.g. added mass and damping, are obtained from the Fourier analysis of the time-domain results. For an axisymmetric body without sharp corner, the results based on the linear-coordinate-system formulation and that of the body-fixed-coordinate system are compared with the purpose of cross-verification. For the forced oscillating of a truncated vertical circular cylinder with sharp corners, our second-order results based on a formulation in the body-fixed-coordinate system agrees fairly well with two other studies, in which the second-order derivatives in the body boundary condition are handled by a Stokes-like theorem. Another study by Isaacson & Ng (1993b) calculating the second-order derivatives in the second-order boundary condition gave quite different results.

In Chapter 8, a small forward speed is considered in the second-order wave-body analysis. Only the leading order of the forward speed effect is included, with its higher-order effects neglected. This makes possible for us to use the ‘double-body’ flow as the basic flow. The interactions between the steady flow and the first- and second-order unsteady flows are included in the present model. The second-order wave diffraction on a vertical circular cylinder with draft (d) equal to water depth (h) is studied and compared with some other numerical results. The domain decomposition method from Chapter 5 is used. Sensitivities on the strength of the low-pass filter and the frequency of the application of the filter are studied. The forced oscillations of a vertical circular cylinder with d<h and a truncated vertical circular cylinder are studied up to second order in wave slope or unsteady body motion. The importance of the small forward speed is discussed. For the forced oscillation of an axisymmetric body without any sharp corner, the new method with body-fixed-coordinate system gives consistent results with the traditional method with a formulation in the inertial coordinate system. A floating vertical circular cylinder with d<h, free to respond in only surge motion, is studied with different Froude numbers. The Response Amplitude Operators (RAOs) of the surge motions are compared with the semi-analytical results. Then a truncated vertical circular cylinder which can respond in only surge and heave in the incident waves is studied. The second-order forces/moments due to the quasi-static terms in the Bernoulli's equation are calculated by Newman (1977) and another similar formula. The vertical mean wave force near the heave resonance agrees very well with Zhao & Faltinsen's (1993b) results. The effects of a small forward speed on the horizontal and vertical mean forces are investigated.

In Chapter 9, a small forward speed is considered in the second-order wave-body analysis. Only the leading order of the forward speed effect is included, with its higher-order effects neglected. This makes possible for us to use the ‘double-body’ flow in the basic flow. The interactions between the steady flow and the first- and second-order unsteady flows are included in the present model. The second-order wave diffraction on a vertical circular cylinder with draft (d) equal to water depth (h) is studied and compared with some other numerical results. The domain decomposition method from Chapter 5 is used. Sensitivities on the strength of the low-pass filter and the frequency of the application of the filter are studied. The forced oscillations of a vertical circular cylinder with d<h and a truncated vertical circular cylinder are studied up to second order in wave slope or unsteady body motion. The importance of the small forward speed is discussed. For the forced oscillation of an axisymmetric body without any sharp corner, the new method with body-fixed-coordinate system gives consistent results with the traditional method with a formulation in the inertial coordinate system. A floating vertical circular cylinder with d<h, free to respond in only surge motion, is studied with different Froude numbers. The Response Amplitude Operators (RAOs) of the surge motions are compared with the semi-analytical results. Then a truncated vertical circular cylinder which can respond in only surge and heave in the incident waves is studied. The second-order forces/moments due to the quasi-static terms in the Bernoulli's equation are calculated by Newman (1977) and another similar formula. The vertical mean wave force near the heave resonance agrees very well with Zhao & Faltinsen's (1993b) results. The effects of a small forward speed on the horizontal and vertical mean forces are investigated.
1.3.2. Major contributions of the present study

We summarise main contributions of the present work as follows.

- The direct evaluation of solid angle and CPV terms in the 3D HOBEM

In the HOBEMs, when the field point is in the same element as the singularity point, a singular integral is present in the integrals of the influence coefficients. In the present study, the solid angle is calculated according to Montic (1993). A triangular polar-coordinate system transformation proposed by Li et al. (1985) is used to eliminate the singularity when the field point is at a node other than the singularity point. When the field point coincides with the singularity point, a special argument is made in order to make the CPV integral terms exist. Calculating the solid angles and CPV terms directly is more efficient in terms of CPU time compared with the indirect method, for which instance relates the diagonal terms of the influence matrix with the off-diagonal terms.

- Combination of the 3D cubic HOBEM with the fast multipole method (FMM)

A numerical module based on the Fast Multipole Method (FMM) is developed, which can be used as an option to speed up the present HOBEM. Both the operation count and the required memory of a FMM accelerated BEM is asymptotically O(N), where N is the total number of the unknowns. Suggestion on the selection of a proper matrix solver for a specific problem is given. The FMM accelerated HOBEM will dramatically reduce the required CPU time and memory in the fully nonlinear time domain simulations and the frequency-domain analysis.

- The second-order and third-order numerical wave tank in two dimensions

The Stokes second-order and third-order wave are reproduced in a 2D Numerical Wave Tank (NWT) by feeding the velocity profile based on Stokes wave theory on a control surface. It was found that the Stokes drift through the control surface may destroy the second-order result. Therefore, a numerical damping zone which is able to 'drain' water out of the tank is suggested to minimize the effect of the second-order mass transport. It is also found that a secularity (solvability) condition is needed in order to get physical third-order waves in a third-order NWT. A two-time scale approach is proposed to eliminate the secular terms in the free-surface conditions.

- A new method based on domain decomposition using body-fixed coordinate system in the inner domain

Inspired by the work in ship maneuvering and sloshing (Faltinsen & Timokha, 2009), where the body-fixed coordinate systems are commonly applied, a new approach based on domain decomposition using body-fixed coordinate system in the inner domain and the inertial reference frame in the outer domain is proposed. Consistent theoretical description of the new method is presented. The highlight of this new method is twofold. Firstly, no higher-order derivatives appear in the body boundary conditions and thus the linear terms and their derivatives are eliminated. The second-order and third-order numerical wave tank in two dimensions

The Stokes second-order and third-order waves are reproduced in a 2D Numerical Wave Tank (NWT) by feeding the velocity profile based on Stokes wave theory on a control surface. It was found that the Stokes drift through the control surface may destroy the second-order result. Therefore, a numerical damping zone which is able to 'drain' water out of the tank is suggested to minimize the effect of the second-order mass transport. It is also found that a secularity (solvability) condition is needed in order to get physical third-order waves in a third-order NWT. A two-time scale approach is proposed to eliminate the secular terms in the free-surface conditions.

- The complete third-order wave diffraction by time-domain HOBEM

The complete third-order wave diffraction of a stationary three-dimensional body is studied by a time-domain HOBEM, which means that the solution contains not only the triple-harmonic effect but also the third-order contribution with fundamental frequency of the incident waves. A time-domain third-order diffraction model was mentioned in Sclavounos & Kim (1995), where only the second-order results were shown. However, no published third-order results based on their model were found.

- A new method based on domain decomposition using body-fixed coordinate system in the inner domain

Inspired by the work in ship maneuvering and sloshing (Faltinsen & Timokha, 2009), where the body-fixed coordinate systems are commonly applied, a new approach based on domain decomposition using body-fixed coordinate system in the inner domain and the inertial reference frame in the outer domain is proposed. Consistent theoretical description of the new method is presented. The highlight of this new method is twofold. Firstly, no higher-order derivatives appear in the body boundary conditions and thus the linear terms and their derivatives are eliminated. The second-order and third-order numerical wave tank in two dimensions

The Stokes second-order and third-order waves are reproduced in a 2D Numerical Wave Tank (NWT) by feeding the velocity profile based on Stokes wave theory on a control surface. It was found that the Stokes drift through the control surface may destroy the second-order result. Therefore, a numerical damping zone which is able to 'drain' water out of the tank is suggested to minimize the effect of the second-order mass transport. It is also found that a secularity (solvability) condition is needed in order to get physical third-order waves in a third-order NWT. A two-time scale approach is proposed to eliminate the secular terms in the free-surface conditions.

1.3.2. Major contributions of the present study

We summarise main contributions of the present work as follows.

- The direct evaluation of solid angle and CPV terms in the 3D HOBEM

In the HOBEMs, when the field point is in the same element as the singularity point, a singular integral is present in the integrals of the influence coefficients. In the present study, the solid angle is calculated according to Montic (1993). A triangular polar-coordinate system transformation proposed by Li et al. (1985) is used to eliminate the singularity when the field point is at a node other than the singularity point. When the field point coincides with the singularity point, a special argument is made in order to make the CPV integral terms exist. Calculating the solid angles and CPV terms directly is more efficient in terms of CPU time compared with the indirect method, for which instance relates the diagonal terms of the influence matrix with the off-diagonal terms.

- Combination of the 3D cubic HOBEM with the fast multipole method (FMM)

A numerical module based on the Fast Multipole Method (FMM) is developed, which can be used as an option to speed up the present HOBEM. Both the operation count and the required memory of a FMM accelerated BEM is asymptotically O(N), where N is the total number of the unknowns. Suggestion on the selection of a proper matrix solver for a specific problem is given. The FMM accelerated HOBEM will dramatically reduce the required CPU time and memory in the fully nonlinear time domain simulations and the frequency-domain analysis.

- The second-order and third-order numerical wave tank in two dimensions

The Stokes second-order and third-order waves are reproduced in a 2D Numerical Wave Tank (NWT) by feeding the velocity profile based on Stokes wave theory on a control surface. It was found that the Stokes drift through the control surface may destroy the second-order result. Therefore, a numerical damping zone which is able to 'drain' water out of the tank is suggested to minimize the effect of the second-order mass transport. It is also found that a secularity (solvability) condition is needed in order to get physical third-order waves in a third-order NWT. A two-time scale approach is proposed to eliminate the secular terms in the free-surface conditions.

- The complete third-order wave diffraction by time-domain HOBEM

The complete third-order wave diffraction of a stationary three-dimensional body is studied by a time-domain HOBEM, which means that the solution contains not only the triple-harmonic effect but also the third-order contribution with fundamental frequency of the incident waves. A time-domain third-order diffraction model was mentioned in Sclavounos & Kim (1995), where only the second-order results were shown. However, no published third-order results based on their model were found.

- A new method based on domain decomposition using body-fixed coordinate system in the inner domain

Inspired by the work in ship maneuvering and sloshing (Faltinsen & Timokha, 2009), where the body-fixed coordinate systems are commonly applied, a new approach based on domain decomposition using body-fixed coordinate system in the inner domain and the inertial reference frame in the outer domain is proposed. Consistent theoretical description of the new method is presented. The highlight of this new method is twofold. Firstly, no higher-order derivatives appear in the body boundary conditions and thus the linear terms and their derivatives are eliminated. The second-order and third-order numerical wave tank in two dimensions

The Stokes second-order and third-order waves are reproduced in a 2D Numerical Wave Tank (NWT) by feeding the velocity profile based on Stokes wave theory on a control surface. It was found that the Stokes drift through the control surface may destroy the second-order result. Therefore, a numerical damping zone which is able to 'drain' water out of the tank is suggested to minimize the effect of the second-order mass transport. It is also found that a secularity (solvability) condition is needed in order to get physical third-order waves in a third-order NWT. A two-time scale approach is proposed to eliminate the secular terms in the free-surface conditions.

1.3.2. Major contributions of the present study

We summarise main contributions of the present work as follows.

- The direct evaluation of solid angle and CPV terms in the 3D HOBEM

In the HOBEMs, when the field point is in the same element as the singularity point, a singular integral is present in the integrals of the influence coefficients. In the present study, the solid angle is calculated according to Montic (1993). A triangular polar-coordinate system transformation proposed by Li et al. (1985) is used to eliminate the singularity when the field point is at a node other than the singularity point. When the field point coincides with the singularity point, a special argument is made in order to make the CPV integral terms exist. Calculating the solid angles and CPV terms directly is more efficient in terms of CPU time compared with the indirect method, for which instance relates the diagonal terms of the influence matrix with the off-diagonal terms.

- Combination of the 3D cubic HOBEM with the fast multipole method (FMM)

A numerical module based on the Fast Multipole Method (FMM) is developed, which can be used as an option to speed up the present HOBEM. Both the operation count and the required memory of a FMM accelerated BEM is asymptotically O(N), where N is the total number of the unknowns. Suggestion on the selection of a proper matrix solver for a specific problem is given. The FMM accelerated HOBEM will dramatically reduce the required CPU time and memory in the fully nonlinear time domain simulations and the frequency-domain analysis.

- The second-order and third-order numerical wave tank in two dimensions

The Stokes second-order and third-order waves are reproduced in a 2D Numerical Wave Tank (NWT) by feeding the velocity profile based on Stokes wave theory on a control surface. It was found that the Stokes drift through the control surface may destroy the second-order result. Therefore, a numerical damping zone which is able to 'drain' water out of the tank is suggested to minimize the effect of the second-order mass transport. It is also found that a secularity (solvability) condition is needed in order to get physical third-order waves in a third-order NWT. A two-time scale approach is proposed to eliminate the secular terms in the free-surface conditions.

- The complete third-order wave diffraction by time-domain HOBEM

The complete third-order wave diffraction of a stationary three-dimensional body is studied by a time-domain HOBEM, which means that the solution contains not only the triple-harmonic effect but also the third-order contribution with fundamental frequency of the incident waves. A time-domain third-order diffraction model was mentioned in Sclavounos & Kim (1995), where only the second-order results were shown. However, no published third-order results based on their model were found.

- A new method based on domain decomposition using body-fixed coordinate system in the inner domain

Inspired by the work in ship maneuvering and sloshing (Faltinsen & Timokha, 2009), where the body-fixed coordinate systems are commonly applied, a new approach based on domain decomposition using body-fixed coordinate system in the inner domain and the inertial reference frame in the outer domain is proposed. Consistent theoretical description of the new method is presented. The highlight of this new method is twofold. Firstly, no higher-order derivatives appear in the body boundary conditions and thus the linear terms and their derivatives are eliminated.
avoided. Secondly, because the body boundary condition is formulated on the instantaneous position of the body, the resulting integral equation is valid for both smooth bodies and bodies with sharp corners. In order to improve the convergence of the second-order forces/moments on a body with sharp corners in the near-field approach, a re-formulation of the quadratic force is presented. This re-formulation transfers the integrals on the body into the sum of two groups of integrals. The first group contains integrals on the body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface in the inner domain.

Second-order wave-body analysis with the presence of a small forward speed for a floating body with or without sharp corners

The second-order wave-body interaction with the presence of a small forward speed for a floating body is studied by both the traditional method with a formulation in the inertial coordinate system and the new method with a formulation in the body-fixed coordinate system. The formulation in the inertial coordinate system is only applicable for a body with sharp corners. The study in the inertial coordinate system may be considered as a generalization of the work by Snaarpe et al. (2008), who only studied the second-order diffraction problem with small current speed. The new method based on domain decomposition (in Chapter 5) is applicable for bodies with or without sharp corners, and has been applied in the second-order wave loads analysis of truncated vertical circular cylinder with sharp corners.

Parts of the contents and the results have been published in the following papers Shao & Faltinsen (2008, 2010a, 2010b, 2010c), which are listed in the references.

Avoided. Secondly, because the body boundary condition is formulated on the instantaneous position of the body, the resulting integral equation is valid for both smooth bodies and bodies with sharp corners. In order to improve the convergence of the second-order forces/moments on a body with sharp corners in the near-field approach, a re-formulation of the quadratic force is presented. This re-formulation transfers the integrals on the body into the sum of two groups of integrals. The first group contains integrals on the body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface in the inner domain.

Second-order wave-body analysis with the presence of a small forward speed for a floating body with or without sharp corners

The second-order wave-body interaction with the presence of a small forward speed for a floating body is studied by both the traditional method with a formulation in the inertial coordinate system and the new method with a formulation in the body-fixed coordinate system. The formulation in the inertial coordinate system is only applicable for a body with sharp corners. The study in the inertial coordinate system may be considered as a generalization of the work by Snaarpe et al. (2008), who only studied the second-order diffraction problem with small current speed. The new method based on domain decomposition (in Chapter 5) is applicable for bodies with or without sharp corners, and has been applied in the second-order wave loads analysis of truncated vertical circular cylinder with sharp corners.

Parts of the contents and the results have been published in the following papers Shao & Faltinsen (2008, 2010a, 2010b, 2010c), which are listed in the references.
2.1 Introduction

When the water is assumed incompressible and inviscid, and the flow is irrotational, the motion of the water can be described by the velocity potential \(\phi \) satisfying the Laplace equation

\[
\nabla^2 \phi = 0 \quad \text{in the water domain.} \tag{2.1}
\]

The Laplace equation holds no matter an inertial reference frame or an accelerated coordinate system is used.

If the amplitudes of the incident waves, scattered waves, and the body motions relative to the characteristic body dimensions are asymptotically small, we can assume that the velocity potential of the flow and all quantities derivable from the flow may be expanded in a power series with respect to a small parameter \(x \), which is a measure of the wave slope, the angular body motions and the translatory body motions relative to the characteristic cross-sectional body length in this study. For instance, the velocity potential, wave elevation, the unsteady translatory body motions, the unsteady angular body motions, the forces and moments are expanded respectively as follows

\[
\begin{align*}
\phi & = \phi^{(0)} + \phi^{(1)} + \phi^{(2)} + \phi^{(3)} + \ldots, \\
\eta & = \eta^{(0)} + \eta^{(1)} + \eta^{(2)} + \eta^{(3)} + \ldots, \\
\mathbf{f} & = \mathbf{f}^{(0)} + \mathbf{f}^{(1)} + \mathbf{f}^{(2)} + \mathbf{f}^{(3)} + \ldots, \\
M & = M^{(0)} + M^{(1)} + M^{(2)} + M^{(3)} + \ldots
\end{align*}
\]

Strictly speaking we must require the solution to be analytic which means that the expansion is not valid near a sharp corner with interior angle less than \(\pi \) radians on the body surface. In Eq.(2.2) - (2.7), the superscript \((0) \) indicates the steady effect, \((1) \) and \((2) \) denote the first-order and second-order effects respectively. For small parameter \(x \), which is a measure of the wave slope, the angular body motions and the translatory body motions relative to the characteristic cross-sectional body length in this study. For instance, the velocity potential, wave elevation, the unsteady translatory body motions, the unsteady angular body motions, the forces and moments are expanded respectively as follows

\[
\begin{align*}
\phi & = \phi^{(0)} + \phi^{(1)} + \phi^{(2)} + \phi^{(3)} + \ldots, \\
\eta & = \eta^{(0)} + \eta^{(1)} + \eta^{(2)} + \eta^{(3)} + \ldots, \\
\mathbf{f} & = \mathbf{f}^{(0)} + \mathbf{f}^{(1)} + \mathbf{f}^{(2)} + \mathbf{f}^{(3)} + \ldots, \\
M & = M^{(0)} + M^{(1)} + M^{(2)} + M^{(3)} + \ldots
\end{align*}
\]
second-order variations, respectively. The zeroth-order terms Φ^0 and η^0 are the steady velocity potential and steady wave elevation, which are the consequence of the steady forward speed of the body and/or a steady current.

A two-parameter expansion may at a first-glance seem to be a more appropriate choice for the perturbation expansion, i.e. a perturbation parameter ϵ as described above and a parameter τ related to the Froude number in case of small Froude numbers: U_{in}/U where U is the steady forward speed and/or current speed. However, one has to solve the linear wave diffraction/radiation problem without a current (or forward speed) and then solve the coupling problem of wave and current (or forward speed). The same applies for the second-order problem. In this study, the one-parameter perturbation expansion is used. Basically, we assume the Froude number to be of $O(1)$ in the series expansion of the flow parameters. However, the boundary value problem may become simpler with a small parameter related to the Froude number. Approximations of the boundary conditions can then be made after the introduction of the one-parameter perturbation expansion into the free-surface and body-boundary conditions. As a result of using the one-parameter perturbation expansion, the mathematical formulation becomes simpler and only one solution is needed at each order.

The assumption of the smallness of the amplitude of the incident wave is violated in extreme wave conditions, in which the wave amplitude and body motions are not small. Another assumption behind the series expansion of Eq.(2.22) - Eq.(2.27) is that the higher-order quantities are much smaller than the low-order ones. This is violated in some cases. One example is the low-frequency lateral translatory and yaw motions in the horizontal plane of a moved ship induced by the low-frequency second-order wave load. From measurements of low-frequency motions of mowed vessels, it is known that in the range of practical wave heights this assumption is in some cases strictly speaking incorrect. See Pinkster (1981). It was pointed out by Faltinsen (1994) that the normal way to calculate the slow-drift motions does not recognize that the second-order motions can affect the linear wave frequency motions. This assumption may also be violated for the large resonant heave, pitch and roll motions for bodies with small wetted area.

The resonant behavior of sloshing can also not be described by the weakly-nonlinear theory adopted in this study. Potential theory without thin free shear layer effects gives zero damping in the sloshing problem. If the weakly-nonlinear assumption is used and the body motions are not small, one has to solve the linear wave diffraction/radiation problem without a current (or forward speed) and then solve the coupling problem of wave and current (or forward speed). The same applies for the second-order problem. In this study, the one-parameter perturbation expansion is used. Basically, we assume the Froude number to be of $O(1)$ in the series expansion of the flow parameters. However, the boundary value problem may become simpler with a small parameter related to the Froude number. Approximations of the boundary conditions can then be made after the introduction of the one-parameter perturbation expansion into the free-surface and body-boundary conditions. As a result of using the one-parameter perturbation expansion, the mathematical formulation becomes simpler and only one solution is needed at each order.

The assumption of the smallness of the amplitude of the incident wave is violated in extreme wave conditions, in which the wave amplitude and body motions are not small. Another assumption behind the series expansion of Eq.(2.22) - Eq.(2.27) is that the higher-order quantities are much smaller than the low-order ones. This is violated in some cases. One example is the low-frequency lateral translatory and yaw motions in the horizontal plane of a moved ship induced by the low-frequency second-order wave load. From measurements of low-frequency motions of mowed vessels, it is known that in the range of practical wave heights this assumption is in some cases strictly speaking incorrect. See Pinkster (1981). It was pointed out by Faltinsen (1994) that the normal way to calculate the slow-drift motions does not recognize that the second-order motions can affect the linear wave frequency motions. This assumption may also be violated for the large resonant heave, pitch and roll motions for bodies with small wetted area.

The resonant behavior of sloshing can also not be described by the weakly-nonlinear theory adopted in this study. Potential theory without thin free shear layer effects gives zero damping in the sloshing problem. If the weakly-nonlinear assumption is used and the body motions are not small, one has to solve the linear wave diffraction/radiation problem without a current (or forward speed) and then solve the coupling problem of wave and current (or forward speed). The same applies for the second-order problem. In this study, the one-parameter perturbation expansion is used. Basically, we assume the Froude number to be of $O(1)$ in the series expansion of the flow parameters. However, the boundary value problem may become simpler with a small parameter related to the Froude number. Approximations of the boundary conditions can then be made after the introduction of the one-parameter perturbation expansion into the free-surface and body-boundary conditions. As a result of using the one-parameter perturbation expansion, the mathematical formulation becomes simpler and only one solution is needed at each order.

The assumption of the smallness of the amplitude of the incident wave is violated in extreme wave conditions, in which the wave amplitude and body motions are not small. Another assumption behind the series expansion of Eq.(2.22) - Eq.(2.27) is that the higher-order quantities are much smaller than the low-order ones. This is violated in some cases. One example is the low-frequency lateral translatory and yaw motions in the horizontal plane of a moved ship induced by the low-frequency second-order wave load. From measurements of low-frequency motions of mowed vessels, it is known that in the range of practical wave heights this assumption is in some cases strictly speaking incorrect. See Pinkster (1981). It was pointed out by Faltinsen (1994) that the normal way to calculate the slow-drift motions does not recognize that the second-order motions can affect the linear wave frequency motions. This assumption may also be violated for the large resonant heave, pitch and roll motions for bodies with small wetted area.

The resonant behavior of sloshing can also not be described by the weakly-nonlinear theory adopted in this study. Potential theory without thin free shear layer effects gives zero damping in the sloshing problem. If the weakly-nonlinear assumption is used and the body motions are not small, one has to solve the linear wave diffraction/radiation problem without a current (or forward speed) and then solve the coupling problem of wave and current (or forward speed). The same applies for the second-order problem. In this study, the one-parameter perturbation expansion is used. Basically, we assume the Froude number to be of $O(1)$ in the series expansion of the flow parameters. However, the boundary value problem may become simpler with a small parameter related to the Froude number. Approximations of the boundary conditions can then be made after the introduction of the one-parameter perturbation expansion into the free-surface and body-boundary conditions. As a result of using the one-parameter perturbation expansion, the mathematical formulation becomes simpler and only one solution is needed at each order.

The assumption of the smallness of the amplitude of the incident wave is violated in extreme wave conditions, in which the wave amplitude and body motions are not small. Another assumption behind the series expansion of Eq.(2.22) - Eq.(2.27) is that the higher-order quantities are much smaller than the low-order ones. This is violated in some cases. One example is the low-frequency lateral translatory and yaw motions in the horizontal plane of a moved ship induced by the low-frequency second-order wave load. From measurements of low-frequency motions of mowed vessels, it is known that in the range of practical wave heights this assumption is in some cases strictly speaking incorrect. See Pinkster (1981). It was pointed out by Faltinsen (1994) that the normal way to calculate the slow-drift motions does not recognize that the second-order motions can affect the linear wave frequency motions. This assumption may also be violated for the large resonant heave, pitch and roll motions for bodies with small wetted area.
the OŻ axis positive upwards. OXYZ is an inertial coordinate system moving with the steady forward speed of the body. The OXY-plane coincides with the OeXeYe-plane and the OZ axis parallel to the OeZe axis, oxyz is a body-fixed coordinate system which moves with not only the steady forward speed but also the unsteady rigid-body motions of the body. The ox-axis goes through the center of gravity (COG). When the body is without unsteady motions, oxyz coincides with OXYZ with the origin on the mean free surface. The ogxgygzg is an inertial coordinate system with origin located on the COG, with its axis parallel to that of OXYZ. The body is normally assumed to have the oxz-plane as a plane of symmetry.

2.3 The definition of the motions

Let us define the translatory motion vector of the origin of oxyz relative to the origin of OXYZ, i.e. Ȯo, be \(\xi = (\dot{\xi}_x, \dot{\xi}_y, \dot{\xi}_z) \) so that \(\dot{\xi}_x \) is the surge, \(\dot{\xi}_y \) is the sway and \(\dot{\xi}_z \) is the heave. In addition, we define the Euler angles \(\alpha_1, \alpha_2, \alpha_3 \) about the X-, Y- and Z-axis respectively so that \(\alpha_1 \) is the roll, \(\alpha_2 \) is the pitch and \(\alpha_3 \) is the yaw. The centre of the angular motions \(\alpha_1, \alpha_2, \alpha_3 \) is the origin of OXYZ system. Here \(\xi = (\dot{\xi}_x, \dot{\xi}_y, \dot{\xi}_z) \) and \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \) are described in the inertial coordinate system OXYZ.

Similarly, we define the Euler angles \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \) as the translatory motion vector of the origin of oxyz.

2.3 The definition of the motions

Let us define the translatory motion vector of the origin of oxyz relative to the origin of OXYZ, i.e. Ȯo, be \(\xi = (\dot{\xi}_x, \dot{\xi}_y, \dot{\xi}_z) \) so that \(\dot{\xi}_x \) is the surge, \(\dot{\xi}_y \) is the sway and \(\dot{\xi}_z \) is the heave. In addition, we define the Euler angles \(\alpha_1, \alpha_2, \alpha_3 \) about the X-, Y- and Z-axis respectively so that \(\alpha_1 \) is the roll, \(\alpha_2 \) is the pitch and \(\alpha_3 \) is the yaw. The centre of the angular motions \(\alpha_1, \alpha_2, \alpha_3 \) is the origin of OXYZ system. Here \(\xi = (\dot{\xi}_x, \dot{\xi}_y, \dot{\xi}_z) \) and \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \) are described in the inertial coordinate system OXYZ.

Similarly, we define the Euler angles \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \) as the translatory motion vector of the origin of oxyz.
system relative to the origin of OXYZ. ξ_1 is the surge, ξ_2 is the sway and ξ_3 is the heave. The vector ξ_i is defined with respect to OXYZ reference frame. Furthermore, an angular motion vector $\alpha = [\alpha_1, \alpha_2, \alpha_3]^T$ is defined. α_1, α_2 and α_3 are the roll, pitch and yaw angle about the X, Y and Z axes respectively. Here α_1, α_2 and α_3 are defined with respect to COG of the body.

Now consider a point with position vector \mathbf{r}_i in the OXYZ coordinate system and \mathbf{r}_j in the OXYZ coordinate system. See Fig. 2.2. \mathbf{r}_i and \mathbf{r}_j can be any of the coordinate systems defined in Def. 3.1 and \mathbf{r}_i and \mathbf{r}_j have the following relationship:

$$\mathbf{r}_i = \mathbf{G}_{i, j} \mathbf{r}_j$$

(2.8)

$\mathbf{G}_{i, j}$ is the vector from \mathbf{O}_j to \mathbf{O}_i. \mathbf{r}_j is the transformation matrix, which is dependent on the Euler angles and the order of the Euler angles. \mathbf{r}_j can be determined as follows. First of all, we let $\mathbf{O}_{i, j}$ and $\mathbf{O}_{i, j}$ coincide. After that, $\mathbf{O}_{i, j}$ is rotated an angle α_1 in yaw about \mathbf{X}_B-axis, then an angle in pitch α_2 about its updated \mathbf{Y}_B-axis, and finally an angle α_3 in roll about the updated \mathbf{Z}_B-axis. See Fig. 2.2 as an illustration. With the yaw-pitch-roll Euler angle order, \mathbf{r}_j can be expressed as

$$\mathbf{r}_j = \mathbf{A} \mathbf{c}_1 \mathbf{c}_2 \mathbf{c}_3$$

(2.9)

where

$$\mathbf{A} = \begin{bmatrix} c_1 & 0 & s_1 \\ 0 & 1 & 0 \\ -s_1 & 0 & c_1 \end{bmatrix} \mathbf{c}_1 = \begin{bmatrix} c_2 & s_2 & 0 \\ s_2 & c_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{c}_2 = \begin{bmatrix} c_3 & 0 & s_3 \\ 0 & 1 & 0 \\ -s_3 & 0 & c_3 \end{bmatrix} \mathbf{c}_3$$

Here $c_i = \cos(\alpha_i)$ and $s_i = \sin(\alpha_i)$ with $i = 4, 5, 6$.

According to Ogilvie (1983), the transformation matrix \mathbf{r}_j can be interpolated in two ways:

Interpretation 1: It transforms the representation of vector \mathbf{r}_j in OXYZ coordinate system into its representation in OXYZ coordinate system by \mathbf{r}_j.

Interpretation 2: It changes a vector \mathbf{r}_j into another vector \mathbf{r}_j both in the same reference frame.

Both the interpretations will be used in the later derivations. Note that the product of the transformation matrices \mathbf{r}_i and \mathbf{r}_j is identity matrix. That means, if a vector \mathbf{r}_j has been transformed into another vector by \mathbf{r}_j, one can recover it by using another transformation matrix \mathbf{r}_i. \mathbf{r}_i is the transformation matrix, which is dependent on Euler angles and the order of the Euler angles. \mathbf{r}_i can be determined as follows. First of all, we let $\mathbf{O}_{i, j}$ and $\mathbf{O}_{i, j}$ coincide. After that, $\mathbf{O}_{i, j}$ is rotated an angle α_1 in yaw about \mathbf{X}_B-axis, then an angle in pitch α_2 about its updated \mathbf{Y}_B-axis, and finally an angle α_3 in roll about the updated \mathbf{Z}_B-axis. See Fig. 2.2 as an illustration. With the yaw-pitch-roll Euler angle order, \mathbf{r}_i can be expressed as

$$\mathbf{r}_i = \mathbf{A} \mathbf{c}_1 \mathbf{c}_2 \mathbf{c}_3$$

(2.10)

where

$$\mathbf{A} = \begin{bmatrix} c_1 & -s_1 & 0 \\ s_1 & c_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{c}_1 = \begin{bmatrix} c_2 & s_2 & 0 \\ s_2 & c_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{c}_2 = \begin{bmatrix} c_3 & 0 & s_3 \\ 0 & 1 & 0 \\ -s_3 & 0 & c_3 \end{bmatrix} \mathbf{c}_3$$

Here $c_i = \cos(\alpha_i)$ and $s_i = \sin(\alpha_i)$ with $i = 4, 5, 6$.

According to Ogilvie (1983), the transformation matrix \mathbf{r}_i can be interpolated in two ways:

Interpretation 1: It transforms the representation of vector \mathbf{r}_i in OXYZ coordinate system into its representation in OXYZ coordinate system by \mathbf{r}_j.

Interpretation 2: It changes a vector \mathbf{r}_i into another vector \mathbf{r}_i both in the same reference frame.

Both the interpretations will be used in the later derivations. Note that the product of the transformation matrices \mathbf{r}_i and \mathbf{r}_j is identity matrix. That means, if a vector \mathbf{r}_i has been transformed into another vector by \mathbf{r}_i, one can recover it by using another transformation matrix \mathbf{r}_j. \mathbf{r}_j is the transformation matrix, which is dependent on Euler angles and the order of the Euler angles. \mathbf{r}_j can be determined as follows. First of all, we let $\mathbf{O}_{i, j}$ and $\mathbf{O}_{i, j}$ coincide. After that, $\mathbf{O}_{i, j}$ is rotated an angle α_1 in yaw about \mathbf{X}_B-axis, then an angle in pitch α_2 about its updated \mathbf{Y}_B-axis, and finally an angle α_3 in roll about the updated \mathbf{Z}_B-axis. See Fig. 2.2 as an illustration. With the yaw-pitch-roll Euler angle order, \mathbf{r}_j can be expressed as

$$\mathbf{r}_j = \mathbf{A} \mathbf{c}_1 \mathbf{c}_2 \mathbf{c}_3$$

(2.11)

where

$$\mathbf{A} = \begin{bmatrix} c_1 & -s_1 & 0 \\ s_1 & c_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{c}_1 = \begin{bmatrix} c_2 & s_2 & 0 \\ s_2 & c_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{c}_2 = \begin{bmatrix} c_3 & 0 & s_3 \\ 0 & 1 & 0 \\ -s_3 & 0 & c_3 \end{bmatrix} \mathbf{c}_3$$

Here $c_i = \cos(\alpha_i)$ and $s_i = \sin(\alpha_i)$ with $i = 4, 5, 6$.

According to Ogilvie (1983), the transformation matrix \mathbf{r}_i can be interpolated in two ways:

Interpretation 1: It transforms the representation of vector \mathbf{r}_i in OXYZ coordinate system into its representation in OXYZ coordinate system by \mathbf{r}_i.

Interpretation 2: It changes a vector \mathbf{r}_i into another vector \mathbf{r}_i both in the same reference frame.

Both the interpretations will be used in the later derivations. Note that the product of the transformation matrices \mathbf{r}_i and \mathbf{r}_j is identity matrix. That means, if a vector \mathbf{r}_i has been transformed into another vector by \mathbf{r}_i, one can recover it by using another transformation matrix \mathbf{r}_j. \mathbf{r}_j is the transformation matrix, which is dependent on Euler angles and the order of the Euler angles. \mathbf{r}_j can be determined as follows. First of all, we let $\mathbf{O}_{i, j}$ and $\mathbf{O}_{i, j}$ coincide. After that, $\mathbf{O}_{i, j}$ is rotated an angle α_1 in yaw about \mathbf{X}_B-axis, then an angle in pitch α_2 about its updated \mathbf{Y}_B-axis, and finally an angle α_3 in roll about the updated \mathbf{Z}_B-axis. See Fig. 2.2 as an illustration. With the yaw-pitch-roll Euler angle order, \mathbf{r}_j can be expressed as

$$\mathbf{r}_j = \mathbf{A} \mathbf{c}_1 \mathbf{c}_2 \mathbf{c}_3$$

(2.12)

where

$$\mathbf{A} = \begin{bmatrix} c_1 & -s_1 & 0 \\ s_1 & c_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{c}_1 = \begin{bmatrix} c_2 & s_2 & 0 \\ s_2 & c_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{c}_2 = \begin{bmatrix} c_3 & 0 & s_3 \\ 0 & 1 & 0 \\ -s_3 & 0 & c_3 \end{bmatrix} \mathbf{c}_3$$

Here $c_i = \cos(\alpha_i)$ and $s_i = \sin(\alpha_i)$ with $i = 4, 5, 6$.
2.3 The definition of the motions

\[
\mathbf{R}_{in} = J \mathbf{R}_{in} + \mathbf{R}_{in}\mathbf{c} + O(x) \quad (2.11)
\]

where

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

(2.12)

\[
\mathbf{R}_{in}^{(1)} = \begin{bmatrix} 0 & 0 & 0 \\
-\mathbf{a}^i \times \mathbf{a}^b & \mathbf{a}^i & 0 \\
\mathbf{a}^i \times \mathbf{a}^b & -\mathbf{a}^i & 0 \end{bmatrix}
\quad (2.13)
\]

\[
\mathbf{R}_{in}^{(2)} = \begin{bmatrix} 0 & 0 & 0 \\
-\mathbf{a}^i \times \mathbf{a}^b & \mathbf{a}^i & 0 \\
\mathbf{a}^i \times \mathbf{a}^b & -\mathbf{a}^i & 0 \end{bmatrix}
\quad (2.14)
\]

Here the superscript (1) and (2) indicate the first-order and second-order quantities, respectively. The 'b' in the subscript is the shorthand of the 'body-fixed' and 'i' means 'inertial'. Similarly, the inverse transformation matrix \(\mathbf{R}_{in}^{(-1)} \) can be approximated as

\[
\mathbf{R}_{in}^{(-1)} = \left[\mathbf{R}_{in}^{(-1)} \right]^T = k > 2. \quad (2.15)
\]

The superscript 'T' means the transpose of the matrix.

We will now define some vectors related to the rigid-body motions, gravitational acceleration, forward speed and the normal direction of a point on the body surface. These definitions will be used later in this chapter. Both the descriptions in the inertial coordinate system \(\mathbf{OXYZ} \) and the body-fixed coordinate system \(\mathbf{Oxyz} \) are given. In order to distinguish the vectors in different coordinate systems, a prime will be used if a vector is described in the body-fixed coordinate system. A vector without a prime shall be considered as a description in the inertial reference frame.

(i) Translatory and angular velocity vectors

The translatory velocity vector \(\mathbf{v} \) and angular velocity vector \(\mathbf{\omega} \) in the inertial coordinate system \(\mathbf{OXYZ} \) can be obtained directly by time differentiation. They can be written respectively as

\[
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\quad \text{and}
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

(2.17)

\[
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\quad \text{and}
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

(2.18)

\[
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\quad \text{and}
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

(2.19)

We will now define some vectors related to the rigid-body motions, gravitational acceleration, forward speed and the normal direction of a point on the body surface. These definitions will be used later in this chapter. Both the descriptions in the inertial coordinate system \(\mathbf{OXYZ} \) and the body-fixed coordinate system \(\mathbf{Oxyz} \) are given. In order to distinguish the vectors in different coordinate systems, a prime will be used if a vector is described in the body-fixed coordinate system. A vector without a prime shall be considered as a description in the inertial reference frame.

(ii) Translatory and angular velocity vectors

The translatory velocity vector \(\mathbf{v} \) and angular velocity vector \(\mathbf{\omega} \) in the inertial coordinate system \(\mathbf{OXYZ} \) can be obtained directly by time differentiation. They can be written respectively as

\[
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\quad \text{and}
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

(2.17)

\[
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\quad \text{and}
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

(2.18)

\[
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\quad \text{and}
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

(2.19)
\(\mathbf{\ddot{x}} = \mathbf{R}_{x} \mathbf{\ddot{z}} + \mathbf{\ddot{z}} + \mathbf{O}(\mathbf{z}') \) \tag{2.20}

Using the Interpretation 1 of the transformation matrix, we can obtain the representations of the translatory velocity vector \(\mathbf{\ddot{z}} \) in oxyz system as
\[
\mathbf{\ddot{z}} = \mathbf{R}_{x} \mathbf{\ddot{z}} + \mathbf{\ddot{z}} + \mathbf{O}(\mathbf{z}') \quad \tag{2.21}
\]
with
\[
\mathbf{\ddot{z}} = \mathbf{\ddot{z}} + \mathbf{\ddot{z}} \quad \tag{2.22}
\]
\[
\mathbf{\ddot{z}} = \mathbf{\ddot{z}} + \mathbf{\ddot{z}} \quad \tag{2.23}
\]

According to the definition of the Euler angles in Fig.2.2, the angular velocity \(\mathbf{\omega}' \) in the body-fixed coordinate system can be expressed as
\[
\mathbf{\omega}' = \mathbf{\omega} + \mathbf{\omega} + \mathbf{\omega} \quad \tag{2.24}
\]

Here \(\mathbf{\omega}, \mathbf{\omega} \) and \(\mathbf{\omega} \) are unit vectors along the X B-axis in Fig.2.2c, the Y B-axis in Fig.2.2b and Z B-axis in Fig.2.2a, respectively. Putting
\[
\mathbf{\omega} = 0, \quad \mathbf{\omega} = 0, \quad \mathbf{\omega} = 0 \quad \tag{2.25}
\]
into Eq.(2.24), we have that
\[
\mathbf{\omega}' = \mathbf{\omega} + \mathbf{\omega} + \mathbf{\omega} \quad \tag{2.26}
\]
with
\[
\mathbf{\omega} = \mathbf{\omega} + \mathbf{\omega} + \mathbf{\omega} \quad \tag{2.27}
\]

(2) Displacement and velocity of a point on the body

Using the Interpretation 2 of the transformation matrix, we can express the displacement vector \(\mathbf{\ddot{x}} \) and the velocity vector \(\mathbf{\dot{u}} \) of a point due to the unsteady rigid-body motions as
\[
\mathbf{\ddot{x}} = \mathbf{x} + \mathbf{\ddot{z}} + \mathbf{O}(\mathbf{z}') \quad \tag{2.28}
\]
\[
\mathbf{\dot{u}} = \mathbf{u} + \mathbf{\omega} \times \mathbf{z} + \mathbf{O}(\mathbf{z}') \quad \tag{2.29}
\]

with
\[
\mathbf{\ddot{z}} = \mathbf{\ddot{z}} + \mathbf{\ddot{z}} \quad \tag{2.30}
\]
\[
\mathbf{\ddot{z}} = \mathbf{\ddot{z}} + \mathbf{\ddot{z}} \quad \tag{2.31}
\]

The overdots in Eq.(2.31) indicate time differentiation. \(\mathbf{\ddot{z}} + \mathbf{\ddot{z}} + \mathbf{\ddot{z}} \) in the k-th order translatory motion vector \(\mathbf{R}(\mathbf{x}, \mathbf{z}, \mathbf{z}') \) is the position vector of the point in the body-fixed coordinate system. \(\mathbf{\ddot{x}} \) and \(\mathbf{\dot{u}} \) are vectors described in the inertial coordinate system OXYZ. Their
corresponding representations in the body-fixed coordinate system can be obtained by using the Interpretation I of the transformation matrix

\[\mathbf{x} = \mathbf{R}_x\mathbf{u} = x^{(0)} + x^{(1)} + \mathbf{O}(\mathbf{x})], \tag{2.32} \]

with

\[\mathbf{y}^{(0)} = \mathbf{y}^{(0)}, \tag{2.33} \]

\[\mathbf{y}^{(2)} = \mathbf{y}^{(2)} + \mathbf{R}_{bxy} \mathbf{y}^{(2)} \], \tag{2.34} \]

\[\mathbf{y}^{(3)} = \mathbf{y}^{(3)}, \tag{2.35} \]

\[\mathbf{y}^{(4)} = \mathbf{y}^{(4)} + \mathbf{R}_{bxy} \mathbf{y}^{(4)} \]. \tag{2.36} \]

(5) Gravitational acceleration vector

The description of the gravitational acceleration vector \(\mathbf{g} = \mathbf{g}_{\text{g}} \) in the body-fixed coordinate system \(\mathbf{gs} \) can be approximated as

\[\mathbf{g} = \mathbf{R}_x\mathbf{g} = g^{(0)} + g^{(1)} + \mathbf{O}(\mathbf{g})], \tag{2.37} \]

with \(\mathbf{g}^{(0)} = \mathbf{g}^{(0)}, \tag{2.38} \)

\[\mathbf{g}^{(2)} = \mathbf{g}^{(2)} + \mathbf{R}_{bxy} \mathbf{g}^{(2)} \], \tag{2.39} \]

\[\mathbf{g}^{(3)} = \mathbf{g}^{(3)}, \tag{2.40} \]

\[\mathbf{g}^{(4)} = \mathbf{g}^{(4)} + \mathbf{R}_{bxy} \mathbf{g}^{(4)} \]. \tag{2.41} \]

(5) Normal vector on the body surface

In this study, the forward speed is assumed to be always parallel to the X-axis. In the inertial coordinate system \(\mathbf{GS} \), the forward vector is \(\mathbf{U}^{(0)} = \mathbf{U}^{(0)} \) with \(\mathbf{I} \) the unit directional vector along the X-axis. However, when observed in the body-fixed coordinate system, it has components in \(x, y \), and \(z \) directions due to the angular motions of the body. The forward speed vector in the body-fixed coordinate system \(\mathbf{U}^{(0)} \) can be obtained by using the Interpretation I of the transformation matrix in Eq. (2.9) as

\[\mathbf{U}^{(0)} = \mathbf{R}_x\mathbf{U}^{(0)} = U^{(0)} + U^{(1)} + \mathbf{O}(\mathbf{U}), \tag{2.42} \]

where

\[U^{(0)} = U^{(0)}, \tag{2.43} \]

\[U^{(2)} = U^{(2)} + \mathbf{R}_{bxy} U^{(2)} \], \tag{2.44} \]

\[U^{(3)} = U^{(3)}, \tag{2.45} \]

\[U^{(4)} = U^{(4)} + \mathbf{R}_{bxy} U^{(4)} \]. \tag{2.46} \]

(5) Normal vector on the body surface

In this study, the forward speed is assumed to be always parallel to the X-axis. In the inertial coordinate system \(\mathbf{GS} \), the forward vector is \(\mathbf{U}^{(0)} = \mathbf{U}^{(0)} \) with \(\mathbf{I} \) the unit directional vector along the X-axis. However, when observed in the body-fixed coordinate system, it has components in \(x, y \), and \(z \) directions due to the angular motions of the body. The forward speed vector in the body-fixed coordinate system \(\mathbf{U}^{(0)} \) can be obtained by using the Interpretation I of the transformation matrix in Eq. (2.9) as

\[\mathbf{U}^{(0)} = \mathbf{R}_x\mathbf{U}^{(0)} = U^{(0)} + U^{(1)} + \mathbf{O}(\mathbf{U}), \tag{2.47} \]

where

\[U^{(0)} = U^{(0)}, \tag{2.48} \]

\[U^{(2)} = U^{(2)} + \mathbf{R}_{bxy} U^{(2)} \], \tag{2.49} \]

\[U^{(3)} = U^{(3)}, \tag{2.50} \]

\[U^{(4)} = U^{(4)} + \mathbf{R}_{bxy} U^{(4)} \]. \tag{2.51} \]
The kinematic free-surface condition states that the fluid particles on the free surface remain on the free surface. Because we are interested in the weakly-nonlinear wave-body problems in this study, the free-surface elevation will be assumed to be a single-valued function of the two horizontal coordinates X and Y in the inertial coordinate system OXYZ. Thus the kinematic free-surface condition takes the following form

\[
\frac{\partial \eta}{\partial t} + U \cdot \nabla \eta = 0, \quad \eta = \mathbf{n} \cdot \mathbf{u},
\]

where \(\mathbf{u} \) is the fluid velocity and \(\mathbf{n} \) is the normal vector when the body is at rest. It is the same as the normal vector of the body surface described in the body-fixed coordinate system, i.e. \(\mathbf{n} \). In this study, the normal vector is defined as positive pointing out of the water domain.

2.4 Formulation of the second-order wave-body problem in the inertial coordinate system

The formulation of the second-order wave-body problem in the inertial coordinate system OXYZ (see Fig. 2.1) will be presented. A small forward speed is taken into account. We will in this section denote the instantaneous free surface as SF and the body surface as SB with their mean position as SF0 and SB0. The seabed is assumed horizontally along the plane \(Z = -h \).

2.4.1 General description of the boundary conditions

The kinematic free-surface condition states that the fluid particles on the free surface remain on the free surface. Because we are interested in the weakly-nonlinear wave-body problems in this study, the free-surface elevation will be assumed to be a single-valued function of the two horizontal coordinates X and Y in the inertial coordinate system OXYZ. Thus the kinematic free-surface condition takes the following form

\[
\frac{\partial \eta}{\partial t} + U \cdot \nabla \eta = 0, \quad \eta = \mathbf{n} \cdot \mathbf{u},
\]

where \(\mathbf{u} \) is the fluid velocity and \(\mathbf{n} \) is the normal vector when the body is at rest. It is the same as the normal vector of the body surface described in the body-fixed coordinate system, i.e. \(\mathbf{n} \). In this study, the normal vector is defined as positive pointing out of the water domain.

2.4 Formulation of the second-order wave-body problem in the inertial coordinate system

The formulation of the second-order wave-body problem in the inertial coordinate system OXYZ (see Fig. 2.1) will be presented. A small forward speed is taken into account. We will in this section denote the instantaneous free surface as SF and the body surface as SB with their mean position as SF0 and SB0. The seabed is assumed horizontally along the plane \(Z = -h \).

The governing equation is the Laplace equation as it is stated at the beginning of this chapter. A general description of the free-surface conditions and the body boundary condition is given in Section 2.4.1. In section 2.4.2, we will present the first-order and second-order free-surface conditions together with corresponding body boundary conditions. The formulation is accurate to second order in wave steepness (and the unsteady body motions) and to first order in Froude number.

2.4.1 General description of the boundary conditions

The kinematic free-surface condition states that the fluid particles on the free surface remain on the free surface. Because we are interested in the weakly-nonlinear wave-body problems in this study, the free-surface elevation will be assumed to be a single-valued function of the two horizontal coordinates X and Y in the inertial coordinate system OXYZ. Thus the kinematic free-surface condition takes the following form

\[
\frac{\partial \eta}{\partial t} + U \cdot \nabla \eta = 0, \quad \eta = \mathbf{n} \cdot \mathbf{u},
\]

where \(\mathbf{u} \) is the fluid velocity and \(\mathbf{n} \) is the normal vector when the body is at rest. It is the same as the normal vector of the body surface described in the body-fixed coordinate system, i.e. \(\mathbf{n} \). In this study, the normal vector is defined as positive pointing out of the water domain.

2.4 Formulation of the second-order wave-body problem in the inertial coordinate system

The formulation of the second-order wave-body problem in the inertial coordinate system OXYZ (see Fig. 2.1) will be presented. A small forward speed is taken into account. We will in this section denote the instantaneous free surface as SF and the body surface as SB with their mean position as SF0 and SB0. The seabed is assumed horizontally along the plane \(Z = -h \).

The formulation of the second-order wave-body problem in the inertial coordinate system OXYZ (see Fig. 2.1) will be presented. A small forward speed is taken into account. We will in this section denote the instantaneous free surface as SF and the body surface as SB with their mean position as SF0 and SB0. The seabed is assumed horizontally along the plane \(Z = -h \).

The normal vector on the body surface observed in the inertial coordinate system OXYZ can be approximated as

\[
\mathbf{n} = \mathbf{e}_x + \mathbf{e}_y + \mathbf{e}_z + O(\delta^2),
\]

with

\[
\mathbf{e}_x = \mathbf{e}_X, \quad \mathbf{e}_y = \mathbf{e}_Y, \quad \mathbf{e}_z = \mathbf{e}_Z - \mathbf{u},
\]

Here \(\delta \) is the normal vector when the body is at rest. It is the same as the normal vector of the body surface described in the body-fixed coordinate system, i.e. \(\delta \). In this study, the normal vector is defined as positive pointing out of the water domain.

2.4 Formulation of the second-order wave-body problem in the inertial coordinate system

The formulation of the second-order wave-body problem in the inertial coordinate system OXYZ (see Fig. 2.1) will be presented. A small forward speed is taken into account. We will in this section denote the instantaneous free surface as SF and the body surface as SB with their mean position as SF0 and SB0. The seabed is assumed horizontally along the plane \(Z = -h \).

The normal vector on the body surface observed in the inertial coordinate system OXYZ can be approximated as

\[
\mathbf{n} = \mathbf{e}_x + \mathbf{e}_y + \mathbf{e}_z + O(\delta^2),
\]

with

\[
\mathbf{e}_x = \mathbf{e}_X, \quad \mathbf{e}_y = \mathbf{e}_Y, \quad \mathbf{e}_z = \mathbf{e}_Z - \mathbf{u},
\]

Here \(\delta \) is the normal vector when the body is at rest. It is the same as the normal vector of the body surface described in the body-fixed coordinate system, i.e. \(\delta \). In this study, the normal vector is defined as positive pointing out of the water domain.

The normal vector on the body surface observed in the inertial coordinate system OXYZ can be approximated as

\[
\mathbf{n} = \mathbf{e}_x + \mathbf{e}_y + \mathbf{e}_z + O(\delta^2),
\]

with

\[
\mathbf{e}_x = \mathbf{e}_X, \quad \mathbf{e}_y = \mathbf{e}_Y, \quad \mathbf{e}_z = \mathbf{e}_Z - \mathbf{u},
\]

Here \(\delta \) is the normal vector when the body is at rest. It is the same as the normal vector of the body surface described in the body-fixed coordinate system, i.e. \(\delta \). In this study, the normal vector is defined as positive pointing out of the water domain.
The dynamic free-surface condition follows by imposing the Bernoulli’s equation on the free surface and requiring the hydrodynamic pressure to be equal to the atmospheric pressure, i.e.

\[\sum \mathbf{V} \cdot \mathbf{F} = 0. \] (2.45)

Here \(g \) is the acceleration of gravity. The \(-U \mathbf{V} \) term in Eq.(2.49) is due to the Lorentz transformation between the inertial coordinate system OXYZ and the Earth-fixed coordinate system \((X_e, Y_e, Z_e)\).

The body boundary condition

\[\mathbf{n} \cdot \left(\mathbf{u} \right) = 0 \text{ on SB} \] (2.46)

ensures that fluid particles cannot penetrate the body surface. Here all the vectors are defined in the inertial coordinate system OXYZ. In this work, the forward speed is assumed positive in the X-direction. Rigid-body motions are assumed with \(\mathbf{u} \) as the undisturbed translational velocity of the origin of the body-fixed coordinate system \((0)\) (see Fig.2.1) and \(\mathbf{v} \) as the rotational velocity of the body with respect to the origin of the body-fixed coordinate system \((0)\). \(\mathbf{n} \) is the normal vector on the body surface, which is defined positive pointing out of the water domain. \(\mathbf{r} \) is the position vector of a point on the body surface relative to the origin of the body-fixed reference frame frame \((0)\).

2.4.2 Second-order approximations of the boundary conditions

If the amplitudes of the incident waves and the body motions relative to the characteristic body dimensions are asymptotically small, we can Taylor expand the free-surface conditions and body boundary condition about the mean free surface and the mean body position, respectively. Strictly speaking we must require the solution to be analytic which means that the expansion is not valid near a sharp corner with interior angle less than \(\pi \) radians on the body surface.

In Section 2.1, we have presented the series expansions of the velocity potential and the wave elevation. The expansions were made with respect to a perturbation parameter \(\epsilon \) related to the wave steepness and the undisturbed body motion. No approximation has been made with respect to the forward speed. In order to simplify the analysis, we will only consider a small forward speed.

The leading order of the wave elevation, i.e. \(\eta^0 \) in Eq.(2.3), is of \(\mathcal{O}(\epsilon^0) \). This can be understood by putting \(\eta^0 \) and \(\theta^0 \) into the dynamic free-surface condition (2.45). The \(\theta^0 \) term is zero because \(\theta^0 \) is time-independent. In this work, we only consider a small forward speed. Approximation will be made correct to \(\epsilon^2 \) and \(\epsilon^3 \). Here \(\epsilon \) is a small parameter related to the Froude number and \(\epsilon \) is a parameter measuring the smallness of the wave slope and the undisturbed body motion. That means the steady wave elevation \(\eta^0 \) is negligible in the following derivations, i.e.

\[\eta = \epsilon \eta^1 + \epsilon^2 \eta^2 + \epsilon^3 \eta^3 + \ldots \] (2.47)

The steady velocity potential \(\theta^0 \) can be determined as the solution of the so-called ‘double-body’ flow with no steady wave effects included.

Introducing the following series expansions Eq.(2.23) and Eq.(2.47) into Eq.(2.44) and Eq.(2.45), we get

\[\frac{\partial}{\partial t} \left(\mathbf{u} \right) = 0 \text{ on SB} \] (2.46)

ensures that fluid particles cannot penetrate the body surface. Here all the vectors are defined in the inertial coordinate system OXYZ. In this work, the forward speed is assumed positive in the X-direction. Rigid-body motions are assumed with \(\mathbf{u} \) as the undisturbed translational velocity of the origin of the body-fixed coordinate system \((0)\) (see Fig.2.1) and \(\mathbf{v} \) as the rotational velocity of the body with respect to the origin of the body-fixed coordinate system \((0)\). \(\mathbf{n} \) is the normal vector on the body surface, which is defined positive pointing out of the water domain. \(\mathbf{r} \) is the position vector of a point on the body surface relative to the origin of the body-fixed reference frame frame \((0)\).

2.4.2 Second-order approximations of the boundary conditions

If the amplitudes of the incident waves and the body motions relative to the characteristic body dimensions are asymptotically small, we can Taylor expand the free-surface conditions and body boundary condition about the mean free surface and the mean body position, respectively. Strictly speaking we must require the solution to be analytic which means that the expansion is not valid near a sharp corner with interior angle less than \(\pi \) radians on the body surface.

In Section 2.1, we have presented the series expansions of the velocity potential and the wave elevation. The expansions were made with respect to a perturbation parameter \(\epsilon \) related to the wave steepness and the undisturbed body motion. No approximation has been made with respect to the forward speed. In order to simplify the analysis, we will only consider a small forward speed.

The leading order of the wave elevation, i.e. \(\eta^0 \) in Eq.(2.3), is of \(\mathcal{O}(\epsilon^0) \). This can be understood by putting \(\eta^0 \) and \(\theta^0 \) into the dynamic free-surface condition (2.45). The \(\theta^0 \) term is zero because \(\theta^0 \) is time-independent. In this work, we only consider a small forward speed. Approximation will be made correct to \(\epsilon^2 \) and \(\epsilon^3 \). Here \(\epsilon \) is a small parameter related to the Froude number and \(\epsilon \) is a parameter measuring the smallness of the wave slope and the undisturbed body motion. That means the steady wave elevation \(\eta^0 \) is negligible in the following derivations, i.e.

\[\eta = \epsilon \eta^1 + \epsilon^2 \eta^2 + \epsilon^3 \eta^3 + \ldots \] (2.47)

The steady velocity potential \(\theta^0 \) can be determined as the solution of the so-called ‘double-body’ flow with no steady wave effects included.

Introducing the following series expansions Eq.(2.23) and Eq.(2.47) into Eq.(2.44) and Eq.(2.45), we get
Taylor expanding Eq.(2.44) and Eq.(2.45) about $Z=0$ and collecting consistent terms of the same order, we can obtain the free-surface conditions at each order as

$$\frac{\partial \psi_{m+1}}{\partial Z} \bigg|_{Z=0} = \frac{\partial \psi_{m+2}}{\partial Z} \bigg|_{Z=0},$$

$$\frac{\partial \psi_{m+1}}{\partial Z} = -\frac{\partial \psi_{m+2}}{\partial Z},$$

with the forcing terms ψ_{m+1} and ψ_{m+2} for $m=1,2$ defined as

$$\psi_{m+1} = \frac{\partial \psi}{\partial Z} \bigg|_{Z=0},$$

$$\psi_{m+2} = \frac{\partial \psi}{\partial Z} \bigg|_{Z=0},$$

The superscript indicates the order of quantity and the subscript m means partial differentiation. For instance, ψ_m is the steady velocity potential, which reflects the effect of the small parameter ϵ related to the Froude number. In Eq.(2.46) and Eq.(2.47), the subscript s and in denote the scattered and incident part of the solution, respectively. The gradient operators ∇ and $\vec{\nabla}$ are defined respectively as

$$\nabla = \frac{\partial}{\partial Z} + \frac{\partial}{\partial X} + \frac{\partial}{\partial Y}$$

and

$$\vec{\nabla} = \frac{\partial}{\partial Z} + \frac{\partial}{\partial X} + \frac{\partial}{\partial Y}.$$

The body boundary conditions at each order follow by the Taylor expansion of the body boundary condition Eq.(2.46)

$$\frac{\partial \psi_{m+1}}{\partial Z} \bigg|_{Z=0} = \frac{\partial \psi_{m+2}}{\partial Z} \bigg|_{Z=0},$$

with

$$\psi_{m+1} = \psi_{m+1}^{(0)} \bigg|_{Z=0} = \psi_{m+1}^{(1)} \bigg|_{Z=0},$$

$$\psi_{m+2} = \psi_{m+2}^{(0)} \bigg|_{Z=0} = \psi_{m+2}^{(1)} \bigg|_{Z=0},$$

The superscript indicates the order of quantity and the subscript m means partial differentiation. For instance, ψ_m is the steady velocity potential, which reflects the effect of the small parameter ϵ related to the Froude number. In Eq.(2.46) and Eq.(2.47), the subscript s and in denote the scattered and incident part of the solution, respectively. The gradient operators ∇ and $\vec{\nabla}$ are defined respectively as

$$\nabla = \frac{\partial}{\partial Z} + \frac{\partial}{\partial X} + \frac{\partial}{\partial Y}$$

and

$$\vec{\nabla} = \frac{\partial}{\partial Z} + \frac{\partial}{\partial X} + \frac{\partial}{\partial Y}.$$
The body boundary conditions in Eq. (2.56) are based on Taylor expansion about the mean body surface. This assumption is violated near the sharp corners. The consequence of applying the body boundary conditions Eq. (2.56) with the forcing terms defined in Eq. (2.57) and Eq. (2.58) in the wave-body analysis with forward speed effect is that the resulting boundary integral equations (BIEs) are not integrable. Why the BIEs are not integrable can be partly understood by a two-dimensional corner flow. See Chapter 5 for the details.

2.4 Formulation of the second-order wave-body problem in the inertial coordinate system

2.4.3 Forces and moments calculation

Integrating properly the pressure on the instantaneous body surface gives the forces and moments, which may either be defined with respect to the inertial coordinate system OSYZ or the body-fixed coordinate system OXYZ (see Eq. (2.3)). When the forces and moments are defined with respect to OSYZ, they can be expressed respectively as

\[\vec{F} = \int_S \rho \vec{u} \cdot \partial \vec{u} \, dS \tag{2.59} \]

\[\vec{M} = \int_S \rho \vec{u} \times \partial \vec{u} \cdot \hat{n} \, dS \tag{2.60} \]

where \(\vec{u} \) is the normal vector, \(\vec{d} \) and \(\vec{m} \) are the instantaneous displacement and velocity of a point on the body, respectively. See the definitions in Section 2.3.

The double-gradient term in the first-order body boundary condition, i.e. Eq. (2.57), is associated with the so-called m-j-terms in the literature, which was introduced by Ogilvie & Tuck (1969). The second-order body boundary condition, i.e. Eq. (2.58), is more complicated since it involves three double-gradient terms and a triple-gradient term. The double and triple gradient terms in the body boundary conditions represent great numerical difficulties for marine structures with high-curvature surface.

The body boundary conditions in Eq. (2.56) are based on Taylor expansion about the mean body surface. This indicates that the fluid velocity has been assumed to be analytic at the mean body surface. In a second-order problem with regular incident waves, this is no upstream wave system when \(\omega < 0.25 \). It was reported by Zhao & Faltinsen (1988) who used a similar theory to correct \(\phi_{2j} \) and \(\phi_{2j} \) in a two-dimensional linear wave-body-current interaction problem that the body generated both upstream waves and downstream waves when \(\omega > 0.25 \). In all the cases studies in this thesis, we have limited ourselves to \(\omega < 0.25 \).

2.4.3 Forces and moments calculation

Integrating properly the pressure on the instantaneous body surface gives the forces and moments, which may either be defined with respect to the inertial coordinate system OSYZ or the body-fixed coordinate system OXYZ (see Eq. (2.3)). When the forces and moments are defined with respect to OSYZ, they can be expressed respectively as

\[\vec{F} = \int_S \rho \vec{u} \cdot \partial \vec{u} \, dS \tag{2.59} \]

\[\vec{M} = \int_S \rho \vec{u} \times \partial \vec{u} \cdot \hat{n} \, dS \tag{2.60} \]

One should note that we have neglected some of the OSYZ terms in the formulation of the boundary conditions. In order to access for how large forward speed or current velocity the present theory can be applied, one has to consider the parameter \(\nu = \frac{U}{c_0} \), which is simply the product of the Froude number and the non-dimensional frequency of encounter. Here U is the forward speed in either the same or the opposite direction as the heading of the incident wave, c_0 is the encounter frequency. In a linear problem, \(\nu = 0 \), where \(\nu = \frac{k}{\omega} \) is the fundamental frequency of the incident wave. In a second-order problem with regular incident waves, \(\nu = \frac{2U}{c_0} \). Theoretically, it is known that important changes happen in the linear body-generated wave system at \(\nu = 0.25 \). There is no upstream wave system when \(\nu < 0.25 \), while both upstream and downstream wave exist with \(\nu > 0.25 \). It was reported by Zhao & Faltinsen (1988) who used a similar theory to correct \(\phi_{2j} \) and \(\phi_{2j} \) in a two-dimensional linear wave-body-current interaction problem that the body generated both upstream waves and downstream waves when \(\nu > 0.25 \). In all the cases studies in this thesis, we have limited ourselves to \(\nu < 0.25 \).
Here \(p \) is the pressure on the instantaneous wetted body surface \(SB(t) \). \(\mathbf{d} \) is the normal vector on \(SB(t) \), which is defined to be positive pointing out of the fluid domain. \(\mathbf{r} = (X, Y, Z) \) is the position vector of a point on the body. \(\mathbf{r} = (X, Y, Z) \) is the position vector of a point, at which the moments are defined with respect. All the vectors in Eq.(2.59) and Eq.(2.60) are defined with respect to OXYZ system.

When the problem is solved with the formulation in the inertial coordinate system, i.e. the free-surface conditions Eq.(2.40), Eq.(2.49) and the boundary condition Eq.(2.56) are used, the solution, for instance the pressure, is obtained at the mean position of the body surface. The pressure on the instantaneous body surface is then approximated by Taylor expansion about the mean body surface, i.e.,
\[
p = p_{0} + p_{1} + p_{2} + O(k^{2}),
\]
(2.61)

\(p_{0} \), \(p_{1} \), and \(p_{2} \) are the first-order and second-order rigid-body displacement in Z-direction of a point on the body, respectively. See the definitions in Eq.(2.30).

\[
p_{0} = \rho g Z.
\]
(2.62)

\[
p_{1} = p_{1}^{(0)} e_{x} \mathbf{r} + p_{1}^{(1)} e_{y} \mathbf{r} + p_{1}^{(2)} e_{z} \mathbf{r}.
\]
(2.63)

\[
p_{2} = p_{2}^{(0)} e_{x} \mathbf{r} + p_{2}^{(1)} e_{y} \mathbf{r} + p_{2}^{(2)} e_{z} \mathbf{r} + \frac{1}{2} \mathbf{r} \cdot \mathbf{M} \cdot \mathbf{r},
\]
(2.64)

Here \(x_{1} \) and \(x_{2} \) are the first-order and second-order rigid-body displacement in Z-direction of a point on the body, respectively. See the definitions in Eq.(2.30).

Applying Eq.(2.61) and Eq.(2.62) to Eq.(2.59) and Eq.(2.60) leads us to the following approximation of \(F \) and \(M \)
\[
F = F^{(0)} + F^{(1)} + F^{(2)} + O(k^{2}),
\]
(2.65)

\[
M = M^{(0)} + M^{(1)} + M^{(2)} + O(k^{2}).
\]
(2.66)

Here \((1) \), \((1) \), \((2) \), \((0) \) are the hydrostatic, first-order and second-order pressure respectively defined as
\[
p^{(0)} = \rho g Z,
\]
(2.67)

\[
p^{(1)} = \int_{SB} p_{1}^{(0)} e_{x} \mathbf{r} + p_{1}^{(1)} e_{y} \mathbf{r} + p_{1}^{(2)} e_{z} \mathbf{r} \cdot \mathbf{d}s,
\]
(2.68)

\[
p^{(2)} = \int_{SB} p_{2}^{(0)} e_{x} \mathbf{r} + p_{2}^{(1)} e_{y} \mathbf{r} + p_{2}^{(2)} e_{z} \mathbf{r} + \frac{1}{2} \mathbf{r} \cdot \mathbf{M} \cdot \mathbf{r} \cdot \mathbf{d}s,
\]
(2.69)

\[
M^{(0)} = \int_{SB} \int_{SB} \left| \mathbf{r} \right| \cdot \mathbf{n} \cdot \mathbf{r} \cdot \mathbf{d}s \cdot \mathbf{d} \mathbf{s},
\]
(2.70)

\[
M^{(1)} = \int_{SB} \int_{SB} \left| \mathbf{r} \right| \cdot \mathbf{n} \cdot \mathbf{r} \cdot \mathbf{d}s \cdot \mathbf{d} \mathbf{s},
\]
(2.71)

Here \(x_{1} \) and \(x_{2} \) are the first-order and second-order rigid-body displacement in Z-direction of a point on the body, respectively. See the definitions in Eq.(2.30).
and therefore are not integrable at the sharp corner, because it includes singular terms of O(U^3). U is a small current speed in Zhao & Faltinsen’s (1989a) study. Those singular terms involve the second-order derivatives of the steady velocity potential \(\psi_0 \) and therefore are not integrable. In order to get physical results, Zhao & Faltinsen (1989b) has to include an additional term of O(U^2) in the Bernoulli’s equation to cancel out the singular part in \(\psi \). See Zhao & Faltinsen (1990b) for the details.

Using a formulation in the inertial coordinate system, Zhao & Faltinsen (1989b) reported that the two-dimensional added mass coefficients obtained by pressure integration on a body with sharp corner in a current are unphysical. Because the last term in Eq.(2.63), i.e. \(-p_{m} c^{2} \), only contributes to the restoring forces, it was not included in the calculation of the added mass coefficients. In Zhao & Faltinsen (1989b), the solution for \(\psi \) was divided into two parts. The first part takes care of the \(m_{r} \)-terms in the linear body boundary condition and it is singular at the sharp corner. The other part is regular, which takes care of the rest of the boundary conditions. Following Zhao & Faltinsen’s (1990b) analysis, it can be shown that \(\psi \) is not integrable at the sharp corner, because it includes singular terms of O(U). \(U \) is a small current speed in Zhao & Faltinsen’s (1989a) study. Those singular terms involve the second-order derivatives of the steady velocity potential \(\psi_0 \) and therefore are not integrable. In order to get physical results, Zhao & Faltinsen (1989b) has to include an additional term of O(U^2) in the Bernoulli’s equation to cancel out the singular part in \(\psi \). See Zhao & Faltinsen (1990b) for the details.

Using a formulation in the inertial coordinate system, Zhao & Faltinsen (1990b) reported that the two-dimensional added mass coefficients obtained by pressure integration on a body with sharp corner in a current are unphysical. Because the last term in Eq.(2.63), i.e. \(-p_{m} c^{2} \), only contributes to the restoring forces, it was not included in the calculation of the added mass coefficients. In Zhao & Faltinsen (1989b), the solution for \(\psi \) was divided into two parts. The first part takes care of the \(m_{r} \)-terms in the linear body boundary condition and it is singular at the sharp corner. The other part is regular, which takes care of the rest of the boundary conditions. Following Zhao & Faltinsen’s (1990b) analysis, it can be shown that \(\psi \) is not integrable at the sharp corner, because it includes singular terms of O(U). \(U \) is a small current speed in Zhao & Faltinsen’s (1989a) study. Those singular terms involve the second-order derivatives of the steady velocity potential \(\psi_0 \) and therefore are not integrable. In order to get physical results, Zhao & Faltinsen (1989b) has to include an additional term of O(U^2) in the Bernoulli’s equation to cancel out the singular part in \(\psi \). See Zhao & Faltinsen (1990b) for the details.

Using a formulation in the inertial coordinate system, Zhao & Faltinsen (1990b) reported that the two-dimensional added mass coefficients obtained by pressure integration on a body with sharp corner in a current are unphysical. Because the last term in Eq.(2.63), i.e. \(-p_{m} c^{2} \), only contributes to the restoring forces, it was not included in the calculation of the added mass coefficients. In Zhao & Faltinsen (1989b), the solution for \(\psi \) was divided into two parts. The first part takes care of the \(m_{r} \)-terms in the linear body boundary condition and it is singular at the sharp corner. The other part is regular, which takes care of the rest of the boundary conditions. Following Zhao & Faltinsen’s (1990b) analysis, it can be shown that \(\psi \) is not integrable at the sharp corner, because it includes singular terms of O(U). \(U \) is a small current speed in Zhao & Faltinsen’s (1989a) study. Those singular terms involve the second-order derivatives of the steady velocity potential \(\psi_0 \) and therefore are not integrable. In order to get physical results, Zhao & Faltinsen (1989b) has to include an additional term of O(U^2) in the Bernoulli’s equation to cancel out the singular part in \(\psi \). See Zhao & Faltinsen (1990b) for the details.
2.5 Formulation of the third-order diffraction problem in the Earth-fixed coordinate system

In Section 2.4.2, we have presented the first-order and second-order approximations of the free-surface and the body boundary conditions formulated in the inertial coordinate system. A small forward speed was taken into account. In this section, the third-order boundary conditions for a diffraction problem will be given. No forward speed or current effect is included. The body is restrained from oscillating in the incident wave. The first- and second-order boundary conditions and the corresponding formulas for forces and moments calculation can be obtained by setting all the terms associated with the forward speed \(u \) and steady velocity potential \(\phi^0 \) in the corresponding equations in Section 2.4.2 to be zero. In this section, only the third-order free-surface conditions, body boundary condition and formulas for third-order forces and moments will be given. In this case, the Earth-fixed coordinate system \(O_{XXYZ} \), the inertial coordinate system \(OXYZ \) and the body-fixed coordinate system \(oxyz \) coincide with each other.

2.5.1 Free-surface conditions

The third-order free-surface conditions satisfied at \(z = 0 \) are written as

\[
\begin{align*}
\frac{\partial^3 \eta}{\partial t^3} &+ \frac{\partial^3 \eta}{\partial z^3} = -\frac{1}{\rho} \frac{\partial^2 \phi^0}{\partial t^2} - \frac{1}{\rho} \frac{\partial \phi^0}{\partial t} \frac{\partial \phi^0}{\partial z} + \frac{1}{\rho} \frac{\partial \phi^0}{\partial z} \frac{\partial \phi^0}{\partial z} \\
\frac{\partial^3 \eta}{\partial t^3} &+ \frac{\partial^3 \eta}{\partial z^3} = -\frac{1}{\rho} \frac{\partial^2 \phi^0}{\partial t^2} - \frac{1}{\rho} \frac{\partial \phi^0}{\partial t} \frac{\partial \phi^0}{\partial z} + \frac{1}{\rho} \frac{\partial \phi^0}{\partial z} \frac{\partial \phi^0}{\partial z} \\
\frac{\partial^3 \eta}{\partial t^3} &+ \frac{\partial^3 \eta}{\partial z^3} = -\frac{1}{\rho} \frac{\partial^2 \phi^0}{\partial t^2} - \frac{1}{\rho} \frac{\partial \phi^0}{\partial t} \frac{\partial \phi^0}{\partial z} + \frac{1}{\rho} \frac{\partial \phi^0}{\partial z} \frac{\partial \phi^0}{\partial z} \\
\text{and} \\
\frac{\partial^3 \eta}{\partial t^3} &+ \frac{\partial^3 \eta}{\partial z^3} = -\frac{1}{\rho} \frac{\partial^2 \phi^0}{\partial t^2} - \frac{1}{\rho} \frac{\partial \phi^0}{\partial t} \frac{\partial \phi^0}{\partial z} + \frac{1}{\rho} \frac{\partial \phi^0}{\partial z} \frac{\partial \phi^0}{\partial z} \\
\frac{\partial^3 \eta}{\partial t^3} &+ \frac{\partial^3 \eta}{\partial z^3} = -\frac{1}{\rho} \frac{\partial^2 \phi^0}{\partial t^2} - \frac{1}{\rho} \frac{\partial \phi^0}{\partial t} \frac{\partial \phi^0}{\partial z} + \frac{1}{\rho} \frac{\partial \phi^0}{\partial z} \frac{\partial \phi^0}{\partial z} \\
\frac{\partial^3 \eta}{\partial t^3} &+ \frac{\partial^3 \eta}{\partial z^3} = -\frac{1}{\rho} \frac{\partial^2 \phi^0}{\partial t^2} - \frac{1}{\rho} \frac{\partial \phi^0}{\partial t} \frac{\partial \phi^0}{\partial z} + \frac{1}{\rho} \frac{\partial \phi^0}{\partial z} \frac{\partial \phi^0}{\partial z} \\
\frac{\partial^3 \eta}{\partial t^3} &+ \frac{\partial^3 \eta}{\partial z^3} = -\frac{1}{\rho} \frac{\partial^2 \phi^0}{\partial t^2} - \frac{1}{\rho} \frac{\partial \phi^0}{\partial t} \frac{\partial \phi^0}{\partial z} + \frac{1}{\rho} \frac{\partial \phi^0}{\partial z} \frac{\partial \phi^0}{\partial z} \\
\text{Here the operators} \quad V \quad \text{and} \quad \overline{V} \quad \text{are defined in Eq. (2.54) and Eq. (2.55), respectively.}
\end{align*}
\]

The third-order free-surface conditions in Eq. (2.73) and Eq. (2.74) do not require explicit expressions of the third-order velocity potential and wave elevation of the incident wave. Note that Eq. (2.73) and Eq. (2.74) contain an effect leading to that a secularity condition must be imposed in order to solve the problem. Discussion on the secularity effect will be made in Section 6.4 and Appendix D. The third-order time-domain simulations will be studied in Section 6.4 by using a two-dimensional wave tank. A two-time scales approach presented in Appendix D is used to eliminate the secular terms in a
2.5 Formulation of the third-order diffraction problem in the Earth-fixed coordinate system

2.5.2 Body boundary condition

The third-order body boundary condition for the diffraction of a stationary body takes the following simple form

\[\frac{d^3 \mathbf{u}^0}{d \tau^3} = \frac{d^2 \mathbf{u}^0}{d \tau^2} \text{ on } \mathbf{S}_B \],

(2.75)

where \(\mathbf{S}_B \) is the third-order velocity potential of the incident wave. \(\mathbf{S}_B \) is the mean wetted body surface.

2.5.3 Forces and moments calculation

The third-order force vector is divided into three parts with the first part due to the first-order solution, the second part contributed by the product of the first-order and second-order quantities, and the third part by the third-order velocity potentials, i.e.,

\[\mathbf{F}^{(3)} = \mathbf{F}^{(1)} + \mathbf{F}^{(2)} + \mathbf{F}^{(3)} \],

(2.76)

where

\[\mathbf{F}^{(1)} = -\mathbf{p}_0 \int \left[\mathbf{u}^{(1)} \right] \mathbf{d} \mathbf{A} - \mathbf{p}_0 \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \]

(2.77)

\[\mathbf{F}^{(2)} = -\mathbf{p}_0 \int \mathbf{u}^{(1)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \mathbf{d} \mathbf{A} - \mathbf{p}_0 \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \]

(2.78)

\[\mathbf{F}^{(3)} = -\mathbf{p}_0 \int \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \]

(2.79)

Here we have assumed that the body surface in its static equilibrium position is vertical in the free surface zone. The derivation of Eq.(2.77) - Eq.(2.79) is tedious and only the final results are shown here. Basically, one starts with integrating the pressure on the instantaneous wetted body surface. The instantaneous wetted body surface is then considered as the sum of two parts, i.e., \(\mathbf{S}_B + \Delta \mathbf{S}_B \), is the mean wetted body surface. \(\Delta \mathbf{S}_B \) is the fluctuation of the wetted body surface due to wave elevation. The velocity potential is assumed to be independent on \(Z \)-coordinate in the free surface zone. Introducing the Stokes series expansion of the velocity potential and wave elevation and collecting consistently the third-order terms, we can get Eq.(2.77) - Eq.(2.79). Note that \(\mathbf{F}^{(1)} \) contains only one integral along the mean waterline \(C_W \), i.e., \(-\mathbf{p}_0 \int \mathbf{u}^{(1)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \), which do not show up in Eq.(2.79) because they cancel out with each other. This is obvious if the first-order dynamic free-surface condition, i.e., \(\mathbf{u}^{(1)} \mathbf{u}^{(0)} \mathbf{u}^{(0)} = \mathbf{0} \), is considered.

Similarly, the third-order moment about the origin of the coordinate system OXYZ can be expressed as

\[\mathbf{M}^{(3)} = \mathbf{M}^{(1)} + \mathbf{M}^{(2)} + \mathbf{M}^{(3)} \],

(2.80)

where \(\mathbf{M}^{(1)} \), \(\mathbf{M}^{(2)} \) and \(\mathbf{M}^{(3)} \) can be obtained by replacing \(\mathbf{u}^{(1)} \) with \(\mathbf{u}^{(0)} \mathbf{u}^{(0)} \mathbf{u}^{(0)} \) in Eq.(2.77), Eq.(2.79) and Eq.(2.79), respectively.

2.5 Formulation of the third-order diffraction problem in the Earth-fixed coordinate system

2.5.2 Body boundary condition

The third-order body boundary condition for the diffraction of a stationary body takes the following simple form

\[\frac{d^3 \mathbf{u}^0}{d \tau^3} = \frac{d^2 \mathbf{u}^0}{d \tau^2} \text{ on } \mathbf{S}_B \],

(2.75)

where \(\mathbf{S}_B \) is the third-order velocity potential of the incident wave. \(\mathbf{S}_B \) is the mean wetted body surface.

2.5.3 Forces and moments calculation

The third-order force vector is divided into three parts with the first part due to the first-order solution, the second part contributed by the product of the first-order and second-order quantities, and the third part by the third-order velocity potentials, i.e.,

\[\mathbf{F}^{(3)} = \mathbf{F}^{(1)} + \mathbf{F}^{(2)} + \mathbf{F}^{(3)} \],

(2.76)

where

\[\mathbf{F}^{(1)} = -\mathbf{p}_0 \int \left[\mathbf{u}^{(1)} \right] \mathbf{d} \mathbf{A} - \mathbf{p}_0 \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \]

(2.77)

\[\mathbf{F}^{(2)} = -\mathbf{p}_0 \int \mathbf{u}^{(1)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \mathbf{d} \mathbf{A} - \mathbf{p}_0 \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \]

(2.78)

\[\mathbf{F}^{(3)} = -\mathbf{p}_0 \int \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \]

(2.79)

Here we have assumed that the body surface in its static equilibrium position is vertical in the free surface zone. The derivation of Eq.(2.77) - Eq.(2.79) is tedious and only the final results are shown here. Basically, one starts with integrating the pressure on the instantaneous wetted body surface. The instantaneous wetted body surface is then considered as the sum of two parts, i.e., \(\mathbf{S}_B + \Delta \mathbf{S}_B \), is the mean wetted body surface. \(\Delta \mathbf{S}_B \) is the fluctuation of the wetted body surface due to wave elevation. The velocity potential is assumed to be independent on \(Z \)-coordinate in the free surface zone. Introducing the Stokes series expansion of the velocity potential and wave elevation and collecting consistently the third-order terms, we can get Eq.(2.77) - Eq.(2.79). Note that \(\mathbf{F}^{(1)} \) contains other two integrals along the mean waterline \(C_W \), i.e., \(-\mathbf{p}_0 \int \mathbf{u}^{(1)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \) and \(-\mathbf{p}_0 \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \mathbf{d} \mathbf{A} \mathbf{u}^{(0)} \), which do not show up in Eq.(2.79) because they cancel out with each other. This is obvious if the first-order dynamic free-surface condition, i.e., \(\mathbf{u}^{(1)} \mathbf{u}^{(0)} \mathbf{u}^{(0)} = \mathbf{0} \), is considered.

Similarly, the third-order moment about the origin of the coordinate system OXYZ can be expressed as

\[\mathbf{M}^{(3)} = \mathbf{M}^{(1)} + \mathbf{M}^{(2)} + \mathbf{M}^{(3)} \],

(2.80)

where \(\mathbf{M}^{(1)} \), \(\mathbf{M}^{(2)} \) and \(\mathbf{M}^{(3)} \) can be obtained by replacing \(\mathbf{u}^{(1)} \) with \(\mathbf{u}^{(0)} \mathbf{u}^{(0)} \mathbf{u}^{(0)} \) in Eq.(2.77), Eq.(2.79) and Eq.(2.79), respectively.
Formulation of the second-order wave-body problem in the body-fixed coordinate system

Inertial coordinate systems are traditionally used in weakly-nonlinear wave-body problems whilst body-fixed coordinate systems are commonly applied in analysis of ship maneuvering and sloshing (Faltinsen & Timokha, 2009). The Laplace equation for the velocity potential still holds in an accelerated coordinate system while the free-surface conditions and body boundary conditions change. A vector with a prime is expressed in the body-fixed coordinate system, i.e. \(\hat{\mathbf{u}} \). Otherwise, it is described in the inertial frame. See Section 2.2 for the definitions of different coordinate systems.

2.6 Free-surface conditions

The fully-nonlinear formulation of the free-surface conditions in a non-inertial coordinate system can be found in, for instance Faltinsen & Timokha (2009), as

\[\hat{\mathbf{u}} = \hat{\mathbf{u}}_{\text{rot}} - \frac{1}{2} \hat{\mathbf{u}} \nabla \varphi + \frac{1}{2} \nabla \varphi \nabla \varphi - \frac{1}{2} \mathbf{u}^{\infty} \nabla \varphi + \mathbf{u}^{\infty} \nabla \varphi, \quad \varphi = \varphi_{\text{free}}(\mathbf{x}). \]

(2.81)

Here the subscripts \(x, y, z, \) and \(t \) indicate partial differentiation. \(\mathbf{r} = (x, y, z, t) \) is the position vector of a point on the free surface. All the vectors are described in the body-fixed coordinate system, i.e. \(\hat{\mathbf{u}} \). The gradients are taken with respect to \(x, y, \) and \(z \), i.e. \(\varphi = \varphi_{\text{free}}(x, y, z, t) \).

\(\mathbf{u}_0 \) is the gravity potential. For a point \(\mathbf{r} = (x, y, z, t) \) on the free surface, \(\mathbf{u}_0 \) can be expressed as

\[\mathbf{u}_0 = -\frac{1}{2} \mathbf{g} \mathbf{r}, \]

(2.83)

where \(\mathbf{g} = -\mathbf{g}_0 \) is the translatory motion vector of the origin of \(\varphi \) relative to the origin of \(\mathbf{r} \). See also the definition in Section 2.3. The second-order approximation of \(\mathbf{u}_0 \) can be obtained by using the second-order approximations of \(\varphi_{\text{free}} \) (see Eq.(2.11) - Eq.(2.14)).

\[\mathbf{u}_0 = \mathbf{u}_0^{(0)} + \mathbf{u}_0^{(1)} + \mathbf{u}_0^{(2)} = \frac{1}{2} \mathbf{g} \mathbf{r}, \]

(2.84)

with

\[\mathbf{u}_0^{(0)} = \mathbf{u}_0^{(0)} = \frac{1}{2} \mathbf{g} (x^2 + y^2 + z^2), \]

(2.85)

\[\mathbf{u}_0^{(1)} = \mathbf{u}_0^{(1)} = \frac{1}{2} \mathbf{g} (x^3 + y^3 + z^3). \]

(2.86)

The free-surface elevation observed in the body-fixed coordinate system has two contributions. The first part is due to the rigid-body motions. It can be understood as follows. When the water is calm, i.e. no incoming or scattered waves, the calm water surface has a relative motion observed in the inertial frame of the definition of the wave elevation \(\eta \) observed in the inertial coordinate system.

\[\mathbf{u}_0^{(1)} = \mathbf{u}_0^{(1)} = \frac{1}{2} \mathbf{g} (x^3 + y^3 + z^3), \]

(2.86)

The free-surface elevation observed in the body-fixed coordinate system has two contributions. The first part is due to the rigid-body motions. It can be understood as follows. When the water is calm, i.e. no incoming or scattered waves, the calm water surface has a relative motion observed in the body-fixed reference frame due to the unsteady body motions. The other contribution is associated with the wave motion with the mentioned rigid-body motion effect excluded. Fig.2.3 shows a two-dimensional sketch of the definition of the wave elevation \(\eta \) observed in the inertial coordinate system.

The free-surface elevation observed in the body-fixed coordinate system has two contributions. The first part is due to the rigid-body motions. It can be understood as follows. When the water is calm, i.e. no incoming or scattered waves, the calm water surface has a relative motion observed in the body-fixed reference frame due to the unsteady body motions. The other contribution is associated with the wave motion with the mentioned rigid-body motion effect excluded. Fig.2.3 shows a two-dimensional sketch of the definition of the wave elevation \(\eta \) observed in the inertial coordinate system.
system OXYZ and the wave elevation η observed in the body-fixed coordinate system oxyz. $P(x,y,z)$ is a point on the instantaneous free surface. (\mathbf{T}) is the displacement of a point (x,y,z) on the free surface due to the rigid-body motions. α_b is the pitch angle of the body. Keeping in mind that the rigid-body motions and the wave elevation are small, we can approximate the relationship between η and $\tilde{\eta}$ as

$$\eta = \tilde{\eta} + O(\epsilon^2).$$ \hspace{1cm} (2.87)

From numerical point of view, it was found to be advantageous to use the decomposition in Eq.(2.87) and to operate with $\tilde{\eta}$ instead of η in the free-surface conditions.

2.6. Formulation of the second-order wave-body problem in the body-fixed coordinate system

system OXYZ and the wave elevation η observed in the body-fixed coordinate system oxyz. $P(x,y,z)$ is a point on the instantaneous free surface. (\mathbf{T}) is the displacement of a point (x,y,z) on the free-surface plane due to the rigid-body motions. α_b is the pitch angle of the body. Keeping in mind that the rigid-body motions and the wave elevation are small, we can approximate the relationship between η and $\tilde{\eta}$ as

$$\eta = \tilde{\eta} + O(\epsilon^2).$$ \hspace{1cm} (2.87)

From numerical point of view, it was found to be advantageous to use the decomposition in Eq.(2.87) and to operate with $\tilde{\eta}$ instead of η in the free-surface conditions.

Assuming the free-surface elevation η to be asymptotically small, we can similarly as shown in the inertial coordinate system, Taylor expand about the oxy-plane and collect consistent terms at each order. The resulting free-surface conditions can then be written as

$$\tilde{\eta}^{(0)} = \tilde{\eta}^{(0)} + f^{(1)} \text{ on } \alpha_b = 0,$$ \hspace{1cm} (2.88)

with the forcing terms $f^{(1)}$, $f^{(2)}$ (m=1,2) defined as follows:

$$f^{(1)} = - \tilde{u} \tilde{u} + \tilde{u} \tilde{v} + \tilde{v} \tilde{u} + \tilde{v} \tilde{v},$$

$$f^{(2)} = - \tilde{u} \tilde{u} + \tilde{u} \tilde{v} + \tilde{v} \tilde{u} + \tilde{v} \tilde{v}.$$ \hspace{1cm} (2.90)

Between the rigid-body motions and the wave elevation are small, we can approximate the relationship between η and $\tilde{\eta}$ as

$$\eta = \tilde{\eta} + O(\epsilon^2).$$ \hspace{1cm} (2.87)

From numerical point of view, it was found to be advantageous to use the decomposition in Eq.(2.87) and to operate with $\tilde{\eta}$ instead of η in the free-surface conditions.

Assuming the free-surface elevation η to be asymptotically small, we can similarly as shown in the inertial coordinate system, Taylor expand about the oxy-plane and collect consistent terms at each order. The resulting free-surface conditions can then be written as

$$\tilde{\eta}^{(0)} = \tilde{\eta}^{(0)} + f^{(1)} \text{ on } \alpha_b = 0,$$ \hspace{1cm} (2.88)

with the forcing terms $f^{(1)}$, $f^{(2)}$ (m=1,2) defined as follows:

$$f^{(1)} = - \tilde{u} \tilde{u} + \tilde{u} \tilde{v} + \tilde{v} \tilde{u} + \tilde{v} \tilde{v},$$

$$f^{(2)} = - \tilde{u} \tilde{u} + \tilde{u} \tilde{v} + \tilde{v} \tilde{u} + \tilde{v} \tilde{v}.$$ \hspace{1cm} (2.90)

Fig.2.3. Definition of the wave elevations observed in the body-fixed coordinate system oxyz and the inertial coordinate system OXYZ.
Here, \(\mathbf{j}^{(i)} \) is the first-order velocity of a point on the free surface due to rigid-body motion, which is defined as
\[
\mathbf{j}^{(i)} = \left(\mathbf{j}^{(i), 1}, \mathbf{j}^{(i), 2} \right) = \left(\mathbf{j}^{(i), 1, 1}, \mathbf{j}^{(i), 1, 2} \right) = \left(\mathbf{j}^{(i), 2, 1}, \mathbf{j}^{(i), 2, 2} \right).
\]
(2.94)
The forward speed vector \(\mathbf{U}^{(i)}(k = 1, 2) \) and its components \(\mathbf{U}^{(i), 1, 2}(k = 1, 2; j = 1, 2, 3) \) have been defined in Eq. (2.41).

In the derivation of the forcing terms in Eq. (2.90) - Eq. (2.93), the following equalities have been used in order to simplify the expressions
\[
\mathbf{j}^{(i), j} = \mathbf{x}^{(i), j},
\]
(2.95)
\[
- \mathbf{g}^{(i), j} \mathbf{e}_3 \times \mathbf{x}^{(i), j} + g^{(i), j} \mathbf{x}^{(i), j} \mathbf{e}_3 = 0,
\]
(2.96)
\[
\mathbf{j}^{(i), j} = \left(\mathbf{g}^{(i), j} \mathbf{x}^{(i), j}, \mathbf{x}^{(i), j} \right) = \left(\mathbf{x}^{(i), j}, \mathbf{x}^{(i), j} \right),
\]
(2.97)
\[
\mathbf{g}^{(i), j} \mathbf{x}^{(i), j} + g^{(i), j} \mathbf{x}^{(i), j} = 0.
\]
(2.98)
\(\mathbf{g}^{(i), j} \mathbf{x}^{(i), j} \) have been defined in Eq. (2.39). The detailed derivation of Eq. (2.90) - Eq. (2.93) will be provided in Chapter 5.

Note that the terms associated with the rigid-body motions come into the free-surface conditions formulated in the body-fixed system. These terms disappear in the free-surface conditions of the inertial coordinate system.

By assuming \(\mathbf{g} \) as small, we have implicitly assumed that both \(\mathbf{f} \) and \(\mathbf{g} \) are small and can be written in the form of the Stokes expansions
\[
\mathbf{f} = \mathbf{f}^{(i)} + \mathbf{f}^{(ii)} + \ldots,
\]
(2.99)
\[
\mathbf{g} = \mathbf{g}^{(i)} + \mathbf{g}^{(ii)} + \ldots,
\]
(2.100)
with
\[
\mathbf{f}^{(i)} \rightarrow - \frac{1}{2} \left[\mathbf{e}_x + \mathbf{e}_y \right] \left(\frac{\partial \mathbf{U}^{(i), 1}}{\partial x} + \nu \frac{\partial \mathbf{U}^{(i), 1, 1}}{\partial y} \right), \quad \mathbf{g}^{(i)} \rightarrow \mathbf{g}^{(i), 1} + \mathbf{g}^{(i), 2} + \ldots.
\]
(2.101)

Eq.(2.101) is valid for the yow-pitch-roll Euler angle order. We note from Eq.(2.101) that the application of Eq.(2.90) is limited by the values of the \(x \)- and \(y \)-coordinates. It can only be used when \(x \)- and \(y \)-coordinates are not very large. If the distance between the origin of the coordinate system away to the point \((x, y)\) is too large, the resulting system \(\mathbf{f}^{(i)} \rightarrow \mathbf{g}^{(i), 1} + \mathbf{g}^{(i), 2} + \ldots \) may become of the same order as the characteristic length of the body, which violates the assumption that \(\mathbf{g} \) is small. In Chapter 5, we will decompose the whole fluid domain into two parts, namely an inner domain and an outer domain. The body-fixed coordinate system is used in the inner domain and the coordinate system remains inertial in the outer domain. Having a body-fixed coordinate system in the inner domain results in much simpler the body boundary conditions, which will be shown in Section 2.6.2. More discussion on the advantages associated with the simpler body boundary conditions will be given Chapter 5.

Here, \(\mathbf{j}^{(i)} \) is the first-order velocity of a point on the free surface due to rigid-body motion, which is defined as
\[
\mathbf{j}^{(i)} = \left(\mathbf{j}^{(i), 1}, \mathbf{j}^{(i), 2} \right) = \left(\mathbf{j}^{(i), 1, 1}, \mathbf{j}^{(i), 1, 2} \right) = \left(\mathbf{j}^{(i), 2, 1}, \mathbf{j}^{(i), 2, 2} \right).
\]
(2.94)
The forward speed vector \(\mathbf{U}^{(i)}(k = 1, 2) \) and its components \(\mathbf{U}^{(i), 1, 2}(k = 1, 2; j = 1, 2, 3) \) have been defined in Eq. (2.41).

In the derivation of the forcing terms in Eq. (2.90) - Eq. (2.93), the following equalities have been used in order to simplify the expressions
\[
\mathbf{j}^{(i), j} = \mathbf{x}^{(i), j},
\]
(2.95)
\[
- \mathbf{g}^{(i), j} \mathbf{e}_3 \times \mathbf{x}^{(i), j} + g^{(i), j} \mathbf{x}^{(i), j} \mathbf{e}_3 = 0,
\]
(2.96)
\[
\mathbf{j}^{(i), j} = \left(\mathbf{g}^{(i), j} \mathbf{x}^{(i), j}, \mathbf{x}^{(i), j} \right) = \left(\mathbf{x}^{(i), j}, \mathbf{x}^{(i), j} \right),
\]
(2.97)
\[
\mathbf{g}^{(i), j} \mathbf{x}^{(i), j} + g^{(i), j} \mathbf{x}^{(i), j} = 0.
\]
(2.98)
\(\mathbf{g}^{(i), j} \mathbf{x}^{(i), j} \) have been defined in Eq. (2.39). The detailed derivation of Eq. (2.90) - Eq. (2.93) will be provided in Chapter 5.

Note that the terms associated with the rigid-body motions come into the free-surface conditions formulated in the body-fixed system. These terms disappear in the free-surface conditions of the inertial coordinate system.

By assuming \(\mathbf{g} \) as small, we have implicitly assumed that both \(\mathbf{f} \) and \(\mathbf{g} \) are small and can be written in the form of the Stokes expansions
\[
\mathbf{f} = \mathbf{f}^{(i)} + \mathbf{f}^{(ii)} + \ldots,
\]
(2.99)
\[
\mathbf{g} = \mathbf{g}^{(i)} + \mathbf{g}^{(ii)} + \ldots,
\]
(2.100)
with
\[
\mathbf{f}^{(i)} \rightarrow - \frac{1}{2} \left[\mathbf{e}_x + \mathbf{e}_y \right] \left(\frac{\partial \mathbf{U}^{(i), 1}}{\partial x} + \nu \frac{\partial \mathbf{U}^{(i), 1, 1}}{\partial y} \right), \quad \mathbf{g}^{(i)} \rightarrow \mathbf{g}^{(i), 1} + \mathbf{g}^{(i), 2} + \ldots.
\]
(2.101)

Eq.(2.101) is valid for the yow-pitch-roll Euler angle order. We note from Eq.(2.101) that the application of Eq.(2.99) is limited by the values of the \(x \)- and \(y \)-coordinates. It can only be used when \(x \)- and \(y \)-coordinates are not very large. If the distance between the origin of the coordinate system away to the point \((x, y)\) is too large, the resulting system \(\mathbf{f}^{(i)} \rightarrow \mathbf{g}^{(i), 1} + \mathbf{g}^{(i), 2} + \ldots \) may become of the same order as the characteristic length of the body, which violates the assumption that \(\mathbf{g} \) is small. In Chapter 5, we will decompose the whole fluid domain into two parts, namely an inner domain and an outer domain. The body-fixed coordinate system is used in the inner domain and the coordinate system remains inertial in the outer domain. Having a body-fixed coordinate system in the inner domain results in much simpler the body boundary conditions, which will be shown in Section 2.6.2. More discussion on the advantages associated with the simpler body boundary conditions will be given Chapter 5.
The body boundary condition in the body-fixed coordinate system is
\[\dot{\mathbf{u}}^\text{BF} = \dot{\mathbf{u}}^\text{IBF}, \]
where \(\dot{\mathbf{u}}^\text{BF} \) is the time derivative of the body-fixed coordinate system and \(\dot{\mathbf{u}}^\text{IBF} \) is that in the inertial system according to Faltinsen & Timokha (2009) be written as
\[\dot{\mathbf{u}}^\text{BF} = \dot{\mathbf{u}}^\text{IBF} = \dot{\mathbf{u}}^\text{IBF}, \]
where \(\dot{\mathbf{u}}^\text{IBF} \) is the time derivative of the inertial coordinate system. However, in the body-fixed coordinate system we want to operate with the basis flow. More discussion about the relations hip between the basis flow in the body-fixed coordinate system.

\[Z_{cc}c_{u} = Z_{cc}c_{u} \]

is the velocity at a point (x, y, z) due to rigid-body motions. \(\hat{Z}_{cc}c_{u} \) and \(\hat{Z}_{cc}c_{u} \) are defined as
\[Z_{cc}c_{u} = Z_{cc}c_{u} \]

where \(Z_{cc}c_{u} \) is the velocity at a point (x, y, z) due to rigid-body motions. \(\hat{Z}_{cc}c_{u} \) and \(\hat{Z}_{cc}c_{u} \) are defined as
\[Z_{cc}c_{u} = Z_{cc}c_{u} \]

where \(Z_{cc}c_{u} \) is the velocity at a point (x, y, z) due to rigid-body motions. \(\hat{Z}_{cc}c_{u} \) and \(\hat{Z}_{cc}c_{u} \) are defined as
\[Z_{cc}c_{u} = Z_{cc}c_{u} \]

where \(Z_{cc}c_{u} \) is the velocity at a point (x, y, z) due to rigid-body motions. \(\hat{Z}_{cc}c_{u} \) and \(\hat{Z}_{cc}c_{u} \) are defined as
\[Z_{cc}c_{u} = Z_{cc}c_{u} \]

where \(Z_{cc}c_{u} \) is the velocity at a point (x, y, z) due to rigid-body motions. \(\hat{Z}_{cc}c_{u} \) and \(\hat{Z}_{cc}c_{u} \) are defined as
\[Z_{cc}c_{u} = Z_{cc}c_{u} \]

where \(Z_{cc}c_{u} \) is the velocity at a point (x, y, z) due to rigid-body motions. \(\hat{Z}_{cc}c_{u} \) and \(\hat{Z}_{cc}c_{u} \) are defined as
\[Z_{cc}c_{u} = Z_{cc}c_{u} \]

where \(Z_{cc}c_{u} \) is the velocity at a point (x, y, z) due to rigid-body motions. \(\hat{Z}_{cc}c_{u} \) and \(\hat{Z}_{cc}c_{u} \) are defined as
\[Z_{cc}c_{u} = Z_{cc}c_{u} \]

where \(Z_{cc}c_{u} \) is the velocity at a point (x, y, z) due to rigid-body motions. \(\hat{Z}_{cc}c_{u} \) and \(\hat{Z}_{cc}c_{u} \) are defined as
\[Z_{cc}c_{u} = Z_{cc}c_{u} \]

where \(Z_{cc}c_{u} \) is the velocity at a point (x, y, z) due to rigid-body motions. \(\hat{Z}_{cc}c_{u} \) and \(\hat{Z}_{cc}c_{u} \) are defined as
\[Z_{cc}c_{u} = Z_{cc}c_{u} \]

where \(Z_{cc}c_{u} \) is the velocity at a point (x, y, z) due to rigid-body motions. \(\hat{Z}_{cc}c_{u} \) and \(\hat{Z}_{cc}c_{u} \) are defined as
\[Z_{cc}c_{u} = Z_{cc}c_{u} \]
are the translatory and angular velocity, respectively. See the definition in Section 2.3. V means spatial gradient. Note that Eq.(2.105) has also been used in the derivation of the free-surface conditions in the body-fixed coordinate system, i.e. Eq.(2.89) - Eq.(2.93).

Transforming the time derivative in the inertial coordinate system into the time derivative in the body-fixed reference frame, and integrating the pressure on the body surface, we can express the forces \(\vec{F} \) and moments \(\vec{M} \) in (0, 1, 2) in either the inertial coordinate system or body-fixed coordinate system. They can be expressed with respect to the inertial coordinate system respectively as

\[
\vec{F} = \vec{F}^{(0)} + \vec{F}^{(1)} + \vec{F}^{(2)} + O(\epsilon^3),
\]

\[
\vec{M} = \vec{M}^{(0)} + \vec{M}^{(1)} + \vec{M}^{(2)} + O(\epsilon^3),
\]

(2.106) with

\[
\vec{F}^{(0)} = \int F^{(0)} d\vec{s},
\]

\[
\vec{F}^{(1)} = \int F^{(1)} d\vec{s},
\]

(2.107)

\[
\vec{F}^{(2)} = \int F^{(2)} d\vec{s},
\]

\[
\vec{M}^{(0)} = \int M^{(0)} d\vec{s},
\]

\[
\vec{M}^{(1)} = \int M^{(1)} d\vec{s},
\]

(2.108)

\[
\vec{M}^{(2)} = \int M^{(2)} d\vec{s},
\]

\[
\vec{F}^{(i)} = \int F^{(i)}(\vec{r} - \vec{x}) \, d\vec{s},
\]

(2.109)

\[
\vec{M}^{(i)} = \int M^{(i)}(\vec{r} - \vec{x}) \, d\vec{s},
\]

\[
\int F^{(i)}(\vec{r} - \vec{x}) \, d\vec{s},
\]

(2.110)

\[
\int M^{(i)}(\vec{r} - \vec{x}) \, d\vec{s},
\]

\[
\int F^{(i)}(\vec{r} - \vec{x}) \, d\vec{s},
\]

(2.111)

Here \(\vec{C} \) is the mean waterline. \(\vec{F} \) and \(\vec{M} \) have been defined in the texts associated with Eq.(2.60). The variational integrals in Eq.(2.110) and Eq.(2.111) are caused by the deviation of the wetted body surface due to the relative motion between the wave profile and the body. Eq.(2.106) - Eq.(2.111) are valid no matter the body has sharp corner or not. This is due to the fact that the solution is obtained at the instantaneous body position when the formulation in the body-fixed coordinate system is used, and that no Taylor expansion about the mean body surface is needed.

The pressure \(p \) has been divided into three parts, i.e.

\[
p = p^{(0)} + p^{(1)} + p^{(2)} + \ldots
\]

(2.114)

\[
p^{(i)} \text{ are pressure components giving zeroth-order, first-order and second-order contributions to the forces and moments. They are defined respectively as}
\]

\[
p^{(i)} = \rho \dot{c} F^{(i)}.
\]

(2.115)

are the translatory and angular velocity, respectively. See the definition in Section 2.3. V means spatial gradient. Note that Eq.(2.105) has also been used in the derivation of the free-surface conditions in the body-fixed coordinate system, i.e. Eq.(2.89) - Eq.(2.93).

Transforming the time derivative in the inertial coordinate system into the time derivative in the body-fixed reference frame, and integrating the pressure on the body surface, we can express the forces \(\vec{F} \) and moments \(\vec{M} \) in (0, 1, 2) in either the inertial coordinate system or body-fixed coordinate system. They can be expressed with respect to the inertial coordinate system respectively as

\[
\vec{F} = \vec{F}^{(0)} + \vec{F}^{(1)} + \vec{F}^{(2)} + O(\epsilon^3),
\]

\[
\vec{M} = \vec{M}^{(0)} + \vec{M}^{(1)} + \vec{M}^{(2)} + O(\epsilon^3),
\]

(2.106) with

\[
\vec{F}^{(0)} = \int F^{(0)} d\vec{s},
\]

\[
\vec{F}^{(1)} = \int F^{(1)} d\vec{s},
\]

(2.107)

\[
\vec{F}^{(2)} = \int F^{(2)} d\vec{s},
\]

\[
\vec{M}^{(0)} = \int M^{(0)} d\vec{s},
\]

\[
\vec{M}^{(1)} = \int M^{(1)} d\vec{s},
\]

(2.108)

\[
\vec{M}^{(2)} = \int M^{(2)} d\vec{s},
\]

\[
\vec{F}^{(i)} = \int F^{(i)}(\vec{r} - \vec{x}) \, d\vec{s},
\]

(2.109)

\[
\vec{M}^{(i)} = \int M^{(i)}(\vec{r} - \vec{x}) \, d\vec{s},
\]

\[
\int F^{(i)}(\vec{r} - \vec{x}) \, d\vec{s},
\]

(2.110)

\[
\int M^{(i)}(\vec{r} - \vec{x}) \, d\vec{s},
\]

\[
\int F^{(i)}(\vec{r} - \vec{x}) \, d\vec{s},
\]

(2.111)

\[
\int M^{(i)}(\vec{r} - \vec{x}) \, d\vec{s},
\]

Here \(\vec{C} \) is the mean waterline. \(\vec{F} \) and \(\vec{M} \) have been defined in the texts associated with Eq.(2.60). The variational integrals in Eq.(2.110) and Eq.(2.111) are caused by the deviation of the wetted body surface due to the relative motion between the wave profile and the body. Eq.(2.106) - Eq.(2.113) are valid no matter the body has sharp corner or not. This is due to the fact that the solution is obtained at the instantaneous body position when the formulation in the body-fixed coordinate system is used, and that no Taylor expansion about the mean body surface is needed.

The pressure \(p \) has been divided into three parts, i.e.

\[
p = p^{(0)} + p^{(1)} + p^{(2)} + \ldots
\]

(2.114)

\[
p^{(i)} \text{ are pressure components giving zeroth-order, first-order and second-order contributions to the forces and moments. They are defined respectively as}
\]

\[
p^{(i)} = \rho \dot{c} F^{(i)}.
\]

(2.115)
2.7 Governing equations of unsteady rigid-body motions

The detailed derivation of the rigid-body motion equations can be found for instance in Ogilvie (1983), Eissen & Reid (1996) and Faltinsen (2005). In this section, a brief description of the general motion equations without any approximations will be given, followed by their first-order and second-order approximations by assuming that all the unsteady motions are small. The rigid-body motion equations will be presented in both the inertial coordinate system and the body-fixed coordinate system.

The rigid-body motion equations are derived for the motions with respect to the Centre of the Gravity (COG) of the body, which is a moving point observed in the inertial coordinate system OXYZ and the Earth-fixed coordinate system OX’Y’Z’. In this section, a vector with prime is considered as a description in the body-fixed coordinate system, i.e. oxyz, otherwise it is a vector in the inertial reference frames, i.e. OXYZ. See Fig.2.1 for the definitions of the coordinate systems.

2.7.1 Rigid-body motion equations in the inertial frame

The rigid-body motion equations can be derived from the first principles, that is to say, we apply Newton’s laws to an element alm of the body, and then integrate over all elements. The velocities and

2.6. Formulation of the second-order wave-body problem in the body-fixed coordinate system

2.6. Formulation of the second-order wave-body problem in the body-fixed coordinate system

\[a_{1} \rightarrow \rho \left[\frac{\partial^{2} \mathbf{u}}{\partial t^{2}} - \nabla \cdot \left(\rho \mathbf{u} \nabla \mathbf{u} \right) - 2 \rho \left(\nabla \cdot \mathbf{u} \right) \mathbf{u} - \rho \left(\nabla \cdot \mathbf{u} \right) \mathbf{u} \right] = \tau \mathbf{u} - \mathbf{g} \rho \mathbf{u} \nabla \mathbf{u} = \mathbf{g} \mathbf{u} + \nabla \cdot \left(\mathbf{u} \nabla \mathbf{u} \right) \]

\[a_{1} \rightarrow \rho \left[\frac{\partial^{2} \mathbf{u}}{\partial t^{2}} - \nabla \cdot \left(\rho \mathbf{u} \nabla \mathbf{u} \right) - 2 \rho \left(\nabla \cdot \mathbf{u} \right) \mathbf{u} - \rho \left(\nabla \cdot \mathbf{u} \right) \mathbf{u} \right] = \tau \mathbf{u} - \mathbf{g} \rho \mathbf{u} \nabla \mathbf{u} = \mathbf{g} \mathbf{u} + \nabla \cdot \left(\mathbf{u} \nabla \mathbf{u} \right) \]

\[a_{1} \rightarrow \rho \left[\frac{\partial^{2} \mathbf{u}}{\partial t^{2}} - \nabla \cdot \left(\rho \mathbf{u} \nabla \mathbf{u} \right) - 2 \rho \left(\nabla \cdot \mathbf{u} \right) \mathbf{u} - \rho \left(\nabla \cdot \mathbf{u} \right) \mathbf{u} \right] = \tau \mathbf{u} - \mathbf{g} \rho \mathbf{u} \nabla \mathbf{u} = \mathbf{g} \mathbf{u} + \nabla \cdot \left(\mathbf{u} \nabla \mathbf{u} \right) \]

Similarly, if we define the forces and moments with respect to oxyz system, the force vector \(\mathbf{F} \) and moment vector \(\mathbf{M} \) can be obtained by replacing \(\mathbf{r} \) and \(\mathbf{r} \) with \(\mathbf{r} \) and \(\mathbf{r} \), respectively, and setting the terms associated with \(\mathbf{r} \) and \(\mathbf{r} \) to be zero. \(\mathbf{r} \) and \(\mathbf{r} \) are the position vectors of points in the oxyz system corresponding to \(\mathbf{r} \) and \(\mathbf{r} \), respectively.

2.7 Governing equations of unsteady rigid-body motions

The detailed derivation of the rigid-body motion equations can be found for instance in Ogilvie (1983), Eissen & Reid (1996) and Faltinsen (2005). In this section, a brief description of the general motion equations without any approximations will be given, followed by their first-order and second-order approximations by assuming that all the unsteady motions are small. The rigid-body motion equations will be presented in both the inertial coordinate system and the body-fixed coordinate system.

The rigid-body motion equations are derived for the motions with respect to the Centre of the Gravity (COG) of the body, which is a moving point observed in the inertial coordinate system OXYZ and the Earth-fixed coordinate system OX’Y’Z’. In this section, a vector with prime is considered as a description in the body-fixed coordinate system, i.e. oxyz, otherwise it is a vector in the inertial reference frames, i.e. OXYZ. See Fig.2.1 for the definitions of the coordinate systems.

2.7.1 Rigid-body motion equations in the inertial frame

The rigid-body motion equations can be derived from the first principles, that is to say, we apply Newton’s laws to an element alm of the body, and then integrate over all elements. The velocities and
acceleration must of course be relative to an inertial reference frame. The consequence of applying Newton's laws is
\[m\ddot{\mathbf{r}} = \mathbf{F}. \]
(2.118)

Here \(m \) is the total mass of the body. \(\ddot{\mathbf{r}} \) is the translatory acceleration of COG described in the inertial coordinate system (e.g. OXYZ). \(\mathbf{F} \) is the external force vector acting on the body described in OXYZ.

Eq.(2.119) relates the external force on the body to the motion of COG. We need also the relation between the external moment and the rotation of the body. It is obtained from a consideration of moment of momentum, which states in the inertial coordinate system that the time derivative of the angular momentum is equal to the external moments acting on the body, i.e.
\[\frac{d}{dt} \left(\mathbf{I} \ddot{\omega} \right) = \mathbf{M}. \]
(2.119)

Here \(\mathbf{I} \) is the position vector of an arbitrary point on the body relative to the origin of the body-fixed coordinate system. \(\ddot{\omega} \) is the COG. \(\ddot{\omega} \) denotes the velocity of a point on the body. \(\mathbf{M} \) is the external moment vector with respect to COG acting on the body. It can be shown that the vector \(\ddot{\omega} \) will be associated with the moments and products of inertia. If the inertial coordinate system is used, the inertia will be time-dependent. Therefore, they become variables in the body-motion equations. This is most undesirable and can be avoided by writing Eq.(2.119) in the body-fixed coordinate system, i.e.
\[\frac{d}{dt} \left(\mathbf{I} \ddot{\omega} \right) = \mathbf{M}. \]
(2.120)

Here \(\ddot{\omega} \), \(\ddot{\mathbf{r}} \), \(\ddot{\mathbf{u}} \) and \(\mathbf{M} \) are the corresponding descriptions of the vectors of \(\ddot{\mathbf{r}}, \ddot{\mathbf{u}}, \ddot{\omega} \) and in \(\mathbf{M} \), the body-fixed coordinate system, respectively.

Noticing that
\[\int \left(\dddot{x} - \dddot{y} \right) \, dx \, dy \, dz = \int \left(\dddot{x} - \dddot{y} \right) \, dx \, dy \, dz = -1 \omega^2 \]
(2.121)

and that, for an arbitrary vector \(\mathbf{r} \), the following equality holds (Erlen and Reid (1996), Appendix A-4)
\[\mathbf{R} \frac{d}{dt} \mathbf{r} = \mathbf{R} \frac{d}{dt} \mathbf{r} \]
(2.122)

we can rewrite Eq.(2.120) as
\[\mathbf{I} \ddot{\mathbf{u}} + \mathbf{I} \dddot{\mathbf{u}} = \mathbf{R} \mathbf{M}. \]
(2.123)

Here \(\mathbf{I} \) is the inertia matrix, its elements being the moments and products of inertia of the body, i.e.
\[\mathbf{I} =
\begin{bmatrix}
 I_{xx} & -I_{xy} & -I_{xz} \\
 -I_{yx} & I_{yy} & -I_{yz} \\
 -I_{zx} & -I_{zy} & I_{zz}
\end{bmatrix}
\]
(2.124)

and
\[\mathbf{I} \dddot{\mathbf{u}} \]
(2.125)

acceleration must of course be relative to an inertial reference frame. The consequence of applying Newton’s laws is
\[m\ddot{\mathbf{r}} = \mathbf{F}. \]
(2.118)

Here \(m \) is the total mass of the body. \(\ddot{\mathbf{r}} \) is the translatory acceleration of COG described in the inertial coordinate system (e.g. OXYZ). \(\mathbf{F} \) is the external force vector acting on the body described in OXYZ.

Eq.(2.119) relates the external force on the body to the motion of COG. We need also the relation between the external moment and the rotation of the body. It is obtained from a consideration of moment of momentum, which states in the inertial coordinate system that the time derivative of the angular momentum is equal to the external moments acting on the body, i.e.
\[\frac{d}{dt} \left(\mathbf{I} \ddot{\omega} \right) = \mathbf{M}. \]
(2.119)

Here \(\mathbf{I} \) is the position vector of an arbitrary point on the body relative to the origin of the body-fixed coordinate system. \(\ddot{\omega} \) is the COG. \(\ddot{\omega} \) denotes the velocity of a point on the body. \(\mathbf{M} \) is the external moment vector with respect to COG acting on the body. It can be shown that the vector \(\ddot{\omega} \) will be associated with the moments and products of inertia. If the inertial coordinate system is used, the inertia will be time-dependent. Therefore, they become variables in the body-motion equations. This is most undesirable and can be avoided by writing Eq.(2.119) in the body-fixed coordinate system, i.e.
\[\frac{d}{dt} \left(\mathbf{I} \ddot{\omega} \right) = \mathbf{M}. \]
(2.120)

Here \(\ddot{\omega} \), \(\ddot{\mathbf{r}} \), \(\dddot{\mathbf{u}} \) and \(\mathbf{M} \) are the corresponding descriptions of the vectors of \(\ddot{\mathbf{r}}, \ddot{\mathbf{u}}, \dddot{\omega} \) and in \(\mathbf{M} \), the body-fixed coordinate system, respectively.

Noticing that
\[\int \left(\dddot{x} - \dddot{y} \right) \, dx \, dy \, dz = \int \left(\dddot{x} - \dddot{y} \right) \, dx \, dy \, dz = -1 \omega^2 \]
(2.121)

and that, for an arbitrary vector \(\mathbf{r} \), the following equality holds (Erlen and Reid (1996), Appendix A-4)
\[\mathbf{R} \frac{d}{dt} \mathbf{r} = \mathbf{R} \frac{d}{dt} \mathbf{r} \]
(2.122)

we can rewrite Eq.(2.120) as
\[\mathbf{I} \dddot{\mathbf{u}} + \mathbf{I} \dddot{\mathbf{u}} = \mathbf{R} \mathbf{M}. \]
(2.123)

Here \(\mathbf{I} \) is the inertia matrix, its elements being the moments and products of inertia of the body, i.e.
\[\mathbf{I} =
\begin{bmatrix}
 I_{xx} & -I_{xy} & -I_{xz} \\
 -I_{yx} & I_{yy} & -I_{yz} \\
 -I_{zx} & -I_{zy} & I_{zz}
\end{bmatrix}
\]
(2.124)
Eq. (2.118) and Eq. (2.123) are exact, which means they are valid for large-amplitude body motions. When the ox-plane is a plane of symmetry, which is the usual assumption, then we have \(\mathbf{F}_x = \mathbf{0} \) and the only off-diagonal terms are \(-\mathbf{F}_{xy} \) and \(-\mathbf{M}_{xy} \). The direction of the axis is so chosen that this product of inertia also vanishes, which is always possible in principal, than the axes are principal axes. See Etkin & Reid (1996). \(\omega_1 \) is the angular velocity with respect to COG, which is located at \((x_1, y_1, z_1) \). \(\omega_1 \) is the time differentiation of \(\omega_1 \). The transformation matrices \(R_{uc0} \) and \(R_{uc0} \) have been defined in Section 2.3.

Eq. (2.118) and Eq. (2.123) are exact, which means they are valid for large-amplitude body motions. The force vector \(\mathbf{F}_o \) and moment vector \(\mathbf{M}_o \) include all the external loads effects, such as the gravitational, the buoyancy effects, the hydrodynamic loads and loads from to the mooring lines. We will now assume that the unsteady rigid-body motions are small and introduce the series expansion of the translatory and angular motions into Eq. (2.118) and Eq. (2.123). The first-order and second-order rigid-body motion equations are

First-order:

\[
\begin{bmatrix}
\mathbf{m} & \mathbf{F}_o
\end{bmatrix} = \begin{bmatrix}
\mathbf{I} & \mathbf{0}
\end{bmatrix} \begin{bmatrix}
\mathbf{G}_{11} & \mathbf{G}_{12} & \mathbf{G}_{13}
\end{bmatrix}
\begin{bmatrix}
\omega_1 & \omega_2 & \omega_3
\end{bmatrix}
\]

(2.126)

Second-order:

\[
\begin{bmatrix}
\mathbf{m} & \mathbf{F}_o
\end{bmatrix} = \begin{bmatrix}
\mathbf{I} & \mathbf{0}
\end{bmatrix} \begin{bmatrix}
\mathbf{G}_{11} & \mathbf{G}_{12} & \mathbf{G}_{13}
\end{bmatrix} \begin{bmatrix}
\omega_1 & \omega_2 & \omega_3
\end{bmatrix} + \begin{bmatrix}
\mathbf{I} & \mathbf{0}
\end{bmatrix} \begin{bmatrix}
\mathbf{G}_{11} & \mathbf{G}_{12} & \mathbf{G}_{13}
\end{bmatrix} \begin{bmatrix}
\omega_1 \omega_2 & \omega_1 \omega_3 & \omega_2 \omega_3
\end{bmatrix}
\]

(2.127)

When the ox-plane is a plane of symmetry, which is the usual assumption, then we have \(\mathbf{F}_x = \mathbf{0} \) and the only off-diagonal terms are \(-\mathbf{M}_{xy} \) and \(-\mathbf{M}_{xz} \). The direction of the axis is so chosen that this product of inertia also vanishes, which is always possible in principal, than the axes are principal axes. See Etkin & Reid (1996). \(\omega_1 \) is the angular velocity with respect to COG, which is located at \((x_1, y_1, z_1) \). \(\omega_1 \) is the time differentiation of \(\omega_1 \). The transformation matrices \(R_{uc0} \) and \(R_{uc0} \) have been defined in Section 2.3.

Eq. (2.118) and Eq. (2.123) are exact, which means they are valid for large-amplitude body motions. The force vector \(\mathbf{F}_o \) and moment vector \(\mathbf{M}_o \) include all the external loads effects, such as the gravitational, the buoyancy effects, the hydrodynamic loads and loads from to the mooring lines. We will now assume that the unsteady rigid-body motions are small and introduce the series expansion of the translatory and angular motions into Eq. (2.118) and Eq. (2.123). The first-order and second-order rigid-body motion equations are

First-order:

\[
\begin{bmatrix}
\mathbf{m} & \mathbf{F}_o
\end{bmatrix} = \begin{bmatrix}
\mathbf{I} & \mathbf{0}
\end{bmatrix} \begin{bmatrix}
\mathbf{G}_{11} & \mathbf{G}_{12} & \mathbf{G}_{13}
\end{bmatrix} \begin{bmatrix}
\omega_1 & \omega_2 & \omega_3
\end{bmatrix}
\]

(2.126)

Second-order:

\[
\begin{bmatrix}
\mathbf{m} & \mathbf{F}_o
\end{bmatrix} = \begin{bmatrix}
\mathbf{I} & \mathbf{0}
\end{bmatrix} \begin{bmatrix}
\mathbf{G}_{11} & \mathbf{G}_{12} & \mathbf{G}_{13}
\end{bmatrix} \begin{bmatrix}
\omega_1 & \omega_2 & \omega_3
\end{bmatrix} + \begin{bmatrix}
\mathbf{I} & \mathbf{0}
\end{bmatrix} \begin{bmatrix}
\mathbf{G}_{11} & \mathbf{G}_{12} & \mathbf{G}_{13}
\end{bmatrix} \begin{bmatrix}
\omega_1 \omega_2 & \omega_1 \omega_3 & \omega_2 \omega_3
\end{bmatrix}
\]

(2.127)

Here the transformation matrix \(R_{uc0} \) have been defined in Section 2.3. \(F_{11} \) and \(M_{11} \) are forces and moments with respect to OXZ system (see Section 2.4.3). The centre of moments is the structure’s instantaneous COG. Note that our definition of the moments is different from that given by Ogilvie (1983), in which the moment centre was chosen to be origin of the inertial coordinate system. Eq. (2.126) and Eq. (2.127) are given for the freely-floating bodies. However, it is straightforward to extend them by adding additional forces and moments terms due to, e.g., the mooring line and DP system. The zeroth-order equations are not shown here. The zeroth-order steady loads effects are important for the equilibrium position of the structure. For a freely-floating body, the zeroth-order buoyancy force, i.e. the hydrostatic pressure integrated on the mean body surface, cancels out each other with the gravity force. And the centre of the buoyancy automatically drops in the same vertical line as COG. The translatory motion vector of COG, i.e. \(\mathbf{z}_{1} \), is defined as

\[
\begin{bmatrix}
\mathbf{z}_{11} & \mathbf{z}_{12} & \mathbf{z}_{13}
\end{bmatrix} = \begin{bmatrix}
\mathbf{z}_{11} & \mathbf{z}_{12} & \mathbf{z}_{13}
\end{bmatrix}
\]

(2.128)

with \(\mathbf{z}_{11} \), \(\mathbf{z}_{12} \) and \(\mathbf{z}_{13} \) as the components in range, sway and heave, respectively. The angular motion vector of COG, i.e. \(\mathbf{G}_{1} \), is defined as

\[
\begin{bmatrix}
\mathbf{G}_{11} & \mathbf{G}_{12} & \mathbf{G}_{13}
\end{bmatrix} = \begin{bmatrix}
\mathbf{G}_{11} & \mathbf{G}_{12} & \mathbf{G}_{13}
\end{bmatrix}
\]

(2.128)

with \(\mathbf{G}_{11} \), \(\mathbf{G}_{12} \) and \(\mathbf{G}_{13} \) as the components in range, sway and heave, respectively. The angular motion vector of COG, i.e. \(\mathbf{G}_{2} \), is defined as

\[
\begin{bmatrix}
\mathbf{G}_{21} & \mathbf{G}_{22} & \mathbf{G}_{23}
\end{bmatrix} = \begin{bmatrix}
\mathbf{G}_{21} & \mathbf{G}_{22} & \mathbf{G}_{23}
\end{bmatrix}
\]

(2.128)

with \(\mathbf{G}_{21} \), \(\mathbf{G}_{22} \) and \(\mathbf{G}_{23} \) as the components in range, sway and heave, respectively.
velocity vector \(\mathbf{a}^\text{b}_{\text{CM}}^{\text{b}} \), with respect to COG in the body-fixed reference frame can according to Eq. (2.27) be defined as
\[
\mathbf{a}^\text{b}_{\text{CM}}^{\text{b}} = \mathbf{a}^\text{i}_{\text{CM}}^{\text{b}} + \mathbf{a}^\text{r}_{\text{CM}}^{\text{b}} - \mathbf{a}^\text{b}_{\text{CM}}^{\text{i}}.
\] (2.129)
Here \(a^\text{i}_{\text{CM}}^{\text{b}} \), \(a^\text{r}_{\text{CM}}^{\text{b}} \) and \(a^\text{b}_{\text{CM}}^{\text{i}} \) are the Euler angles with respect to COG, respectively. The overhead dot indicates that time differentiation is taken.

Note that, we have in Section 2.3 and Section 2.4 defined \(a^\text{i}_{\text{CM}}^{\text{b}} \) and \(a^\text{r}_{\text{CM}}^{\text{b}} \) with respect to the origin of OXYZ as the translatory and angular motions, respectively. The relationship between the body motion \(\mathbf{a}^\text{i}_{\text{CM}}^{\text{b}} \) and \(\mathbf{a}^\text{r}_{\text{CM}}^{\text{b}} \) can be obtained by using the transformation matrix in Section 2.3 as
\[
\mathbf{a}^\text{i}_{\text{CM}}^{\text{b}} = \mathbf{R}_{\text{CM}}^{\text{i}} \mathbf{a}^\text{i}_{\text{CM}}^{\text{CM}} - \mathbf{R}_{\text{CM}}^{\text{i}} \mathbf{a}^\text{r}_{\text{CM}}^{\text{CM}} - \mathbf{R}_{\text{CM}}^{\text{i}} \mathbf{a}^\text{b}_{\text{CM}}^{\text{CM}}.
\] (2.130)
Here \(\mathbf{R}_{\text{CM}}^{\text{i}} \) (\(i = 1, 2 \)) is the transformation matrix \(\mathbf{r} = \{x, y, z\} \) is the position vector of COG in the body-fixed reference frame on axis. In this study, the system is defined so that an static goes through COG so that \(x = 0 \) and \(y = 0 \).

The right-hand of the rigid-body motion equations (2.126) and (2.127) includes all the hydrodynamic loads. The fact that the hydrodynamic load contains an instantaneous added-mass term prevents a stable numerical integration in time. Generally numerical stability theory for ordinary differential equations requires that the highest derivatives must be isolated for stability. The numerical instability when solving the motion equations can be avoided by moving all the terms that are explicitly dependent on the body accelerations to the left-hands of Eq.(2.126) and Eq.(2.127). This will be elaborated in details in Section 4.4 of Chapter 4.

2.7.2 Rigid-body motion equations in the body-fixed frame

The motion equations formulated in the inertial coordinate system is commonly used in the ship seakeeping analysis, however, the body-fixed formulation of the motion equations is preferred in the maneuvering analysis of ships. In this study, the \(\mathbf{a}^\text{i}_{\text{CM}}^{\text{b}} \) motion equations formulated in the inertial coordinate system is commonly used in the ship maneuvering analysis of ships. The motion equations formulated in the inertial coordinate system is commonly used in the ship maneuvering analysis of ships.

Similar to what we did in Eq.(2.120), we can rewrite Eq.(2.128) as
\[
\mathbf{m} \ddot{\mathbf{a}}^\text{b}_{\text{CM}}^{\text{b}} = \mathbf{R}_{\text{CM}}^{\text{i}} (\mathbf{R}_{\text{CM}}^{\text{i}} \mathbf{a}^\text{r}_{\text{CM}}^{\text{CM}} - \mathbf{R}_{\text{CM}}^{\text{i}} \mathbf{a}^\text{b}_{\text{CM}}^{\text{CM}}) - \mathbf{R}_{\text{CM}}^{\text{i}} \mathbf{F}^\text{b}. \] (2.131)
Applying Eq.(2.122) in Eq.(2.131) lead us to
\[
\mathbf{m} \ddot{\mathbf{a}} = \mathbf{F}^\text{b}. \] (2.132)
From Eq.(2.123), we have that
\[
\dot{\mathbf{a}} = \mathbf{a}_{\text{CM}}^{\text{i}}. \] (2.133)
2.8 Incident wave field

Considering that the incident wave propagates with a heading angle β with respect to the X_e-axis of the Earth-fixed coordinate system defined in Eq. (2.1), the first-order, second-order and third-order velocity potential of the regular wave can be written respectively as

$$\phi^{(1)} = \frac{\gamma_n}{\omega} \cdot \frac{1}{2} \left(k h \right)^2 \sin \theta, \quad \phi^{(2)} = \frac{\gamma_n}{\omega} \cdot \frac{1}{2} \left(k h \right)^2 \sin \theta, \quad \phi^{(3)} = \frac{\gamma_n}{\omega} \cdot \frac{1}{2} \left(k h \right)^2 \sin \theta,$$

where γ_n is the frequency of the incident wave. The following nonlinear dispersion relationship holds

$$\omega^2 = \frac{g h}{k} \cdot \left(e^{-k h} - 1 + e^{k h} \right), \quad (2.139)$$

The corresponding first-order, second-order and third-order wave elevations are respectively

$$\eta^{(1)} = \frac{A_0}{\omega} \cdot \cos \beta, \quad \eta^{(2)} = \frac{A_0}{\omega} \cdot \frac{1}{2} \left(k h \right)^2 \cdot \cos \beta, \quad \eta^{(3)} = \frac{A_0}{\omega} \cdot \frac{1}{2} \left(k h \right)^2 \cdot \cos \beta,$$

where A_0 is the linear wave amplitude. k is the wave number. h is the water depth.

The description of the second-order irregular waves in the Earth-fixed coordinate system with finite water depth can be found in, for instance Dalzell (1999). A third-order stochastic wave model was proposed by Shokka (1994) to simulate the third-order deep-water waves.

2.8.1 Incident wave field

Considering that the incident wave propagates with a heading angle β with respect to the X_e-axis of the Earth-fixed coordinate system defined in Eq. (2.1), the first-order, second-order and third-order velocity potential of the regular wave can be written respectively as

$$\phi^{(1)} = \frac{\gamma_n}{\omega} \cdot \frac{1}{2} \left(k h \right)^2 \sin \theta, \quad \phi^{(2)} = \frac{\gamma_n}{\omega} \cdot \frac{1}{2} \left(k h \right)^2 \sin \theta, \quad \phi^{(3)} = \frac{\gamma_n}{\omega} \cdot \frac{1}{2} \left(k h \right)^2 \sin \theta,$$

where γ_n is the frequency of the incident wave. The following nonlinear dispersion relationship holds

$$\omega^2 = \frac{g h}{k} \cdot \left(e^{-k h} - 1 + e^{k h} \right), \quad (2.139)$$

The corresponding first-order, second-order and third-order wave elevations are respectively

$$\eta^{(1)} = \frac{A_0}{\omega} \cdot \cos \beta, \quad \eta^{(2)} = \frac{A_0}{\omega} \cdot \frac{1}{2} \left(k h \right)^2 \cdot \cos \beta, \quad \eta^{(3)} = \frac{A_0}{\omega} \cdot \frac{1}{2} \left(k h \right)^2 \cdot \cos \beta,$$

where A_0 is the linear wave amplitude. k is the wave number. h is the water depth.

The description of the second-order irregular waves in the Earth-fixed coordinate system with finite water depth can be found in, for instance Dalzell (1999). A third-order stochastic wave model was proposed by Shokka (1994) to simulate the third-order deep-water waves.
Let \(\mathbf{r} = (X, Y, Z) \) be the position vector of a point in the Earth-fixed coordinate system, i.e. \(\text{OeXeYeZe} \) in Fig.2.1, and \(\mathbf{X} = (\mathbf{X}, \mathbf{T}, Z) \) as the corresponding position vector in the inertial coordinate system moving the steady forward speed, i.e. \(\text{OXYZ} \) system. The incident wave field observed from the \(\text{OXYZ} \) system is obtained by substituting the relationship between \(\mathbf{X} \) and \(\mathbf{X} \), i.e.
\[
\mathbf{X} = \mathbf{X} + \mathbf{U}t
\]
into the expressions in the Earth-fixed frame, e.g. Eq.(2.134) - Eq.(2.137) and Eq.(2.140) - Eq.(2.142), (2.143)
CHAPTER 3

Basis of the Time-Domain HOBEM in 2D

This chapter describes the basis of the two-dimensional higher-order boundary element method (HOBEM) in the time domain. All the discussions in this chapter are based on the formulation of the Boundary Value Problem (BVP) in the inertial coordinate system, which has been described in Chapter 2. We start with the boundary integral equation. The higher-order boundary elements are then used to discretize the boundary integral equation. Numerical issues associated with the time stepping of the free-surface conditions, the numerical damping zone and active wave absorber, and the accurate way of getting the time differentiation of the velocity potential, i.e., ϕ', and the numerical calculation of the higher-order derivatives on both the free surface and body surface, will be discussed.

3.1 Boundary integral equation

As shown in Fig. 3.1, a water domain Ω is enclosed by the instantaneous free surface SF, the wetted part of the instantaneous body surface SB, the sea bottom Sbottom, the vertical surfaces SW_1 and SW_2 away from the body. We denote SF_0 as the calm water surface and SB_0 as the wetted body surface when the body is at rest in calm water. The mean positions of SW_1 and SW_2 are denoted as SW_10 and SW_20. By mean position of a surface, it is meant the position around which the surface is oscillating.
The sea bottom is assumed to be stationary and horizontal. Applying the modified Green’s third identity to the fluid domain enclosed by SF0, SB0, SW10, and SW20 and Sbottom, we obtain the following integral equation

\[C(P, nP) = \frac{1}{2\pi} \sum_{j=1}^{N} \left[n_j \cdot N_j \right] \left(\ln r_{PQ} + \ln \frac{r_{PQ}}{r_{PN}} - 1 \right) d\sigma_{nj}. \]

Here \(\Theta^k(1,\ 2,\ 3) \) is the k-th order velocity potential. P denotes a field point and Q denotes the singularity point. C(P) is the solid angle coefficient to be discussed below. We call it a coefficient, because its value depends on the definition of the normal vector and the choice of Green function G(PQ). In this study, \(n \) is the normal vector defined as positive pointing out of the fluid domain. The Green function G(P, Q) used in this study is

\[G(P, Q) = \ln r_{PQ} = \ln \frac{r_{PQ}}{\sqrt{2}}. \]

(3.1)

3.2 Quadratic boundary element method

The first step to solve the integral equation by using the higher-order BEM is to discretize the boundary surfaces with a number of higher-order elements. In the present study, we use 3-node isoparametric quadratic elements. The isoparametric elements were first studied by Zienkiewicz and his associates (see Zienkiewicz, 1971). The name ‘isoparametric’ is due to the fact that the ‘same’ parametric function which describes the geometry may be used for interpolating spatial variations of a variable within an element (see also Chung, 2002). The 3-node element is considered as quadratic, because the corresponding shape functions used for the description of the geometry and other variables are 2-order polynomials. Fig.3.2a shows an example of the 3-node quadratic element in the physical plane with its mapping in \(\xi-\eta-\zeta \) plane shown in Fig.3.2b. Within each element, the boundary surfaces, the velocity potential and its normal derivatives are approximated by the same shape function

\[N_j(x, y) = \sum_{k=1}^{3} \xi_k \eta_k \zeta_k \]

(3.3)

\[\theta_j(P) = \sum_{k=1}^{3} \xi_k \eta_k \zeta_k v_k, \]

(3.4)

\[\partial \theta_j(P) / \partial n = \sum_{k=1}^{3} \xi_k \eta_k \zeta_k \partial v_k / \partial n, \]

(3.5)

where \(\xi_k, \eta_k, \zeta_k \) and \(\partial v_k / \partial n \) are the velocity potential and its normal derivative at the j-th node of the reference element, respectively. The superscript k indicates the order of the magnitude. The

The sea bottom is assumed to be stationary and horizontal. Applying the modified Green’s third identity to the fluid domain enclosed by SF0, SB0, SW10, and SW20 and Sbottom, we obtain the following integral equation

\[C(P, nP) = \frac{1}{2\pi} \sum_{j=1}^{N} \left[n_j \cdot N_j \right] \left(\ln r_{PQ} + \ln \frac{r_{PQ}}{r_{PN}} - 1 \right) d\sigma_{nj}. \]

Here \(\Theta^k(1,\ 2,\ 3) \) is the k-th order velocity potential. P denotes a field point and Q denotes the singularity point. C(P) is the solid angle coefficient to be discussed below. We call it a coefficient, because its value depends on the definition of the normal vector and the choice of Green function G(PQ). In this study, \(n \) is the normal vector defined as positive pointing out of the fluid domain. The Green function G(P, Q) used in this study is

\[G(P, Q) = \ln r_{PQ} = \ln \frac{r_{PQ}}{\sqrt{2}}. \]

(3.1)

3.2 Quadratic boundary element method

The first step to solve the integral equation by using the higher-order BEM is to discretize the boundary surfaces with a number of higher-order elements. In the present study, we use 3-node isoparametric quadratic elements. The isoparametric elements were first studied by Zienkiewicz and his associates (see Zienkiewicz, 1971). The name ‘isoparametric’ is due to the fact that the ‘same’ parametric function which describes the geometry may be used for interpolating spatial variations of a variable within an element (see also Chung, 2002). The 3-node element is considered as quadratic, because the corresponding shape functions used for the description of the geometry and other variables are 2-order polynomials. Fig.3.2a shows an example of the 3-node quadratic element in the physical plane with its mapping in \(\xi-\eta-\zeta \) plane shown in Fig.3.2b. Within each element, the boundary surfaces, the velocity potential and its normal derivatives are approximated by the same shape function

\[N_j(x, y) = \sum_{k=1}^{3} \xi_k \eta_k \zeta_k \]

(3.3)

\[\theta_j(P) = \sum_{k=1}^{3} \xi_k \eta_k \zeta_k v_k, \]

(3.4)

\[\partial \theta_j(P) / \partial n = \sum_{k=1}^{3} \xi_k \eta_k \zeta_k \partial v_k / \partial n, \]

(3.5)

where \(\xi_k, \eta_k, \zeta_k \) and \(\partial v_k / \partial n \) are the velocity potential and its normal derivative at the j-th node of the reference element, respectively. The superscript k indicates the order of the magnitude. The

3.2 Quadratic boundary element method

The first step to solve the integral equation by using the higher-order BEM is to discretize the boundary surfaces with a number of higher-order elements. In the present study, we use 3-node isoparametric quadratic elements. The isoparametric elements were first studied by Zienkiewicz and his associates (see Zienkiewicz, 1971). The name ‘isoparametric’ is due to the fact that the ‘same’ parametric function which describes the geometry may be used for interpolating spatial variations of a variable within an element (see also Chung, 2002). The 3-node element is considered as quadratic, because the corresponding shape functions used for the description of the geometry and other variables are 2-order polynomials. Fig.3.2a shows an example of the 3-node quadratic element in the physical plane with its mapping in \(\xi-\eta-\zeta \) plane shown in Fig.3.2b. Within each element, the boundary surfaces, the velocity potential and its normal derivatives are approximated by the same shape function

\[N_j(x, y) = \sum_{k=1}^{3} \xi_k \eta_k \zeta_k \]

(3.3)

\[\theta_j(P) = \sum_{k=1}^{3} \xi_k \eta_k \zeta_k v_k, \]

(3.4)

\[\partial \theta_j(P) / \partial n = \sum_{k=1}^{3} \xi_k \eta_k \zeta_k \partial v_k / \partial n, \]

(3.5)

where \(\xi_k, \eta_k, \zeta_k \) and \(\partial v_k / \partial n \) are the velocity potential and its normal derivative at the j-th node of the reference element, respectively. The superscript k indicates the order of the magnitude. The
quadratic shape function \(N_i \) is given, for instance, by Brebbia & Dominguez (1992) as
\[
N_i(\xi) = \frac{1}{2}(1-\xi), \quad N_i(\eta) = \frac{1}{2}(1-\eta), \quad N_i(\zeta) = \frac{1}{2}(1+\xi) - \frac{1}{2}(1+\eta),
\]
(3.6)
with \(\xi, \eta, \zeta \) as the local intrinsic coordinates of the reference element. The transformed coordinates \((\xi, \eta)\) corresponding to the coordinates \((x, y)\) in the physical plane are defined in Fig.3.2-

\[
(N_x, N_y, N_z) \quad (\xi, \eta, \zeta) \quad (x, y, z)
\]
(3.7)
where \(\xi, \eta, \zeta \) as the local intrinsic coordinates of the reference element. The transformed coordinates \((\xi, \eta)\) corresponding to the coordinates \((x, y)\) in the physical plane are defined in Fig.3.2-

\[
(N_x, N_y, N_z) \quad (\xi, \eta, \zeta) \quad (x, y, z)
\]
(3.8)
where

\[
H_x = \sum_{j=1}^{NOD} A_{ij} \hat{H}_j + C_{ij} B_j,
\]
(3.9)
and

\[
H_x = \sum_{j=1}^{NOD} A_{ij} \hat{H}_j + C_{ij} B_j,
\]
(3.10)
NOD is the total number of nodes, \(S_j \) is the Kronecker delta function. \(s = IEP(e, j) \) is a coefficient of the connectivity matrix, which represents the global index of the \(j \)-th node of \(e \)-th element. \(N_i \) is the total number of elements. \(C_i \) is the solid angle coefficient at the \(i \)-th node \(P_i \), as defined in Fig.3.2-

\[
(N_x, N_y, N_z) \quad (\xi, \eta, \zeta) \quad (x, y, z)
\]
(3.11)
and

\[
\hat{H}_j - \int_{\Delta} N_j(\xi, \eta) G(P, Q) d\xi d\eta [P(\xi) - P(\eta)],
\]
(3.12)
The Jacobian of the \(e \)-th element, i.e. \(P(\xi) \) is defined as

\[
P(\xi) = \frac{1}{e} \int_{\Delta} N_j(\xi, \eta) G(P, Q) d\xi d\eta [P(\xi) - P(\eta)],
\]
(3.13)

\[
\int_{\Delta} N_j(\xi, \eta) G(P, Q) d\xi d\eta [P(\xi) - P(\eta)],
\]
(3.14)
After the discretization, the integrals on the boundary surfaces in Eq.(3.1) can thus be converted into a sum on the elements, each being calculated on the reference element. Eq.(3.1) can be rewritten as

\[
C_i \sum_{j=1}^{NOD} A_{ij} \hat{H}_j + C_{ij} B_j = 0,
\]
(3.15)
NOD is the total number of nodes, \(S_j \) is the Kronecker delta function. \(s = IEP(e, j) \) is a coefficient of the connectivity matrix, which represents the global index of the \(j \)-th node of \(e \)-th element. \(N_i \) is the total number of elements. \(C_i \) is the solid angle coefficient at the \(i \)-th node \(P_i \), as defined in Fig.3.2-

\[
(N_x, N_y, N_z) \quad (\xi, \eta, \zeta) \quad (x, y, z)
\]
(3.16)
with \(\xi, \eta, \zeta \) as the local intrinsic coordinates of the reference element. The transformed coordinates \((\xi, \eta)\) corresponding to the coordinates \((x, y)\) in the physical plane are defined in Fig.3.2-

\[
(N_x, N_y, N_z) \quad (\xi, \eta, \zeta) \quad (x, y, z)
\]
(3.17)
where

\[
H_x = \sum_{j=1}^{NOD} A_{ij} \hat{H}_j + C_{ij} B_j,
\]
(3.18)
and

\[
H_x = \sum_{j=1}^{NOD} A_{ij} \hat{H}_j + C_{ij} B_j,
\]
(3.19)
NOD is the total number of nodes, \(S_j \) is the Kronecker delta function. \(s = IEP(e, j) \) is a coefficient of the connectivity matrix, which represents the global index of the \(j \)-th node of \(e \)-th element. \(N_i \) is the total number of elements. \(C_i \) is the solid angle coefficient at the \(i \)-th node \(P_i \), as defined in Fig.3.2-

\[
(N_x, N_y, N_z) \quad (\xi, \eta, \zeta) \quad (x, y, z)
\]
(3.20)
with \(\xi, \eta, \zeta \) as the local intrinsic coordinates of the reference element. The transformed coordinates \((\xi, \eta)\) corresponding to the coordinates \((x, y)\) in the physical plane are defined in Fig.3.2-

\[
(N_x, N_y, N_z) \quad (\xi, \eta, \zeta) \quad (x, y, z)
\]
(3.21)
where

\[
H_x = \sum_{j=1}^{NOD} A_{ij} \hat{H}_j + C_{ij} B_j,
\]
(3.22)
and

\[
H_x = \sum_{j=1}^{NOD} A_{ij} \hat{H}_j + C_{ij} B_j,
\]
(3.23)
NOD is the total number of nodes, \(S_j \) is the Kronecker delta function. \(s = IEP(e, j) \) is a coefficient of the connectivity matrix, which represents the global index of the \(j \)-th node of \(e \)-th element. \(N_i \) is the total number of elements. \(C_i \) is the solid angle coefficient at the \(i \)-th node \(P_i \), as defined in Fig.3.2-

\[
(N_x, N_y, N_z) \quad (\xi, \eta, \zeta) \quad (x, y, z)
\]
(3.24)
with \(\xi, \eta, \zeta \) as the local intrinsic coordinates of the reference element. The transformed coordinates \((\xi, \eta)\) corresponding to the coordinates \((x, y)\) in the physical plane are defined in Fig.3.2-

\[
(N_x, N_y, N_z) \quad (\xi, \eta, \zeta) \quad (x, y, z)
\]
(3.25)
In this study, the collection points are chosen as the nodes of the quadrilateral elements. The influence coefficients \(H_{ii} \) and \(A_{ii} \) are evaluated according to Brebbia & Dominguez (1982). The diagonal terms \(H_{ii} \) are obtained indirectly by a ‘rigid-mode’ method (Brebbia & Dominguez, 1992), i.e.:

\[
H_{ii} = \sum H_{ii}.
\]
(3.14)

This method was referred as ‘rigid-mode’ method by analogy with structural analysis problems (see e.g. Brebbia, 1976). In the structural elasticity problems, a similar equation to Eq. (3.8) can be derived, except that \(\Phi_k \) on the left-hand side should be replaced by the displacement on the k-th node of the boundaries and \(G_{ik} \) by the traction (surface forces intensities) on the same node. If the structure suffers from interior forces, one has to add additional terms to Eq.(3.8) associated with the volume integral of the interior forces. By assuming unit rigid-body displacements of the body without tractions and interior forces, Brebbia (1978) obtained the following relationship relating the diagonal terms \(H_{ii} \) and the off-diagonal terms \(H_{ik} \), i=1, 2, … , NOD, k=i, NOD:

\[
H_{ii} = \sum H_{ii}.
\]
(3.15)

By isolating the diagonal terms in the left-hand side of Eq.(3.15), we see that Eq.(3.14) holds.

Similarly in the potential flow problems, if we consider an uniform velocity potential field with \(\Phi = \text{constant} \equiv 0 \) and \(\nabla \Phi = \text{zero} \) over the whole boundaries enclosing the water domain, we can obtain the same relationship as Eq.(3.15). Physically, for potential flows the rigid-mode method corresponds to numerically specifying that the discretized problem exactly satisfies a zero global mass flux condition when there is no flow motion.

When the collection point is at a node other than any of those three in an element, the integrals for \(H_{ii} \) and \(A_{ii} \) are obtained by standard Gauss quadrature. If the collection point is at the end nodes of the element with \(\xi = \xi_1 \) (see Fig.3.2b), the straight line \(\xi = \xi_1, 0 < \eta < 1 \) is stretched by using a transformation \(\eta = \eta_1 - \eta' \). The resulting integral then gives two parts, one with a singular term \(\ln(1/\eta) \) and the other one with no singularity. The first part is integrated by means of a one-dimensional logarithmic Gaussian Quadrature with respect to the variable \(\eta \). The second part is integrated by means of the standard Gaussian quadrature formula in terms of the variable \(\eta' \) (see Sec. 3.2). The collection point is at the middle node of the element, i.e. \(\xi = \xi_0 \), we divide the straight line into two parts with \(\xi = \xi_0, 0 < \eta_1 < 1 - 0 < \eta_1 \), respectively. Each part is then mapped into a straight line with \(\eta = \eta_0 \) in the \(\eta \)-plane. Again, the resulting integrals contain a regular part which can be obtained by standard Gaussian quadrature and a logarithmic singular part which is evaluated by a logarithmic Gaussian Quadrature. Interested readers are referred to Brebbia & Dominguez (1982) for more details.

At the intersection points of different surfaces, the normal vectors may be ill-defined. The double-node technique is used to enforce the continuity of velocity potential at the intersection points of different surfaces (see Grilli & Svendsen, 1980). In the double-node method, two nodes with the same coordinates are used at the intersection of different surfaces. Applying Eq.(3.17) at the points of different surfaces, the normal vectors may be ill-defined. The double-node technique is used to enforce the continuity of velocity potential at the intersection points of different surfaces (see Grilli & Svendsen, 1980). In the double-node method, two nodes with the same coordinates are used at the intersection of different surfaces. Applying Eq.(3.17) at the
interaction can only give one equation (the other one is identical). The continuity of the velocity potential acts as another equation at the intersection point. Consequently, there is only one unknown at the intersection point. For example, at the intersection points of the free surface and the body surface, the normal velocity of the intersection point is taken as known on the body surface but unknown on the free surface. The velocity potential at the intersection on the body is the same as that on the free surface, which is known. The normal velocity at the intersection on the free surface side is obtained by solving the boundary integral equation.

3.3 Time marching of the free-surface conditions

When a time-domain solution is pursued, the problem is considered as an initial value problem. The initial conditions used in this study are that the scattered wave elevation, the scattered velocity potential on the free surface and the body motion are zero. In the two-dimensional studies, we use an explicit fourth-order Runge-Kutta method to update the wave elevation and velocity potential on the free surface. Free-surface conditions, e.g. Eq.(2.48) and Eq.(2.49), are used as the evolution equations.

According to the explicit fourth-order Runge-Kutta method, the solution for a first-order ordinary equation \(y' = f(y) \) takes the following form (Riley et al., 2006)

\[
y_{n+1} = y_n + c_1 \Delta t f(y_n) + c_2 \Delta t f(y_n + c_2 \Delta t f(y_n)) + c_3 \Delta t f(y_n + c_3 \Delta t f(y_n)) + c_4 \Delta t f(y_{n+1}),
\]

(3.16)

where

\[
c_1 = c_4 = \Delta t f(y_n),
\]

\[
c_2 = \Delta t f(y_n + 0.5 c_1 \Delta t f(y_n)),
\]

\[
c_3 = \Delta t f(y_n + 0.5 c_3 \Delta t f(y_n)),
\]

\[
c_4 = \Delta t f(y_{n+1}),
\]

(3.17)

3.4 Numerical damping zone and active wave absorber

The simple source, i.e., a source in infinite fluid, is chosen as the Green function in this work. The simple source as the Green function allows the solutions of linear as well as nonlinear formulation of wave-body interaction problems. Because the simple source does not satisfy the radiation condition, one has to truncate the computational domain at a finite distance and absorb the outgoing waves before the waves approach the end of the computational domain. A comprehensive review of the numerical techniques can be found in Romanski (1992).

The most commonly used techniques in the time-domain wave-body analysis are the Orlanski’s condition (Orlanski, 1973) and the numerical damping zone. The use of the Orlanski’s condition is restricted to the cases of regular incident waves of known frequency, or to very long waves (see interaction can only give one equation (the other one is identical). The continuity of the velocity potential acts as another equation at the intersection point. Consequently, there is only one unknown at the intersection point. For example, at the intersection points of the free surface and the body surface, the normal velocity of the intersection point is taken as known on the body surface but unknown on the free surface. The velocity potential at the intersection on the body is the same as that on the free surface, which is known. The normal velocity at the intersection on the free surface side is obtained by solving the boundary integral equation.

3.3 Time marching of the free-surface conditions

When a time-domain solution is pursued, the problem is considered as an initial value problem. The initial conditions used in this study are that the scattered wave elevation, the scattered velocity potential on the free surface and the body motion are zero. In the two-dimensional studies, we use an explicit fourth-order Runge-Kutta method to update the wave elevation and velocity potential on the free surface. Free-surface conditions, e.g. Eq.(2.48) and Eq.(2.49), are used as the evolution equations.

According to the explicit fourth-order Runge-Kutta method, the solution for a first-order ordinary equation \(y' = f(y) \) takes the following form (Riley et al., 2006)

\[
y_{n+1} = y_n + c_1 \Delta t f(y_n) + c_2 \Delta t f(y_n + c_2 \Delta t f(y_n)) + c_3 \Delta t f(y_n + c_3 \Delta t f(y_n)) + c_4 \Delta t f(y_{n+1}),
\]

(3.16)

where

\[
c_1 = c_4 = \Delta t f(y_n),
\]

\[
c_2 = \Delta t f(y_n + 0.5 c_1 \Delta t f(y_n)),
\]

\[
c_3 = \Delta t f(y_n + 0.5 c_3 \Delta t f(y_n)),
\]

\[
c_4 = \Delta t f(y_{n+1}),
\]

(3.17)

3.4 Numerical damping zone and active wave absorber

The simple source, i.e., a source in infinite fluid, is chosen as the Green function in this work. The simple source as the Green function allows the solutions of linear as well as nonlinear formulation of wave-body interaction problems. Because the simple source does not satisfy the radiation condition, one has to truncate the computational domain at a finite distance and absorb the outgoing waves before the waves approach the end of the computational domain. A comprehensive review of the numerical techniques can be found in Romanski (1992).

The most commonly used techniques in the time-domain wave-body analysis are the Orlanski’s condition (Orlanski, 1973) and the numerical damping zone. The use of the Orlanski’s condition is restricted to the cases of regular incident waves of known frequency, or to very long waves (see interaction can only give one equation (the other one is identical). The continuity of the velocity potential acts as another equation at the intersection point. Consequently, there is only one unknown at the intersection point. For example, at the intersection points of the free surface and the body surface, the normal velocity of the intersection point is taken as known on the body surface but unknown on the free surface. The velocity potential at the intersection on the body is the same as that on the free surface, which is known. The normal velocity at the intersection on the free surface side is obtained by solving the boundary integral equation.

3.3 Time marching of the free-surface conditions

When a time-domain solution is pursued, the problem is considered as an initial value problem. The initial conditions used in this study are that the scattered wave elevation, the scattered velocity potential on the free surface and the body motion are zero. In the two-dimensional studies, we use an explicit fourth-order Runge-Kutta method to update the wave elevation and velocity potential on the free surface. Free-surface conditions, e.g. Eq.(2.48) and Eq.(2.49), are used as the evolution equations.

According to the explicit fourth-order Runge-Kutta method, the solution for a first-order ordinary equation \(y' = f(y) \) takes the following form (Riley et al., 2006)

\[
y_{n+1} = y_n + c_1 \Delta t f(y_n) + c_2 \Delta t f(y_n + c_2 \Delta t f(y_n)) + c_3 \Delta t f(y_n + c_3 \Delta t f(y_n)) + c_4 \Delta t f(y_{n+1}),
\]

(3.16)

where

\[
c_1 = c_4 = \Delta t f(y_n),
\]

\[
c_2 = \Delta t f(y_n + 0.5 c_1 \Delta t f(y_n)),
\]

\[
c_3 = \Delta t f(y_n + 0.5 c_3 \Delta t f(y_n)),
\]

\[
c_4 = \Delta t f(y_{n+1}),
\]

(3.17)

3.4 Numerical damping zone and active wave absorber

The simple source, i.e., a source in infinite fluid, is chosen as the Green function in this work. The simple source as the Green function allows the solutions of linear as well as nonlinear formulation of wave-body interaction problems. Because the simple source does not satisfy the radiation condition, one has to truncate the computational domain at a finite distance and absorb the outgoing waves before the waves approach the end of the computational domain. A comprehensive review of the numerical techniques can be found in Romanski (1992).

The most commonly used techniques in the time-domain wave-body analysis are the Orlanski’s condition (Orlanski, 1973) and the numerical damping zone. The use of the Orlanski’s condition is restricted to the cases of regular incident waves of known frequency, or to very long waves (see interaction can only give one equation (the other one is identical). The continuity of the velocity potential acts as another equation at the intersection point. Consequently, there is only one unknown at the intersection point. For example, at the intersection points of the free surface and the body surface, the normal velocity of the intersection point is taken as known on the body surface but unknown on the free surface. The velocity potential at the intersection on the body is the same as that on the free surface, which is known. The normal velocity at the intersection on the free surface side is obtained by solving the boundary integral equation.
The numerical damping zone (DZ) is very efficient for high frequency waves, provided that the damping zone length is longer than the typical wavelength. Clement (1996) proposed to use the combination of a piston-like absorbing boundary condition (PABC) which is effective for low frequencies and a numerical damping zone. In the 2D studies of this work, the coupling of DZ and PABC suggested by Clement (1996) is used.

The mechanism of the numerical beach used here is similar to that of Groco (2001). In the damping zone, artificial damping terms are introduced into the free-surface conditions. In general, the kinematic and dynamic free-surface conditions take the following form

\[\frac{\partial \eta^{\text{m}}}{\partial t} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} + \frac{1}{2} \left(\frac{\partial \eta^{\text{m}}}{\partial t} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} \right)^2 = \frac{\partial}{\partial x} \left(\frac{\partial \eta^{\text{m}}}{\partial x} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} \right), \quad \text{on } Z = 0, \]

(3.18)

\[\frac{\partial \eta^{\text{m}}}{\partial t} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} + \frac{1}{2} \left(\frac{\partial \eta^{\text{m}}}{\partial t} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} \right)^2 = \frac{\partial}{\partial x} \left(\frac{\partial \eta^{\text{m}}}{\partial x} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} \right), \quad \text{on } Z = 0, \]

(3.19)

Here \(\eta^{\text{m}}(m=1, 2, 3) \) are the scattered part of the wave elevation and velocity potential, respectively. The damping coefficient \(\mu_r(m=1, 2, 3) \) is defined as

\[\mu_r = \frac{2}{\gamma} \left. \left(\frac{\partial \eta^{\text{m}}}{\partial x} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} \right) \right|_{Z = 0,} \]

(3.20)

where \(\gamma \) is equal to the fundamental wave frequency in the first-order problem and twice of the fundamental wave frequency in the second-order problem. The non-dimensional empirical coefficient \(\gamma \) was set to be 0.5 x 10^3 in all the calculations. Within the range of the wave frequencies studied in this work, the numerical tests show that the results are not sensitive to this parameter when \(\gamma \) is effective for low frequencies and a numerical damping zone. In the 2D studies of this work, the coupling of DZ and PABC suggested by Clement (1996) is used.

The mechanism of the numerical beach used here is similar to that of Groco (2001). In the damping zone, artificial damping terms are introduced into the free-surface conditions. In general, the kinematic and dynamic free-surface conditions take the following form

\[\frac{\partial \eta^{\text{m}}}{\partial t} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} + \frac{1}{2} \left(\frac{\partial \eta^{\text{m}}}{\partial t} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} \right)^2 = \frac{\partial}{\partial x} \left(\frac{\partial \eta^{\text{m}}}{\partial x} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} \right), \quad \text{on } Z = 0, \]

(3.18)

\[\frac{\partial \eta^{\text{m}}}{\partial t} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} + \frac{1}{2} \left(\frac{\partial \eta^{\text{m}}}{\partial t} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} \right)^2 = \frac{\partial}{\partial x} \left(\frac{\partial \eta^{\text{m}}}{\partial x} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} \right), \quad \text{on } Z = 0, \]

(3.19)

Here \(\eta^{\text{m}}(m=1, 2, 3) \) are the scattered part of the wave elevation and velocity potential, respectively. The damping coefficient \(\mu_r(m=1, 2, 3) \) is defined as

\[\mu_r = \frac{2}{\gamma} \left. \left(\frac{\partial \eta^{\text{m}}}{\partial x} + \frac{1}{\gamma} \frac{\partial \eta^{\text{m}}}{\partial x} \right) \right|_{Z = 0,} \]

(3.20)

where \(\gamma \) is equal to the fundamental wave frequency in the first-order problem and twice of the fundamental wave frequency in the second-order problem. The non-dimensional empirical coefficient \(\gamma \) was set to be 0.5 x 10^3 in all the calculations. Within the range of the wave frequencies studied in this work, the numerical tests show that the results are not sensitive to this parameter when \(\gamma \) is effective for low frequencies and a numerical damping zone. In the 2D studies of this work, the coupling of DZ and PABC suggested by Clement (1996) is used.
chosen between 10^{-6} and 10^{-5}. Note that in the second-order problem, the numerical damping zone mechanism, i.e. Eq.(3.18) and Eq.(3.19), is expected to damp out not only the free waves but also the locked waves following from the inhomogeneous part of the free-surface condition. This type of damping zone mechanism was used by Greco (2001) in two-dimensional fully-nonlinear analysis of wave-body interaction. Kim et al. (1997) has applied the same damping zone mechanism to second-order diffraction in 2D.

When the body is present and the incident wave field is prescribed, the piston-like active absorber is applied in the vertical control surfaces SW1 and SW2 (Fig.3.1). The damping zones are applied near SW1 and SW2. Fig.3.1 can also represent a numerical wave tank (NWT). In that case, the surface SW1 acts as a wave maker and SW2 is the piston-like wave absorber. Further, only the damping zone near SW2 is switched on. The non-dimensional horizontal velocity applied on the piston-like wave absorber in a fully-nonlinear NWT was given by Clement (1996) as

$$
\frac{\partial h}{\partial t} + \frac{1}{h} \frac{\partial}{\partial x} \left(h u \right) = 0,
$$

(3.22)

where the length is nondimensionalized with respect to water depth h and the time is nondimensionalized by $\sqrt{\frac{g h^3}{2}}$. Based on Eq.(3.22), we use the following normal velocity on the piston-like wave absorber SW1 and SW2 (Fig.3.1)

$$
\frac{\partial h}{\partial t} + \frac{1}{h} \frac{\partial}{\partial x} \left(h u \right) = 0,
$$

(3.23)

The position of the wave absorber is assumed to be fixed throughout the analysis and only a flux is given on the wave absorber. The ϕ^I / τ term in Eq.(3.23) can be obtained in different ways (see Section 3.5). The mode-decomposition method (Vinje & Brevig (1981a, 1981b)) is used in the 2D studies of this work.

3.5 Solution of ϕ^I

The accurate calculation of the time derivative of the velocity potential, i.e. ϕ^I, is essential in obtaining correct pressure and force/moment on the body surface at each time step. If the body is fixed or the body motion is prescribed, the calculation of ϕ^I can be achieved as a post-processing task by a finite difference scheme from the solution of the ϕ^I problem. Strictly speaking, for a freely floating body, solving the coupled fluid motion and body motion simultaneously is the most accurate way.

In the 2D studies of this work, a boundary value problem for ϕ^I is solved. The formulation for the ϕ^I problem is based on that of Wu (1998). The governing equation for ϕ^I is still the Laplace equation, i.e.

$$
\nabla^2 \phi^I = 0.
$$

(3.24)

chosen between 10^{-6} and 10^{-5}. Note that in the second-order problem, the numerical damping zone mechanism, i.e. Eq.(3.18) and Eq.(3.19), is expected to damp out not only the free waves but also the locked waves following from the inhomogeneous part of the free-surface condition. This type of damping zone mechanism was used by Greco (2001) in two-dimensional fully-nonlinear analysis of wave-body interaction. Kim et al. (1997) has applied the same damping zone mechanism to second-order diffraction in 2D.

When the body is present and the incident wave field is prescribed, the piston-like active absorber is applied in the vertical control surfaces SW1 and SW2 (Fig.3.1). The damping zones are applied near SW1 and SW2. Fig.3.1 can also represent a numerical wave tank (NWT). In that case, the surface SW1 acts as a wave maker and SW2 is the piston-like wave absorber. Further, only the damping zone near SW2 is switched on. The non-dimensional horizontal velocity applied on the piston-like wave absorber in a fully-nonlinear NWT was given by Clement (1996) as

$$
\frac{\partial h}{\partial t} + \frac{1}{h} \frac{\partial}{\partial x} \left(h u \right) = 0,
$$

(3.22)

where the length is nondimensionalized with respect to water depth h and the time is nondimensionalized by $\sqrt{\frac{g h^3}{2}}$. Based on Eq.(3.22), we use the following normal velocity on the piston-like wave absorber SW1 and SW2 (Fig.3.1)

$$
\frac{\partial h}{\partial t} + \frac{1}{h} \frac{\partial}{\partial x} \left(h u \right) = 0,
$$

(3.23)

The position of the wave absorber is assumed to be fixed throughout the analysis and only a flux is given on the wave absorber. The ϕ^I / τ term in Eq.(3.23) can be obtained in different ways (see Section 3.5). The mode-decomposition method (Vinje & Brevig (1981a, 1981b)) is used in the 2D studies of this work.

3.5 Solution of ϕ^I

The accurate calculation of the time derivative of the velocity potential, i.e. ϕ^I, is essential in obtaining correct pressure and force/moment on the body surface at each time step. If the body is fixed or the body motion is prescribed, the calculation of ϕ^I can be achieved as a post-processing task by a finite difference scheme from the solution of the ϕ^I problem. Strictly speaking, for a freely floating body, solving the coupled fluid motion and body motion simultaneously is the most accurate way.

In the 2D studies of this work, a boundary value problem for ϕ^I is solved. The formulation for the ϕ^I problem is based on that of Wu (1998). The governing equation for ϕ^I is still the Laplace equation, i.e.

$$
\nabla^2 \phi^I = 0.
$$

(3.24)
This can be seen from the Bernoulli's equation and that \(\phi \) and its derivatives satisfy the Laplace equation.

\[\phi = \phi_0 \psi + \phi_1 \psi^2 + \phi_2 \psi^3. \]

(3.25)

The free-surface conditions for \(\psi_0 \) can be found in Section 2.4 and Section 2.5 of Chapter 2. One should note that the formulations presented in Chapter 2 are for general three-dimensional cases. One has to neglect the \(1 \times 1 \) expressions in order to use them in the 2D analysis.

Wu (1999) has given the body boundary condition for \(\phi \) at the instantaneous position of the body surface. We will start from Wu's (1999) formula

\[\sum \psi = \rho \frac{D}{D \psi} \frac{\partial \psi}{\partial t} + \rho \frac{D}{D \psi} \frac{\partial \psi}{\partial x} \frac{\partial \psi}{\partial x} \frac{\partial \psi}{\partial y} + \rho \frac{D}{D \psi} \frac{\partial \psi}{\partial z} \frac{\partial \psi}{\partial z}, \]

(3.26)

where \(\psi_1 \) and \(\psi_2 \) are the translatory and rotational velocity of the body, \(\hat{r} \) is the position vector of a point on the body with respect to the body-fixed coordinate system. An overall det indicates time differentiation. By introducing the series expansions of the body motions and the velocity potential, and Taylor expanding the body boundary condition at the mean body surface, we obtain the following body boundary conditions for \(\phi_0 \), \(\phi_1 \), \(\phi_2 \), and \(\phi_3 \), for the zero forward speed case

\[\nabla \phi_0 = \nabla \phi_1 + \nabla \phi_2 + \nabla \phi_3. \]

(3.27)

\[\nabla \phi_0 = \nabla \phi_1 + \nabla \phi_2 + \nabla \phi_3. \]

(3.28)

The definitions of the variables in Eq.(2.7) and Eq.(2.8) have been given in Section 2.3. The overall double det means that time differentiation has been taken twice.

As seen from Eq.(3.27) and Eq.(3.28), the accelerations of the body motion, i.e. \(\ddot{\psi}_0 \) and \(\ddot{\psi}_1 \), are required as the input of the BVP for \(\phi_0 \). In order to evaluate the accelerations, one must solve the forces and moments acting on the body, which can be obtained by integrating the pressure over the water body surface. However, according to the Bernoulli's equation, \(\phi_0 \) is needed when calculating the pressure. It means that the solutions of \(\phi_0 \) and the body motion have to be obtained by solving an implicit loop. Tanizawa (2000) has given a thorough review of existing methods which can be used to solve this implicit loop, i.e. the iterative method (Cao et al. (1994) and Sen (1994)), the modal decomposition method (Vinty & Breug (1981a, 1981b) and Cunningham (1990)), the implicit boundary condition method (Tanizawa & Sawada (1990) and Tanizawa (1995)).

The modal decomposition method is used in the 2D cases studied in this thesis. We will briefly show how we can use this method to solve the motions of the piston wave absorber SW2 of a NWT without considering the presence of the body. In the NWT, the boundary SW1 acts as the wave generator. The idea for solving the problem of a general freely floating body is the same and no further details will be...
given due to the limited space. Interested readers should be referred to for instance Vinje & Brevig (1981a, 1981b, Coirne et al. (1990) and Tanterza (2000).

Firstly we decompose \(\varphi^{(m)} \) into two parts
\[
\varphi^{(m)} = \varphi^{(m)}_{\text{st}} + \varphi^{(m)}_{\text{sh}}.
\]
(3.29)

Here \(a \) is the amplitude of the ‘mode’ of the piston motion of active wave absorber, which is unknown. \(\varphi^{(m)}_{\text{st}} \) and \(\varphi^{(m)}_{\text{sh}} \) satisfy the following BVP respectively:

\[
\begin{align*}
\frac{\partial \varphi^{(m)}_{\text{st}}}{\partial t} + \frac{\partial \varphi^{(m)}_{\text{sh}}}{\partial t} &= 0, \quad \text{on } \partial S, \\
\varphi^{(m)}_{\text{st}}(0, 0, 0, 0) &= 0, \quad \text{on } \partial S, \\
\varphi^{(m)}_{\text{sh}}(0, 0, 0, 0) &= 0, \quad \text{on } \partial S, \\
\varphi^{(m)}_{\text{sh}}(0, 0, 0, 0, 0) &= 0, \quad \text{on } \partial S.
\end{align*}
\]
(3.30)

where the forcing term \(F^{(m)}(m=1, 2, 3) \) is defined in Section 2.4 and Section 2.5. \(\varphi^{(m)}_{\text{sh}}(m=1, 2, 3) \) is the prescribed normal velocity at the wave maker SW1. \(\varphi^{(m)}_{\text{st}} \) is the wave elevation.

From Eq.(3.23) the normal velocity applied on SW2 can be expressed as
\[
\frac{\partial \varphi^{(m)}_{\text{st}}}{\partial t} + \frac{\partial \varphi^{(m)}_{\text{sh}}}{\partial t} = \frac{1}{\rho} \int \int \int_{V_m} \frac{1}{\sqrt{\rho}} \frac{\partial h}{\partial t} \varphi^{(m)}_{\text{sh}} dw dz dt.
\]
(3.31)

Eq.(3.31) acts as a governing equation of the motion of the piston wave absorber, which plays a similar role as the Newton’s 2nd law for the body motions of a freely floating body. The Runge-Kutta scheme also gives a prediction of the normal velocity \(\varphi^{(m)}_{\text{sh}} \) of SW2 for each sub time step, which has to be consistent with Eq.(3.31). So the unknown amplitude of the ‘mode’ of piston motion of SW2 can be expressed as
\[
a = \frac{1}{\rho} \int \int \int_{V_m} \frac{1}{\sqrt{\rho}} \frac{\partial h}{\partial t} \varphi^{(m)}_{\text{sh}} dw dz dt.
\]
(3.32)

When the amplitude of the ‘mode’ of the piston motion of active wave absorber, i.e. \(a \), is obtained, \(\varphi^{(m)}_{\text{sh}} \) can be obtained through Eq.(3.29).

3.5 Solution of \(\Phi \)

3.6 Calculation of the higher-order derivatives

One of the difficulties in solving a weakly-nonlinear problem by the perturbation scheme is associated with the higher-order derivatives in both the free-surface conditions and the body boundary conditions. The derivatives can be obtained through the differentiation of the shape functions. However, the accuracy is usually not sufficient when the order of the shape function is low and the results

3.6 Calculation of the higher-order derivatives

One of the difficulties in solving a weakly-nonlinear problem by the perturbation scheme is associated with the higher-order derivatives in both the free-surface conditions and the body boundary conditions. The derivatives can be obtained through the differentiation of the shape functions. However, the accuracy is usually not sufficient when the order of the shape function is low and the results
become zero when the order of the derivative is higher than that of the shape function. In this study, the curve fitting technique is adopted in the 2D studies. The one-dimensional cubic B-spline is used to fit the variables on the free surface or the body surface with respect to the arc-length (Wang & Wu, 2006). These variables could be the spatial coordinates, the potential or the velocities on the free surface or the body surface. The first-order and the second-order derivatives are then obtained by taking the derivatives of the cubic B-spline functions.

3.7 Fourier analysis

What one obtains from the time-domain solution are the time histories of, for instance the forces and moments acting on the body. Fourier transform is often needed in order to get the amplitudes and the phases for the Fourier components from the time histories. A Fast Fourier transform (FFT) is not used since the component frequencies are a function of the time interval and will not be easily applicable to arbitrary, unequal frequency intervals. A direct integration of the Fourier series suggested by Kim et al. (1997) is adopted in this study. It takes the following form

\[
\int f(t) e^{\pm i Z_m t} dt = \sum_{n=1}^{N} c_n e^{\pm i Z_n t}, \quad n=1, \ldots, N. \tag{3.33}
\]

Here \(\omega_n\) is a basis frequency of the time history \(f(t)\) with a complex amplitude \(F_n \pm i \Omega_n\). \(\omega_n\) is a test frequency. Eq.(3.33) is valid for arbitrary test frequencies and there is no restriction on the selection of the basis and test frequencies. The application of \(N\) test frequencies to this integral equation gives us a linear system of equations for \(F_n \pm i \Omega_n\). The integral on the left-hand side of Eq.(3.33) is performed numerically. Specifically, we firstly interpolate every 4 neighboring points of the time history \(f(t)\) by cubic polynomials and numerical integrals are then performed within each cubic polynomial. This scheme gives an accuracy of \(O(h^3)\).

What one obtains from the time-domain solution are the time histories of, for instance the forces and moments acting on the body. Fourier transform is often needed in order to get the amplitudes and the phases for the Fourier components from the time histories. A Fast Fourier transform (FFT) is not used since the component frequencies are a function of the time interval and will not be easily applicable to arbitrary, unequal frequency intervals. A direct integration of the Fourier series suggested by Kim et al. (1997) is adopted in this study. It takes the following form

\[
\int f(t) e^{\pm i Z_m t} dt = \sum_{n=1}^{N} c_n e^{\pm i Z_n t}, \quad n=1, \ldots, N. \tag{3.33}
\]

Here \(\omega_n\) is a basis frequency of the time history \(f(t)\) with a complex amplitude \(F_n \pm i \Omega_n\). \(\omega_n\) is a test frequency. Eq.(3.33) is valid for arbitrary test frequencies and there is no restriction on the selection of the basis and test frequencies. The application of \(N\) test frequencies to this integral equation gives us a linear system of equations for \(F_n \pm i \Omega_n\). The integral on the left-hand side of Eq.(3.33) is performed numerically. Specifically, we firstly interpolate every 4 neighboring points of the time history \(f(t)\) by cubic polynomials and numerical integrals are then performed within each cubic polynomial. This scheme gives an accuracy of \(O(h^3)\).
This chapter describes the basis of the three-dimensional Higher-Order Boundary Element Method (HOBEM) in the time domain. The 3D HOBEM adopted in this study is based on the cubic shape functions. The direct computation of the solid angles and the Cauchy principal value (CPV) integrals will be addressed. The method for the calculation of higher-order derivatives of the velocity potential and wave elevation is also presented. Other numerical issues, such as the time stepping of free surface conditions, numerical damping zone and the low-pass filter will also be discussed. The Fast Multipole Method (FMM) is also implemented combined with the cubic HOBEM. Suggestions for the selection of a proper matrix solver in 3D wave-body problem will also be given.

4.1 Boundary integral equation

Fig. 4.1. Sketch of the water domain and the enclosing boundaries.
4.2 HOBEM based on cubic shape functions

4.2.1 Shape functions

The 12-node cubic higher-order boundary elements are used to discretize the boundary surfaces enclosing the fluid domain. A modified Green’s third identity gives the following integral equation

\[C(x)I_0 \int \nabla \cdot G(x,y) \, \partial \Omega \delta(x) \, dS(x), \]

\[\frac{d^k}{dx^k} \left[\frac{d^k}{dx^k} \right] \delta(x) \]

Here \(d^k(x) \) is the \(k \)-th order velocity potential. \(x \) and \(y \) are the location vectors of the field point and the singularity point, respectively. \(C(x) \) is the solid angle coefficient. \(\delta(x) \) is the normal vector defined as positive pointing out of the fluid domain. The Rankine source is chosen as the Green function, i.e.,

\[G(x,y) = \frac{1}{|x-y|^3} \]

4.4 HOBEM based on cubic shape functions

4.4.1 Shape functions

The 12-node cubic higher-order boundary elements are used to discretize the boundary surfaces enclosing the fluid domain. A modified Green’s third identity gives the following integral equation

\[C(x)I_0 \int \nabla \cdot G(x,y) \, \partial \Omega \delta(x) \, dS(x), \]

\[\frac{d^k}{dx^k} \left[\frac{d^k}{dx^k} \right] \delta(x) \]

Here \(d^k(x) \) is the \(k \)-th order velocity potential. \(x \) and \(y \) are the location vectors of the field point and the singularity point, respectively. \(C(x) \) is the solid angle coefficient. \(\delta(x) \) is the normal vector defined as positive pointing out of the fluid domain. The Rankine source is chosen as the Green function, i.e.,

\[G(x,y) = \frac{1}{|x-y|^3} \]
Due to the discretization, the integral equation (4.1) can be rewritten as

\[
\mathbf{K}_{ij}^{(e)} \mathbf{U}^{(e)} + \mathbf{F}^{(e)} = \mathbf{0}, \quad i, j = 1, 2, \ldots, NOD.
\]

(4.11)

NE is the total number of elements.

\([\mathbf{P} (\xi, \eta)] = \mathbf{J}(\xi, \eta) \mathbf{P}^{(e)}\]

(4.4)

where \(\mathbf{J}(\xi, \eta)\) is the Jacobian of the reference element. The transformed coordinates \(\xi, \eta\) correspond to the coordinates \((x, y, z)\) in the physical plane. The lengths of the four sides are identical and equal to 2.

Choosing the collocation points at the nodes of the elements leads us to the following equations system

\[
\sum_{m=1}^{NOD} \mathbf{h}_m \mathbf{e}_m^{(e)} = \mathbf{d}_{(e)}, \quad i = 1, 2, \ldots, NOD.
\]

(4.11)

\([\mathbf{F}^{(e)}] = \mathbf{J}(\xi, \eta) \mathbf{F}_{i}^{(e)}\]

(4.4)

where \(\mathbf{F}^{(e)}\) is the external force per unit area. The transformed coordinates \(\xi, \eta\) correspond to the coordinates \((x, y, z)\) in the physical plane. The lengths of the four sides are identical and equal to 2.

Choosing the collocation points at the nodes of the elements leads us to the following equations system

\[
\sum_{m=1}^{NOD} \mathbf{h}_m \mathbf{e}_m^{(e)} = \mathbf{d}_{(e)}, \quad i = 1, 2, \ldots, NOD.
\]

(4.11)
When the field point \(\mathbf{x} \) is on the surface of the element, the field-point and singularity point may coincide to generate singularities \(1/(\mathbf{x} - \mathbf{x}_i) \rightarrow \infty \) and \(1/|\mathbf{x} - \mathbf{r}_i| \rightarrow \infty \). Most of the singularities can be removed by using polar coordinate system on the local element and locating the coordinate origin at the singular point. However, this transformation yields still another singularity \(1/|\mathbf{r} - \mathbf{x}_i| \) in the term \(H_{ij}^e \) when \(\mathbf{r} = \mathbf{x}_i \). Here \(\mathbf{r} \) is the radial coordinate (see for instance Liu et al. (1991)). Either the indirect method or the direct method can be adopted for the evaluation of the diagonal terms \(H_{ii} \).}

4.2.2 Solid angle and CPV integrals

When the field point \(\mathbf{x} \) is on the surface of the element, \(\mathbf{x}_i \) and \(\mathbf{r}_i \) coincide to generate singularities \(1/(\mathbf{x} - \mathbf{x}_i) \rightarrow \infty \) and \(1/|\mathbf{x} - \mathbf{r}_i| \rightarrow \infty \). Most of the singularities can be removed by using polar coordinate system on the local element and locating the coordinate origin at the singular point. However, this transformation yields still another singularity \(1/|\mathbf{r} - \mathbf{x}_i| \) in the term \(H_{ij}^e \) when \(\mathbf{r} = \mathbf{x}_i \). Here \(\mathbf{r} \) is the radial coordinate (see for instance Liu et al. (1991)). Either the indirect method or the direct method can be adopted for the evaluation of the diagonal terms \(H_{ii} \).

Indirect method

In order to solve the \(1/|\mathbf{r}| \) singularity, an indirect procedure was suggested by Liu et al. (1991). The unknown velocity potential \(\phi \) in Eq.(4.1) is replaced by a known (known) velocity potential \(\phi_k \). The consequence is that a relationship between the diagonal term and the off-diagonal terms can be established, which avoids the direct calculation of the solid angle term and the CPV integrals. When \(\phi_k \) vanishes \(\phi \) and \(\mathbf{r} = \mathbf{r}_0 \) (for \(n = 0 \)), this method is the same as the rigid-mode method that we have described in Section 3.2, i.e.

\[
H_{ii}^e = \sum_{i \neq j} H_{ij}^e
\]

Direct calculation of the solid angles

When \(H_{ii}^e \) is evaluated directly, we need to calculate the solid angle term \(\hat{C} \) and the CPV terms \(\hat{G} \).
4.2 HOBEM based on cubic shape functions

The method for the calculation of the solid angles presented here is based on Montic (1993). This method has also been used by Teng et al. (2006) and Ning et al. (2010) in the analysis of the wave-body interactions by HOBEM. Interested readers are referred to Montic (1993), Teng et al. (2006) and Ning et al. (2010).

In the integral process, singularity can exist if the fluid source point \(\mathbf{x} \) approaches the source/dipole point \(\mathbf{x}_i \). Generally, there exists a sphere with a radius \(x \) near to \(\mathbf{x} \) by taking \(\mathbf{x}_i \) as the origin of the sphere. The solid angle is defined as the angle occupied by the fluid domain, which can be related to the ratio of the spherical surface in the fluid domain to the whole spherical surface, i.e.,

\[
C_i = \frac{4\pi \delta_i}{4\pi x^2} \quad \text{(4.17)}
\]

where \(S_i \) is the spherical surface in the fluid domain.

Based on the relation of the spherical geometry, the spherical surface interpolated by \(N \) fluid boundary element boundary elements as shown in Fig.

\[
S_i = x^2 \sum_{j=1}^{N} \alpha_{ij} - (N-2)x^2 + \alpha_i \left(-\frac{\pi}{2} \right)
\]

where \(\alpha_i \) is the included angle between the fluid boundary elements and the spherical surface. See Fig.

\[
\theta_{ij} = \sigma + \arccos \left(\frac{\mathbf{g}_{ij} \cdot \mathbf{f}_{ij}}{\left| \mathbf{g}_{ij} \right| \left| \mathbf{f}_{ij} \right|} \right)
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]

\[
\frac{4\pi x^2}{4\pi } \quad \text{(4.18)}
\]

\[
\alpha_i \quad \text{can according to Montic (1993) be expressed as}
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]

\[
\theta_{ij} = \sigma + \arccos \left(\frac{\mathbf{g}_{ij} \cdot \mathbf{f}_{ij}}{\left| \mathbf{g}_{ij} \right| \left| \mathbf{f}_{ij} \right|} \right)
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]

\[
\frac{4\pi x^2}{4\pi } \quad \text{(4.18)}
\]

\[
\alpha_i \quad \text{can according to Montic (1993) be expressed as}
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]

\[
\frac{4\pi x^2}{4\pi } \quad \text{(4.18)}
\]

\[
\alpha_i \quad \text{can according to Montic (1993) be expressed as}
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]

\[
\frac{4\pi x^2}{4\pi } \quad \text{(4.18)}
\]

\[
\alpha_i \quad \text{can according to Montic (1993) be expressed as}
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]

\[
\frac{4\pi x^2}{4\pi } \quad \text{(4.18)}
\]

\[
\alpha_i \quad \text{can according to Montic (1993) be expressed as}
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]

\[
\frac{4\pi x^2}{4\pi } \quad \text{(4.18)}
\]

\[
\alpha_i \quad \text{can according to Montic (1993) be expressed as}
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]

\[
\frac{4\pi x^2}{4\pi } \quad \text{(4.18)}
\]

\[
\alpha_i \quad \text{can according to Montic (1993) be expressed as}
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]

\[
\frac{4\pi x^2}{4\pi } \quad \text{(4.18)}
\]

\[
\alpha_i \quad \text{can according to Montic (1993) be expressed as}
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]

\[
\frac{4\pi x^2}{4\pi } \quad \text{(4.18)}
\]

\[
\alpha_i \quad \text{can according to Montic (1993) be expressed as}
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]

\[
\frac{4\pi x^2}{4\pi } \quad \text{(4.18)}
\]

\[
\alpha_i \quad \text{can according to Montic (1993) be expressed as}
\]

\[
\mathbf{f}_j \quad \text{is the unit vector superposed on the intersecting element edges and directs into the sphere center.} \\
\mathbf{g}_{ij} \quad \text{is the unit normal vector on the element.}
\]
Direct calculation of the CPV integrals
When the field point χ coincides with the j-th node in the e-th element, the integral for H_e is still singular which contributes to the diagonal term H_e. The other singular integrals on the same element can be shown to be integrable by a transformation to polar coordinate system (Liu et al., 1991) or the triangular polar-coordinate transformation technique (see Li et al. (1985) and Eatock Taylor & Chau (1992)) adopted in this study. We will in the following text show how the H_e term can be handled combined with the triangular polar-coordinate transformation.

If the field point χ is located on a corner point (local point 1, 4, 7, 10), we split the element in the ξ-o plane into two triangles. Otherwise, if χ drops on an edge point (local point 2, 3, 5, 6, 8, 9, 11, 12), the cubic element in the ξ-o plane is divided into three triangles. Fig.4.4a and Fig.4.4b show how the element is splitted when χ coincides with the corner point 1 and the edge point 2, respectively.

![Diagram of element splitting](Image 80x939 to 430x1072)

We will firstly re-number the three nodes of each triangle by an anti-clockwise rule and take the singularity point as the first node. See Fig.4.5a. Then the following transformation can be used to map the triangles in ξ-o plane into a μ-ν plane.

![Transformation diagram](Image 590x939 to 940x1072)

Direct calculation of the CPV integrals
When the field point χ coincides with the j-th node in the e-th element, the integral for H_e is still singular which contributes to the diagonal term H_e. The other singular integrals on the same element can be shown to be integrable by a transformation to polar coordinate system (Liu et al., 1991) or the triangular polar-coordinate transformation technique (see Li et al. (1985) and Eatock Taylor & Chau (1992)) adopted in this study. We will in the following text show how the H_e term can be handled combined with the triangular polar-coordinate transformation.

If the field point χ is located on a corner point (local point 1, 4, 7, 10), we split the element in the ξ-o plane into two triangles. Otherwise, if χ drops on an edge point (local point 2, 3, 5, 6, 8, 9, 11, 12), the cubic element in the ξ-o plane is divided into three triangles. Fig.4.4a and Fig.4.4b show how the element is splitted when χ coincides with the corner point 1 and the edge point 2, respectively.

![Diagram of element splitting](Image 80x939 to 430x1072)

We will firstly re-number the three nodes of each triangle by an anti-clockwise rule and take the singularity point as the first node. See Fig.4.5a. Then the following transformation can be used to map the triangles in ξ-o plane into a μ-ν plane.

![Transformation diagram](Image 590x939 to 940x1072)
Here the superscript m means the m-th triangle of the square element after splitting (see Fig.4.4). ξ^m and η^m ($m \in \{1, 2, 3\}$) are the ξ and the η coordinates of the m-th node of the m-th triangle. After the transformation (4.21), the triangle is stretched into a square in the ρ_1-ρ_2 plane, with the length of the four edges equal to 1. See Fig.4.5b. The first node $([\xi^0, \eta^0], [\xi^0, \eta^0], [\xi^0, \eta^0], [\xi^0, \eta^0])$ where the singularity point is located has been stretched to a line 14^0 in the ρ_1-ρ_2 plane.

The integrals in Eq.(4.14) and Eq.(4.15) can be expressed as the sum of the integrals over the triangle areas. In the following text, we will take the case depicted in Fig.4.4a as an example, i.e. the singularity locates at a corner point, and show how we can rewrite the integrals in Eq.(4.14) and Eq.(4.15). The consideration for the case when the singularity is at an edge point is very similar and will not be repeated.

The transformation (4.21) for the first triangle in Fig.4.4a is

$$\zeta = 1 + 2\rho_1, \ \eta = 1 + 2\rho_2$$

Plugging Eq.(4.22) into Eq.(4.6), the shape function $N_j(\xi, \eta)$ can be written as a function of ρ_1 and ρ_2, i.e.

$$N_j(\xi, \eta) = N_j(\rho_1, \rho_2) = \{1 + 2\rho_1 - 2\rho_2\}, \ j = 1$$

The expressions for $H_j(\rho_1, \rho_2)$, $j = 1, 2, 3$, are lengthy and thus not provided here. However, it is very straightforward to get $H_j(\rho_1, \rho_2)$ by putting Eq.(4.22) into Eq.(4.6) and comparing the resulting equations with Eq.(4.23).

Eq.(4.15) is then rewritten as

$$X = \sum_{j=1}^{12} \int_{\Delta_j} \phi_j(\rho_1, \rho_2) Prefix\text{ } P \phi_j(\rho_1, \rho_2) \ d\rho_1 d\rho_2$$

Here Δ_j is the area of the j-th triangle in the $\rho_1\rho_2$ plane. And

$$R(\rho_1, \rho_2) \int_{\Delta_j} \phi_j(\rho_1, \rho_2) P \phi_j(\rho_1, \rho_2) = \int_{\Delta_j} \phi_j(\rho_1, \rho_2) Prefix\text{ } P \phi_j(\rho_1, \rho_2) \ d\rho_1 d\rho_2$$

with

$$\zeta = \frac{1}{2} \xi - \frac{1}{2} M_1, \ \eta = \frac{1}{2} \eta - \frac{1}{2} N_1$$

Plugging Eq.(4.22) into Eq.(4.6), the shape function $N_j(\xi, \eta)$ can be written as a function of ξ and η, i.e.

$$N_j(\xi, \eta) = N_j(\rho_1, \rho_2) = \{1 + 2\rho_1 - 2\rho_2\}, \ j = 1$$

The expressions for $H_j(\rho_1, \rho_2)$, $j = 1, 2, 3$, are lengthy and thus not provided here. However, it is very straightforward to get $H_j(\rho_1, \rho_2)$ by putting Eq.(4.22) into Eq.(4.6) and comparing the resulting equations with Eq.(4.23).

Eq.(4.15) is then rewritten as

$$X = \sum_{j=1}^{12} \int_{\Delta_j} \phi_j(\rho_1, \rho_2) Prefix\text{ } P \phi_j(\rho_1, \rho_2) \ d\rho_1 d\rho_2$$

Here Δ_j is the area of the j-th triangle in the $\rho_1\rho_2$ plane. And

$$R(\rho_1, \rho_2) \int_{\Delta_j} \phi_j(\rho_1, \rho_2) P \phi_j(\rho_1, \rho_2) = \int_{\Delta_j} \phi_j(\rho_1, \rho_2) Prefix\text{ } P \phi_j(\rho_1, \rho_2) \ d\rho_1 d\rho_2$$

with

$$\zeta = \frac{1}{2} \xi - \frac{1}{2} M_1, \ \eta = \frac{1}{2} \eta - \frac{1}{2} N_1$$

The integrals in Eq.(4.14) and Eq.(4.15) can be expressed as the sum of the integrals over the triangle areas. In the following text, we will take the case depicted in Fig.4.4a as an example, i.e. the singularity locates at a corner point, and show how we can rewrite the integrals in Eq.(4.14) and Eq.(4.15). The consideration for the case when the singularity is at an edge point is very similar and will not be repeated.

The transformation (4.21) for the first triangle in Fig.4.4a is

$$\zeta = 1 + 2\rho_1, \ \eta = 1 + 2\rho_2$$

Plugging Eq.(4.22) into Eq.(4.6), the shape function $N_j(\xi, \eta)$ can be written as a function of ρ_1 and ρ_2, i.e.

$$N_j(\xi, \eta) = N_j(\rho_1, \rho_2) = \{1 + 2\rho_1 - 2\rho_2\}, \ j = 1$$

The expressions for $H_j(\rho_1, \rho_2)$, $j = 1, 2, 3$, are lengthy and thus not provided here. However, it is very straightforward to get $H_j(\rho_1, \rho_2)$ by putting Eq.(4.22) into Eq.(4.6) and comparing the resulting equations with Eq.(4.23).

Eq.(4.15) is then rewritten as

$$X = \sum_{j=1}^{12} \int_{\Delta_j} \phi_j(\rho_1, \rho_2) Prefix\text{ } P \phi_j(\rho_1, \rho_2) \ d\rho_1 d\rho_2$$

Here Δ_j is the area of the j-th triangle in the $\rho_1\rho_2$ plane. And

$$R(\rho_1, \rho_2) \int_{\Delta_j} \phi_j(\rho_1, \rho_2) P \phi_j(\rho_1, \rho_2) = \int_{\Delta_j} \phi_j(\rho_1, \rho_2) Prefix\text{ } P \phi_j(\rho_1, \rho_2) \ d\rho_1 d\rho_2$$

with

$$\zeta = \frac{1}{2} \xi - \frac{1}{2} M_1, \ \eta = \frac{1}{2} \eta - \frac{1}{2} N_1$$
Note that $\mathbb{B}(\rho, \rho)_{ij}$ with $0 \leq i \leq 1$ and $0 \leq j \leq 1$ is regular. Thus the singularity in the integral of Eq.(4.15) has been removed through the transformation Eq.(4.21).

Similarly, we can rewrite H^S_ν in Eq.(4.14) as

$$
H^S_\nu = \int N_i(\xi, \eta) \frac{\partial^2 H_j(\xi, \eta)}{\partial \xi^2} d\xi d\eta - \int N_i(\xi, \eta) \frac{\partial^2 H_j(\xi, \eta)}{\partial \eta^2} d\xi d\eta
$$

where we have used

$$
\phi_i(\xi, \eta) \equiv \frac{\partial H_j(\xi, \eta)}{\partial \xi} d\xi d\eta
$$

(4.27)

If $j \neq i$, i.e. the j-th node is not a singularity, Eq.(4.27) can be further simplified by using the second formula in Eq.(4.43) as

$$
H^S_\nu = \int N_i(\xi, \eta) \frac{\partial^2 H_j(\xi, \eta)}{\partial \eta^2} d\xi d\eta
$$

(4.29)

It is seen from Eq.(4.29) that the singularity in H^S_ν has been eliminated if the j-th node of the element is not at the same position as the field point ξ. Standard numerical procedure, e.g. Gauss-Legendre quadrature can be used to evaluate the integration.

However, when $j=1$, H^S_ν contains a $1/\rho$ type singularity. Let us define

$$
f_{1/\rho}(\rho) = \sum_{i=0}^{2} \sum_{j=0}^{2} c_i c_j \rho^i \rho^j
$$

and add and subtract the singular kernel in Eq.(4.27)

$$
H^S_\nu = \int N_i(\xi, \eta) \frac{\partial^2 f_{1/\rho}(\rho)}{\partial \eta^2} d\xi d\eta
$$

(4.30)

The two terms in the first integral c_i in Eq.(4.31) include the same singular kernel and they can be constructed during integral. Then the standard numerical integration can be performed, i.e. the radius of the sphere which is defined in the calculation of the solid angle. See the text associated with Eq.(4.17) and Eq.(4.18). $\mathbb{P}_i(\xi, \eta) = \rho_i$ is the value of ρ_i corresponding to the intersection line of the sphere and the boundary element $\mathbb{P}_i(\xi, \eta) = \rho_i$ is approximated as

$$
eq \rho_i \mathbb{P}_i(\xi, \eta) = \rho_i (\frac{\partial H_j(\xi, \eta)}{\partial \eta^2}) \mathbb{P}_i(\xi, \eta) = \rho_i \rho_i = \rho_i \rho_i
$$

(4.32)

Taylor expansion of Eq.(4.26) with respect to $\rho \rightarrow 0$ was used in the derivation of Eq.(4.32). $\rho_i(\rho, \rho_i)$ is defined in Eq.(4.29). The second integral c_i can be rewritten by putting Eq.(4.32) into Eq.(4.31) as

$$
\int N_i(\xi, \eta) \frac{\partial^2 f_{1/\rho}(\rho)}{\partial \eta^2} d\xi d\eta = \rho_i \rho_i \rho_i \rho_i
$$

(4.33)

Taylor expansion of Eq.(4.26) with respect to $\rho \rightarrow 0$ was used in the derivation of Eq.(4.32). $\rho_i(\rho, \rho_i)$ is defined in Eq.(4.29). The second integral c_i can be rewritten by putting Eq.(4.32) into Eq.(4.31) as

Note that $\mathbb{B}(\rho, \rho)_{ij}$ with $0 \leq i \leq 1$ and $0 \leq j \leq 1$ is regular. Thus the singularity in the integral of Eq.(4.15) has been removed through the transformation Eq.(4.21).

Similarly, we can rewrite B^S_{ij} in Eq.(4.14) as

$$
B^S_{ij} = \int N_i(\xi, \eta) \frac{\partial^2 B_j(\xi, \eta)}{\partial \xi^2} d\xi d\eta - \int N_i(\xi, \eta) \frac{\partial^2 B_j(\xi, \eta)}{\partial \eta^2} d\xi d\eta
$$

where we have used

$$
\phi_i(\xi, \eta) \equiv \frac{\partial B_j(\xi, \eta)}{\partial \xi} d\xi d\eta
$$

(4.27)

If $j \neq i$, i.e. the j-th node is not a singularity, Eq.(4.27) can be further simplified by using the second formula in Eq.(4.43) as

$$
B^S_{ij} = \int N_i(\xi, \eta) \frac{\partial^2 B_j(\xi, \eta)}{\partial \eta^2} d\xi d\eta
$$

(4.29)

It is seen from Eq.(4.29) that the singularity in B^S_{ij} has been eliminated if the j-th node of the element is not at the same position as the field point ξ. Standard numerical procedure, e.g. Gauss-Legendre quadrature can be used to evaluate the integration.
4.3 Time marching of the free-surface conditions

In the time-domain simulations, the method for the time integrating is very important to keep its accuracy and stability. In many practical time-domain analyses, the higher-order time integral schemes are used such as the fourth-order Runge-Kutta method (RK4), the fifth-order Runge-Kutta-Gil method (RKG5) and the fourth-order Adams-Bashforth-Moulton method (ABM4). RK4 and ABM4 have \(O(t^4) \) accuracy for short time simulations but \(O(t^5) \) accuracy for long time simulations. See for instance Tanizawa (2000).

The ABM4 method used by Skourup et al. (2000) in their time-domain analysis of second-order wave diffraction forces on fixed bodies is adopted in all the three-dimensional studies in this thesis. In the 3D time-domain BEM, we have to solve the matrix equation with fully-populated matrices at each time step. Even though the computational boundaries are invariant in time and the influence matrix only needs to be evaluated (and inverted) once since when the perturbation method is adopted, any possibility to reduce the CPU time while retaining the accuracy is welcomed in the 3D time-domain analysis. ABM4 has the same accuracy as RK4. However, the ABM4 only needs to call the BEM solver twice at each time step while the RK4 needs four calls of the BEM solver. That is why the ABM4 is adopted in the 3D studies instead of RK4 which was applied in the two-dimensional cases (see Chapter 3).

Firstly, an explicit fourth-order Adams-Bashforth predictor is used for the updating of the scattered part of the velocity potential \(\phi_m(t') \) and the wave elevation \(\eta_m(t') \) from time \(t \) to \(t+\Delta t \), i.e.,

\[
\phi_m(t+\Delta t) = \phi_m(t) + \frac{\Delta t}{2} \left(\frac{\partial \phi_m}{\partial t} + \Delta t \frac{\partial^2 \phi_m}{\partial t^2} \right)_{t=t+\Delta t/2},
\]
(4.34)

\[
\eta_m(t+\Delta t) = \eta_m(t) + \frac{\Delta t}{2} \left(\frac{\partial \eta_m}{\partial t} + \Delta t \frac{\partial^2 \eta_m}{\partial t^2} \right)_{t=t+\Delta t/2},
\]
(4.34)

4.3 Time marching of the free-surface conditions

In the time-domain simulations, the method for the time integrating is very important to keep its accuracy and stability. In many practical time-domain analyses, the higher-order time integral schemes are used such as the fourth-order Range-Kutta method (RK4), the fifth-order Range-Kutta-Gil method (RK5), the fourth-order Adams-Bashforth-Moulton method (ABM4), RK4 and ABM4 have \(O(t^4) \) accuracy for short time simulations but \(O(t^5) \) accuracy for long time simulations. See for instance Tanizawa (2000).

The ABM4 method used by Skourup et al. (2000) in their time-domain analysis of second-order wave diffraction forces on fixed bodies is adopted in all the three-dimensional studies in this thesis. In the 3D time-domain BEM, we have to solve the matrix equation with fully-populated matrices at each time step. Even though the computational boundaries are invariant in time and the influence matrix only needs to be evaluated (and inverted) once since when the perturbation method is adopted, any possibility to reduce the CPU time while retaining the accuracy is welcomed in the 3D time-domain analysis. ABM4 has the same accuracy as RK4. However, the ABM4 only needs to call the BEM solver two times at each time step while the RK4 needs four calls of the BEM solver. That is why the ABM4 is adopted in the 3D studies instead of RK4 which was applied in the two-dimensional cases (see Chapter 3).

Firstly, an explicit fourth-order Adams-Bashforth predictor is used for the updating of the scattered part of the velocity potential \(\phi_m(t') \) and the wave elevation \(\eta_m(t') \) from time \(t \) to \(t+\Delta t \), i.e.,

\[
\phi_m(t+\Delta t) = \phi_m(t) + \frac{\Delta t}{2} \left(\frac{\partial \phi_m}{\partial t} + \Delta t \frac{\partial^2 \phi_m}{\partial t^2} \right)_{t=t+\Delta t/2},
\]
(4.34)

\[
\eta_m(t+\Delta t) = \eta_m(t) + \frac{\Delta t}{2} \left(\frac{\partial \eta_m}{\partial t} + \Delta t \frac{\partial^2 \eta_m}{\partial t^2} \right)_{t=t+\Delta t/2},
\]
(4.34)
4.4 Treatment of Φ_t-term and the time integration of body motion equations

In order to be robust and efficient, the time-domain simulation of body motions requires a stable numerical integration scheme for the solution of Newton’s rigid-body equations of motion (see e.g. Eq.(2.126) and Eq.(2.127)) excited by wave forces which depend not only on the displacement and velocity but also the acceleration of the body. It is known that most ordinary differential equation (ODE) solvers are designed for cases where the highest order of differentiation occurs on the left-hand side of the equation only, e.g.

$$\frac{d}{dt} \phi(x,t) = f(x),$$

(4.37)

where $\phi(x,t)$ is the forcing function. However, the Eq.(2.126) and Eq.(2.127) take the following form

$$\frac{d}{dt} \phi(x,t) = \frac{d}{dt} \phi(x,t),$$

(4.38)

which means that iterations are needed in order to get accurate and stable results. However, this indicates the increase of CPU time in the time-domain analysis, because each iteration needs a call of the BEM solver.

A natural modification to Eq.(4.38) is to move the Φ_t-term on the right-hand side to the left. Inspired by the canonical form of the equation of the equations of motion as proposed by Cummins (1962) and Ogilvie (1964) which by virtue of the physics of the free-surface flow are stable, Kring (1962) and Ogilvie (1964) which by virtue of the physics of the free-surface flow are stable, Kring (1962) and Ogilvie (1964) which by virtue of the physics of the free-surface flow are stable, Kring

$$\frac{d}{dt} \phi(x,t) = \frac{d}{dt} \phi(x,t).$$

(4.39)

which means that iterations are needed in order to get accurate and stable results. However, this indicates the increase of CPU time in the time-domain analysis, because each iteration needs a call of the BEM solver.

A natural modification to Eq.(4.38) is to move the Φ_t-term on the right-hand side to the left. Inspired by the canonical form of the equation of the equations of motion as proposed by Cummins (1962) and Ogilvie (1964) which by virtue of the physics of the free-surface flow are stable, Kring

$$\frac{d}{dt} \phi(x,t) = \frac{d}{dt} \phi(x,t).$$

(4.39)

which means that iterations are needed in order to get accurate and stable results. However, this indicates the increase of CPU time in the time-domain analysis, because each iteration needs a call of the BEM solver.

4.4 Treatment of Φ_t-term and the time integration of body motion equations

In order to be robust and efficient, the time-domain simulation of body motions requires a stable numerical integration scheme for the solution of Newton’s rigid-body equations of motion (see e.g. Eq.(2.126) and Eq.(2.127)) excited by wave forces which depend not only on the displacement and velocity but also the acceleration of the body. It is known that most ordinary differential equation (ODE) solvers are designed for cases where the highest order of differentiation occurs on the left-hand side of the equation only, e.g.

$$\frac{d}{dt} \phi(x,t) = f(x),$$

(4.37)

where $\phi(x,t)$ is the forcing function. However, the Eq.(2.126) and Eq.(2.127) take the following form

$$\frac{d}{dt} \phi(x,t) = \frac{d}{dt} \phi(x,t),$$

(4.38)

which means that iterations are needed in order to get accurate and stable results. However, this indicates the increase of CPU time in the time-domain analysis, because each iteration needs a call of the BEM solver.

A natural modification to Eq.(4.38) is to move the Φ_t-term on the right-hand side to the left. Inspired by the canonical form of the equation of the equations of motion as proposed by Cummins (1962) and Ogilvie (1964) which by virtue of the physics of the free-surface flow are stable, Kring

$$\frac{d}{dt} \phi(x,t) = \frac{d}{dt} \phi(x,t).$$

(4.39)

which means that iterations are needed in order to get accurate and stable results. However, this indicates the increase of CPU time in the time-domain analysis, because each iteration needs a call of the BEM solver.

A natural modification to Eq.(4.38) is to move the Φ_t-term on the right-hand side to the left. Inspired by the canonical form of the equation of the equations of motion as proposed by Cummins (1962) and Ogilvie (1964) which by virtue of the physics of the free-surface flow are stable, Kring

$$\frac{d}{dt} \phi(x,t) = \frac{d}{dt} \phi(x,t).$$

(4.39)

which means that iterations are needed in order to get accurate and stable results. However, this indicates the increase of CPU time in the time-domain analysis, because each iteration needs a call of the BEM solver.

4.4 Treatment of Φ_t-term and the time integration of body motion equations

In order to be robust and efficient, the time-domain simulation of body motions requires a stable numerical integration scheme for the solution of Newton’s rigid-body equations of motion (see e.g. Eq.(2.126) and Eq.(2.127)) excited by wave forces which depend not only on the displacement and velocity but also the acceleration of the body. It is known that most ordinary differential equation (ODE) solvers are designed for cases where the highest order of differentiation occurs on the left-hand side of the equation only, e.g.

$$\frac{d}{dt} \phi(x,t) = f(x),$$

(4.37)

where $\phi(x,t)$ is the forcing function. However, the Eq.(2.126) and Eq.(2.127) take the following form

$$\frac{d}{dt} \phi(x,t) = \frac{d}{dt} \phi(x,t),$$

(4.38)

which means that iterations are needed in order to get accurate and stable results. However, this indicates the increase of CPU time in the time-domain analysis, because each iteration needs a call of the BEM solver.

A natural modification to Eq.(4.38) is to move the Φ_t-term on the right-hand side to the left. Inspired by the canonical form of the equation of the equations of motion as proposed by Cummins (1962) and Ogilvie (1964) which by virtue of the physics of the free-surface flow are stable, Kring

$$\frac{d}{dt} \phi(x,t) = \frac{d}{dt} \phi(x,t).$$

(4.39)

which means that iterations are needed in order to get accurate and stable results. However, this indicates the increase of CPU time in the time-domain analysis, because each iteration needs a call of the BEM solver.

A natural modification to Eq.(4.38) is to move the Φ_t-term on the right-hand side to the left. Inspired by the canonical form of the equation of the equations of motion as proposed by Cummins (1962) and Ogilvie (1964) which by virtue of the physics of the free-surface flow are stable, Kring

$$\frac{d}{dt} \phi(x,t) = \frac{d}{dt} \phi(x,t).$$

(4.39)
(1994) decomposed the hydrodynamic loads into an instantaneous or 'time localized' part and a 'memory' component. The result of such decomposition is that the body acceleration appears explicitly and linearly in the left-hand side of motion equations, while the forcing in the right-hand side which accounts for memory effects is shown to depend upon the ship displacement and velocity. The stability of the rigid-body motion equations is well prescribed in Kring & Sclavounos (1995). The decomposition method proposed by Kring (1994) is valid not only for the linear but also the nonlinear seakeeping analysis. This was later demonstrated by Huang (1996) using a weak scatter model.

Based on the understanding that the instability of body motion equations is due to the impulsive term in the hydrodynamic force proportional to the acceleration, Kim et al. (2008) obtained a stable form of the motion equations by merely adding an infinite-frequency added mass \(m_{\infty} \) on both sides of the equation. Taking the first equation of Eq.(2.126) as an example, we have

\[
\ddot{\mathbf{u}} + \mathbf{C} \dot{\mathbf{u}} + \mathbf{D} \mathbf{u} = \mathbf{F}(\mathbf{u}, \dot{\mathbf{u}}, t) - m_{\infty} \ddot{\mathbf{u}}
\]

(4.39)

Let us look at the first component of Eq.(4.39), explain why it is a stable form, and show how we handle the integral of \(\phi \). The merit of the way we handle the \(\phi \) term is that part of the influence of \(\phi \) has been moved to the left-hand side of the motion equation and the rest parts of its contribution may be approximated by a backward finite difference scheme.

The first component of Eq.(4.39) becomes

\[
\sum m_{\infty} \ddot{\phi}_i + \sum m_{\infty} \ddot{\phi}_i = \sum m_{\infty} \ddot{\phi}_i
\]

(4.40)

We will now decompose the scattered velocity potential into two parts

\[
\ddot{\phi}_i = \ddot{\phi}_i^{(t)} + \ddot{\phi}_i^{(w)}
\]

(4.41)

The first part \(\ddot{\phi}^{(t)} \) satisfies the Laplace equation and the following boundary conditions:

\[
\frac{\partial \ddot{\phi}^{(t)}}{\partial n} = 0 \quad \text{on} \quad \partial S\Omega \quad \text{on} \quad \partial S\Omega
\]

(4.42)

while the second part \(\ddot{\phi}^{(w)} \) takes care of the rest of the boundary conditions. According to the definition of the infinite-frequency added mass, we know that

\[
-\sum m_{\infty} \ddot{\phi}_i^{(w)} = \sum m_{\infty} \ddot{\phi}_i^{(w)}
\]

(4.43)

Considering Eq.(4.41), Eq.(4.42) and the expressions for the forces and moments in Section 2.4.3, we notice that the terms associated with the hydrodynamic forces on the right-hand side of Eq.(4.40) cancel out with each other. So Eq.(4.41) takes a similar form to Eq.(4.37) instead of Eq.(4.38). We can do the similar to the other components of the body motion equations. Thus a standard procedure, for instance the Adams-Bashforth-Moulton predictor-corrector method or the Runge-Kutta method, can be used for the time integral to get the velocity and displacement of the body motion. In this work, the integration of \(\frac{\partial \ddot{\phi}^{(w)}}{\partial n} \) on \(\partial S\Omega \) takes care of the rest of the boundary conditions. According to the definition of the infinite-frequency added mass, we know that

\[
-\sum m_{\infty} \ddot{\phi}_i^{(w)} = \sum m_{\infty} \ddot{\phi}_i^{(w)}
\]

(4.43)

Considering Eq.(4.41), Eq.(4.42) and the expressions for the forces and moments in Section 2.4.3, we notice that the terms associated with the hydrodynamic forces on the right-hand side of Eq.(4.40) cancel out with each other. So Eq.(4.41) takes a similar form to Eq.(4.37) instead of Eq.(4.38). We can do the similar to the other components of the body motion equations. Thus a standard procedure, for instance the Adams-Bashforth-Moulton predictor-corrector method or the Runge-Kutta method, can be used for the time integral to get the velocity and displacement of the body motion. In this work, the

Let us look at the first component of Eq.(4.39), explain why it is a stable form, and show how we handle the integral of \(\phi \). The merit of the way we handle the \(\phi \) term is that part of the influence of \(\phi \) has been moved to the left-hand side of the motion equation and the rest parts of its contribution may be approximated by a backward finite difference scheme.

The first component of Eq.(4.39) becomes

\[
\sum m_{\infty} \ddot{\phi}_i + \sum m_{\infty} \ddot{\phi}_i = \sum m_{\infty} \ddot{\phi}_i
\]

(4.40)

We will now decompose the scattered velocity potential into two parts

\[
\ddot{\phi}_i = \ddot{\phi}_i^{(t)} + \ddot{\phi}_i^{(w)}
\]

(4.41)

The first part \(\ddot{\phi}^{(t)} \) satisfies the Laplace equation and the following boundary conditions:

\[
\frac{\partial \ddot{\phi}^{(t)}}{\partial n} = 0 \quad \text{on} \quad \partial S\Omega \quad \text{on} \quad \partial S\Omega
\]

(4.42)

while the second part \(\ddot{\phi}^{(w)} \) takes care of the rest of the boundary conditions. According to the definition of the infinite-frequency added mass, we know that

\[
-\sum m_{\infty} \ddot{\phi}_i^{(w)} = \sum m_{\infty} \ddot{\phi}_i^{(w)}
\]

(4.43)

Considering Eq.(4.41), Eq.(4.42) and the expressions for the forces and moments in Section 2.4.3, we notice that the terms associated with the hydrodynamic forces on the right-hand side of Eq.(4.40) cancel out with each other. So Eq.(4.41) takes a similar form to Eq.(4.37) instead of Eq.(4.38). We can do the similar to the other components of the body motion equations. Thus a standard procedure, for instance the Adams-Bashforth-Moulton predictor-corrector method or the Runge-Kutta method, can be used for the time integral to get the velocity and displacement of the body motion. In this work, the
fourth-order Adams-Bashforth-Moulton method is used for the time integration. Note that the contribution of \dot{t} term to the right-hand side of the motion equation (eq. 4.39), which depends merely on the body displacement and velocity, is approximated by a fourth-order backward finite difference scheme. In order to reduce the error in doing that, it is suggested that one finitely integrates \dot{t} on the mean wetted body surface and takes the time differentiation afterwards. This is simply due to the fact that
\[
\int \rho_0 \ddot{u} \cdot \ddot{u} \, dt = \int \rho_0 \ddot{u} \cdot \ddot{u} \, dt, \quad \text{m=1, 2}.
\]
(4.44)

For exactly evaluating of the influence of \dot{t} term, one may use one of the acceleration velocity potential methods. See Tanizawa (2000) and Koo & Kim (2004) for the details of the methods. One of the acceleration velocity potential methods, i.e. the modal decomposition method has been applied to the active wave absorber in the studies in 2D. See Sec 3.4 and Sec 3.5. In the 3D studies, however, these kinds of exact methods will not be employed in order to save computational time.

4.5 Low-pass filter on the free surface

The short-wave instabilities have been reported since the first papers were published where REM was used for modeling the free-surface waves in the time domain. See e.g. Longuet-Higgins & Cokelet (1976). However the reason for the instabilities has not been fully understood even though it may be associated with the fact that if we partly solve a Frödlöh integral equation of the first kind which is known to have numerical problems (e.g. Delvos & Walsh (1974) and Arfken & Weber (1976)).

It was suggested by Vada & Nakos (1993) and by Kim et al. (1997) that the instabilities observed in their models are caused by the energy from external forcing, which should be accumulated on a wave number with zero group velocity, a so-called resonant mode. This argument fails to explain the instabilities observed by Büchmann (2000b) in a case with zero external forcing. Based on the number with zero group velocity, a so-called resonant mode. This argument fails to explain the instabilities observed by Büchmann (2000b) in a case with zero external forcing. Based on the observation, Büchmann (2000b) conjectured that the instabilities are due to the non-uniformity in the spatially discretized models.

Another different argument was made by Prins (1995): The Laplace equation has harmonic functions as its solution. The boundary conditions serve to define what harmonic function is the overall solution of the complete system. Solving the Laplace equation and the boundary conditions separately can be viewed as satisfying the boundary condition with a harmonic forcing function. The solution will then be a superposition of a harmonic function and the eigen-functions of the differential operator in the free-surface conditions. If the forward speed is zero, the eigen-functions are harmonic as well, and determine the dispersion relation. However, in the presence of forward speed not all eigen-functions of the free-surface condition are harmonic; some are exponentially increasing and some exponentially decreasing. This means that at every time step an error is introduced which disturbs the accuracy of the solution. This also explains why filtering may be successful. Prins (1995) proposed a new algorithm by combining the Laplace equation and the free-surface conditions, thus imposing harmonic solutions to the boundary conditions. Prins (1995) also showed by numerical experiments that the new algorithm was stable in all the studies considered in his thesis. However, no analytical analysis supports that his scheme is unconditionally stable.

Another argument was also made by Prins (1995): The Laplace equation has harmonic functions as its solution. The boundary conditions serve to define what harmonic function is the overall solution of the complete system. Solving the Laplace equation and the boundary conditions separately can be viewed as satisfying the boundary condition with a harmonic forcing function. The solution will then be a superposition of a harmonic function and the eigen-functions of the differential operator in the free-surface conditions. If the forward speed is zero, the eigen-functions are harmonic as well, and determine the dispersion relation. However, in the presence of forward speed not all eigen-functions of the free-surface condition are harmonic; some are exponentially increasing and some exponentially decreasing. This means that at every time step an error is introduced which disturbs the accuracy of the solution. This also explains why filtering may be successful. Prins (1995) proposed a new algorithm by combining the Laplace equation and the free-surface conditions, thus imposing harmonic solutions to the boundary conditions. Prins (1995) also showed by numerical experiments that the new algorithm was stable in all the studies considered in his thesis. However, no analytical analysis supports that his scheme is unconditionally stable.

Another different argument was made by Prins (1995): The Laplace equation has harmonic functions as its solution. The boundary conditions serve to define what harmonic function is the overall solution of the complete system. Solving the Laplace equation and the boundary conditions separately can be viewed as satisfying the boundary condition with a harmonic forcing function. The solution will then be a superposition of a harmonic function and the eigen-functions of the differential operator in the free-surface conditions. If the forward speed is zero, the eigen-functions are harmonic as well, and determine the dispersion relation. However, in the presence of forward speed not all eigen-functions of the free-surface condition are harmonic; some are exponentially increasing and some exponentially decreasing. This means that at every time step an error is introduced which disturbs the accuracy of the solution. This also explains why filtering may be successful. Prins (1995) proposed a new algorithm by combining the Laplace equation and the free-surface conditions, thus imposing harmonic solutions to the boundary conditions. Prins (1995) also showed by numerical experiments that the new algorithm was stable in all the studies considered in his thesis. However, no analytical analysis supports that his scheme is unconditionally stable.
In the wave-body analysis with the presence of forward speed or current effect, a practical option is to use the smoothing or low-pass filter to suppress the short-wave instabilities. The upwind difference scheme for the tangential derivatives in the convective term has also been shown to be efficient to stabilize the calculation. Bemhuk (1999) suggested that the second-order upwind difference scheme is the best among some others. However, the upwind difference schemes can introduce artificial damping to the system through the free-surface condition. Thus it is essentially the same technique as the low-pass filter or the smoothing technique.

In all the cases without forward speed studied in this study, no instability was observed. However, we saw strong instability when taking into account the forward-speed effect in the free-surface conditions. It was noted from the simulations that the instabilities are localized close to the waterline of the body. We have attempted other time integration schemes of the free-surface conditions, such as the fourth-order Runge-Kutta scheme, the same instabilities were still there.

Consequently, in the cases with forward speeds, a low-pass filter is implemented and applied on the collocation points at the waterline and at points adjacent to the wave. In this study, a three-point low-pass filter used by Bichmann (2000a) in the linear BEM based numerical wave tank (NWT) is adopted

\[\theta = c_{w}\theta_{k} + (1 - 2c_{w})\theta_{k-1} + c_{w}\theta_{k-2} \]

Here \(j \) is a new numbering of the collocation points in an azimuthal or radial direction and \(c_{w} \in [0, 1] \) is the strength of the filter. \(w_{k} \) and \(\theta_{k} \) are the qualities before and after smoothing. \(w_{k} \) could be the velocity potential or the wave elevation. Bichmann (2000a) has successfully applied this low-pass filter in the second-order wave diffraction of a bottom-mounted vertical cylinder with the presence of a weak current. The filter is only applied to the wave elevation \(\theta_{k} \). In smoothing effect will come into the velocity potential indirectly through the dynamic free-surface condition. It is suggested that the smoothing should not be applied directly on the velocity potential, because this may introduce a ‘shock’ to the pressure field and consequently the body changes its motion behavior suddenly. At each time step the filter is first applied in the azimuthal direction across all points at the waterline of the body of interest and subsequently the filter is applied in the radial direction to the points adjacent to the waterline points. To avoid that the amount of the smoothing (filtering) depends on the time step size, the filter strength is given as a function of the time step size as

\[c_{w} = \frac{1}{2} \left(1 - \exp \left(-\frac{T}{\Delta t} \right) \right) \]

where \(\Delta t \) is the time increment, \(T \) is the wave period. The filter should be able to remove the instabilities without affecting the physical solution. On the other hand, the solution should not depend on the chosen value of \(c_{w} \) as long as it is small enough. We will in Chapter 8 show that the obtained solutions are in fact invariant in a large range of the filtering strength.

4.6 Direct calculation of the higher-order derivatives

4.6.1 Direct calculation of the higher-order derivatives

It is seen from the free-surface conditions and the body boundary conditions formulated in the inertial frame of reference that the velocities are in fact invariant in a large range of the filtering strength. Consequently, in the cases with forward speeds, a low-pass filter is implemented and applied on the collocation points at the waterline and at points adjacent to these. In this study, a low-pass filter used by Bichmann (2000a) in the linear BEM based numerical wave tank (NWT) is adapted

\[\theta = c_{w}\theta_{k} + (1 - 2c_{w})\theta_{k-1} + c_{w}\theta_{k-2} \]

Here \(j \) is a new numbering of the collocation points in an azimuthal or radial direction and \(c_{w} \in [0, 1] \) is the strength of the filter. \(w_{k} \) and \(\theta_{k} \) are the qualities before and after smoothing. \(w_{k} \) could be the velocity potential or the wave elevation. Bichmann (2000a) has successfully applied this low-pass filter in the second-order wave diffraction of a bottom-mounted vertical cylinder with the presence of a weak current. The filter is only applied to the wave elevation \(\theta_{k} \). In smoothing effect will come into the velocity potential indirectly through the dynamic free-surface condition. It is suggested that the smoothing should not be applied directly on the velocity potential, because this may introduce a ‘shock’ to the pressure field and consequently the body changes its motion behavior suddenly. At each time step the filter is first applied in the azimuthal direction across all points at the waterline of the body of interest and subsequently the filter is applied in the radial direction to the points adjacent to the waterline points. To avoid that the amount of the smoothing (filtering) depends on the time step size, the filter strength is given as a function of the time step size as

\[c_{w} = \frac{1}{2} \left(1 - \exp \left(-\frac{T}{\Delta t} \right) \right) \]

where \(\Delta t \) is the time increment, \(T \) is the wave period. The filter should be able to remove the instabilities without affecting the physical solution. On the other hand, the solution should not depend on the chosen value of \(c_{w} \) as long as it is small enough. We will in Chapter 8 show that the obtained solutions are in fact invariant in a large range of the filtering strength.
coordinate system in Section 2.4 and Section 2.5 that higher-order derivatives occur. The highest derivatives in the second-order free surface conditions (Eq.(2.49) and Eq.(2.49)) with the presence of a small forward speed is of second order, while the third-order derivatives appear in the third-order kinematic free-surface condition (Eq.(2.26) and Eq.(2.26)). However, the third-order derivative term can be rewritten by applying the Laplace equation as
\[\nabla^3 \phi = -\frac{\partial^2 \phi}{\partial x^2} - \frac{\partial^2 \phi}{\partial y^2} - \frac{\partial^2 \phi}{\partial z^2}. \] (4.47)
Therefore, the third-order term \(\nabla^3 \phi / \partial x^3 \) can be considered as the sum of two second-order derivatives of \(\partial^2 \phi / \partial x^2 \) in the horizontal OXY-plane. At each time step, \(\partial^2 \phi / \partial x^2 \) on OXY-plane is obtained as a solution of the boundary integral equation.

The derivatives in the body boundary conditions are more difficult to deal with from numerical point of view. In the linear body boundary condition with the forward speed effect, the double-gradient term in Eq.(2.25) is associated with the m-n terms in the shape function analysis with ship with forward speed. We also note from Eq.(2.50) and Eq.(2.51) that the second-order boundary condition is very complicated due to the fact that it involves a triple gradient of the steady velocity potential \(\partial^3 \phi / \partial x^3 \) and three double-gradient terms. In reality, it may represent great numerical difficulties for typical marine structures with high curvatures, e.g. ships.

The indirect way of treating the m-n terms is to use Stokes-like theorem. By assuming that the body surface is without sharp corner, the ship hull is wall-sided at the waterline, and the steady wave field can be approximated by the double-body flow, Ogilvie & Tuck (1989) used the Stokes-theorem to reduce the second-order derivatives of velocity potential in the integral equation by one in their studies of forced heave and pitch of a ship of relevance for regular head sea waves. The cost of doing so is the evaluation of integrals involving the first-order derivatives and the normal derivative of the first-order derivatives of the Green function. However, it is not straightforward to generalize the indirect method used by Ogilvie & Tuck for the integral of third-order derivatives on the body surface.

Because the cubic HOBEM is adopted in this study, the first-order and second-order derivatives can be calculated directly by using the higher-order shape functions, as it was suggested by Liu et al. (1995) and Kim & Kim (1997). The tangential derivative of the velocity potential along \(\zeta \) and \(\eta \) in the \(\xi-y \) plane, i.e. \(\partial \phi / \partial \zeta \) and \(\partial \phi / \partial \eta \), and the normal derivative \(\partial \phi / \partial n \) are expressed in the matrix form:
\[\begin{bmatrix} \zeta_1 & \zeta_2 & \cdots & \zeta_n \end{bmatrix} \begin{bmatrix} \eta_1 & \eta_2 & \cdots & \eta_m \end{bmatrix} = \begin{bmatrix} \zeta_1 & \zeta_2 & \cdots & \zeta_n \end{bmatrix} \begin{bmatrix} \eta_1 & \eta_2 & \cdots & \eta_m \end{bmatrix} \] (4.48)
Here \(n \times m \) is the normal vector of the boundary surface. The subscripts indicate partial differentiation. The gradient of the velocity potential \(\nabla \phi \) can thus be obtained by simply using Eq.(4.48). At each time step, \(\partial \phi / \partial n \) can be known either from the boundary condition or the solution of Laplace equation. The tangential derivatives with respect to \(\zeta \) and \(\eta \) are obtained by taking the derivatives of the shape functions.

Once the velocity vector is obtained, one uses the shape functions to represent its distribution on each element as
\[\begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_n \end{bmatrix} = \begin{bmatrix} \zeta_1 & \zeta_2 & \cdots & \zeta_n \end{bmatrix} \begin{bmatrix} \eta_1 & \eta_2 & \cdots & \eta_m \end{bmatrix} \] (4.49)

The indirect way of treating the m-n terms is to use Stokes-like theorem. By assuming that the body surface is without sharp corner, the ship hull is wall-sided at the waterline, and the steady wave field can be approximated by the double-body flow, Ogilvie & Tuck (1989) used the Stokes-theorem to reduce the second-order derivatives of velocity potential in the integral equation by one in their studies of forced heave and pitch of a ship of relevance for regular head sea waves. The cost of doing so is the evaluation of integrals involving the first-order derivatives and the normal derivative of the first-order derivatives of the Green function. However, it is not straightforward to generalize the indirect method used by Ogilvie & Tuck for the integral of third-order derivatives on the body surface.

Because the cubic HOBEM is adopted in this study, the first-order and second-order derivatives can be calculated directly by using the higher-order shape functions, as it was suggested by Liu et al. (1995) and Kim & Kim (1997). The tangential derivative of the velocity potential along \(\zeta \) and \(\eta \) in the \(\xi-y \) plane, i.e. \(\partial \phi / \partial \zeta \) and \(\partial \phi / \partial \eta \), and the normal derivative \(\partial \phi / \partial n \) are expressed in the matrix form:
\[\begin{bmatrix} \zeta_1 & \zeta_2 & \cdots & \zeta_n \end{bmatrix} \begin{bmatrix} \eta_1 & \eta_2 & \cdots & \eta_m \end{bmatrix} = \begin{bmatrix} \zeta_1 & \zeta_2 & \cdots & \zeta_n \end{bmatrix} \begin{bmatrix} \eta_1 & \eta_2 & \cdots & \eta_m \end{bmatrix} \] (4.48)
Here \(n \times m \) is the normal vector of the boundary surface. The subscripts indicate partial differentiation. The gradient of the velocity potential \(\nabla \phi \) can thus be obtained by simply using Eq.(4.48). At each time step, \(\partial \phi / \partial n \) can be known either from the boundary condition or the solution of Laplace equation. The tangential derivatives with respect to \(\zeta \) and \(\eta \) are obtained by taking the derivatives of the shape functions.

Once the velocity vector is obtained, one uses the shape functions to represent its distribution on each element as
\[\begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_n \end{bmatrix} = \begin{bmatrix} \zeta_1 & \zeta_2 & \cdots & \zeta_n \end{bmatrix} \begin{bmatrix} \eta_1 & \eta_2 & \cdots & \eta_m \end{bmatrix} \] (4.49)

The indirect way of treating the m-n terms is to use Stokes-like theorem. By assuming that the body surface is without sharp corner, the ship hull is wall-sided at the waterline, and the steady wave field can be approximated by the double-body flow, Ogilvie & Tuck (1989) used the Stokes-theorem to reduce the second-order derivatives of velocity potential in the integral equation by one in their studies of forced heave and pitch of a ship of relevance for regular head sea waves. The cost of doing so is the evaluation of integrals involving the first-order derivatives and the normal derivative of the first-order derivatives of the Green function. However, it is not straightforward to generalize the indirect method used by Ogilvie & Tuck for the integral of third-order derivatives on the body surface.

Because the cubic HOBEM is adopted in this study, the first-order and second-order derivatives can be calculated directly by using the higher-order shape functions, as it was suggested by Liu et al. (1995) and Kim & Kim (1997). The tangential derivative of the velocity potential along \(\zeta \) and \(\eta \) in the \(\xi-y \) plane, i.e. \(\partial \phi / \partial \zeta \) and \(\partial \phi / \partial \eta \), and the normal derivative \(\partial \phi / \partial n \) are expressed in the matrix form:
\[\begin{bmatrix} \zeta_1 & \zeta_2 & \cdots & \zeta_n \end{bmatrix} \begin{bmatrix} \eta_1 & \eta_2 & \cdots & \eta_m \end{bmatrix} = \begin{bmatrix} \zeta_1 & \zeta_2 & \cdots & \zeta_n \end{bmatrix} \begin{bmatrix} \eta_1 & \eta_2 & \cdots & \eta_m \end{bmatrix} \] (4.48)
Here \(n \times m \) is the normal vector of the boundary surface. The subscripts indicate partial differentiation. The gradient of the velocity potential \(\nabla \phi \) can thus be obtained by simply using Eq.(4.48). At each time step, \(\partial \phi / \partial n \) can be known either from the boundary condition or the solution of Laplace equation. The tangential derivatives with respect to \(\zeta \) and \(\eta \) are obtained by taking the derivatives of the shape functions.

Once the velocity vector is obtained, one uses the shape functions to represent its distribution on each element as
\[\begin{bmatrix} \phi_1 & \phi_2 & \cdots & \phi_n \end{bmatrix} = \begin{bmatrix} \zeta_1 & \zeta_2 & \cdots & \zeta_n \end{bmatrix} \begin{bmatrix} \eta_1 & \eta_2 & \cdots & \eta_m \end{bmatrix} \] (4.49)

The indirect way of treating the m-n terms is to use Stokes-like theorem. By assuming that the body surface is without sharp corner, the ship hull is wall-sided at the waterline, and the steady wave field can be approximated by the double-body flow, Ogilvie & Tuck (1989) used the Stokes-theorem to reduce the second-order derivatives of velocity potential in the integral equation by one in their studies of forced heave and pitch of a ship of relevance for regular head sea waves. The cost of doing so is the evaluation of integrals involving the first-order derivatives and the normal derivative of the first-order derivatives of the Green function. However, it is not straightforward to generalize the indirect method used by Ogilvie & Tuck for the integral of third-order derivatives on the body surface.
The direct calculation of the third-order derivatives with desired accuracy seems to be very difficult and the higher-order derivatives of the basis flow. In the calculations based on the traditional smooth body with simple geometry is considered in the comparison. With this smooth and simple we keep a formulation in the inertial reference frame in the outer domain. Unfortunately, we are not able to find any analytical results to validate the new method. Therefore, we will use the traditional formulation in the inertial coordinate system for the validation purpose. The comparison between the results of the traditional method and that of the new method will be presented in Chapter 8. Only a smooth body with simple geometry is considered in the comparisons. With this smooth and simple geometry, we are able to apply the desingularized BEM (see Cao et al., 1991) to solve the basis flow and the higher-order derivatives of the basis flow. In the calculations based on the traditional formulation, we use the desingularized BEM only for the basis flow ϕ_0 and the HOBEM is used obtained by differentiating the shape function in the form
$$\frac{\partial \phi}{\partial x} \frac{\partial V}{\partial x} = \frac{\partial \phi}{\partial y} \frac{\partial V}{\partial y}$$

(4.49)

Then the tangential derivatives of the velocity vector \mathbf{V} along ξ and η coordinates can be obtained by differentiating the shape function in the form
$$\frac{\partial \phi}{\partial x} \frac{\partial V}{\partial x} = \frac{\partial \phi}{\partial y} \frac{\partial V}{\partial y}$$

(4.50)

where $F(x,y)$ is the position vector.

Considering the Laplace equation for the velocity potential, one obtain the following matrix equation for the second-order derivatives of the velocity potential
$$\begin{bmatrix} \phi_{xx} & \phi_{xy} & \phi_{xz} \\ \phi_{yx} & \phi_{yy} & \phi_{yz} \\ \phi_{zx} & \phi_{zy} & \phi_{zz} \end{bmatrix} \begin{bmatrix} \frac{\partial^2 V}{\partial x^2} \\ \frac{\partial^2 V}{\partial y^2} \\ \frac{\partial^2 V}{\partial z^2} \end{bmatrix} = 0$$

(4.49)

Then the second-order derivatives of the velocity potential are expressed as
$$\begin{bmatrix} \phi_{xx} & \phi_{xy} & \phi_{xz} \\ \phi_{yx} & \phi_{yy} & \phi_{yz} \\ \phi_{zx} & \phi_{zy} & \phi_{zz} \end{bmatrix} \begin{bmatrix} \frac{\partial^2 V}{\partial x^2} \\ \frac{\partial^2 V}{\partial y^2} \\ \frac{\partial^2 V}{\partial z^2} \end{bmatrix} = 0$$

(4.50)

Then the tangential derivatives of ϕ_0, ϕ_0, and ϕ_0 along ξ and η on the right-hand side of Eq.(4.52) can be obtained by the differentiation of Eq.(4.90) in terms of ξ and η.

The direct calculation of the third-order derivatives with desired accuracy seems to be very difficult for typical marine structures, e.g. ships. In Chapter 5, we will present a new approach which does not require any derivatives on the right-hand side of the body boundary conditions. The feature of this new approach is that the formulation in the body-fixed coordinate system is used in the near field and we keep a formulation in the inertial reference frame in the outer domain. Unfortunately, we are not able to find any analytical results to validate the new method. Therefore, we will use the traditional formulation in the inertial coordinate system for the validation purpose. The comparison between the results of the traditional method and that of the new method will be presented in Chapter 8. Only a smooth body with simple geometry is considered in the comparisons. With this smooth and simple geometry, we are able to apply the desingularized BEM (see Cao et al., 1991) to solve the basis flow and the higher-order derivatives of the basis flow. In the calculations based on the traditional formulation, we use the desingularized BEM only for the basis flow ϕ_0 and the HOBEM is used.

The direct calculation of the third-order derivatives with desired accuracy seems to be very difficult for typical marine structures, e.g. ships. In Chapter 5, we will present a new approach which does not require any derivatives on the right-hand side of the body boundary conditions. The feature of this new approach is that the formulation in the body-fixed coordinate system is used in the near field and we keep a formulation in the inertial reference frame in the outer domain. Unfortunately, we are not able to find any analytical results to validate the new method. Therefore, we will use the traditional formulation in the inertial coordinate system for the validation purpose. The comparison between the results of the traditional method and that of the new method will be presented in Chapter 8. Only a smooth body with simple geometry is considered in the comparisons. With this smooth and simple geometry, we are able to apply the desingularized BEM (see Cao et al., 1991) to solve the basis flow and the higher-order derivatives of the basis flow. In the calculations based on the traditional formulation, we use the desingularized BEM only for the basis flow ϕ_0 and the HOBEM is used.

The direct calculation of the third-order derivatives with desired accuracy seems to be very difficult for typical marine structures, e.g. ships. In Chapter 5, we will present a new approach which does not require any derivatives on the right-hand side of the body boundary conditions. The feature of this new approach is that the formulation in the body-fixed coordinate system is used in the near field and we keep a formulation in the inertial reference frame in the outer domain. Unfortunately, we are not able to find any analytical results to validate the new method. Therefore, we will use the traditional formulation in the inertial coordinate system for the validation purpose. The comparison between the results of the traditional method and that of the new method will be presented in Chapter 8. Only a smooth body with simple geometry is considered in the comparisons. With this smooth and simple geometry, we are able to apply the desingularized BEM (see Cao et al., 1991) to solve the basis flow and the higher-order derivatives of the basis flow. In the calculations based on the traditional formulation, we use the desingularized BEM only for the basis flow ϕ_0 and the HOBEM is used.

The direct calculation of the third-order derivatives with desired accuracy seems to be very difficult for typical marine structures, e.g. ships. In Chapter 5, we will present a new approach which does not require any derivatives on the right-hand side of the body boundary conditions. The feature of this new approach is that the formulation in the body-fixed coordinate system is used in the near field and we keep a formulation in the inertial reference frame in the outer domain. Unfortunately, we are not able to find any analytical results to validate the new method. Therefore, we will use the traditional formulation in the inertial coordinate system for the validation purpose. The comparison between the results of the traditional method and that of the new method will be presented in Chapter 8. Only a smooth body with simple geometry is considered in the comparisons. With this smooth and simple geometry, we are able to apply the desingularized BEM (see Cao et al., 1991) to solve the basis flow and the higher-order derivatives of the basis flow. In the calculations based on the traditional formulation, we use the desingularized BEM only for the basis flow ϕ_0 and the HOBEM is used.
for solution of the unsteady flow. One should note that the desingularized BEMs are not applicable for wave-body interactions with sharp corners.

In the desingularized BEM, the singularities are offset outside of the water domain, so that the difficulty associated with the singular behavior of the Green function is avoided. Once the strength of the sources is obtained, the derivatives of the velocity potential can be evaluated by differentiating the Green functions. However, one has to be careful when choosing the offset distance. If the offset distance is too large from the collection points, the resulting solution will not be able to represent arbitrary local flow patterns. If the distance is too small, an irregular highly oscillatory behavior of the flow is seen. This numerical error is due to the discontinuity between the individual elements (see the summary made by Bertram (2000)). The desingularized BEM need special efforts for instance for very slender ship bows. However, for a body with smooth and simple geometry, the desingularized BEM is expected to give acceptable results. A constant of the desingularized BEM is the raised panel method (Raven, 1996). The desingularized raised panel method uses connected elements instead of the isolated singularities. Examples of the desingularized isolated sources and the desingularized raised panels are shown in Fig. 4.6a and Fig. 4.6b, respectively.

for solution of the unsteady flow. One should note that the desingularized BEMs are not applicable for wave-body interactions with sharp corners.

In the desingularized BEM, the singularities are offset outside of the water domain, so that the difficulty associated with the singular behavior of the Green function is avoided. Once the strength of the sources is obtained, the derivatives of the velocity potential can be evaluated by differentiating the Green functions. However, one has to be careful when choosing the offset distance. If the offset distance is too large from the collection points, the resulting solution will not be able to represent arbitrary local flow patterns. If the distance is too small, an irregular highly oscillatory behavior of the flow is seen. This numerical error is due to the discontinuity between the individual elements (see the summary made by Bertram (2000)). The desingularized BEM need special efforts for instance for very slender ship bows. However, for a body with smooth and simple geometry, the desingularized BEM is expected to give acceptable results. A constant of the desingularized BEM is the raised panel method (Raven, 1996). The desingularized raised panel method uses connected elements instead of the isolated singularities. Examples of the desingularized isolated sources and the desingularized raised panels are shown in Fig. 4.6a and Fig. 4.6b, respectively.

The following empirical formula is used to calculate the offset distance

\[\Delta_x = \min \left(\frac{x_1 - x_0}{\beta}, \frac{x_2 - x_1}{\beta}, \frac{x_3 - x_2}{\beta} \right) \]

where \(\beta \) is a constant coefficient.

\[\Delta_x = \min \left(\frac{x_1 - x_0}{\beta}, \frac{x_2 - x_1}{\beta}, \frac{x_3 - x_2}{\beta} \right) \]

where \(\beta = 0.5 \) is used in this study.

We have firstly applied the desingularized BEM to a sphere moving in infinite fluid. The analytical solution of the moving sphere is known as a dipole in infinite fluid with direction in the ambient flow. A comparison with the analytical results of the velocity potential and its higher-order derivatives, we obtain an optimal offset distance. Numerical results showed that 1.6/\(\Delta_x \leq 2.5 \) gives quite accurate results for both the velocity potential and its higher-order derivatives.
derivatives. The experience will then be applied in the case of an axisymmetric body without sharp
angle studied in Chapter 8 when we solve a second-order problem with forward speed effect by using
the formulation in the inertial reference frame.

Fig. 4.7 - Fig. 4.10 show respectively the velocity potential, first-order, second-order and third-order
derivatives of the velocity potential on the surface of a moving sphere (radius R=1.0) in infinite fluid
with unit velocity in positive X-direction. The results are for \(\phi = \pi / 2 \) and only the nonzero terms
are presented. Here \((\rho, \phi, \theta)\) is the spherical coordinates. \(l_0 = 1.8 \) was used in the calculations.

Fig. 4.7 - Velocity potential of a moving sphere in infinite fluid. The results are for \(\phi = \pi / 2 \). The radius
R=1.0. Forward speed U=1.0.

Fig. 4.8 - First-order derivative of the velocity potential of a moving sphere in infinite fluid. The results are for
\(\phi = \pi / 2 \). The radius R=1.0. Forward speed U=1.0.

Fig. 4.9 - Second-order derivative of the velocity potential of a moving sphere in infinite fluid. The results are for
\(\phi = \pi / 2 \). The radius R=1.0. Forward speed U=1.0.

Fig. 4.10 - Third-order derivative of the velocity potential of a moving sphere in infinite fluid. The results are for
\(\phi = \pi / 2 \). The radius R=1.0. Forward speed U=1.0.

Fig. 4.8 - First-order derivative of the velocity potential of a moving sphere in infinite fluid. The results are for
\(\phi = \pi / 2 \). The radius R=1.0. Forward speed U=1.0.

Fig. 4.9 - Second-order derivative of the velocity potential of a moving sphere in infinite fluid. The results are for
\(\phi = \pi / 2 \). The radius R=1.0. Forward speed U=1.0.

Fig. 4.10 - Third-order derivative of the velocity potential of a moving sphere in infinite fluid. The results are for
\(\phi = \pi / 2 \). The radius R=1.0. Forward speed U=1.0.
Fig. 4.9. Second-order derivatives of the velocity potential of a moving sphere in infinite fluid. The results are for \(\psi = \pi/2 \). The radius \(R = 1.0 \). Forward speed \(U = 1.0 \).

Fig. 4.10. Third-order derivatives of the velocity potential of a moving sphere in infinite fluid. The results are for \(\psi = \pi/2 \). The radius \(R = 1.0 \). Forward speed \(U = 1.0 \).
4.7 Types of grid on the free surface

Two types of meshes on the free surface are popular in the application of panel methods for the ship motion analysis, i.e., the rectangular grid and the oval grid. A special case of the oval grid is the circular grid. In this study, the oval grid is adopted. Fig. 4.11 shows an example of the oval grid on the free surface. Only half of the mesh is shown due to symmetry.

4.8 Matrix Solver

One of the biggest problems related to the BEM is that in general the CPU time and the memory requirements needed to solve a problem increase rapidly with the number of the unknowns in the solution, fewer panels are needed in the oval grid than that in the rectangular grid. Therefore, the selection of the oval grid can greatly reduce the CPU time. On the other hand, the oval grid requires less memory. This has also been discussed in Huang (1996).
problem. The memory required is proportional to N^3 with N as the number of unknowns. Before proceeding to the numerical calculation, we have to choose a robust and time-efficient method based on the computer resources at hand.

4.8.1 Why HOBEM?

The BEM solver is adopted as the tool of solving the Laplace equation through the boundary integral equations. Unlike the field solver, e.g. Finite Element Method (FEM) and Finite Difference Method (FDM), BEM needs unknowns only on the boundaries enclosing the fluid domain, and thus reduces the dimensions of the problem by one. On the other hand, it is easier to generate mesh required in the BEM analysis compared that in the field solvers. The bottleneck of the BEM appears when the number of the unknowns increases. It was argued by Wu & Eatock Taylor (1995) and Ma et al. (2016a, 2016b) that although the BEM has far fewer unknowns, for the nonlinear wave-body interaction problem it usually requires much more memory because at each time step the unknowns are coupled by a fully populated matrix. By contrast, the FEM needs less memory and is computationally far more efficient. However, the bottleneck of the BEMs will no longer exist if the accelerated methods, e.g. the predictor-FFT method (p-FFT) and the fast multipole method (FMM), are combined with the BEM solvers. Asymptotically, the p-FFT method needs $O(N \log N)$ memory and $O(N \log N)$ CPU time, and the FMM needs $O(N \log N)$ memory and $O(N)$ CPU time. According to the author’s knowledge that in the field of marine hydrodynamics, no comparative study has been made between the field solvers and the accelerated BEM solvers regarding to memory and CPU time requirements. However, we found from other field studies that the accelerated BEMs outperform the field solvers from the computational point of view, and that the memory requirement is acceptable on a PC. Liu (2009) conducted the thermal analysis and compared the results obtained with FEM and the constant BEM accelerated by FMM. With the FEM using the commercial software ANSYS, more than 363,000 volume elements are applied. With the BEM, only about 42,000 triangular constant surface elements are applied with the same number of DOFs. On a desktop PC, the FEM solution took about 50 minutes to finish, whereas the BEM solution took about 16 minutes. Considering the possibility that the numerical codes developed during this doctoral study could be modified to study the large-scale problems, for instance Very Large Floating Structure (VLFS) and Mobile Offshore Base (MOB), and fully-nonlinear wave-body problems, the author decided to use BEM as the numerical tool.

The cubic HOBEM is adopted instead of lower-order ones. The advantage of the HOBEM over the lower-order BEM was reported by Liu & Kim (1991).

4.8.2 Complexity of BEM solvers

In the conventional BEMs, setting up the influence matrices takes $O(N^3)$ operations and thus $O(N^3)$ time usage. Different methods can be used for solving a matrix equation such as Gaussian elimination or LU-factorization needs $O(N^3)$ operations. In the time-domain simulations, if the matrices remain the same with the evolution of time, the direct method may be a good choice. This is the case in the weakly-nonlinear hydrodynamic problems when the perturbation method is adopted. One needs to invert the matrix once and use it later in all the time-steps. The solution at each time step is obtained by multiplying the inverse of the matrix and a known vector, which takes only $O(N^2)$ operations.

Alternatively, one can use the iterative solvers. Typical iterative solvers, e.g. the Gauss-Seidel method problem. The memory required is proportional to N^3 with N as the number of unknowns. Before proceeding to the numerical calculation, we have to choose a robust and time-efficient method based on the computer resources at hand.

4.8.1 Why HOBEM?

The BEM solver is adopted as the tool of solving the Laplace equation through the boundary integral equations. Unlike the field solver, e.g. Finite Element Method (FEM) and Finite Difference Method (FDM), BEM needs unknowns only on the boundaries enclosing the fluid domain, and thus reduces the dimensions of the problem by one. On the other hand, it is easier to generate mesh required in the BEM analysis compared that in the field solvers. The bottleneck of the BEM appears when the number of the unknowns increases. It was argued by Wu & Eatock Taylor (1995) and Ma et al. (2016a, 2016b) that although the BEM has far fewer unknowns, for the nonlinear wave-body interaction problem it usually requires much more memory because at each time step the unknowns are coupled by a fully populated matrix. By contrast, the FEM needs less memory and is computationally far more efficient. However, the bottleneck of the BEMs will no longer exist if the accelerated methods, e.g. the predictor-FFT method (p-FFT) and the fast multipole method (FMM), are combined with the BEM solvers. Asymptotically, the p-FFT method needs $O(N \log N)$ memory and $O(N \log N)$ CPU time, and the FMM needs $O(N \log N)$ memory and $O(N)$ CPU time. According to the author’s knowledge that in the field of marine hydrodynamics, no comparative study has been made between the field solvers and the accelerated BEM solvers regarding to memory and CPU time requirements. However, we found from other field studies that the accelerated BEMs outperform the field solvers from the computational point of view, and that the memory requirement is acceptable on a PC. Liu (2009) conducted the thermal analysis and compared the results obtained with FEM and the constant BEM accelerated by FMM. With the FEM using the commercial software ANSYS, more than 363,000 volume elements are applied. With the BEM, only about 42,000 triangular constant surface elements are applied with the same number of DOFs. On a desktop PC, the FEM solution took about 50 minutes to finish, whereas the BEM solution took about 16 minutes. Considering the possibility that the numerical codes developed during this doctoral study could be modified to study the large-scale problems, for instance Very Large Floating Structure (VLFS) and Mobile Offshore Base (MOB), and fully-nonlinear wave-body problems, the author decided to use BEM as the numerical tool.

The cubic HOBEM is adopted instead of lower-order ones. The advantage of the HOBEM over the lower-order BEM was reported by Liu & Kim (1991).

4.8.2 Complexity of BEM solvers

In the conventional BEMs, setting up the influence matrices takes $O(N^3)$ operations and thus $O(N^3)$ time usage. Different methods can be used for solving a matrix equation such as Gaussian elimination or LU-factorization needs $O(N^3)$ operations. In the time-domain simulations, if the matrices remain the same with the evolution of time, the direct method may be a good choice. This is the case in the weakly-nonlinear hydrodynamic problems when the perturbation method is adopted. One needs to invert the matrix once and use it later in all the time-steps. The solution at each time step is obtained by multiplying the inverse of the matrix and a known vector, which takes only $O(N^2)$ operations.

Alternatively, one can use the iterative solvers. Typical iterative solvers, e.g. the Gauss-Seidel method

Chapter 4: Basis of the time-domain HOBEM in 3D

4.8.1 Why HOBEM?

The BEM solver is adopted as the tool of solving the Laplace equation through the boundary integral equations. Unlike the field solver, e.g. Finite Element Method (FEM) and Finite Difference Method (FDM), BEM needs unknowns only on the boundaries enclosing the fluid domain, and thus reduces the dimensions of the problem by one. On the other hand, it is easier to generate mesh required in the BEM analysis compared that in the field solvers. The bottleneck of the BEM appears when the number of the unknowns increases. It was argued by Wu & Eatock Taylor (1995) and Ma et al. (2016a, 2016b) that although the BEM has far fewer unknowns, for the nonlinear wave-body interaction problem it usually requires much more memory because at each time step the unknowns are coupled by a fully populated matrix. By contrast, the FEM needs less memory and is computationally far more efficient. However, the bottleneck of the BEMs will no longer exist if the accelerated methods, e.g. the predictor-FFT method (p-FFT) and the fast multipole method (FMM), are combined with the BEM solvers. Asymptotically, the p-FFT method needs $O(N \log N)$ memory and $O(N \log N)$ CPU time, and the FMM needs $O(N \log N)$ memory and $O(N)$ CPU time. According to the author’s knowledge that in the field of marine hydrodynamics, no comparative study has been made between the field solvers and the accelerated BEM solvers regarding to memory and CPU time requirements. However, we found from other field studies that the accelerated BEMs outperform the field solvers from the computational point of view, and that the memory requirement is acceptable on a PC. Liu (2009) conducted the thermal analysis and compared the results obtained with FEM and the constant BEM accelerated by FMM. With the FEM using the commercial software ANSYS, more than 363,000 volume elements are applied. With the BEM, only about 42,000 triangular constant surface elements are applied with the same number of DOFs. On a desktop PC, the FEM solution took about 50 minutes to finish, whereas the BEM solution took about 16 minutes. Considering the possibility that the numerical codes developed during this doctoral study could be modified to study the large-scale problems, for instance Very Large Floating Structure (VLFS) and Mobile Offshore Base (MOB), and fully-nonlinear wave-body problems, the author decided to use BEM as the numerical tool.

The cubic HOBEM is adopted instead of lower-order ones. The advantage of the HOBEM over the lower-order BEM was reported by Liu & Kim (1991).

4.8.2 Complexity of BEM solvers

In the conventional BEMs, setting up the influence matrices takes $O(N^3)$ operations and thus $O(N^3)$ time usage. Different methods can be used for solving a matrix equation such as Gaussian elimination or LU-factorization needs $O(N^3)$ operations. In the time-domain simulations, if the matrices remain the same with the evolution of time, the direct method may be a good choice. This is the case in the weakly-nonlinear hydrodynamic problems when the perturbation method is adopted. One needs to invert the matrix once and use it later in all the time-steps. The solution at each time step is obtained by multiplying the inverse of the matrix and a known vector, which takes only $O(N^2)$ operations.

Alternatively, one can use the iterative solvers. Typical iterative solvers, e.g. the Gauss-Seidel method
and the Krylov subspace Generalized Minimal Residual (GMRES) method, yield $O(N^3)$ CPU time. Major CPU time is spent in the matrix-vector product during the iterations. The number of the iterations needed to get a convergent result strongly depends on the condition number of the matrix. Among the BEMs, the constant BEM has in general better conditioning than that of the higher-order BEMs. It was noted by Marini (1993) that the conditioning may worsen dramatically as the order of the basis function increases. The conditioning of the desingularized method is very sensitive to the offset distance. If the offset of the singularity is too large from the collection point, the resulting equation system may be of very poor condition. The preconditions can be used to speed up the convergence.

4.3.3 Algorithm of FMM

In order to minimize the CPU time used in the matrix-vector products during the iterations and thus speed up the iterations, the p-FFT (see e.g. Phillips & White (1993) and Keng et al. (2000) and FMM (see e.g. Rokhlin (1985), Greengard (1988), Cheng et al. (1999), Yoshida (2001), Nishimura (2002) and Liu (2009)) have been attempted in solving the matrix equation. The applications of FMM in marine hydrodynamics and coastal engineering have been made by for instance Utsunomiya et al. (2001, 2002), Utsunomiya & Watanabe (2003), Utsunomiya & Okafuji (2007), Ning et al. (2005) and Fuchouche & Dia (2006). These applications are either in frequency domain or the fully-nonlinear numerical wave tank (FNN). It was noted by Marini (1993) that the conditioning may worsen dramatically as the order of the basis function increases. The conditioning of the desingularized method is very sensitive to the offset distance. If the offset of the singularity is too large from the collection point, the resulting equation system may be of very poor condition. The preconditions can be used to speed up the convergence.

4.3.4 Algorithm of FMM

In order to minimize the CPU time used in the matrix-vector products during the iterations and thus speed up the iterations, the p-FFT (see e.g. Phillips & White (1993) and Keng et al. (2000) and FMM (see e.g. Rokhlin (1985), Greengard (1988), Cheng et al. (1999), Yoshida (2001), Nishimura (2002) and Liu (2009)) have been attempted in solving the matrix equation. The applications of FMM in marine hydrodynamics and coastal engineering have been made by for instance Utsunomiya et al. (2001, 2002), Utsunomiya & Watanabe (2003), Utsunomiya & Okafuji (2007), Ning et al. (2005) and Fuchouche & Dia (2006). These applications are either in frequency domain or the fully-nonlinear numerical wave tank (FNN). It was noted by Marini (1993) that the conditioning may worsen dramatically as the order of the basis function increases. The conditioning of the desingularized method is very sensitive to the offset distance. If the offset of the singularity is too large from the collection point, the resulting equation system may be of very poor condition. The preconditions can be used to speed up the convergence.

4.3.5 Algorithm of FMM

In order to minimize the CPU time used in the matrix-vector products during the iterations and thus speed up the iterations, the p-FFT (see e.g. Phillips & White (1993) and Keng et al. (2000) and FMM (see e.g. Rokhlin (1985), Greengard (1988), Cheng et al. (1999), Yoshida (2001), Nishimura (2002) and Liu (2009)) have been attempted in solving the matrix equation. The applications of FMM in marine hydrodynamics and coastal engineering have been made by for instance Utsunomiya et al. (2001, 2002), Utsunomiya & Watanabe (2003), Utsunomiya & Okafuji (2007), Ning et al. (2005) and Fuchouche & Dia (2006). These applications are either in frequency domain or the fully-nonlinear numerical wave tank (FNN). It was noted by Marini (1993) that the conditioning may worsen dramatically as the order of the basis function increases. The conditioning of the desingularized method is very sensitive to the offset distance. If the offset of the singularity is too large from the collection point, the resulting equation system may be of very poor condition. The preconditions can be used to speed up the convergence.
After the oct-tree structure is built up, the algorithm of the FMM consists of the following steps:

- Preparing the multipole expansions referred to as P2M.
- Moving the multipole expansion point of the leaf cell to the center of the parent cell and by gathering all of the multipole expansion coefficients of the child cells, we obtain the multipole expansion coefficients for the parent cell. This is referred to as M2M.
- If two well-separated cells A and B are in the same level and that the parent cell of A and that of B are neighbors, we convert the multipole coefficients of the cell A (or B) to the local expansion coefficients of cell B (or A).
- Gathering the local expansion coefficients from the far cells belonging to the parent cell. This procedure is referred to as L2L.
- Evaluating the contribution from far field via the coefficients of the local expansion. This is called L2P. The total contribution is obtained by adding the far-field contribution and the contribution from boundary elements in adjacent cells via direct integration.

After the oct-tree structure is built up, the algorithm of the FMM consists of the following steps:

- Preparing the multipole expansions referred to as P2M.
- Moving the multipole expansion point of the leaf cell to the center of the parent cell and by gathering all of the multipole expansion coefficients of the child cells, we obtain the multipole expansion coefficients for the parent cell. This is referred to as M2M.
- If two well-separated cells A and B are in the same level and that the parent cell of A and that of B are neighbors, we convert the multipole coefficients of the cell A (or B) to the local expansion coefficients of cell B (or A).
- Gathering the local expansion coefficients from the far cells belonging to the parent cell. This procedure is referred to as L2L.
- Evaluating the contribution from far field via the coefficients of the local expansion. This is called L2P. The total contribution is obtained by adding the far-field contribution and the contribution from boundary elements in adjacent cells via direct integration.
The kernels $G(x,y)$ and $\bar{G}(\bar{x},\bar{y})$ in Eq.(4.1) can be expanded respectively as (see for instance Nishimura (2002), Shen & Liu (2007) and Yoshida (2001))

$$G(x,y) = -\sum_{n=0}^{\infty} \sum_{m=-n}^{n} P_n^{(0)}(\cos \theta) J_n(r \sin \theta) \hat{r} \cdot \hat{y},$$

and

$$\bar{G}(\bar{x},\bar{y}) = -\sum_{n=0}^{\infty} \sum_{m=-n}^{n} P_n^{(0)}(\cos \theta) J_n(r \sin \theta) \hat{r} \cdot \hat{y}.$$
in that cell. An element is considered to be within the cell if the center point of the element drops in
the cell. Only the moments in the leaf cells are calculated. The moments in a non-leaf cell is obtained
by adding the contributions of children cells together. However, the moments in each child cell are
expressed with respect to its own center x. We therefore need to transfer the moment at x to
the center of the parent cell y.

M2M

When the multiple expansion center is moved from y to y', we apply the following M2M translation
\[
M_n(y') = \int_{y} G(x,y') \sum \sum R(x,y,y') \mu_n(x),
\]
which is also valid for M_{L2L}. The M2M translations are used recursively from the lowest-level cells,
the leaf cells, to the top levels.

L2L

The local expansion at the field point x for the kernel $G(x,y)$ on S_1 is given as
\[
L_n(x) = \int_{S} G(x,y) \sum \sum R(x,y,y') \alpha_n(y'), dh(y'), dh(y).
\]
Here x is the center of the local expansion. A similar expansion for the moment involving the
integral of $\delta G/\delta n(x,y)$ is also valid.

For a considered cell d, the M2L translations are only applied to the well-separated cells at the same
level which belong to the neighborhood of the parent cell of d. The contributions from even further
cells are inherited from its parent cell by using the L2L translations.

L2L

By using the following L2L translations, a parent cell passes down its moments to its children cells
\[
L_n(x) = \int_{S} G(x,y') \sum \sum R(x,y,y') \alpha_n(y'), dh(y'), dh(y),
\]
where x is the center of a mother cell and y is the center of one of its children cell.

The L2L translations are applied recursively from the top cells to the lower-level cells. The moments
of a certain cell are obtained by summing up the contributions of the M2L translations and that of
L2L.

After the M2L and L2L operations, the moments in the leaf cells are all known. For a field point x, the
contribution of the well-separated boundary elements in the boundary integral equation can be
expressed with respect to its own center x.

\[
\text{(4.63)}
\]

\[
\text{(4.64)}
\]

\[
\text{(4.65)}
\]

\[
\text{(4.66)}
\]

\[
\text{(4.67)}
\]

\[
\text{(4.68)}
\]

\[
\text{(4.69)}
\]

\[
\text{(4.70)}
\]
obtained by local expansions. For example, we have for $\mathbf{K}(\cdot \cdot \·
as \(N \geq 1000\), which is in most cases true in 3D studies. That means the FMM+HOBEM is always preferred compared with iterative HOBEM solvers in both the frequency-domain analysis and the fully-nonlinear analysis.

Fig. 4.13. Comparison of CPU time of the ordinary iterative HOBEM solver and that of the FMM accelerated HOBEM in the first step of a linear NWT analysis. The results are shown for different numbers of unknowns.

Fig. 4.14. An example of the meshes on the surfaces of numerical wave tank and the octree structure used in the FMM algorithm.

When a weakly nonlinear wave-body problem based on perturbation scheme is considered in the time domain (which is the focus of this thesis), the computational domain remains unchanged. Therefore
the influence matrix is not needed to be set up and invert once and can be used later on in all the time steps. Our numerical experiments on a workstation with 8GB memory showed that this strategy is even more time-efficient than the FMM+BEM solver for $N < 20000$. However, this strategy needs more memory since the LU factors (or the inverse of the influence matrix) need some additional memory. It is suggested to use the FMM accelerated BEM for problems with unknowns more than 20000. Suggestion on selection of the matrix solvers is listed in Table 4.1 based on our numerical experience. This may not always be true depending on the computer sources at hand. However, one should always consider a similar procedure here and choose an efficient and practical way of solving the large matrix system for 3D studies.

Table 4.1 Empirical suggestion on selection of the matrix solvers for fully-nonlinear, frequency-domain and perturbation-based time-domain wave-body analysis.

<table>
<thead>
<tr>
<th>Matrix Solver</th>
<th>Iterative LU-F factors</th>
<th>Iterative HOBEM-F factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully nonlinear</td>
<td>$N \times 1000$</td>
<td>$N \times 1000$</td>
</tr>
<tr>
<td>Frequency domain</td>
<td>$N \times 1000$</td>
<td>$N \times 1000$</td>
</tr>
<tr>
<td>Perturbation-based time domain</td>
<td>$N \times 20000^*$</td>
<td>$N \times 20000^*$</td>
</tr>
</tbody>
</table>

Table 4.1: This number depends on the computer source at hand, especially the memory of the computer.

Note: This number depends on the computer source at hand, especially the memory of the computer.
5.1 Comparison of the weakly-nonlinear formulations in inertial and body-fixed coordinate systems

5.1.1 Free-surface conditions

The formulations of a weakly-nonlinear wave-body problem considering a small forward speed have been presented in Chapter 2 in both the inertial coordinate system and body-fixed coordinate system. In this chapter, we will discuss the difficulties associated with the inertial coordinate system and with body-fixed coordinate system, respectively.

The free-surface conditions formulated in the inertial coordinate system (see Eq.(2.48) and Eq.(2.49)) are simpler than that in the body-fixed coordinate system (see Eq.(2.88) and Eq.(2.89)). The free-surface conditions in the inertial frame do not depend on the instantaneous rigid-body motions, while the body motions come into the free-surface conditions in the body-fixed coordinate system. This indicates that when the seakeeping of a ship with forward speed is considered by a frequency-domain approach, the solution procedure in the body-fixed coordinate system is more complicated than that in inertial coordinate system.

5.1.2 Body-fixed coordinate system

The free-surface conditions formulated in the body-fixed coordinate system (see Eq.(2.48) and Eq.(2.49)) are simpler than that in the body-fixed coordinate system (see Eq.(2.88) and Eq.(2.89)). The free-surface conditions in the inertial frame do not depend on the instantaneous rigid-body motions, while the body motions come into the free-surface conditions in the body-fixed coordinate system. A domain decomposition method is applied with the use of the body-fixed coordinate system in the inner domain and the inertial coordinate system in the outer domain. The resulting boundary integral equation of the new method is valid for cases with and without sharp corners.

5.5 Comparison of the weakly-nonlinear formulations in inertial and body-fixed coordinate systems

5.5.1 Body-fixed coordinate system

The free-surface conditions formulated in the inertial coordinate system (see Eq.(2.48) and Eq.(2.49)) are simpler than that in the body-fixed coordinate system (see Eq.(2.88) and Eq.(2.89)). The free-surface conditions in the inertial frame do not depend on the instantaneous rigid-body motions, while the body motions come into the free-surface conditions in the body-fixed coordinate system. This indicates that when the seakeeping of a ship with forward speed is considered by a frequency-domain approach, the solution procedure in the body-fixed coordinate system is more complicated than that in inertial coordinate system.

5.5.2 Body-fixed coordinate system

The free-surface conditions formulated in the body-fixed coordinate system (see Eq.(2.48) and Eq.(2.49)) are simpler than that in the body-fixed coordinate system (see Eq.(2.88) and Eq.(2.89)). The free-surface conditions in the inertial frame do not depend on the instantaneous rigid-body motions, while the body motions come into the free-surface conditions in the body-fixed coordinate system. A domain decomposition method is applied with the use of the body-fixed coordinate system in the inner domain and the inertial coordinate system in the outer domain. The resulting boundary integral equation of the new method is valid for cases with and without sharp corners.
The body boundary conditions formulated in the inertial coordinate system is very complicated (see Eq. (2.56)–Eq. (2.58)). The second-order derivatives of the steady velocity potential in the first-order body boundary condition are associated with the so-called m-terms. The m-terms are important in the linear seakeeping analysis of ships with forward speed and for ships with the transverse stern, the effects of the m-terms are more important at the ship ends. This may be explained by the fact that the ship ends are stagnation points in potential flow and the flows are associated with the first-order derivatives of the velocity of the basin flow at the mean body surface. This fact increases the complexity of the direct calculation of the m-terms for ships without sharp corners, because the ships bows and sterns are normally with high surface curvature. For ships with the transverse stern, the stern cannot be considered as a point end. The fact that the flow lavacuos tangentially from the transverse stern cause hale-hull lift (Faltinsen, 2005), which can be understood from the fact that the ship is a low-aspect ratio lifting surface beyond a Freuden number based on the transverse draft.

The indirect way of treating the m-terms is to use Stokes-like theorem. By assuming that the body surface is without sharp corner, the ship hull is well-sided at the waterline, and the steady wave field can be approximated by the double-body flow, Ogilvie & Tuck (1969) used the Stokes theorem to reduce the second-order derivative potential term in the integral equation by one in their studies of the forced heave and pitch of a ship of relevance for regular head sea waves. The cost of doing so is the evaluation of integrals involving the first-order derivatives and the normal derivative of the first-order derivatives of the Green function.

The direct calculation of the m-terms was early attempted by Zhao & Faltinsen (1989a). Based on the fact that the singularity of the Rankine sources is weakened away from the body surface, they firstly calculated the second-order derivatives on some points offset from the body. The m-terms are then obtained through extrapolation. This technique has been shown to be accurate for smooth bodies without sharp corners. Wu (1993) proposed to solve a series of Dirichlet-type problems using the first-order derivatives of velocity potential as the right-hand-side term of the condition on the mean body surface. A similar method was suggested by Chen & Malinca (1998) based on the idea of Wu (1991). There are also successful examples by using a higher-order boundary element method (HOBEM) for the calculations of the m-terms, see for instance Bingham & Miarker (1996) and Chen et al. (2005).

When the body is with sharp corners, the Taylor expansion about the mean body surface is invalid and the integral equation used for the smooth body is not applicable any more. This is associated with the fact that the m-terms are not integrable on the body surface. The leading order of the local solution near the sharp corner can be approximated by (see Norman, 1977). The corner flow solution in the vicinity of the sharp corner can be written as

\[
W(r) = C_1 - C, \quad \lambda = 2\pi - \theta, \quad \phi = \theta, \quad (5.1)
\]

where \(C_1\) and \(C\) are constants.

The indirect way of treating the m-terms is to use Stokes-like theorem. By assuming that the body surface is without sharp corner, the ship hull is well-sided at the waterline, and the steady wave field can be approximated by the double-body flow, Ogilvie & Tuck (1969) used the Stokes theorem to reduce the second-order derivative potential term in the integral equation by one in their studies of the forced heave and pitch of a ship of relevance for regular head sea waves. The cost of doing so is the evaluation of integrals involving the first-order derivatives and the normal derivative of the first-order derivatives of the Green function.

The direct calculation of the m-terms was early attempted by Zhao & Faltinsen (1989a). Based on the fact that the singularity of the Rankine sources is weakened away from the body surface, they firstly calculated the second-order derivatives on some points offset from the body. The m-terms are then obtained through extrapolation. This technique has been shown to be accurate for smooth bodies without sharp corners. Wu (1993) proposed to solve a series of Dirichlet-type problems using the first-order derivatives of velocity potential as the right-hand-side term of the condition on the mean body surface. A similar method was suggested by Chen & Malinca (1998) based on the idea of Wu (1991). There are also successful examples by using a higher-order boundary element method (HOBEM) for the calculations of the m-terms, see for instance Bingham & Miarker (1996) and Chen et al. (2005).

When the body is with sharp corners, the Taylor expansion about the mean body surface is invalid and the integral equation used for the smooth body is not applicable any more. This is associated with the fact that the m-terms are not integrable on the body surface. The leading order of the local solution near the sharp corner can be approximated by (see Norman, 1977). The corner flow solution in the vicinity of the sharp corner can be written as

\[
W(r) = C_1 - C, \quad \lambda = 2\pi - \theta, \quad \phi = \theta, \quad (5.1)
\]

where \(C_1\) and \(C\) are constants.
of the body at the corner. The leading-order first-order and second-order derivatives of the velocity potential are \(\frac{\partial^2 \phi}{\partial x^2} \) and \(\frac{\partial^3 \phi}{\partial x^3} \). This indicates that the velocity at the sharp corner is always integrable. However, the derivatives of the velocity are integrable only when \(x \rightarrow 0 \), which explains why the \(m_j \)-terms at the sharp corners are not integrable. The reason why the integrals are not integrable when the body boundary condition is satisfied on the mean position of the body boundary is that the formulation of the body boundary condition is wrong with the presence of the sharp corner. The double-gradient term in the body boundary condition (see Eq.(2.56) - Eq.(2.58)) has been derived by a Taylor expansion about the mean body surface. This is not a valid sharp corner.

In order to avoid this difficulty, Zhao & Faltinsen (1989b) decomposed the velocity potential into two parts, with the first part satisfying the body boundary condition associated with the \(m_j \)-terms, and the second part satisfying the body boundary condition with the \(m_j \)-terms excluded. By doing that, they finally obtained an integral equation which is valid for cases with sharp corners. When the second-order solution is pursued, it involves the second-order derivatives of the first-order unsteady velocity potential and the second-order and third-order derivatives of the steady velocity potential on the body (see Section 2.4.2). It is not straightforward to generalize the indirect method using Stokes theorem for the integral of third-order derivatives on the body surface without sharp corners. Furthermore, if the body is with sharp corner, the method proposed by Zhao & Faltinsen (1989b) may in principle be extended to get a proper integral equation. However, we then have to divide the velocity potential into several parts since the second-order body boundary condition contains some terms similar to the \(m_j \)-terms and terms involving the third-order derivatives. It may also be difficult to find the corresponding artificial velocity potential for all the \(m_j \)-like terms.

However, body boundary conditions described in the body-fixed coordinate system is very simple and without any derivatives on the right-hand sides. Therefore, the resulting boundary integral equation is valid for bodies with and without sharp corners.

5.2 Domain-decomposition approach using body-fixed coordinate system in the near field

The formulation in the body-fixed coordinate system presented in Section 2.6 can be directly applied to an interior problem, e.g. sloshing in tank, as long as the tank motion and the liquid motion in the tank are small. For a 2D tank under forced surge motion, Wu (2007) formulated the second-order sloshing problem in the body-fixed coordinate system and obtained a time-domain solution based on modal expansion. The purpose of his study was to identify the second-order sloshing resonance in a tank, i.e. a possible resonance occurring when the forcing frequency is half a natural frequency. When it comes to an exterior problem, e.g. seakeeping of ships, the free-surface conditions (Eq.(2.88) and Eq.(2.89)) are only applicable to a small portion of the free surface near the body. In order to avoid derivatives on the right-hand side of the boundary conditions of weakly-nonlinear wave-body problems, a new method based on domain decomposition and body-fixed coordinate system in the inner domain (near-field) was proposed by Shao & Faltinsen (2009a). This indicates that the velocity at the sharp corner is always integrable. However, the derivatives of the velocity are integrable only when \(x \rightarrow 0 \), which explains why the \(m_j \)-terms at the sharp corners are not integrable. The reason why the integrals are not integrable when the body boundary condition is satisfied on the mean position of the body boundary is that the formulation of the body boundary condition is wrong with the presence of the sharp corner. The double-gradient term in the body boundary condition (see Eq.(2.56) - Eq.(2.58)) has been derived by a Taylor expansion about the mean body surface. This is not a valid sharp corner.

In order to avoid this difficulty, Zhao & Faltinsen (1989b) decomposed the velocity potential into two parts, with the first part satisfying the body boundary condition associated with the \(m_j \)-terms, and the second part satisfying the body boundary condition with the \(m_j \)-terms excluded. By doing that, they finally obtained an integral equation which is valid for cases with sharp corners. When the second-order solution is pursued, it involves the second-order derivatives of the first-order unsteady velocity potential and the second-order and third-order derivatives of the steady velocity potential on the body (see Section 2.4.2). It is not straightforward to generalize the indirect method using Stokes theorem for the integral of third-order derivatives on the body surface without sharp corners. Furthermore, if the body is with sharp corner, the method proposed by Zhao & Faltinsen (1989b) may in principle be extended to get a proper integral equation. However, we then have to divide the velocity potential into several parts since the second-order body boundary condition contains some terms similar to the \(m_j \)-terms and terms involving the third-order derivatives. It may also be difficult to find the corresponding artificial velocity potential for all the \(m_j \)-like terms.

However, body boundary conditions described in the body-fixed coordinate system is very simple and without any derivatives on the right-hand sides. Therefore, the resulting boundary integral equation is valid for bodies with and without sharp corners.

5.2 Domain-decomposition approach using body-fixed coordinate system in the near field

The formulation in the body-fixed coordinate system presented in Section 2.6 can be directly applied to an interior problem, e.g. sloshing in tank, as long as the tank motion and the liquid motion in the tank are small. For a 2D tank under forced surge motion, Wu (2007) formulated the second-order sloshing problem in the body-fixed coordinate system and obtained a time-domain solution based on modal expansion. The purpose of his study was to identify the second-order sloshing resonance in a tank, i.e. a possible resonance occurring when the forcing frequency is half a natural frequency. When it comes to an exterior problem, e.g. seakeeping of ships, the free-surface conditions (Eq.(2.88) and Eq.(2.89)) are only applicable to a small portion of the free surface near the body. In order to avoid derivatives on the right-hand side of the boundary conditions of weakly-nonlinear wave-body problems, a new method based on domain decomposition and body-fixed coordinate system in the inner domain (near-field) was proposed by Shao & Faltinsen (2009a). This indicates that the velocity at the sharp corner is always integrable. However, the derivatives of the velocity are integrable only when \(x \rightarrow 0 \), which explains why the \(m_j \)-terms at the sharp corners are not integrable. The reason why the integrals are not integrable when the body boundary condition is satisfied on the mean position of the body boundary is that the formulation of the body boundary condition is wrong with the presence of the sharp corner. The double-gradient term in the body boundary condition (see Eq.(2.56) - Eq.(2.58)) has been derived by a Taylor expansion about the mean body surface. This is not a valid sharp corner.

In order to avoid this difficulty, Zhao & Faltinsen (1989b) decomposed the velocity potential into two parts, with the first part satisfying the body boundary condition associated with the \(m_j \)-terms, and the second part satisfying the body boundary condition with the \(m_j \)-terms excluded. By doing that, they finally obtained an integral equation which is valid for cases with sharp corners. When the second-order solution is pursued, it involves the second-order derivatives of the first-order unsteady velocity potential and the second-order and third-order derivatives of the steady velocity potential on the body (see Section 2.4.2). It is not straightforward to generalize the indirect method using Stokes theorem for the integral of third-order derivatives on the body surface without sharp corners. Furthermore, if the body is with sharp corner, the method proposed by Zhao & Faltinsen (1989b) may in principle be extended to get a proper integral equation. However, we then have to divide the velocity potential into several parts since the second-order body boundary condition contains some terms similar to the \(m_j \)-terms and terms involving the third-order derivatives. It may also be difficult to find the corresponding artificial velocity potential for all the \(m_j \)-like terms.

However, body boundary conditions described in the body-fixed coordinate system is very simple and without any derivatives on the right-hand sides. Therefore, the resulting boundary integral equation is valid for bodies with and without sharp corners.
As shown in Fig. 5.1, a control surface (SC) is introduced to divide the computational domain into two parts, i.e. the inner domain and the outer domain. The inner domain is enclosed by a projection of the free surface on the oxy-plane near the body (SF1), the body surface (SB) and the control surface (SC). See also Fig. 5.2. The outer domain contains the mean free surface away from the body (SF2), the mean position of the control surface (SC_0), the sea bottom (S_{bottom}) and the vertical surface connecting the free surface and the sea bottom. See also Fig. 5.3. In the inner domain close to the body, the problem was solved in a body-fixed coordinate system, while the solution in the outer domain was obtained in an inertial coordinate system. The solutions of the inner and outer domains are then matched at the control surface. The body boundary condition based on this formulation is ’body exact’ so that no derivatives are required on the right hand side of the body boundary conditions. The free-surface condition remains as a second-order approximation. It is called ’body exact’ because the body boundary condition is formulated at the instantaneous position but only the mean wetted body surface area is considered. That means that the effect of the small variations of the wetted body surface due to the wave elevation and body motion will be handled by the Taylor expansion about the oxy-plane. The velocity potential and its normal derivative on SC are also related to those on SC0 by Taylor expansions, which will be used as matching condition between the inner domain solution and the outer domain solution.

As shown in Fig. 5.1, a control surface (SC) is introduced to divide the computational domain into two parts, i.e. the inner domain and the outer domain. The inner domain is enclosed by a projection of the free surface on the oxy-plane near the body (SF1), the body surface (SB) and the control surface (SC). See also Fig. 5.2. The outer domain contains the mean free surface away from the body (SF2), the mean position of the control surface (SC_0), the sea bottom (S_{bottom}) and the vertical surface connecting the free surface and the sea bottom. See also Fig. 5.3. In the inner domain close to the body, the problem was solved in a body-fixed coordinate system, while the solution in the outer domain was obtained in an inertial coordinate system. The solutions of the inner and outer domains are then matched at the control surface. The body boundary condition based on this formulation is ’body exact’ so that no derivatives are required on the right hand side of the body boundary conditions. The free-surface condition remains as a second-order approximation. It is called ’body exact’ because the body boundary condition is formulated at the instantaneous position but only the mean wetted body surface area is considered. That means that the effect of the small variations of the wetted body surface due to the wave elevation and body motion will be handled by the Taylor expansion about the oxy-plane. The velocity potential and its normal derivative on SC are also related to those on SC0 by Taylor expansions, which will be used as matching condition between the inner domain solution and the outer domain solution.

As shown in Fig. 5.1, a control surface (SC) is introduced to divide the computational domain into two parts, i.e. the inner domain and the outer domain. The inner domain is enclosed by a projection of the free surface on the oxy-plane near the body (SF1), the body surface (SB) and the control surface (SC). See also Fig. 5.2. The outer domain contains the mean free surface away from the body (SF2), the mean position of the control surface (SC_0), the sea bottom (S_{bottom}) and the vertical surface connecting the free surface and the sea bottom. See also Fig. 5.3. In the inner domain close to the body, the problem was solved in a body-fixed coordinate system, while the solution in the outer domain was obtained in an inertial coordinate system. The solutions of the inner and outer domains are then matched at the control surface. The body boundary condition based on this formulation is ’body exact’ so that no derivatives are required on the right hand side of the body boundary conditions. The free-surface condition remains as a second-order approximation. It is called ’body exact’ because the body boundary condition is formulated at the instantaneous position but only the mean wetted body surface area is considered. That means that the effect of the small variations of the wetted body surface due to the wave elevation and body motion will be handled by the Taylor expansion about the oxy-plane. The velocity potential and its normal derivative on SC are also related to those on SC0 by Taylor expansions, which will be used as matching condition between the inner domain solution and the outer domain solution.
5.2 Domain-decomposition approach using body-fixed coordinate system in the near field

We will show how the domain decomposition strategy works by taking the higher-order BEM as an example. A time-domain approach is followed which means that the scattered part of the velocity potential and wave elevation are zero at the initial time \(t = 0 \). Applying the modified Green's \(3^{\text{rd}} \) identity in the inner domain and the outer domain respectively, we obtain the following boundary integral equations relating the velocity potential, the Green function \(G(P, Q) \) and their derivatives:

\[
\mathbf{C} \left(\Psi^{k} \right) = \int_{\partial \Omega_{i}} \mathbf{N} \left(\mathbf{P}, \mathbf{Q} \right) \mathbf{G} \left(\mathbf{P}, \mathbf{Q} \right) \mathbf{d}A_{i}, \quad k=1, 2, \quad (5.2)
\]

Here \(\Psi^{1}(\mathbf{P}) \) and \(\Psi^{2}(\mathbf{P}) \) are the velocity potential in the inner and outer domain, respectively. The subscript \(i \) indicates the inner domain and \(O \) the outer domain. \(\mathbf{C} \) is the solid angle coefficient. \(\mathbf{P} \) denotes a field point and \(\mathbf{Q} \) denotes the singularity position. The subscript \(i \) indicates the inner domain and \(O \) the outer domain. \(\mathbf{C} \) is the solid angle coefficient. \(\mathbf{P} \) is the normal vector defined as positive pointing out of the fluid domain. Fig. 5.3. Sketch of the outer domain.

The first step to solve the integral equation by using the higher-order BEM is to discretize the boundary surfaces with a number of higher-order elements and use Eq. (4.3) - Eq. (4.5) to approximate the geometry, velocity potential, and the velocities on the boundaries by shape functions. The cubic shape functions in Eq. (4.6) will be used.

After the discretization, the integrals on the boundary surfaces in Eq.(5.2) and Eq.(5.3) can thus be converted into a sum on the elements, each being calculated on the reference element. Eq.(5.2) can be rewritten as

\[
\mathbf{C} \left(\Psi^{k} \right) = \sum_{i=1}^{N_{E}} \sum_{j=1}^{N_{E}} \mathbf{N} \left(\mathbf{P}, \mathbf{Q} \right) \mathbf{G} \left(\mathbf{P}, \mathbf{Q} \right) \mathbf{d}A_{i}, \quad k=1, 2. \quad (5.4)
\]

Here \(N_{E} \) is the total number of elements on the boundaries of the outer domain. By assuming that the discretized equations are satisfied exactly at a set of collocation points, we obtain a system of

\[
\sum_{i=1}^{N_{E}} \sum_{j=1}^{N_{E}} \mathbf{N} \left(\mathbf{P}, \mathbf{Q} \right) \mathbf{G} \left(\mathbf{P}, \mathbf{Q} \right) \mathbf{d}A_{i} = \mathbf{C} \left(\Psi^{k} \right), \quad k=1, 2. \quad (5.4)
\]
Here A_j and H_j are the influence coefficients. In Eq.(5.5), we have dropped the integrals on S_{∞} because the wave motion there is assumed to be very small. This is true if an efficient damping zone is used at the outer layer of the free surface so that most of the energy of the wave is damped out when it reaches S_{∞}. It is also a good approximation if S_{∞} is chosen sufficiently far away from the body, so that the wave motion has not reached S_{∞}, see Faltinsen (1977). The integrals on S_{∞} do not explicitly show up in Eq.(5.5). Their influences are considered by choosing a Green function satisfying the sea bed condition. It implicitly means that a horizontally sea bed is assumed, because in general it is difficult to find a Green function satisfying the boundary condition for an uneven sea bed.

Similarly we can get a set of equations for the inner domain

$$\begin{align*}
\sum_{l=1}^{k} \sum_{j=1}^{\infty} A_j \frac{\partial^2 \phi^l_j}{\partial y^2} &+ \sum_{l=1}^{k} H_j \phi^l_j - \sum_{l=1}^{k} \Delta \phi^l_j = 0, \\
- \sum_{l=1}^{k} H_j \phi^l_j &+ \sum_{l=1}^{k} \Delta \phi^l_j = 0,
\end{align*}$$

(5.6)

with NE_j being the total number of elements on the boundaries of the inner domain.

Equations (5.5) and (5.6), both the velocity potential and its normal derivative on the control surfaces (SC in the outer domain and SC in the inner domain) are considered as unknowns. However, the quantities on SC in the outer domain can be related to those on SC in the inner domain. These relationships are the matching conditions of the inner-domain solution and the outer-domain solution. Because the body motions are assumed to be small and that the control surface is chosen to be not too far from the body (see Fig.5.1), we can take Taylor expansion from SC to SC_0, which gives

$$\begin{align*}
\phi^l_j(x) &\approx \phi^l_j(x_0) + \frac{\partial \phi^l_j}{\partial x}(x_0)(x-x_0), \\
\frac{\partial \phi^l_j}{\partial n} &\approx \frac{\partial \phi^l_j}{\partial n}(x_0).
\end{align*}$$

(5.7)

Similarly we can get a set of equations for the inner domain

$$\begin{align*}
\sum_{l=1}^{k} \sum_{j=1}^{\infty} A_j \frac{\partial^2 \phi^l_j}{\partial y^2} &+ \sum_{l=1}^{k} H_j \phi^l_j - \sum_{l=1}^{k} \Delta \phi^l_j = 0, \\
- \sum_{l=1}^{k} H_j \phi^l_j &+ \sum_{l=1}^{k} \Delta \phi^l_j = 0,
\end{align*}$$

(5.6)

where $\Delta \phi^l_j = [\phi^l_j(x_0) + \frac{\partial \phi^l_j}{\partial x}(x_0)(x-x_0)]$. Here A_j and H_j are the influence coefficients. In Eq.(5.5), we have dropped the integrals on S_{∞} because the wave motion there is assumed to be very small. This is true if an efficient damping zone is used at the outer layer of the free surface so that most of the energy of the wave is damped out when it reaches S_{∞}. It is also a good approximation if S_{∞} is chosen sufficiently far away from the body, so that the wave motion has not reached S_{∞}, see Faltinsen (1977). The integrals on S_{∞} do not explicitly show up in Eq.(5.5). Their influences are considered by choosing a Green function satisfying the sea bed condition. It implicitly means that a horizontally sea bed is assumed, because in general it is difficult to find a Green function satisfying the boundary condition for an uneven sea bed. In Eq.(5.5) and Eq.(5.6), both the velocity potential and its normal derivative on the control surfaces (SC in the outer domain and SC in the inner domain) are considered as unknowns. However, the quantities on SC in the outer domain can be related to those on SC in the inner domain. These relationships are the matching conditions of the inner-domain solution and the outer-domain solution. Because the body motions are assumed to be small and that the control surface is chosen to be not too far from the body (see Fig.5.1), we can take Taylor expansion from SC to SC_0, which gives

$$\begin{align*}
\phi^l_j(x) &\approx \phi^l_j(x_0) + \frac{\partial \phi^l_j}{\partial x}(x_0)(x-x_0), \\
\frac{\partial \phi^l_j}{\partial n} &\approx \frac{\partial \phi^l_j}{\partial n}(x_0).
\end{align*}$$

(5.7)
\[
\Delta \phi^{(0)} = -[\nabla \phi^{(0)}/c_{in}^2] + \left[\nabla \phi^{(0)} \cdot \left(\nabla \phi^{(0)} \cdot V \right) \right] c_{in}^2 - \left[\nabla \phi^{(0)} \cdot \left(\nabla \phi^{(0)} \cdot V \right) \right] c_{in}^2.
\] (5.12)

Here \(\phi^{(0)}\) is the zeroth-order velocity potential in the outer domain. Its corresponding part in the inner domain is \(\phi^{(0)}\). Physically, \(\phi^{(0)}\) and \(\phi^{(0)}\) can not be interpreted as exactly the same as the classical double-body basis flow \(\phi^{0}\) defined in the inertial coordinate system. However, it is shown in Appendix A that, the solution of \(\phi^{(0)}\) and \(\phi^{(0)}\) to zeroth-order are the same as the inner and outer part of \(\phi^{(0)}\) respectively. Therefore, we can use \(\phi^{(0)}\) as the solutions of \(\phi^{(0)}\) and \(\phi^{(0)}\).

By putting Eq.(5.7) and Eq.(5.8) into Eq.(5.6), we get
\[
\sum_{x \in \partial \Omega} \int_{\partial \Omega} \left(\frac{\partial \phi^{(0)}}{\partial n} \right) \frac{\partial \phi^{(0)}}{\partial n} \, d \Omega + \sum_{x \in \partial \Omega} \int_{\partial \Omega} \left(\frac{\partial \phi^{(0)}}{\partial n} \right) \frac{\partial \phi^{(0)}}{\partial n} \, d \Omega = \sum_{x \in \partial \Omega} \int_{\partial \Omega} \left(\frac{\partial \phi^{(0)}}{\partial n} \right) \frac{\partial \phi^{(0)}}{\partial n} \, d \Omega - \sum_{x \in \partial \Omega} \int_{\partial \Omega} \left(\frac{\partial \phi^{(0)}}{\partial n} \right) \frac{\partial \phi^{(0)}}{\partial n} \, d \Omega, \quad \text{for} \quad i = 1, \ldots, NE, k = 1,2.
\] (5.13)

The double-node technique (e.g., Grilli & Svendsen, 1990) is used at the intersection lines of different surfaces where the normal vector is ill-defined. This brings modifications to the corresponding lines of equations in Eq.(5.5) and Eq.(5.11) and gives us the final algebraic equation system. A consequence of the described procedure is that the surface elements are time-independent.

It is noticed that the dimension of the matrix equation is increased because of the introduction of the control surface and the boundary elements on it. However, the number of the elements on the control surface is small compared with that on the free surface. Furthermore, because a simple smooth geometry is used as the control surface, one can distribute fewer elements than that on the body without losing any accuracy.

\[
\Delta \phi^{(0)} = -[\nabla \phi^{(0)}/c_{in}^2] + \left[\nabla \phi^{(0)} \cdot \left(\nabla \phi^{(0)} \cdot V \right) \right] c_{in}^2 - \left[\nabla \phi^{(0)} \cdot \left(\nabla \phi^{(0)} \cdot V \right) \right] c_{in}^2.
\] (5.12)

Here \(\phi^{(0)}\) is the zeroth-order velocity potential in the outer domain. Its corresponding part in the inner domain is \(\phi^{(0)}\). Physically, \(\phi^{(0)}\) and \(\phi^{(0)}\) can not be interpreted as exactly the same as the classical double-body basis flow \(\phi^{0}\) defined in the inertial coordinate system. However, it is shown in Appendix A that, the solution of \(\phi^{(0)}\) and \(\phi^{(0)}\) to zeroth-order are the same as the inner and outer part of \(\phi^{(0)}\) respectively. Therefore, we can use \(\phi^{(0)}\) as the solutions of \(\phi^{(0)}\) and \(\phi^{(0)}\).

By putting Eq.(5.7) and Eq.(5.8) into Eq.(5.6), we get
\[
\sum_{x \in \partial \Omega} \int_{\partial \Omega} \left(\frac{\partial \phi^{(0)}}{\partial n} \right) \frac{\partial \phi^{(0)}}{\partial n} \, d \Omega + \sum_{x \in \partial \Omega} \int_{\partial \Omega} \left(\frac{\partial \phi^{(0)}}{\partial n} \right) \frac{\partial \phi^{(0)}}{\partial n} \, d \Omega = \sum_{x \in \partial \Omega} \int_{\partial \Omega} \left(\frac{\partial \phi^{(0)}}{\partial n} \right) \frac{\partial \phi^{(0)}}{\partial n} \, d \Omega - \sum_{x \in \partial \Omega} \int_{\partial \Omega} \left(\frac{\partial \phi^{(0)}}{\partial n} \right) \frac{\partial \phi^{(0)}}{\partial n} \, d \Omega, \quad \text{for} \quad i = 1, \ldots, NE, k = 1,2.
\] (5.13)

The double-node technique (e.g., Grilli & Svendsen, 1990) is used at the intersection lines of different surfaces where the normal vector is ill-defined. This brings modifications to the corresponding lines of equations in Eq.(5.5) and Eq.(5.11) and gives us the final algebraic equation system. A consequence of the described procedure is that the surface elements are time-independent.

It is noticed that the dimension of the matrix equation is increased because of the introduction of the control surface and the boundary elements on it. However, the number of the elements on the control surface is small compared with that on the free surface. Furthermore, because a simple smooth geometry is used as the control surface, one can distribute fewer elements than that on the body without losing any accuracy.
In principle, the control surface used in the method based on domain decomposition can be chosen arbitrarily. However simple and smooth geometries without sharp corner are always preferred. An example of the control surface is shown in Fig.5.4. Typical meshes on the free surfaces are shown in Fig.5.5.

It is noticed from Eq.(5.9) - Eq.(5.12) that we still have to calculate higher-order derivatives of \(\phi^p \) on the control surface \(S_C \). However, when the basis flow \(\phi^p \) is being solved, the domain decomposition solver is switched off and no source/dipole distribution is distributed on the control surface. Since the control surface is enclosed by the computational boundaries of the water domain, the velocity potential \(\phi^p \) and its high-order derivatives there can be calculated very accurately by using the boundary integral equation (BIE) and the spatial derivatives of the BIE. The first-order and second-order derivatives of \(\phi^c \) on the control surface are much easier to calculate compared with that on the body, because we are free to construct relatively simpler geometry as the control surface. On the other hand, the solution at the control surface will always be regular even though it may be singular at the body surface. The integrals of the higher-order derivatives of steady velocity potential on the control surface are less important than that on the body surface. The values of these integrals decay depending on the distance between the control surface and the body surface. A qualitative estimation of the decay can be made by taking a hemisphere as an example and assuming the double-body flow as the basis flow. The double-body flow of a moving hemisphere can be obtained analytically (see also Section 4.6). The control surface is chosen as a hemisphere with radius \(R_c \). See Fig. 5.4 for illustration. The integrals of the first-order, second-order and third-order derivatives of \(\phi^c \) on the control surface decay with \(1/R_c \). Assume \(R_c \approx R \), respectively. Assume \(R_c > R \), respectively. Assume \(R_c < R \) is small, then the results are what should be expected by the far-field expansions (e.g. Newman, 1977) for a body in infinite fluid. In case of general free-surface conditions, the decay of the velocity potential and its derivatives is slower than that of the double-body flow due to the wave effect.

The domain decomposition based method with body-fixed coordinate system described in this section does not need any derivatives on the right-hand side of the body boundary conditions, and thus the resulting BIEs are integrable for bodies without submerged sharp corners. In principle, this method

It is noticed from Eq.(5.9) - Eq.(5.12) that we still have to calculate higher-order derivatives of \(\phi^p \) on the control surface \(S_C \). However, when the basis flow \(\phi^p \) is being solved, the domain decomposition solver is switched off and no source/dipole distribution is distributed on the control surface. Since the control surface is enclosed by the computational boundaries of the water domain, the velocity potential \(\phi^p \) and its high-order derivatives there can be calculated very accurately by using the boundary integral equation (BIE) and the spatial derivatives of the BIE. The first-order and second-order derivatives of \(\phi^c \) on the control surface are much easier to calculate compared with that on the body, because we are free to construct relatively simpler geometry as the control surface. On the other hand, the solution at the control surface will always be regular even though it may be singular at the body surface. The integrals of the higher-order derivatives of steady velocity potential on the control surface are less important than that on the body surface. The values of these integrals decay depending on the distance between the control surface and the body surface. A qualitative estimation of the decay can be made by taking a hemisphere as an example and assuming the double-body flow as the basis flow. The double-body flow of a moving hemisphere can be obtained analytically (see also Section 4.6). The control surface is chosen as a hemisphere with radius \(R_c \). See Fig. 5.4 for illustration. The integrals of the first-order, second-order and third-order derivatives of \(\phi^c \) on the control surface decay with \(1/R_c \). Assume \(R_c \approx R \), respectively. Assume \(R_c > R \), respectively. Assume \(R_c < R \) is small, then the results are what should be expected by the far-field expansions (e.g. Newman, 1977) for a body in infinite fluid. In case of general free-surface conditions, the decay of the velocity potential and its derivatives is slower than that of the double-body flow due to the wave effect.

The domain decomposition based method with body-fixed coordinate system described in this section does not need any derivatives on the right-hand side of the body boundary conditions, and thus the resulting BIEs are integrable for bodies without submerged sharp corners. In principle, this method

In principle, the control surface used in the method based on domain decomposition can be chosen arbitrarily. However simple and smooth geometries without sharp corner are always preferred. An example of the control surface is shown in Fig.5.4. Typical meshes on the free surfaces are shown in Fig.5.5.

It is noticed from Eq.(5.9) - Eq.(5.12) that we still have to calculate higher-order derivatives of \(\phi^p \) on the control surface \(S_C \). However, when the basis flow \(\phi^p \) is being solved, the domain decomposition solver is switched off and no source/dipole distribution is distributed on the control surface. Since the control surface is enclosed by the computational boundaries of the water domain, the velocity potential \(\phi^p \) and its high-order derivatives there can be calculated very accurately by using the boundary integral equation (BIE) and the spatial derivatives of the BIE. The first-order and second-order derivatives of \(\phi^c \) on the control surface are much easier to calculate compared with that on the body, because we are free to construct relatively simpler geometry as the control surface. On the other hand, the solution at the control surface will always be regular even though it may be singular at the body surface. The integrals of the higher-order derivatives of steady velocity potential on the control surface are less important than that on the body surface. The values of these integrals decay depending on the distance between the control surface and the body surface. A qualitative estimation of the decay can be made by taking a hemisphere as an example and assuming the double-body flow as the basis flow. The double-body flow of a moving hemisphere can be obtained analytically (see also Section 4.6). The control surface is chosen as a hemisphere with radius \(R_c \). See Fig. 5.4 for illustration. The integrals of the first-order, second-order and third-order derivatives of \(\phi^c \) on the control surface decay with \(1/R_c \). Assume \(R_c \approx R \), respectively. Assume \(R_c > R \), respectively. Assume \(R_c < R \) is small, then the results are what should be expected by the far-field expansions (e.g. Newman, 1977) for a body in infinite fluid. In case of general free-surface conditions, the decay of the velocity potential and its derivatives is slower than that of the double-body flow due to the wave effect.

The domain decomposition based method with body-fixed coordinate system described in this section does not need any derivatives on the right-hand side of the body boundary conditions, and thus the resulting BIEs are integrable for bodies without submerged sharp corners. In principle, this method
can be generalized to multi-body interaction problems. However, increased complexity obviously occurs by using the body-fixed coordinate system for multi-body problems. The practicality of the procedure for multi-body interactions will need a dedicated investigation and it is not the focus of this study.

5.3 Generation of incident wave field in body-fixed coordinate system

The expressions for Stokes second-order wave can be found in many text books, for instance Dean & Dalrymple (1991). See also the introduction in Section 2.8 of Chapter 2. The description of the incident wave field in the body-fixed coordinate system is not straightforward. However, it is not necessary to separate the velocity potential and the wave elevation into the known incident part and the unknown scattered part, as it was done by for instance Blinchmann (2000) and Wang & Wu (2007). In the new method based on domain decomposition, the incident wave is only specified in the outer domain which has a formulation in the inertial coordinate system. In the inner domain, the total velocity potential and the total wave elevation are solved through the free-surface conditions Eqs.(2.88) and Eq.(2.89) in Section 2.6. Physically the free-surface conditions in the outer domain acts as a wave generator. The generated incident wave enters the inner domain and is then influenced by the body. A damping zone will be used in the outer layer of the free surface in the outer domain. The damping zone applies only for the scattered part of the waves and its nonlinear interactions with the incident waves.

The boundary integral equations Eqs.(5.5) and Eq.(5.13) are formulated by using the total velocity potentials in the outer and inner domain, respectively. When the incident wave is prescribed in the outer domain, the contributions of the incident part of the velocity potential \(\phi_{\text{inc}} \) should be moved to the right-hand sides of Eqs.(5.5) and Eq.(5.13) and treated explicitly.

5.3 Generation of incident wave field in body-fixed coordinate system

The expressions for Stokes second-order wave can be found in many text books, for instance Dean & Dalrymple (1991). See also the introduction in Section 2.8 of Chapter 2. The description of the incident wave field in the body-fixed coordinate system is not straightforward. However, it is not necessary to separate the velocity potential and the wave elevation into the known incident part and the unknown scattered part, as it was done by for instance Blinchmann (2000) and Wang & Wu (2007). In the new method based on domain decomposition, the incident wave is only specified in the outer domain which has a formulation in the inertial coordinate system. In the inner domain, the total velocity potential and the total wave elevation are solved through the free-surface conditions Eqs.(2.88) and Eq.(2.89) in Section 2.6. Physically the free-surface conditions in the outer domain acts as a wave generator. The generated incident wave enters the inner domain and is then influenced by the body. A damping zone will be used in the outer layer of the free surface in the outer domain. The damping zone applies only for the scattered part of the waves and its nonlinear interactions with the incident waves.

The boundary integral equations Eqs.(5.5) and Eq.(5.13) are formulated by using the total velocity potentials in the outer and inner domain, respectively. When the incident wave is prescribed in the outer domain, the contributions of the incident part of the velocity potential \(\phi_{\text{inc}} \) should be moved to the right-hand sides of Eqs.(5.5) and Eq.(5.13) and treated explicitly.

5.3 Generation of incident wave field in body-fixed coordinate system

The expressions for Stokes second-order wave can be found in many text books, for instance Dean & Dalrymple (1991). See also the introduction in Section 2.8 of Chapter 2. The description of the incident wave field in the body-fixed coordinate system is not straightforward. However, it is not necessary to separate the velocity potential and the wave elevation into the known incident part and the unknown scattered part, as it was done by for instance Blinchmann (2000) and Wang & Wu (2007). In the new method based on domain decomposition, the incident wave is only specified in the outer domain which has a formulation in the inertial coordinate system. In the inner domain, the total velocity potential and the total wave elevation are solved through the free-surface conditions Eqs.(2.88) and Eq.(2.89) in Section 2.6. Physically the free-surface conditions in the outer domain acts as a wave generator. The generated incident wave enters the inner domain and is then influenced by the body. A damping zone will be used in the outer layer of the free surface in the outer domain. The damping zone applies only for the scattered part of the waves and its nonlinear interactions with the incident waves.

The boundary integral equations Eqs.(5.5) and Eq.(5.13) are formulated by using the total velocity potentials in the outer and inner domain, respectively. When the incident wave is prescribed in the outer domain, the contributions of the incident part of the velocity potential \(\phi_{\text{inc}} \) should be moved to the right-hand sides of Eqs.(5.5) and Eq.(5.13) and treated explicitly.

5.3 Generation of incident wave field in body-fixed coordinate system

The expressions for Stokes second-order wave can be found in many text books, for instance Dean & Dalrymple (1991). See also the introduction in Section 2.8 of Chapter 2. The description of the incident wave field in the body-fixed coordinate system is not straightforward. However, it is not necessary to separate the velocity potential and the wave elevation into the known incident part and the unknown scattered part, as it was done by for instance Blinchmann (2000) and Wang & Wu (2007). In the new method based on domain decomposition, the incident wave is only specified in the outer domain which has a formulation in the inertial coordinate system. In the inner domain, the total velocity potential and the total wave elevation are solved through the free-surface conditions Eqs.(2.88) and Eq.(2.89) in Section 2.6. Physically the free-surface conditions in the outer domain acts as a wave generator. The generated incident wave enters the inner domain and is then influenced by the body. A damping zone will be used in the outer layer of the free surface in the outer domain. The damping zone applies only for the scattered part of the waves and its nonlinear interactions with the incident waves.

The boundary integral equations Eqs.(5.5) and Eq.(5.13) are formulated by using the total velocity potentials in the outer and inner domain, respectively. When the incident wave is prescribed in the outer domain, the contributions of the incident part of the velocity potential \(\phi_{\text{inc}} \) should be moved to the right-hand sides of Eqs.(5.5) and Eq.(5.13) and treated explicitly.
5.4 The consistency between body-fixed coordinate system and inertial coordinate system

The first-order and second-order body boundary conditions (Eq. (B.4) and Eq. (B.5)) formulated in the body-fixed coordinate system and inertial coordinate system, we will firstly consider two simple cases with analytical solutions. Both of them are 2D cases. For the purpose of verifying the domain-decomposition based method presented in Section 5.2, more time-domain results on the analytical solutions will be shown in Chapter 7 and Chapter 8.

Case 1: Forced oscillation of an infinitely long circular cylinder

The first case considered here is an infinitely long horizontal circular cylinder under forced sinusoidal surging motion. Infinite fluid domain is assumed. This case rules out the influence of the free surface. All the nonlinearities in the solution are due to the body boundary conditions. The definition of the problem is shown in Fig. 5.7.

Fig. 5.7. Definition of a circle under forced sinusoidal surge motion.
motion is small. However, the body boundary condition formulated in the body-fixed coordinate system is body exact and valid for large body motions.

The boundary value problems are solved analytically both in the inertial coordinate system and the body-fixed coordinate system. The details of the derivation are given in Appendix B. The strategy of solving the boundary integral equation analytically has been applied in the solution of a moving circle in infinite fluid with constant speed (see e.g. Faltinsen & Timokha (2009) and Shao (2009)). It has also been used by Shao & Faltinsen (2008) to study the surging and heaving of a semicircle with infinite-frequency free-surface condition (see also Section 6.5).

It is seen from Eq.(B.11) and Eq.(B.14) that the second-order approximation of the hydrodynamic pressure is the same as the exact solution. This indicates the consistency of the body-fixed coordinate system and the inertial coordinate system.

Case 2: Forced oscillation of a 2D rectangular tank

The second case considered is a 2D rectangular sloshing tank under forced sinusoidal surge motion. See Fig.5.8 for the definition. The problem is solved up to second order in both the inertial coordinate system and body-fixed coordinate system by assuming a steady-state solution, which means the transient effects are not considered. The response is assumed to be $\zeta(x)$ where the small parameter x characterizes the order of magnitude of the forced surge amplitude relative to the breadth of the tank. The general formulation of the problem in inertial coordinate system can be found in Section 2.4, while the formulation in body-fixed reference frame was given in Section 2.6.

In reality, the transient effects are very important in the sloshing tank. This is due to the fact the damping in a sloshing tank is very small. The potential damping which is associated with the radiated wave in an exterior problem is zero in a tank. The damping sources in a sloshing tank are discussed in Faltinsen & Timokha (2009). A distinct feature of the sloshing motion was modulated (or beating) motion is small. However, the body boundary condition formulated in the body-fixed coordinate system is body exact and valid for large body motions.

The boundary value problems are solved analytically both in the inertial coordinate system and the body-fixed coordinate system. The details of the derivation are given in Appendix B. The strategy of solving the boundary integral equation analytically has been applied in the solution of a moving circle in infinite fluid with constant speed (see e.g. Faltinsen & Timokha (2009) and Shao (2009)). It has also been used by Shao & Faltinsen (2008) to study the surging and heaving of a semicircle with infinite-frequency free-surface condition (see also Section 6.5).

It is seen from Eq.(B.11) and Eq.(B.14) that the second-order approximation of the hydrodynamic pressure is the same as the exact solution. This indicates the consistency of the body-fixed coordinate system and the inertial coordinate system.

Case 2: Forced oscillation of a 2D rectangular tank

The second case considered is a 2D rectangular sloshing tank under forced sinusoidal surge motion. See Fig.5.8 for the definition. The problem is solved up to second order in both the inertial coordinate system and body-fixed coordinate system by assuming a steady-state solution, which means the transient effects are not considered. The response is assumed to be $\zeta(x)$ where the small parameter x characterizes the order of magnitude of the forced surge amplitude relative to the breadth of the tank. The general formulation of the problem in inertial coordinate system can be found in Section 2.4, while the formulation in body-fixed reference frame was given in Section 2.6.

In reality, the transient effects are very important in the sloshing tank. This is due to the fact the damping in a sloshing tank is very small. The potential damping which is associated with the radiated wave in an exterior problem is zero in a tank. The damping sources in a sloshing tank are discussed in Faltinsen & Timokha (2009). A distinct feature of the sloshing motion was modulated (or beating) motion is small. However, the body boundary condition formulated in the body-fixed coordinate system is body exact and valid for large body motions.

The boundary value problems are solved analytically both in the inertial coordinate system and the body-fixed coordinate system. The details of the derivation are given in Appendix B. The strategy of solving the boundary integral equation analytically has been applied in the solution of a moving circle in infinite fluid with constant speed (see e.g. Faltinsen & Timokha (2009) and Shao (2009)). It has also been used by Shao & Faltinsen (2008) to study the surging and heaving of a semicircle with infinite-frequency free-surface condition (see also Section 6.5).

It is seen from Eq.(B.11) and Eq.(B.14) that the second-order approximation of the hydrodynamic pressure is the same as the exact solution. This indicates the consistency of the body-fixed coordinate system and the inertial coordinate system.
waves as a consequence of interaction between transient and forced oscillations of the free surface flow. A frequency analysis by Rogovshchik & Faltinsen (1999) showed the presence of both the lowest natural frequency and the forced oscillation frequency. Therefore, a steady-state solution would not capture this behavior. Faltinsen (1978) presents a linear initial value solution for 2D sloshing in a harmonically oscillating rectangular tank. See also Faltinsen & Timokha (2009) and Shao (2009). A second-order initial value problem was solved by Rogovshchik & Faltinsen (1999) using a formulation in the inertial coordinate system. However, in their derivation of the second-order solution, only the first mode in the first-order solution was considered in the forcing term of second-order free-surface condition. Later, the same problem was solved by Wu (2007) to second order in the time domain by using a formulation in the body-fixed coordinate system. The complete first-order solution was considered in the second-order forcing term.

On the other hand, strong nonlinear effects matter in many cases, indicating that it is not valid to assume the response to be of \(\mathcal{O}(\epsilon) \). This occurs in cases, for instance, at resonance frequency, with large forcing amplitude or relatively shallow liquid depth. Then one needs a proper nonlinear multimodal theory (e.g. Faltinsen & Timokha, 2009) which is out of the scope of this thesis.

The purpose of solving the steady-state sloshing problem by assuming the fluid response to be \(\mathcal{O}(\epsilon) \) is just to show the consistency between the body-fixed coordinate system and the inertial coordinate system. The details of the derivations are given in Appendix C. The solutions obtained are semi-analytical based on modal expansions.

When the solution to the velocity potential is obtained, the Blasius's equation can be used to determine the hydrodynamic pressure. In the inertial coordinate system, the first-order and second-order hydrodynamic pressures are expressed by Eq. (5.45) and Eq. (5.46), respectively. The first-order and second-order hydrodynamic pressures in the body-fixed coordinate system are given in Eq. (C.61) and Eq. (C.62), respectively. One should note that the first-order solutions in the inertial coordinate system and the body-fixed coordinate system are the same. See Eq. (C.12) and Eq. (C.47).

Therefore we will not show the comparison of the first-order results. According to the derivation in Appendix C, with a forced surge motion \(\zeta = \zeta_0 \sin(\omega t) \), the steady-state solution for the second-order pressure can be expressed in the following form

\[
p_0^2 = p_0^1 + p_0^{pp} \cos(2\omega t),
\]

(5.14)

where \(p_0^2 \) is the second-order mean pressure. The second term on the right-hand side of Eq. (5.14) represents the sum-frequency pressure.

The comparison for the second-order mean pressures \(p_0^2 \) and \(p_0^{pp} \) associated with the sum-frequency pressure are made in Fig. 5.9 - Fig. 5.12. Fig. 5.9 and Fig. 5.10 show the distribution of \(p_0^1 \) and \(p_0^2 \) along the tank bottom, respectively. Fig. 5.11 and Fig. 5.12 show the distribution of \(p_0^{pp} \) and \(p_0^{pp} \) along the tank wall, respectively.

When the solution to the velocity potential is obtained, the Blasius's equation can be used to determine the hydrodynamic pressure. In the inertial coordinate system, the first-order and second-order hydrodynamic pressures are expressed by Eq. (5.45) and Eq. (5.46), respectively. The first-order and second-order hydrodynamic pressures in the body-fixed coordinate system are given in Eq. (C.61) and Eq. (C.62), respectively. One should note that the first-order solutions in the inertial coordinate system and the body-fixed coordinate system are the same. See Eq. (C.12) and Eq. (C.47).

Therefore we will not show the comparison of the first-order results. According to the derivation in Appendix C, with a forced surge motion \(\zeta = \zeta_0 \sin(\omega t) \), the steady-state solution for the second-order pressure can be expressed in the following form

\[
p_0^2 = p_0^1 + p_0^{pp} \cos(2\omega t),
\]

(5.14)

where \(p_0^2 \) is the second-order mean pressure. The second term on the right-hand side of Eq. (5.14) represents the sum-frequency pressure.

The comparison for the second-order mean pressures \(p_0^2 \) and \(p_0^{pp} \) associated with the sum-frequency pressure are made in Fig. 5.9 - Fig. 5.12. Fig. 5.9 and Fig. 5.10 show the distribution of \(p_0^1 \) and \(p_0^2 \) along the tank bottom, respectively. Fig. 5.11 and Fig. 5.12 show the distribution of \(p_0^{pp} \) and \(p_0^{pp} \) along the tank wall, respectively.
5.4 The consistency between body-fixed coordinate system and inertial coordinate system

5.4 The consistency between body-fixed coordinate system and inertial coordinate system

Fig 5.8. Distribution of $p_{10}^{(2)}$ along the bottom of the tank. The number of terms used in the modal expansion $N=200$. ‘Body-fixed’ and ‘Inertial’ correspond to results based on the formulations in the body-fixed reference frame and the inertial coordinate system, respectively. ξ_0 is the amplitude of the sinusoidal surge motion, ω is the frequency of forced oscillation.

Fig 5.9. Distribution of $p_{10}^{(2)}$ along the bottom of the tank. The number of terms used in the modal expansion $N=200$. ‘Body-fixed’ and ‘Inertial’ correspond to results based on the formulations in the body-fixed reference frame and the inertial coordinate system, respectively. ξ_0 is the amplitude of the sinusoidal surge motion, ω is the frequency of forced oscillation.

Fig 5.10. Distribution of $p_{10}^{(2)}$ along the bottom of the tank. The number of terms used in the modal expansion $N=200$. ‘Body-fixed’ and ‘Inertial’ correspond to results based on the formulations in the body-fixed reference frame and the inertial coordinate system, respectively. ξ_0 is the amplitude of the sinusoidal surge motion, ω is the frequency of forced oscillation.

Fig 5.11. Distribution of $p_{10}^{(2)}$ along the bottom of the tank. The number of terms used in the modal expansion $N=200$. ‘Body-fixed’ and ‘Inertial’ correspond to results based on the formulations in the body-fixed reference frame and the inertial coordinate system, respectively. ξ_0 is the amplitude of the sinusoidal surge motion, ω is the frequency of forced oscillation.
Fig 5.11. Distribution of \(p_0^{(2)} \) along the tank wall. The number of terms used in the model expansion \(N=200 \). 'Body-fixed' and 'Inertial' correspond to results based on the formulations in the body-fixed reference frame and the inertial coordinate system, respectively. \(\Delta_a \) is the amplitude of the sinusoidal surge motion, \(\omega \) is the frequency of forced oscillation.

Fig 5.12. Distribution of \(p_0^{(2)} \) along the tank wall. The number of terms used in the model expansion \(N=200 \). 'Body-fixed' and 'Inertial' correspond to results based on the formulations in the body-fixed reference frame and the inertial coordinate system, respectively. \(\Delta_a \) is the amplitude of the sinusoidal surge motion, \(\omega \) is the frequency of forced oscillation.
6.1 The steady-state third-order solution of sloshing in a rectangular tank

One of the difficulties in solving a weakly-nonlinear hydrodynamic problem is associated with the higher-order derivatives in the boundary conditions. In this section, the sloshing in a two-dimensional rectangular tank is studied to third order by using a combined numerical and analytical approach.

The accuracy of the numerical method is an important issue. With the purpose of verification, studies were carried out in some two-dimensional cases, including:
- The steady-state third-order solution of a sloshing tank
- Free oscillations and forced oscillations in a rectangular tank
- Stokes-drift effect and numerical simulation of the Stokes second-order waves
- Secularity conditions and numerical simulation of the Stokes third-order waves
- Second-order diffraction of a horizontal cylinder
- Second-order radiation of a horizontal cylinder

The numerical results based on the 2D quadratic boundary element method (QBEM) are compared with some existing theoretical results and experimental results. Good agreements have been obtained. All the studies carried out in the time domain are based on the formulation in the inertial coordinate system (see Chapter 4). Parts of the results shown in this chapter have been presented in the 23rd International Workshop on Water Wave and Floating Bodies (IWWWFB). See Shao & Faltinsen (2008).

The study in this chapter is relevant for cases when the two-dimensional effects are dominant and the nonlinearity matters. One example is a long barge or flexible tube in the beam sea. When combined with a proper strip theory, the analysis in this chapter may also be extended to study the second-order wave loads on a slender ship.
which was proposed by Solas (1995) and Solas & Faltinsen (1997) for two-dimensional tanks with arbitrary tank shapes. In this method, the natural frequencies and corresponding natural modes are obtained by a boundary element formulation. The higher-order derivatives appear in the nonlinear free-surface conditions will be calculated by the curve-fitting technique described in Section 3.6. The steady-state third-order analytical results for the two-dimensional rectangular tank can be found in Faltinsen (1974b) and Solas (1995). We will compare the numerical results with the analytical results in order to demonstrate the accuracy of our 2D QBEM solver and that the higher-order derivatives in the free-surface conditions can be obtained accurately by standard numerical methods.

The tank was assumed to be oscillating harmonically with small amplitudes \(\xi = \xi_0 \sin(\omega t) \) in the transverse/surge direction. See the definition in Fig. 5.8. The general formulation of the third-order steady-state sloshing problem by Faltinsen (1974b), Solas (1995) and Solas & Faltinsen (1997) is used. A Monsev (1958) type of ordering is followed for forced oscillations near resonance, which means the fluid response is of the same order or lower orders than the forcing. This formulation is essentially different with the ordering adopted in the weakly-nonlinear formulation presented in Chapter 2, where the responses are assumed to be the same as or higher orders than the forcing. The reason why we have to use a different ordering for sloshing near the resonance, e.g. Monsev type of ordering, is that the damping in the tank is very small and the response near resonance can be very large, which results in energy transfer from the lower-order modes to the higher-order modes. More discussion on the ordering of the resonant fluid response in the sloshing tanks can be found in for instance Faltinsen & Timokha (2009).

Only some important features of the Moiseev-type formulation will be summarized here. The interested readers are referred to Faltinsen (1974b), Solas (1995) and Solas & Faltinsen (1997) for further details. In this formulation, the frequency of the oscillation \(\nu \) is near the lowest resonance frequency \(\nu_r \) of the sloshing tank

\[
a^{2} = \nu_0^{2} + c^{2} a^{2} \omega^{2},
\]

(6.1)

where, in accordance with the analytical solutions, the velocity potentials are assumed to have the form

\[
\Phi = \phi_0 \cos(\nu_0 t) + \phi_1 \cos(\nu_1 t) + \phi_2 \cos(\nu_2 t),
\]

(6.2)

and the velocity potential for the tank motion is

\[
\Phi_t = 2a \nu_0 \cos(\nu_0 t).
\]

(6.4)

The constant \(N \) will be determined in the third-order problem.

A rectangular tank with breadth \(2a = 1.0 \)m and water depth \(h = 0.5 \)m is considered. The frequency of the sloshing tank

\[
a^{2} = \nu_0^{2} + c^{2} a^{2} \omega^{2},
\]

(6.1)

with \(c = \xi_0 / 2a \) is near the half of the breadth of the tank (see Fig. 5.8). The total velocity potential is written correctly to third order as

\[
\Phi = \phi_0 \cos(\nu_0 t) + \phi_1 \cos(\nu_1 t) + \phi_2 \cos(\nu_2 t),
\]

(6.2)

where, in accordance with the analytical solutions, the velocity potentials are assumed to have the form

\[
\Phi = \phi_0 \cos(\nu_0 t) + \phi_1 \cos(\nu_1 t) + \phi_2 \cos(\nu_2 t),
\]

(6.2)

and the velocity potential for the tank motion is

\[
\Phi_t = 2a \nu_0 \cos(\nu_0 t).
\]

(6.4)

The constant \(N \) will be determined in the third-order problem.

A rectangular tank with breadth \(2a = 1.0 \)m and water depth \(h = 0.5 \)m is considered. The frequency of the sloshing tank

\[
a^{2} = \nu_0^{2} + c^{2} a^{2} \omega^{2},
\]

(6.1)

with \(c = \xi_0 / 2a \) is near the half of the breadth of the tank (see Fig. 5.8). The total velocity potential is written correctly to third order as

\[
\Phi = \phi_0 \cos(\nu_0 t) + \phi_1 \cos(\nu_1 t) + \phi_2 \cos(\nu_2 t),
\]

(6.2)

where, in accordance with the analytical solutions, the velocity potentials are assumed to have the form

\[
\Phi = \phi_0 \cos(\nu_0 t) + \phi_1 \cos(\nu_1 t) + \phi_2 \cos(\nu_2 t),
\]

(6.2)

and the velocity potential for the tank motion is

\[
\Phi_t = 2a \nu_0 \cos(\nu_0 t).
\]

(6.4)

The constant \(N \) will be determined in the third-order problem.

A rectangular tank with breadth \(2a = 1.0 \)m and water depth \(h = 0.5 \)m is considered. The frequency of the sloshing tank

\[
a^{2} = \nu_0^{2} + c^{2} a^{2} \omega^{2},
\]

(6.1)

with \(c = \xi_0 / 2a \) is near the half of the breadth of the tank (see Fig. 5.8). The total velocity potential is written correctly to third order as

\[
\Phi = \phi_0 \cos(\nu_0 t) + \phi_1 \cos(\nu_1 t) + \phi_2 \cos(\nu_2 t),
\]

(6.2)

where, in accordance with the analytical solutions, the velocity potentials are assumed to have the form

\[
\Phi = \phi_0 \cos(\nu_0 t) + \phi_1 \cos(\nu_1 t) + \phi_2 \cos(\nu_2 t),
\]

(6.2)

and the velocity potential for the tank motion is

\[
\Phi_t = 2a \nu_0 \cos(\nu_0 t).
\]

(6.4)

The constant \(N \) will be determined in the third-order problem.

A rectangular tank with breadth \(2a = 1.0 \)m and water depth \(h = 0.5 \)m is considered. The frequency of the sloshing tank

\[
a^{2} = \nu_0^{2} + c^{2} a^{2} \omega^{2},
\]

(6.1)

with \(c = \xi_0 / 2a \) is near the half of the breadth of the tank (see Fig. 5.8). The total velocity potential is written correctly to third order as

\[
\Phi = \phi_0 \cos(\nu_0 t) + \phi_1 \cos(\nu_1 t) + \phi_2 \cos(\nu_2 t),
\]

(6.2)

where, in accordance with the analytical solutions, the velocity potentials are assumed to have the form

\[
\Phi = \phi_0 \cos(\nu_0 t) + \phi_1 \cos(\nu_1 t) + \phi_2 \cos(\nu_2 t),
\]

(6.2)

and the velocity potential for the tank motion is

\[
\Phi_t = 2a \nu_0 \cos(\nu_0 t).
\]

(6.4)

The constant \(N \) will be determined in the third-order problem.
forced oscillation is equal to the first natural frequency, i.e. \(\omega = \sigma_T \). In Table 6.1, the first 10 of the analytically obtained eigenperiods are compared with the eigenperiods obtained from the numerical method with 40, 80, 160 elements on the free surface. The element length is taken to be constant over both the free surface and the tank surface. With 100 elements on the free surface, the total number of element is 480 and the length of the elements is 1/160 m. It is seen from Table 6.1 that the values of the natural frequencies are getting closer to the analytical results when the number of the elements increases. The most accurate result is obtained for \(\omega = \sigma_T \), i.e. the first natural period, while the difference between the numerical results and the analytical results increase with increasing \(n \). This can be understood that higher modes correspond to shorter wave length and the number of the boundary elements distributed within each wave length is smaller in higher modes.

The first-order, second-order and third-order solutions are also compared with the analytical results. Fig.6.1 and Fig.6.2 show the results for \(\omega = \sigma_T \) in the first-order and second-order velocity potential, respectively. The results for \(\omega = \sigma_T \) and \(\omega = \sigma_T \) in the third-order solution are presented in Fig.6.3 and Fig.6.4, respectively. \(\omega = \sigma_T \) and \(\omega = \sigma_T \) are associated with the \(\cos(3\omega t) \) terms of the third-order results. \(\omega = \sigma_T \) is associated with the \(\cos(\omega t) \) terms. The numerical results in Fig.6.1 and Fig.6.3 are given for \(N_{\text{free}} = 80 \) and 160. It is seen from Fig.6.1 that it is sufficient for the first-order results. However, some small differences between the numerical results with \(N_{\text{free}} = 80 \) and the analytical results are observed in the second-order and third-order results. The results were improved by using a finer mesh resolution with \(N_{\text{free}} = 160 \).

The author of this thesis has also tried to study the same problem by using both the constant boundary element method (CBEM) and the linear boundary element method (LBEM). It turned out that the first-order results based on CBEM show small wiggles near the intersections between the free surface and the tank walls. The consequence was that large errors occur in the second-order and third-order results near the intersections, because the higher-order derivatives in the forcing terms in the second-order and third-order free surface conditions are calculated numerically based on the lower-order solutions. The reason for the wiggles near the intersections is probably that the CBEM method with 40, 80, 160 quadratic elements on the free surface. The element length is taken to be constant over both the free surface and the tank surface. With 100 elements on the free surface, the total number of element is 480 and the length of the elements is 1/160 m. It is seen from Table 6.1 that the values of the natural frequencies are getting closer to the analytical results when the number of the elements increases. The most accurate result is obtained for \(\omega = \sigma_T \), i.e. the first natural period, while the difference between the numerical results and the analytical results increase with increasing \(n \). This can be understood that higher modes correspond to shorter wave length and the number of the boundary elements distributed within each wave length is smaller in higher modes.

The first-order, second-order and third-order solutions are also compared with the analytical results. Fig.6.1 and Fig.6.2 show the results for \(\omega = \sigma_T \) in the first-order and second-order velocity potential, respectively. The results for \(\omega = \sigma_T \) and \(\omega = \sigma_T \) in the third-order solution are presented in Fig.6.3 and Fig.6.4, respectively. \(\omega = \sigma_T \) and \(\omega = \sigma_T \) are associated with the \(\cos(3\omega t) \) terms of the third-order results. \(\omega = \sigma_T \) is associated with the \(\cos(\omega t) \) terms. The numerical results in Fig.6.1 and Fig.6.3 are given for \(N_{\text{free}} = 80 \) and 160. It is seen from Fig.6.1 that it is sufficient for the first-order results. However, some small differences between the numerical results with \(N_{\text{free}} = 80 \) and the analytical results are observed in the second-order and third-order results. The results were improved by using a finer mesh resolution with \(N_{\text{free}} = 160 \).

The author of this thesis has also tried to study the same problem by using both the constant boundary element method (CBEM) and the linear boundary element method (LBEM). It turned out that the first-order results based on CBEM show small wiggles near the intersections between the free surface and the tank walls. The consequence was that large errors occur in the second-order and third-order results near the intersections, because the higher-order derivatives in the forcing terms in the second-order and third-order free surface conditions are calculated numerically based on the lower-order solutions. The reason for the wiggles near the intersections is probably that the CBEM method with 40, 80, 160 quadratic elements on the free surface. The element length is taken to be constant over both the free surface and the tank surface. With 100 elements on the free surface, the total number of element is 480 and the length of the elements is 1/160 m. It is seen from Table 6.1 that the values of the natural frequencies are getting closer to the analytical results when the number of the elements increases. The most accurate result is obtained for \(\omega = \sigma_T \), i.e. the first natural period, while the difference between the numerical results and the analytical results increase with increasing \(n \). This can be understood that higher modes correspond to shorter wave length and the number of the boundary elements distributed within each wave length is smaller in higher modes.
satisfies the boundary conditions at the mid-point of the element, therefore the continuity of the velocity potential at the intersection points are not guaranteed. The wiggles disappeared when the LBEM or the QBEM was used. In the LBEM and QBEM, the double-node technique has been used to enforce the continuity of the velocity potential at the intersection points between the free surface and the body surface. See Section 3.2 for the details of the double-node technique. The higher-order methods, e.g. QBEM, are preferred, because the convergences of higher-order methods are much faster than that of the lower-order ones.

satisfies the boundary conditions at the mid-point of the element, therefore the continuity of the velocity potential at the intersection points are not guaranteed. The wiggles disappeared when the LBEM or the QBEM was used. In the LBEM and QBEM, the double-node technique has been used to enforce the continuity of the velocity potential at the intersection points between the free surface and the body surface. See Section 3.2 for the details of the double-node technique. The higher-order methods, e.g. QBEM, are preferred, because the convergences of higher-order methods are much faster than that of the lower-order ones.
6.1 The steady-state third-order solution of sloshing in a rectangular tank

Fig. 6.1. Comparison between the analytical and numerical results for $\psi_{3}^{(0)}$ in the third-order solution (see Eq. (6.3)) for a rectangular tank with breadth $2a=1.0\text{m}$ and water depth $h=0.5\text{m}$. Numerical results are given for the cases with 80 and 160 quadratic elements on the free surface.

Fig. 6.2. Comparison between the analytical and numerical results for $\psi_{3}^{(0)}$ in the third-order solution (see Eq. (6.3)) for a rectangular tank with breadth $2a=1.0\text{m}$ and water depth $h=0.5\text{m}$. The oscillation frequency is $\alpha = \sigma_1$. Numerical results are given for the cases with 80 and 160 quadratic elements on the free surface.

Fig. 6.3. Comparison between the analytical and numerical results for $\psi_{3}^{(0)}$ in the third-order solution (see Eq. (6.3)) for a rectangular tank with breadth $2a=1.0\text{m}$ and water depth $h=0.5\text{m}$. The oscillation frequency is $\alpha = \sigma_1$. Numerical results are given for the cases with 80 and 160 quadratic elements on the free surface.

Fig. 6.4. Comparison between the analytical and numerical results for $\psi_{3}^{(0)}$ in the third-order solution (see Eq. (6.3)) for a rectangular tank with breadth $2a=1.0\text{m}$ and water depth $h=0.5\text{m}$. The oscillation frequency is $\alpha = \sigma_1$. Numerical results are given for the cases with 80 and 160 quadratic elements on the free surface.

Fig. 6.5. Comparison between the analytical and numerical results for $\psi_{3}^{(0)}$ in the third-order solution (see Eq. (6.3)) for a rectangular tank with breadth $2a=1.0\text{m}$ and water depth $h=0.5\text{m}$. The oscillation frequency is $\alpha = \sigma_1$. Numerical results are given for the cases with 80 and 160 quadratic elements on the free surface.
6.2 Free oscillations and forced oscillations in a rectangular tank

The problem the author wish to analyze in this section is the time-evolution of transient waves in a two-dimensional rectangular tank. Keeping in mind that the final goal of this study is to simulate the nonlinear wave-body interactions, the simple test cases studied here permit us to concentrate on the difficulties associated with the presence of free-surface piercing bodies. The free oscillation and forced oscillations studied by Comte et al. (1988) are re-investigated in this section.

In the free oscillation problem, there is no energy supplied into the fluid domain. For simplicity, we assumed the velocity potential and its time derivative are zero at t = 0. The motion of the liquid is, therefore, only due to its initial elevation. The analytical solution up to second order of this initial boundary value problem can be found in, for instance Comte et al. (1988).

The free oscillation in the 2D rectangular tank is studied in time domain by using the time-domain QHEM presented in Chapter 3. In the numerical simulation, L = 1.0 m, h = 0.2 m and Z = 0.02 m are used, where L is the length of the tank. A is the water depth and Z0 is the initial displacement of free-surface. See the definitions in Fig. 6.6.

The nonlinear free-surface conditions formulated in the inertial coordinate system, i.e. Eq.(2.48) and Eq.(2.49) are used. Note that Eq.(2.48) and Eq.(2.49) are expressed in three dimensions with a small forward speed effect included. Therefore, when applied to a two-dimensional case without forward speed, the y-dependent terms and the terms associated with the forward speed have to be dropped. For free oscillations, the first-order and second-order body boundary conditions are zero-Neumann conditions. The fourth-order Runge-Kutta method described in Section 3.3 is used for the time stepping of the free-surface conditions. The time increment At/T = 1/100 is used in the numerical calculations. Here T is the first natural period of the tank.

Fig. 6.7 and Fig. 6.8 show the first-order and second-order components of the wave elevation at t = 0, respectively. Very good agreement between the numerical results and analytical results has been obtained.

6.2 Free oscillations and forced oscillations in a rectangular tank

The problem the author wish to analyze in this section is the time-evolution of transient waves in a two-dimensional rectangular tank. Keeping in mind that the final goal of this study is to simulate the nonlinear wave-body interactions, the simple test cases studied here permit us to concentrate on the difficulties associated with the presence of free-surface piercing bodies. The free oscillation and forced oscillations studied by Comte et al. (1988) are re-investigated in this section.

In the free oscillation problem, there is no energy supplied into the fluid domain. For simplicity, we assumed the velocity potential and its time derivative are zero at t = 0. The motion of the liquid is, therefore, only due to its initial elevation. The analytical solution up to second order of this initial boundary value problem can be found in, for instance Comte et al. (1988).

The free oscillation in the 2D rectangular tank is studied in time domain by using the time-domain QHEM presented in Chapter 3. In the numerical simulation, L = 1.0 m, h = 0.2 m and Z = 0.02 m are used, where L is the length of the tank. A is the water depth and Z0 is the initial displacement of free-surface. See the definitions in Fig. 6.6.

The nonlinear free-surface conditions formulated in the inertial coordinate system, i.e. Eq.(2.48) and Eq.(2.49) are used. Note that Eq.(2.48) and Eq.(2.49) are expressed in three dimensions with a small forward speed effect included. Therefore, when applied to a two-dimensional case without forward speed, the y-dependent terms and the terms associated with the forward speed have to be dropped. For free oscillations, the first-order and second-order body boundary conditions are zero-Neumann conditions. The fourth-order Runge-Kutta method described in Section 3.3 is used for the time stepping of the free-surface conditions. The time increment At/T = 1/100 is used in the numerical calculations. Here T is the first natural period of the tank.

Fig. 6.7 and Fig. 6.8 show the first-order and second-order components of the wave elevation at t = 0, respectively. Very good agreement between the numerical results and analytical results has been obtained.

6.2 Free oscillations and forced oscillations in a rectangular tank

The problem the author wish to analyze in this section is the time-evolution of transient waves in a two-dimensional rectangular tank. Keeping in mind that the final goal of this study is to simulate the nonlinear wave-body interactions, the simple test cases studied here permit us to concentrate on the difficulties associated with the presence of free-surface piercing bodies. The free oscillation and forced oscillations studied by Comte et al. (1988) are re-investigated in this section.

In the free oscillation problem, there is no energy supplied into the fluid domain. For simplicity, we assumed the velocity potential and its time derivative are zero at t = 0. The motion of the liquid is, therefore, only due to its initial elevation. The analytical solution up to second order of this initial boundary value problem can be found in, for instance Comte et al. (1988).

The free oscillation in the 2D rectangular tank is studied in time domain by using the time-domain QHEM presented in Chapter 3. In the numerical simulation, L = 1.0 m, h = 0.2 m and Z = 0.02 m are used, where L is the length of the tank. A is the water depth and Z0 is the initial displacement of free-surface. See the definitions in Fig. 6.6.

The nonlinear free-surface conditions formulated in the inertial coordinate system, i.e. Eq.(2.48) and Eq.(2.49) are used. Note that Eq.(2.48) and Eq.(2.49) are expressed in three dimensions with a small forward speed effect included. Therefore, when applied to a two-dimensional case without forward speed, the y-dependent terms and the terms associated with the forward speed have to be dropped. For free oscillations, the first-order and second-order body boundary conditions are zero-Neumann conditions. The fourth-order Runge-Kutta method described in Section 3.3 is used for the time stepping of the free-surface conditions. The time increment At/T = 1/100 is used in the numerical calculations. Here T is the first natural period of the tank.

Fig. 6.7 and Fig. 6.8 show the first-order and second-order components of the wave elevation at t = 0, respectively. Very good agreement between the numerical results and analytical results has been obtained.
In the forced oscillation problem (wave maker problem), the fluid is assumed to be at equilibrium and that the energy is supplied for $t \geq 0$ through the motion of the left vertical wall, i.e. S_{W1}, in Fig. 6.6.

As a useful test to check the accuracy of the second-order numerical results, Cointe et al. (1988) suggest the following second-order equation to control the mass conservation:

$$\int q''(x,t)dx = \left(\frac{\rho}{\rho_0}\right)K_1\sin(\omega_0 t)$$ \hspace{1cm} (6.5)

Here L is the length of the tank, $q''(x,t)$ is the first-order wave elevation at S_{W1}, $q''(x,t)$ is the second-order component of the wave elevation, $L(t)$ is the displacement of S_{W1}. In this study we have used $L(t) = F(t)$, where $F(t)$ is a sinusoidal ramp function applied over the first two wave periods, A_{wA} is the amplitude of the displacement of S_{W1}.

In the forced oscillation problem (wave maker problem), the fluid is assumed to be at equilibrium and that the energy is supplied for $t \geq 0$ through the motion of the left vertical wall, i.e. S_{W1}, in Fig. 6.6.

As a useful test to check the accuracy of the second-order numerical results, Cointe et al. (1988) suggest the following second-order equation to control the mass conservation:

$$\int q''(x,t)dx = \left(\frac{\rho}{\rho_0}\right)K_1\sin(\omega_0 t)$$ \hspace{1cm} (6.5)

Here L is the length of the tank, $q''(x,t)$ is the first-order wave elevation at S_{W1}, $q''(x,t)$ is the second-order component of the wave elevation, $L(t)$ is the displacement of S_{W1}. In this study we have used $L(t) = F(t)$, where $F(t)$ is a sinusoidal ramp function applied over the first two wave periods, A_{wA} is the amplitude of the displacement of S_{W1}.
Eq.(6.5) expresses that the volume of fluid scanned by the wave maker \(S_{W1}\) above the \(x\)-axis is distributed over the whole second-order free-surface elevation. The conservation of mass correctly to first order can be checked by
\[
\int q_{x}(x,y)\,dy = (x)\,, \quad \text{where} \quad \lambda \text{ is the mean water depth.} \tag{6.6}
\]
where \(\lambda\) is the mean water depth.

The first-order and second-order free-surface conditions in the forced oscillations are the same as that of the free oscillations. The general formulation of the first-order and second-order body boundary condition was given in Eq.(2.26) - Eq.(2.28). The body boundary conditions on \(S_{B}\) and the tank bottom are homogeneous Neumann conditions. The first-order and second-order body boundary condition on \(S_{B}\) are respectively
\[
\frac{\partial \xi_{1}}{\partial t} + \frac{\partial \eta_{1}}{\partial x} = 0, \tag{6.7}
\]
\[
\frac{\partial \xi_{2}}{\partial t} + \frac{\partial \eta_{2}}{\partial x} = 0. \tag{6.8}
\]
The fourth-order Runge-Kutta method described in Section 3.3 is used for the time evolution of the free-surface flow. The time increment \(\Delta t = 100\) is used in the numerical calculations. \(T = 2\pi / \omega\) is the period of the forced oscillation.

The relative errors of the first-order and second-order mass conservation at \(t = 2.15T\) are plotted in Fig.6.9, showing the convergence with the increasing number of elements on the free surface. The relative errors at first-order and second-order, i.e. \(\text{err}^{(1)}\) and \(\text{err}^{(2)}\) in Fig.6.9, are defined respectively as
\[
\text{err}^{(1)} = \frac{\int_{0}^{L} \left| \int_{0}^{\infty} \left(\eta_{1} - \eta_{1}^{(0)} \right) \, dx \right| \, dt}{\int_{0}^{L} \int_{0}^{\infty} \left(\eta_{1}^{(0)} \right) \, dx \, dt} \tag{6.9}
\]
\[
\text{err}^{(2)} = \frac{\int_{0}^{L} \left| \int_{0}^{\infty} \left(\eta_{2} - \eta_{2}^{(0)} \right) \, dx \right| \, dt}{\int_{0}^{L} \int_{0}^{\infty} \left(\eta_{2}^{(0)} \right) \, dx \, dt} \tag{6.10}
\]

It is seen that the first-order and second-order relative errors decrease as the number of unknowns on the free surface increase. The rate of the convergence of the first-order results is much faster than that of the second-order results. This is partly due to the fact that the first-order free-surface conditions require the higher-order derivatives of the first-order quantities, which are calculated numerically. On the other hand, the sum-frequency components, i.e. \(\omega + \omega_{1}\) and \(\omega - \omega_{1}\) components, of the second-order waves have much shorter wave lengths, which means that higher-resolution meshes are needed in order to achieve the results of the same accuracy as the first-order results. Here \(\omega_{1}\) (\(i=1,2,3,...\)) is the \(i\)-th natural frequency of the rectangular tank.

Eq.(6.5) expresses that the volume of fluid scanned by the wave maker \(S_{W1}\) above the \(x\)-axis is distributed over the whole second-order free-surface elevation. The conservation of mass correctly to first order can be checked by
\[
\int q_{x}(x,y)\,dy = (x)\,, \quad \text{where} \quad \lambda \text{ is the mean water depth.} \tag{6.6}
\]
where \(\lambda\) is the mean water depth.

The first-order and second-order free-surface conditions in the forced oscillations are the same as that of the free oscillations. The general formulation of the first-order and second-order body boundary condition was given in Eq.(2.26) - Eq.(2.28). The body boundary conditions on \(S_{B}\) and the tank bottom are homogeneous Neumann conditions. The first-order and second-order body boundary condition on \(S_{B}\) are respectively
\[
\frac{\partial \xi_{1}}{\partial t} + \frac{\partial \eta_{1}}{\partial x} = 0, \tag{6.7}
\]
\[
\frac{\partial \xi_{2}}{\partial t} + \frac{\partial \eta_{2}}{\partial x} = 0. \tag{6.8}
\]
The fourth-order Runge-Kutta method described in Section 3.3 is used for the time evolution of the free-surface flow. The time increment \(\Delta t = 100\) is used in the numerical calculations. \(T = 2\pi / \omega\) is the period of the forced oscillation.

The relative errors of the first-order and second-order mass conservation at \(t = 2.15T\) are plotted in Fig.6.9, showing the convergence with the increasing number of elements on the free surface. The relative errors at first-order and second-order, i.e. \(\text{err}^{(1)}\) and \(\text{err}^{(2)}\) in Fig.6.9, are defined respectively as
\[
\text{err}^{(1)} = \frac{\int_{0}^{L} \left| \int_{0}^{\infty} \left(\eta_{1} - \eta_{1}^{(0)} \right) \, dx \right| \, dt}{\int_{0}^{L} \int_{0}^{\infty} \left(\eta_{1}^{(0)} \right) \, dx \, dt} \tag{6.9}
\]
\[
\text{err}^{(2)} = \frac{\int_{0}^{L} \left| \int_{0}^{\infty} \left(\eta_{2} - \eta_{2}^{(0)} \right) \, dx \right| \, dt}{\int_{0}^{L} \int_{0}^{\infty} \left(\eta_{2}^{(0)} \right) \, dx \, dt} \tag{6.10}
\]

It is seen that the first-order and second-order relative errors decrease as the number of unknowns on the free surface increase. The rate of the convergence of the first-order results is much faster than that of the second-order results. This is partly due to the fact that the second-order free-surface conditions require the higher-order derivatives of the first-order quantities, which are calculated numerically. On the other hand, the sum-frequency components, i.e. \(\omega + \omega_{1}\) and \(\omega - \omega_{1}\) components, of the second-order waves have much shorter wave lengths, which means that higher-resolution meshes are needed in order to achieve the results of the same accuracy as the first-order results. Here \(\omega_{1}\) (\(i=1,2,3,...\)) is the \(i\)-th natural frequency of the rectangular tank.
6.3 Stokes-drift effect and numerical simulation of the Stokes second-order waves

The numerical wave tank (NWT) has received a lot of interest and exhaustive review of the progress in the development of numerical wave tank can be found in, for instance, Kim et al. (1999) and Tamura (2000). Most of the numerical wave tanks are developed following a fully nonlinear formulation. There also exist some studies on the numerical wave tanks by using a finite-order Stokes theory, e.g. Büchmann (1995), Zhang & William (1996) and Stewart et al. (1998).

In this section, a two-dimensional numerical wave tank is implemented by using the time-domain QBEM presented in Chapter 3. The purpose is to reproduce the Stokes second-order waves. The formulation of the boundary conditions based on finite-order Stokes theory in the inertial coordinate system is used.

The first-order and second-order free surface conditions follow Eq.(2.48) and Eq.(2.49). In order to make use of Eq.(2.48) and Eq.(2.49), we have to ignore the terms associated with y-coordinates and the forward speed (and steady velocity potential). Furthermore, $\delta_{m}^{(1)}$ and $\delta_{m}^{(2)}$ (m=1,2) are zero in this wave-maker problem.

In order to generate Stokes waves, the velocity profile from Stokes wave theory is introduced on the mean position of the S_{0}. See Fig.6.6 for the definition of S_{0}. There are other kinds of the wave makers, such as the piston-type and flap-type wave makers which are used in the physical tanks. The submerged sources have also been to generate waves, e.g. Brorsen & Larsen (1987). The explanation of the linear wave-maker theory for the piston-type and flap-type wave makers can be found in Dean.

In order to generate Stokes waves, the velocity profile from Stokes wave theory is introduced on the mean position of the S_{0}. See Fig.6.6 for the definition of S_{0}. There are other kinds of the wave makers, such as the piston-type and flap-type wave makers which are used in the physical tanks. The submerged sources have also been to generate waves, e.g. Brorsen & Larsen (1987). The explanation of the linear wave-maker theory for the piston-type and flap-type wave makers can be found in Dean.

In order to generate Stokes waves, the velocity profile from Stokes wave theory is introduced on the mean position of the S_{0}. See Fig.6.6 for the definition of S_{0}. There are other kinds of the wave makers, such as the piston-type and flap-type wave makers which are used in the physical tanks. The submerged sources have also been to generate waves, e.g. Brorsen & Larsen (1987). The explanation of the linear wave-maker theory for the piston-type and flap-type wave makers can be found in Dean.

In order to generate Stokes waves, the velocity profile from Stokes wave theory is introduced on the mean position of the S_{0}. See Fig.6.6 for the definition of S_{0}. There are other kinds of the wave makers, such as the piston-type and flap-type wave makers which are used in the physical tanks. The submerged sources have also been to generate waves, e.g. Brorsen & Larsen (1987). The explanation of the linear wave-maker theory for the piston-type and flap-type wave makers can be found in Dean.

In order to generate Stokes waves, the velocity profile from Stokes wave theory is introduced on the mean position of the S_{0}. See Fig.6.6 for the definition of S_{0}. There are other kinds of the wave makers, such as the piston-type and flap-type wave makers which are used in the physical tanks. The submerged sources have also been to generate waves, e.g. Brorsen & Larsen (1987). The explanation of the linear wave-maker theory for the piston-type and flap-type wave makers can be found in Dean.

In order to generate Stokes waves, the velocity profile from Stokes wave theory is introduced on the mean position of the S_{0}. See Fig.6.6 for the definition of S_{0}. There are other kinds of the wave makers, such as the piston-type and flap-type wave makers which are used in the physical tanks. The submerged sources have also been to generate waves, e.g. Brorsen & Larsen (1987). The explanation of the linear wave-maker theory for the piston-type and flap-type wave makers can be found in Dean.
In order to examine the effect of mass transport through \(S_0 \), we have first artificially switched off the numerical damping zone and the active wave absorber. That means the boundary condition at the tank wall \(S_{W1} \) and the tank bottom are all zero-Neumann conditions. The following parameters have been used:

\[
\begin{align*}
L_m &= 0.5 \text{ m}, & A &= 0.1 \text{ m}, & L &= 1.5 \text{ to } 2.35 \text{ m}, & \gamma &= 5\%.
\end{align*}
\]

where \(\gamma \) and \(\delta \) are the linear wave length and the linear wave amplitude, respectively. \(A \) and \(L \) are the tank length and water depth, respectively.

A sinusoidal ramp function over the first four wave periods is applied to the velocity profile feed on the tank length and water depth, respectively.

The simulation is stopped at \(t = 20T \), so that the waves generated by the wave maker have not arrived at \(S_{W1} \) and that the wave reflect from \(S_{W1} \) is sufficiently small. 20 quasiperiodic elements per linear wave length are used in the \(\text{QBEM solver} \) and \(\text{OS-T} = 1/100 \) is adopted in the time marching of the free surface conditions. The numerical techniques assumed with that the numerical-QBEM have been discussed in Chapter 3 and will not be repeated here. The resolution of the meshes and the time increment was seen to be sufficient for a second-order problem by performing the spatial and temporal convergence study, which will not be shown here.

Fig.6.10 and Fig.6.11 show the first-order and second-order component of the wave profile at \(T = 20T \). The numerical results are compared with the analytical results by Stokes second-order wave theory. The first-order numerical results agree well with that of the given by Stokes theory, while large difference was found between the first-order numerical and theoretical results. A close look at the time history of the second-order wave elevation indicates that the mean water level (or mass) in the tank is approximately linearly increasing with time, and the total second-order results were destroyed due to this increasing of mass. The mean water level is defined as the integral of the wave elevation along the tank divided by the tank length, i.e.

\[
\begin{align*}
S &= \frac{\int_{0}^{L} Z \, dx}{L},
\end{align*}
\]

where \(Z \) is the wave elevation along the tank and \(L \) is the tank length.

In order to examine the effect of mass transport through \(S_0 \), we have artificially switched off the numerical damping zone and the active wave absorber. That means the boundary condition at the tank wall \(S_{W1} \) and the tank bottom are all zero-Neumann conditions. The following parameters have been used:

\[
\begin{align*}
L_m &= 0.5 \text{ m}, & A &= 0.1 \text{ m}, & L &= 1.5 \text{ to } 2.35 \text{ m}, & \gamma &= 5\%.
\end{align*}
\]

where \(\gamma \) and \(\delta \) are the linear wave length and the linear wave amplitude, respectively. \(A \) and \(L \) are the tank length and water depth, respectively.

A sinusoidal ramp function over the first four wave periods is applied to the velocity profile feed on the tank length and water depth, respectively.

The simulation is stopped at \(t = 20T \), so that the waves generated by the wave maker have not arrived at \(S_{W1} \) and that the wave reflect from \(S_{W1} \) is sufficiently small. 20 quasiperiodic elements per linear wave length are used in the \(\text{QBEM solver} \) and \(\text{OS-T} = 1/100 \) is adopted in the time marching of the free surface conditions. The numerical techniques assumed with that the numerical-QBEM have been discussed in Chapter 3 and will not be repeated here. The resolution of the meshes and the time increment was seen to be sufficient for a second-order problem by performing the spatial and temporal convergence study, which will not be shown here.

Fig.6.10 and Fig.6.11 show the first-order and second-order component of the wave profile at \(T = 20T \). The numerical results are compared with the analytical results by Stokes second-order wave theory. The first-order numerical results agree well with that of the given by Stokes theory, while large difference was found between the first-order numerical and theoretical results. A close look at the time history of the second-order wave elevation indicates that the mean water level (or mass) in the tank is approximately linearly increasing with time, and the total second-order results were destroyed due to this increasing of mass. The mean water level is defined as the integral of the wave elevation along the tank divided by the tank length, i.e.

\[
\begin{align*}
S &= \frac{\int_{0}^{L} Z \, dx}{L},
\end{align*}
\]

where \(Z \) is the wave elevation along the tank and \(L \) is the tank length.

In order to examine the effect of mass transport through \(S_0 \), we have artificially switched off the numerical damping zone and the active wave absorber. That means the boundary condition at the tank wall \(S_{W1} \) and the tank bottom are all zero-Neumann conditions. The following parameters have been used:

\[
\begin{align*}
L_m &= 0.5 \text{ m}, & A &= 0.1 \text{ m}, & L &= 1.5 \text{ to } 2.35 \text{ m}, & \gamma &= 5\%.
\end{align*}
\]

where \(\gamma \) and \(\delta \) are the linear wave length and the linear wave amplitude, respectively. \(A \) and \(L \) are the tank length and water depth, respectively.

A sinusoidal ramp function over the first four wave periods is applied to the velocity profile feed on the tank length and water depth, respectively.

The simulation is stopped at \(t = 20T \), so that the waves generated by the wave maker have not arrived at \(S_{W1} \) and that the wave reflect from \(S_{W1} \) is sufficiently small. 20 quasiperiodic elements per linear wave length are used in the \(\text{QBEM solver} \) and \(\text{OS-T} = 1/100 \) is adopted in the time marching of the free surface conditions. The numerical techniques assumed with that the numerical-QBEM have been discussed in Chapter 3 and will not be repeated here. The resolution of the meshes and the time increment was seen to be sufficient for a second-order problem by performing the spatial and temporal convergence study, which will not be shown here.

Fig.6.10 and Fig.6.11 show the first-order and second-order component of the wave profile at \(T = 20T \). The numerical results are compared with the analytical results by Stokes second-order wave theory. The first-order numerical results agree well with that of the given by Stokes theory, while large difference was found between the first-order numerical and theoretical results. A close look at the time history of the second-order wave elevation indicates that the mean water level (or mass) in the tank is approximately linearly increasing with time, and the total second-order results were destroyed due to this increasing of mass. The mean water level is defined as the integral of the wave elevation along the tank divided by the tank length, i.e.
Fig. 6.10. Comparison of the first-order component of the wave profile at $t=20T$. T is the linear wave period. The size of the tank and the wave parameters in Eq. (6.12) are used in the numerical simulation.

However, examination of the net flux showed that net flux through all the computational boundaries enclosing the computational water domain are negligible and the mass increasing observed in the history of the first-order and the second-order net flux through the boundaries. The net flux through all the computational surfaces is defined as

$$G^{(m)} = \frac{1}{2L} \int_{I_W} \delta \, d\xi, \quad m=1,2. \quad (6.14)$$
It is also believed that the mass increase observed in the second-order results is not due to the set down effect. According to Stokes second-order wave theory, the set down of the mean water level is zero for deepwater regular waves. The wave studied here can be considered as a deepwater case, since the ratio between the water depth and the wave length is $h/\lambda > 3.0$. See e.g. Faltinsen (1990).

It is also believed that the mass increase observed in the second-order results is not due to the set down effect. According to Stokes second-order wave theory, the set down of the mean water level is zero for deepwater regular waves. The wave studied here can be considered as a deepwater case, since the ratio between the water depth and the wave length is $h/\lambda > 3.0$. See e.g. Faltinsen (1990).

It is also believed that the mass increase observed in the second-order results is not due to the set down effect. According to Stokes second-order wave theory, the set down of the mean water level is zero for deepwater regular waves. The wave studied here can be considered as a deepwater case, since the ratio between the water depth and the wave length is $h/\lambda > 3.0$. See e.g. Faltinsen (1990).

It is also believed that the mass increase observed in the second-order results is not due to the set down effect. According to Stokes second-order wave theory, the set down of the mean water level is zero for deepwater regular waves. The wave studied here can be considered as a deepwater case, since the ratio between the water depth and the wave length is $h/\lambda > 3.0$. See e.g. Faltinsen (1990).

It is also believed that the mass increase observed in the second-order results is not due to the set down effect. According to Stokes second-order wave theory, the set down of the mean water level is zero for deepwater regular waves. The wave studied here can be considered as a deepwater case, since the ratio between the water depth and the wave length is $h/\lambda > 3.0$. See e.g. Faltinsen (1990).
explained by the Stokes drift in Eq.(6.11). Note that the off-set of the two curves is due to the ramp function which is used to give a smooth start of the flow.

In order to simulate the Stokes second-order waves in a numerical wave tank by feeding the velocity profile at the control surface \(h_{\text{OS}}\), we must to minimize the effect of the mass transport. The strategy adopted in this study is to use a damping zone mechanism that can take mass out of the system. A damping zone is applied at the end of the tank (near to \(h_{\text{OS}}\)). The damping zone mechanism is described in Section 3.4. From Eq.(3.18), we see that an important feature of this damping zone mechanism is that it can ‘drain’ water out of the tank. Numerical experiments showed that both the first-order and the second-order results are not sensitive to the damping coefficients as long as the coefficient \(J\) (see Eq.(3.23)) is chosen between \(10^{-6}\) and \(10^{-4}\). An active wave absorber is applied on \(h_{\text{OS}}\), which is coupled with the damping zone. See details in Section 3.4 for the combined numerical damping zone and the active wave absorber.

After the activation of the damping zone and the wave absorber, the numerical results agree well with the analytical results given by the Stokes second-order wave theory. See the comparisons in Fig.6.15 - Fig.6.18. In order to reduce the computational cost in the numerical simulations, the tank size is chosen to be \(L=6\) and \(h=1\)m. The length of the damping zone is \(2L\). The following parameters are used in the calculations:

\[
J = 0.5 \text{s}^{-1}; \quad L = 0 \text{m}; \quad h = 6 \text{m} \quad \text{and} \quad \text{h}_{\text{OS}} = 1 \text{m}.
\]

The duration of the numerical simulation is 2000s, with the linear wave period. Fig.6.15 and Fig.6.16 show respectively the time histories of the first-order and the second-order wave elevations at a position \(x = 3L\), i.e. the mid of the tank. Only the results in the last 10 periods are shown. It is seen that even though the simulation was made over a very long period, there is no visible wave reflection from the numerical damping zone and the vertical surface \(h_{\text{OS}}\). In Fig.6.17 and Fig.6.18, the linear and second-order wave profiles at the end of the simulation, i.e. t=200T, are shown. Comparisons are made with the analytical results. The good agreement between the numerical and analytical results indicates the capability of the time-domain QIBM solver presented in Chapter 3 in solving the second-order wave-body problems.

In order to simulate the Stokes second-order waves in a numerical wave tank by feeding the velocity profile at the control surface \(h_{\text{OS}}\), we must to minimize the effect of the mass transport. The strategy adopted in this study is to use a damping zone mechanism that can take mass out of the system. A damping zone is applied at the end of the tank (near to \(h_{\text{OS}}\)). The damping zone mechanism is described in Section 3.4. From Eq.(3.18), we see that an important feature of this damping zone mechanism is that it can ‘drain’ water out of the tank. Numerical experiments showed that both the first-order and the second-order results are not sensitive to the damping coefficients as long as the coefficient \(J\) (see Eq.(3.23)) is chosen between \(10^{-6}\) and \(10^{-4}\). An active wave absorber is applied on \(h_{\text{OS}}\), which is coupled with the damping zone. See details in Section 3.4 for the combined numerical damping zone and the active wave absorber.

After the activation of the damping zone and the wave absorber, the numerical results agree well with the analytical results given by the Stokes second-order wave theory. See the comparisons in Fig.6.15 - Fig.6.18. In order to reduce the computational cost in the numerical simulations, the tank size is chosen to be \(L=6\) and \(h=1\)m. The length of the damping zone is \(2L\). The following parameters are used in the calculations:

\[
J = 0.5 \text{s}^{-1}; \quad L = 0 \text{m}; \quad h = 6 \text{m} \quad \text{and} \quad \text{h}_{\text{OS}} = 1 \text{m}.
\]

The duration of the numerical simulation is 2000s, with the linear wave period. Fig.6.15 and Fig.6.16 show respectively the time histories of the first-order and the second-order wave elevations at a position \(x = 3L\), i.e. the mid of the tank. Only the results in the last 10 periods are shown. It is seen that even though the simulation was made over a very long period, there is no visible wave reflection from the numerical damping zone and the vertical surface \(h_{\text{OS}}\). In Fig.6.17 and Fig.6.18, the linear and second-order wave profiles at the end of the simulation, i.e. t=200T, are shown. Comparisons are made with the analytical results. The good agreement between the numerical and analytical results indicates the capability of the time-domain QIBM solver presented in Chapter 3 in solving the second-order wave-body problems.
The experience obtained here also applies to the fully-nonlinear numerical wave tank which generates waves by feeding the Stokes wave velocity profile at control surface. One would expect second-order and higher-order mass transports through the control surface. The mass transport would not cause numerical problems associated with mass increase in the tank if a real wave maker, e.g., the piston or flap wave maker, is used. In that case, the returning current will occur due to the second-order mass transport.

![Fig.6.15. Time history of the first-order component of wave elevation of a point with a distance to the wave maker \(x = 3.1\). Only the result for the last 10 linear wave period is shown. The size of the tank and the wave parameters in Eq. (6.15) are used in the numerical simulations.](image)

![Fig.6.16. Time history of the second-order component of wave elevation of a point with a distance to the wave maker \(x = 3.1\). Only the result for the last 10 linear wave period is shown. The size of the tank and the wave parameters in Eq. (6.15) are used in the numerical simulations.](image)
6.3 Stokes-drift effect and numerical simulation of the Stokes second-order waves

Fig.6.17. The linear component of the wave profile at t=200T. The size of the tank and the wave parameters in Eq. (6.15) are used in the numerical simulations.

Fig.6.18. The second-order component of the wave profile at t=200T. The size of the tank and the wave parameters in Eq.(6.15) are used in the numerical simulations.

6.4 Secularity condition and numerical simulation of the Stokes third-order waves

It was shown in the previous section that the present time-domain HOBEM is able to reproduce the Stokes second-order waves with satisfactory accuracy. This makes it possible for us to pursue an even higher-order solution, i.e. the third-order solution. The third-order problem represents one of the most challenging problems in the weakly-nonlinear analysis. Another difficult problem in the

6.4 Secularity condition and numerical simulation of the Stokes third-order waves

It was shown in the previous section that the present time-domain HOBEM is able to reproduce the Stokes second-order waves with satisfactory accuracy. This makes it possible for us to pursue an even higher-order solution, i.e. the third-order solution. The third-order problem represents one of the most challenging problems in the weakly-nonlinear analysis. Another difficult problem in the
weakly-nonlinear analysis is the second-order problem with the presence of the forward speed or current effect, which we will look into in Chapter 8.

It is known (Whitham, 1967, Section 13.13) that, in order to get physical result, one has to impose a secular condition at third-order in the regular perturbation expansion of the velocity potential for a propagating wave. The secular condition acts as a solvability condition. A correction must be done to the wave length or wave frequency to avoid unphysical results. Otherwise the wave amplitude would slowly vary with time or with the horizontal distance x. In the two-dimensional numerical wave tank, if no secular condition is enforced, the consequence would be that the third-order component of the wave amplitude increases steadily as the wave travels down the wave tank. Therefore the third-order wave amplitude may become of the same order of magnitude as the second-order or even the first-order wave amplitude. This violates the assumption of the Stokes expansion that the third-order component of wave elevation and velocity potential are of higher order than that of the second order and first order. A typical result of the third-order component of wave elevation without secular condition is shown in Fig.6.19. It is seen that the third-order wave amplitude increases linearly with the horizontal coordinate x. This phenomenon was also observed in the third-order numerical wave tank by Stassen et al. (1998).

Büchmann (1995) in his master thesis developed a third-order numerical wave tank in order to simulate weakly-nonlinear waves. However, nothing was reported whether he has used a solvability condition in the third-order solution.

By taking the deepwater third-order wave as an example, Stassen et al. (1998) explained the reason why the third-order wave amplitude is linearly increasing with the horizontal coordinate. We will explain the increasing of the third-order wave amplitude with the horizontal coordinate in Fig.6.19 by starting with a general case with finite water depth. The analytical solution of the third-order problems formulated in an unbounded domain for the case of the regular waves in finite depth is (see Section 2.8):

\[
\eta^3(x,t) = -4 \cos(kx - ct) + \cos^3(kx - ct) - 12 \cos^5(kx - ct),
\]

where

\[
\alpha = \tanh k h.
\]

and

\[
\theta = kx - ct.
\]

The wave number k in Eq.(6.16) and Eq.(6.17) satisfies

\[
\alpha^2 = g h \tanh(kh). \tag{6.20}
\]

The wave number k in Eq.(6.16) and Eq.(6.17) satisfies

\[
\alpha^2 = g h \tanh(kh). \tag{6.22}
\]
Although Eq. (6.27) is valid only for small values of \(x\), it shows under this restriction that the Taylor expanding the resulting

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)} \cdot \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

respectively

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

The expression of \(\phi''(x)\) can be obtained by subtracting Eq. (6.16) and Eq. (6.17) from Eq. (6.18). Note that we have not replaced \(k\) by \(\kappa\) in Eq. (6.16) and Eq. (6.17). Making use of Eq. (6.23) and Taylor expanding the resulting \(\phi''(x)\) around \(x=0\), we obtain for the wave in finite water depth that

\[
\phi''(x) = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)} \cdot \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

in Eq. (6.16) and Eq. (6.17). Making use of Eq. (6.23) and Taylor expanding the resulting \(\phi''(x)\) around \(x=0\), we obtain for the wave in finite water depth that

\[
\phi''(x) = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)} \cdot \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

respectively

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

The following parameters are used in the calculations:

\[
\begin{align*}
\varphi & = 2.62, \quad \varphi_2 = 2.62, \quad \varphi_1 = 2.62, \\
\alpha_1 & = 1.6, \quad \alpha_2 = 1.6, \quad \alpha_3 = 1.6.
\end{align*}
\]

Comparison between Eq. (6.21) and Eq. (6.22) suggests that

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

with \(\varphi\) as a constant, \(\varphi\) is the small parameter associated with the wave slope.

Plugging Eq. (6.23) into Eq. (6.21) and neglecting the terms higher than \(\mathcal{O}(x^2)\), we can explicitly express \(C\) as

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

where \(\beta\) is defined in Eq. (6.19).

In deepwater cases, we have \(\varphi = 1\) and \(\varphi = 1\). Therefore, Eq. (6.21) and Eq. (6.23) becomes respectively

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

and

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

The expression of \(\phi''(x)\) can be obtained by subtracting Eq. (6.16) and Eq. (6.17) from Eq. (6.18). Note that we have not replaced \(k\) by \(\kappa\) in Eq. (6.16) and Eq. (6.17). Making use of Eq. (6.23) and Taylor expanding the resulting \(\phi''(x)\) around \(x=0\), we obtain for the wave in finite water depth that

\[
\phi''(x) = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

In deepwater cases, we have \(\varphi = 1\) and \(\varphi = 1\). Therefore, Eq. (6.21) and Eq. (6.23) becomes respectively

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

and

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

Comparison between Eq. (6.21) and Eq. (6.22) suggests that

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

with \(\varphi\) as a constant, \(\varphi\) is the small parameter associated with the wave slope.

Plugging Eq. (6.23) into Eq. (6.21) and neglecting the terms higher than \(\mathcal{O}(x^2)\), we can explicitly express \(C\) as

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

where \(\beta\) is defined in Eq. (6.19).

In deepwater cases, we have \(\varphi = 1\) and \(\varphi = 1\). Therefore, Eq. (6.21) and Eq. (6.23) becomes respectively

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

and

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

Comparison between Eq. (6.21) and Eq. (6.22) suggests that

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

with \(\varphi\) as a constant, \(\varphi\) is the small parameter associated with the wave slope.

Plugging Eq. (6.23) into Eq. (6.21) and neglecting the terms higher than \(\mathcal{O}(x^2)\), we can explicitly express \(C\) as

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

where \(\beta\) is defined in Eq. (6.19).

In deepwater cases, we have \(\varphi = 1\) and \(\varphi = 1\). Therefore, Eq. (6.21) and Eq. (6.23) becomes respectively

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

and

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

Comparison between Eq. (6.21) and Eq. (6.22) suggests that

\[
\mathcal{C} = \frac{\eta_4(x)^3}{9} \cdot \frac{a^2}{(1+2\beta)}
\]

with \(\varphi\) as a constant, \(\varphi\) is the small parameter associated with the wave slope.
The water depth was chosen as three times the wave length in order to simulate the deep-water wave cases. The two-dimensional version of the third-order free surface conditions Eq.(2.73) and Eq.(2.74) are used. The prescribed incident wave velocity potential \(\phi_0 \) and wave elevation \(\eta_0 \) are set to be zero. The wave profile shown in Fig.6.19 is for \(T = T_{\text{lin}} \), where \(T \) is the linear wave period. Twenty quadratic elements are used per wave length. The increment of time step is \(\Delta t = T/100 \). A numerical damping zone was applied at the end of the tank and \(\tau = \pi /2, \) i.e. twice the linear wave length. A sinusoidal ramp function was used in the first 8 wave periods. The other numerical details can be found in Chapter 3.

![Fig.6.19. Numerical wave profile along the tank at \(t = 80 \) and the envelope of the third-order wave amplitude. No secularity condition is applied. The size of the tank and the wave parameters in Eq.(6.29) are used in the numerical simulation.](image)

As seen in Fig.6.19, the numerical results for the maximum third-order wave amplitude become the same order of magnitude of the first-order wave amplitude (\(-0.04\text{m})\). Further, it is much larger than the second-order wave amplitude, which can be seen by comparing the second-order wave amplitudes in Fig.6.21 with the third-order wave amplitudes in Fig.6.19 without secularity condition. This violates the assumption behind the Stokes expansions. If the tank has an infinitely long length, it is expected from Fig.6.19 that the third-order wave amplitude is infinite near the end of the tank. Obviously, the numerical result in Fig.6.19 is not physical. Therefore, a solvability (secularity) condition is needed.

In the frequency-domain analysis of propagating waves, a wave amplitude-dependent nonlinear dispersion relationship is imposed as a solvability condition. Molin & Stassen (1998) suggested a technique by stretching the coordinate system. A mapping between the computational domain and the physical domain is considered. The third-order solution is thus modified while the first-order and second-order solutions are the same in both physical and computational domains. This technique was used in the third-order numerical wave tank in Stassen et al. (1998). The comparison with the experimental results made by Stassen et al. (1998) showed that the phase shift between the measurement and second-order model can be significantly reduced by adopting the third-order model.

The nonlinear dispersion relationship Eq.(6.21) indicates the modification of the wave length for a

The nonlinear dispersion relationship Eq.(6.21) indicates the modification of the wave length for a

The water depth was chosen as three times the wave length in order to simulate the deep-water wave cases. The two-dimensional version of the third-order free surface conditions Eq.(2.73) and Eq.(2.74) are used. The prescribed incident wave velocity potential \(\phi_0 \) and wave elevation \(\eta_0 \) are set to be zero. The wave profile shown in Fig.6.19 is for \(T = T_{\text{lin}} \), where \(T \) is the linear wave period. Twenty quadratic elements are used per wave length. The increment of time step is \(\Delta t = T/100 \). A numerical damping zone was applied at the end of the tank and \(\tau = \pi /2, \) i.e. twice the linear wave length. A sinusoidal ramp function was used in the first 8 wave periods. The other numerical details can be found in Chapter 3.

![Fig.6.19. Numerical wave profile along the tank at \(t = 80 \) and the envelope of the third-order wave amplitude. No secularity condition is applied. The size of the tank and the wave parameters in Eq.(6.29) are used in the numerical simulation.](image)

As seen in Fig.6.19, the numerical results for the maximum third-order wave amplitude become the same order of magnitude of the first-order wave amplitude (\(-0.04\text{m})\). Further, it is much larger than the second-order wave amplitude, which can be seen by comparing the second-order wave amplitudes in Fig.6.21 with the third-order wave amplitudes in Fig.6.19 without secularity condition. This violates the assumption behind the Stokes expansions. If the tank has an infinitely long length, it is expected from Fig.6.19 that the third-order wave amplitude is infinite near the end of the tank. Obviously, the numerical result in Fig.6.19 is not physical. Therefore, a solvability (secularity) condition is needed.

In the frequency-domain analysis of propagating waves, a wave amplitude-dependent nonlinear dispersion relationship is imposed as a solvability condition. Molin & Stassen (1998) suggested a technique by stretching the coordinate system. A mapping between the computational domain and the physical domain is considered. The third-order solution is thus modified while the first-order and second-order solutions are the same in both physical and computational domains. This technique was used in the third-order numerical wave tank in Stassen et al. (1998). The comparison with the experimental results made by Stassen et al. (1998) showed that the phase shift between the measurement and second-order model can be significantly reduced by adopting the third-order model.

The nonlinear dispersion relationship Eq.(6.21) indicates the modification of the wave length for a
given wave frequency. If we keep the wave length as unchanged, it means that the time scale has to be modified correspondingly. In this study, an approach based on two time scales is adopted. Therefore, the third-order free-surface conditions (Eq. (2.73) and Eq. (2.74)) will be modified by replacing C_k by $[1 + \phi C_k^2 \tau^2] C_k$. Taking a deep-water regular wave as an example, we show in Appendix D that this modification is able to cancel out the secular term contained in the third-order free-surface conditions. Note that we have implicitly assumed that only the steady-state solutions are of interest.

Fig. 6.20 compared the time history of the third-order wave elevations at $\tau = 3 \delta$, with and without secularity conditions. The result with secularity condition is based on the two-time scale model. It is seen that steady state has been obtained for both the results with and without secularity conditions. The third-order wave amplitude at $\tau = 3 \delta$, without secularity condition is about 0.012m which is expected from Eq. (6.28). We have also compared the numerical second-order and third-order wave elevations with the analytical results of Stokes third-order wave theory. The comparison for the time history is shown in Fig. 6.21. Good agreement has been achieved when the secularity condition is applied.

given wave frequency. If we keep the wave length as unchanged, it means that the time scale has to be modified correspondingly. In this study, an approach based on two time scales is adopted. Therefore, the third-order free-surface conditions (Eq. (2.73) and Eq. (2.74)) will be modified by replacing C_k by $[1 + \phi C_k^2 \tau^2] C_k$. Taking a deep-water regular wave as an example, we show in Appendix D that this modification is able to cancel out the secular term contained in the third-order free-surface conditions. Note that we have implicitly assumed that only the steady-state solutions are of interest.

Fig. 6.20 compared the time history of the third-order wave elevations at $\tau = 3 \delta$, with and without secularity conditions. The result with secularity condition is based on the two-time scale model. It is seen that steady state has been obtained for both the results with and without secularity conditions. The third-order wave amplitude at $\tau = 3 \delta$, without secularity condition is about 0.012m which is expected from Eq. (6.28). We have also compared the numerical second-order and third-order wave elevations with the analytical results of Stokes third-order wave theory. The comparison for the time history is shown in Fig. 6.21. Good agreement has been achieved when the secularity condition is applied.

given wave frequency. If we keep the wave length as unchanged, it means that the time scale has to be modified correspondingly. In this study, an approach based on two time scales is adopted. Therefore, the third-order free-surface conditions (Eq. (2.73) and Eq. (2.74)) will be modified by replacing C_k by $[1 + \phi C_k^2 \tau^2] C_k$. Taking a deep-water regular wave as an example, we show in Appendix D that this modification is able to cancel out the secular term contained in the third-order free-surface conditions. Note that we have implicitly assumed that only the steady-state solutions are of interest.

Fig. 6.20 compared the time history of the third-order wave elevations at $\tau = 3 \delta$, with and without secularity conditions. The result with secularity condition is based on the two-time scale model. It is seen that steady state has been obtained for both the results with and without secularity conditions. The third-order wave amplitude at $\tau = 3 \delta$, without secularity condition is about 0.012m which is expected from Eq. (6.28). We have also compared the numerical second-order and third-order wave elevations with the analytical results of Stokes third-order wave theory. The comparison for the time history is shown in Fig. 6.21. Good agreement has been achieved when the secularity condition is applied.

given wave frequency. If we keep the wave length as unchanged, it means that the time scale has to be modified correspondingly. In this study, an approach based on two time scales is adopted. Therefore, the third-order free-surface conditions (Eq. (2.73) and Eq. (2.74)) will be modified by replacing C_k by $[1 + \phi C_k^2 \tau^2] C_k$. Taking a deep-water regular wave as an example, we show in Appendix D that this modification is able to cancel out the secular term contained in the third-order free-surface conditions. Note that we have implicitly assumed that only the steady-state solutions are of interest.

Fig. 6.20 compared the time history of the third-order wave elevations at $\tau = 3 \delta$, with and without secularity conditions. The result with secularity condition is based on the two-time scale model. It is seen that steady state has been obtained for both the results with and without secularity conditions. The third-order wave amplitude at $\tau = 3 \delta$, without secularity condition is about 0.012m which is expected from Eq. (6.28). We have also compared the numerical second-order and third-order wave elevations with the analytical results of Stokes third-order wave theory. The comparison for the time history is shown in Fig. 6.21. Good agreement has been achieved when the secularity condition is applied.
6.5 Second-order diffraction of a horizontal semi-submerged circular cylinder

The time-domain second-order method described in Chapter 3 was developed for a surface piercing body with arbitrary shapes. In order to verify and validate the numerical method, the second-order diffraction of a stationary horizontal cylinder is studied numerically in the time domain. This case has been studied by for instance Kyozuka (1980), Miao & Liu (1989) and Wu & Eadock Taylor (1989) in the frequency domain and Isaacson & Cheung (1991) in the time domain. Comparisons will be made between the present numerical results and some of the existing theoretical and experimental results.

The definition of the problem can be found in Fig.3.1. The second-order formulation in the inertial coordinate system is used (see Section 2.4 for details). The wave field is separated into the prescribed incident wave field and the unknown scattered wave field. The incident wave field is given as the Stokes second-order wave and only the scattered part of the wave field is solved. The cylinder is located at the center of the tank shown in Fig.3.1. Half of the cylinder is submerged. Two numerical damping zones are applied at the ends of the tank. The length of the damping zone is chosen as twice of the incident wave length. The mechanism of the damping zone is described in Section 3.4. A sinusoidal ramp function is applied in the first three wave periods to allow for a gentle start of the fluid motion. 20 quadratic elements are used per wave length. The time increment \(\Delta T = 1/100 \) is used in all the simulations.

The amplitudes of the first-order horizontal and vertical forces are presented in Fig.6.22 and Fig.6.23, respectively. The present numerical results are compared with the theoretical and experimental results by Kyozuka (1980). The amplitudes of forces are obtained by the Fourier integral method presented in Section 3.7. The present method agrees well with Kyozuka’s theoretical and experimental results.

![Fig.6.22. Comparisons of non-dimensional amplitude of the first-order horizontal wave force on a horizontal semi-submerged circular cylinder with Kyozuka’s theoretical results.](image1)

![Fig.6.23. Comparisons of non-dimensional amplitude of the first-order horizontal wave force on a horizontal semi-submerged circular cylinder with Kyozuka’s experimental results.](image2)

6.5 Second-order diffraction of a horizontal semi-submerged circular cylinder

The time-domain second-order method described in Chapter 3 was developed for a surface piercing body with arbitrary shapes. In order to verify and validate the numerical method, the second-order diffraction of a stationary horizontal cylinder is studied numerically in the time domain. This case has been studied by for instance Kyozuka (1980), Miao & Liu (1989) and Wu & Eadock Taylor (1989) in the frequency domain and Isaacson & Cheung (1991) in the time domain. Comparisons will be made between the present numerical results and some of the existing theoretical and experimental results.

The definition of the problem can be found in Fig.3.1. The second-order formulation in the inertial coordinate system is used (see Section 2.4 for details). The wave field is separated into the prescribed incident wave field and the unknown scattered wave field. The incident wave field is given as the Stokes second-order wave and only the scattered part of the wave field is solved. The cylinder is located at the center of the tank shown in Fig.3.1. Half of the cylinder is submerged. Two numerical damping zones are applied at the ends of the tank. The length of the damping zone is chosen as twice of the incident wave length. The mechanism of the damping zone is described in Section 3.4. A sinusoidal ramp function is applied in the first three wave periods to allow for a gentle start of the fluid motion. 20 quadratic elements are used per wave length. The time increment \(\Delta T = 1/100 \) is used in all the simulations.

The amplitudes of the first-order horizontal and vertical forces are presented in Fig.6.22 and Fig.6.23, respectively. The present numerical results are compared with the theoretical and experimental results by Kyozuka (1980). The amplitudes of forces are obtained by the Fourier integral method presented in Section 3.7. The present method agrees well with Kyozuka’s theoretical and experimental results.

![Fig.6.22. Comparisons of non-dimensional amplitude of the first-order horizontal wave force on a horizontal semi-submerged circular cylinder with Kyozuka’s theoretical results.](image3)

![Fig.6.23. Comparisons of non-dimensional amplitude of the first-order horizontal wave force on a horizontal semi-submerged circular cylinder with Kyozuka’s experimental results.](image4)
The second-order mean forces in the horizontal and vertical directions are presented in Fig. 6.24. Comparison is made with the numerical results of Isaacson & Cheung (1991). Good agreement has been obtained. In the range of the wave numbers considered in this study, it was seen that the horizontal mean drift force is always positive, while the vertical mean drift force is always negative. It can be shown by using the momentum conservation and energy conservation that the horizontal wave-drift force according to second-order potential flow theory with no current or constant forward speed is always acting in the wave propagating direction, provided that the body is not an active wave power device. See for instance FaltinSen (1990). The horizontal mean drift force is a special case of the low-frequency force in irregular waves, which is relevant to the analysis of the mooring systems. A stationary surface-piercing body with finite drift in waves experiences a frequency-dependent mean vertical ‘suction’ force. This may not be true in other cases. For a freely-floating surface-piercing body, the mean vertical force can be either positive or negative depending on the wave frequency and the natural frequency of the body motions. See the relevant results in Fig. 6.29 for the mean wave forces on a floating truncated vertical circular cylinder. It is also understood that the submerges are generally sucked up to the free surface.

The near-field method for the force calculation is adopted in this study. Near-field method means direct integration of the pressure on the instantaneous body position. An alternative is to use the far-field approach based on momentum and energy conservation. In Fig. 6.25, the horizontal mean drift force calculated by the near-field approach is compared with that of the far-field method. Maruo’s (1960) formula is used in the far-field method. In the range of the wave numbers considered in this study, it was seen that the horizontal mean drift force is always positive, while the vertical mean drift force is always negative. It can be shown by using the momentum conservation and energy conservation that the horizontal wave-drift force according to second-order potential flow theory with no current or constant forward speed is always acting in the wave propagating direction, provided that the body is not an active wave power device. See for instance FaltinSen (1990). The horizontal mean drift force is a special case of the low-frequency force in irregular waves, which is relevant to the analysis of the mooring systems. A stationary surface-piercing body with finite drift in waves experiences a frequency-dependent mean vertical ‘suction’ force. This may not be true in other cases. For a freely-floating surface-piercing body, the mean vertical force can be either positive or negative depending on the wave frequency and the natural frequency of the body motions. See the relevant results in Fig. 6.29 for the mean wave forces on a floating truncated vertical circular cylinder. It is also understood that the submerges are generally sucked up to the free surface.

The near-field method for the force calculation is adopted in this study. Near-field method means direct integration of the pressure on the instantaneous body position. An alternative is to use the far-field approach based on momentum and energy conservation. In Fig. 6.25, the horizontal mean drift force calculated by the near-field approach is compared with that of the far-field method. Maruo’s (1960) formula is used in the far-field method. In the range of the wave numbers considered in this study, it was seen that the horizontal mean drift force is always positive, while the vertical mean drift force is always negative. It can be shown by using the momentum conservation and energy conservation that the horizontal wave-drift force according to second-order potential flow theory with no current or constant forward speed is always acting in the wave propagating direction, provided that the body is not an active wave power device. See for instance FaltinSen (1990). The horizontal mean drift force is a special case of the low-frequency force in irregular waves, which is relevant to the analysis of the mooring systems. A stationary surface-piercing body with finite drift in waves experiences a frequency-dependent mean vertical ‘suction’ force. This may not be true in other cases. For a freely-floating surface-piercing body, the mean vertical force can be either positive or negative depending on the wave frequency and the natural frequency of the body motions. See the relevant results in Fig. 6.29 for the mean wave forces on a floating truncated vertical circular cylinder. It is also understood that the submerges are generally sucked up to the free surface.

The near-field method for the force calculation is adopted in this study. Near-field method means direct integration of the pressure on the instantaneous body position. An alternative is to use the far-field approach based on momentum and energy conservation. In Fig. 6.25, the horizontal mean drift force calculated by the near-field approach is compared with that of the far-field method. Maruo’s (1960) formula is used in the far-field method. In the range of the wave numbers considered in this study, it was seen that the horizontal mean drift force is always positive, while the vertical mean drift force is always negative. It can be shown by using the momentum conservation and energy conservation that the horizontal wave-drift force according to second-order potential flow theory with no current or constant forward speed is always acting in the wave propagating direction, provided that the body is not an active wave power device. See for instance FaltinSen (1990). The horizontal mean drift force is a special case of the low-frequency force in irregular waves, which is relevant to the analysis of the mooring systems. A stationary surface-piercing body with finite drift in waves experiences a frequency-dependent mean vertical ‘suction’ force. This may not be true in other cases. For a freely-floating surface-piercing body, the mean vertical force can be either positive or negative depending on the wave frequency and the natural frequency of the body motions. See the relevant results in Fig. 6.29 for the mean wave forces on a floating truncated vertical circular cylinder. It is also understood that the submerges are generally sucked up to the free surface.

The near-field method for the force calculation is adopted in this study. Near-field method means direct integration of the pressure on the instantaneous body position. An alternative is to use the far-field approach based on momentum and energy conservation. In Fig. 6.25, the horizontal mean drift force calculated by the near-field approach is compared with that of the far-field method. Maruo’s (1960) formula is used in the far-field method. In the range of the wave numbers considered in this study, it was seen that the horizontal mean drift force is always positive, while the vertical mean drift force is always negative. It can be shown by using the momentum conservation and energy conservation that the horizontal wave-drift force according to second-order potential flow theory with no current or constant forward speed is always acting in the wave propagating direction, provided that the body is not an active wave power device. See for instance FaltinSen (1990). The horizontal mean drift force is a special case of the low-frequency force in irregular waves, which is relevant to the analysis of the mooring systems. A stationary surface-piercing body with finite drift in waves experiences a frequency-dependent mean vertical ‘suction’ force. This may not be true in other cases. For a freely-floating surface-piercing body, the mean vertical force can be either positive or negative depending on the wave frequency and the natural frequency of the body motions. See the relevant results in Fig. 6.29 for the mean wave forces on a floating truncated vertical circular cylinder. It is also understood that the submerges are generally sucked up to the free surface.
are connected with the body’s ability to cause waves. For long wavelengths relative to the cross-sectional dimensions the body will not disturb the incident wave field. This means the reflected wave amplitude \(A_r \) and the wave drift force become negligible. When the wavelengths are very short, the incident waves are totally reflected from a surface-piercing body with vertical hull surface in the wave zone. This means that \(A_r \) is equal to the linear amplitude of the incident wave and \(F_{X,0}^{(2)}/gA^2 \approx 0.5 \). See also the discussion in e.g. Falnaments (1990), Chapter 5. For intermediate wavelengths, parts of the wave are transmitted to the downstream and the other parts reflected to the upstream. Therefore, \(A_r \) is smaller than the linear incident wave amplitude and \(F_{X,0}^{(2)}/gA^2 \approx 0.5 \). This has been confirmed in the numerical results in Fig.6.24.

![Fig.6.24. Comparisons of the non-dimensional amplitude of the mean wave forces on a horizontal semi-submerged circular cylinder with Isaacson & Cheung’s (1991) results. Both the horizontal and vertical mean wave forces are presented. The cylinder is fixed in the incident wave. Deep water condition is assumed. A is the wave number. R is the radius of the cylinder. d is the linear wave amplitude of the incident wave.](image)

are connected with the body’s ability to cause waves. For long wavelengths relative to the cross-sectional dimensions the body will not disturb the incident wave field. This means the reflected wave amplitude \(A_r \) and the wave drift force become negligible. When the wavelengths are very short, the incident waves are totally reflected from a surface-piercing body with vertical hull surface in the wave zone. This means that \(A_r \) is equal to the linear amplitude of the incident wave and \(F_{X,0}^{(2)}/gA^2 \approx 0.5 \). See also the discussion in e.g. Falaments (1990), Chapter 5. For intermediate wavelengths, parts of the wave are transmitted to the downstream and the other parts reflected to the upstream. Therefore, \(A_r \) is smaller than the linear incident wave amplitude and \(F_{X,0}^{(2)}/gA^2 \approx 0.5 \). This has been confirmed in the numerical results in Fig.6.24.

![Fig.6.25. Comparison of the calculated horizontal mean drift force for a horizontal semi-submerged circular cylinder with that predicted by Maruo’s formula (1960). The cylinder is fixed in the incident wave. Deep water condition is assumed. A is the wave number. R is the radius of the cylinder. d is the linear wave amplitude of the incident wave.](image)

are connected with the body’s ability to cause waves. For long wavelengths relative to the cross-sectional dimensions the body will not disturb the incident wave field. This means the reflected wave amplitude \(A_r \) and the wave drift force become negligible. When the wavelengths are very short, the incident waves are totally reflected from a surface-piercing body with vertical hull surface in the wave zone. This means that \(A_r \) is equal to the linear amplitude of the incident wave and \(F_{X,0}^{(2)}/gA^2 \approx 0.5 \). See also the discussion in e.g. Falaments (1990), Chapter 5. For intermediate wavelengths, parts of the wave are transmitted to the downstream and the other parts reflected to the upstream. Therefore, \(A_r \) is smaller than the linear incident wave amplitude and \(F_{X,0}^{(2)}/gA^2 \approx 0.5 \). This has been confirmed in the numerical results in Fig.6.24.

![Fig.6.25. Comparison of the calculated horizontal mean drift force for a horizontal semi-submerged circular cylinder with that predicted by Maruo’s formula (1960). The cylinder is fixed in the incident wave. Deep water condition is assumed. A is the wave number. R is the radius of the cylinder. d is the linear wave amplitude of the incident wave.](image)
The comparisons of the second-order oscillatory force components have been made with the frequency-domain numerical results of Wu & Eatock Taylor (1989) and those obtained by the numerical and experimental study of Kyozuka (1980). See Fig. 6.26 and Fig. 6.27 for the horizontal and vertical sum-frequency forces, respectively. The present results agree well with that of Wu & Eatock Taylor (1989), while Kyozuka’s (1980) numerical results show relatively large differences. Kyozuka’s experimental results exhibit some scatter but have the same trend as the present results and the numerical results of Kyozuka (1980) and Wu & Eatock Taylor (1989). It is shown from both the experimental results and different numerical results that, the amplitudes of the horizontal and vertical sum-frequency forces in the high-frequency region increase monotonically with the increasing non-dimensional wave numbers. This can be explained by the asymptotic behavior of the sum-frequency forces on a two-dimensional stationary body in the incident waves. McIver (1994) obtained the high-frequency approximations of the horizontal and vertical forces on a two-dimensional body, which are accurate to $O(k^2)$. Here k is the wave number, a is the characteristic cross-sectional dimension of the body. According to McIver’s (1994) high-frequency approximations, the amplitude of the non-dimensional vertical force is proportional to ka, while the amplitude of the non-dimensional horizontal force contains a component that increases linearly with the increasing ka.

6.5 Second-order diffraction of a horizontal semi-submerged circular cylinder

The comparisons of the second-order oscillatory force components have been made with the frequency-domain numerical results of Wu & Eatock Taylor (1989) and those obtained by the numerical and experimental study of Kyozuka (1980). See Fig. 6.26 and Fig. 6.27 for the horizontal and vertical sum-frequency forces, respectively. The present results agree well with that of Wu & Eatock Taylor (1989), while Kyozuka’s (1980) numerical results show relatively large differences. Kyozuka’s experimental results exhibit some scatter but have the same trend as the present results and the numerical results of Kyozuka (1980) and Wu & Eatock Taylor (1989). It is shown from both the experimental results and different numerical results that, the amplitudes of the horizontal and vertical sum-frequency forces in the high-frequency region increase monotonically with the increasing non-dimensional wave numbers. This can be explained by the asymptotic behavior of the sum-frequency forces on a two-dimensional stationary body in the incident waves. McIver (1994) obtained the high-frequency approximations of the horizontal and vertical forces on a two-dimensional body, which are accurate to $O(k^2)$. Here k is the wave number, a is the characteristic cross-sectional dimension of the body. According to McIver’s (1994) high-frequency approximations, the amplitude of the non-dimensional vertical force is proportional to ka, while the amplitude of the non-dimensional horizontal force contains a component that increases linearly with the increasing ka.

Fig. 6.26. Comparisons of non-dimensional amplitude of the second-order horizontal wave force on a horizontal semi-submerged circular cylinder with the numerical results of Wu & Eatock Taylor’s (1989) and Kyozuka’s (1980) numerical and experimental results. The cylinder is fixed in the incident wave. Deep water condition is assumed. a is the wave number. R is the radius of the cylinder. k is the incident wave number. a is the linear wave amplitude of the incident wave.
is introduced which satisfies the Laplace equation in the fluid. The analytical solution enables us to explain the logarithmic singularity of, for instance $1/r$. This approach is based on the Green's 2nd identity, which does not need the solution of second-order velocity potential. Instead, one introduces an artificial problem boundary value problem. In the frequency-domain analysis, an auxiliary radiation problem can be used to avoid the direct solution of second-order velocity potential. See for instance Faltinsen (1976). In the present time-domain study, an artificial velocity potential ψ_s is introduced which satisfies the Laplace equation in the fluid domain, $\psi_s=0$ on the mean free surface, $\partial \psi_s/\partial n=0$ on the mean body surface, $\partial \psi_s/\partial n=0$ on the sea bottom and $\psi_s=0$ on a control surface at infinity. The details of the formulation of the artificial velocity potential are given in Appendix E. This approach has been used by for instance by Wu and Eatock Taylor (2003) in the fully nonlinear time-domain wave-body analysis. With the solution of ψ_s and the second-order boundary conditions, one can obtain the second-order forces due to the second-order scattered velocity potential $\delta \psi_s$ without solving a second-order problem as $F_{Z,a}^{(2)} = - \delta \psi_s/R$ (6.31).

The derivations of Eq.(6.31) can be found in Appendix E.

In general, the solution for ψ_s can be solved numerically by for instance a BEM solver. However, for the special case we are studying, i.e. a semi-circle, it is possible to find an analytical solution for ψ_s. The analytical solution enables us to explain the logarithmic singularity of, for instance $1/r$, at the intersection between the body surface and free surface. It also explains that $\partial \psi_s/\partial n$ is is the linear wave amplitude of the incident wave.

In order to further validate the second-order sum-frequency results, we have used an alternative approach to calculate the second-order oscillatory forces due to the scattered velocity potential $\delta \psi_s$. This approach is based on the Green’s 2nd identity, which does not need the solution of second-order velocity potential. Instead, one introduces an artificial problem boundary value problem. In the frequency-domain analysis, an auxiliary radiation problem can be used to avoid the direct solution of second-order velocity potential. See for instance Faltinsen (1976). In the present time-domain study, an artificial velocity potential ψ_s is introduced which satisfies the Laplace equation in the fluid domain, $\psi_s=0$ on the mean free surface, $\partial \psi_s/\partial n=0$ on the mean body surface, $\partial \psi_s/\partial n=0$ on the sea bottom and $\psi_s=0$ on a control surface at infinity. The details of the formulation of the artificial velocity potential are given in Appendix E. This approach has been used by for instance by Wu and Eatock Taylor (2003) in the fully nonlinear time-domain wave-body analysis. With the solution of ψ_s and the second-order boundary conditions, one can obtain the second-order forces due to the second-order scattered velocity potential $\delta \psi_s$ without solving a second-order problem as $F_{Z,a}^{(2)} = - \delta \psi_s/R$ (6.31).

The derivations of Eq.(6.31) can be found in Appendix E.

In general, the solution for ψ_s can be solved numerically by for instance a BEM solver. However, for the special case we are studying, i.e. a semi-circle, it is possible to find an analytical solution for ψ_s. The analytical solution enables us to explain the logarithmic singularity of, for instance $1/r$, at the intersection between the body surface and free surface. It also explains that $\partial \psi_s/\partial n$ is is the linear wave amplitude of the incident wave.

In order to further validate the second-order sum-frequency results, we have used an alternative approach to calculate the second-order oscillatory forces due to the scattered velocity potential $\delta \psi_s$. This approach is based on the Green’s 2nd identity, which does not need the solution of second-order velocity potential. Instead, one introduces an artificial problem boundary value problem. In the frequency-domain analysis, an auxiliary radiation problem can be used to avoid the direct solution of second-order velocity potential. See for instance Faltinsen (1976). In the present time-domain study, an artificial velocity potential ψ_s is introduced which satisfies the Laplace equation in the fluid domain, $\psi_s=0$ on the mean free surface, $\partial \psi_s/\partial n=0$ on the mean body surface, $\partial \psi_s/\partial n=0$ on the sea bottom and $\psi_s=0$ on a control surface at infinity. The details of the formulation of the artificial velocity potential are given in Appendix E. This approach has been used by for instance by Wu and Eatock Taylor (2003) in the fully nonlinear time-domain wave-body analysis. With the solution of ψ_s and the second-order boundary conditions, one can obtain the second-order forces due to the second-order scattered velocity potential $\delta \psi_s$ without solving a second-order problem as $F_{Z,a}^{(2)} = - \delta \psi_s/R$ (6.31).

The derivations of Eq.(6.31) can be found in Appendix E.

In general, the solution for ψ_s can be solved numerically by for instance a BEM solver. However, for the special case we are studying, i.e. a semi-circle, it is possible to find an analytical solution for ψ_s. The analytical solution enables us to explain the logarithmic singularity of, for instance $1/r$, at the intersection between the body surface and free surface. It also explains that $\partial \psi_s/\partial n$ is is the linear wave amplitude of the incident wave.
6.5 Second-order diffraction of a horizontal semi-submerged circular cylinder

integrable, even though it may be singular at the intersection points.

The first step to solve \(\psi_r \) analytically is to take an image of the semicircle about \(z=0 \) and therefore the influence of the free surface is taken into account by the image of the body. See the illustration in Fig.6.28. \(\psi_r \) is defined on \(z=0 \) or \(z=3 \) on the mean free surface means the flow is antisymmetric about \(z=0 \) for both the artificial setage and heave problems. Then a boundary integral equation can be set up with unknowns on only the body surface. The strategy of solving the boundary integral equation analytically is similar to that given in Appendix B when solving an oscillating circle in infinite fluid domain and will not be elaborated here. Only the final results will be given. The expression for \(\delta \psi_r / \delta z \) on the free surface is found to be

\[
\frac{\delta \psi_r}{\delta z} = \frac{1}{i} \left(\frac{1}{2} - \frac{1}{2} \ln \left(1 + i \frac{z}{2} \right) \right) \quad (i = 1) \quad .
\]

(6.32)

Here \(\tau = x / R \). \(R \) is the radius of the cylinder, \(x \) is the horizontal coordinate of a point. See Fig.6.28 for the definitions.

The solution for \(\psi_r \) is logarithmically singular at the intersection point of the body surface and \(z=0 \) plane. The consequence of the high-frequency free surface condition \(\psi_r = 0 \) is that the horizontal velocity of the fluid particle on the free surface are zero and they can only move vertically. However, the body boundary condition \(\psi_r = 0 \), says that all the points on the body surface have to move horizontally. This causes an inconsistency at the intersection points of the body surface and the free surface. One should note that the \(\psi_r \) problem exists only in a mathematical sense. In reality, spray will occur at the intersections of the body surface and the water surface as a consequence, with subsequent dissipation of kinetic and potential energy.

Fig.6.29 shows the comparison of the second-order oscillatory forces due to second-order scattered velocity potential \(\psi_r \) by direct pressure integration and the indirect method based on Green’s 2nd identity. Both the amplitude of the horizontal and vertical sum-frequency forces are presented. The agreement is very good.

Fig.6.28

Definition of the coordinates for the problem of \(\psi_r \):
- **Problem after taking image of the semicircle about \(z=0 \):**

![Image](image1.png)

(a) Definition of the original problem.
(b) Problem after taking image of the semicircle about \(z=0 \).

Fig.6.29

Definition of the coordinates for the problem of \(\psi_r \):
- **Problem after taking image of the semicircle about \(z=0 \):**

![Image](image2.png)

(a) Definition of the original problem.
(b) Problem after taking image of the semicircle about \(z=0 \).

Here \(\tau = x / R \). \(R \) is the radius of the cylinder, \(x \) is the horizontal coordinate of a point. See Fig.6.28 for the definitions.

The solution for \(\psi_r \) is logarithmically singular at the intersection point of the body surface and \(z=0 \) plane. The consequence of the high-frequency free surface condition \(\psi_r = 0 \) is that the horizontal velocity of the fluid particle on the free surface are zero and they can only move vertically. However, the body boundary condition \(\psi_r = 0 \), says that all the points on the body surface have to move horizontally. This causes an inconsistency at the intersection points of the body surface and the free surface. One should note that the \(\psi_r \) problem exists only in a mathematical sense. In reality, spray will occur at the intersections of the body surface and the water surface as a consequence, with subsequent dissipation of kinetic and potential energy.

Fig.6.29 shows the comparison of the second-order oscillatory forces due to second-order scattered velocity potential \(\psi_r \) by direct pressure integration and the indirect method based on Green’s 2nd identity. Both the amplitude of the horizontal and vertical sum-frequency forces are presented. The agreement is very good.
The forced surging and heaving of the horizontal semi-submerged circular cylinder are studied up to second order. Infinite water depth is assumed. No incident wave effect is included.

Here \(R_m(t) \) is a ramp function used to allows for the gentle start of the flow.

Fig.6.29 shows the magnitude of the vertical mean force on a semi-submerged circular cylinder in surge motion compared with the theoretical and experimental results by Kyozuka (1982). Good agreement has been obtained between the present results and the numerical results of Kyozuka (1982). On the other hand, Kyozuka’s (1982) experimental results are found to exhibit some scatter. Actually, Kyozuka (1982) has four groups of experimental results with different ratios between the amplitude of the forcing frequency and the wave number.

6.6 Second-order radiation of a horizontal semi-submerged circular cylinder

The forced surging and heaving of the horizontal semi-submerged circular cylinder are studied up to second order. Infinite water depth is assumed. No incident wave effect is included.

The forced surging and heave motions are defined respectively as

\[
\zeta_{11} = R_m(t) \cdot \psi_1 \cdot \sin(\alpha) \cdot Z_{11} = 0, \quad (6.33)
\]

\[
\zeta_{13} = R_m(t) \cdot \psi_3 \cdot \sin(\alpha) \cdot Z_{13} = 0. \quad (6.34)
\]

Here \(R_m(t) \) is a ramp function used to allows for the gentle start of the flow. \(\alpha \) is the circular frequency of the oscillation. \(\psi_1 \) and \(\psi_3 \) are the amplitudes of the surge and heaving motion respectively.

Fig.6.30 shows the magnitude of the vertical mean force on a semi-submerged circular cylinder in surge motion compared with the theoretical and experimental results by Kyozuka (1982). Good agreement has been obtained between the present results and the numerical results of Kyozuka (1982). On the other hand, Kyozuka’s (1982) experimental results are found to exhibit some scatter. Actually, Kyozuka (1982) has four groups of experimental results with different ratios between the amplitude of the forcing frequency and the wave number.

The forced surging and heaving of the horizontal semi-submerged circular cylinder are studied up to second order. Infinite water depth is assumed. No incident wave effect is included.

The forced surging and heave motions are defined respectively as

\[
\zeta_{11} = R_m(t) \cdot \psi_1 \cdot \sin(\alpha) \cdot Z_{11} = 0, \quad (6.33)
\]

\[
\zeta_{13} = R_m(t) \cdot \psi_3 \cdot \sin(\alpha) \cdot Z_{13} = 0. \quad (6.34)
\]

Here \(R_m(t) \) is a ramp function used to allows for the gentle start of the flow. \(\alpha \) is the circular frequency of the oscillation. \(\psi_1 \) and \(\psi_3 \) are the amplitudes of the surge and heaving motion respectively.

Fig.6.30 shows the magnitude of the vertical mean force on a semi-submerged circular cylinder in surge motion compared with the theoretical and experimental results by Kyozuka (1982). Good agreement has been obtained between the present results and the numerical results of Kyozuka (1982). On the other hand, Kyozuka’s (1982) experimental results are found to exhibit some scatter. Actually, Kyozuka (1982) has four groups of experimental results with different ratios between the amplitude of the forcing frequency and the wave number.

The forced surging and heaving of the horizontal semi-submerged circular cylinder are studied up to second order. Infinite water depth is assumed. No incident wave effect is included.

The forced surging and heave motions are defined respectively as

\[
\zeta_{11} = R_m(t) \cdot \psi_1 \cdot \sin(\alpha) \cdot Z_{11} = 0, \quad (6.33)
\]

\[
\zeta_{13} = R_m(t) \cdot \psi_3 \cdot \sin(\alpha) \cdot Z_{13} = 0. \quad (6.34)
\]

Here \(R_m(t) \) is a ramp function used to allows for the gentle start of the flow. \(\alpha \) is the circular frequency of the oscillation. \(\psi_1 \) and \(\psi_3 \) are the amplitudes of the surge and heaving motion respectively.

Fig.6.30 shows the magnitude of the vertical mean force on a semi-submerged circular cylinder in surge motion compared with the theoretical and experimental results by Kyozuka (1982). Good agreement has been obtained between the present results and the numerical results of Kyozuka (1982). On the other hand, Kyozuka’s (1982) experimental results are found to exhibit some scatter. Actually, Kyozuka (1982) has four groups of experimental results with different ratios between the amplitude of the forcing frequency and the wave number.
the forced surging motion and the radius of the cylinder, i.e., $\frac{R}{a}$ = 0.1, 0.2, 0.3 and 0.4. Only the results for $\frac{R}{a}$ = 0.1 and 0.2 are used in the comparisons in Fig.6.30. The experimental data of Kyozuka (1982) for $\frac{R}{a}$ = 0.3 and 0.4 was only given for very limited non-dimensional wave numbers, and therefore was not included in the comparisons. The reason for the scatter of the experimental results is unknown.

The magnitude of the vertical mean force on the horizontal cylinder in forced heaving motion is shown in Fig.6.31. The present numerical result is compared with the theoretical results by Potash (1971) with good agreement. The horizontal drift forces are zero in theory for the horizontal cylinder under forced surging and heaving, and will not be shown here.

Fig.6.30. The non-dimensional vertical mean force on a horizontal semi-submerged cylinder under forced sinusoidal surging motion. No incident wave is present. R is the radius of the horizontal circular cylinder.

Fig.6.31. The non-dimensional vertical mean force on a horizontal semi-submerged cylinder under forced sinusoidal heaving motion. No incident wave is present. R is the radius of the horizontal circular cylinder.

the forced surging motion and the radius of the cylinder, i.e., $\frac{R}{a}$ = 0.1, 0.2, 0.3 and 0.4. Only the results for $\frac{R}{a}$ = 0.1 and 0.2 are used in the comparisons in Fig.6.30. The experimental data of Kyozuka (1982) for $\frac{R}{a}$ = 0.3 and 0.4 was only given for very limited non-dimensional wave numbers, and therefore was not included in the comparisons. The reason for the scatter of the experimental results is unknown.

The magnitude of the vertical mean force on the horizontal cylinder in forced heaving motion is shown in Fig.6.31. The present numerical result is compared with the theoretical results by Potash (1971) with good agreement. The horizontal drift forces are zero in theory for the horizontal cylinder under forced surging and heaving, and will not be shown here.

Fig.6.30. The non-dimensional vertical mean force on a horizontal semi-submerged cylinder under forced sinusoidal surging motion. No incident wave is present. R is the radius of the horizontal circular cylinder.

Fig.6.31. The non-dimensional vertical mean force on a horizontal semi-submerged cylinder under forced sinusoidal heaving motion. No incident wave is present. R is the radius of the horizontal circular cylinder.

the forced surging motion and the radius of the cylinder, i.e., $\frac{R}{a}$ = 0.1, 0.2, 0.3 and 0.4. Only the results for $\frac{R}{a}$ = 0.1 and 0.2 are used in the comparisons in Fig.6.30. The experimental data of Kyozuka (1982) for $\frac{R}{a}$ = 0.3 and 0.4 was only given for very limited non-dimensional wave numbers, and therefore was not included in the comparisons. The reason for the scatter of the experimental results is unknown.

The magnitude of the vertical mean force on the horizontal cylinder in forced heaving motion is shown in Fig.6.31. The present numerical result is compared with the theoretical results by Potash (1971) with good agreement. The horizontal drift forces are zero in theory for the horizontal cylinder under forced surging and heaving, and will not be shown here.

Fig.6.30. The non-dimensional vertical mean force on a horizontal semi-submerged cylinder under forced sinusoidal surging motion. No incident wave is present. R is the radius of the horizontal circular cylinder.

Fig.6.31. The non-dimensional vertical mean force on a horizontal semi-submerged cylinder under forced sinusoidal heaving motion. No incident wave is present. R is the radius of the horizontal circular cylinder.
The magnitude of the vertical non-frequency force on the horizontal cylinder under forced heaving motion. No incident wave is present. It is the radius of the horizontal circular cylinder.

The non-dimensional amplitude of non-frequency force in z-direction on a horizontal semi-submerged circular cylinder under forced sinusoidal heaving motion. No incident wave is present. It is the radius of the cylinder.

The magnitude of the vertical non-frequency force on the horizontal cylinder under forced heaving motion is presented in Fig. 6.33. The present results agree well with theoretical and experimental results of Yamashita (1977). Yamashita’s (1977) theoretical results at higher frequencies tend to be lower than the present results and Yamashita’s (1977) experimental results.

The non-dimensional amplitude of non-frequency force in z-direction on a horizontal semi-submerged circular cylinder under forced sinusoidal heaving motion. No incident wave is present. It is the radius of the horizontal circular cylinder.

The magnitude of the vertical non-frequency force on the horizontal cylinder under forced heaving motion is presented in Fig. 6.33. The present results agree well with theoretical and experimental results of Yamashita (1977). Yamashita’s (1977) theoretical results at higher frequencies tend to be lower than the present results and Yamashita’s (1977) experimental results.

The non-dimensional amplitude of non-frequency force in z-direction on a horizontal semi-submerged circular cylinder under forced sinusoidal heaving motion. No incident wave is present. It is the radius of the horizontal circular cylinder.

The magnitude of the vertical non-frequency force on the horizontal cylinder under forced heaving motion is presented in Fig. 6.33. The present results agree well with theoretical and experimental results of Yamashita (1977). Yamashita’s (1977) theoretical results at higher frequencies tend to be lower than the present results and Yamashita’s (1977) experimental results.

The non-dimensional amplitude of non-frequency force in z-direction on a horizontal semi-submerged circular cylinder under forced sinusoidal heaving motion. No incident wave is present. It is the radius of the horizontal circular cylinder.

The magnitude of the vertical non-frequency force on the horizontal cylinder under forced heaving motion is presented in Fig. 6.33. The present results agree well with theoretical and experimental results of Yamashita (1977). Yamashita’s (1977) theoretical results at higher frequencies tend to be lower than the present results and Yamashita’s (1977) experimental results.

The non-dimensional amplitude of non-frequency force in z-direction on a horizontal semi-submerged circular cylinder under forced sinusoidal heaving motion. No incident wave is present. It is the radius of the horizontal circular cylinder.

The magnitude of the vertical non-frequency force on the horizontal cylinder under forced heaving motion is presented in Fig. 6.33. The present results agree well with theoretical and experimental results of Yamashita (1977). Yamashita’s (1977) theoretical results at higher frequencies tend to be lower than the present results and Yamashita’s (1977) experimental results.

The non-dimensional amplitude of non-frequency force in z-direction on a horizontal semi-submerged circular cylinder under forced sinusoidal heaving motion. No incident wave is present. It is the radius of the horizontal circular cylinder.

The magnitude of the vertical non-frequency force on the horizontal cylinder under forced heaving motion is presented in Fig. 6.33. The present results agree well with theoretical and experimental results of Yamashita (1977). Yamashita’s (1977) theoretical results at higher frequencies tend to be lower than the present results and Yamashita’s (1977) experimental results.
The indirect method based on Green's 2nd identity is also used here to verify the second-order oscillatory force in z-direction due to the second-order velocity potential. The details of the indirect method have been presented in Section 6.5. Fig 6.34 shows the comparison of the results by the direct method and the indirect method based on Green's 2nd identity. Excellent agreement has been obtained.

Fig 6.34. The non-dimensional amplitude of the sum-frequency force in the z-direction of a horizontal semi-submerged circular cylinder under forced sinusoidal surging and heaving motions. No incident wave is present. Comparisons are made between the results of the direct method and that of the indirect method based on Green's 2nd identity. \(k \) is the wave number. \(R \) is the radius of the cylinder.
CHAPTER 7
Three-Dimensional Weakly-Nonlinear Problems with Zero Forward Speed

This chapter is considered as the first step to verify the 3D time-domain HOBEs in the inertial coordinate system (see Chapter 4) and the new method using body-fixed coordinate system in the near field (see Chapter 5). We will hereafter call the method using the formulation in the inertial coordinate system the ‘traditional method’, and the domain decomposition based method using body-fixed reference frame near the body the ‘new method’. When the body with sharp corners has unsteady motions, the traditional method using the Taylor expansions for both the free-surface conditions and the body boundary conditions is only applicable for a linear wave-body problem without forward speed. However, the new method proposed in Chapter 5 is valid for any order nonlinear wave-body problem with the presence of forward speed effects, no matter the body is with or without sharp corners. The nonlinear diffraction and radiation problems are studied and verified. The forward speed effect which is not considered in this chapter will be discussed in Chapter 8.

7.1 Second-order and third-order wave diffraction on a fixed body

7.1.1 Second-order diffraction in monochromatic waves

This section studies the second-order diffraction of a fixed body in monochromatic waves. A bottom-mounted vertical circular cylinder, a hemisphere and a truncated vertical circular cylinder are studied by using the domain decomposition based method presented in Chapter 5. As described in Section 5.3, the incident wave is prescribed and only the scattered wave is solved in the outer domain. In the inner domain, the total velocity potential and wave elevation are solved. Comparisons of the present numerical results with some existing analytical/semi-analytical and numerical results will be made.

For the fixed bodies, since the body-fixed coordinate system

Three-Dimensional Weakly-Nonlinear Problems with Zero Forward Speed

This chapter is considered as the first step to verify the 3D time-domain HOBEs in the inertial coordinate system (see Chapter 4) and the new method using body-fixed coordinate system in the near field (see Chapter 5). We will hereafter call the method using the formulation in the inertial coordinate system the ‘traditional method’, and the domain decomposition based method using body-fixed reference frame near the body the ‘new method’. When the body with sharp corners has unsteady motions, the traditional method using the Taylor expansions for both the free-surface conditions and the body boundary conditions is only applicable for a linear wave-body problem without forward speed. However, the new method proposed in Chapter 5 is valid for any order nonlinear wave-body problem with the presence of forward speed effects, no matter the body is with or without sharp corners. The nonlinear diffraction and radiation problems are studied and verified. The forward speed effect which is not considered in this chapter will be discussed in Chapter 8.

7.1 Second-order and third-order wave diffraction on a fixed body

7.1.1 Second-order diffraction in monochromatic waves

This section studies the second-order diffraction of a fixed body in monochromatic waves. A bottom-mounted vertical circular cylinder, a hemisphere and a truncated vertical circular cylinder are studied by using the domain decomposition based method presented in Chapter 5. As described in Section 5.3, the incident wave is prescribed and only the scattered wave is solved in the outer domain. In the inner domain, the total velocity potential and wave elevation are solved. Comparisons of the present numerical results with some existing analytical/semi-analytical and numerical results will be made.

For the fixed bodies, since the body-fixed coordinate system

Three-Dimensional Weakly-Nonlinear Problems with Zero Forward Speed

This chapter is considered as the first step to verify the 3D time-domain HOBEs in the inertial coordinate system (see Chapter 4) and the new method using body-fixed coordinate system in the near field (see Chapter 5). We will hereafter call the method using the formulation in the inertial coordinate system the ‘traditional method’, and the domain decomposition based method using body-fixed reference frame near the body the ‘new method’. When the body with sharp corners has unsteady motions, the traditional method using the Taylor expansions for both the free-surface conditions and the body boundary conditions is only applicable for a linear wave-body problem without forward speed. However, the new method proposed in Chapter 5 is valid for any order nonlinear wave-body problem with the presence of forward speed effects, no matter the body is with or without sharp corners. The nonlinear diffraction and radiation problems are studied and verified. The forward speed effect which is not considered in this chapter will be discussed in Chapter 8.

7.1 Second-order and third-order wave diffraction on a fixed body

7.1.1 Second-order diffraction in monochromatic waves

This section studies the second-order diffraction of a fixed body in monochromatic waves. A bottom-mounted vertical circular cylinder, a hemisphere and a truncated vertical circular cylinder are studied by using the domain decomposition based method presented in Chapter 5. As described in Section 5.3, the incident wave is prescribed and only the scattered wave is solved in the outer domain. In the inner domain, the total velocity potential and wave elevation are solved. Comparisons of the present numerical results with some existing analytical/semi-analytical and numerical results will be made.

For the fixed bodies, since the body-fixed coordinate system

Three-Dimensional Weakly-Nonlinear Problems with Zero Forward Speed

This chapter is considered as the first step to verify the 3D time-domain HOBEs in the inertial coordinate system (see Chapter 4) and the new method using body-fixed coordinate system in the near field (see Chapter 5). We will hereafter call the method using the formulation in the inertial coordinate system the ‘traditional method’, and the domain decomposition based method using body-fixed reference frame near the body the ‘new method’. When the body with sharp corners has unsteady motions, the traditional method using the Taylor expansions for both the free-surface conditions and the body boundary conditions is only applicable for a linear wave-body problem without forward speed. However, the new method proposed in Chapter 5 is valid for any order nonlinear wave-body problem with the presence of forward speed effects, no matter the body is with or without sharp corners. The nonlinear diffraction and radiation problems are studied and verified. The forward speed effect which is not considered in this chapter will be discussed in Chapter 8.

7.1 Second-order and third-order wave diffraction on a fixed body

7.1.1 Second-order diffraction in monochromatic waves

This section studies the second-order diffraction of a fixed body in monochromatic waves. A bottom-mounted vertical circular cylinder, a hemisphere and a truncated vertical circular cylinder are studied by using the domain decomposition based method presented in Chapter 5. As described in Section 5.3, the incident wave is prescribed and only the scattered wave is solved in the outer domain. In the inner domain, the total velocity potential and wave elevation are solved. Comparisons of the present numerical results with some existing analytical/semi-analytical and numerical results will be made.

For the fixed bodies, since the body-fixed coordinate system

Three-Dimensional Weakly-Nonlinear Problems with Zero Forward Speed

This chapter is considered as the first step to verify the 3D time-domain HOBEs in the inertial coordinate system (see Chapter 4) and the new method using body-fixed coordinate system in the near field (see Chapter 5). We will hereafter call the method using the formulation in the inertial coordinate system the ‘traditional method’, and the domain decomposition based method using body-fixed reference frame near the body the ‘new method’. When the body with sharp corners has unsteady motions, the traditional method using the Taylor expansions for both the free-surface conditions and the body boundary conditions is only applicable for a linear wave-body problem without forward speed. However, the new method proposed in Chapter 5 is valid for any order nonlinear wave-body problem with the presence of forward speed effects, no matter the body is with or without sharp corners. The nonlinear diffraction and radiation problems are studied and verified. The forward speed effect which is not considered in this chapter will be discussed in Chapter 8.
results show that the new method gives the same steady-state results as the traditional method using inertial coordinate system. Only small difference was observed in the initial stage of the time history of the results, e.g. forces. This is believed to be caused by the fact that we have in the traditional method separated the incident waves from the total wave field in the whole fluid domain, whereas the new method solves the whole velocity potential in the inner domain and the incident wave field is only prescribed in the outer domain.

Due to the symmetry of the body surface and the incident waves, only unknowns on half of the fluid domain are needed in the computations. The sensitivity on the position of the control surface is also studied for the nonlinear diffraction of a bottom-mounted vertical circular cylinder.

Bottom-mounted vertical circular cylinder

The second-order diffraction in monochromatic waves without forward speed is studied for a bottom-mounted vertical circular cylinder. In this section, the only numerical results obtained by the new method based on domain decomposition are presented and compared with the existing analytical or semi-analytical results. The present numerical results are compared with the linear analytical results of MacCamy & Fuchs (1954) and the second-order semi-analytical results of Enoto, Taylor & Hung (1987). The bottom-mounted vertical circular cylinder considered in this section has a draft \(h = R \) with \(R \) as the radius of the cylinder. For example of the meshes on the body surface (SB), mean free surface (SF1) and the cylindrical control surface (SC) of the inner domain is shown in Fig.7.1. Fig.7.2 shows an example of the bird-view of the grids on the inner and outer free surfaces.

![Fig.7.1](Image1) An example of the meshes on the body surface (SB), mean free surface (SF1) and the cylindrical control surface (SC) of the inner domain.

The amplitudes of the linear wave run-up around a cylinder with \(kR = 1.0 \) is presented in Fig.7.3 together with the analytical results based on MacCamy & Fuchs’s (1954) theory. The amplitudes of the run-up were obtained by Fourier analysis of the time history of the wave elevations. The comparison of the amplitude of the linear-in-line force is also presented in Fig.7.4. Approximately, 8 cubic elements per linear wave length were used in order to get the linear results presented in Fig.7.3 and Fig.7.4. The time increment \(\Delta t = T/100 \) is adopted in the time-domain simulations. \(T \) is the linear wave period of the incident wave. The radius of the cylindrical control surface \(R_c = 2.0R \) is used to study the nonlinear diffraction of a bottom-mounted vertical circular cylinder.

![Fig.7.2](Image2) An example of the meshes on the body surface (SB), mean free surface (SF1) and the cylindrical control surface (SC) of the inner domain.

The second-order diffraction in monochromatic waves without forward speed is studied for a bottom-mounted vertical circular cylinder. In this section, only the numerical results obtained by the new method based on domain decomposition are presented and compared with the existing analytical or semi-analytical results. The present numerical results are compared with the linear analytical results of MacCamy & Fuchs (1954) and the second-order semi-analytical results of Enoto, Taylor & Hung (1987). The bottom-mounted vertical circular cylinder considered in this section has a draft \(h = R \) with \(R \) as the radius of the cylinder. For example of the meshes on the body surface (SB), mean free surface (SF1) and the cylindrical control surface (SC) of the inner domain is shown in Fig.7.1. Fig.7.2 shows an example of the bird-view of the grids on the inner and outer free surfaces.

![Fig.7.3](Image3) An example of the meshes on the body surface (SB), mean free surface (SF1) and the cylindrical control surface (SC) of the inner domain.

The second-order diffraction in monochromatic waves without forward speed is studied for a bottom-mounted vertical circular cylinder. In this section, only the numerical results obtained by the new method based on domain decomposition are presented and compared with the existing analytical or semi-analytical results. The present numerical results are compared with the linear analytical results of MacCamy & Fuchs (1954) and the second-order semi-analytical results of Enoto, Taylor & Hung (1987). The bottom-mounted vertical circular cylinder considered in this section has a draft \(h = R \) with \(R \) as the radius of the cylinder. For example of the meshes on the body surface (SB), mean free surface (SF1) and the cylindrical control surface (SC) of the inner domain is shown in Fig.7.1. Fig.7.2 shows an example of the bird-view of the grids on the inner and outer free surfaces.

![Fig.7.4](Image4) An example of the meshes on the body surface (SB), mean free surface (SF1) and the cylindrical control surface (SC) of the inner domain.

Bottom-mounted vertical circular cylinder

The second-order diffraction in monochromatic waves without forward speed is studied for a bottom-mounted vertical circular cylinder. In this section, only the numerical results obtained by the new method based on domain decomposition are presented and compared with the existing analytical or semi-analytical results. The present numerical results are compared with the linear analytical results of MacCamy & Fuchs (1954) and the second-order semi-analytical results of Enoto, Taylor & Hung (1987). The bottom-mounted vertical circular cylinder considered in this section has a draft \(h = R \) with \(R \) as the radius of the cylinder. For example of the meshes on the body surface (SB), mean free surface (SF1) and the cylindrical control surface (SC) of the inner domain is shown in Fig.7.1. Fig.7.2 shows an example of the bird-view of the grids on the inner and outer free surfaces.

![Fig.7.5](Image5) An example of the meshes on the body surface (SB), mean free surface (SF1) and the cylindrical control surface (SC) of the inner domain.
in the numerical calculations. It is seen from Fig.7.3 and Fig.7.4 that the present linear numerical results agree very well with the analytical results of MacCamy & Fuchs (1954).

Fig.7.2. A bird-view of the meshes on the free surfaces SF1 and SF2.

Fig.7.3. Comparison of the non-dimensional amplitudes of first-order run-up around the bottom-mounted circular cylinder. The solid line is based on the analytical result by MacCamy & Fuchs (1954). The circles are the present numerical results. \(kR = 1.0, h = R \).

Fig.7.4. Comparison of the non-dimensional amplitude of first-order in-line diffraction force with the analytical results based on MacCamy & Fuchs’s (1954) theory. \(A \) is the incident wave amplitude. \(F_{x,a} = 0 \).
Eatock Taylor & Hung (1987) have developed a semi-analytical solution for the second-order diffraction of a bottom-mounted vertical circular cylinder. The comparison of the present second-order results and that of Eatock Taylor & Hung (1987) are presented in Fig. 7.5 - Fig. 7.7. 30 cubic elements per linear wave length are used and a time increment \(\Delta t = T/200 \) is adopted in the time-domain simulations. The radius of the cylindrical control surface \(R = 2.0h \) is used in the numerical calculations. Fig. 7.5 shows the non-dimensional horizontal mean-drift forces with different wave numbers. The comparisons of the amplitude of the second-order oscillatory force \(F_{3,2}^{x,a} \) and the corresponding phase angle \(\phi \) are given in Fig. 7.5 and Fig. 7.7, respectively. Good agreement has been obtained in the studied wave number region.

\[
F_{x,a}/gA = F_{0}/gA R
\]

Fig. 7.5. Comparison of the non-dimensional mean-drift force on a bottom-mounted circular cylinder. \(A \) is the incident wave amplitude. \(h/R \).

Fig. 7.6. Comparison of the non-dimensional amplitude of the horizontal sum-frequency force on a bottom-mounted circular cylinder. \(A \) is the incident wave amplitude. \(h/R \).

Eatock Taylor & Hung (1987) have developed a semi-analytical solution for the second-order diffraction of a bottom-mounted vertical circular cylinder. The comparison of the present second-order results and that of Eatock Taylor & Hung (1987) are presented in Fig. 7.5 - Fig. 7.7. 30 cubic elements per linear wave length are used and a time increment \(\Delta t = T/200 \) is adopted in the time-domain simulations. The radius of the cylindrical control surface \(R = 2.0h \) is used in the numerical calculations. Fig. 7.5 shows the non-dimensional horizontal mean-drift forces with different wave numbers. The comparisons of the amplitude of the second-order oscillatory force \(F_{3,2}^{x,a} \) and the corresponding phase angle \(\phi \) are given in Fig. 7.5 and Fig. 7.7, respectively. Good agreement has been obtained in the studied wave number region.

\[
F_{x,a}/gA = F_{0}/gA R
\]

Fig. 7.5. Comparison of the non-dimensional mean-drift force on a bottom-mounted circular cylinder. \(A \) is the incident wave amplitude. \(h/R \).

Fig. 7.6. Comparison of the non-dimensional amplitude of the horizontal sum-frequency force on a bottom-mounted circular cylinder. \(A \) is the incident wave amplitude. \(h/R \).
The phase angle is defined relative to the incident wave at the origin of the OXYZ coordinates system, i.e. the oscilator part of the second-order force is expressed as $F_{\text{inc}} \cos (2m + n + 1) \omega t$. The expressions for the first-order and second-order velocity potential of the incident waves are obtained by replacing (X_e,Y_e,Z_e) with (X,Y,Z) and setting $\psi = 0$ in Eq.(2.134) and Eq.(2.135), respectively.

In order to investigate the influence of the size of the inner domain on the numerical results, the author has studied the second-order diffraction of a bottom-mounted vertical circular cylinder with $R_c=0.25R$ and h/R by varying the radius of the inner domain (R_c) from 1.25R to 2.0R. In the radius of the bottom-mounted cylinder. An artificial bottom-mounted cylinder is used as the control surface. Fig.7.8 and Fig.7.9 show respectively the time histories of the linear and second-order horizontal forces with different radius of the control surface. 35 cubic elements per linear wave length are used near the water line. The meshes away from the water line are stretched in a smooth way. In the case of $R_c=1.25R$, the body surface and the control surface are very close to each other. Only 2 cubic elements are distributed on the part of the free surface between SB and SC along the radial direction and no numerical problem was encountered.

It is seen from Fig.7.8 and Fig.7.9 that only small differences occur in the time histories of the linear and second-order forces at very initial stage with different ‘radius’ of the inner domain. This is thought to be caused by the different treatment of the free-surface conditions in the inner domain and the outer domain. The velocity potential and wave elevation are decomposed into the prescribed incident part and the unknown scattered part in the outer domain, whereas in the inner domain the total velocity potential and wave elevations are solved. The steady-state first-order and second-order numerical results did not show any clear dependence on the choice of the ‘radius’ of the inner domain.

Fig.7.7. Comparison of the phase of the sum-frequency force in x-direction on a bottom-mounted circular cylinder. A is the incident wave amplitude, $\psi = 0$. The phase angle is defined relative to the incident wave at the origin of the OXYZ coordinates system, i.e. the oscilator part of the second-order force is expressed as $F_{\text{inc}} \cos (2m + n + 1) \omega t$. The expressions for the first-order and second-order velocity potential of the incident waves are obtained by replacing (X_e,Y_e,Z_e) with (X,Y,Z) and setting $\psi = 0$ in Eq.(2.134) and Eq.(2.135), respectively.

In order to investigate the influence of the size of the inner domain on the numerical results, the author has studied the second-order diffraction of a bottom-mounted vertical circular cylinder with $R_c=0.25R$ and h/R by varying the radius of the inner domain (R_c) from 1.25R to 2.0R. In the radius of the bottom-mounted cylinder. An artificial bottom-mounted cylinder is used as the control surface. Fig.7.8 and Fig.7.9 show respectively the time histories of the linear and second-order horizontal forces with different radius of the control surface. 35 cubic elements per linear wave length are used near the water line. The meshes away from the water line are stretched in a smooth way. In the case of $R_c=1.25R$, the body surface and the control surface are very close to each other. Only 2 cubic elements are distributed on the part of the free surface between SB and SC along the radial direction and no numerical problem was encountered.

It is seen from Fig.7.8 and Fig.7.9 that only small differences occur in the time histories of the linear and second-order forces at very initial stage with different ‘radius’ of the inner domain. This is thought to be caused by the different treatment of the free-surface conditions in the inner domain and the outer domain. The velocity potential and wave elevation are decomposed into the prescribed incident part and the unknown scattered part in the outer domain, whereas in the inner domain the total velocity potential and wave elevations are solved. The steady-state first-order and second-order numerical results did not show any clear dependence on the choice of the ‘radius’ of the inner domain.

Fig.7.7. Comparison of the phase of the sum-frequency force in x-direction on a bottom-mounted circular cylinder. A is the incident wave amplitude, $\psi = 0$. The phase angle is defined relative to the incident wave at the origin of the OXYZ coordinates system, i.e. the oscilator part of the second-order force is expressed as $F_{\text{inc}} \cos (2m + n + 1) \omega t$. The expressions for the first-order and second-order velocity potential of the incident waves are obtained by replacing (X_e,Y_e,Z_e) with (X,Y,Z) and setting $\psi = 0$ in Eq.(2.134) and Eq.(2.135), respectively.

In order to investigate the influence of the size of the inner domain on the numerical results, the author has studied the second-order diffraction of a bottom-mounted vertical circular cylinder with $R_c=0.25R$ and h/R by varying the radius of the inner domain (R_c) from 1.25R to 2.0R. In the radius of the bottom-mounted cylinder. An artificial bottom-mounted cylinder is used as the control surface. Fig.7.8 and Fig.7.9 show respectively the time histories of the linear and second-order horizontal forces with different radius of the control surface. 35 cubic elements per linear wave length are used near the water line. The meshes away from the water line are stretched in a smooth way. In the case of $R_c=1.25R$, the body surface and the control surface are very close to each other. Only 2 cubic elements are distributed on the part of the free surface between SB and SC along the radial direction and no numerical problem was encountered.

It is seen from Fig.7.8 and Fig.7.9 that only small differences occur in the time histories of the linear and second-order forces at very initial stage with different ‘radius’ of the inner domain. This is thought to be caused by the different treatment of the free-surface conditions in the inner domain and the outer domain. The velocity potential and wave elevation are decomposed into the prescribed incident part and the unknown scattered part in the outer domain, whereas in the inner domain the total velocity potential and wave elevations are solved. The steady-state first-order and second-order numerical results did not show any clear dependence on the choice of the ‘radius’ of the inner domain.
Hemisphere

A hemisphere in regular waves is also studied by the domain decomposition based method in Chapter 5. The water depth is chosen to be \(h=3R \), with \(R \) being the radius of the hemisphere. The cylindrical control surface like the one shown in Fig. 7.1 is used as the control surface. The radius of the control surface is taken as \(R_C=1.5R \). Approximately 30 cubic elements are used on both the free surface and the body surface near the water line. The same diffraction problem was studied by Kim & Yue (1989) and Choi et al. (2001). Kim & Yue (1989) solved the problem in the frequency domain by using a ring source distribution. Choi et al. (2001) obtained the frequency-domain results based on a 3D quadratic HOBEM.

Hemisphere

A hemisphere in regular waves is also studied by the domain decomposition based method in Chapter 5. The water depth is chosen to be \(h=3R \), with \(R \) being the radius of the hemisphere. The cylindrical control surface like the one shown in Fig. 7.1 is used as the control surface. The radius of the control surface is taken as \(R_C=1.5R \). Approximately 30 cubic elements are used on both the free surface and the body surface near the water line. The same diffraction problem was studied by Kim & Yue (1989) and Choi et al. (2001). Kim & Yue (1989) solved the problem in the frequency domain by using a ring source distribution. Choi et al. (2001) obtained the frequency-domain results based on a 3D quadratic HOBEM.
The steady-state linear excitation forces of the hemispheres agree favorably with the frequency-domain analytical results by Kudou (1977) and will not be shown here. The results for the amplitude of the sum-frequency forces in x-direction and z-direction are shown in Fig. 7.10 and Fig. 7.11, respectively. The forces are divided into different parts according to Kim & Yue (1989). In Fig. 7.10 and Fig. 7.11, \(F_{\text{a}}^{(2)} \) indicates the amplitude of the total second-order sum-frequency force, while \(F_{\text{p}} \) and \(F_{\text{q}} \) are the sum-frequency forces caused by the quadratic terms of first order quantities and the second-order velocity potential, respectively.

The comparison shows that the present results are very close to the results by Kim & Yue (1989) for all the components and the total forces. The results by Choi et al. (2001) show some differences especially for the forces component due to the second-order potential. As mentioned by Choi et al. (2001), this might be caused by the oscillations of the auxiliary surge potential used near the body surface in their numerical study.

It is seen from Fig. 7.10 that the quadratic force part \(F_{\text{a}} \) and the second-order velocity part \(F_{\text{p}} \) have strong cancellation effect on the total horizontal sum-frequency force with the non-dimensional wave frequency regime studied. Ignoring \(F_{\text{p}} \) part and approximating the total horizontal sum-frequency force by the \(F_{\text{a}} \) part gives overestimated results.

For the vertical sum-frequency force, we see from Fig. 7.11 that the \(F_{\text{a}} \) part dominates over the \(F_{\text{p}} \) over the whole frequency range studied. For relatively short waves, i.e., \(\omega \sqrt{gR} \gg 1 \), most of the contribution to the total vertical sum-frequency force is from the second-order velocity potential. That means one must take into account of the second-order velocity potential effect and can not simply approximate the total vertical sum-frequency force by the quadratic component, especially for short waves. Here \(\omega \) is the frequency of the incident waves.

The steady-state linear excitation forces of the hemispheres agree favorably with the frequency-domain analytical results by Kudou (1977) and will not be shown here. The results for the amplitude of the sum-frequency forces in x-direction and z-direction are shown in Fig. 7.10 and Fig. 7.11, respectively. The forces are divided into different parts according to Kim & Yue (1989). In Fig. 7.10 and Fig. 7.11, \(F_{\text{a}}^{(2)} \) indicates the amplitude of the total second-order sum-frequency force, while \(F_{\text{p}} \) and \(F_{\text{q}} \) are the sum-frequency forces caused by the quadratic terms of first order quantities and the second-order velocity potential, respectively.

The comparison shows that the present results are very close to the results by Kim & Yue (1989) for all the components and the total forces. The results by Choi et al. (2001) show some differences especially for the forces component due to the second-order potential. As mentioned by Choi et al. (2001), this might be caused by the oscillations of the auxiliary surge potential used near the body surface in their numerical study.

It is seen from Fig. 7.10 that the quadratic force part \(F_{\text{a}} \) and the second-order velocity part \(F_{\text{p}} \) have strong cancellation effect on the total horizontal sum-frequency force with the non-dimensional wave frequency regime studied. Ignoring \(F_{\text{p}} \) part and approximating the total horizontal sum-frequency force by the \(F_{\text{a}} \) part gives overestimated results.

For the vertical sum-frequency force, we see from Fig. 7.11 that the \(F_{\text{a}} \) part dominates over the \(F_{\text{p}} \) over the whole frequency range studied. For relatively short waves, i.e., \(\omega \sqrt{gR} \gg 1 \), most of the contribution to the total vertical sum-frequency force is from the second-order velocity potential. That means one must take into account of the second-order velocity potential effect and can not simply approximate the total vertical sum-frequency force by the quadratic component, especially for short waves. Here \(\omega \) is the frequency of the incident waves.
One of the problems associated with the near-field method is that it requires a high degree of numerical precision of the solution on the body surface. The difficulty is especially significant for bodies with sharp corner, where the flow is singular with infinite velocity. See also the discussion associated with Eq.(5.1). The integration of the quadrature term of the velocity at the sharp corner is still integrable. However, the convergence could be very slow. In the low-order panel method, non-uniform spacing of the panels near the corner improves the accuracy of the near-field analysis, as shown by Newman & Lee (1992). The higher-order panel method was reported by for instance Lee et al. (2002) to be more sensitive to this singularity in the near-field approach. To minimize this problem, a non-uniform geometric mapping near the corner used by Newman & Lee (2002) is adopted. This is based on the local two-dimensional flow around the corner. 1/1 is the distance from the corner and is the interior angle of the body at the corner, the leading-order corner flow velocity potential in the vicinity of the sharp corner can be expressed by Eq.(5.1). The velocity near the corner is proportional to r, where r = 1/1. Since the velocity potential Q is assumed to be regular in the parametric variable in the same direction, say z, the inverse mapping of w becomes the same singularity as the solution at the corner so that 1/1 = 1/1. This suggests

This difficulty is especially significant for bodies with sharp corner, where the flow is singular with infinite velocity. See also the discussion associated with Eq.(5.1). The integration of the quadrature term of the velocity at the sharp corner is still integrable. However, the convergence could be very slow. In the low-order panel method, non-uniform spacing of the panels near the corner improves the accuracy of the near-field analysis, as shown by Newman & Lee (1992). The higher-order panel method was reported by for instance Lee et al. (2002) to be more sensitive to this singularity in the near-field approach. To minimize this problem, a non-uniform geometric mapping near the corner used by Newman & Lee (2002) is adopted. This is based on the local two-dimensional flow around the corner. 1/1 is the distance from the corner and is the interior angle of the body at the corner, the leading-order corner flow velocity potential in the vicinity of the sharp corner can be expressed by Eq.(5.1). The velocity near the corner is proportional to r, where r = 1/1. Since the velocity potential Q is assumed to be regular in the parametric variable in the same direction, say z, the inverse mapping of w becomes the same singularity as the solution at the corner so that 1/1 = 1/1. This suggests

Fig.7.11. The amplitude of the non-dimensional the sum-frequency force in the Z-direction of a stationary hemispheres, 2/3. It is the water depth, R is the radius of the hemispheres, FZ indicates the amplitude of the total second-order sum-frequency force, while 1/1 and 1/1 are the non-frequency forces caused by the quadrature terms of first order quantities and the second-order velocity potential, respectively.

Truncated vertical circular cylinder

The diffraction of a truncated vertical circular cylinder with radius R and draft d=R is studied in order to study the linear and second-order wave excitation forces. The considered water depth is h=2R. The same cylinder has been studied numerically by Kinoshita et al. (1997) in the frequency domain with a quadratic HOBEM.

In this study, the so-called near-field method is used for the forces calculation, i.e. the hydrodynamic forces are obtained by integrating the hydrodynamic pressure on the instantaneous wetted body surface. If only the mean drift forces are of interest, the far-field approach which applies the momentum conservation to the entire fluid domain can be used. The far-field method is known as more robust and efficient than the near-field method in calculating the mean wave forces. One interest in the present work is not only on the mean forces but also the higher-order oscillatory forces, and therefore the near-field approach is adopted.

Fig.7.12. The amplitude of the non-dimensional the sum-frequency force in the Z-direction of a stationary hemispheres, 2/3. It is the water depth, R is the radius of the hemispheres, FZ indicates the amplitude of the total second-order sum-frequency force, while 1/1 and 1/1 are the non-frequency forces caused by the quadrature terms of first order quantities and the second-order velocity potential, respectively.

Truncated vertical circular cylinder

The diffraction of a truncated vertical circular cylinder with radius R and draft d=R is studied in order to study the linear and second-order wave excitation forces. The considered water depth is h=2R. The same cylinder has been studied numerically by Kinoshita et al. (1997) in the frequency domain with a quadratic HOBEM.

In this study, the so-called near-field method is used for the forces calculation, i.e. the hydrodynamic forces are obtained by integrating the hydrodynamic pressure on the instantaneous wetted body surface. If only the mean drift forces are of interest, the far-field approach which applies the momentum conservation to the entire fluid domain can be used. The far-field method is known as more robust and efficient than the near-field method in calculating the mean wave forces. One interest in the present work is not only on the mean forces but also the higher-order oscillatory forces, and therefore the near-field approach is adopted.

Fig.7.13. The amplitude of the non-dimensional the sum-frequency force in the Z-direction of a stationary hemispheres, 2/3. It is the water depth, R is the radius of the hemispheres, FZ indicates the amplitude of the total second-order sum-frequency force, while 1/1 and 1/1 are the non-frequency forces caused by the quadrature terms of first order quantities and the second-order velocity potential, respectively.

Truncated vertical circular cylinder

The diffraction of a truncated vertical circular cylinder with radius R and draft d=R is studied in order to study the linear and second-order wave excitation forces. The considered water depth is h=2R. The same cylinder has been studied numerically by Kinoshita et al. (1997) in the frequency domain with a quadratic HOBEM.

In this study, the so-called near-field method is used for the forces calculation, i.e. the hydrodynamic forces are obtained by integrating the hydrodynamic pressure on the instantaneous wetted body surface. If only the mean drift forces are of interest, the far-field approach which applies the momentum conservation to the entire fluid domain can be used. The far-field method is known as more robust and efficient than the near-field method in calculating the mean wave forces. One interest in the present work is not only on the mean forces but also the higher-order oscillatory forces, and therefore the near-field approach is adopted.

One of the problems associated with the near-field method is that it requires a high degree of numerical precision of the solution on the body surface. This difficulty is especially significant for bodies with sharp corner, where the flow is singular with infinite velocity. See also the discussion associated with Eq.(5.1). The integration of the quadrature term of the velocity at the sharp corner is still integrable. However, the convergence could be very slow. In the low-order panel method, non-uniform spacing of the panels near the corner improves the accuracy of the near-field analysis, as shown by Newman & Lee (1992). The higher-order panel method was reported by for instance Lee et al. (2002) to be more sensitive to this singularity in the near-field approach. To minimize this problem, a non-uniform geometric mapping near the corner used by Newman & Lee (2002) is adopted. This is based on the local two-dimensional flow around the corner. 1/1 is the distance from the corner and is the interior angle of the body at the corner, the leading-order corner flow velocity potential in the vicinity of the sharp corner can be expressed by Eq.(5.1). The velocity near the corner is proportional to r, where r = 1/1. Since the velocity potential Q is assumed to be regular in the parametric variable in the same direction, say z, the inverse mapping of w becomes the same singularity as the solution at the corner so that 1/1 = 1/1. This suggests

This difficulty is especially significant for bodies with sharp corner, where the flow is singular with infinite velocity. See also the discussion associated with Eq.(5.1). The integration of the quadrature term of the velocity at the sharp corner is still integrable. However, the convergence could be very slow. In the low-order panel method, non-uniform spacing of the panels near the corner improves the accuracy of the near-field analysis, as shown by Newman & Lee (1992). The higher-order panel method was reported by for instance Lee et al. (2002) to be more sensitive to this singularity in the near-field approach. To minimize this problem, a non-uniform geometric mapping near the corner used by Newman & Lee (2002) is adopted. This is based on the local two-dimensional flow around the corner. 1/1 is the distance from the corner and is the interior angle of the body at the corner, the leading-order corner flow velocity potential in the vicinity of the sharp corner can be expressed by Eq.(5.1). The velocity near the corner is proportional to r, where r = 1/1. Since the velocity potential Q is assumed to be regular in the parametric variable in the same direction, say z, the inverse mapping of w becomes the same singularity as the solution at the corner so that 1/1 = 1/1. This suggests
using a mapping with the local non-uniformity with $\kappa = \kappa_R/2$. For a truncated vertical circular cylinder with a right-angle corner, we have $\kappa = 1.5$. Fig. 7.12 shows an example of the meshes on half of the truncated vertical circular cylinder with $\kappa = 1.5$. Non-uniform meshes with the non-uniformity coefficient $\kappa = 1.5$ are used at the corner and the waterline.

Presented in Fig. 7.13 and Fig. 7.14 are the amplitudes of the linear wave excitation forces in surge and heave directions, respectively. The present time-domain results are compared with numerical results of Kinoshita et al. (1997) with favorable agreement. The horizontal wave drift forces in X-direction are plotted in Fig. 7.13. Comparison is made between the present results and the frequency-domain numerical results of Kinoshita et al. (1997) and the semi-analytical results of Kinoshita & Bao (1996). Good agreement is observed. The present mean drift forces are slightly higher than Kinoshita et al.’s (1997) numerical results. However, it can be seen that the present results are more closer to Kinoshita & Bao’s (1996) semi-analytical results, even though they are not presented at the same wave number kR. All the results of Kinoshita et al. (1997) and Kinoshita & Bao (1996) shown in Fig. 7.13 - Fig. 7.15 are digitized data from Kinoshita et al. (1997).

The non-uniformity coefficient κ is the wave number of the incident waves.

![Fig. 7.12. Meshes on half of the truncated vertical circular cylinder with $\kappa = 1.5$.](image)

Fig. 7.12. Meshes on half of the truncated vertical circular cylinder with $\kappa = 1.5$. Non-uniform meshes with the non-uniformity coefficient $\kappa = 1.5$ are used at the corner and the waterline.

![Fig. 7.13. The amplitude of the linear excitation force on a truncated circular cylinder in surge direction. $h = 2R$, $d = 2R$.](image)

Fig. 7.13. The amplitude of the linear excitation force on a truncated circular cylinder in surge direction. $h = 2R$, $d = 2R$. kR is the wave number of the incident waves.

![Fig. 7.14.](image)

Fig. 7.14. The amplitude of the linear excitation force on a truncated circular cylinder in heave direction. $h = 2R$, $d = 2R$. kR is the wave number of the incident waves.

using a mapping with the local non-uniformity with $\kappa = \kappa_R/2$. For a truncated vertical circular cylinder with a right-angle corner, we have $\kappa = 1.5$. Fig. 7.12 shows an example of the meshes on half of the truncated vertical circular cylinder with $\kappa = 1.5$. Non-uniform meshes with the non-uniformity coefficient $\kappa = 1.5$ are used at the corner and the waterline.

Presented in Fig. 7.13 and Fig. 7.14 are the amplitudes of the linear wave excitation forces in surge and heave directions, respectively. The present time-domain results are compared with numerical results of Kinoshita et al. (1997) with favorable agreement. The horizontal wave drift forces in X-direction are plotted in Fig. 7.13. Comparison is made between the present results and the frequency-domain numerical results of Kinoshita et al. (1997) and the semi-analytical results of Kinoshita & Bao (1996). Good agreement is observed. The present mean drift forces are slightly higher than Kinoshita et al.’s (1997) numerical results. However, it can be seen that the present results are more closer to Kinoshita & Bao’s (1996) semi-analytical results, even though they are not presented at the same wave number kR. All the results of Kinoshita et al. (1997) and Kinoshita & Bao (1996) shown in Fig. 7.13 - Fig. 7.15 are digitized data from Kinoshita et al. (1997).

The non-uniformity coefficient κ is the wave number of the incident waves.

![Fig. 7.12.](image)

Fig. 7.12. Meshes on half of the truncated vertical circular cylinder with $\kappa = 1.5$. Non-uniform meshes with the non-uniformity coefficient $\kappa = 1.5$ are used at the corner and the waterline.

![Fig. 7.13.](image)

Fig. 7.13. The amplitude of the linear excitation force on a truncated circular cylinder in surge direction. $h = 2R$, $d = 2R$. kR is the wave number of the incident waves.

using a mapping with the local non-uniformity with $\kappa = \kappa_R/2$. For a truncated vertical circular cylinder with a right-angle corner, we have $\kappa = 1.5$. Fig. 7.12 shows an example of the meshes on half of the truncated vertical circular cylinder with $\kappa = 1.5$. Non-uniform meshes with the non-uniformity coefficient $\kappa = 1.5$ are used at the corner and the waterline.

Presented in Fig. 7.13 and Fig. 7.14 are the amplitudes of the linear wave excitation forces in surge and heave directions, respectively. The present time-domain results are compared with numerical results of Kinoshita et al. (1997) with favorable agreement. The horizontal wave drift forces in X-direction are plotted in Fig. 7.13. Comparison is made between the present results and the frequency-domain numerical results of Kinoshita et al. (1997) and the semi-analytical results of Kinoshita & Bao (1996). Good agreement is observed. The present mean drift forces are slightly higher than Kinoshita et al.’s (1997) numerical results. However, it can be seen that the present results are more closer to Kinoshita & Bao’s (1996) semi-analytical results, even though they are not presented at the same wave number kR. All the results of Kinoshita et al. (1997) and Kinoshita & Bao (1996) shown in Fig. 7.13 - Fig. 7.15 are digitized data from Kinoshita et al. (1997).

The non-uniformity coefficient κ is the wave number of the incident waves.
and vertical directions. $h=10R$, $d=4R$. k is the wave number of the incident waves.

Fig. 7.14. The amplitude of the linear excitation force on a truncated circular cylinder in heave direction. $h=2R$, $d=R$. k is the wave number of the incident waves.

Fig. 7.15. The horizontal wave drift force on a fixed truncated circular cylinder. $h=2R$, $d=R$. k is the wave number of the incident waves.

Fig. 7.16. The amplitude of the sum-frequency forces on a fixed truncated circular cylinder in both the horizontal and vertical directions. $h=10R$, $d=4R$. k is the wave number of the incident waves.

\begin{align*}
F_x &= \frac{FX,0}{UR} \\
F_z &= \frac{Fz,a}{gR}
\end{align*}

Present, Kinoshita & Bao (2000)

Present, Kinoshita & Bao (1996)

Present, Kinoshita et al. (1997)

Present, Kinoshita & Bao (1996)

Present, Kinoshita et al. (1997)
corresponding successively from the top line to the present results, those of Eatock Taylor & Huang (1997), and Moubayed & Williams (1995) and the numerical results of Kim & Yue (1990). Table 7.1 shows the comparison of the sum-frequency surge force QTF for a bottom-mounted circular cylinder with \(h=4R \). Good agreement has been achieved for both the sum-frequency and difference-frequency forces.

Comparisons are made with the semi-analytical results by Eatock Taylor & Huang (1997) and Moubayed & Williams (1995) and the numerical results of Kim & Yue (1990). Table 7.1 shows the comparison of the sum-frequency surge force QTF for a bottom-mounted circular cylinder with \(h=4R \). Good agreement has been achieved for both the sum-frequency and difference-frequency forces.

\[
F_{ij}^{\text{QTF}} = \frac{p}{\rho g R^4} \left(F_{ij}^h + Z_{ij} F_{ij}^d \right)
\]

where \(F^h \) and \(F^d \) are total sum-frequency and difference-frequency horizontal forces, respectively.

Comparisons are made with the semi-analytical results by Eatock Taylor & Huang (1997) and Moubayed & Williams (1995) and the numerical results of Kim & Yue (1990). Table 7.1 shows the comparison of the sum-frequency surge force QTF for a bottom-mounted circular cylinder with \(h=4R \). Good agreement has been achieved for both the sum-frequency and difference-frequency forces.

\[
F_{ij}^{\text{QTF}} = \frac{p}{\rho g R^4} \left(F_{ij}^h + Z_{ij} F_{ij}^d \right)
\]

where \(F^h \) and \(F^d \) are total sum-frequency and difference-frequency horizontal forces, respectively.

Comparisons are made with the semi-analytical results by Eatock Taylor & Huang (1997) and Moubayed & Williams (1995) and the numerical results of Kim & Yue (1990). Table 7.1 shows the comparison of the sum-frequency surge force QTF for a bottom-mounted circular cylinder with \(h=4R \). Good agreement has been achieved for both the sum-frequency and difference-frequency forces.

\[
F_{ij}^{\text{QTF}} = \frac{p}{\rho g R^4} \left(F_{ij}^h + Z_{ij} F_{ij}^d \right)
\]

where \(F^h \) and \(F^d \) are total sum-frequency and difference-frequency horizontal forces, respectively.

Comparisons are made with the semi-analytical results by Eatock Taylor & Huang (1997) and Moubayed & Williams (1995) and the numerical results of Kim & Yue (1990). Table 7.1 shows the comparison of the sum-frequency surge force QTF for a bottom-mounted circular cylinder with \(h=4R \). Good agreement has been achieved for both the sum-frequency and difference-frequency forces.

\[
F_{ij}^{\text{QTF}} = \frac{p}{\rho g R^4} \left(F_{ij}^h + Z_{ij} F_{ij}^d \right)
\]

where \(F^h \) and \(F^d \) are total sum-frequency and difference-frequency horizontal forces, respectively.

Comparisons are made with the semi-analytical results by Eatock Taylor & Huang (1997) and Moubayed & Williams (1995) and the numerical results of Kim & Yue (1990). Table 7.1 shows the comparison of the sum-frequency surge force QTF for a bottom-mounted circular cylinder with \(h=4R \). Good agreement has been achieved for both the sum-frequency and difference-frequency forces.
The mesh size is selected based on the shorter linear wave. Approximately 25 cubic elements are used. The length of the damping zone is chosen as twice the wavelength of the difference-frequency free waves. At each frequency pair, four numbers are given, corresponding successively from the top line to the present results, those of Kim & You (1999), Eaton Taylor & Huang (1997) and Moubayed & Williams (1995).

Some important numerical issues of the time-domain simulation of bichromatic waves are associated with the selection of the mesh sizes and how to efficiently enforce the radiation conditions for both the long waves and short waves. Taking the second-order diffraction problem as an example, the total wave system contains different components of waves. The shortest waves are the auto-free waves with frequency \(\omega_i \) and \(\omega_j \) as the frequencies of the two components of the bichromatic waves. At each frequency pair, four numbers are given, corresponding successively from the top line to the present results, those of Kim & You (1999), Eaton Taylor & Huang (1997) and Moubayed & Williams (1995).

Some important numerical issues of the time-domain simulation of bichromatic waves are associated with the selection of the mesh sizes and how to efficiently enforce the radiation conditions for both the long waves and short waves. Taking the second-order diffraction problem as an example, the total wave system contains different components of waves. The shortest waves are the auto-free waves with frequency \(\omega_i \) and \(\omega_j \) as the frequencies of the two components of the bichromatic waves. At each frequency pair, four numbers are given, corresponding successively from the top line to the present results, those of Kim & You (1999), Eaton Taylor & Huang (1997) and Moubayed & Williams (1995).

Table 7.2

<table>
<thead>
<tr>
<th>(\omega_{ij})</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum-freq.</td>
<td>diff-freq.</td>
<td>sum-freq.</td>
<td>diff-freq.</td>
<td>sum-freq.</td>
<td>diff-freq.</td>
</tr>
<tr>
<td>(\omega_{ij})</td>
</tr>
<tr>
<td>1.853 0.856</td>
<td>2.182 0.786</td>
<td>2.064 0.765</td>
<td>1.883 0.849</td>
<td>2.294 0.786</td>
<td>2.148 0.777</td>
</tr>
<tr>
<td>1.783 0.840</td>
<td>2.091 0.783</td>
<td>1.908 0.716</td>
<td>1.868 0.849</td>
<td>2.294 0.786</td>
<td>2.154 0.777</td>
</tr>
</tbody>
</table>

Here \(k \) and \(k' \) are the wave numbers of the high-frequency and difference-frequency free waves, respectively.

The maximum panel size depends on the shortest wavelength. It is suggested by Faltinsen (1990) based on the experience on constant boundary element method that the characteristic length of an element ought to be at most 1/8 of the wave length. Around a vertical column with a circular cross-section there ought to be at most 1/8 of the wave length. Therefore, a vertical column with a circular cross-section there ought to be 15-20 circumferential elements at any height. If there is a conflict between these two recommendations, the more conservative is required. A similar criterion holds for the BHEOM depending on the required accuracy on the results.

In this section, the numerical damping zone is used without Sommerfeld-Orlanski condition. The length of the damping zone is chosen as twice the wavelength of the difference-frequency free waves. The mesh size is selected based on the shortest linear wave. Approximately 25 cubic elements are used.
pur wavelength of the shorter wave near the waterline. Smoothly stretched meshes are used on both free surface and body surface away from the wavefront.

The non-dimensional wave numbers studied here do not include cases where \(v_1 \) and \(v_2 \) \((\pi / \sigma)\) are very close. These cases require very large computational domain relative to the characteristic body length and result in huge-dimension matrix equation system. This is a common issue in the numerical computations when multi-scale problems are considered. However, one can on one hand use the combination of the numerical domain size with, for instance, the commercial/Öklandsbergs condition to reduce the size of the computational domain. On the other hand, one has to always keep in mind what physical effects are of interest. For instance, if the difference-frequency effect is a major concern, larger mesh sizes can be used compared to that in a problem where sum-frequency effects are dominant. If the sum-frequency effects are of more interest, a much smaller computational domain can be designed compared to that in a difference frequency dominant problem.

7.1.3 Third-order diffusion in regular waves

It has been shown in the previous sections that the present time-domain HOBBEM is able to predict accurately the linear and second-order wave diffraction effect on the stationary bodies. In this section, we will try to study the third-order diffusion effect on a fixed body in regular waves by the time-domain HOBBEM described in Chapter 4. The free-surface conditions and the body boundary conditions for the third-order diffusion problem have been given in Section 2.5.

The third-harmonic part of the third-order diffusion problem was studied by, for instance Malenica & Molin (1995) and Teng & Kato (1997) in the frequency domain. Faltinsen et al. (1995) obtained an asymptotic solution to the third-order diffusion problem with a long wave length approximation. In the present study, we will study the complete third-order diffusion, which means that the solution contains not only the triple-harmonic effect but also the third-order contribution with fundamental frequency. The third-order wave loads are, in most cases of small magnitudes compared with the physical effects are of interest. For instance, if the difference-frequency effect is a major concern, larger mesh sizes can be used compared to that in a problem where sum-frequency effects are dominant. If the sum-frequency effects are of more interest, a much smaller computational domain can be designed compared to that in a difference frequency dominant problem.

7.1.3 Third-order diffraction in regular waves

It has been shown in the previous sections that the present time-domain HOBBEM is able to predict accurately the linear and second-order wave diffraction effect on the stationary bodies. In this section, we will try to study the third-order diffraction effect on a fixed body in regular waves by the time-domain HOBBEM described in Chapter 4. The free-surface conditions and the body boundary conditions for the third-order diffraction problem have been given in Section 2.5.

The third-harmonic part of the third-order diffraction problem was studied by, for instance Malenica & Molin (1995) and Teng & Kato (1997) in the frequency domain. Faltinsen et al. (1995) obtained an asymptotic solution to the third-order diffraction problem with a long wave length approximation. In the present study, we will study the complete third-order diffraction, which means that the solution contains not only the triple-harmonic effect but also the third-order contribution with fundamental frequency. The third-order wave loads are, in most cases of small magnitudes compared with the physical effects are of interest. For instance, if the difference-frequency effect is a major concern, larger mesh sizes can be used compared to that in a problem where sum-frequency effects are dominant. If the sum-frequency effects are of more interest, a much smaller computational domain can be designed compared to that in a difference frequency dominant problem.

7.1.3 Third-order diffraction in regular waves

It has been shown in the previous sections that the present time-domain HOBBEM is able to predict accurately the linear and second-order wave diffraction effect on the stationary bodies. In this section, we will try to study the third-order diffraction effect on a fixed body in regular waves by the time-domain HOBBEM described in Chapter 4. The free-surface conditions and the body boundary conditions for the third-order diffraction problem have been given in Section 2.5.

The third-harmonic part of the third-order diffraction problem was studied by, for instance Malenica & Molin (1995) and Teng & Kato (1997) in the frequency domain. Faltinsen et al. (1995) obtained an asymptotic solution to the third-order diffraction problem with a long wave length approximation. In the present study, we will study the complete third-order diffraction, which means that the solution contains not only the triple-harmonic effect but also the third-order contribution with fundamental frequency. The third-order wave loads are, in most cases of small magnitudes compared with the physical effects are of interest. For instance, if the difference-frequency effect is a major concern, larger mesh sizes can be used compared to that in a problem where sum-frequency effects are dominant. If the sum-frequency effects are of more interest, a much smaller computational domain can be designed compared to that in a difference frequency dominant problem.

According to Malenica & Molin (1995), we decompose the total third-order forces into three parts (see also Section 2.5.3)

\[
F_n^\text{tSB} = F_n^\text{1SB} + F_n^\text{2SB} + F_n^\text{3SB},
\]

where

\[
F_n^\text{1SB} = -\frac{1}{2} c_n \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 \phi}{\partial y^2} \frac{\partial^2 \phi}{\partial z^2} dx dy dz,
\]

\[
F_n^\text{2SB} = -\frac{1}{2} c_n \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial y} \frac{\partial \phi}{\partial z} \frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 \phi}{\partial y^2} \frac{\partial^2 \phi}{\partial z^2} dx dy dz,
\]

\[
F_n^\text{3SB} = -\frac{1}{2} c_n \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial y} \frac{\partial \phi}{\partial z} \frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 \phi}{\partial y^2} \frac{\partial^2 \phi}{\partial z^2} dx dy dz.
\]

The first part \(F_n^\text{tSB} \) is contributed by the products of the first-order quantities. \(F_n^\text{tSB} \) consists the products of the first-order and second-order quantities, whereas \(F_n^\text{tSB} \) is the consequence of the

\[
F_n^\text{tSB} = F_n^\text{1SB} + F_n^\text{2SB} + F_n^\text{3SB},
\]

where

\[
F_n^\text{1SB} = -\frac{1}{2} c_n \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 \phi}{\partial y^2} \frac{\partial^2 \phi}{\partial z^2} dx dy dz,
\]

\[
F_n^\text{2SB} = -\frac{1}{2} c_n \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial y} \frac{\partial \phi}{\partial z} \frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 \phi}{\partial y^2} \frac{\partial^2 \phi}{\partial z^2} dx dy dz,
\]

\[
F_n^\text{3SB} = -\frac{1}{2} c_n \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \left(\frac{\nu_1}{\pi / \sigma} \right)^2 \frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial y} \frac{\partial \phi}{\partial z} \frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 \phi}{\partial y^2} \frac{\partial^2 \phi}{\partial z^2} dx dy dz.
\]

The first part \(F_n^\text{tSB} \) is contributed by the products of the first-order quantities. \(F_n^\text{tSB} \) consists the products of the first-order and second-order quantities, whereas \(F_n^\text{tSB} \) is the consequence of the
third-order velocity potential. CW and SH are the mean wavefield and the mean wetted body surface, respectively. We will hereafter in this section denote the third-order horizontal force in the direction of wave heading as F_{3} in both as three components as F_{3x}, F_{3y} and F_{3z} corresponding to the decomposition in Eq.(7.3).

The third-order diffraction of a bottom-mounted vertical circular cylinder with draft $d=10R$ studied by both Malenica & Molin (1995) and Teng & Kato (1997) is re-investigated in this section. Here R is the radius of the cylinder. The triple-harmonic parts of the present time-domain method will be compared with that of Malenica & Molin (1995) and Teng & Kato (1997). The comparisons are shown in Fig.7.17 - Fig.7.20. F_{3x}, F_{3y} and F_{3z} in Fig.7.17 - Fig.7.20 are the triple-harmonic parts of the F_{3}, F_{3y} and F_{3z}, respectively. F_{3} in Fig.7.17 presents the amplitudes of the real and the imaginary parts of F_{3}, whereas those of F_{3y} and F_{3z} are depicted in Fig.7.18. Comparisons in Fig.7.17 - Fig.7.20 show very good agreement. This is not surprising since F_{3x} and F_{3y} are contributed only by the first-order and second-order solutions, which have been shown to be accurate in the previous sections of this chapter. Differencess were observed for F_{3z} between the present results and results of Malenica & Molin (1995) and Teng & Kato (1997). See the comparison of the amplitude of the real and imaginary parts of F_{3z} in Fig.7.19 and Fig.7.20, respectively.

Some numerical details for the results in Fig.7.17 - Fig.7.20 are summarised as follows: The density of mesh near the waterline was selected as $N_{E0}=40$, where N_{E0} represents the number of cubic elements per linear wavelength. The lengths of damping zones in the first-, second- and third-order solutions are twice the linear wavelength. The numerical damping zone described in Section 3.4 without active wave absorber was used to enforce the radiation conditions. The empirical coefficient c_{1} in Eq.(3.21) was set to be $0.5+5.10^{-2}$ in all the calculations. In order to absorb the third-order wave with the fundamental frequency, the damping zone used in the third-order problem is the same as that in the first-order problem. The first-order and second-order derivatives on both the free surface and body boundary are calculated with the assurance of the cubic shape functions of the higher-order boundary elements. The third-order derivative term $d^{3}u/3t$ in the third-order kinematic free-surface conditions (Eq.(2.73)) was rewritten as the second-order derivatives of the vertical velocity on the free surface. See Section 4.6 for the discussion of the direct calculation of higher-order derivatives. Other numerical details can be found in the related sections in Chapter 4.

Some numerical details for the results in Fig.7.17 - Fig.7.20 are summarised as follows: The density of mesh near the waterline was selected as $N_{E0}=40$, where N_{E0} represents the number of cubic elements per linear wavelength. The meshes near the waterline are finer and become coarser in a smooth way away from the bottom in order to represent the time increment and in the influence of the fluid motion. Here T is the linear wave period. The lengths of damping zones in the first-, second- and third-order solutions are twice the linear wavelength. The numerical damping zone described in Section 3.4 without active wave absorber was used to enforce the radiation conditions. The empirical coefficient c_{1} in Eq.(3.21) was set to be $0.5+5.10^{-2}$ in all the calculations. In order to absorb the third-order wave with the fundamental frequency, the damping zone used in the third-order problem is the same as that in the first-order problem. The first-order and second-order derivatives on both the free surface and body boundary are calculated with the assurance of the cubic shape functions of the higher-order boundary elements. The third-order derivative term $d^{3}u/3t$ in the third-order kinematic free-surface conditions (Eq.(2.73)) was rewritten as the second-order derivatives of the vertical velocity on the free surface. See Section 4.6 for the discussion of the direct calculation of higher-order derivatives. Other numerical details can be found in the related sections in Chapter 4.

Some numerical details for the results in Fig.7.17 - Fig.7.20 are summarised as follows: The density of mesh near the waterline was selected as $N_{E0}=40$, where N_{E0} represents the number of cubic elements per linear wavelength. The meshes near the waterline are finer and become coarser in a smooth way away from the bottom in order to represent the time increment and in the influence of the fluid motion. Here T is the linear wave period. The lengths of damping zones in the first-, second- and third-order solutions are twice the linear wavelength. The numerical damping zone described in Section 3.4 without active wave absorber was used to enforce the radiation conditions. The empirical coefficient c_{1} in Eq.(3.21) was set to be $0.5+5.10^{-2}$ in all the calculations. In order to absorb the third-order wave with the fundamental frequency, the damping zone used in the third-order problem is the same as that in the first-order problem. The first-order and second-order derivatives on both the free surface and body boundary are calculated with the assurance of the cubic shape functions of the higher-order boundary elements. The third-order derivative term $d^{3}u/3t$ in the third-order kinematic free-surface conditions (Eq.(2.73)) was rewritten as the second-order derivatives of the vertical velocity on the free surface. See Section 4.6 for the discussion of the direct calculation of higher-order derivatives. Other numerical details can be found in the related sections in Chapter 4.

Some numerical details for the results in Fig.7.17 - Fig.7.20 are summarised as follows: The density of mesh near the waterline was selected as $N_{E0}=40$, where N_{E0} represents the number of cubic elements per linear wavelength. The meshes near the waterline are finer and become coarser in a smooth way away from the bottom in order to represent the time increment and in the influence of the fluid motion. Here T is the linear wave period. The lengths of damping zones in the first-, second- and third-order solutions are twice the linear wavelength. The numerical damping zone described in Section 3.4 without active wave absorber was used to enforce the radiation conditions. The empirical coefficient c_{1} in Eq.(3.21) was set to be $0.5+5.10^{-2}$ in all the calculations. In order to absorb the third-order wave with the fundamental frequency, the damping zone used in the third-order problem is the same as that in the first-order problem. The first-order and second-order derivatives on both the free surface and body boundary are calculated with the assurance of the cubic shape functions of the higher-order boundary elements. The third-order derivative term $d^{3}u/3t$ in the third-order kinematic free-surface conditions (Eq.(2.73)) was rewritten as the second-order derivatives of the vertical velocity on the free surface. See Section 4.6 for the discussion of the direct calculation of higher-order derivatives. Other numerical details can be found in the related sections in Chapter 4.

Some numerical details for the results in Fig.7.17 - Fig.7.20 are summarised as follows: The density of mesh near the waterline was selected as $N_{E0}=40$, where N_{E0} represents the number of cubic elements per linear wavelength. The meshes near the waterline are finer and become coarser in a smooth way away from the bottom in order to represent the time increment and in the influence of the fluid motion. Here T is the linear wave period. The lengths of damping zones in the first-, second- and third-order solutions are twice the linear wavelength. The numerical damping zone described in Section 3.4 without active wave absorber was used to enforce the radiation conditions. The empirical coefficient c_{1} in Eq.(3.21) was set to be $0.5+5.10^{-2}$ in all the calculations. In order to absorb the third-order wave with the fundamental frequency, the damping zone used in the third-order problem is the same as that in the first-order problem. The first-order and second-order derivatives on both the free surface and body boundary are calculated with the assurance of the cubic shape functions of the higher-order boundary elements. The third-order derivative term $d^{3}u/3t$ in the third-order kinematic free-surface conditions (Eq.(2.73)) was rewritten as the second-order derivatives of the vertical velocity on the free surface. See Section 4.6 for the discussion of the direct calculation of higher-order derivatives. Other numerical details can be found in the related sections in Chapter 4.
Fig. 7.17. The amplitude of the real and the imaginary part of $F_1^{(2)}$ on a bottom-mounted circular cylinder with draft $d=10R$. A is the linear incident wave amplitude. k is the wave number.

Fig. 7.18. The amplitude of the real and the imaginary part of $F_2^{(2)}$ on a bottom-mounted circular cylinder with draft $d=10R$. A is the linear incident wave amplitude. k is the wave number.

Fig. 7.19. The amplitude of the real part of $F_3^{(2)}$ on a bottom-mounted circular cylinder with draft $d=10R$. A is the linear incident wave amplitude. k is the wave number.

Fig. 7.20. The amplitude of the real and the imaginary part of $F_1^{(3)}$ on a bottom-mounted circular cylinder with draft $d=10R$. A is the linear incident wave amplitude. k is the wave number.

Fig. 7.21. The amplitude of the real and the imaginary part of $F_2^{(3)}$ on a bottom-mounted circular cylinder with draft $d=10R$. A is the linear incident wave amplitude. k is the wave number.

Fig. 7.22. The amplitude of the real part of $F_3^{(3)}$ on a bottom-mounted circular cylinder with draft $d=10R$. A is the linear incident wave amplitude. k is the wave number.

7.1 Second-order and third-order wave diffraction on a fixed body
Fig. 7.20. The amplitude of the imaginary part of $F_3^{(3)}$ on a bottom-mounted circular cylinder with draft $d=10R$. A is the linear incident wave amplitude. k is the wave number.

Fig. 7.21. Time records of the third-order wave force component $F_3^{(3)}$ with different meshes densities for a bottom-mounted circular cylinder in regular wave. $d=10R$, $kR=1.0$.

Fig. 7.22. Time records of the total third-order wave force $F_3^{(3)}$ with different time increments for a bottom-mounted circular cylinder in regular wave. $d=10R$, $kR=1.0$.
In order to examine the effect of the numerical damping zone on the third-order results, we have studied the sensitivity of the results on the lengths of the damping zones and the empirical coefficients in the dissipative terms in the numerical damping zone.

The length of the free surface, defined as the distance from the waterline to the end of the free surface along the radial direction, is kept in three times the linear wave length, i.e. L = 3R. Here R is the linear wavelength. The length of the damping zone is defined as Ls, whereas the length of the free surface part with the damping zone excluded is defined as Ls. See Fig. 7.23 for the illustration of Ls, L1, and L2. Three different damping zone lengths have been considered, i.e. L2 = 1.5Ls, 2Ls and 3Ls. The empirical coefficients J0, J1 and J2 of the third-order wave force due to the third-order velocity potential, i.e. F3, are plotted in Fig. 7.25. Both F3, F2 and F1 consist of three curves with different damping-zone lengths. The time history of the third-order wave force due to the third-order velocity potential, i.e. F3, is plotted in Fig. 7.25. Both F3, F2 and F1 consist of three curves with different damping-zone lengths. It is difficult to find any differences between the curves since they are very close. It is seen from Fig. 7.24 and Fig. 7.25 that the present numerical results are not sensitive to the location and the length of the damping zone as long as it is well designed so that it can sufficiently damp out most of the energy of the scattered waves.

Our empirical coefficients also showed a clear lack of sensitivity on the damping coefficients J0, J1 and J2 of the third-order wave force due to the third-order velocity potential, i.e. F3, when it is selected in between 10−5 and 10−6 and the length of the damping zone is chosen to be larger than about 1.5Ls. The results will not be shown here. The F3-component in Eq. (5.16) can be further divided into the sum of two parts, with the first part F3,0 due to the third-order incident wave velocity potential ω0 and the other part F3,1 due to the third-order scattered wave velocity potential ωs. As an alternative way of obtaining the third-order force contributed by the third-order scattered velocity potential, i.e. F3,1, the indirect method based on the formula of the damping coefficient, see Eq. (3.21). The different damping zone lengths have to be substituted into Eq. (3.21) in order to get the damping coefficient.

In order to examine the effect of the numerical damping zone on the third-order results, we have studied the sensitivity of the results on the lengths of the damping zones and the empirical coefficients in the dissipative terms in the numerical damping zone.

The length of the free surface, defined as the distance from the waterline to the end of the free surface along the radial direction, is kept in three times the linear wave length, i.e. L = 3R. Here R is the linear wavelength. The length of the damping zone is defined as Ls, whereas the length of the free surface part with the damping zone excluded is defined as Ls. See Fig. 7.23 for the illustration of Ls, L1, and L2. Three different damping zone lengths have been considered, i.e. L2 = 1.5Ls, 2Ls and 3Ls. The empirical coefficients J0, J1 and J2 of the third-order wave force due to the third-order velocity potential, i.e. F3, are plotted in Fig. 7.25. Both F3, F2 and F1 consist of three curves with different damping-zone lengths. The time history of the third-order wave force due to the third-order velocity potential, i.e. F3, is plotted in Fig. 7.25. Both F3, F2 and F1 consist of three curves with different damping-zone lengths. It is difficult to find any differences between the curves since they are very close. It is seen from Fig. 7.24 and Fig. 7.25 that the present numerical results are not sensitive to the location and the length of the damping zone as long as it is well designed so that it can sufficiently damp out most of the energy of the scattered waves.

Our empirical coefficients also showed a clear lack of sensitivity on the damping coefficients J0, J1 and J2 of the third-order wave force due to the third-order velocity potential, i.e. F3, when it is selected in between 10−5 and 10−6 and the length of the damping zone is chosen to be larger than about 1.5Ls. The results will not be shown here. The F3-component in Eq. (5.16) can be further divided into the sum of two parts, with the first part F3,0 due to the third-order incident wave velocity potential ω0 and the other part F3,1 due to the third-order scattered wave velocity potential ωs. As an alternative way of obtaining the third-order force contributed by the third-order scattered velocity potential, i.e. F3,1, the indirect method based on the formula of the damping coefficient, see Eq. (3.21). The different damping zone lengths have to be substituted into Eq. (3.21) in order to get the damping coefficient.
Green’s 2nd identity is also used here to validate the numerical results for $F_3^{(3)}$. We introduce an artificial velocity potential ψ satisfying the Laplace equation in the fluid domain, $\psi_0=0$ on the mean free surface, $\psi_0/\nu \psi_0=0$ on the mean body surface, $\psi_0/\nu \psi_0=0$ on the sea bottom and $\psi_0=0$ on a control surface at infinity, n_0 is the X-component of the unit normal vector on the body surface. The consequence of using the indirect method is that the third-order force contributed by the third-order velocity potential can be obtained without solving the third-order problem. The details of the indirect method can be found in Appendix E. It has also been used in the Chapter 6 as an alternative approach to get second-order diffraction and radiation forces in two-dimensional problems.

Gran's 2nd identity is also used here to validate the numerical results for $F_3^{(3)}$. We introduce an artificial velocity potential ψ satisfying the Laplace equation in the fluid domain, $\psi_0=0$ on the mean free surface, $\psi_0/\nu \psi_0=0$ on the mean body surface, $\psi_0/\nu \psi_0=0$ on the sea bottom and $\psi_0=0$ on a control surface at infinity, n_0 is the X-component of the unit normal vector on the body surface. The consequence of using the indirect method is that the third-order force contributed by the third-order velocity potential can be obtained without solving the third-order problem. The details of the indirect method can be found in Appendix E. It has also been used in the Chapter 6 as an alternative approach to get second-order diffraction and radiation forces in two-dimensional problems.
The third-order results of Malenica & Molin (1995) in Fig.7.19 and Fig.7.20 are considered as the most accurate since they have been confirmed by some other frequency-domain studies for instance

Presented in Fig.7.26 are the time histories of ψ_3 on the bottom-mounted vertical circular cylinder with $h/R=1$ in a regular wave (kR=1.0) calculated by the direct pressure integration method and the indirect method based on Green's 2nd identity. With kR=1.0 and h=10R, we are actually studying a deep-water case, since kR=1.54 (see e.g. Faltinsen, 1990). Therefore, the third-order velocity potential is negligible, i.e. $\phi_3=0$. The results of the direct method and the indirect method are consistent. Here the free surface length L=5L is used with the damping zone length L=2L and L=3L. One should note that the vertical velocity of ψ_3 at the waterline is singular but still integrable. A similar singularity for the artificial ψ_3 problem was found analytically for a two-dimensional semi-circle. See Section 6.5 and Section 6.6.

The third-order results of Malenica & Molin (1995) in Fig.7.19 and Fig.7.20 are considered as the most accurate since they have been confirmed by some other frequency-domain studies for instance

Theoretically speaking, the third-order free-surface conditions Eq.(2.73) and Eq.(2.74) used in the present study contain secular terms. That means the secular (solvability) conditions are needed. See more discussions on the secularity (solvability) condition in Section 6.4. Unfortunately, there is no rational way to impose a secularity condition in the time-domain simulations for a general three-dimensional problem. Our experiences with the third-order time-domain studies in two dimensions suggest that the third-order solution without a secularity condition shows an increase of the third-order wave amplitude with the increase of the distance to the body. However, the results close to the body should still be reliable, which indicates that integrating the pressure on the body would give the correct results for e.g. the forces and moments. No obviously strong secular effects have been observed in the three-dimensional numerical results of the third-order wave field. This was not true in the two-dimensional studies. See the discussion in Section 6.4.

The sensitivity studies on the discretization, the time increment of time stepping of the free-surface conditions, the empirical damping coefficients in the numerical damping zone, the location and length of the damping zone suggest that the numerical results presented in Fig.7.19 - Fig.7.20 are convergent.

Theoretically speaking, the third-order free-surface conditions Eq.(2.73) and Eq.(2.74) used in the present study contain secular terms. That means the secular (solvability) conditions are needed. See more discussions on the secularity (solvability) condition in Section 6.4. Unfortunately, there is no rational way to impose a secularity condition in the time-domain simulations for a general three-dimensional problem. Our experiences with the third-order time-domain studies in two dimensions suggest that the third-order solution without a secularity condition shows an increase of the third-order wave amplitude with the increase of the distance to the body. However, the results close to the body should still be reliable, which indicates that integrating the pressure on the body would give the correct results for e.g. the forces and moments. No obviously strong secular effects have been observed in the three-dimensional numerical results of the third-order wave field. This was not true in the two-dimensional studies. See the discussion in Section 6.4.

The third-order results of Malenica & Molin (1995) in Fig.7.19 and Fig.7.20 are considered as the most accurate since they have been confirmed by some other frequency-domain studies for instance

Presented in Fig.7.26 are the time histories of ψ_3 on the bottom-mounted vertical circular cylinder with $h/R=1$ in a regular wave (kR=1.0) calculated by the direct pressure integration method and the indirect method based on Green's 2nd identity. With kR=1.0 and h=10R, we are actually studying a deep-water case, since kR=1.54 (see e.g. Faltinsen, 1990). Therefore, the third-order velocity potential is negligible, i.e. $\phi_3=0$. The results of the direct method and the indirect method are consistent. Here the free surface length L=5L is used with the damping zone length L=2L and L=3L. One should note that the vertical velocity of ψ_3 at the waterline is singular but still integrable. A similar singularity for the artificial ψ_3 problem was found analytically for a two-dimensional semi-circle. See Section 6.5 and Section 6.6.

The sensitivity studies on the discretization, the time increment of time stepping of the free-surface conditions, the empirical damping coefficients in the numerical damping zone, the location and length of the damping zone suggest that the numerical results presented in Fig.7.19 - Fig.7.20 are convergent.

Theoretically speaking, the third-order free-surface conditions Eq.(2.73) and Eq.(2.74) used in the present study contain secular terms. That means the secular (solvability) conditions are needed. See more discussions on the secularity (solvability) condition in Section 6.4. Unfortunately, there is no rational way to impose a secularity condition in the time-domain simulations for a general three-dimensional problem. Our experiences with the third-order time-domain studies in two dimensions suggest that the third-order solution without a secularity condition shows an increase of the third-order wave amplitude with the increase of the distance to the body. However, the results close to the body should still be reliable, which indicates that integrating the pressure on the body would give the correct results for e.g. the forces and moments. No obviously strong secular effects have been observed in the three-dimensional numerical results of the third-order wave field. This was not true in the two-dimensional studies. See the discussion in Section 6.4.

The third-order results of Malenica & Molin (1995) in Fig.7.19 and Fig.7.20 are considered as the most accurate since they have been confirmed by some other frequency-domain studies for instance

Presented in Fig.7.26 are the time histories of ψ_3 on the bottom-mounted vertical circular cylinder with $h/R=1$ in a regular wave (kR=1.0) calculated by the direct pressure integration method and the indirect method based on Green's 2nd identity. With kR=1.0 and h=10R, we are actually studying a deep-water case, since kR=1.54 (see e.g. Faltinsen, 1990). Therefore, the third-order velocity potential is negligible, i.e. $\phi_3=0$. The results of the direct method and the indirect method are consistent. Here the free surface length L=5L is used with the damping zone length L=2L and L=3L. One should note that the vertical velocity of ψ_3 at the waterline is singular but still integrable. A similar singularity for the artificial ψ_3 problem was found analytically for a two-dimensional semi-circle. See Section 6.5 and Section 6.6.

The sensitivity studies on the discretization, the time increment of time stepping of the free-surface conditions, the empirical damping coefficients in the numerical damping zone, the location and length of the damping zone suggest that the numerical results presented in Fig.7.19 - Fig.7.20 are convergent.

Theoretically speaking, the third-order free-surface conditions Eq.(2.73) and Eq.(2.74) used in the present study contain secular terms. That means the secular (solvability) conditions are needed. See more discussions on the secularity (solvability) condition in Section 6.4. Unfortunately, there is no rational way to impose a secularity condition in the time-domain simulations for a general three-dimensional problem. Our experiences with the third-order time-domain studies in two dimensions suggest that the third-order solution without a secularity condition shows an increase of the third-order wave amplitude with the increase of the distance to the body. However, the results close to the body should still be reliable, which indicates that integrating the pressure on the body would give the correct results for e.g. the forces and moments. No obviously strong secular effects have been observed in the three-dimensional numerical results of the third-order wave field. This was not true in the two-dimensional studies. See the discussion in Section 6.4.

The third-order results of Malenica & Molin (1995) in Fig.7.19 and Fig.7.20 are considered as the most accurate since they have been confirmed by some other frequency-domain studies for instance
7.2 Second-order studies of a body under forced oscillations

This section studies the linear and second-order wave loads on floating bodies under forced oscillations. For a vertical circular cylinder and a hemisphere, the linear hydrodynamic coefficients, i.e. the added mass and damping coefficients, obtained from the Fourier transformation of the time history of the first-order numerical results are compared with the analytical results. For a vertical axisymmetric body without sharp corners, the forced surge, heave and pitch are studied by both the traditional method with the formulation in the inertial coordinate system and the new method based on domain decomposition. Consistent results of the two methods are obtained. The forced surge and heaving of a truncated vertical circular cylinder with sharp corner in otherwise calm water are studied up to second order by the new method. The present results agree well with some of the existing numerical results.

7.2.1. Linear hydrodynamic coefficients

A vertical circular cylinder under forced surge is first studied. The draft of the cylinder is equal to the water depth. Malenica et al. (1995) provided the linear hydrodynamic coefficients with zero or small Froude number within the context of potential flow theory. The way that they solved the problem is analytically based. The surge added mass \(a\) and damping coefficients \(b\) for \(Fr=0\) are presented in Fig.7.27 and Fig.7.28, respectively. The present time-domain results agree well with the semi-analytical result by Malenica et al. (1995).

The definitions of variables in Fig.7.27 and Fig.7.28 are given as follows. \(R\) is the radius of the cylinder. The frequency of encounter \(\omega_z\), which should be interpreted as the frequency of oscillations in our case, was defined by Malenica et al. (1995) as

\[
\omega_z = \frac{1}{2\pi} \sqrt{g h} \tan \theta \tan \phi, \quad (7.7)
\]

where \(\theta\) is the gravity acceleration and \(h\) is the water depth.

with \(\omega_z\) as the fundamental frequency of incoming waves. \(U\) is the forward speed defined positively in \(X\)-direction. \(\beta\) is the angle between the wave direction and the \(X\)-axis. The results shown in Fig.7.27 and Fig.7.28 correspond to the wave number of the incident waves, which is the real root of the dispersion relationship for the incident waves

\[
a_\omega = \left(\omega_z - \omega_0\right)^2 - \gamma g \tan \theta \tan \phi, \quad (7.8)
\]

where \(\gamma\) is the gravity acceleration and \(h\) is the water depth.

7.2.2. Linear hydrodynamic coefficients

A vertical circular cylinder under forced surge is first studied. The draft of the cylinder is equal to the water depth. Malenica et al. (1995) provided the linear hydrodynamic coefficients with zero or small Froude number within the context of potential flow theory. The way that they solved the problem is analytically based. The surge added mass \(a\) and damping coefficients \(b\) for \(Fr=0\) are presented in Fig.7.27 and Fig.7.28, respectively. The present time-domain results agree well with the semi-analytical result by Malenica et al. (1995).

The definitions of variables in Fig.7.27 and Fig.7.28 are given as follows. \(R\) is the radius of the cylinder. The frequency of encounter \(\omega_z\), which should be interpreted as the frequency of oscillations in our case, was defined by Malenica et al. (1995) as

\[
\omega_z = \frac{1}{2\pi} \sqrt{g h} \tan \theta \tan \phi, \quad (7.7)
\]

with \(\omega_z\) as the fundamental frequency of incoming waves. \(U\) is the forward speed defined positively in \(X\)-direction. \(\beta\) is the angle between the wave direction and the \(X\)-axis. The results shown in Fig.7.27 and Fig.7.28 correspond to the wave number of the incident waves, which is the real root of the dispersion relationship for the incident waves

\[
a_\omega = \left(\omega_z - \omega_0\right)^2 - \gamma g \tan \theta \tan \phi, \quad (7.8)
\]

where \(\gamma\) is the gravity acceleration and \(h\) is the water depth.

7.2.2. Linear hydrodynamic coefficients

A vertical circular cylinder under forced surge is first studied. The draft of the cylinder is equal to the water depth. Malenica et al. (1995) provided the linear hydrodynamic coefficients with zero or small Froude number within the context of potential flow theory. The way that they solved the problem is analytically based. The surge added mass \(a\) and damping coefficients \(b\) for \(Fr=0\) are presented in Fig.7.27 and Fig.7.28, respectively. The present time-domain results agree well with the semi-analytical result by Malenica et al. (1995).

The definitions of variables in Fig.7.27 and Fig.7.28 are given as follows. \(R\) is the radius of the cylinder. The frequency of encounter \(\omega_z\), which should be interpreted as the frequency of oscillations in our case, was defined by Malenica et al. (1995) as

\[
\omega_z = \frac{1}{2\pi} \sqrt{g h} \tan \theta \tan \phi, \quad (7.7)
\]

with \(\omega_z\) as the fundamental frequency of incoming waves. \(U\) is the forward speed defined positively in \(X\)-direction. \(\beta\) is the angle between the wave direction and the \(X\)-axis. The results shown in Fig.7.27 and Fig.7.28 correspond to the wave number of the incident waves, which is the real root of the dispersion relationship for the incident waves

\[
a_\omega = \left(\omega_z - \omega_0\right)^2 - \gamma g \tan \theta \tan \phi, \quad (7.8)
\]

where \(\gamma\) is the gravity acceleration and \(h\) is the water depth.

7.2.2. Linear hydrodynamic coefficients

A vertical circular cylinder under forced surge is first studied. The draft of the cylinder is equal to the water depth. Malenica et al. (1995) provided the linear hydrodynamic coefficients with zero or small Froude number within the context of potential flow theory. The way that they solved the problem is analytically based. The surge added mass \(a\) and damping coefficients \(b\) for \(Fr=0\) are presented in Fig.7.27 and Fig.7.28, respectively. The present time-domain results agree well with the semi-analytical result by Malenica et al. (1995).

The definitions of variables in Fig.7.27 and Fig.7.28 are given as follows. \(R\) is the radius of the cylinder. The frequency of encounter \(\omega_z\), which should be interpreted as the frequency of oscillations in our case, was defined by Malenica et al. (1995) as

\[
\omega_z = \frac{1}{2\pi} \sqrt{g h} \tan \theta \tan \phi, \quad (7.7)
\]

with \(\omega_z\) as the fundamental frequency of incoming waves. \(U\) is the forward speed defined positively in \(X\)-direction. \(\beta\) is the angle between the wave direction and the \(X\)-axis. The results shown in Fig.7.27 and Fig.7.28 correspond to the wave number of the incident waves, which is the real root of the dispersion relationship for the incident waves

\[
a_\omega = \left(\omega_z - \omega_0\right)^2 - \gamma g \tan \theta \tan \phi, \quad (7.8)
\]

where \(\gamma\) is the gravity acceleration and \(h\) is the water depth.
The added mass and damping coefficients of a hemisphere have also been studied by Fourier-analyzing the time-domain results. The water depth is infinite. Comparisons are made with Hulme’s (1982) analytical results. Fig. 7.29 shows the surge added mass and damping coefficients. The non-dimensional surge damping coefficient for a vertical circular cylinder compared with the semi-analytical results by Malenica et al. (1995). The draft is equal to the water depth h and the radius R.

The added mass and damping coefficients of a hemisphere have also been studied by Fourier-analyzing the time-domain results. The water depth is infinite. Comparisons are made with Hulme’s (1982) analytical results. Fig. 7.29 shows the surge added mass and damping coefficients. The non-dimensional surge damping coefficient for a vertical circular cylinder compared with the semi-analytical results by Malenica et al. (1995). The draft is equal to the water depth h and the radius R.

The added mass and damping coefficients of a hemisphere have also been studied by Fourier-analyzing the time-domain results. The water depth is infinite. Comparisons are made with Hulme’s (1982) analytical results. Fig. 7.29 shows the surge added mass and damping coefficients. The non-dimensional surge damping coefficient for a vertical circular cylinder compared with the semi-analytical results by Malenica et al. (1995). The draft is equal to the water depth h and the radius R.

The added mass and damping coefficients of a hemisphere have also been studied by Fourier-analyzing the time-domain results. The water depth is infinite. Comparisons are made with Hulme’s (1982) analytical results. Fig. 7.29 shows the surge added mass and damping coefficients. The non-dimensional surge damping coefficient for a vertical circular cylinder compared with the semi-analytical results by Malenica et al. (1995). The draft is equal to the water depth h and the radius R.
The dimensions of a cross-section of the body in the oxz-plane are shown in Fig. 7.31. The center of gravity (COG) is located at (0, 0, -0.25R) with R = 1.0. The water depth h is chosen as 1.5R.

We firstly study the forced oscillation of a vertical axisymmetric body without sharp corners. Both the traditional method formulated in the inertial coordinate system and the new method with a body-fixed frame near the body have been used. In the traditional method, the second-order boundary condition contains second-order derivatives of the linear velocity potential. The derivatives of the velocity potential on the body surface and the derivatives of the velocity potential and wave elevation are numerically calculated with the differentiation with respect to the cubic shape functions of the higher-order boundary elements. The details have been given in Section 4.6.

The dimensions of a cross-section of the body in the oxz-plane are shown in Fig. 7.31. The center of gravity (COG) is located at (0, 0, -0.25R) with R = 1.0. The water depth h is chosen as 1.5R.

7.2.2. Second-order loads on forced oscillating bodies

Vertical axisymmetric body without sharp corners

We firstly study the forced oscillation of a vertical axisymmetric body without sharp corners. Both the traditional method formulated in the inertial coordinate system and the new method with a body-fixed frame near the body have been used. In the traditional method, the second-order boundary condition contains second-order derivatives of the linear velocity potential. The derivatives of the velocity potential on the body surface and the derivatives of the velocity potential and wave elevation are numerically calculated with the differentiation with respect to the cubic shape functions of the higher-order boundary elements. The details have been given in Section 4.6.

The dimensions of a cross-section of the body in the oxz-plane are shown in Fig. 7.31. The center of gravity (COG) is located at (0, 0, -0.25R) with R = 1.0. The water depth h is chosen as 1.5R.

Fig. 7.29. (a) Surge added mass coefficients of a hemisphere. (b) Surge damping coefficients of a hemisphere.

Fig. 7.30. (a) Heave added mass coefficients of a hemisphere. (b) Heave damping coefficients of a hemisphere.

Fig. 7.31. (a) Nondimensional A_{11} vs kR. (b) Nondimensional A_{33} vs kR.

Fig. 7.32. (a) Nondimensional B_{11} vs kR. (b) Nondimensional B_{33} vs kR.

7.2.2. Second-order loads on forced oscillating bodies

Vertical axisymmetric body without sharp corners

We firstly study the forced oscillation of a vertical axisymmetric body without sharp corners. Both the traditional method formulated in the inertial coordinate system and the new method with a body-fixed frame near the body have been used. In the traditional method, the second-order boundary condition contains second-order derivatives of the linear velocity potential. The derivatives of the velocity potential on the body surface and the derivatives of the velocity potential and wave elevation are numerically calculated with the differentiation with respect to the cubic shape functions of the higher-order boundary elements. The details have been given in Section 4.6.

The dimensions of a cross-section of the body in the oxz-plane are shown in Fig. 7.31. The center of gravity (COG) is located at (0, 0, -0.25R) with R = 1.0. The water depth h is chosen as 1.5R.

Fig. 7.29. (a) Surge added mass coefficients of a hemisphere. (b) Surge damping coefficients of a hemisphere.

Fig. 7.30. (a) Heave added mass coefficients of a hemisphere. (b) Heave damping coefficients of a hemisphere.

Fig. 7.31. (a) Nondimensional A_{11} vs kR. (b) Nondimensional A_{33} vs kR.

Fig. 7.32. (a) Nondimensional B_{11} vs kR. (b) Nondimensional B_{33} vs kR.

7.2.2. Second-order loads on forced oscillating bodies

Vertical axisymmetric body without sharp corners

We firstly study the forced oscillation of a vertical axisymmetric body without sharp corners. Both the traditional method formulated in the inertial coordinate system and the new method with a body-fixed frame near the body have been used. In the traditional method, the second-order boundary condition contains second-order derivatives of the linear velocity potential. The derivatives of the velocity potential on the body surface and the derivatives of the velocity potential and wave elevation are numerically calculated with the differentiation with respect to the cubic shape functions of the higher-order boundary elements. The details have been given in Section 4.6.

The dimensions of a cross-section of the body in the oxz-plane are shown in Fig. 7.31. The center of gravity (COG) is located at (0, 0, -0.25R) with R = 1.0. The water depth h is chosen as 1.5R.

Fig. 7.29. (a) Surge added mass coefficients of a hemisphere. (b) Surge damping coefficients of a hemisphere.

Fig. 7.30. (a) Heave added mass coefficients of a hemisphere. (b) Heave damping coefficients of a hemisphere.

Fig. 7.31. (a) Nondimensional A_{11} vs kR. (b) Nondimensional A_{33} vs kR.

Fig. 7.32. (a) Nondimensional B_{11} vs kR. (b) Nondimensional B_{33} vs kR.
2.3 for the definitions). With our choice of the position of COG, the pure pitching about the COG.

The forced sinusoidal surge, heave and pitch of the axisymmetric body in otherwise still water are

\[\ddot{z}^G = \dot{R}(t) - \omega \sin(\omega t), \quad \ddot{\zeta}_{\alpha}(t) = 0, \]

\[\ddot{\zeta}_{\beta}(t) - \omega \sin(\omega t) + \ddot{\zeta}_{\gamma}(t) = 0, \]

\[\dot{\alpha}_{\alpha}(t) = \dot{\alpha}_{\beta}(t) = \dot{\alpha}_{\gamma}(t) = 0, \]

(7.9)

(7.10)

where. \(\dot{R}(t) \) is a ramp function used to allow for the gentle start of the flow, \(\omega \) is the circular frequency of the oscillations, \(\ddot{R}(t) \) and \(\dot{\zeta}_{\alpha}(t) \) are the amplitudes of surge, heave and pitch motions, respectively. In the present study, we have used \(\dot{R}(t) = 0.05 \pi R, \dot{\zeta}_{\alpha}(t) = 0.05 \pi R \) and \(\ddot{\zeta}_{\alpha}(t) = 0 \), which are defined with respect to the origin of the coordinate system OXYZ (see Section 2.3 for the definitions). With our choice of the position of COG, the pure pitching about the COG.

represents the coupled surge and pitch if the motions are defined with respect to the origin of the reference frame, which is the case when we are formulating the free-surface conditions and body boundary conditions in Chapter 2.

In order to make the comparison between the results of the traditional method and that of the new method possible, one has to define the forces and moments consistently. The formulas for the forces and moments in Eq.(2.67) - Eq.(2.72) and Eq.(2.108) - Eq.(2.113) were defined with respect to the body-fixed coordinate system OXYZ. In this section, the forces and moments will be presented with respect to the body-fixed coordinate system OXYZ. That means we have replace \(\tilde{F} \) and \(\tilde{M} \) in Eq.(2.67) - Eq.(2.72) and Eq.(2.108) - Eq.(2.113) by \(\tilde{F} \) and \(\tilde{M} \), respectively, and setting the terms associated with \(\dot{R}(t) \) or \(\dot{\zeta}_\alpha(t) \) to be zero. \(\tilde{F} = (x,y,z) \) and \(\tilde{M} = (x,y,z) \) are the vector points of points corresponding to \(\tilde{F} \) and \(\tilde{M} \), respectively.

It is seen that the hydrodynamic forces start to reach the steady state when the ramp function is over at

\[\ddot{z}^G = \dot{R}(t) - \omega \sin(\omega t), \quad \ddot{\zeta}_{\alpha}(t) = 0, \]

\[\ddot{\zeta}_{\beta}(t) - \omega \sin(\omega t) + \ddot{\zeta}_{\gamma}(t) = 0, \]

\[\dot{\alpha}_{\alpha}(t) = \dot{\alpha}_{\beta}(t) = \dot{\alpha}_{\gamma}(t) = 0, \]

(7.9)

(7.10)

where. \(\dot{R}(t) \) is a ramp function used to allow for the gentle start of the flow, \(\omega \) is the circular frequency of the oscillations, \(\ddot{R}(t) \) and \(\dot{\zeta}_{\alpha}(t) \) are the amplitudes of surge, heave and pitch motions, respectively. In the present study, we have used \(\dot{R}(t) = 0.05 \pi R, \dot{\zeta}_{\alpha}(t) = 0.05 \pi R \) and \(\ddot{\zeta}_{\alpha}(t) = 0 \), which are defined with respect to the origin of the coordinate system OXYZ (see Section 2.3 for the definitions). With our choice of the position of COG, the pure pitching about the COG.

represents the coupled surge and pitch if the motions are defined with respect to the origin of the reference frame, which is the case when we are formulating the free-surface conditions and body boundary conditions in Chapter 2.

In order to make the comparison between the results of the traditional method and that of the new method possible, one has to define the forces and moments consistently. The formulas for the forces and moments in Eq.(2.67) - Eq.(2.72) and Eq.(2.108) - Eq.(2.113) were defined with respect to the body-fixed coordinate system OXYZ. In this section, the forces and moments will be presented with respect to the body-fixed coordinate system OXYZ. That means we have replace \(\tilde{F} \) and \(\tilde{M} \) in Eq.(2.67) - Eq.(2.72) and Eq.(2.108) - Eq.(2.113) by \(\tilde{F} \) and \(\tilde{M} \), respectively, and setting the terms associated with \(\dot{R}(t) \) or \(\dot{\zeta}_\alpha(t) \) to be zero. \(\tilde{F} = (x,y,z) \) and \(\tilde{M} = (x,y,z) \) are the vector points of points corresponding to \(\tilde{F} \) and \(\tilde{M} \), respectively.

It is seen that the hydrodynamic forces start to reach the steady state when the ramp function is over at
t=T, with T as the period of the body motion. There appears a difference of the second-order results between the new method and the traditional method in the first three periods, during which the ramp function is applied. This can partly be explained from the free-surface conditions. The second-order free-surface condition used by the new method in the inner domain involves the rigid-body motions (see Eq.(2.88) - Eq.(2.93)), while the second-order free-surface condition formulated in the inertial coordinate system do not contain any body motions (see Eq.(2.48) - Eq.(2.53)). The first-order results of the two methods do not show similar difference because the corresponding free-surface conditions are homogeneous and do not have any forcing from the rigid-body motions.

Comparison is made between the results of the new method and that of the traditional method. kR=1.0. The first-order results of the two methods do not show similar difference because the corresponding free-surface conditions are homogeneous and do not have any forcing from the rigid-body motions.

Comparison is made between the results of the new method and that of the traditional method. kR=1.0.

Comparison is made between the results of the new method and that of the traditional method. kR=1.0.
In Fig.7.34 - Fig.7.36, the amplitudes of the non-dimensional steady-state sum-frequency vertical force versus non-dimensional wave number are shown for the forced pitch, heave and surge motion, respectively. The second-order horizontal force and pitch moment are zero due to symmetry properties. Comparison is made between the results of the present and traditional method showing that consistent results have been obtained by the two methods.

Comparison is made between the results of the new method and that of the traditional method.

In Fig.7.34 - Fig.7.36, the amplitudes of the non-dimensional steady-state sum-frequency vertical force versus non-dimensional wave number are shown for the forced pitch, heave and surge motion, respectively. The second-order horizontal force and pitch moment are zero due to symmetry properties. Comparison is made between the results of the present and traditional method showing that consistent results have been obtained by the two methods.

Comparison is made between the results of the present and traditional method showing that consistent results have been obtained by the two methods.

Comparison is made between the results of the present and traditional method showing that consistent results have been obtained by the two methods.
Teng (1995) studied the same problem in the frequency domain by a higher-order BEM, while Bai (2001) and Teng et al. (2002) applied a time-domain B-spline based BEM. The formulation in the time domain is used. The higher-order BEM in the time domain is used. Fig.7.37 shows the results of Teng (1995) and Teng et al. (2002) applied a time-domain B-spline based BEM. The formulation in the time domain is used. Comparison is made between the results of the new method and that of the traditional method.

Transcendent type of circular cylinder with sharp corners

A truncated vertical circular cylinder under forced sinusoidal surge and heave motion is studied. The radius of the cylinder is chosen as $R=1.0$ with draft $d=0.5R$. The water depth considered here is $h=1.5R$. This problem has been solved to second order by Isaacson & Ng (1993b) by a time-domain lower-order panel method.

Because the second-order results of Isaacson & Ng (1993b) will be shown to have large difference compared with that of the present new method and some other existing numerical results, some important features of Isaacson & Ng’s (1993b) numerical method is summarized as follows: They have used the traditional method based on the formulation in the inertial coordinate system was used. See Section 2.4. The second-order derivatives in the second-order body boundary condition are calculated directly by using a standard numerical method. The Sommerfeld-Orlanski radiation condition (see also Orlanski, 1976) is used at a control surface to enforce the first-order and second-order radiation conditions. A first-order Adams-Bashforth-Moulton predictor-corrector method was used for the time evolution of the free-surface conditions. The hydrodynamic forces were calculated by a direct integration of the pressure over the wetted body surface.

Teng (1995) studied the same problem in the frequency domain by a higher-order BEM, while Bai (2001) and Teng et al. (2002) applied a time-domain B-spline based BEM. The formulation in the time domain is used. The higher-order BEM in the time domain is used. Fig.7.37 shows the results of Teng (1995) and Teng et al. (2002) applied a time-domain B-spline based BEM. The formulation in the time domain is used. Comparison is made between the results of the new method and that of the traditional method.

Comparison

Comparison is made between the results of the new method and that of the traditional method. Because the second-order results of Isaacson & Ng (1993b) will be shown to have large difference compared with that of the present new method and some other existing numerical results, some important features of Isaacson & Ng’s (1993b) numerical method is summarized as follows: They have used the traditional method based on the formulation in the inertial coordinate system was used. See Section 2.4. The second-order derivatives in the second-order body boundary condition are calculated directly by using a standard numerical method. The Sommerfeld-Orlanski radiation condition (see also Orlanski, 1976) is used at a control surface to enforce the first-order and second-order radiation conditions. A first-order Adams-Bashforth-Moulton predictor-corrector method was used for the time evolution of the free-surface conditions. The hydrodynamic forces were calculated by a direct integration of the pressure over the wetted body surface.

Teng (1995) studied the same problem in the frequency domain by a higher-order BEM, while Bai (2001) and Teng et al. (2002) applied a time-domain B-spline based BEM. The formulation in the time domain is used. The higher-order BEM in the time domain is used. Fig.7.37 shows the results of Teng (1995) and Teng et al. (2002) applied a time-domain B-spline based BEM. The formulation in the time domain is used. Comparison is made between the results of the new method and that of the traditional method.

Transcendent type of circular cylinder with sharp corners

A truncated vertical circular cylinder under forced sinusoidal surge and heave motion is studied. The radius of the cylinder is chosen as $R=1.0$ with draft $d=0.5R$. The water depth considered here is $h=1.5R$. This problem has been solved to second order by Isaacson & Ng (1993b) by a time-domain lower-order panel method.

Because the second-order results of Isaacson & Ng (1993b) will be shown to have large difference compared with that of the present new method and some other existing numerical results, some important features of Isaacson & Ng’s (1993b) numerical method is summarized as follows: They have used the traditional method based on the formulation in the inertial coordinate system was used. See Section 2.4. The second-order derivatives in the second-order body boundary condition are calculated directly by using a standard numerical method. The Sommerfeld-Orlanski radiation condition (see also Orlanski, 1976) is used at a control surface to enforce the first-order and second-order radiation conditions. A first-order Adams-Bashforth-Moulton predictor-corrector method was used for the time evolution of the free-surface conditions. The hydrodynamic forces were calculated by a direct integration of the pressure over the wetted body surface.

Teng (1995) studied the same problem in the frequency domain by a higher-order BEM, while Bai (2001) and Teng et al. (2002) applied a time-domain B-spline based BEM. The formulation in the time domain is used. The higher-order BEM in the time domain is used. Fig.7.37 shows the results of Teng (1995) and Teng et al. (2002) applied a time-domain B-spline based BEM. The formulation in the time domain is used. Comparison is made between the results of the new method and that of the traditional method.
amplitude of the non-dimensional vertical sum-frequency forces for the surging truncated cylinder. Comparison is made between results of the new method and the other numerical results mentioned above. The comparison for heaving motion is shown in Fig.7.38. It is seen that our results are consistent with those of Bai (2001) and large differences with Isaacson & Ng (1993b) is observed. Bai (2001) attributed the difference to the fact that Isaacson & Ng (1993b) were using a constant panel method, which causes difficulties in getting accurate results of the second-order derivatives in the second-order boundary condition. Tong et al. (2002) also pointed out that, the computation of the second-order potential needs higher accuracy approaches, and care has to be paid in the computation of the first-order and second-order derivatives of the velocity potentials.

Comparison is made between results of the new method and the other numerical results mentioned above. The comparison for heaving motion is shown in Fig.7.38. It is seen that our results are consistent with those of Bai (2001) and large differences with Isaacson & Ng (1993b) is observed. Bai (2001) attributed the difference to the fact that Isaacson & Ng (1993b) were using a constant panel method, which causes difficulties in getting accurate results of the second-order derivatives in the second-order boundary condition. Tong et al. (2002) also pointed out that, the computation of the second-order potential needs higher accuracy approaches, and care has to be paid in the computation of the first-order and second-order derivatives of the velocity potentials.

Convergence study of the amplitude of the vertical sum-frequency force with different element numbers for the surging truncated cylinder with amplitude 1, 0.05 is listed in Table 7.1. The vertical number for a surging truncated vertical circular cylinder with amplitude 1, 0.05 is listed in Table 7.1. The vertical number for a surging truncated vertical circular cylinder with amplitude 1, 0.05 is listed in Table 7.1. The vertical number for a surging truncated vertical circular cylinder with amplitude 1, 0.05 is listed in Table 7.1. The vertical
Due to the fact that the truncated cylinder is wall-sided at the mean waterline, a waterline integral which takes care of the fluctuation of the wave elevation is not included here. From Table 7.1, it is seen that the convergence is achieved for all the three components when NE is about 40. In reality, NE=35 does not give much visible different results with NE=30. It is noted that the component due to the second-order velocity potential $F_{s0}^{(2)}$ has even finer convergence rate than that of the other two components, which are the contributions of the first-order velocity potential.

Due to the fact that the truncated cylinder is wall-sided at the mean waterline, a waterline integral which takes care of the fluctuation of the wave elevation is not included here. From Table 7.1, it is seen that the convergence is achieved for all the three components when NE is about 40. In reality, NE=35 does not give much visible different results with NE=30. It is noted that the component due to the second-order velocity potential $F_{s0}^{(2)}$ has even finer convergence rate than that of the other two components, which are the contributions of the first-order velocity potential.

The forced surging with amplitude $\zeta_0 = 0.05$. Of a truncated vertical circular cylinder with $IP=1.0$, $h=1.5R$, and $d=0.5R$ is studied. The absolute value sign means the amplitude. NE=0 is the element number distributed in one wavelength.

Table 1. Convergence study on the element number for the amplitude of the vertical sum-frequency force calculated by the new method. The forced surging with amplitude $\zeta_0 = 0.05$. Of a truncated vertical circular cylinder with $IP=1.0$, $h=1.5R$, and $d=0.5R$ is studied. The absolute value sign means the amplitude. NE=0 is the element number distributed in one wavelength.

<table>
<thead>
<tr>
<th>NE</th>
<th>$F_{s0}^{(2)}$</th>
<th>$F_{s0}^{(2)}$</th>
<th>$F_{s0}^{(2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.424</td>
<td>0.140</td>
<td>0.479</td>
</tr>
<tr>
<td>30</td>
<td>0.423</td>
<td>0.146</td>
<td>0.482</td>
</tr>
<tr>
<td>40</td>
<td>0.424</td>
<td>0.150</td>
<td>0.482</td>
</tr>
<tr>
<td>50</td>
<td>0.423</td>
<td>0.151</td>
<td>0.483</td>
</tr>
</tbody>
</table>

We have also attempted to study the same problem by the traditional method with the second-order derivatives in the second-order body boundary condition calculated directly. This is similar to what was done by Leeron & Ng (1993b). Representing the velocity potential on each element by the shape functions, we can obtain the first-order derivative through the first-order derivatives of the shape functions. Again, one uses shape functions to interpolate the distribution of the velocity, i.e. the first-order derivative of the velocity potential, and gets the second-order derivatives by differentiating the shape functions. See the details in Section 4.6. This approach has been shown by Liu et al. (1993) to be accurate for the calculation of the second-order derivatives. The sum-frequency force defined with respect to oxyz system is divided into different components $F_{s0}^{(2)} = F_{s0}^{(2)} + F_{s0}^{(2)} + F_{s0}^{(2)}$.

We have also attempted to study the same problem by the traditional method with the second-order derivatives in the second-order body boundary condition calculated directly. This is similar to what was done by Leeron & Ng (1993b). Representing the velocity potential on each element by the shape functions, we can obtain the first-order derivative through the first-order derivatives of the shape functions. Again, one uses shape functions to interpolate the distribution of the velocity, i.e. the first-order derivative of the velocity potential, and gets the second-order derivatives by differentiating the shape functions. See the details in Section 4.6. This approach has been shown by Liu et al. (1993) to be accurate for the calculation of the second-order derivatives. The sum-frequency force defined with respect to oxyz system is divided into different components $F_{s0}^{(2)} = F_{s0}^{(2)} + F_{s0}^{(2)} + F_{s0}^{(2)}$.

Due to the fact that the truncated cylinder is wall-sided at the mean waterline, a waterline integral which takes care of the fluctuation of the wave elevation is not included here. From Table 7.1, it is seen that the convergence is achieved for all the three components when NE is about 40. In reality, NE=35 does not give much visible different results with NE=30. It is noted that the component due to the second-order velocity potential $F_{s0}^{(2)}$ has even faster convergence rate than that of the other two components, which are the contributions of the first-order velocity potential.

Due to the fact that the truncated cylinder is wall-sided at the mean waterline, a waterline integral which takes care of the fluctuation of the wave elevation is not included here. From Table 7.1, it is seen that the convergence is achieved for all the three components when NE is about 40. In reality, NE=35 does not give much visible different results with NE=30. It is noted that the component due to the second-order velocity potential $F_{s0}^{(2)}$ has even faster convergence rate than that of the other two components, which are the contributions of the first-order velocity potential.

$\zeta_0 = 0.05$. Of a truncated vertical circular cylinder with $IP=1.0$, $h=1.5R$, and $d=0.5R$ is studied. The absolute value sign means the amplitude. NE=0 is the element number distributed in one wavelength.

Table 1. Convergence study on the element number for the amplitude of the vertical sum-frequency force calculated by the new method. The forced surging with amplitude $\zeta_0 = 0.05$. Of a truncated vertical circular cylinder with $IP=1.0$, $h=1.5R$, and $d=0.5R$ is studied. The absolute value sign means the amplitude. NE=0 is the element number distributed in one wavelength.

<table>
<thead>
<tr>
<th>NE</th>
<th>$F_{s0}^{(2)}$</th>
<th>$F_{s0}^{(2)}$</th>
<th>$F_{s0}^{(2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.424</td>
<td>0.140</td>
<td>0.479</td>
</tr>
<tr>
<td>30</td>
<td>0.423</td>
<td>0.146</td>
<td>0.482</td>
</tr>
<tr>
<td>40</td>
<td>0.424</td>
<td>0.150</td>
<td>0.482</td>
</tr>
<tr>
<td>50</td>
<td>0.423</td>
<td>0.151</td>
<td>0.483</td>
</tr>
</tbody>
</table>

We have also attempted to study the same problem by the traditional method with the second-order derivatives in the second-order body boundary condition calculated directly. This is similar to what was done by Leeron & Ng (1993b). Representing the velocity potential on each element by the shape functions, we can obtain the first-order derivative through the first-order derivatives of the shape functions. Again, one uses shape functions to interpolate the distribution of the velocity, i.e. the first-order derivative of the velocity potential, and gets the second-order derivatives by differentiating the shape functions. See the details in Section 4.6. This approach has been shown by Liu et al. (1993) to be accurate for the calculation of the second-order derivatives. The sum-frequency force defined with respect to oxyz system is divided into different components $F_{s0}^{(2)} = F_{s0}^{(2)} + F_{s0}^{(2)} + F_{s0}^{(2)}$.

We have also attempted to study the same problem by the traditional method with the second-order derivatives in the second-order body boundary condition calculated directly. This is similar to what was done by Leeron & Ng (1993b). Representing the velocity potential on each element by the shape functions, we can obtain the first-order derivative through the first-order derivatives of the shape functions. Again, one uses shape functions to interpolate the distribution of the velocity, i.e. the first-order derivative of the velocity potential, and gets the second-order derivatives by differentiating the shape functions. See the details in Section 4.6. This approach has been shown by Liu et al. (1993) to be accurate for the calculation of the second-order derivatives. The sum-frequency force defined with respect to oxyz system is divided into different components $F_{s0}^{(2)} = F_{s0}^{(2)} + F_{s0}^{(2)} + F_{s0}^{(2)}$.
For an axisymmetric body with sharp corner (defined in Fig.7.31) studied in the beginning of Section 7.2.2, we have obtained consistent results with the results obtained using the traditional method. This indicates that the higher-order method we used for calculating the second-order derivatives are accurate. The differences of the results between the new method and the traditional method, and probably the difference of the results between Bai (2001) (or the new method in this article) and Iacono & Ng (1993b) do not have too much to do with whether the higher-order methods are used or not. However, a higher-order method is always preferred compared with the lower-order methods, because the resulting equation system will be much smaller if a higher-order method is used.

The differences are more likely to be due to the singular behavior of the flow velocity at the sharp corner. It is known that the solution at the sharp corner may be singular depending on the orientation of the incident flow. We will take the heaving of the truncated cylinder as an example and make analogy of our problem to the wave-current-body problem with sharp corner (see e.g. Zhao & Faltinsen, 1990b). The leading order of the local solution near the sharp corner can be partly explained by a 2D corner flow (see e.g. Newman, 1977). The corner flow solution can be represented by Eq.(5.1). Therefore the leading order of the first-order and second-order derivatives of the velocity potential are \(\partial^2 \phi \) and \(\partial^3 \phi \) respectively. Here \(r \) is the distance to the sharp corner. The consequence is that the integral of the double-gradient terms, e.g. \(\partial^4 \phi \) on \(\Gamma_1 \) (see Eq.(2.57) and Eq.(2.58)) on the mean body surface \(S_B \), is not integrable. The reason why the integrals are not integrable when the body-boundary condition is satisfied on the mean position of the body boundary is that, the formulation of the body boundary condition for a body with unsteady motions is wrong with the presence of the sharp corner. The double-gradient terms in Eq.(2.57) and Eq.(2.58) have been derived by a Taylor expansion about the mean body surface. By the higher-order method, the body boundary conditions of the new method are formulated on the exact body position, and no Taylor expansion is needed. Therefore, the integral equations of the new method are valid for cases with and without sharp corners.

Increasing the element number does not show any trend that the result is going to be closer to that of the new method.

For an axisymmetric body without sharp corner (defined in Fig.7.31) studied in the beginning of Section 7.2.2, we have obtained consistent results with the results obtained using the traditional method. This indicates that the higher-order method we used for calculating the second-order derivatives are accurate. The differences of the results between the new method and the traditional method, and probably the difference of the results between Bai (2001) (or the new method in this article) and Iacono & Ng (1993b) do not have too much to do with whether the higher-order methods are used or not. However, a higher-order method is always preferred compared with the lower-order methods, because the resulting equation system will be much smaller if a higher-order method is used.

The differences are more likely to be due to the singular behavior of the flow velocity at the sharp corner. It is known that the solution at the sharp corner may be singular depending on the orientation of the incident flow. We will take the heaving of the truncated cylinder as an example and make analogy of our problem to the wave-current-body problem with sharp corner (see e.g. Zhao & Faltinsen, 1990b). The leading order of the local solution near the sharp corner can be partly explained by a 2D corner flow (see e.g. Newman, 1977). The corner flow solution can be represented by Eq.(5.1). Therefore the leading order of the first-order and second-order derivatives of the velocity potential are \(\partial^2 \phi \) and \(\partial^3 \phi \) respectively. Here \(r \) is the distance to the sharp corner. The consequence is that the integral of the double-gradient terms, e.g. \(\partial^4 \phi \) on \(\Gamma_1 \) (see Eq.(2.57) and Eq.(2.58)) on the mean body surface \(S_B \), is not integrable. The reason why the integrals are not integrable when the body-boundary condition is satisfied on the mean position of the body boundary is that, the formulation of the body boundary condition for a body with unsteady motions is wrong with the presence of the sharp corner. The double-gradient terms in Eq.(2.57) and Eq.(2.58) have been derived by a Taylor expansion about the mean body surface. By the higher-order method, the body boundary conditions of the new method are formulated on the exact body position, and no Taylor expansion is needed. Therefore, the integral equations of the new method are valid for cases with and without sharp corners.
Another way of handling the sharp corner cases may be that one introduces a finite bilge radius R at the corner. Then one can use a Stokes-like theorem to reduce the second-order derivatives to first-order derivatives. Afterwards one let $R \to 0$. This may explain that the results by Bai (2001) and Teng et al. (2002) are consistent with our results by the new method.

Special care has to be shown when the direct pressure integration is used for the calculation of the forces and moments. It was shown that the leading order of the first-order derivative of the velocity forces and moments, due to the second-order velocity potential θ^2. The calculation is for forced surging with steady-state amplitude $A = 0.05U$ of a truncated vertical circular cylinder with $kR = 1.0$, $D=0.5R$, $h=1.5R$. The traditional method calculates the second-order derivative in the second-order boundary condition Eq.(2.58) directly.

Another way of handling the sharp corner cases may be that one introduces a finite bilge radius R at the corner. Then one can use a Stokes-like theorem to reduce the second-order derivatives to first-order derivatives. Afterwards one let $R \to 0$. This may explain that the results by Bai (2001) and Teng et al. (2002) are consistent with our results by the new method.

Special care has to be shown when the direct pressure integration is used for the calculation of the forces and moments. It was shown that the leading order of the first-order derivative of the velocity forces and moments, due to the second-order velocity potential θ^2. The calculation is for forced surging with steady-state amplitude $A = 0.05U$ of a truncated vertical circular cylinder with $kR = 1.0$, $D=0.5R$, $h=1.5R$. The traditional method calculates the second-order derivative in the second-order boundary condition Eq.(2.58) directly.

Another way of handling the sharp corner cases may be that one introduces a finite bilge radius R at the corner. Then one can use a Stokes-like theorem to reduce the second-order derivatives to first-order derivatives. Afterwards one let $R \to 0$. This may explain that the results by Bai (2001) and Teng et al. (2002) are consistent with our results by the new method.

Special care has to be shown when the direct pressure integration is used for the calculation of the forces and moments. It was shown that the leading order of the first-order derivative of the velocity forces and moments, due to the second-order velocity potential θ^2. The calculation is for forced surging with steady-state amplitude $A = 0.05U$ of a truncated vertical circular cylinder with $kR = 1.0$, $D=0.5R$, $h=1.5R$. The traditional method calculates the second-order derivative in the second-order boundary condition Eq.(2.58) directly.

Another way of handling the sharp corner cases may be that one introduces a finite bilge radius R at the corner. Then one can use a Stokes-like theorem to reduce the second-order derivatives to first-order derivatives. Afterwards one let $R \to 0$. This may explain that the results by Bai (2001) and Teng et al. (2002) are consistent with our results by the new method.

Special care has to be shown when the direct pressure integration is used for the calculation of the forces and moments. It was shown that the leading order of the first-order derivative of the velocity forces and moments, due to the second-order velocity potential θ^2. The calculation is for forced surging with steady-state amplitude $A = 0.05U$ of a truncated vertical circular cylinder with $kR = 1.0$, $D=0.5R$, $h=1.5R$. The traditional method calculates the second-order derivative in the second-order boundary condition Eq.(2.58) directly.

Another way of handling the sharp corner cases may be that one introduces a finite bilge radius R at the corner. Then one can use a Stokes-like theorem to reduce the second-order derivatives to first-order derivatives. Afterwards one let $R \to 0$. This may explain that the results by Bai (2001) and Teng et al. (2002) are consistent with our results by the new method.
Table 2. Convergence study on the element number for the vertical sum-frequency force calculated by the traditional method. The forced surging with amplitude $U_0=1.0$, $kR=1.0$, $\Omega=0.3$ is studied. The absolute value sign means the amplitude. NDI is the element number divided by the wavelength.

<table>
<thead>
<tr>
<th>Element Number</th>
<th>pR_{re}</th>
<th>pR_{im}</th>
<th>$pR_{\text{re}}/pR_{\text{im}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE0=20</td>
<td>0.952</td>
<td>0.146</td>
<td>0.482</td>
</tr>
<tr>
<td>NE0=50</td>
<td>1.052</td>
<td>0.146</td>
<td>0.482</td>
</tr>
<tr>
<td>NE0=40</td>
<td>1.282</td>
<td>0.150</td>
<td>0.482</td>
</tr>
<tr>
<td>NE0=50</td>
<td>1.399</td>
<td>0.151</td>
<td>0.482</td>
</tr>
</tbody>
</table>

7.2 Second-order studies of a body under forced oscillations

potential is $O(r^{-1})$. Thus the $-\frac{1}{2} \mu \rho \omega^2 \zeta \frac{\partial^2 \zeta}{\partial t^2}$ term in Eq. (7.14) is $O(r^{-1})$ and the $\rho \left(\frac{\omega}{\omega_0} \right)^2 \zeta \frac{\partial^2 \zeta}{\partial t^2}$ term in Eq. (7.15) is $O(r^{-1})$. This indicates that the integrals in Eq. (7.14) and Eq. (7.15) are still integrable even though the convergence rate may be slow. The ordering of the singularity behavior may also explain the fact that $\frac{p \zeta_{\text{mi}}}{c_0}$ in Table 7.1 has faster convergence rate than $\frac{p \zeta_{\text{mi}}}{c_0}$ in Eq. (7.15) does not have any singularity in the integrand, thus one should not be surprised that $\frac{p \zeta_{\text{mi}}}{c_0}$ shows even faster convergence than $\frac{p \zeta_{\text{mi}}}{c_0}$ and $\frac{p \zeta_{\text{mi}}}{c_0}$, see Table 7.1.

Table 2. Convergence study on the element number for the vertical sum-frequency force calculated by the traditional method. The forced surging with amplitude $U_0=1.0$, $kR=1.0$, $\Omega=0.3$ is studied. The absolute value sign means the amplitude. NDI is the element number divided by the wavelength.

<table>
<thead>
<tr>
<th>Element Number</th>
<th>pR_{re}</th>
<th>pR_{im}</th>
<th>$pR_{\text{re}}/pR_{\text{im}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE0=20</td>
<td>0.952</td>
<td>0.146</td>
<td>0.482</td>
</tr>
<tr>
<td>NE0=50</td>
<td>1.052</td>
<td>0.146</td>
<td>0.482</td>
</tr>
<tr>
<td>NE0=40</td>
<td>1.282</td>
<td>0.150</td>
<td>0.482</td>
</tr>
<tr>
<td>NE0=50</td>
<td>1.399</td>
<td>0.151</td>
<td>0.482</td>
</tr>
</tbody>
</table>

7.2 Second-order studies of a body under forced oscillations

potential is $O(r^{-1})$. Thus the $-\frac{1}{2} \mu \rho \omega^2 \zeta \frac{\partial^2 \zeta}{\partial t^2}$ term in Eq. (7.14) is $O(r^{-1})$ and the $\rho \left(\frac{\omega}{\omega_0} \right)^2 \zeta \frac{\partial^2 \zeta}{\partial t^2}$ term in Eq. (7.15) is $O(r^{-1})$. This indicates that the integrals in Eq. (7.14) and Eq. (7.15) are still integrable even though the convergence rate may be slow. The ordering of the singularity behavior may also explain the fact that $\frac{p \zeta_{\text{mi}}}{c_0}$ in Table 7.1 has faster convergence rate than $\frac{p \zeta_{\text{mi}}}{c_0}$ in Eq. (7.15) does not have any singularity in the integrand, thus one should not be surprised that $\frac{p \zeta_{\text{mi}}}{c_0}$ shows even faster convergence than $\frac{p \zeta_{\text{mi}}}{c_0}$ and $\frac{p \zeta_{\text{mi}}}{c_0}$, see Table 7.1.

Table 2. Convergence study on the element number for the vertical sum-frequency force calculated by the traditional method. The forced surging with amplitude $U_0=1.0$, $kR=1.0$, $\Omega=0.3$ is studied. The absolute value sign means the amplitude. NDI is the element number divided by the wavelength.

<table>
<thead>
<tr>
<th>Element Number</th>
<th>pR_{re}</th>
<th>pR_{im}</th>
<th>$pR_{\text{re}}/pR_{\text{im}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE0=20</td>
<td>0.952</td>
<td>0.146</td>
<td>0.482</td>
</tr>
<tr>
<td>NE0=50</td>
<td>1.052</td>
<td>0.146</td>
<td>0.482</td>
</tr>
<tr>
<td>NE0=40</td>
<td>1.282</td>
<td>0.150</td>
<td>0.482</td>
</tr>
<tr>
<td>NE0=50</td>
<td>1.399</td>
<td>0.151</td>
<td>0.482</td>
</tr>
</tbody>
</table>
In Chapter 7, the nonlinear wave-body problems have been studied by using both the traditional method with a formulation in the inertial coordinate system and the new method using body-fixed coordinate system in the near field. No forward speed effect was included.

In this chapter, a small forward speed will be considered in the nonlinear wave-body analysis. Only the leading order of the forward speed effect is included in the present study, with its higher-order effects neglected. This makes possible for us to use the ‘double-body’ flow as the basis flow. The interactions between the steady flow and the first- and second-order unsteady flows are included in the present model. The details of the formulations of the boundary conditions in inertial and body-fixed coordinate system considering small forward speeds have been given in Chapter 2. In all the studies, the $\alpha=U/\delta$ parameter which is the product of the Froude number and non-dimensional encounter wave frequency is less than 0.25.

The wave diffraction on fixed bodies, bodies under forced oscillations and freely-floating bodies in waves will be studied with the consideration of a small forward speed. The bodies studied are free-surface piercing. Both the traditional method (if applicable) and the domain decomposition based method will be used. The domain decomposition based method using body-fixed coordinate system in the near field is valid for all the weakly-nonlinear problems of bodies with or without sharp corners with forward speed effects included. However, the traditional method is only applicable for a linear wave-body problem without forward speed, if the higher-order derivatives of the steady velocity potential are calculated directly. It is not straightforward to apply the Stokes-like theorems (see for instance Bai (2001) and Teng et al. (2002)) to the second-order wave-body problems when the forward-speed effect is included. The reason is associated with the third-order derivatives of the basis flow in the second-order body boundary condition.

The work in this chapter is relevant for the analysis of second-order wave effect on the offshore structures, e.g. TLP, in a weak current. The state-of-the-art nonlinear wave loads analysis for offshore structures does not include the influence of the current on the second-order wave loads. However, it does not mean the current effect is not important. This will be illustrated by our numerical results.

The wave diffraction on fixed bodies, bodies under forced oscillations and freely-floating bodies in waves will be studied with the consideration of a small forward speed. The bodies studied are free-surface piercing. Both the traditional method (if applicable) and the domain decomposition based method will be used. The domain decomposition based method using body-fixed coordinate system in the near field is valid for all the weakly-nonlinear problems of bodies with or without sharp corners with forward speed effects included. However, the traditional method is only applicable for a linear wave-body problem without forward speed, if the higher-order derivatives of the steady velocity potential are calculated directly. It is not straightforward to apply the Stokes-like theorems (see for instance Bai (2001) and Teng et al. (2002)) to the second-order wave-body problems when the forward-speed effect is included. The reason is associated with the third-order derivatives of the basis flow in the second-order body boundary condition.

The work in this chapter is relevant for the analysis of second-order wave effect on the offshore structures, e.g. TLP, in a weak current. The state-of-the-art nonlinear wave loads analysis for offshore structures does not include the influence of the current on the second-order wave loads. However, it does not mean the current effect is not important. This will be illustrated by our numerical results.

The wave diffraction on fixed bodies, bodies under forced oscillations and freely-floating bodies in waves will be studied with the consideration of a small forward speed. The bodies studied are free-surface piercing. Both the traditional method (if applicable) and the domain decomposition based method will be used. The domain decomposition based method using body-fixed coordinate system in the near field is valid for all the weakly-nonlinear problems of bodies with or without sharp corners with forward speed effects included. However, the traditional method is only applicable for a linear wave-body problem without forward speed, if the higher-order derivatives of the steady velocity potential are calculated directly. It is not straightforward to apply the Stokes-like theorems (see for instance Bai (2001) and Teng et al. (2002)) to the second-order wave-body problems when the forward-speed effect is included. The reason is associated with the third-order derivatives of the basis flow in the second-order body boundary condition.

The work in this chapter is relevant for the analysis of second-order wave effect on the offshore structures, e.g. TLP, in a weak current. The state-of-the-art nonlinear wave loads analysis for offshore structures does not include the influence of the current on the second-order wave loads. However, it does not mean the current effect is not important. This will be illustrated by our numerical results.
presented in this chapter. The study may also be important for the evaluation of nonlinear hull-girder loads on ships with small forward speeds. The sum-frequency excitation hull-girder loads on a ship may be very small compared with the linear wave excitation loads. However, when the sum frequencies are in the resonance frequency region of the ship hull girder, nonlinear springing may occur. The fatigue damage induced by the nonlinear wave excitation may be as important as that of the linear wave loads due to rigid-body motions. Linear springing may also occur when the encounter frequencies of the waves are equal to the lowest structural natural frequency. Because springing is a resonant phenomenon, the damping is important for both linear and nonlinear springing.

8.1 Second-order wave diffraction

Second-order wave diffraction of a body moving with a small forward speed is studied in this section. The domain-decomposition based time-domain HOBEM presented in Chapter 5 is adopted. The method described in Section 5.3 for the generation of incident wave in the inner domain is used to study the diffraction problem with a small forward speed. A bottom-mounted vertical circular cylinder.

A bottom-mounted vertical circular cylinder which has been studied by many others is chosen as a reference body. Taking into account a small forward speed, Tong et al. (1996) have studied a linear diffraction problem by time-domain BEMs. Skorup et al. (2000) has studied the same wave-current-body problem up to second order in wave steepness and first order in current speed. One should note that the wave-current-body problem is essentially the same as the wave-body problem with forward speed with a negative sign of the current speed.

The domain-decomposition based time-domain HOBEM presented in Chapter 5 is adopted. The study may also be important for the evaluation of nonlinear hull-girder loads on ships with small forward speeds. The sum-frequency excitation hull-girder loads on a ship may be very small compared with the linear wave excitation loads. However, when the sum frequencies are in the resonance frequency region of the ship hull girder, nonlinear springing occurs. The fatigue damage induced by the nonlinear wave excitation may be as important as that of the linear wave loads due to rigid-body motions. Linear springing may also occur when the encounter frequencies of the waves are equal to the lowest structural natural frequency. Because springing is a resonant phenomenon, the damping is important for both linear and nonlinear springing.

8.1 Second-order wave diffraction

Second-order wave diffraction of a body moving with a small forward speed is studied in this section. The domain-decomposition based time-domain HOBEM presented in Chapter 5 is adopted. The method described in Section 5.3 for the generation of incident wave in the inner domain is used to study the diffraction problem with a small forward speed. A bottom-mounted vertical circular cylinder.

A bottom-mounted vertical circular cylinder which has been studied by many others is chosen as a reference body. Taking into account a small forward speed, Tong et al. (1996) have studied a linear diffraction problem by time-domain BEMs. Skorup et al. (2000) has studied the same wave-current-body problem up to second order in wave steepness and first order in current speed. One should note that the wave-current-body problem is essentially the same as the wave-body problem with forward speed with a negative sign of the current speed.

The domain-decomposition based time-domain HOBEM presented in Chapter 5 is adopted. The study may also be important for the evaluation of nonlinear hull-girder loads on ships with small forward speeds. The sum-frequency excitation hull-girder loads on a ship may be very small compared with the linear wave excitation loads. However, when the sum frequencies are in the resonance frequency region of the ship hull girder, nonlinear springing occurs. The fatigue damage induced by the nonlinear wave excitation may be as important as that of the linear wave loads due to rigid-body motions. Linear springing may also occur when the encounter frequencies of the waves are equal to the lowest structural natural frequency. Because springing is a resonant phenomenon, the damping is important for both linear and nonlinear springing.
We have shown in Section 7.1.1 for the diffraction of a fixed bottom-mounted vertical circular cylinder that, the steady-state first- and second-order results are not sensitive to the distance of the control surface to the body as long as the distance is not very large. This was shown to be true as well in our numerical tests (not shown here) for the wave-body analysis with a forward speed. 30 cubic elements are used per linear wave length in the calculations. The time increment for the updating the velocity potential on the free surface and wave elevation is \(\Delta t = T_e / 200 \). Here \(T_e = 2\pi / \omega_e \) with \(\omega_e \) as the encounter frequency.

The analytical solution of the double-body basis flow velocity potential \(\phi^{e} \) is used for the bottom-mounted surface-piercing vertical circular cylinder moving with forward speed \(U \) in \(X \) direction, i.e.

\[
\phi_e^{(2)}(X, Y, Z) = -\frac{U (X - X_0)^2}{(X - X_0)^2 + (Y - Y_0)^2 + (Z - Z_0)^2}.
\]

where \((X_0, Y_0)\) is the position of the cylinder axis in the horizontal plane.

Comparisons are made between the present numerical results and some existing numerical results in the literature, showing good agreement. Fig. 8.1 and Fig. 8.2 show the amplitude of the first-order wave run-up around the cylinder for \(Fr = 0.1 \) and \(Fr = 0.1 \), respectively. The present results agree well with the other numerical studies based on time-domain BEMs by Kim & Kim (1997), Büchmann et al. (1998) and Teng et al. (2008). In the figures, \(\theta_e \) denotes the angle of the location on the cylinder with respect to the X-axis. \(\Delta \) is linear amplitude of the incident wave. \(\sigma^{1} \) is the total first-order wave elevation including the incident wave and scattered wave.

\[
\phi_e^{(1)}(X, Y, Z) = -\frac{U (X - X_0)^2}{(X - X_0)^2 + (Y - Y_0)^2 + (Z - Z_0)^2}.
\]

where \((X_0, Y_0)\) is the position of the cylinder axis in the horizontal plane.

Comparisons are made between the present numerical results and some existing numerical results in the literature, showing good agreement. Fig. 8.1 and Fig. 8.2 show the amplitude of the first-order wave run-up around the cylinder for \(Fr = 0.1 \) and \(Fr = 0.1 \), respectively. The present results agree well with the other numerical studies based on time-domain BEMs by Kim & Kim (1997), Büchmann et al. (1998) and Teng et al. (2008). In the figures, \(\theta_e \) denotes the angle of the location on the cylinder with respect to the X-axis. \(\Delta \) is linear amplitude of the incident wave. \(\sigma^{1} \) is the total first-order wave elevation including the incident wave and scattered wave.
In Fig.8.3 and Fig.8.4, the amplitude of the non-dimensional first-order horizontal force is plotted against non-dimensional wave number \(kR \) for \(Fr=+0.1 \) and \(Fr=-0.1 \), respectively. In the figures, \(k \) is the wave number of the incident wave. The present results agree well with that of Teng et al. (2008) and Skourup et al. (2000). Our numerical results of the mean drift force for the cylinder with \(Fr=0.05 \) and \(h=R \) is in between that of \(Fr=-0.05 \) and \(Fr=+0.05 \) and it is not shown here. It is noted that, even though the studied forward speed is not high, the sum-frequency force for \(kR=1.2 \) changes significantly from a positive current to a negative current with the same strength.

In Fig.8.5, together with the results by Cheung et al. (1996) and Skourup et al. (2000). In Fig.8.6, comparison for the amplitude of the line-in-line sum-frequency force is shown for \(Fr=0.05 \) and \(Fr=0.05 \). The present results agree well with that of Skourup et al. (2000). Our numerical results of the mean drift force for the cylinder with \(Fr=0.05 \) and \(h=R \) is in between that of \(Fr=-0.05 \) and \(Fr=+0.05 \) and it is not shown here. It is noted that, even though the studied forward speed is not high, the sum-frequency force for \(kR=1.2 \) changes significantly from a positive current to a negative current with the same strength.
8.1 Second-order wave diffraction

Fig. 8.4. The amplitude of the non-dimensional first-order in-line force on a vertical circular cylinder versus kR. A is the wave amplitude, $d/h=R$, $F_s=0.1$. k is the incident wave number.

Fig. 8.5. Non-dimensional horizontal mean drift force on a vertical circular cylinder versus kR. A is the wave amplitude, $d/h=R$, $F_s=0.1$. k is the incident wave number.

Fig. 8.6. The non-dimensional amplitude of sum-frequency in-line force on a vertical circular cylinder versus kR. A is the wave amplitude, $d/h=R$, $F_s=0.1$. k is the incident wave number.

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$

Skourup et al. (2000), $F_s=-0.05$

Skourup et al. (2000), $F_s=0.05$
The low-pass filter should on one hand be able to remove energy of the spurious short-wavelength disturbance which is the source of the instability. On the other hand, the energy taken out by the filtering process should be kept at a minimum. In other words, the smart filter should retain the physical waves, which are accurately presented by the numerical solution, and weed out numerical noise, which is detrimental to the numerical solutions. The influence of low-pass filter used in the present work (Eq.4.45) has been studied by choosing different strengths of the low-pass filter and different frequencies of the application of the smoothing.

The Fig.8.7 and Fig.8.8 show the time histories of the linear and second-order horizontal wave forces on a moving circular cylinder with three different filter strengths \(c = 4\text{m}/\text{T}, 6\text{m}/\text{T}, 8\text{m}/\text{T} \) respectively in Eq.(4.46). The cylinder has a draft \(d=\text{R} \), which is equal to the water depth, i.e. \(d=\text{R} \).

The non-dimensional wavenumber of the incident wave is \(k\text{R}=1.2 \). The incident wave propagates in the \(X \)-direction. The Froude number considered is \(Fr=-0.08 \), which means that we are in head-sea conditions. The mesh density near the waterline \(N=35 \) and time increment \(\Delta t=T/200 \) have been used in the numerical calculations. Here, \(T=2\pi/\omega_e \) with \(\omega_e \) as the encounter frequency. It is seen that both the first-order and second-order results are not sensitive to the strength of the filter.

On the other hand, the energy taken out by the noise, which is detrimental to the numerical solutions. The influence of low-pass filter used in the present work (Eq.4.45) has been studied by choosing different strengths of the low-pass filter and different frequencies of the application of the smoothing.

The low-pass filter should on one hand be able to remove energy of the spurious short-wavelength disturbance which is the source of the instability. On the other hand, the energy taken out by the filtering process should be kept at a minimum. In other words, the smart filter should retain the physical waves, which are accurately presented by the numerical solution, and weed out numerical noise, which is detrimental to the numerical solutions. The influence of low-pass filter used in the present work (Eq.4.45) has been studied by choosing different strengths of the low-pass filter and different frequencies of the application of the smoothing.
Presented in Fig. 8.9 and Fig. 8.10 are the time histories of the linear and second-order horizontal forces on the cylinder for different frequencies of application of the filter. The strength of the low-pass filter is used. It is seen from the results without using the low-pass filter that the instability occurs earlier in the second-order simulation than in the first-order. Applying the low-pass filter with every 5 time steps is sufficient to suppress the instabilities in the first-order results during the first 15 wave periods. However, small 'noises' are observed in the second-order results during the first 15 wave periods, followed by strong eruption of the instabilities. Applying the low-pass filter with every 1 step is able to minimize the influence of the short-wave instabilities in both the first-order and second-order solutions.

![Fig. 8.9. The first-order horizontal diffraction force on a vertical circular cylinder in regular wave.](image)

![Fig. 8.10. The second-order horizontal diffraction force on a vertical circular cylinder in regular wave.](image)

Presented in Fig. 8.9 and Fig. 8.10 are the time histories of the linear and second-order horizontal forces on the cylinder for different frequencies of application of the filter. The strength of the low-pass filter is used. It is seen from the results without using the low-pass filter that the instability occurs earlier in the second-order simulation than in the first-order. Applying the low-pass filter with every 5 time steps is sufficient to suppress the instabilities in the first-order results within the first 15 wave periods. However, small 'noises' are observed in the second-order results during the first 15 wave periods, followed by strong eruption of the instabilities. Applying the low-pass filter with every 5 time steps is sufficient to suppress the instabilities in both the first-order and second-order solutions and retain the physical wave solutions.

![Fig. 8.9. The first-order horizontal diffraction force on a vertical circular cylinder in regular wave.](image)

![Fig. 8.10. The second-order horizontal diffraction force on a vertical circular cylinder in regular wave.](image)
8.2 Second-order wave radiation

In this section, the forced oscillations of bodies moving with small forward speeds will be studied. The draft of the cylinder is equal to the water depth. The same cylinder without forward speed has been studied in Section 7.1.1.

Fig. 8.11 and Fig. 8.12 show respectively the comparison for the surge added mass and damping coefficients with that of Malenica et al. (1995) when a small Froude number Fr = -0.05 is considered. U is the forward speed. R is the radius of the cylinder. The frequency of incoming wave is defined by Malenica et al. (1995) as \(\omega_n = \omega_k \sqrt{1 - \frac{U^2}{R^2}} \), where \(\omega_k \) is the fundamental frequency of incoming wave, k as the wave number of the incident waves and \(R \) as the angle between the wave direction and the x-axis. The results shown in Fig. 8.11 and Fig. 8.12 correspond to \(\theta = 0 \). Our numerical results agree well with that of Malenica et al. (1995). However, exactly the same results should not be expected. This is due to the fact that different formulations have been used. In the perturbation procedure of Malenica et al. (1995), both the wave slope parameter \(\lambda \) and the current parameter \(\beta \) proportional to \(U \) are used. Here \(\beta \) is precisely defined does not matter since it is just a measurement of the smallness of the forward speed. The \(O(\beta^3) \) problem without current effects is firstly solved and then the \(O(\beta) \) problem considering the wave-current interaction is solved based on the result of \(O(\epsilon) \) problem. This formulation is strictly accurate to \(O(\epsilon) \) and \(O(\epsilon^2) \). However, some higher order effects in \(\beta \) have been included (see also e.g. Zhao & Faltinsen (1998a) and Brischmann (2000a)).

![Fig. 8.11. The non-dimensional surge added mass for a vertical circular cylinder compared with the analytical results by Malenica et al. (1995). The draft is equal to the water depth and the radius R = 0.05.](image1)

![Fig. 8.12. The non-dimensional surge added mass for a vertical circular cylinder compared with the analytical results by Malenica et al. (1995). The draft is equal to the water depth and the radius R = 0.05.](image2)

8.2 Second-order wave radiation

In this section, the forced oscillations of bodies moving with small forward speeds will be studied up to second order of the wave slopes (and the undisturbed body motions) and first order of the forward speed. A vertical circular cylinder, a vertical axisymmetric body and a truncated vertical circular cylinder are considered.

4 vertical circular cylinder with draft equal to water depth

A moving vertical circular cylinder with a small forward speed under forced surge motion is studied. The draft of the cylinder is equal to the water depth. The same cylinder without forward speed has been studied in Section 7.1.1.

Fig. 8.11 and Fig. 8.12 show respectively the comparison for the surge added mass and damping coefficients with that of Malenica et al. (1995) when a small Froude number Fr = -0.05 is considered. U is the forward speed. R is the radius of the cylinder. The frequency of incoming wave is defined by Malenica et al. (1995) as \(\omega_n = \omega_k \sqrt{1 - \frac{U^2}{R^2}} \), where \(\omega_k \) is the fundamental frequency of incoming wave, k as the wave number of the incident waves and \(R \) as the angle between the wave direction and the x-axis. The results shown in Fig. 8.11 and Fig. 8.12 correspond to \(\theta = 0 \). Our numerical results agree well with that of Malenica et al. (1995). However, exactly the same results should not be expected. This is due to the fact that different formulations have been used. In the perturbation procedure of Malenica et al. (1995), both the wave slope parameter \(\lambda \) and the current parameter \(\beta \) proportional to \(U \) are used. Here \(\beta \) is precisely defined does not matter since it is just a measurement of the smallness of the forward speed. The \(O(\beta^3) \) problem without current effects is firstly solved and then the \(O(\beta) \) problem considering the wave-current interaction is solved based on the result of \(O(\epsilon) \) problem. This formulation is strictly accurate to \(O(\epsilon) \) and \(O(\epsilon^2) \). However, some higher order effects in \(\beta \) have been included (see also e.g. Zhao & Faltinsen (1998a) and Brischmann (2000a)).
To the author’s knowledge, no study on the second-order radiation problem considering the forward speed effect has been reported in the literature. This may be due to fact that the second-order body boundary condition in the traditional method using an inertial system (see Section 2.4) requires higher-order derivatives of both the steady velocity potential and the first-order solutions. However, the new method presented in Chapter 5 based on a body-fixed coordinate system in the near-field is free of derivatives on the right-hand side of the body boundary conditions.

In order to verify this new method, we studied the forced surge of the vertical circular cylinder up to second order. A small constant forward speed is considered. The forced surge motion is defined as

\[z(t) = R_m(t) \sin(\omega t) \theta, \quad z^{(1)}(0) = 0. \]

(2.2)

Here \(R_m(t) \) is a ramp function used to allow for the gentle start of the flow, \(\omega \) is the circular frequency of the oscillation, \(z \) is the amplitude of the surge motion, \(z^{(1)}(0) = 0.05 h \) is used in the calculations.

Both the traditional method and the new method are used for cross verification. The traditional method we used here for a forced-oscillating body may be considered as a generalization of the work by Skousen et al. (2000), who only studied the second-order drift problem with a weak current effect.

For a vertical circular cylinder with the draft equal to the water depth, the solution for the double-body steady flow is analytically known (e.g. Skousen et al., 2000). In this study, the analytical expressions for the steady velocity potential (see Eq.(8.1)) and its derivatives are used in the numerical calculations. The amplitude of the mean drift force and the amplitude of the semi-frequency force are given in Fig.8.13 for different non-dimensional wave numbers. The wave number \(k \) in Fig.8.13 is defined as the real root of \(a^2 + b^2 = k^2 \), with \(g \) as the gravity acceleration and \(h \) the water depth. Consistent results have been obtained by the traditional method and the new method.

To the author’s knowledge, no study on the second-order radiation problem considering the forward speed effect has been reported in the literature. This may be due to fact that the second-order body boundary condition in the traditional method using an inertial system (see Section 2.4) requires higher-order derivatives of both the steady velocity potential and the first-order solutions. However, the new method presented in Chapter 5 based on a body-fixed coordinate system in the near-field is free of derivatives on the right-hand side of the body boundary conditions.

In order to verify this new method, we studied the forced surge of the vertical circular cylinder up to second order. A small constant forward speed is considered. The forced surge motion is defined as

\[z(t) = R_m(t) \sin(\omega t) \theta, \quad z^{(1)}(0) = 0. \]

(2.2)

Here \(R_m(t) \) is a ramp function used to allow for the gentle start of the flow, \(\omega \) is the circular frequency of the oscillation, \(z \) is the amplitude of the surge motion, \(z^{(1)}(0) = 0.05 h \) is used in the calculations.

Both the traditional method and the new method are used for cross verification. The traditional method we used here for a forced-oscillating body may be considered as a generalization of the work by Skousen et al. (2000), who only studied the second-order drift problem with a weak current effect.

For a vertical circular cylinder with the draft equal to the water depth, the solution for the double-body steady flow is analytically known (e.g. Skousen et al., 2000). In this study, the analytical expressions for the steady velocity potential (see Eq.(8.1)) and its derivatives are used in the numerical calculations. The amplitude of the mean drift force and the amplitude of the semi-frequency force are given in Fig.8.13 for different non-dimensional wave numbers. The wave number \(k \) in Fig.8.13 is defined as the real root of \(a^2 + b^2 = k^2 \), with \(g \) as the gravity acceleration and \(h \) the water depth. Consistent results have been obtained by the traditional method and the new method.
The draft of the axisymmetric body considered is 0.5R with R as the maximum radius of the axisymmetric body. The water depth is infinite. The dimensions of a cross-section of the body in one plane are shown in Fig.7.31. The center of gravity (COG) is located at (0, 0, -0.25R) with R=1.0.

The pitch motion with respect to the COG of the body is defined as
\[\phi_{\text{pitch}} = \frac{D}{gA} \omega \int_0^T \frac{U}{gA} \sin \phi \, dt \]
where
\[F_{x,a} = \int_0^T \frac{U}{gA} \cos \phi \, dt \]
\[\phi_{\text{pitch}} = \frac{D}{gA} \omega \int_0^T \frac{U}{gA} \sin \phi \, dt \]

A vertical axisymmetric body without sharp corners
The forced pitching oscillation of an axisymmetric body without sharp corners moving with small constant forward speed is studied. For this case, both the traditional method based on a formulation in the inertial coordinate system and the new method (Chapter 5) with body-fixed coordinate system near the body are applicable.

One should note that with our choice of the position of COG, the pure pitching about COG represents the coupled surge and pitch motion if the motions are defined with respect to

The draft of the axisymmetric body considered is 0.5R with R as the maximum radius of the axisymmetric body. The water depth is infinite. The dimensions of a cross-section of the body in one plane are shown in Fig.7.31. The center of gravity (COG) is located at (0, 0, -0.25R) with R=1.0.

The pitch motion with respect to the COG of the body is defined as
\[\phi_{\text{pitch}} = \frac{D}{gA} \omega \int_0^T \frac{U}{gA} \sin \phi \, dt \]
where
\[F_{x,a} = \int_0^T \frac{U}{gA} \cos \phi \, dt \]
\[\phi_{\text{pitch}} = \frac{D}{gA} \omega \int_0^T \frac{U}{gA} \sin \phi \, dt \]

A vertical axisymmetric body without sharp corners
The forced pitching oscillation of an axisymmetric body without sharp corners moving with small constant forward speed is studied. For this case, both the traditional method based on a formulation in the inertial coordinate system and the new method (Chapter 5) with body-fixed coordinate system near the body are applicable.
We use both the traditional method based on a formulation in the inertial coordinate system and the new method (Chapter 5) with body-fixed coordinate system to study this problem up to second order of the wave shape and to first order of the forward speed. We are not able to find an analytical solution for the steady double-body flow for this case. Therefore, a numerical solution will be used.

In the traditional formulation in the inertial frame, the second-order boundary condition contains second-order and third-order derivatives of the steady velocity potential. It is not straightforward to apply a Stokes-like theorem to the second-order derivatives as we do for the first-order derivatives. In this study, the steady velocity potential and its derivatives in the traditional formulation are calculated by using a desingularized BEM, which can only be used for cases without sharp corners. The desingularized BEM offsets the singularities out of the fluid domain and thus avoids the singular behavior of the Green functions on the body surface when the collocation points coincide with the singularities. An optimal distance was obtained by applying the desingularized BEM to a sphere moving in infinite fluid. See Section 4.6. The experience is then applied in the case of the axisymmetric body. The first-order and second-order derivatives of the unsteady velocity potentials are calculated with the assistance of the cubic shape functions of the higher-order boundary elements.

The details have been given in Section 4.6.

In the calculations based on the domain decomposition method, both the steady velocity potential \(\phi \) and the unsteady velocity potentials \(\phi_0 \) and its derivatives are calculated using the traditional method. Due to the symmetry of the body, the first-order vertical force will be zero if the Froude number is zero. However, with the presence of the forward speed, the resulting wave field will not be symmetric about the body. The first-order force in x- and z-directions, respectively. The domain decomposition method has different interpretation with the traditional method and the new method based on domain decomposition.

The comparison of the wave forces calculated by using the traditional method based on the inertial coordinate system and the new method (Chapter 5) with body-fixed coordinate system to study this problem up to second order of the wave shape and to first order of the forward speed. We are not able to find an analytical solution for the steady double-body flow for this case. Therefore, a numerical solution will be used.

In the calculations based on the domain decomposition method, both the steady velocity potential \(\phi \) and the unsteady velocity potentials \(\phi_0 \) and its derivatives are calculated using the traditional method. Due to the symmetry of the body, the first-order vertical force will be zero if the Froude number is zero. However, with the presence of the forward speed, the resulting wave field will not be symmetric about the body. The first-order force in x- and z-directions, respectively. The domain decomposition method has different interpretation with the traditional method and the new method based on domain decomposition.

The comparison of the wave forces calculated by using the traditional method based on the inertial coordinate system and the new method (Chapter 5) with body-fixed coordinate system to study this problem up to second order of the wave shape and to first order of the forward speed. We are not able to find an analytical solution for the steady double-body flow for this case. Therefore, a numerical solution will be used.

In the calculations based on the domain decomposition method, both the steady velocity potential \(\phi \) and the unsteady velocity potentials \(\phi_0 \) and its derivatives are calculated using the traditional method. Due to the symmetry of the body, the first-order vertical force will be zero if the Froude number is zero. However, with the presence of the forward speed, the resulting wave field will not be symmetric about the body. The first-order force in x- and z-directions, respectively. The domain decomposition method has different interpretation with the traditional method and the new method based on domain decomposition.

The comparison of the wave forces calculated by using the traditional method based on the inertial coordinate system and the new method (Chapter 5) with body-fixed coordinate system to study this problem up to second order of the wave shape and to first order of the forward speed. We are not able to find an analytical solution for the steady double-body flow for this case. Therefore, a numerical solution will be used.

In the calculations based on the domain decomposition method, both the steady velocity potential \(\phi \) and the unsteady velocity potentials \(\phi_0 \) and its derivatives are calculated using the traditional method. Due to the symmetry of the body, the first-order vertical force will be zero if the Froude number is zero. However, with the presence of the forward speed, the resulting wave field will not be symmetric about the body. The first-order force in x- and z-directions, respectively. The domain decomposition method has different interpretation with the traditional method and the new method based on domain decomposition.
Fig. 8.14. Time history of the first-order wave force in the \(x \)-direction on the axisymmetric body defined in Fig. 7.31 under forced pitching about COG. \(F_x = 0.05, kR = 1.2 \). The water depth is infinite.

Fig. 8.15. Time history of the first-order wave force in the \(y \)-direction on the axisymmetric body defined in Fig. 7.31 under forced pitching about COG. \(F_y = 0.05, kR = 1.2 \). The water depth is infinite.

Fig. 8.16. Time history of the first-order pitch moment about an axis through COG for the axisymmetric body defined in Fig. 7.31 under forced pitching about COG. \(My = 0.05, kR = 1.2 \). The water depth is infinite.
A truncated vertical circular cylinder with sharp corner under forced pitching and heaving has also been studied. The surge and heave motions are defined respectively as

\[Z_a(t) = \text{Ramp}(t) \sin(\omega \theta), \quad Z_h(t) = \text{Ramp}(t) \sin(\omega \theta) \]

where \(\text{Ramp}(t) \) is a ramp function, \(\omega \) is the circular frequency of the oscillations, \(Z_a \) and \(Z_h \) are the amplitudes of surge and heave, respectively.

No incident wave is considered. The draft of the cylinder \(d = 0.5R \) with \(R \) as the radius of the cylinder.

\[\dfrac{F_{z,a}}{gR} = 0.05, \quad kR = 1.2. \]
In order to improve the convergence rate, we will propose alternative formulas for the forces and moments contributed by the velocity square terms. Details are provided in Appendix F. These formulas are based on an equality (Eq.(F.1)) given by Newman (1977) and another similar equality (Eq.(F.2)). As a consequence, the integral of velocity square term on the body surface is transferred to the sum of two groups of integrals. See Eq.(F.3), Eq.(F.4), Eq.(F.8) and Eq.(F.9). The first group contains integrals on body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface. Numerical tests show that the alternative formulas Eq.(F.5), Eq.(F.6), Eq.(F.8) and Eq.(F.9) give much faster convergence rate than the original ones, i.e. (1) and (2).

Fig.8.19 shows the amplitudes of the first-order forces in x- and z-directions on the truncated vertical circular cylinder under forced heaving. The results with Fr=0.05 are presented together with that of zero Froude number. The first-order horizontal force is zero when the forward speed is zero, which is expected due to the symmetry properties about x-y-plane. The first-order vertical force becomes nonzero because the presence of the forward speed makes the flow not anti-symmetric.

It is also noticed in Fig.8.19 that the small forward speed considered has negligible influence on the

The water depth is infinite. A small constant forward speed with Froude number \(F_r=U/\sqrt{g\cdot R} \:\approx 0.05\) is considered. \(U\) is the forward speed. \(R\) is the radius of the cylinder. \(g\) is the acceleration of gravity.

The domain decomposition based method using body-fixed coordinate system in the inner domain (see Chapter 5) is used. For this case, it is not suggested to use the formulation in the inertial coordinate system, because the resulting boundary integral equations (BIEs) are not integrable. Even though the domain decomposition based method given BIEs which are integrable for the sharp corner cases, it is still difficult for the near-field approach to get convergent results for the second-order forces and moments. This is associated with the slow convergence rate of the integral of the velocity square terms. By near-field approach, it is meant the direct integration of the pressure on the body surface.

In order to improve the convergence rate, we will propose alternative formulas for the forces and moments contributed by the velocity square terms. Details are provided in Appendix F. These formulas are based on an equality (Eq.(F.1)) given by Newman (1977) and another similar equality (Eq.(F.2)). As a consequence, the integral of velocity square term on the body surface is transferred to the sum of two groups of integrals. See Eq.(F.3), Eq.(F.4), Eq.(F.8) and Eq.(F.9). The first group contains integrals on body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface. Numerical tests show that the alternative formulas Eq.(F.5), Eq.(F.6), Eq.(F.8) and Eq.(F.9) give much faster convergence rate than the original ones, i.e. (1) and (2).

It is also noticed in Fig.8.19 that the small forward speed considered has negligible influence on the

The water depth is infinite. A small constant forward speed with Froude number \(F_r=U/\sqrt{g\cdot R} \:\approx 0.05\) is considered. \(U\) is the forward speed. \(R\) is the radius of the cylinder. \(g\) is the acceleration of gravity.

The domain decomposition based method using body-fixed coordinate system in the inner domain (see Chapter 5) is used. For this case, it is not suggested to use the formulation in the inertial coordinate system, because the resulting boundary integral equations (BIEs) are not integrable. Even though the domain decomposition based method given BIEs which are integrable for the sharp corner cases, it is still difficult for the near-field approach to get convergent results for the second-order forces and moments. This is associated with the slow convergence rate of the integral of the velocity square terms. By near-field approach, it is meant the direct integration of the pressure on the body surface.

In order to improve the convergence rate, we will propose alternative formulas for the forces and moments contributed by the velocity square terms. Details are provided in Appendix F. These formulas are based on an equality (Eq.(F.1)) given by Newman (1977) and another similar equality (Eq.(F.2)). As a consequence, the integral of velocity square term on the body surface is transferred to the sum of two groups of integrals. See Eq.(F.3), Eq.(F.4), Eq.(F.8) and Eq.(F.9). The first group contains integrals on body surface with integrands whose singularities are weaker than that of the velocity square. The second group consists of regular integrals on the inner free surface and the control surface. Numerical tests show that the alternative formulas Eq.(F.5), Eq.(F.6), Eq.(F.8) and Eq.(F.9) give much faster convergence rate than the original ones, i.e. (1) and (2).

It is also noticed in Fig.8.19 that the small forward speed considered has negligible influence on the
amplitude of the linear vertical forces of the heaving truncated cylinder. Numerical results also show that the small forward speed has very small effect on the phase of the linear vertical force on the heaving truncated vertical circular cylinder. Fig.8.20 shows the time histories of the linear vertical force on a forced heaving truncated vertical circular cylinder. The negligible forward speed effect on the linear vertical force can be explained from the boundary conditions by decomposing the flow as the superposition of a symmetric part and an anti-symmetric part. For the forced heaving of a body symmetric about oyz-plane in otherwise calm water, the forcing terms in the first-order free surface conditions (2.88) and (2.93) can be simplified respectively as:

\[
f^{(1)}_{Z} = i \frac{\omega}{\sqrt{gR}} (d_{1} + d_{2}) + i \frac{\omega}{\sqrt{gR}} (e_{1} + e_{2}) + o(\omega^2) \tag{8.6}
\]

\[
f^{(2)}_{Z} = -i \frac{\omega^2}{gAR} (d_{1} - d_{2}) + i \frac{\omega^2}{gAR} (e_{1} - e_{2}) + o(\omega^3) \tag{8.7}
\]

Let us further express the first-order solution by series expansion in terms of a small parameter \(\delta \) related to the Froude number, i.e.

\[
\eta^{(1)} = \eta^{(1)}_{\delta} + \delta \eta^{(1)}_{\delta^2} + \delta^2 \eta^{(1)}_{\delta^3} + \cdots \tag{8.8}
\]

\[
\varphi^{(1)} = \varphi^{(1)}_{\delta} + \delta \varphi^{(1)}_{\delta^2} + \delta^2 \varphi^{(1)}_{\delta^3} + \cdots \tag{8.9}
\]

Putting Eq.(8.8) and Eq.(8.9) into Eq.(8.6) and Eq.(8.7) and collecting consistent terms at the same order with respect to \(\delta \), we have that

\[
f^{(1)}_{Z} = i \frac{\omega}{\sqrt{gR}} (d_{1} + d_{2}) + i \frac{\omega}{\sqrt{gR}} (e_{1} + e_{2}) + o(\omega^2) \tag{8.10}
\]

8.2 Second-order wave radiation

amplitude of the linear vertical forces of the heaving truncated cylinder. Numerical results also show that the small forward speed has very small effect on the phase of the linear vertical force on the heaving truncated vertical circular cylinder. The negligible forward speed effect on the linear vertical force can be explained from the boundary conditions by decomposing the flow as the superposition of a symmetric part and an anti-symmetric part. For the forced heaving of a body symmetric about oyz-plane in otherwise calm water, the forcing terms in the first-order free surface conditions (2.88) and (2.93) can be simplified respectively as:

\[
f^{(1)}_{Z} = i \frac{\omega}{\sqrt{gR}} (d_{1} + d_{2}) + i \frac{\omega}{\sqrt{gR}} (e_{1} + e_{2}) + o(\omega^2) \tag{8.6}
\]

\[
f^{(2)}_{Z} = -i \frac{\omega^2}{gAR} (d_{1} - d_{2}) + i \frac{\omega^2}{gAR} (e_{1} - e_{2}) + o(\omega^3) \tag{8.7}
\]

Let us further express the first-order solution by series expansion in terms of a small parameter \(\delta \) related to the Froude number, i.e.

\[
\eta^{(1)} = \eta^{(1)}_{\delta} + \delta \eta^{(1)}_{\delta^2} + \delta^2 \eta^{(1)}_{\delta^3} + \cdots \tag{8.8}
\]

\[
\varphi^{(1)} = \varphi^{(1)}_{\delta} + \delta \varphi^{(1)}_{\delta^2} + \delta^2 \varphi^{(1)}_{\delta^3} + \cdots \tag{8.9}
\]

Putting Eq.(8.8) and Eq.(8.9) into Eq.(8.6) and Eq.(8.7) and collecting consistent terms at the same order with respect to \(\delta \), we have that

\[
f^{(1)}_{Z} = i \frac{\omega}{\sqrt{gR}} (d_{1} + d_{2}) + i \frac{\omega}{\sqrt{gR}} (e_{1} + e_{2}) + o(\omega^2) \tag{8.10}
\]
Here \(n_z \) is the z-component of the normal vector on body surface. Therefore, the flow represented by \(\eta_0^* \) and \(\phi_0^* \) is symmetric about oyz-plane. The \(\Omega(\phi') \) approximation solution of \(\eta_0^* \) and \(\phi_0^* \), i.e. \(\eta_0^* \) and \(\phi_0^* \), satisfy the homogeneous free surface conditions with forcing terms given in Eq.(8.20) and Eq.(8.21). \(\eta_0^* \) satisfies zero-Neumann body boundary condition. Because the basis flow \(\phi_0^* \) is anti-symmetric and the flow represented by \(\eta_0^* \) and \(\phi_0^* \) is symmetric about oyz-plane, it is obvious that the solutions for \(\eta_0^* \) and \(\phi_0^* \) are anti-symmetric. That means the \(\Omega(\phi') \) solution does not contribute to the first-order vertical force on the heaving truncated circular cylinder. Therefore, the difference between the results of the linear vertical forces with and without forward speed is of \(\Omega(\phi') \) and is negligible if the forward considered is small. Similar analysis can be made for the second-order problem. And the same conclusion holds. That is, if the geometry and the forced unsteady motions of a body with steady forward speed parallel to x-axis are symmetric about oyz-plane, the effect of a small forward speed on the second-order vertical force is of \(\Omega(\phi') \) and \(\delta \) is a measurement of the smallness of the forward speed. This is also confirmed by our second-order numerical results. Fig.8.23 shows the amplitudes of the second-order vertical forces. The results for Fr=0.0 and Fr=0.05 are almost the same. Presented in Fig.8.23 are the time histories of the second-order numerical results. Fig.8.21 shows the amplitudes of the second-order vertical forces. The results for Fr=0.0 and Fr=0.05 are almost the same. Presented in Fig.8.22 are the time histories of the second-order numerical results. Fig.8.21 shows the amplitudes of the second-order vertical forces. The results for Fr=0.0 and Fr=0.05 are considered.

\[f_{z,a}^{(2)} = -X_0 g \phi^{(2)} \mathbf{v} \cdot \mathbf{n} \frac{\partial \Omega(\phi')}{\partial \gamma} \]

Here \(n_z \) is the z-component of the normal vector on body surface. Therefore, the flow represented by \(\eta_0^* \) and \(\phi_0^* \) is symmetric about oyz-plane. The \(\Omega(\phi') \) approximation solution of \(\eta_0^* \) and \(\phi_0^* \), i.e. \(\eta_0^* \) and \(\phi_0^* \), satisfy the homogeneous free surface conditions with forcing terms given in Eq.(8.20) and Eq.(8.21). \(\eta_0^* \) satisfies zero-Neumann body boundary condition. Because the basis flow \(\phi_0^* \) is anti-symmetric and the flow represented by \(\eta_0^* \) and \(\phi_0^* \) is symmetric about oyz-plane, it is obvious that the solutions for \(\eta_0^* \) and \(\phi_0^* \) are anti-symmetric. That means the \(\Omega(\phi') \) solution does not contribute to the first-order vertical force on the heaving truncated circular cylinder. Therefore, the difference between the results of the linear vertical forces with and without forward speed is of \(\Omega(\phi') \) and is negligible if the forward considered is small. Similar analysis can be made for the second-order problem. And the same conclusion holds. That is, if the geometry and the forced unsteady motions of a body with steady forward speed parallel to x-axis are symmetric about oyz-plane, the effect of a small forward speed on the second-order vertical force is of \(\Omega(\phi') \) and \(\delta \) is a measurement of the smallness of the forward speed. This is also confirmed by our second-order numerical results. Fig.8.23 shows the amplitudes of the second-order vertical forces. The results for Fr=0.0 and Fr=0.05 are almost the same. Presented in Fig.8.23 are the time histories of the second-order vertical forces of the forced heaving truncated cylinder. Fr=0.0 and Fr=0.05 are considered.

\[f_{z,a}^{(2)} = -X_0 g \phi^{(2)} \mathbf{v} \cdot \mathbf{n} \frac{\partial \Omega(\phi')}{\partial \gamma} \]

Here \(n_z \) is the z-component of the normal vector on body surface. Therefore, the flow represented by \(\eta_0^* \) and \(\phi_0^* \) is symmetric about oyz-plane. The \(\Omega(\phi') \) approximation solution of \(\eta_0^* \) and \(\phi_0^* \), i.e. \(\eta_0^* \) and \(\phi_0^* \), satisfy the homogeneous free surface conditions with forcing terms given in Eq.(8.20) and Eq.(8.21). \(\eta_0^* \) satisfies zero-Neumann body boundary condition. Because the basis flow \(\phi_0^* \) is anti-symmetric and the flow represented by \(\eta_0^* \) and \(\phi_0^* \) is symmetric about oyz-plane, it is obvious that the solutions for \(\eta_0^* \) and \(\phi_0^* \) are anti-symmetric. That means the \(\Omega(\phi') \) solution does not contribute to the first-order vertical force on the heaving truncated circular cylinder. Therefore, the difference between the results of the linear vertical forces with and without forward speed is of \(\Omega(\phi') \) and is negligible if the forward considered is small. Similar analysis can be made for the second-order problem. And the same conclusion holds. That is, if the geometry and the forced unsteady motions of a body with steady forward speed parallel to x-axis are symmetric about oyz-plane, the effect of a small forward speed on the second-order vertical force is of \(\Omega(\phi') \) and \(\delta \) is a measurement of the smallness of the forward speed. This is also confirmed by our second-order numerical results. Fig.8.23 shows the amplitudes of the second-order vertical forces. The results for Fr=0.0 and Fr=0.05 are almost the same. Presented in Fig.8.23 are the time histories of the second-order vertical forces of the forced heaving truncated cylinder. Fr=0.0 and Fr=0.05 are considered.
Fig. 8.22: Time histories of second-order vertical force of a forced heaving truncated vertical circular cylinder with draft $d=R$ and $2/R = 1.0$. R is the radius. Infinite water depth is assumed. $Fz = UgAR$ and $Fx = UgAR$ are considered. $T = 2\pi / \omega$ is the frequency of forced heaving.

By performing a similar analysis to Eq.(8.6) – Eq.(8.12), one can also show that for a forced surging body with ωz-plane as the symmetr ic plane, the forward speed effect on the first-order horizontal force and the second-order vertical force is $O[(Tz)^2]$. Due to the presence of the forward speed, the wave field generated by the body is not anti-symmetrical anymore and consequently the first-order and second-order horizontal forces become nonzero. These have been confirmed by our numerical results for the truncated vertical circular cylinder shown in Fig.8.23 – Fig.8.25. In Fig.8.23, the amplitudes of the first-order forces in x-direction and z-direction are presented for different wave numbers. Comparisons are made between $Fr=0.0$ and $Fr=0.05$. Fig.8.24 shows the comparison for the second-order vertical force of the forced surging truncated cylinder. The time histories of the second-order vertical force on the truncated vertical circular cylinder ($kR=1.0$, $d=R$) for $Fr=0.0$ and $Fr=0.05$ are considered.

Fig. 8.23: Time histories of second-order vertical force of a forced heaving truncated vertical circular cylinder with draft $d=R$ and $2/R = 1.0$. R is the radius. Infinite water depth is assumed. $Fz = UgAR$ and $Fx = UgAR$ are considered. $T = 2\pi / \omega$ is the frequency of forced heaving.

By performing a similar analysis to Eq.(8.6) – Eq.(8.12), one can also show that for a forced surging body with ωy-plane as the symmetrical plane, the forward speed effect on the first-order horizontal force and the second-order vertical force is $O[(Tz)^2]$. Due to the presence of the forward speed, the wave field generated by the body is not anti-symmetrical anymore and consequently the first-order and second-order horizontal forces become nonzero. These have been confirmed by our numerical results for the truncated vertical circular cylinder shown in Fig.8.23 – Fig.8.25. In Fig.8.23, the amplitudes of the first-order forces in x-direction and z-direction are presented for different wave numbers. Comparisons are made between $Fr=0.0$ and $Fr=0.05$. Fig.8.24 shows the comparison for the second-order vertical force of the forced surging truncated cylinder. The time histories of the second-order vertical force on the truncated vertical circular cylinder ($kR=1.0$, $d=R$) for $Fr=0.0$ and $Fr=0.05$ are considered.
8.3 Freely-floating body in regular waves

In the previous sections of this chapter, we have studied the nonlinear wave diffraction and forced oscillation problems by considering a small constant forward speed. In this section, the bodies studied will be free to respond to the incident waves.
A vertical circular cylinder studied by Malenica et al. (1995)

In order to demonstrate the robustness and accuracy of the numerical method, we firstly consider a vertical circular cylinder with $d/h=R$ in waves. Here h is the water depth, and R are the draft and radius of the cylinder, respectively. A small forward speed will be considered. Only the surge motion is allowed in the numerical studies, with the other five degrees of freedom frozen.

The linear solution of this problem was obtained by Malenica et al. (1995) by a semi-analytical approach in the frequency domain. Difficulties arise in order for the time-domain method to get consistent results with the frequency domain approaches. One of the difficulties is the existence of the homogeneous solution of the motion equations. Due to the damping effects, the homogeneous solution will die out with time. However, in the case we are considering, because there is no restoring force in the horizontal motion, the cylinder may experience drifting away from its original position due to the transient effects. The present time-domain solutions contain only the steady-state solutions. One may use the so-called shooting technique to eliminate the effect of homogeneous solution. That is, one chooses a special phase between the incident wave and the body motions in the initial condition so that the homogeneous solution of the motion equation is zero. In the present study, a ramp function is applied over a long period for the gentle start of the flow. This also demonstrates that using the ramp function was able to minimize the influence of the homogeneous solution of the motion equations.

The surge motion amplitudes for different Froude numbers $F_r=0.05$, 0.0 and -0.05 are shown in Fig.8.26. Comparisons are made with Malenica et al.'s (1995) semi-analytical results in the frequency domain. U is the forward speed in x-direction, g is gravitational acceleration. The incident wave propagates in positive x-direction. The 'present' results obtained by Fourier analysis of the time history of the surge motion of the cylinder. The present time-domain numerical results agree well with Malenica et al.'s (1995) results. The domain decomposition based method is adopted in the numerical analysis. A cylindrical surface is used as the control surface. The body motion equation is solved based on the method presented in Section 4.4. The key point of the method is that one has to move all the terms explicitly depending on the accelerations of the body to the left-hand side of the motion equations. Numerical tests show that this scheme is very stable. For a vertical circular cylinder free to surge in waves, the scheme even works when the mass of the cylinder is set to be zero. Zero mass may not be physical for the typical marine structures. But it is relevant to the dynamics of the air bubbles in the fluid. The indication is that the scheme may work even for cases where the added mass terms are much larger than the corresponding mass terms, e.g. water entry and exit of high-speed objects.

The surge motion amplitudes for different Froude numbers $F_r=0.05$, 0.0 and -0.05 are shown in Fig.8.26. Comparisons are made with Malenica et al.'s (1995) semi-analytical results in the frequency domain. U is the forward speed in x-direction, g is gravitational acceleration. The incident wave propagates in positive x-direction. The 'present' results obtained by Fourier analysis of the time history of the surge motion of the cylinder. The present time-domain numerical results agree well with Malenica et al.'s (1995) results. The domain decomposition based method is adopted in the numerical analysis. A cylindrical surface is used as the control surface. The body motion equation is solved based on the method presented in Section 4.4. The key point of the method is that one has to move all the terms explicitly depending on the accelerations of the body to the left-hand side of the motion equations. Numerical tests show that this scheme is very stable. For a vertical circular cylinder free to surge in waves, the scheme even works when the mass of the cylinder is set to be zero. Zero mass may not be physical for the typical marine structures. But it is relevant to the dynamics of the air bubbles in the fluid. The indication is that the scheme may work even for cases where the added mass terms are much larger than the corresponding mass terms, e.g. water entry and exit of high-speed objects.

The surge motion amplitudes for different Froude numbers $F_r=0.05$, 0.0 and -0.05 are shown in Fig.8.26. Comparisons are made with Malenica et al.'s (1995) semi-analytical results in the frequency domain. U is the forward speed in x-direction, g is gravitational acceleration. The incident wave propagates in positive x-direction. The 'present' results obtained by Fourier analysis of the time history of the surge motion of the cylinder. The present time-domain numerical results agree well with Malenica et al.'s (1995) results. The domain decomposition based method is adopted in the numerical analysis. A cylindrical surface is used as the control surface. The body motion equation is solved based on the method presented in Section 4.4. The key point of the method is that one has to move all the terms explicitly depending on the accelerations of the body to the left-hand side of the motion equations. Numerical tests show that this scheme is very stable. For a vertical circular cylinder free to surge in waves, the scheme even works when the mass of the cylinder is set to be zero. Zero mass may not be physical for the typical marine structures. But it is relevant to the dynamics of the air bubbles in the fluid. The indication is that the scheme may work even for cases where the added mass terms are much larger than the corresponding mass terms, e.g. water entry and exit of high-speed objects.

The surge motion amplitudes for different Froude numbers $F_r=0.05$, 0.0 and -0.05 are shown in Fig.8.26. Comparisons are made with Malenica et al.'s (1995) semi-analytical results in the frequency domain. U is the forward speed in x-direction, g is gravitational acceleration. The incident wave propagates in positive x-direction. The 'present' results obtained by Fourier analysis of the time history of the surge motion of the cylinder. The present time-domain numerical results agree well with Malenica et al.'s (1995) results. The domain decomposition based method is adopted in the numerical analysis. A cylindrical surface is used as the control surface. The body motion equation is solved based on the method presented in Section 4.4. The key point of the method is that one has to move all the terms explicitly depending on the accelerations of the body to the left-hand side of the motion equations. Numerical tests show that this scheme is very stable. For a vertical circular cylinder free to surge in waves, the scheme even works when the mass of the cylinder is set to be zero. Zero mass may not be physical for the typical marine structures. But it is relevant to the dynamics of the air bubbles in the fluid. The indication is that the scheme may work even for cases where the added mass terms are much larger than the corresponding mass terms, e.g. water entry and exit of high-speed objects.

The surge motion amplitudes for different Froude numbers $F_r=0.05$, 0.0 and -0.05 are shown in Fig.8.26. Comparisons are made with Malenica et al.'s (1995) semi-analytical results in the frequency domain. U is the forward speed in x-direction, g is gravitational acceleration. The incident wave propagates in positive x-direction. The 'present' results obtained by Fourier analysis of the time history of the surge motion of the cylinder. The present time-domain numerical results agree well with Malenica et al.'s (1995) results. The domain decomposition based method is adopted in the numerical analysis. A cylindrical surface is used as the control surface. The body motion equation is solved based on the method presented in Section 4.4. The key point of the method is that one has to move all the terms explicitly depending on the accelerations of the body to the left-hand side of the motion equations. Numerical tests show that this scheme is very stable. For a vertical circular cylinder free to surge in waves, the scheme even works when the mass of the cylinder is set to be zero. Zero mass may not be physical for the typical marine structures. But it is relevant to the dynamics of the air bubbles in the fluid. The indication is that the scheme may work even for cases where the added mass terms are much larger than the corresponding mass terms, e.g. water entry and exit of high-speed objects.

The surge motion amplitudes for different Froude numbers $F_r=0.05$, 0.0 and -0.05 are shown in Fig.8.26. Comparisons are made with Malenica et al.'s (1995) semi-analytical results in the frequency domain. U is the forward speed in x-direction, g is gravitational acceleration. The incident wave propagates in positive x-direction. The 'present' results obtained by Fourier analysis of the time history of the surge motion of the cylinder. The present time-domain numerical results agree well with Malenica et al.'s (1995) results. The domain decomposition based method is adopted in the numerical analysis. A cylindrical surface is used as the control surface. The body motion equation is solved based on the method presented in Section 4.4. The key point of the method is that one has to move all the terms explicitly depending on the accelerations of the body to the left-hand side of the motion equations. Numerical tests show that this scheme is very stable. For a vertical circular cylinder free to surge in waves, the scheme even works when the mass of the cylinder is set to be zero. Zero mass may not be physical for the typical marine structures. But it is relevant to the dynamics of the air bubbles in the fluid. The indication is that the scheme may work even for cases where the added mass terms are much larger than the corresponding mass terms, e.g. water entry and exit of high-speed objects.
velocity will on one hand oscillate with the same-frequency, and on the other hand increase linearly with time. The consequence is the drifting of the cylinder. In the reality of marine structures, this would not happen because of the presence of mooring system or dynamic positioning (DP) system. However, for a moored ship in irregular waves, the difference-frequency effects may cause large second-order horizontal motions of the ship, i.e. slow-drift motions, which may be of the same order of the first-order motions. In this case, the assumption behind Stokes expansion that higher-order terms should be much smaller than the lower-order quantities is violated. Actually, the large slow-drift motions may give feedbacks to the first-order solution and thus modify the second-order results. However, this is not the end of the world for the second-order theory. We will in Chapter 9 briefly discuss how to extend the domain decomposition based method in Chapter 5 to handle this problem by considering all the horizontal motions as $O(1)$ instead of $O(x)$ or $O(x^2)$.

velocity will on one hand oscillate with the same-frequency, and on the other hand increase linearly with time. The consequence is the drifting of the cylinder. In the reality of marine structures, this would not happen because of the presence of mooring system or dynamic positioning (DP) system. However, for a moored ship in irregular waves, the difference-frequency effects may cause large second-order horizontal motions of the ship, i.e. slow-drift motions, which may be of the same order of the first-order motions. In this case, the assumption behind Stokes expansion that higher-order terms should be much smaller than the lower-order quantities is violated. Actually, the large slow-drift motions may give feedbacks to the first-order solution and thus modify the second-order results. However, this is not the end of the world for the second-order theory. We will in Chapter 9 briefly discuss how to extend the domain decomposition based method in Chapter 5 to handle this problem by considering all the horizontal motions as $O(1)$ instead of $O(x)$ or $O(x^2)$.
Fig. 8.28. Time histories of the second-order surge response of a vertical circular cylinder with \(d = h = R \), \(kR = 1.0 \). \(Fr = \frac{U}{g R} = -0.05 \).

- (a) Surge motion.
- (b) Surge velocity.
- (c) Surge acceleration.

\(e \) is the frequency of encounter. \(g \) is the gravitational acceleration.

\[Fr = \frac{U}{g R} \]
The same problem is revisited in this thesis by using the domain decomposition based method proposed in Chapter 5. The force is obtained by the pressure integration on the body surface, i.e. the near-field approach, except that the quadratic force due to the velocity square is re-formulated based on a formula given in Newman (1977). See Appendix F for details. This re-formulation improves very much the convergence rate of the quadratic force. The cylinder has a draft equal to the radius, i.e. d/R. The water depth is 1.2 times the linear incident wave length.

The time-domain numerical results almost perfectly confirmed the far-field results of Zhao & Faltinsen (1989b). See the comparison in Fig.8.29. In the numerical calculations, uniform meshes are used on the cylindrical surface of the cylinder. Cubic elements are used in the vertical direction. 30 elements per linear wave length are distributed azimuthally. The elements on the bottom of the cylinder in the vicinity of the corner are of the same size of the elements on the cylinder wall. The mean wave forces shown in Fig.8.29 are obtained by time-averaging the quadratic forces acting on the body, without solving the second-order problem.

\[Z_0^2 = \frac{F_0 g}{RA} \]

The time-domain numerical results are almost perfectly confirmed the far-field results of Zhao & Faltinsen (1989b). See the comparison in Fig.8.29. In the numerical calculations, uniform meshes are used on the cylindrical surface of the cylinder. Cubic elements are used in the vertical direction. 30 elements per linear wave length are distributed azimuthally. The elements on the bottom of the cylinder in the vicinity of the corner are of the same size of the elements on the cylinder wall. The mean wave forces shown in Fig.8.29 are obtained by time-averaging the quadratic forces acting on the body, without solving the second-order problem.

Fig.8.29. The numerical results of vertical mean wave force. The quadratic part of the second-order force is calculated by the re-formulation in Eq.(F.5). Comparisons with the near-field and far-field results of Zhao & Faltinsen (1989b) are made, \(U \) is the frequency of the incident wave, \(g \) is gravitational acceleration.

Fig.8.29. The numerical results of vertical mean wave force. The quadratic part of the second-order force is calculated by the re-formulation in Eq.(F.5). Comparisons with the near-field and far-field results of Zhao & Faltinsen (1989b) are made, \(U \) is the frequency of the incident wave, \(g \) is gravitational acceleration.

The same problem is revisited in this thesis by using the domain decomposition based method proposed in Chapter 5. The force is obtained by the pressure integration on the body surface, i.e. the near-field approach, except that the quadratic force due to the velocity square is re-formulated based on a formula given in Newman (1977). See Appendix F for details. This re-formulation improves very much the convergence rate of the quadratic force. The cylinder has a draft equal to the radius, i.e. d/R. The water depth is 1.2 times the linear incident wave length.

The time-domain numerical results almost perfectly confirmed the far-field results of Zhao & Faltinsen (1989b). See the comparison in Fig.8.29. In the numerical calculations, uniform meshes are used on the cylindrical surface of the cylinder. Cubic elements are used in the vertical direction. 30 elements per linear wave length are distributed azimuthally. The elements on the bottom of the cylinder in the vicinity of the corner are of the same size of the elements on the cylinder wall. The mean wave forces shown in Fig.8.29 are obtained by time-averaging the quadratic forces acting on the body, without solving the second-order problem.
The influence of the small forward speed effect on the horizontal and vertical mean wave forces acting on the truncated vertical circular cylinder is also investigated. The cylinder is free to oscillate in surge and heave and restrained from oscillating in pitch. Fig.8.30 shows the comparison for the horizontal mean drift forces for Fr=-0.05 and Fr=0.05. The vertical mean force for Fr=-0.05 and Fr=0.05 are presented in Fig.8.31. The far-field results by Zhao & Faltinsen (1989b) for Fr=0.0 are also plotted in the figure. It is seen that the small forward speeds have significant effect on both the horizontal and vertical mean forces, especially in the resonant region of the heave motions.

\[F_{0,x}/U^2 g R \alpha \]

\[F_{0,z}/U^2 g R \alpha \]

\[\omega_0 \]

\[\omega \]

\[Z \]

8.3 Freely-floating body in regular waves

The influence of the small forward speed effect on the horizontal and vertical mean wave forces acting on the truncated vertical circular cylinder is also investigated. The cylinder is free to oscillate in surge and heave and restrained from oscillating in pitch. Fig.8.30 shows the comparison for the horizontal mean drift forces for Fr=-0.05 and Fr=0.05. The vertical mean force for Fr=-0.05 and Fr=0.05 are presented in Fig.8.31. The far-field results by Zhao & Faltinsen (1989b) for Fr=0.0 are also plotted in the figure. It is seen that the small forward speeds have significant effect on both the horizontal and vertical mean forces, especially in the resonant region of the heave motions.
CHAPTER 9
Summary and Future Perspectives

9.1 Summary

A two-dimensional Quadratic Boundary Element Method (QBEM) and a three-dimensional cubic Higher-order Boundary Element Method (HOBEM) are developed to study respectively the two-dimensional and three-dimensional weakly-nonlinear wave-body interactions with/without forward speed within potential flow theory of an incompressible liquid. The basis of the 2D QBEM and 3D cubic HOBEM in the time domain are given. The necessary numerical issues are addressed.

A direct method for the evaluation of the Cauchy Principal Value (CPV) integral of the influence coefficients is proposed, which is based on a triangle-polar coordinate transformation. The numerical schemes for the time marching of the free-surface conditions are presented. In the 2D time-domain analysis, the fourth-order Runge-Kutta method is used, while the fourth-order Adams-Bashforth-Moulton method is adopted in the 3D analysis. A numerical damping zone is used to enforce the radiation conditions for the scattered waves. The mechanism of the combination of the piston wave absorber and the numerical damping zone is explained in the two-dimensional numerical wave tank.

In the 3D analysis, suggestions on the selection of the types of the grid on the free surface are given. In order to investigate to what extent the accelerated methods, e.g., the Fast Multipole Method (FMM), can speed up the calculation and to see if the accelerated method is applicable to the weakly-nonlinear wave-body analysis based on perturbation scheme, a numerical model based on the FMM has been developed to accelerate the cubic HOBEM. Guidelines on how to select a proper matrix solver for a particular 3D problem are provided.

Different methods for the direct calculation of the higher-order derivatives on the boundaries, e.g. the body surface and free surface, are given. In the 2D studies, a curve-fitting technique based on the arc-length is used. In the 3D problems, the first-order and second-order derivatives on the boundaries can be obtained accurately with the assistance of the cubic shape functions of the cubic HOBEM. For smooth and simple geometries, the desingularized BEM (DBEM) or the raised panel method (RPM)

9.1 Summary

A two-dimensional Quadratic Boundary Element Method (QBEM) and a three-dimensional cubic Higher-order Boundary Element Method (HOBEM) are developed to study respectively the two-dimensional and three-dimensional weakly-nonlinear wave-body interactions with/without forward speed within potential flow theory of an incompressible liquid. The basis of the 2D QBEM and 3D cubic HOBEM in the time domain are given. The necessary numerical issues are addressed.

A direct method for the evaluation of the Cauchy Principal Value (CPV) integral of the influence coefficients is proposed, which is based on a triangle-polar coordinate transformation. The numerical schemes for the time marching of the free-surface conditions are presented. In the 2D time-domain analysis, the fourth-order Runge-Kutta method is used, while the fourth-order Adams-Bashforth-Moulton method is adopted in the 3D analysis. A numerical damping zone is used to enforce the radiation conditions for the scattered waves. The mechanism of the combination of the piston wave absorber and the numerical damping zone is explained in the two-dimensional numerical wave tank.

In the 3D analysis, suggestions on the selection of the types of the grid on the free surface are given. In order to investigate to what extent the accelerated methods, e.g., the Fast Multipole Method (FMM), can speed up the calculation and to see if the accelerated method is applicable to the weakly-nonlinear wave-body analysis based on perturbation scheme, a numerical model based on the FMM has been developed to accelerate the cubic HOBEM. Guidelines on how to select a proper matrix solver for a particular 3D problem are provided.

Different methods for the direct calculation of the higher-order derivatives on the boundaries, e.g. the body surface and free surface, are given. In the 2D studies, a curve-fitting technique based on the arc-length is used. In the 3D problems, the first-order and second-order derivatives on the boundaries can be obtained accurately with the assistance of the cubic shape functions of the cubic HOBEM. For smooth and simple geometries, the desingularized BEM (DBEM) or the raised panel method (RPM)
can also be used. However, the DQEM and RPM cannot be used for bodies with sharp corners. In the time-domain wave-body analysis without forward speed, no short wave instabilities were observed. The short wave instabilities occur in the cases with forward speed. The reason for the instability has not been completely understood. The low-pass filter is applied to the wave elevation on the free surface to suppress the short wave instabilities. Another possible numerical instability reported in the literature is associated with the time integration of the body motion equations. The motion equations are rewritten by moving all terms explicitly dependent on the rigid-body accelerations to the left-hand sides. This results in a stable form of the rigid-body motion equation system.

A perturbation scheme is used in the studies. Stokes expansion of the velocity potential, wave elevation, translatory and rotational body motions are adopted. The formulations of the weakly-nonlinear Boundary Value Problem (BVP) in both the inertial coordinate system and the body-fixed reference frame are presented. The consequence of the perturbation scheme is that the computational domain does not change with time.

The body boundary conditions formulated in the inertial coordinate system contains higher-order derivatives, which are difficult to calculate for bodies with high surface-curvature. Because of the higher-order derivatives in the body boundary conditions, the resulting Boundary Integral Equations (BIEs) are not integrable for bodies with sharp corners. A new method based on domain decomposition is proposed to avoid derivatives on the right-hand side of the body boundary conditions. In order to demonstrate that the formulations in the body-fixed coordinate system and the inertial coordinate system shall give consistent results, we have derived the analytical (semi-analytical) second-order results for two simple cases, i.e. the forced oscillation of a circle in infinite fluid and the forced oscillation of a 2D rectangular tank with a free surface. The analytical (semi-analytical) results obtained in the body-fixed coordinate system and the inertial coordinate system are consistent. The consistency of the formulations in the body-fixed coordinate system and the inertial frame has later been confirmed in our three-dimensional time-domain studies for a smooth body without sharp corners.

A perturbation scheme is used in the studies. Stokes expansion of the velocity potential, wave elevation, translatory and rotational body motions are adopted. The formulations of the weakly-nonlinear Boundary Value Problem (BVP) in both the inertial coordinate system and the body-fixed reference frame are presented. The consequence of the perturbation scheme is that the computational domain does not change with time.

Another difficulty associated with wave-body interaction analysis of the sharp corner, which is numerical, is how to get convergent result of the quadratic forces/moments. A re-formulation of the integral of the quadratic forces/moments based on a formula (see Appendix F) given in Newman (1977) and another similar equality is proposed to achieve faster convergence of the second-order forces on bodies with sharp corners.

The numerical methods developed during this study have been applied to several 2D and 3D weakly nonlinear wave-body interaction problems with/without a small forward speed (or current) effect. Comparisons between the present numerical results and the other existing theoretical and experimental results showed very good agreement.

In the time-domain wave-body analysis without forward speed, no short wave instabilities were observed. The short wave instabilities occur in the cases with forward speed. The reason for the instability has not been completely understood. The low-pass filter is applied to the wave elevation on the free surface to suppress the short wave instabilities. Another possible numerical instability reported in the literature is associated with the time integration of the body motion equations. The motion equations are rewritten by moving all terms explicitly dependent on the rigid-body accelerations to the left-hand sides. This results in a stable form of the rigid-body motion equation system.

A perturbation scheme is used in the studies. Stokes expansion of the velocity potential, wave elevation, translatory and rotational body motions are adopted. The formulations of the weakly-nonlinear Boundary Value Problem (BVP) in both the inertial coordinate system and the body-fixed reference frame are presented. The consequence of the perturbation scheme is that the computational domain does not change with time.

Another difficulty associated with wave-body interaction analysis of the sharp corner, which is numerical, is how to get convergent result of the quadratic forces/moments. A re-formulation of the integral of the quadratic forces/moments based on a formula (see Appendix F) given in Newman (1977) and another similar equality is proposed to achieve faster convergence of the second-order forces on bodies with sharp corners.

The numerical methods developed during this study have been applied to several 2D and 3D weakly nonlinear wave-body interaction problems with/without a small forward speed (or current) effect. Comparisons between the present numerical results and the other existing theoretical and experimental results showed very good agreement.

The accuracy of the 2D QEM solver is verified by the following two-dimensional cases:
- The steady-state third-order solution of a sloshing tank.
The sloshing in a two-dimensional rectangular tank is studied up to third order by using a combined numerical and analytical approach. The numerical part is based on the QBEM developed in this study. The comparison between the numerical results and the analytical results demonstrated the accuracy of our 2D QBEM solver and that the higher-order derivatives in the free-surface conditions can be obtained accurately by standard numerical methods.

The freec oscillations and forced oscillations in a rectangular tank are studied in the time domain. The numerical results are verified by the first-order and second-order analytical results. The mass conservations of the first-order and second-order solutions are checked.

Numerical simulation of the Stokes second-order waves
Numerical simulation of the Stokes third-order waves
Second-order diffraction of a horizontal semi-submerged circular cylinder
Second-order radiation of a horizontal semi-submerged circular cylinder

For zero Froude number, the second-order and third-order wave diffraction are studied. The second-order semi-frequency forces on a stationary hemisphere obtained by the present numerical results agree favorably with the other numerical results. For a bottom-mounted vertical circular cylinder in monochromatic waves, the first-order, second-order and third-order wave forces are calculated and compared with the analytical or semi-analytical results. The comparisons for the first-order and second-order results showed very good agreement. The third-order forces contributed on the bottom-mounted vertical circular cylinder by the first-order and second-order are consistent with the semi-analytical results, while differences were observed for the component due to the nonlinear diffraction with $F = 0.0$

Nonlinear diffraction with $F = 0.0$
For zero Froude number, the second-order and third-order wave diffraction are studied. The second-order semi-frequency forces on a stationary semi-circular cylinder obtained by the present numerical results agree favorably with the other numerical results. For a bottom-mounted vertical circular cylinder in monochromatic waves, the first-order, second-order and third-order forces are calculated and compared with the analytical or semi-analytical results. The comparisons for the first-order and second-order results showed very good agreement. The third-order forces contributed on the bottom-mounted vertical circular cylinder by the first-order and second-order are consistent with the semi-analytical results, while differences were observed for the component due to the nonlinear diffraction with $F = 0.0$

Nonlinear diffraction with $F = 0.0$
For zero Froude number, the second-order and third-order wave diffraction are studied. The second-order semi-frequency forces on a stationary semi-circular cylinder obtained by the present numerical results agree favorably with the other numerical results. For a bottom-mounted vertical circular cylinder in monochromatic waves, the first-order, second-order and third-order forces are calculated and compared with the analytical or semi-analytical results. The comparisons for the first-order and second-order results showed very good agreement. The third-order forces contributed on the bottom-mounted vertical circular cylinder by the first-order and second-order are consistent with the semi-analytical results, while differences were observed for the component due to the nonlinear diffraction with $F = 0.0$.

The three-dimensional time-domain HOBEM was carefully verified by studying the nonlinear diffraction, nonlinear radiation and freely floating bodies in waves. Both the traditional method using the formulation in the inertial coordinate system and the new method with body-fixed frame near the body are used. The present study considered either a small forward speed or zero forward speed.
third-order velocity potential. Sensitivity studies on the discretization, the time increment of time stepping of the free-surface conditions, the empirical damping coefficients in the numerical damping zone, the location and length of the damping zone suggested that our numerical results are convergent. An indirect method based on Green's 2nd identity has also been used as an alternative to calculate the forces. The results obtained by the direct method and the indirect method are consistent. Second-order derivatives of a horn-shaped vertical circular cylinder in bichromatic waves has been studied. The Quadratic Transfer Function (QTFs) of the sum-frequency forces and difference-frequency forces are recovered from the present time-domain results. Comparing the QTFs with the other numerical and semi-analytical results showed the potential of the present method in the analysis of the second-order wave loads on floating bodies in irregular waves.

Nonlinear radiation with Fr=0.0

The forced oscillations of a vertical circular cylinder have been investigated. The hydrodynamic coefficients, i.e., the added mass and damping, for a vertical circular cylinder with draft equal to the radius and a hemisphere, have been obtained by Fourier analyzing the time-domain results. Good agreements were obtained when compared with the semi-analytical results. For an asymmetric body without sharp corner, we have shown that the first-order and second-order results obtained by the domain-decomposition based method are consistent with that of the traditional method with a formulation in the inertial coordinate system. For a truncated vertical circular cylinder with sharp corners, the second-order forces obtained by the domain-decomposition based method agree fairly well with two of the existing numerical results. Those numerical results were obtained by a formulation in inertial reference frame, with the second-order derivatives in the second-order body boundary condition treated by a Stokes-like theorem. For a body with sharp corner, we also pointed out that, with a formulation in inertial reference frame, it is wrong to calculate the second-order derivatives in the second-order body boundary condition directly. This is associated with the fact that the second-order derivatives of the velocity potential at the sharp corner are not integrable. This may explain why Isaacson & Ng's (1993b) results show relatively large differences.

Nonlinear radiation with Fr=0.0

For a vertical circular cylinder with draft equal to the radius with a small forward speed, the first-order and second-order in-line forces are calculated and verified by comparing with the other numerical results. Short-waves instability has been observed in both the first-order and second-order solutions. A low-pass filter was used to suppress the instabilities. Sensitivities on the strength of the filter and the frequency of the application of the filter have been investigated.

Nonlinear radiation with Fr=0.0

By studying the forced oscillations of a vertical circular cylinder with draft equal to the radius with a small forward speed, the hydrodynamic coefficients, i.e., added mass and damping, were obtained. The results were in good agreement with the frequency-domain results. The second-order forces on the same cylinder are calculated by both the traditional method and the new method based on domain decomposition. Consistent results were achieved. The consistency between the traditional method and the new method was further demonstrated by the study of a fixed-oscillating asymmetric body without sharp corner.

For a vertical circular cylinder with draft equal to the radius with a small forward speed, the first-order and second-order in-line forces are calculated and verified by comparing with the other numerical results. Short-waves instability has been observed in both the first-order and second-order solutions. A low-pass filter was used to suppress the instabilities. Sensitivities on the strength of the filter and the frequency of the application of the filter have been investigated.

Nonlinear radiation with Fr=0.0

By studying the forced oscillations of a vertical circular cylinder with draft equal to the radius with a small forward speed, the hydrodynamic coefficients, i.e., added mass and damping, were obtained. The results were in good agreement with the frequency-domain results. The second-order forces on the same cylinder are calculated by both the traditional method and the new method based on domain decomposition. Consistent results were achieved. The consistency between the traditional method and the new method was further demonstrated by the study of a fixed-oscillating asymmetric body without sharp corner.

Nonlinear radiation with Fr=0.0

By studying the forced oscillations of a vertical circular cylinder with draft equal to the radius with a small forward speed, the hydrodynamic coefficients, i.e., added mass and damping, were obtained. The results were in good agreement with the frequency-domain results. The second-order forces on the same cylinder are calculated by both the traditional method and the new method based on domain decomposition. Consistent results were achieved. The consistency between the traditional method and the new method was further demonstrated by the study of a fixed-oscillating asymmetric body without sharp corner.

Nonlinear radiation with Fr=0.0

By studying the forced oscillations of a vertical circular cylinder with draft equal to the radius with a small forward speed, the hydrodynamic coefficients, i.e., added mass and damping, were obtained. The results were in good agreement with the frequency-domain results. The second-order forces on the same cylinder are calculated by both the traditional method and the new method based on domain decomposition. Consistent results were achieved. The consistency between the traditional method and the new method was further demonstrated by the study of a fixed-oscillating asymmetric body without sharp corner.

Nonlinear radiation with Fr=0.0

By studying the forced oscillations of a vertical circular cylinder with draft equal to the radius with a small forward speed, the hydrodynamic coefficients, i.e., added mass and damping, were obtained. The results were in good agreement with the frequency-domain results. The second-order forces on the same cylinder are calculated by both the traditional method and the new method based on domain decomposition. Consistent results were achieved. The consistency between the traditional method and the new method was further demonstrated by the study of a fixed-oscillating asymmetric body without sharp corner.
The forced oscillation of a truncated vertical circular cylinder is studied up to second order in wave steepnesses and unsteady body motions by using the new method in Chapter 5. A formulation in the inertial coordinate system is not valid for this case. It was found that the forward speed has negligible effect on the first-order and second-order vertical forces, whereas its influence on the first-order and second-order horizontal forces have linear dependence on the Froude number and are not negligible. These observations are based on the analysis with small Froude numbers. Similarly, for a forced swimming truncated circular cylinder, the forward speed effects on the first-order horizontal force and the second-order vertical force are negligible.

- Freshly floating bodies with F<0.0 or F<0.0

A freely floating vertical circular cylinder in waves was studied. The cylinder was free to respond in only the surge motion. The Response Amplitude Operators (RAOs) of the first-order responses for different Froude numbers agree well with the semi-analytical results in the frequency domain. Drifting of the cylinder was observed in the second-order response of the cylinder. This is partly due to the fact that the cylinder has no restoring mechanism in the horizontal plane and that the second-order force contains a mean drift force.

The vertical mean wave force on a truncated vertical circular cylinder free to respond in surge and heave was calculated. Near-field method was used in the force calculation except that the quadratic forces are re-formulated based on an equality (see Appendix F) given in Newman (1977). The present results for the zero forward speed case confirmed the far-field results by Zhao & Faltinsen (1989b), while the near-field results of Zhao & Faltinsen (1989b) and Liu et al. (1995) showed large difference. The forward speed effects on the horizontal and vertical mean drift forces are discussed.

9.2 Future perspectives

The numerical methods have been shown to be robust and able to handle a lot of weakly nonlinear wave-body interaction problems with or without a small forward speed. The numerical schemes adopted in study are workable but may not be the optimum choices.

Possible improvement of the present methods in the future

- The combination of the damping zones with, for instance the Sommerfeld-Ortlund condition would allow us to use a relatively smaller damping zone length. As a consequence, it will result in fewer unknowns and smaller matrices in the final matrix equation.

- For cases with forward speed, the low-pass filter was applied in this study. The strength of the filter was determined empirically. When the forward speed increases, the strength of the instabilities increases and one has to increase the strength of the low-pass filter. More work should be done on the understanding of the short wave instabilities. A question is can we come up with a numerical scheme that is free of the short wave instabilities without introducing any numerical damping or smoothing effects?

- A proper B-Spline based HOBEM is believed to have faster convergence than the present HOBEMs based on shape functions. Therefore, it is suggested to apply the B-Spline based HOBEMs in future computational studies.

For cases with forward speed, the low-pass filter was applied in this study. The strength of the filter was determined empirically. When the forward speed increases, the strength of the instabilities increases and one has to increase the strength of the low-pass filter. More work should be done on the understanding of the short wave instabilities. A question is can we come up with a numerical scheme that is free of the short wave instabilities without introducing any numerical damping or smoothing effects?

A proper B-Spline based HOBEM is believed to have faster convergence than the present HOBEMs based on shape functions. Therefore, it is suggested to apply the B-Spline based HOBEMs in future computational studies.

9.3 Summary

Possible improvement of the present methods in the future

The forced oscillation of a truncated vertical circular cylinder is studied up to second order in wave steepnesses and unsteady body motions by using the new method in Chapter 5. A formulation in the inertial coordinate system is not valid for this case. It was found that the forward speed has negligible effect on the first-order and second-order vertical forces, whereas its influence on the first-order and second-order horizontal forces have linear dependence on the Froude number and are not negligible. These observations are based on the analysis with small Froude numbers. Similarly, for a forced swimming truncated circular cylinder, the forward speed effects on the first-order horizontal force and the second-order vertical force are negligible.

- Freshly floating bodies with F<0.0 or F<0.0

A freely floating vertical circular cylinder in waves was studied. The cylinder was free to respond in only the surge motion. The Response Amplitude Operators (RAOs) of the first-order responses for different Froude numbers agree well with the semi-analytical results in the frequency domain. Drifting of the cylinder was observed in the second-order response of the cylinder. This is partly due to the fact that the cylinder has no restoring mechanism in the horizontal plane and that the second-order force contains a mean drift force.

The vertical mean wave force on a truncated vertical circular cylinder free to respond in surge and heave was calculated. Near-field method was used in the force calculation except that the quadratic forces are re-formulated based on an equality (see Appendix F) given in Newman (1977). The present results for the zero forward speed case confirmed the far-field results by Zhao & Faltinsen (1989b), while the near-field results of Zhao & Faltinsen (1989b) and Liu et al. (1995) showed large difference. The forward speed effects on the horizontal and vertical mean drift forces are discussed.

9.2 Future perspectives

The numerical methods have been shown to be robust and able to handle a lot of weakly nonlinear wave-body interaction problems with or without a small forward speed. The numerical schemes adopted in study are workable but may not be the optimum choices.

Possible improvement of the present methods in the future

- The combination of the damping zones with, for instance the Sommerfeld-Ortlund condition would allow us to use a relatively smaller damping zone length. As a consequence, it will result in fewer unknowns and smaller matrices in the final matrix equation.

- For cases with forward speed, the low-pass filter was applied in this study. The strength of the filter was determined empirically. When the forward speed increases, the strength of the instabilities increases and one has to increase the strength of the low-pass filter. More work should be done on the understanding of the short wave instabilities. A question is can we come up with a numerical scheme that is free of the short wave instabilities without introducing any numerical damping or smoothing effects?

- A proper B-Spline based HOBEM is believed to have faster convergence than the present HOBEMs based on shape functions. Therefore, it is suggested to apply the B-Spline based HOBEMs in future computational studies.
The second-order horizontal and yaw motions of, for instance a moored ship, can be very large and it may be wrong to consider them as small. However, it is possible to extend the decomposition based method in Chapter 5 to handle this problem by re-ordering the horizontal and yaw motions as \(O(1) \) instead of \(O(e) \) or \(O(e^2) \). The idea is that one use a ‘body-fixed’ coordinate system in the outer domain as well. It is called ‘body-fixed’ coordinate system, because the same horizontal translatory and angular velocities as the body. However, it does not have any vertical motions. The coordinate system in the inner domain remains the same body-fixed coordinate system as used in the inner domain. The difference of conditions in the outer domain is similar to what we have done in the inner domain (see Section 2.6.4). The difference is that the horizontal motions will be order of \(O(1) \). The incident wave flow in the outer domain has to be described in the ‘body-fixed’ coordinate system as well. This is straightforward by considering the vector \(\mathbf{U} \) in Eq.(2.144) as the total horizontal velocity of the body. On the other hand, one has to solve the motion equations in the body-fixed coordinate system. The description of the rigid-body motion equations in the body-fixed coordinate system can be found in Section 2.7.2.

The present work includes only small forward effects. In practice, it may be appropriate for \(F_r \leq 0.2 \) When the forward speed increases and cannot be considered as a small parameter, i.e. \(U \ll 0 \), the steady wave elevation is not negligible. Therefore, in theory one cannot use the double-body flow as the basis flow for large forward speeds. One may need to solve the fully-nonlinear steady wave (see e.g. Raven, 1996). Furthermore, if one still wants to use the perturbation scheme, the free-surface conditions should be approximated by Taylor expansion about the steady wave elevation. The steady wave elevation also changes the mean wetted body surface that has been used in this thesis.

Future work and possible applications

In the literature, there are very limited theoretical second-order results with the presence of a forward speed. This may be associated with the difficulties that have discussed in the formulation in the inertial coordinate system. In order to further validate the present numerical methods and to see to what extent we can apply a second-order or third-order theory, more comparisons should be made with the experimental results (if any). Because we are solving a general second-order (or third-order for zero forward speed) problem, the possible applications of the present methods would be, for instance, the higher-harmonic wave loads, the second-order horizontal and yaw motions of, for instance a moored ship, can be very large and it may be wrong to consider them as small. However, it is possible to extend the decomposition based method in Chapter 5 to handle this problem by re-ordering the horizontal and yaw motions as \(O(1) \) instead of \(O(e) \) or \(O(e^2) \). The idea is that one use a ‘body-fixed’ coordinate system in the outer domain as well. It is called ‘body-fixed’ coordinate system, because the same horizontal translatory and angular velocities as the body. However, it does not have any vertical motions. The coordinate system in the inner domain remains the same body-fixed coordinate system as used in the inner domain. The difference of conditions in the outer domain is similar to what we have done in the inner domain (see Section 2.6.4). The difference is that the horizontal motions will be order of \(O(1) \). The incident wave flow in the outer domain has to be described in the ‘body-fixed’ coordinate system as well. This is straightforward by considering the vector \(\mathbf{U} \) in Eq.(2.144) as the total horizontal velocity of the body. On the other hand, one has to solve the motion equations in the body-fixed coordinate system. The description of the rigid-body motion equations in the body-fixed coordinate system can be found in Section 2.7.2.
presented in this thesis is the nonlinear run-up along the offshore structures. The nonlinear run-up is not the focus of this thesis. However, it does not mean it is not important. When the domain decomposition based method (in Chapter 5) is extended by considering all the horizontal and yaw motions as O(1), the method can also be applied to the combined problem of seakeeping and maneuvering.
Appendix

A.1 The classical double-body basis flow in the inertial coordinate system

The classical basis double-body flow velocity potential \(\Phi^0 \) satisfies the following boundary value problem defined in the inertial coordinate system OxXYZ:

\[
\begin{align*}
\Delta \Phi^0 &= 0 & \text{in the whole mean fluid domain} \\
\frac{\partial \Phi^0}{\partial n} &= \mathbf{U} \cdot \mathbf{U}^0 & \text{on } \partial R_b \\
\Phi^0 &= 0 & \text{on } Z = 0 \\
\Phi^0 &\rightarrow 0 & \text{at } \infty
\end{align*}
\]
(A.1)

Here \(\partial R_b \) is the mean wetted body surface. \(\mathbf{U} \) is the forward speed vector described in the inertial coordinate system.

In the formulation of the free-surface and body boundary conditions in the inertial coordinate system (see Section 2.4), we have used the velocity potential \(\Phi^0 \) described in Eq.(A.1) as the basis flow.

The rigid-wall free-surface condition at the mean free surface, i.e. OxXY-plane, means that we have ignored the steady wave system due to the steady motion of the body. The body boundary condition satisfied at the mean position of the body surface indicates that the basis flow described in Eq.(A.1) cannot be used for large body motions.

When the body boundary condition is formulated in the inertial coordinate system, and in order to approximately satisfy the body boundary condition at the instantaneous body position, one has to Taylor expand the basis flow \(\Phi^0 \) about the mean body position. See for instance Timman & Newman (1962) for the linear boundary conditions and Section 2.4 for the linear and second-order boundary conditions. When the body has sharp corners, the solution of \(\Phi^0 \) is singular and it is not valid to make Taylor expansions.

Appendix

A.1. The double-body basis flow

A.1 The classical double-body basis flow in the inertial coordinate system

The classical basis double-body flow velocity potential \(\Phi^0 \) satisfies the following boundary value problem defined in the inertial coordinate system OxXYZ:

\[
\begin{align*}
\Delta \Phi^0 &= 0 & \text{in the whole mean fluid domain} \\
\frac{\partial \Phi^0}{\partial n} &= \mathbf{U} \cdot \mathbf{U}^0 & \text{on } \partial R_b \\
\Phi^0 &= 0 & \text{on } Z = 0 \\
\Phi^0 &\rightarrow 0 & \text{at } \infty
\end{align*}
\]
(A.1)

Here \(\partial R_b \) is the mean wetted body surface. \(\mathbf{U} \) is the forward speed vector described in the inertial coordinate system.

In the formulation of the free-surface and body boundary conditions in the inertial coordinate system (see Section 2.4), we have used the velocity potential \(\Phi^0 \) described in Eq.(A.1) as the basis flow.

The rigid-wall free-surface condition at the mean free surface, i.e. OxXY-plane, means that we have ignored the steady wave system due to the steady motion of the body. The body boundary condition satisfied at the mean position of the body surface indicates that the basis flow described in Eq.(A.1) cannot be used for large body motions.

When the body boundary condition is formulated in the inertial coordinate system, and in order to approximately satisfy the body boundary condition at the instantaneous body position, one has to Taylor expand the basis flow \(\Phi^0 \) about the mean body position. See for instance Timman & Newman (1962) for the linear boundary conditions and Section 2.4 for the linear and second-order boundary conditions. When the body has sharp corners, the solution of \(\Phi^0 \) is singular and it is not valid to make Taylor expansions.

Appendix

A.1 The classical double-body basis flow in the inertial coordinate system

The classical basis double-body flow velocity potential \(\Phi^0 \) satisfies the following boundary value problem defined in the inertial coordinate system OxXYZ:

\[
\begin{align*}
\Delta \Phi^0 &= 0 & \text{in the whole mean fluid domain} \\
\frac{\partial \Phi^0}{\partial n} &= \mathbf{U} \cdot \mathbf{U}^0 & \text{on } \partial R_b \\
\Phi^0 &= 0 & \text{on } Z = 0 \\
\Phi^0 &\rightarrow 0 & \text{at } \infty
\end{align*}
\]
(A.1)

Here \(\partial R_b \) is the mean wetted body surface. \(\mathbf{U} \) is the forward speed vector described in the inertial coordinate system.

In the formulation of the free-surface and body boundary conditions in the inertial coordinate system (see Section 2.4), we have used the velocity potential \(\Phi^0 \) described in Eq.(A.1) as the basis flow.

The rigid-wall free-surface condition at the mean free surface, i.e. OxXY-plane, means that we have ignored the steady wave system due to the steady motion of the body. The body boundary condition satisfied at the mean position of the body surface indicates that the basis flow described in Eq.(A.1) cannot be used for large body motions.

When the body boundary condition is formulated in the inertial coordinate system, and in order to approximately satisfy the body boundary condition at the instantaneous body position, one has to Taylor expand the basis flow \(\Phi^0 \) about the mean body position. See for instance Timman & Newman (1962) for the linear boundary conditions and Section 2.4 for the linear and second-order boundary conditions. When the body has sharp corners, the solution of \(\Phi^0 \) is singular and it is not valid to make Taylor expansions.
A.2 The ‘double-body’ basis flow used in the domain decomposition based method

Let's now explain how we can find the zeroth-order velocity potential Φ^0 used in the domain decomposition based method using a body-fixed coordinate system in the near field. See Chapter 5. Physically, it can not be interpreted as exactly the same as the classical double-body basis flow defined in the inertial coordinate system (see Appendix A.1). However, it can be shown that the solution of Φ^0 and Φ^0_∞ to zeroth order are the same as the inner and outer part of Φ^0 defined in Eq.(A.1) respectively.

We introduce another zeroth-order velocity potential Φ^0_m satisfying all the conditions in Eq.(A.1) except that the body boundary condition is satisfied on the instantaneous position, i.e.

$$V \cdot \nabla \Phi^0_m < 0$$

in the inner domain, and keeping only the leading order terms, we have that

$$\frac{\partial \Phi^0_m}{\partial n} = 0$$

in the whole fluid domain

$$\nabla \Phi^0_m = 0$$

on Ω_w and Ω_{∞}

$$\Phi^0_m = 0$$

at infinity.

Here, $\overline{\Omega_w}$ is the instantaneous wetted body surface under the calm water surface $Z=0$, i.e. the shaded area in Fig.(A.2).

Taylor expanding the free-surface condition about the xy-plane of the body-fixed coordinate system in the inner domain, and keeping only the leading order terms, we have that

$$V \cdot \nabla \Phi^0_m < 0$$

in the inner domain, and keeping only the leading order terms, we have that

$$\frac{\partial \Phi^0_m}{\partial n} = 0$$

in the whole fluid domain

$$\nabla \Phi^0_m = 0$$

on Ω_w and Ω_{∞}

$$\Phi^0_m = 0$$

at infinity.

Here, $\overline{\Omega_w}$ is the instantaneous wetted body surface under the calm water surface $Z=0$, i.e. the shaded area in Fig.(A.2).

Note that the Taylor expansion of the free-surface conditions about any-planes is only valid in the inner domain. This reason has been explained in the text associated with Eq.(2.101). In the outer domain, the following free-surface condition holds

$$\frac{\partial \Phi^0_m}{\partial n} = 0$$

on Ω_{∞}

$$\Phi^0_m = 0$$

at infinity.

A.2 The ‘double-body’ basis flow used in the domain decomposition based method

Let's now explain how we can find the zeroth-order velocity potential Φ^0 used in the domain decomposition based method using a body-fixed coordinate system in the near field. See Chapter 5. Physically, it can not be interpreted as exactly the same as the classical double-body basis flow defined in the inertial coordinate system (see Appendix A.1). However, it can be shown that the solution of Φ^0 and Φ^0_∞ to zeroth order are the same as the inner and outer part of Φ^0 defined in Eq.(A.1) respectively.

We introduce another zeroth-order velocity potential Φ^0_m satisfying all the conditions in Eq.(A.1) except that the body boundary condition is satisfied on the instantaneous position, i.e.

$$V \cdot \nabla \Phi^0_m < 0$$

in the inner domain, and keeping only the leading order terms, we have that

$$\frac{\partial \Phi^0_m}{\partial n} = 0$$

in the whole fluid domain

$$\nabla \Phi^0_m = 0$$

on Ω_w and Ω_{∞}

$$\Phi^0_m = 0$$

at infinity.

Here, $\overline{\Omega_w}$ is the instantaneous wetted body surface under the calm water surface $Z=0$, i.e. the shaded area in Fig.(A.2).

Taylor expanding the free-surface condition about the xy-plane of the body-fixed coordinate system in the inner domain, and keeping only the leading order terms, we have that

$$V \cdot \nabla \Phi^0_m < 0$$

in the inner domain, and keeping only the leading order terms, we have that

$$\frac{\partial \Phi^0_m}{\partial n} = 0$$

in the whole fluid domain

$$\nabla \Phi^0_m = 0$$

on Ω_w and Ω_{∞}

$$\Phi^0_m = 0$$

at infinity.

Here, $\overline{\Omega_w}$ is the instantaneous wetted body surface under the calm water surface $Z=0$, i.e. the shaded area in Fig.(A.2).

Note that the Taylor expansion of the free-surface conditions about any-planes is only valid in the inner domain. This reason has been explained in the text associated with Eq.(2.101). In the outer domain, the following free-surface condition holds

$$\frac{\partial \Phi^0_m}{\partial n} = 0$$

on Ω_{∞}

$$\Phi^0_m = 0$$

at infinity.
\(\phi^0 \) is the zero-order velocity potential in the outer domain.

The difference between the \(\phi^0 \) or \(\delta \phi^0 \) on the control surface \(SC \) and \(\phi^0 \) or \(\delta \phi^0 \) on \(SC \) is of \(O(\varepsilon) \), and thus can be ignored if only the zeroth-order quantities are of interest. That is

\[
\phi^0_{\text{in}} - \phi^0_{\text{out}} = O(\varepsilon) \cdot \frac{\partial \phi^0}{\partial n} \left|_{SC} \right.
\]

(A.6)

The definition of control surface \(SC \) and its mean position \(SC_0 \) can be found in Fig. 5.1 - Fig. 5.3.

Considering Eq.(A.6), Eq.(A.1), Eq.(A.3) and noticing that \(\phi^0 = \epsilon \), \(\delta = \delta \phi^0 \), we find that, the solution of \(\phi^0 \) and \(\delta \phi^0 \) to zeroth order are the same as the inner and outer part of \(\Phi^0 \) (defined in Eq.(A.1)), respectively. Therefore, we can use \(\Phi^0 \) as the solutions of \(\phi^0 \) and \(\delta \phi^0 \).

For a double-body flow, when \(\phi^0 \) is being solved, the domain decomposition solver is switched off and no source-dipole distribution is distributed on the control surface. Since the control surface is enclosed by the computational boundaries of the water domain, the velocity potential \(\phi^0 \) and its high-order derivatives there can be calculated very accurately by using the boundary integral equation (BIE) and the spatial derivatives of the BIE.

For a double-body flow, when \(\phi^0 \) is being solved, the domain decomposition solver is switched off and no source-dipole distribution is distributed on the control surface. Since the control surface is enclosed by the computational boundaries of the water domain, the velocity potential \(\phi^0 \) and its high-order derivatives there can be calculated very accurately by using the boundary integral equation (BIE) and the spatial derivatives of the BIE.

\(\Phi^0 \) is the zero-order velocity potential in the outer domain.

The difference between the \(\Phi^0 \) or \(\delta \Phi^0 \) on the control surface \(SC \) and \(\Phi^0 \) or \(\delta \Phi^0 \) on \(SC \) is of \(O(\varepsilon) \), and thus can be ignored if only the zeroth-order quantities are of interest. That is

\[
\Phi^0_{\text{in}} - \Phi^0_{\text{out}} = O(\varepsilon) \cdot \frac{\partial \Phi^0}{\partial n} \left|_{SC} \right.
\]

(A.6)

The definition of control surface \(SC \) and its mean position \(SC_0 \) can be found in Fig. 5.1 - Fig. 5.3.

Considering Eq.(A.6), Eq.(A.1), Eq.(A.3) and noticing that \(\Phi^0 = \epsilon \), \(\delta = \delta \Phi^0 \), we find that, the solution of \(\Phi^0 \) and \(\delta \Phi^0 \) to zeroth order are the same as the inner and outer part of \(\Phi^0 \) (defined in Eq.(A.1)), respectively. Therefore, we can use \(\Phi^0 \) as the solutions of \(\phi^0 \) and \(\delta \phi^0 \).

For a double-body flow, when \(\phi^0 \) is being solved, the domain decomposition solver is switched off and no source-dipole distribution is distributed on the control surface. Since the control surface is enclosed by the computational boundaries of the water domain, the velocity potential \(\phi^0 \) and its high-order derivatives there can be calculated very accurately by using the boundary integral equation (BIE) and the spatial derivatives of the BIE.
Appendix B. The second-order analytical solution of a circle under forced surging in an infinite fluid

B.1. Solution in the Earth-fixed coordinate system

The surge motion of the circle is assumed to be
\[\xi = -a \sin(\omega t) \]
with the velocity expressed as
\[\dot{\xi} = -a \omega \cos(\omega t) \]
Here \(a \) is the amplitude of the surge motion, \(\omega \) is the frequency of the oscillation.

We will assume that the body motion is small compared with the radius of the circle \(R_0 \). Therefore the velocity potential \(\phi \) can be written as the series expansion
\[\phi = \phi^{(0)} + \phi^{(1)} + \phi^{(2)} + \ldots \]

Taylor expanding the body boundary condition about the mean oscillatory body position, we can get the first-order and second-order body boundary conditions, which can be written respectively as
\[\frac{\partial \phi^{(1)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]
for \(n = 1 \) and \(n = 2 \), \(\mathbf{r} \) means the radial direction.

The first-order solution is known as a 2D dipole with its normal in the \(x \)-direction
\[\phi^{(1)} = -\frac{a^2 R_0}{\kappa} \cos \theta \]
where \((\mathbf{R}', \theta) \) is a point in the fluid domain expressed in the polar coordinate system. We can rewrite Eq. (B.1) by putting Eq.(B.2) and Eq.(B.3) into Eq.(B.5) as
\[\frac{\partial \phi^{(0)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]
with the velocity expressed as
\[\frac{\partial \phi^{(0)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]

Taylor expanding the body boundary condition about the mean oscillatory body position, we can get the first-order and second-order body boundary conditions, which can be written respectively as
\[\frac{\partial \phi^{(1)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]
with the velocity expressed as
\[\frac{\partial \phi^{(0)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]

\[\frac{\partial \phi^{(0)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]

Here \(\hat{n} \) is the normal vector on the mean position of the surface \(S_B \), \(\theta \) is defined as positive pointing into the fluid domain. The subscript X in Eq.(B.5) indicates the partial differentiation with respect to the X-coordinate, \(\mathbf{r} \) means the radial direction.

The first-order solution is known as a 2D dipole with its normal in the \(x \)-direction
\[\phi^{(1)} = -\frac{a^2 R_0}{\kappa} \cos \theta \]
where \((\mathbf{R}', \theta) \) is a point in the fluid domain expressed in the polar coordinate system. We can rewrite Eq. (B.1) by putting Eq.(B.2) and Eq.(B.3) into Eq.(B.5) as
\[\frac{\partial \phi^{(0)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]
with the velocity expressed as
\[\frac{\partial \phi^{(0)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]

The elementary solutions of the Laplace equation in the polar coordinate system can be found in for instance Newman (1977, Eq.(70), page 125). We can formally write the solution of \(\phi^{(0)} \) as the combination of the elementary solutions, i.e.
\[\phi^{(0)} = \sum_{n=1}^{\infty} A_n \cos n \theta \]

where \(A_n \) is the amplitude of the surge motion. \(\omega \) is the frequency of the oscillation.

We will assume that the body motion is small compared with the radius of the circle \(R_0 \). Therefore the velocity potential \(\phi \) can be written as the series expansion
\[\phi = \phi^{(0)} + \phi^{(1)} + \phi^{(2)} + \ldots \]

Taylor expanding the body boundary condition about the mean oscillatory body position, we can get
\[\frac{\partial \phi^{(1)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]
with the velocity expressed as
\[\frac{\partial \phi^{(0)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]

The elementary solutions of the Laplace equation in the polar coordinate system can be found in for instance Newman (1977, Eq.(70), page 125). We can formally write the solution of \(\phi^{(0)} \) as the combination of the elementary solutions, i.e.

\[\phi^{(0)} = \sum_{n=1}^{\infty} A_n \cos n \theta \]

where \(A_n \) is the amplitude of the surge motion. \(\omega \) is the frequency of the oscillation.

We will assume that the body motion is small compared with the radius of the circle \(R_0 \). Therefore the velocity potential \(\phi \) can be written as the series expansion
\[\phi = \phi^{(0)} + \phi^{(1)} + \phi^{(2)} + \ldots \]

Taylor expanding the body boundary condition about the mean oscillatory body position, we can get
\[\frac{\partial \phi^{(1)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]
with the velocity expressed as
\[\frac{\partial \phi^{(0)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]

The elementary solutions of the Laplace equation in the polar coordinate system can be found in for instance Newman (1977, Eq.(70), page 125). We can formally write the solution of \(\phi^{(0)} \) as the combination of the elementary solutions, i.e.

\[\phi^{(0)} = \sum_{n=1}^{\infty} A_n \cos n \theta \]

where \(A_n \) is the amplitude of the surge motion. \(\omega \) is the frequency of the oscillation.

We will assume that the body motion is small compared with the radius of the circle \(R_0 \). Therefore the velocity potential \(\phi \) can be written as the series expansion
\[\phi = \phi^{(0)} + \phi^{(1)} + \phi^{(2)} + \ldots \]

Taylor expanding the body boundary condition about the mean oscillatory body position, we can get
\[\frac{\partial \phi^{(1)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]
with the velocity expressed as
\[\frac{\partial \phi^{(0)}}{\partial \mathbf{r}} + \frac{\partial \phi^{(2)}}{\partial \mathbf{r}} = -\hat{n} \cdot \nabla \phi^{(0)} \text{ on } S_B \]

The elementary solutions of the Laplace equation in the polar coordinate system can be found in for instance Newman (1977, Eq.(70), page 125). We can formally write the solution of \(\phi^{(0)} \) as the combination of the elementary solutions, i.e.
The body boundary condition satisfied on the instantaneous position of the body is
\[\phi''(R, \rho, z) = \left(B_0 + A_0 \int_{\theta} \left[\begin{array}{c} B_0 \left(R^2 + A_0 \right) \cos \theta \end{array} \right] sin(2 \omega t) \right) \sin(2 \omega t). \]
(B.8)

Here \(A_0, B_0, A_n, B_n \) are constants. The reason we have used \(\sin(2 \omega t) \) as the time-dependence of the solution is that the body boundary condition in Eq. (B.7) is time-dependent.

The coefficients \(A_0, B_0, A_1, B_1 \) should be all zero in order to satisfy the radiation condition, which requires that \(\phi''(\rho, \theta) \) go to zero at infinity. Furthermore, the body boundary condition Eq. (B.7) suggests that
\[\phi''(R, \rho_0, z) = \left(B_0 + A_0 \int_{\theta} \left[\begin{array}{c} B_0 \left(R^2 + A_0 \right) \cos \theta \end{array} \right] sin(2 \omega t) \right) \sin(2 \omega t). \]
(B.8)

Here \(A_0, B_0, A_1, B_1 \) are constants. The reason we have used \(\sin(2 \omega t) \) as the time-dependence of the solution is that the body boundary condition in Eq. (B.7) is time-dependent.

B.2. Solution in the body-fixed coordinate system

In the solution in the body-fixed coordinate system, we do not assume that the body motion is small. Instead the solution derived here is valid also for large-amplitude motions.

The body boundary condition satisfied on the instantaneous position of the body is
\[\phi''(R, \rho, z) = \left(B_0 + A_0 \int_{\theta} \left[\begin{array}{c} B_0 \left(R^2 + A_0 \right) \cos \theta \end{array} \right] sin(2 \omega t) \right) \sin(2 \omega t). \]
(B.8)

Here \(A_0, B_0, A_1, B_1 \) are constants. The reason we have used \(\sin(2 \omega t) \) as the time-dependence of the solution is that the body boundary condition in Eq. (B.7) is time-dependent.

The coefficients \(A_0, B_0, A_1, B_1 \) should be all zero in order to satisfy the radiation condition, which requires that \(\phi''(\rho, \theta) \) go to zero at infinity. Furthermore, the body boundary condition Eq. (B.7) suggests that
\[\phi''(R, \rho_0, z) = \left(B_0 + A_0 \int_{\theta} \left[\begin{array}{c} B_0 \left(R^2 + A_0 \right) \cos \theta \end{array} \right] sin(2 \omega t) \right) \sin(2 \omega t). \]
(B.8)

Here \(A_0, B_0, A_1, B_1 \) are constants. The reason we have used \(\sin(2 \omega t) \) as the time-dependence of the solution is that the body boundary condition in Eq. (B.7) is time-dependent.

The second-order approximation of the hydrodynamic pressure on the body \((R=R_0) \) can be expressed as
\[p = p(\rho, \theta) = -\frac{\rho \partial \phi''}{\partial \rho^2} \left(\rho \frac{\partial \phi''}{\partial \rho} - \rho \frac{\partial \phi''}{\partial \theta} \right) \left(\rho \frac{\partial \phi''}{\partial \theta} - \rho \frac{\partial \phi''}{\partial \rho} \right) - \frac{\rho}{2} \rho \frac{\partial \phi''}{\partial \rho^2} \left(\rho \frac{\partial \phi''}{\partial \theta} - \rho \frac{\partial \phi''}{\partial \rho} \right) \]
(B.11)

\[\frac{1}{T} \rho \frac{\partial \phi''}{\partial t} = \frac{1}{T} \cos(2 \omega t) \cos(2 \omega t) - \frac{1}{T} \]
(B.11)

B.2. Solution in the body-fixed coordinate system

In the solution in the body-fixed coordinate system, we do not assume that the body motion is small. Instead the solution derived here is valid also for large-amplitude motions.

The body boundary condition satisfied on the instantaneous position of the body is
\[\phi''(R, \rho, z) = \left(B_0 + A_0 \int_{\theta} \left[\begin{array}{c} B_0 \left(R^2 + A_0 \right) \cos \theta \end{array} \right] sin(2 \omega t) \right) \sin(2 \omega t). \]
(B.8)

Here \(A_0, B_0, A_1, B_1 \) are constants. The reason we have used \(\sin(2 \omega t) \) as the time-dependence of the solution is that the body boundary condition in Eq. (B.7) is time-dependent.

The coefficients \(A_0, B_0, A_1, B_1 \) should be all zero in order to satisfy the radiation condition, which requires that \(\phi''(\rho, \theta) \) go to zero at infinity. Furthermore, the body boundary condition Eq. (B.7) suggests that
\[\phi''(R, \rho_0, z) = \left(B_0 + A_0 \int_{\theta} \left[\begin{array}{c} B_0 \left(R^2 + A_0 \right) \cos \theta \end{array} \right] sin(2 \omega t) \right) \sin(2 \omega t). \]
(B.8)

Here \(A_0, B_0, A_1, B_1 \) are constants. The reason we have used \(\sin(2 \omega t) \) as the time-dependence of the solution is that the body boundary condition in Eq. (B.7) is time-dependent.

The second-order approximation of the hydrodynamic pressure on the body \((R=R_0) \) can be expressed as
\[p = p(\rho, \theta) = -\frac{\rho \partial \phi''}{\partial \rho^2} \left(\rho \frac{\partial \phi''}{\partial \rho} - \rho \frac{\partial \phi''}{\partial \theta} \right) \left(\rho \frac{\partial \phi''}{\partial \theta} - \rho \frac{\partial \phi''}{\partial \rho} \right) - \frac{\rho}{2} \rho \frac{\partial \phi''}{\partial \rho^2} \left(\rho \frac{\partial \phi''}{\partial \theta} - \rho \frac{\partial \phi''}{\partial \rho} \right) \]
(B.11)

\[\frac{1}{T} \rho \frac{\partial \phi''}{\partial t} = \frac{1}{T} \cos(2 \omega t) \cos(2 \omega t) - \frac{1}{T} \]
(B.11)
Appendix C. The second-order analytical solution for sloshing in a two-dimensional rectangular tank under forced surging

C.1 Solution in the Earth-fixed coordinate system

A 2D rectangular tank under forced sinusoidal surge motion is considered. We will show how we can find the second-order analytical solution of this problem in the Earth-fixed coordinate system by assuming a steady-state condition. By steady-state condition, it is meant that we will neglect the transient effects in the tank. Rognebakke & Faltnes (1999) has obtained a transient solution up to second order for the same problem. The solution was also analytically based. However, in the second-order solution, Rognebakke & Faltnes (1999) simplified their analysis by only including the contribution of the first mode in the second-order forcing terms. In the present solution, we have included the contribution from all the modes. In practice, we have to truncate the series since the high modes are highly-damped.

The surge motion of the rectangular tank is assumed to be

\[z = z_1 \cos(\omega t), \]

with the velocity as

\[u = \dot{z}_1 \cos(\omega t), \]

where \(z_1 \) is the amplitude of the surge motion, \(\omega \) is the frequency of the oscillation. The over dot means time derivative.

When the tank motion and the fluid motion in the tank are small compared with the characteristic dimension of the tank, the velocity potential \(\phi \) can be expressed by the series expansion

\[\phi = \phi_1 + \phi_2 + \ldots \]

The first-order and second-order free-surface conditions can be expressed respectively as

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

The corresponding first-order and second-order body boundary conditions are

Appendix C. The second-order analytical solution for sloshing in a two-dimensional rectangular tank under forced surging

C.1 Solution in the Earth-fixed coordinate system

A 2D rectangular tank under forced sinusoidal surge motion is considered. We will show how we can find the second-order analytical solution of this problem in the Earth-fixed coordinate system by assuming a steady-state condition. By steady-state condition, it is meant that we will neglect the transient effects in the tank. Rognebakke & Faltnes (1999) has obtained a transient solution up to second order for the same problem. The solution was also analytically based. However, in the second-order solution, Rognebakke & Faltnes (1999) simplified their analysis by only including the contribution of the first mode in the second-order forcing terms. In the present solution, we have included the contribution from all the modes. In practice, we have to truncate the series since the high modes are highly-damped.

The surge motion of the rectangular tank is assumed to be

\[z = z_1 \cos(\omega t), \]

with the velocity as

\[u = \dot{z}_1 \cos(\omega t), \]

where \(z_1 \) is the amplitude of the surge motion, \(\omega \) is the frequency of the oscillation. The over dot means time derivative.

When the tank motion and the fluid motion in the tank are small compared with the characteristic dimension of the tank, the velocity potential \(\phi \) can be expressed by the series expansion

\[\phi = \phi_1 + \phi_2 + \ldots \]

The first-order and second-order free-surface conditions can be expressed respectively as

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

The corresponding first-order and second-order body boundary conditions are

Appendix C. The second-order analytical solution for sloshing in a two-dimensional rectangular tank under forced surging

C.1 Solution in the Earth-fixed coordinate system

A 2D rectangular tank under forced sinusoidal surge motion is considered. We will show how we can find the second-order analytical solution of this problem in the Earth-fixed coordinate system by assuming a steady-state condition. By steady-state condition, it is meant that we will neglect the transient effects in the tank. Rognebakke & Faltnes (1999) has obtained a transient solution up to second order for the same problem. The solution was also analytically based. However, in the second-order solution, Rognebakke & Faltnes (1999) simplified their analysis by only including the contribution of the first mode in the second-order forcing terms. In the present solution, we have included the contribution from all the modes. In practice, we have to truncate the series since the high modes are highly-damped.

The surge motion of the rectangular tank is assumed to be

\[z = z_1 \cos(\omega t), \]

with the velocity as

\[u = \dot{z}_1 \cos(\omega t), \]

where \(z_1 \) is the amplitude of the surge motion, \(\omega \) is the frequency of the oscillation. The over dot means time derivative.

When the tank motion and the fluid motion in the tank are small compared with the characteristic dimension of the tank, the velocity potential \(\phi \) can be expressed by the series expansion

\[\phi = \phi_1 + \phi_2 + \ldots \]

The first-order and second-order free-surface conditions can be expressed respectively as

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

The corresponding first-order and second-order body boundary conditions are

Appendix C. The second-order analytical solution for sloshing in a two-dimensional rectangular tank under forced surging

C.1 Solution in the Earth-fixed coordinate system

A 2D rectangular tank under forced sinusoidal surge motion is considered. We will show how we can find the second-order analytical solution of this problem in the Earth-fixed coordinate system by assuming a steady-state condition. By steady-state condition, it is meant that we will neglect the transient effects in the tank. Rognebakke & Faltnes (1999) has obtained a transient solution up to second order for the same problem. The solution was also analytically based. However, in the second-order solution, Rognebakke & Faltnes (1999) simplified their analysis by only including the contribution of the first mode in the second-order forcing terms. In the present solution, we have included the contribution from all the modes. In practice, we have to truncate the series since the high modes are highly-damped.

The surge motion of the rectangular tank is assumed to be

\[z = z_1 \cos(\omega t), \]

with the velocity as

\[u = \dot{z}_1 \cos(\omega t), \]

where \(z_1 \) is the amplitude of the surge motion, \(\omega \) is the frequency of the oscillation. The over dot means time derivative.

When the tank motion and the fluid motion in the tank are small compared with the characteristic dimension of the tank, the velocity potential \(\phi \) can be expressed by the series expansion

\[\phi = \phi_1 + \phi_2 + \ldots \]

The first-order and second-order free-surface conditions can be expressed respectively as

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \text{on } Z=0, \]

The corresponding first-order and second-order body boundary conditions are
We define the time-domain solution for Eq. (1) was given by Faltinsen (1978). The steady-state solution can be obtained by neglecting the transient terms in Faltinsen’s (1978) solution and can be written as

\[\mathbf{d}^\infty = \bar{q} \mathbf{X} + \sum_{m=1, n=1}^{2, 4, \ldots} \bar{c}_m \sin \left(k_m x + \alpha_m t \right) \sin \left(\bar{c}_m b \right) \]

where

\[A_m = \frac{1}{\bar{c}_m} \left(-1 \right)^{m+n} \bar{c}_m b \]

Here \(a \) is the half of the breadth of the tank. See the definition in Fig.5.8.

The time-domain solution for \(d^\infty \) was given by Faltinsen (1978). The steady-state solution can be obtained by neglecting the transient terms in Faltinsen’s (1978) solution and can be written as

\[\mathbf{d}^\infty = \bar{q} \mathbf{X} + \sum_{m=1, n=1}^{2, 4, \ldots} \bar{c}_m \sin \left(k_m x + \alpha_m t \right) \sin \left(\bar{c}_m b \right) \]

where

\[A_m = \frac{1}{\bar{c}_m} \left(-1 \right)^{m+n} \bar{c}_m b \]

Here \(a \) is the half of the breadth of the tank. See the definition in Fig.5.8.

We will evaluate the forcing term on the right-hand side of Eq. (C.5) term by term by using Eq.(C.12).

We define

\[B_k(Z,T) = A_k \cos(\bar{k} z + \bar{c}_k T) \]

and rewrite Eq. (C.8) becomes

\[\bar{d}^\infty = \bar{q} \mathbf{X} + \sum_{k=1}^{i} B_k(Z,T) \sin(\bar{k} z + \bar{c}_k T) \]

We will evaluate the forcing term on the right-hand side of Eq. (C.5) term by term by using Eq.(C.12).
Plugging (C.13) - (C.16) into Eq. (C.5), we have that

\[
\begin{align*}
\frac{\partial^2 \mathbf{u}}{\partial x^2} & = -\frac{1}{\rho} \sum_{k} \sum_{a} \mathbf{C}_{k,a} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right] \\
\frac{\partial^2 \mathbf{u}}{\partial y^2} & = -\frac{1}{\rho} \sum_{k} \sum_{a} \mathbf{C}_{k,a} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right] \\
\frac{\partial^2 \mathbf{u}}{\partial z^2} & = -\frac{1}{\rho} \sum_{k} \sum_{a} \mathbf{C}_{k,a} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right]
\end{align*}
\]

where \(\mathbf{C}_{k,a} \) is defined respectively as

\[
\begin{align*}
\mathbf{C}_{k,a} &= 0, \quad \text{if } k \text{ is odd} \\
\mathbf{C}_{k,a} &= \frac{\rho}{k} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right], \quad \text{if } k \text{ is even}
\end{align*}
\]

Noticing that \(\mathbf{C}_{k,0} = 0 \) and \(\mathbf{C}_{k,0} = 0 \) when \(n \) is an even number, we can rewrite the single summation in Eq. (C.15) and Eq. (C.16) respectively as

\[
\begin{align*}
\frac{\partial^2 \mathbf{u}}{\partial x^2} & = -\frac{1}{\rho} \sum_{k} \sum_{a} \mathbf{C}_{k,a} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right] \\
\frac{\partial^2 \mathbf{u}}{\partial y^2} & = -\frac{1}{\rho} \sum_{k} \sum_{a} \mathbf{C}_{k,a} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right] \\
\frac{\partial^2 \mathbf{u}}{\partial z^2} & = -\frac{1}{\rho} \sum_{k} \sum_{a} \mathbf{C}_{k,a} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right]
\end{align*}
\]

where \(\mathbf{C}_{k,a} \) is defined respectively as

\[
\begin{align*}
\mathbf{C}_{k,a} &= 0, \quad \text{if } k \text{ is odd} \\
\mathbf{C}_{k,a} &= \frac{\rho}{k} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right], \quad \text{if } k \text{ is even}
\end{align*}
\]

Noticing that \(\mathbf{C}_{k,0} = 0 \) and \(\mathbf{C}_{k,0} = 0 \) when \(n \) is an even number, we can rewrite the single summation in Eq. (C.15) and Eq. (C.16) respectively as

\[
\begin{align*}
\frac{\partial^2 \mathbf{u}}{\partial x^2} & = -\frac{1}{\rho} \sum_{k} \sum_{a} \mathbf{C}_{k,a} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right] \\
\frac{\partial^2 \mathbf{u}}{\partial y^2} & = -\frac{1}{\rho} \sum_{k} \sum_{a} \mathbf{C}_{k,a} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right] \\
\frac{\partial^2 \mathbf{u}}{\partial z^2} & = -\frac{1}{\rho} \sum_{k} \sum_{a} \mathbf{C}_{k,a} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right]
\end{align*}
\]

where \(\mathbf{C}_{k,a} \) is defined respectively as

\[
\begin{align*}
\mathbf{C}_{k,a} &= 0, \quad \text{if } k \text{ is odd} \\
\mathbf{C}_{k,a} &= \frac{\rho}{k} \cos \left[k(x+a) \right] \cos \left[k(x+a) \right], \quad \text{if } k \text{ is even}
\end{align*}
\]
Appendix C

The derivation of \(q_1, q_3, \) and \(p_1 \) is lengthy and we only give the final results as

\[
q_1 = \sum_{m=3}^{\infty} -4A_{m1} - C_{1,1}C_{1,1} + \frac{1}{2} C_{1,1} + C_{1,1} \sin(2\theta)
\]

(C.28)

\[
q_3 = \sum_{m=3}^{\infty} -4A_{m1} - C_{1,1}C_{1,1} + \frac{1}{2} C_{1,1} + C_{1,1} \sin(2\theta)
\]

(C.28)

\[
p_1 = \sum_{m=3}^{\infty} \frac{A_{m1} C_{1,1}}{2} C_{1,1} + C_{1,1} \sin(2\theta)
\]

(C.28)
\[
p_n = \left[C_n - \alpha_n \delta \right] j_n x_{2n}.
\]
In order to find the solution to \(\phi^0 \), we will divide it into two parts
\[
\phi^0 = \phi_1^0 + \phi_2^0.
\]
\(\phi \) satisfies Laplace equation and the following boundary conditions
\[
\begin{align*}
\frac{\partial \phi}{\partial n} &= 0, \quad x = \pm b, \\
\frac{\partial \phi}{\partial n} &= 0, \quad z = \pm h, \\
\frac{\partial \phi}{\partial n} + g \phi &= 0, \quad z = h, \quad z = -h.
\end{align*}
\]
Thus the sum of \(\phi^0 \) and \(\phi \), i.e., \(\phi^1 \) satisfies the second-order boundary condition at the tank walls Eq. (C.7), the zero-Neumann bottom condition and the second-order free-surface condition Eq. (C.27).

Solution for \(\phi_1^0 \)

We assume
\[
\phi_1^0 = E_n(t) \left[\sum_{n=1}^{\infty} \frac{2}{x_{2n}} \sin \left[x_{2n} (X + a) \right] \sum_{n=1}^{\infty} j_n x_{2n} \sin \left[2a \right] \right],
\]
which automatically satisfies the homogeneous Neumann condition at the walls and the bottom of the tank. \(E_n(t) \) and \(\lambda_n(t) \) are determined by putting Eq. (C.34) into the free-surface condition in Eq. (C.33) as
\[
\begin{align*}
E_n(t) &= \frac{4}{k x_{2n}} \left[\sin \left[x_{2n} (X + a) \right] \sum_{n=1}^{\infty} \frac{2}{x_{2n}} \sin \left[2a \right] \right], \\
\lambda_n(t) &= \frac{1}{k x_{2n}} \left[\sum_{n=1}^{\infty} \frac{2}{x_{2n}} \sin \left[x_{2n} (X + a) \right] \right] \sin \left[2a \right].
\end{align*}
\]
Thus the sum of \(\phi_1^0 \) and \(\phi_2^0 \), i.e., \(\phi^1 \) satisfies the second-order boundary condition at the tank walls Eq. (C.7), the zero-Neumann bottom condition and the second-order free-surface condition Eq. (C.27).

Solution for \(\phi_2^0 \)

We assume
\[
\phi_2^0 = E_n(t) \left[\sum_{n=1}^{\infty} \frac{2}{x_{2n}} \sin \left[x_{2n} (X + a) \right] \sum_{n=1}^{\infty} j_n x_{2n} \sin \left[2a \right] \right],
\]
which automatically satisfies the homogeneous Neumann condition at the walls and the bottom of the tank. \(E_n(t) \) and \(\lambda_n(t) \) are determined by putting Eq. (C.34) into the free-surface condition in Eq. (C.33) as
\[
\begin{align*}
E_n(t) &= \frac{4}{k x_{2n}} \left[\sin \left[x_{2n} (X + a) \right] \sum_{n=1}^{\infty} \frac{2}{x_{2n}} \sin \left[2a \right] \right], \\
\lambda_n(t) &= \frac{1}{k x_{2n}} \left[\sum_{n=1}^{\infty} \frac{2}{x_{2n}} \sin \left[x_{2n} (X + a) \right] \right] \sin \left[2a \right].
\end{align*}
\]
Thus the sum of \(\phi_1^0 \) and \(\phi_2^0 \), i.e., \(\phi^1 \) satisfies the second-order boundary condition at the tank walls Eq. (C.7), the zero-Neumann bottom condition and the second-order free-surface condition Eq. (C.27).
The body boundary condition in (C.33) for ϕ'_{s} suggests the following part of the solution
\[
\phi'_{s} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\sin[k_{n}(X + \alpha)]}{k_{n}^{2}} \left[\phi_{n} \cosh \alpha + \phi_{1n} \sinh \alpha \right]
\]
which satisfies the body boundary conditions.

However, ϕ'_{b} does not satisfy the free-surface condition in Eq.(C.33), thus we need another part of the solution ϕ'_{b} satisfying the following free-surface condition
\[
\frac{\partial \phi}{\partial z} + \frac{1}{2} \frac{\partial^{2} \phi}{\partial t^{2}} = -\frac{1}{2} \frac{\partial^{2} \phi}{\partial z \partial t}
\]
with
\[
F_{i} = \int_{-\alpha}^{\alpha} A_{i} \left[\frac{\partial^{2} \phi}{\partial z \partial t} \right]^{2}.
\]

The solution to ϕ'_{b} can be assumed as
\[
\phi'_{b} = G_{i} \sin(2\pi n) \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\sin[k_{n}(X + \alpha)]}{k_{n}^{2}} \left[\phi_{n} \cosh \alpha + \phi_{1n} \sinh \alpha \right]
\]
which satisfies the homogeneous Neumann condition on the tank surface.

It follows by plugging Eq.(C.40) into Eq.(C.38) and using the orthogonality of the natural sloshing modes that
\[
G_{i}(k) = -\frac{1}{16\pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{k_{n}^{4}} \sin[k_{n}(X + \alpha)] \sin[2\pi n \alpha]
\]
and
\[
G_{i}(k) = \frac{1}{4\pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{2\sin[2\pi n \alpha]}{k_{n}^{4}} \sin[k_{n}(X + \alpha)]
\]
When the velocity potential is obtained, the hydraulic pressure in the fluid can be obtained from the Bernoulli’s equation expressed in the inertial coordinate system. The first-order and second-order hydrodynamic pressure can respectively be written as
\[
p^{(1)} = -\rho \frac{\partial \phi}{\partial t}, \quad p^{(2)} = -\rho \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t}
\]

The body boundary condition in (C.33) for ϕ'_{s} suggests the following part of the solution
\[
\phi'_{s} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\sin[k_{n}(X + \alpha)]}{k_{n}^{2}} \left[\phi_{n} \cosh \alpha + \phi_{1n} \sinh \alpha \right]
\]
which satisfies the body boundary conditions.

However, ϕ'_{b} does not satisfy the free-surface condition in Eq.(C.33), thus we need another part of the solution ϕ'_{b} satisfying the following free-surface condition
\[
\frac{\partial \phi}{\partial z} + \frac{1}{2} \frac{\partial^{2} \phi}{\partial t^{2}} = -\frac{1}{2} \frac{\partial^{2} \phi}{\partial z \partial t}
\]
with
\[
F_{i} = \int_{-\alpha}^{\alpha} A_{i} \left[\frac{\partial^{2} \phi}{\partial z \partial t} \right]^{2}.
\]

The solution to ϕ'_{b} can be assumed as
\[
\phi'_{b} = G_{i} \sin(2\pi n) \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\sin[k_{n}(X + \alpha)]}{k_{n}^{2}} \left[\phi_{n} \cosh \alpha + \phi_{1n} \sinh \alpha \right]
\]
which satisfies the homogeneous Neumann condition on the tank surface.

It follows by plugging Eq.(C.40) into Eq.(C.38) and using the orthogonality of the natural sloshing modes that
\[
G_{i}(k) = -\frac{1}{16\pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{k_{n}^{4}} \sin[k_{n}(X + \alpha)] \sin[2\pi n \alpha]
\]
and
\[
G_{i}(k) = \frac{1}{4\pi^{2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{2\sin[2\pi n \alpha]}{k_{n}^{4}} \sin[k_{n}(X + \alpha)]
\]
When the velocity potential is obtained, the hydraulic pressure in the fluid can be obtained from the Bernoulli’s equation expressed in the inertial coordinate system. The first-order and second-order hydrodynamic pressure can respectively be written as
\[
p^{(1)} = -\rho \frac{\partial \phi}{\partial t}, \quad p^{(2)} = -\rho \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t}
\]
C.2 Solution in the tank-fixed coordinate system

The first-order free-surface condition is the same as (C.4) with Z replaced by z in the body-fixed coordinate system, i.e.
\[\varphi_{\text{ss}} \bigg|_{z} = \varphi_{\text{ss}} \bigg|_{z} = 0 \text{ on } z=0. \] (C.45)

The first-order body boundary condition
\[\varphi_{\text{bb}} \bigg|_{z} = \zeta_{\text{bcrit}} \text{ at } z=0. \] (C.46)

is the same as Eq.(C.6) with x replaced by z. Here \(\theta^{(1)} \) is the first-order absolute velocity potential.

Then the solution to \(\theta^{(1)} \) in the body-fixed coordinate system can be obtained by simply replacing X and Z in Eq.(C.12) by x and z respectively, i.e.
\[\theta^{(1)} = \zeta_{\text{bcrit}} \sum_{r} \mathbf{R}(\mathbf{x}_{r}, \mathbf{z}_{r}) \cdot \mathbf{a}(\mathbf{x}, \mathbf{z}) \] (C.47)

with \(B_{y}(x_{r}, z_{r}) \) and \(\mathbf{a}(x, z) \) defined in section Eq.(C.11) and Eq.(C.10), respectively.

The second-order body boundary condition can be expressed as
\[\frac{\partial \theta^{(2)}}{\partial z} = 0, \quad x = za, \]
\[\frac{\partial \theta^{(2)}}{\partial x} = 0, \quad z = \lambda - \lambda. \] (C.48)

The second-order kinematic and dynamic free-surface condition can be written respectively as
\[\frac{\partial \theta^{(2)}}{\partial z} - \varphi_{\text{ss}} = -z \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial z^{2}} - \zeta_{\text{bcrit}} \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial z^{2}} \]
\[= \zeta_{\text{bcrit}} \sum_{r} \mathbf{R}(\mathbf{x}_{r}, \mathbf{z}_{r}) \cdot \mathbf{a}(\mathbf{x}, \mathbf{z}) \] (C.49)

\[\frac{\partial \theta^{(2)}}{\partial x} - \varphi_{\text{ss}} = -z \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial x^{2}} - \zeta_{\text{bcrit}} \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial x^{2}} \]
\[= \zeta_{\text{bcrit}} \sum_{r} \mathbf{R}(\mathbf{x}_{r}, \mathbf{z}_{r}) \cdot \mathbf{a}(\mathbf{x}, \mathbf{z}) \] (C.50)

The combined second-order free surface can be expressed as
\[\frac{\partial \theta^{(2)}}{\partial x} \frac{\partial \theta^{(2)}}{\partial x} - \varphi_{\text{ss}} = -z \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial x^{2}} - \zeta_{\text{bcrit}} \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial x^{2}} \]
\[= \zeta_{\text{bcrit}} \sum_{r} \mathbf{R}(\mathbf{x}_{r}, \mathbf{z}_{r}) \cdot \mathbf{a}(\mathbf{x}, \mathbf{z}) \] (C.51)

We notice that the last two terms are additional terms compared with the second-order free-surface condition Eq.(C.13) in the Earth-fixed coordinate system. Therefore, we will divide the solution to \(\theta^{(2)} \) into two parts, i.e.

C.2 Solution in the tank-fixed coordinate system

The first-order free-surface condition is the same as (C.4) with Z replaced by z in the body-fixed coordinate system, i.e.
\[\varphi_{\text{ss}} \bigg|_{z} = \varphi_{\text{ss}} \bigg|_{z} = 0 \text{ on } z=0. \] (C.45)

The first-order body boundary condition
\[\varphi_{\text{bb}} \bigg|_{z} = \zeta_{\text{bcrit}} \text{ at } z=0. \] (C.46)

is the same as Eq.(C.6) with x replaced by z. Here \(\theta^{(1)} \) is the first-order absolute velocity potential.

Then the solution to \(\theta^{(1)} \) in the body-fixed coordinate system can be obtained by simply replacing X and Z in Eq.(C.12) by x and z respectively, i.e.
\[\theta^{(1)} = \zeta_{\text{bcrit}} \sum_{r} \mathbf{R}(\mathbf{x}_{r}, \mathbf{z}_{r}) \cdot \mathbf{a}(\mathbf{x}, \mathbf{z}) \] (C.47)

with \(B_{y}(x_{r}, z_{r}) \) and \(\mathbf{a}(x, z) \) defined in section Eq.(C.11) and Eq.(C.10), respectively.

The second-order body boundary condition can be expressed as
\[\frac{\partial \theta^{(2)}}{\partial z} = 0, \quad x = za, \]
\[\frac{\partial \theta^{(2)}}{\partial x} = 0, \quad z = \lambda - \lambda. \] (C.48)

The second-order kinematic and dynamic free-surface condition can be written respectively as
\[\frac{\partial \theta^{(2)}}{\partial z} - \varphi_{\text{ss}} = -z \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial z^{2}} - \zeta_{\text{bcrit}} \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial z^{2}} \]
\[= \zeta_{\text{bcrit}} \sum_{r} \mathbf{R}(\mathbf{x}_{r}, \mathbf{z}_{r}) \cdot \mathbf{a}(\mathbf{x}, \mathbf{z}) \] (C.49)

\[\frac{\partial \theta^{(2)}}{\partial x} - \varphi_{\text{ss}} = -z \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial x^{2}} - \zeta_{\text{bcrit}} \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial x^{2}} \]
\[= \zeta_{\text{bcrit}} \sum_{r} \mathbf{R}(\mathbf{x}_{r}, \mathbf{z}_{r}) \cdot \mathbf{a}(\mathbf{x}, \mathbf{z}) \] (C.50)

The combined second-order free surface can be expressed as
\[\frac{\partial \theta^{(2)}}{\partial x} \frac{\partial \theta^{(2)}}{\partial x} - \varphi_{\text{ss}} = -z \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial x^{2}} - \zeta_{\text{bcrit}} \frac{\partial \theta^{(2)}}{\partial x} + \frac{\partial^{2} \theta^{(2)}}{\partial x^{2}} \]
\[= \zeta_{\text{bcrit}} \sum_{r} \mathbf{R}(\mathbf{x}_{r}, \mathbf{z}_{r}) \cdot \mathbf{a}(\mathbf{x}, \mathbf{z}) \] (C.51)

We notice that the last two terms are additional terms compared with the second-order free-surface condition Eq.(C.13) in the Earth-fixed coordinate system. Therefore, we will divide the solution to \(\theta^{(2)} \) into two parts, i.e.
Thus the solution for ϕ_2 is the same as ϕ_1 in Eq.(C.34) except that we have replace X and Z by x and z respectively, i.e.

$$\phi_2 = E_x(i) \sum_{nC} \left(\frac{\cosh k_x (z + a)}{\cosh k_x a} \cos k_x z \right) \sin (2a)$$

with $E_x(i)$ and $E_z(i)$ given in Eq. (C.35) and Eq. (C.36) respectively.

ϕ^c satisfies the following boundary conditions

$$\left[\frac{\partial \phi^c}{\partial n} \right] = 0, \quad x = \pm a;$$

$$\left[\frac{\partial \phi^c}{\partial n} \right] = 0, \quad z = \pm h;$$

$$\left[\frac{\partial \phi^c}{\partial n} \right] = \frac{\cosh k_x (z + a)}{\cosh k_x a} \sin (2a), \quad x = a, z = 0$$

where q^c_x and p^c_z are defined respectively as

$$q^c_x = \frac{1}{2} \frac{\cosh k_x (a + h)}{\cosh k_x a},$$

$$p^c_z = -\frac{1}{2} \frac{\sinh k_x (a + h)}{\cosh k_x a}.$$

Here the coefficients $C_{q,c}$ and $A_{q,c}$ have been defined in the last section.

The solution to ϕ^c is found to be

$$\phi^c = E_x(i) \sum_{nC} \left(\frac{\cosh k_x (z + a)}{\cosh k_x a} \cos k_x z \right) \sin (2a)$$

with

$$E_x = \frac{q^c_x}{4 \alpha} \sum_{nC} \frac{1}{k_x^2 - a^2} \left[\frac{1}{k_x^2} - \frac{1}{a^2} \right].$$

Thus the solution for ϕ_1 is the same as ϕ_2 in Eq.(C.34) expect that we have replace X and Z by x and z respectively, i.e.

$$\phi_1 = E_x(i) \sum_{nC} \left(\frac{\cosh k_x (z + a)}{\cosh k_x a} \cos k_x z \right) \sin (2a)$$

with $E_x(i)$ and $E_z(i)$ given in Eq. (C.35) and Eq. (C.36) respectively.

ϕ^c satisfies the following boundary conditions

$$\left[\frac{\partial \phi^c}{\partial n} \right] = 0, \quad x = \pm a;$$

$$\left[\frac{\partial \phi^c}{\partial n} \right] = 0, \quad z = \pm h;$$

$$\left[\frac{\partial \phi^c}{\partial n} \right] = \frac{\cosh k_x (z + a)}{\cosh k_x a} \sin (2a), \quad x = a, z = 0$$

where q^c_x and p^c_z are defined respectively as

$$q^c_x = \frac{1}{2} \frac{\cosh k_x (a + h)}{\cosh k_x a},$$

$$p^c_z = -\frac{1}{2} \frac{\sinh k_x (a + h)}{\cosh k_x a}.$$

Here the coefficients $C_{q,c}$ and $A_{q,c}$ have been defined in the last section.

The solution to ϕ^c is found to be

$$\phi^c = E_x(i) \sum_{nC} \left(\frac{\cosh k_x (z + a)}{\cosh k_x a} \cos k_x z \right) \sin (2a)$$

with

$$E_x = \frac{q^c_x}{4 \alpha} \sum_{nC} \frac{1}{k_x^2 - a^2} \left[\frac{1}{k_x^2} - \frac{1}{a^2} \right].$$
According to the Bernoulli’s equation in the body-fixed coordinate system, the first-order and second-order hydrodynamic pressure can be written respectively as

\[p^{(1)} = -\rho \mathbf{u} \cdot \mathbf{v} \]

\[p^{(2)} = -\rho \mathbf{u} \cdot \left(\mathbf{u} \mathbf{v}^T - \frac{1}{2} \mathbf{v} \mathbf{v}^T \right) + \rho \frac{\mathbf{v} \mathbf{v}^T}{2} \frac{\partial \mathbf{u}}{\partial t} \]

(C.61)

\[p^{(1)} = -\rho \mathbf{u} \cdot \mathbf{v} \]

\[p^{(2)} = -\rho \mathbf{u} \cdot \left(\mathbf{u} \mathbf{v}^T - \frac{1}{2} \mathbf{v} \mathbf{v}^T \right) + \rho \frac{\mathbf{v} \mathbf{v}^T}{2} \frac{\partial \mathbf{u}}{\partial t} \]

(C.62)
Appendix D. Elimination of the secular terms in the third-order free-surface conditions

The third-order kinematic and dynamic free-surface conditions can according to Eq.(2.73) and Eq.(2.74) be written respectively as

\[\frac{\partial f^{(3)}}{\partial x} \] on \(z = 0 \),

\[\frac{\partial f^{(3)}}{\partial t} \] on \(z = 0 \),

where the forcing terms are defined as

\[f^{(3)} = \frac{\partial f^{(3)}}{\partial x} + \frac{\partial f^{(3)}}{\partial t} \] on \(z = 0 \),

\[f^{(3)} = \frac{\partial f^{(3)}}{\partial x} - \frac{\partial f^{(3)}}{\partial t} \] on \(z = 0 \),

The combination of the kinematic and dynamic free-surface condition can be obtained as

\[\frac{\partial f^{(3)}}{\partial x} + \frac{\partial f^{(3)}}{\partial t} \] on \(z = 0 \),

with

\[q^{(3)} = \frac{\partial f^{(3)}}{\partial t} - gq^{(3)} \] on \(z = 0 \),

Taking the deepwater wave as an example, we have

\[q^{(3)} = \text{Re} \left(\frac{1}{2} (x + h) \cos (4kx - at) \right) \] on \(z = 0 \),

and

\[q^{(3)} = \text{Re} \left(\frac{1}{2} (x + h) \cos (4kx - at) \right) \] on \(z = 0 \),

Applying Eq.(D.3), Eq.(D.4) and Eq.(D.6) - Eq.(D.8) in Eq.(D.5) and evaluating the forcing term on \(z = 0 \), we obtain

\[\frac{\partial f^{(3)}}{\partial x} - \frac{\partial f^{(3)}}{\partial t} = 2 \sin (4kx - at) - 2 \sin (4kx - at) \]

\[\frac{\partial f^{(3)}}{\partial x} + \frac{\partial f^{(3)}}{\partial t} = 2 \sin (4kx - at) - 2 \sin (4kx - at) \]

Appendix D. Elimination of the secular terms in the third-order free-surface conditions

The third-order kinematic and dynamic free-surface conditions can according to Eq.(2.73) and Eq.(2.74) be written respectively as

\[\frac{\partial f^{(3)}}{\partial x} \] on \(z = 0 \),

\[\frac{\partial f^{(3)}}{\partial t} \] on \(z = 0 \),

where the forcing terms are defined as

\[f^{(3)} = \frac{\partial f^{(3)}}{\partial x} + \frac{\partial f^{(3)}}{\partial t} \] on \(z = 0 \),

\[f^{(3)} = \frac{\partial f^{(3)}}{\partial x} - \frac{\partial f^{(3)}}{\partial t} \] on \(z = 0 \),

The combination of the kinematic and dynamic free-surface condition can be obtained as

\[\frac{\partial f^{(3)}}{\partial x} + \frac{\partial f^{(3)}}{\partial t} \] on \(z = 0 \),

with

\[q^{(3)} = \frac{\partial f^{(3)}}{\partial t} - gq^{(3)} \] on \(z = 0 \),

Taking the deepwater wave as an example, we have

\[q^{(3)} = \text{Re} \left(\frac{1}{2} (x + h) \cos (4kx - at) \right) \] on \(z = 0 \),

and

\[q^{(3)} = \text{Re} \left(\frac{1}{2} (x + h) \cos (4kx - at) \right) \] on \(z = 0 \),

Applying Eq.(D.3), Eq.(D.4) and Eq.(D.6) - Eq.(D.8) in Eq.(D.5) and evaluating the forcing term on \(z = 0 \), we obtain

\[\frac{\partial f^{(3)}}{\partial x} - \frac{\partial f^{(3)}}{\partial t} = 2 \sin (4kx - at) - 2 \sin (4kx - at) \]

\[\frac{\partial f^{(3)}}{\partial x} + \frac{\partial f^{(3)}}{\partial t} = 2 \sin (4kx - at) - 2 \sin (4kx - at) \]
where
\[\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \mathbf{f} \quad \nabla \cdot \mathbf{u} = 0 \]
(D.10)

For deepwater case, we have that \(A_3 \equiv 0 \). This explains \(\phi^{(3)} = 0 \) for the Stokes third-order wave in deep water. The forcing term associated with \(A_3 \) on the right-hand side of Eq.(D.9) is the source of secularity. In the frequency-domain analysis of Stokes third-order wave, this term is eliminated by enforcing a nonlinear dispersion relationship (see e.g. Eq.(6.21)). However, in the time-domain analysis where the problem is treated as an initial value problem, there is no rational way to modify the dispersion relationship.

Let's show how the two timescale approach described in Section 6.4 eliminate the secular term. Replacing \(\partial_t \mathbf{u} \) by \(\{1 + 0.5 \mathbf{u} \cdot \mathbf{u} \} \partial_t \mathbf{u} \) in Eq.(D.1) and Eq.(D.2) and keeping terms of \(O(\mathbf{u}^3) \), we have

\[\frac{\partial \phi^{(3)}}{\partial t} + \mathbf{u} \cdot \nabla \phi^{(3)} + \frac{1}{2} \mathbf{u} \cdot \nabla (\partial_t \mathbf{u}) = 0 \quad \nabla \cdot \mathbf{u} = 0 \]
(D.11)

and

\[\frac{\partial \phi^{(3)}}{\partial t} + \mathbf{u} \cdot \nabla \phi^{(3)} + \frac{1}{2} \mathbf{u} \cdot \nabla (\partial_t \mathbf{u}) = 0 \quad \nabla \cdot \mathbf{u} = 0 \]
(D.12)

Combination of Eq.(D.11) and Eq.(D.12) gives

\[\frac{\partial \phi^{(3)}}{\partial t} + \mathbf{u} \cdot \nabla \phi^{(3)} + \frac{1}{2} \mathbf{u} \cdot \nabla (\partial_t \mathbf{u}) = 0 \quad \nabla \cdot \mathbf{u} = 0 \]
(D.13)

where \(\phi^{(3)} \) is defined in Eq.(D.8). Substituting \(\phi^{(3)} \), \(\phi^{(2)} \) and \(\phi^{(1)} \) into Eq.(D.13) leads us to a homogenous third-order free-surface condition, i.e.

\[\frac{\partial \phi^{(3)}}{\partial t} + \mathbf{u} \cdot \nabla \phi^{(3)} + \frac{1}{2} \mathbf{u} \cdot \nabla (\partial_t \mathbf{u}) = 0 \]
(D.14)

This means the two additional terms in Eq.(D.11) and Eq.(D.12) give a contribution that cancels out the secular term in Eq.(D.9), which explains why the two-time scale model succeeds in the reproduction of Stokes third-order waves. It can also be shown that the two-time scale model works for cases with finite water depth by following a similar procedure presented in this appendix. It will not be elaborated here.
Appendix E. Indirect method for the evaluation of forces and moments due to the ϕ-term

In this appendix, we will show how to calculate the forces/moments due to the ϕ term, i.e.

$$ F_{\phi} = - \int \frac{\partial \phi}{\partial t} dS. $$

(1.1)

Here F_{ϕ} is the component of the force or moment. δB is the body surface. It can be the mean body surface or the instantaneous body surface. This means the method presented here is applicable for both the fully-nonlinear analysis and the weakly-nonlinear analysis based on perturbation scheme. In the weakly-nonlinear problem, ϕ will be replaced by $\phi^{\infty}(=1, 2, 3)$ in the corresponding order of problems.

$$ \phi^{\infty} = \phi_{x} \phi_{y} \phi_{z} $$

(1.2)

ϕ is the position vector of a point on the body surface. $\bar{\phi}$ is the position vector of the center to which the moments are defined with respect.

$$ \phi_{x} = 0 \quad \text{on } S $$

$$ \phi_{y} = 0 \quad \text{on } \Omega $$

$$ \phi_{z} = 0 \quad \text{on } S_{bottom} $$

$$ V^{\phi}_{x} = 0 \quad \text{on } \Omega $$

$$ V^{\phi}_{y} = 0 \quad \text{on } S $$

$$ V^{\phi}_{z} = 0 \quad \text{on } S_{bottom} $$

Fig. E.1. Definition of the boundary value problem for the artificial velocity potential $\phi^{\infty}_{x,y,z}$.

A direct evaluation of Eq.(E.1) requires the solution of $\phi/\partial t$. On the body surface, which needs a solution by solving the Laplace equation. Alternatively, one can use Green’s 2nd identity. An artificial velocity potential ψ is introduced which satisfies the Laplace equation in the fluid domain. $\psi = 0$ on the free surface, $\psi = 0$ on the body surface, $\lim_{r \rightarrow \infty} \psi = 0$ on the sea bottom and $\psi \rightarrow 0$ on a control surface at infinity. See Fig. E.1 for the definitions.

The Green’s 2nd identity leads to

$$ \frac{\partial}{\partial \Omega} \int_{S_B} \nabla \phi \cdot \nabla \psi \ dS = 0. $$

(1.3)

The Green’s 2nd identity leads to

$$ \frac{\partial}{\partial \Omega} \int_{S_B} \nabla \phi \cdot \nabla \psi \ dS = 0. $$

(1.3)

Appendix E. Indirect method for the evaluation of forces and moments due to the ψ-term

In this appendix, we will show how to calculate the forces/moments due to the ψ term, i.e.

$$ F_{\psi} = - \int \frac{\partial \psi}{\partial t} dS. $$

(1.1)

Here F_{ψ} is the component of the force or moment. δB is the body surface. It can be the mean body surface or the instantaneous body surface. This means the method presented here is applicable for both the fully-nonlinear analysis and the weakly-nonlinear analysis based on perturbation scheme. In the weakly-nonlinear problem, ψ will be replaced by $\psi^{\infty}(=1, 2, 3)$ in the corresponding order of problems.

$$ \psi^{\infty} = \phi_{x} \phi_{y} \phi_{z} $$

(1.2)

ψ is the position vector of a point on the body surface. $\bar{\psi}$ is the position vector of the center to which the moments are defined with respect.

$$ \psi_{x} = 0 \quad \text{on } S $$

$$ \psi_{y} = 0 \quad \text{on } \Omega $$

$$ \psi_{z} = 0 \quad \text{on } S_{bottom} $$

$$ V^{\psi}_{x} = 0 \quad \text{on } \Omega $$

$$ V^{\psi}_{y} = 0 \quad \text{on } S $$

$$ V^{\psi}_{z} = 0 \quad \text{on } S_{bottom} $$

Fig. E.1. Definition of the boundary value problem for the artificial velocity potential $\psi^{\infty}_{x,y,z}$.

A direct evaluation of Eq.(E.1) requires the solution of $\psi/\partial t$. On the body surface, which needs a solution by solving the Laplace equation. Alternatively, one can use Green’s 2nd identity. An artificial velocity potential ψ is introduced which satisfies the Laplace equation in the fluid domain. $\psi = 0$ on the free surface, $\psi = 0$ on the body surface, $\lim_{r \rightarrow \infty} \psi = 0$ on the sea bottom and $\psi \rightarrow 0$ on a control surface at infinity. See Fig. E.1 for the definitions.

The Green’s 2nd identity leads to

$$ \frac{\partial}{\partial \Omega} \int_{S_B} \nabla \psi \cdot \nabla \phi \ dS = 0. $$

(1.3)

The Green’s 2nd identity leads to

$$ \frac{\partial}{\partial \Omega} \int_{S_B} \nabla \psi \cdot \nabla \phi \ dS = 0. $$

(1.3)
It is seen from Eq.(E.4) that the indirect method for the forces/moments evaluation does not require the solution for t_i on the body surface. The t_i needed on the free surface can be obtained from the free-surface condition. For a freely floating body, the $\partial \tilde{y}_e / \partial n$ term on the body surface are associated with the acceleration of the body and must be moved to the left-hand side of the body motion equations, otherwise one needs an iterative loop to take into account the coupling between the body motions and the fluid motion. In the forced oscillation or the diffraction problems, this term is known in prior from the body boundary condition. The $\partial \tilde{y}_e / \partial n$ on the free surface are obtained from the solution of the \tilde{y}_e problem defined in Fig.E.1.

Using the boundary conditions for $\partial \tilde{y}_e / \partial n$ and \tilde{y}_e and Eq.(E.3), we obtain

$$F_i = -\frac{\partial}{\partial x} \int \frac{\partial \tilde{y}_e}{\partial n} \frac{\partial t_i}{\partial n} - \int \left[\frac{\partial \tilde{y}_e}{\partial n} \left(\frac{\partial ^2 \tilde{y}_e}{\partial n^2} - \frac{\partial ^2 \tilde{y}_e}{\partial x^2} \right) \right]$$

It is seen from Eq.(E.4) that the indirect method for the forces/moments evaluation does not require the solution for $\partial \tilde{y}_e / \partial n$ on the body surface. The $\partial \tilde{y}_e / \partial n$ needed on the free surface can be obtained from the free-surface condition. For a freely floating body, the $\partial \tilde{y}_e / \partial n$ term on the body surface are associated with the acceleration of the body and must be moved to the left-hand side of the body motion equations, otherwise one needs an iterative loop to take into account the coupling between the body motions and the fluid motion. In the forced oscillation or the diffraction problems, this term is known in prior from the body boundary condition. The $\partial \tilde{y}_e / \partial n$ on the free surface are obtained from the solution of the \tilde{y}_e problem defined in Fig.E.1.
Appendix F. Alternative formulas for the quadratic forces and moments

We consider the term

\[\mathbf{F} = \iint_{\Omega} \mathbf{v} \cdot \nabla \phi \mathbf{dS} \]
\[\mathbf{M} = \frac{1}{2} \iint_{\Omega} \mathbf{v} \times \nabla \phi \mathbf{dS} \]

Here \(\mathbf{v} \) is the normal vector on the body surface defined with respect to the body-fixed reference frame \(\mathbf{oxyz} \). \(\phi \) is the position vector of a point relative to the center of moment.

By using the following formula given by Newman (1977)

\[\iint_{\Gamma} \mathbf{v} \nabla \phi \mathbf{dS} = 0 \]

we can rewrite Eq. (F.1) as

\[\mathbf{F} = \iint_{\Omega} \mathbf{v} \cdot \nabla \phi \mathbf{dS} \]
\[\mathbf{M} = \frac{1}{2} \iint_{\Omega} \mathbf{v} \times \nabla \phi \mathbf{dS} \]

Similarly, if we apply the following equality

\[\iint_{\Gamma} \mathbf{v} \nabla \phi \mathbf{dS} = 0 \]

we can rewrite Eq. (F.1) as

\[\mathbf{F} = \iint_{\Omega} \mathbf{v} \cdot \nabla \phi \mathbf{dS} \]
\[\mathbf{M} = \frac{1}{2} \iint_{\Omega} \mathbf{v} \times \nabla \phi \mathbf{dS} \]

Appendix F. Alternative formulas for the quadratic forces and moments

We consider the term

\[\mathbf{F} = \iint_{\Omega} \mathbf{v} \cdot \nabla \phi \mathbf{dS} \]
\[\mathbf{M} = \frac{1}{2} \iint_{\Omega} \mathbf{v} \times \nabla \phi \mathbf{dS} \]

Here \(\mathbf{v} \) is the normal vector on the body surface defined with respect to the body-fixed reference frame \(\mathbf{oxyz} \). \(\phi \) is the position vector of a point relative to the center of moment.

By using the following formula given by Newman (1977)

\[\iint_{\Gamma} \mathbf{v} \nabla \phi \mathbf{dS} = 0 \]

we can rewrite Eq. (F.1) as

\[\mathbf{F} = \iint_{\Omega} \mathbf{v} \cdot \nabla \phi \mathbf{dS} \]
\[\mathbf{M} = \frac{1}{2} \iint_{\Omega} \mathbf{v} \times \nabla \phi \mathbf{dS} \]

Similarly, if we apply the following equality

\[\iint_{\Gamma} \mathbf{v} \nabla \phi \mathbf{dS} = 0 \]

we can rewrite Eq. (F.1) as

\[\mathbf{F} = \iint_{\Omega} \mathbf{v} \cdot \nabla \phi \mathbf{dS} \]
\[\mathbf{M} = \frac{1}{2} \iint_{\Omega} \mathbf{v} \times \nabla \phi \mathbf{dS} \]
in Eq.(F.2) and introduce the Stokes expansion for the velocity potential, the first-order and second-order moments can be obtained respectively as

\[
E^{(1)} = -\int \nabla \phi \nabla \left(\rho \mathbf{v} \mathbf{V} \phi \right) \, dS - \int \nabla \phi \left(\rho \mathbf{v} \mathbf{V} \phi \right) \cdot \nabla \phi \, dS, \tag{F.8}
\]

\[
E^{(2)} = -\int \nabla \phi \nabla \left(\rho \mathbf{v} \mathbf{V} \phi \right) \cdot \nabla \phi \, dS. \tag{F.9}
\]

Note that the forces and moments in Eq.(F.5), Eq.(F.6), Eq.(F.8) and Eq.(F.9) are defined with respect to the body-fixed coordinate system. One can always use the transformation matrices defined in Section 2.3 to obtain the corresponding expressions of forces and moments in the inertial coordinate system.

Let's briefly show the derivation of Eq.(F.7) according to Faltinsen (2010). By using the following two equalities

\[
\nabla \phi \nabla = -\partial \mathbf{V} \partial \phi \mathbf{V} \phi, \tag{F.10}
\]

and the generalized Gauss theorem, we can rewrite on the left-hand side of Eq.(F.7) as

\[
\int \mathbf{V} \phi \mathbf{V} \mathbf{V} \phi \, dS = \int \mathbf{V} \phi \mathbf{V} \mathbf{V} \phi \, dS = \int \mathbf{V} \phi \mathbf{V} \mathbf{V} \phi \, dS. \tag{F.11}
\]

The integral of the integral of \(I \), in Eq.(F.12) can be rewritten as

\[
\nabla \phi \left(\mathbf{r} \phi \mathbf{V} \phi \right) \mathbf{V} \phi \mathbf{V} \phi \left(\mathbf{r} \phi \mathbf{V} \phi \right) \mathbf{V} \phi \mathbf{V} \phi. \tag{F.12}
\]

in Eq.(F.2) and introduce the Stokes expansion for the velocity potential, the first-order and second-order moments can be obtained respectively as

\[
E^{(1)} = -\int \nabla \phi \nabla \left(\rho \mathbf{v} \mathbf{V} \phi \right) \, dS - \int \nabla \phi \left(\rho \mathbf{v} \mathbf{V} \phi \right) \cdot \nabla \phi \, dS. \tag{F.8}
\]

\[
E^{(2)} = -\int \nabla \phi \nabla \left(\rho \mathbf{v} \mathbf{V} \phi \right) \cdot \nabla \phi \, dS. \tag{F.9}
\]

Note that the forces and moments in Eq.(F.5), Eq.(F.6), Eq.(F.8) and Eq.(F.9) are defined with respect to the body-fixed coordinate system. One can always use the transformation matrices defined in Section 2.3 to obtain the corresponding expressions of forces and moments in the inertial coordinate system.

Let's briefly show the derivation of Eq.(F.7) according to Faltinsen (2010). By using the following two equalities

\[
\nabla \phi \nabla = -\partial \mathbf{V} \partial \phi \mathbf{V} \phi, \tag{F.10}
\]

and the generalized Gauss theorem, we can rewrite on the left-hand side of Eq.(F.7) as

\[
\int \mathbf{V} \phi \mathbf{V} \mathbf{V} \phi \, dS = \int \mathbf{V} \phi \mathbf{V} \mathbf{V} \phi \, dS = \int \mathbf{V} \phi \mathbf{V} \mathbf{V} \phi \, dS. \tag{F.11}
\]

The integral of the integral of \(I \), in Eq.(F.12) can be rewritten as

\[
\nabla \phi \left(\mathbf{r} \phi \mathbf{V} \phi \right) \mathbf{V} \phi \mathbf{V} \phi \left(\mathbf{r} \phi \mathbf{V} \phi \right) \mathbf{V} \phi \mathbf{V} \phi. \tag{F.12}
\]
The integrand of the integral of 2 respectively.

Here ξ_1, ξ_2, ξ_3 and ξ_4 (i, k = 1, 2, 3) are unit vectors along the i-th, j-th, k-th and m-th axis, respectively. ψ_1, ψ_2, ψ_3, and ψ_4 are the i-th, j-th, k-th and m-th components of $\psi \cdot \mathbf{v}$.

Applying Eq.(F.13) and Eq.(F.14) in Eq.(F.12), it is immediately apparent to us that the equality of Eq.(E.7) holds.

Considering Eq.(F.13) and Eq.(F.14) in Eq.(F.12), it is immediately apparent to us that the equality of Eq.(E.7) holds.
References

References

Cummins, W.E. (1962). The impulse response function and ship motions,

Chung, T.J. (2002).

References

75 Assessment of Submarine Pipelines. (Dr.Ing. Thesis)

MTA-90-74 Zschocke, Steffen, MP

MTA-91-77 Hansen, Ivar, MH

MTA-91-78 Løland, Geir, MH

MTA-91-79 Hessen, Gunnar, MK

MTA-91-80 Haagensen, Sven, MM

MTA-91-81 Sævi Chan Siu Hung, MM

MTA-91-82 Mørch, Hans Jørgen Bjel

MTA-91-83 Kro, Harald, MK

MTA-91-85 Møllerberg, Gunnar A., MH

MTA-90-78 Krokstad, Ingebrigt, MH

MTA-90-76 Nelson, Jean Inge, MH

MTA-90-70 Brostrøm, Bjørn, MK

MTA-90-76 Løland, Geir, MH

MTA-90-79 Hessen, Gunnar, MK

MTA-90-80 Haagensen, Sven, MM

MTA-90-81 Sævi Chan Siu Hung, MM

MTA-90-82 Mørch, Hans Jørgen Bjel

MTA-90-83 Kro, Harald, MK

MTA-90-85 Møllerberg, Gunnar A., MH

MTA-90-86 Nelson, Jean Inge, MH

MTA-90-75 Skodvin, Mikael, MP

MTA-90-77 Hansen, Ivar, MH

MTA-90-78 Løland, Geir, MH

MTA-90-79 Hessen, Gunnar, MK

MTA-90-80 Haagensen, Sven, MM

MTA-90-81 Sævi Chan Siu Hung, MM

MTA-90-82 Mørch, Hans Jørgen Bjel

MTA-90-83 Kro, Harald, MK

MTA-90-85 Møllerberg, Gunnar A., MH

MTA-90-86 Nelson, Jean Inge, MH

MTA-90-87 Chao Iu Hong, MH

MTA-90-88 Rosenå, Bjørn, PK

MTA-90-89 Langi, Geir, MP

MTA-90-90 Serif, Steine, MK

MTA-90-91 Ask, Tore R., MH

MTA-91-80 Haagensen, Sven, MM

MTA-91-81 Sævi Chan Siu Hung, MM

MTA-91-82 Mørch, Hans Jørgen Bjel

MTA-91-83 Kro, Harald, MK

MTA-91-85 Møllerberg, Gunnar A., MH

MTA-91-86 Nelson, Jean Inge, MH

MTA-91-75 Skodvin, Mikael, MP

MTA-91-77 Hansen, Ivar, MH

MTA-91-78 Løland, Geir, MH

MTA-91-79 Hessen, Gunnar, MK

MTA-91-80 Haagensen, Sven, MM

MTA-91-81 Sævi Chan Siu Hung, MM

MTA-91-82 Mørch, Hans Jørgen Bjel

MTA-91-83 Kro, Harald, MK

MTA-91-85 Møllerberg, Gunnar A., MH

MTA-91-86 Nelson, Jean Inge, MH

MTA-91-87 Chao Iu Hong, MH

MTA-91-88 Rosenå, Bjørn, PK

MTA-91-89 Langi, Geir, MP

MTA-91-90 Serif, Steine, MK

MTA-91-91 Ask, Tore R., MH

MTA-92-80 Haagensen, Sven, MM

MTA-92-81 Sævi Chan Siu Hung, MM

MTA-92-82 Mørch, Hans Jørgen Bjel

MTA-92-83 Kro, Harald, MK

MTA-92-85 Møllerberg, Gunnar A., MH

MTA-92-86 Nelson, Jean Inge, MH

MTA-92-87 Chao Iu Hong, MH

MTA-92-88 Rosenå, Bjørn, PK

MTA-92-89 Langi, Geir, MP

MTA-92-90 Serif, Steine, MK

MTA-92-91 Ask, Tore R., MH

MTA-92-92 Haagensen, Sven, MM

MTA-92-93 Sævi Chan Siu Hung, MM

MTA-92-94 Mørch, Hans Jørgen Bjel

MTA-92-95 Kro, Harald, MK

MTA-92-96 Møllerberg, Gunnar A., MH

MTA-92-97 Nelson, Jean Inge, MH

MTA-92-98 Chao Iu Hong, MH

MTA-92-99 Rosenå, Bjørn, PK

MTA-92-100 Langi, Geir, MP

MTA-92-101 Serif, Steine, MK

MTA-92-102 Ask, Tore R., MH

MTA-92-103 Haagensen, Sven, MM

MTA-92-104 Sævi Chan Siu Hung, MM

MTA-92-105 Mørch, Hans Jørgen Bjel

MTA-92-106 Kro, Harald, MK

MTA-92-107 Møllerberg, Gunnar A., MH

MTA-92-108 Nelson, Jean Inge, MH

MTA-92-93 Eriksen, Knut, MP

MTA-92-98 Langi, Geir, MP

MTA-92-103 Ask, Tore R., MH

MTA-92-104 Haagensen, Sven, MM

MTA-92-105 Sævi Chan Siu Hung, MM

MTA-92-106 Mørch, Hans Jørgen Bjel

MTA-92-107 Kro, Harald, MK

MTA-92-108 Møllerberg, Gunnar A., MH

MTA-92-109 Nelson, Jean Inge, MH

MTA-93-94 Eriksen, Knut, MP

MTA-93-99 Langi, Geir, MP

MTA-93-104 Ask, Tore R., MH

MTA-93-105 Haagensen, Sven, MM

MTA-93-106 Sævi Chan Siu Hung, MM

MTA-93-107 Mørch, Hans Jørgen Bjel

MTA-93-108 Kro, Harald, MK

MTA-93-109 Møllerberg, Gunnar A., MH

MTA-93-110 Nelson, Jean Inge, MH
Monheim, (Dr.ing. Thesis)

MTA-93- Simonsen, Christian, MM
98
Knowledge Based Systems for Diagnosis of Rotating Machinery. (Dr.ing. Thesis)

MTA-93- Simonsen, Christian, MM
98
Knowledge Based Systems for Diagnosis of Rotating Machinery. (Dr.ing. Thesis)

MTA-93- Dalene, Inge, MK
94
System Reliability in Design and Maintenance of Fixed Offshore Structures. (Dr.ing. Thesis)

MTA-93- Dalene, Inge, MK
94
System Reliability in Design and Maintenance of Fixed Offshore Structures. (Dr.ing. Thesis)

MTA-93- Storm, Ingrid, MK
95
Calibration Effect on HLS. (Dr.ing. Thesis)

MTA-93- Storm, Ingrid, MK
95
Calibration Effect on HLS. (Dr.ing. Thesis)

MTA-93- Karunamurthy, Daniel, MK
96
Nonlinear Dynamic Response and Reliability Analysis of Drug-administered Efficiency Platforms. (Dr.ing. Thesis)

MTA-93- Karunamurthy, Daniel, MK
96
Nonlinear Dynamic Response and Reliability Analysis of Drug-administered Efficiency Platforms. (Dr.ing. Thesis)

MTA-93- Hagen, Arild, MK
97
The Framework of a Design Process Language. (Dr.ing. Thesis)

MTA-93- Hagen, Arild, MK
97
The Framework of a Design Process Language. (Dr.ing. Thesis)

MTA-93- Solaas, Frøydis, MH
98
Investigation of Spark Ignition and Combustion in Medium and Ali Davoudi Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A Theoretical and Experimental Hydroelastic Analysis. (Dr.ing. Thesis)

MTA-93- Solaas, Frøydis, MH
98
Investigation of Spark Ignition and Combustion in Medium and Ali Davoudi Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A Theoretical and Experimental Hydroelastic Analysis. (Dr.ing. Thesis)

MTA-93- Wang, Xiaozhi, MK
99
Reliability Analysis of Production Ships with Emphasis on Local Combination and Ultimate Strength. (Dr.ing. Thesis)

MTA-93- Wang, Xiaozhi, MK
99
Reliability Analysis of Production Ships with Emphasis on Local Combination and Ultimate Strength. (Dr.ing. Thesis)

MTA-94- Pascorn, Elizabeth, MK
98
Efficient Analysis of Nonlinear Stochastic Marine Structures. (Dr.ing. Thesis)

MTA-94- Pascorn, Elizabeth, MK
98
Efficient Analysis of Nonlinear Stochastic Marine Structures. (Dr.ing. Thesis)

MTA-94- Hagen, Arild, MK
98
Hydroelastic Modelling of Wave-Induced Motion on Fixed Offshore Tension Leg Platforms. (Dr.ing. Thesis)

MTA-94- Hagen, Arild, MK
98
Hydroelastic Modelling of Wave-Induced Motion on Fixed Offshore Tension Leg Platforms. (Dr.ing. Thesis)

MTA-94- Bech, Sidsel M., MK
99
Experimental and Numerical Determination of Stiffness and Strength of GFRP Sandwich Structures. (Dr.ing. Thesis)

MTA-94- Bech, Sidsel M., MK
99
Experimental and Numerical Determination of Stiffness and Strength of GFRP Sandwich Structures. (Dr.ing. Thesis)

MTA-95- Hovde, Geir Olav, MK
102
Fatigue and Overload Reliability of Offshore Structural Systems, Considering the Effect of Inspection and Repair. (Dr.ing. Thesis)

MTA-95- Hovde, Geir Olav, MK
102
Fatigue and Overload Reliability of Offshore Structural Systems, Considering the Effect of Inspection and Repair. (Dr.ing. Thesis)

MTA-95- Wang, Xiaozhi, MK
103
Reliability Analysis of Production Ships with Emphasis on Local Combination and Ultimate Strength. (Dr.ing. Thesis)

MTA-95- Wang, Xiaozhi, MK
103
Reliability Analysis of Production Ships with Emphasis on Local Combination and Ultimate Strength. (Dr.ing. Thesis)

MTA-96- Ulstein, Tore, MK
105
Nonlinear Effects of a Flexible Stern Seal Bag on Cobblestone Oscillations of an SES. (Dr.ing. Thesis)

MTA-96- Ulstein, Tore, MK
105
Nonlinear Effects of a Flexible Stern Seal Bag on Cobblestone Oscillations of an SES. (Dr.ing. Thesis)

MTA-95- Hagen, Arild, MK
106
The Framework of a Design Process Language. (Dr.ing. Thesis)

MTA-95- Hagen, Arild, MK
106
The Framework of a Design Process Language. (Dr.ing. Thesis)

MTA-95- Wang, Xiaozhi, MK
106
Nonlinear Effects of a Flexible Stern Seal Bag on Cobblestone Oscillations of an SES. (Dr.ing. Thesis)

MTA-95- Wang, Xiaozhi, MK
106
Nonlinear Effects of a Flexible Stern Seal Bag on Cobblestone Oscillations of an SES. (Dr.ing. Thesis)

MTA-95- Ulstein, Tore, MK
106
Nonlinear Effects of a Flexible Stern Seal Bag on Cobblestone Oscillations of an SES. (Dr.ing. Thesis)

MTA-95- Ulstein, Tore, MK
106
Nonlinear Effects of a Flexible Stern Seal Bag on Cobblestone Oscillations of an SES. (Dr.ing. Thesis)

MTA-95- Storm, Ingrid, MK
107
Calibration Effect on HLS. (Dr.ing. Thesis)

MTA-95- Storm, Ingrid, MK
107
Calibration Effect on HLS. (Dr.ing. Thesis)

MTA-95- Karunamurthy, Daniel, MK
108
Nonlinear Dynamic Response and Reliability Analysis of Drug-administered Efficiency Platforms. (Dr.ing. Thesis)

MTA-95- Karunamurthy, Daniel, MK
108
Nonlinear Dynamic Response and Reliability Analysis of Drug-administered Efficiency Platforms. (Dr.ing. Thesis)

MTA-95- Hagen, Arild, MK
109
The Framework of a Design Process Language. (Dr.ing. Thesis)

MTA-95- Hagen, Arild, MK
109
The Framework of a Design Process Language. (Dr.ing. Thesis)

MTA-95- Solaas, Frøydis, MH
110
Investigation of Spark Ignition and Combustion in Medium and Ali Davoudi Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A Theoretical and Experimental Hydroelastic Analysis. (Dr.ing. Thesis)

MTA-95- Solaas, Frøydis, MH
110
Investigation of Spark Ignition and Combustion in Medium and Ali Davoudi Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A Theoretical and Experimental Hydroelastic Analysis. (Dr.ing. Thesis)

MTA-95- Wang, Xiaozhi, MK
110
Reliability Analysis of Production Ships with Emphasis on Local Combination and Ultimate Strength. (Dr.ing. Thesis)

MTA-95- Wang, Xiaozhi, MK
110
Reliability Analysis of Production Ships with Emphasis on Local Combination and Ultimate Strength. (Dr.ing. Thesis)

MTA-95- Bratland, Anne K., MH
111
Ultimate Limit State Design and Reassessment of Multihull Vessels. (Dr.Ing. Thesis)

MTA-95- Bratland, Anne K., MH
111
Ultimate Limit State Design and Reassessment of Multihull Vessels. (Dr.Ing. Thesis)

MTA-95- Insedal, Daniel, MK
111
Numerical Study of Ignition Processes in Internal Combustion Engines. (Dr.Ing. Thesis)

MTA-95- Insedal, Daniel, MK
111
Numerical Study of Ignition Processes in Internal Combustion Engines. (Dr.Ing. Thesis)

MTA-96- Broaddus, Anna K., MK
113
Wave-Caused Interaction Effects on Large Volume Bodies in Water of Finite Depth. (Dr.ing. Thesis)

MTA-96- Broaddus, Anna K., MK
113
Wave-Caused Interaction Effects on Large Volume Bodies in Water of Finite Depth. (Dr.ing. Thesis)

MTA-95- Bratland, Anne K., MH
111
Ultimate Limit State Design and Reassessment of Multihull Vessels. (Dr.Ing. Thesis)

MTA-95- Bratland, Anne K., MH
111
Ultimate Limit State Design and Reassessment of Multihull Vessels. (Dr.Ing. Thesis)

MTA-95- Passaro, Hallvard, MM
112
A Study of Transient Jet and Spray using a Schenck Method and Digital Image Processing. (Dr.ing. Thesis)

MTA-95- Passaro, Hallvard, MM
112
A Study of Transient Jet and Spray using a Schenck Method and Digital Image Processing. (Dr.ing. Thesis)

MTA-95- Bech, Sidsel M., MK
112
Experimental and Numerical Determination of Stiffness and Strength of GFRP Sandwich Structures. (Dr.ing. Thesis)

MTA-95- Bech, Sidsel M., MK
112
Experimental and Numerical Determination of Stiffness and Strength of GFRP Sandwich Structures. (Dr.ing. Thesis)

MTA-95- Hagen, Arild, MK
113
The Framework of a Design Process Language. (Dr.ing. Thesis)

MTA-95- Hagen, Arild, MK
113
The Framework of a Design Process Language. (Dr.ing. Thesis)

MTA-95- Hagen, Arild, MK
113
The Framework of a Design Process Language. (Dr.ing. Thesis)

MTA-95- Hagen, Arild, MK
113
The Framework of a Design Process Language. (Dr.ing. Thesis)
Haslum, Herbjørn Alf, MH Simplified methods applied to nonlinear motion of ships. (Dr.Ing. Thesis)

Kroneberg, André, MP Innovation in shipping by using scenarios. (Dr.Ing. Thesis)

Samdal, Ole Johan, MM Modelling of Degradation Mechanisms and Stressor Interaction on Static, Mechanical Equipment Residual Lifetime. (Dr.Ing. Thesis)

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced Loads on Ships. (Dr.Ing. Thesis)

Tønnessen, Rune, MH A Finite Element Method Applied to Vastly Nonlinear Flow Around 3D Hull Bodies With Ramp Cones. (Dr.Ing. Thesis)

Samdal, Ole Johan, MK Model uncertainty and simplified estimates of long term extremes of hull girder loads in ships. (Dr.Ing. Thesis)

Sagli, Gro, MK Model uncertainty and simplified estimates of long term extremes of hull girder loads in ships. (Dr.Ing. Thesis)

Kristensen, Odd H. Hult, MK Ultimate Capacity of Aluminium Plates under Multiple Loads, Considering H2AZ Properties. (Dr.Ing. Thesis)

Thesis)
Fouques, Sébastien Lagrangian Modelling of Ocean Surface Waves and Synthetic Aperture Radar Wave Measurements. (Dr.Ing. Thesis)

2005-10

Brulhet, Per Andreas The Probability of Occurrence of Extreme Wave Situations at Sea. (Dr.Ing. Thesis)

2005-09

Vibrer, Rune Ocean current variability in relation to offshore engineering. (Dr.Ing. Thesis)

2005-08

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2005-07

Haugen, Knut Favour Accumulation of Long Through Thickness Fatigue Cracks in Hips. (Dr.Ing. Thesis)

2005-06

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2005-05

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis)

2005-04

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2005-03

Storhaug, Gaute Experimental Investigation of Wave Induced Vibrations and Their Effect on the Fatigue Loading of Ships. (Dr.Ing. Thesis)

2005-02

Ersdal, Svein An experimental study of hydrodynamic forces on cylinders and cables in near axial flow. (Dr.Ing. Thesis)

2005-01

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2005-00

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2004-11

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis)

2004-10

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2004-09

Fouques, Sébastien Lagrangian Modelling of Ocean Surface Waves and Synthetic Aperture Radar Wave Measurements. (Dr.Ing. Thesis)

2004-08

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2004-07

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2004-06

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2004-05

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2004-04

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2004-03

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2004-02

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2004-01

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2004-00

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-12

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-11

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-10

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-09

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-08

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-07

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-06

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-05

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-04

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-03

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-02

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-01

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2003-00

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-12

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-11

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-10

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-09

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-08

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-07

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-06

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-05

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-04

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-03

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-02

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-01

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2002-00

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-12

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-11

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-10

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-09

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-08

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-07

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-06

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-05

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-04

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-03

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-02

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-01

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2001-00

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-12

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-11

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-10

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-09

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-08

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-07

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-06

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-05

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-04

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-03

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-02

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-01

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

2000-00

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-12

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-11

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-10

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-09

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-08

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-07

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-06

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-05

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-04

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-03

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-02

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-01

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)

1999-00

Fredheim, Anne Current Forces on Net-Structures. (Dr.Ing. Thesis)
IMT-2008-40
An experimental investigation of yaw and combined roll and yaw. Two new reduced vibrations. (Dr. ing., IFTH)

IMT-2008-27

IMT-2008-28
Lifeline Problem Modelling of Aging Systems: Limiting Information about Technical Condition (Dr. ing., IFTH)

IMT-2008-29
Structural Reliability Based Position Mooring (PhD Thesis, IFTH)

IMT-2008-30
Fatigue Assessment of Aluminium Welded Box-stiffened Joints in Ships (Dr. ing., IFTH)

IMT-2008-31
An Age-Based Replacement Model of Repairable Systems with Attention to High-Speed Marine Diesel Engines (Dr. ing., IFTH)

IMT-2008-32
Ship Grounding Analysis of Double Froude, Bottom Damage and Hull girder Response. (PhD, IFTH)

IMT-2008-33
Efficient Prediction of Dynamic Response for Flexibly and Multi-body Marine Structures. (PhD, IMT)

IMT-2008-34
A Stochastic Particle Hydrodynamics Study of Two-dimensional Nonlinear Unloading in Rectangular Tanks. (Dr. Avhandling, IFTH)

IMT-2008-35
An experimental investigation of yaw and combined roll and yaw. Two new reduced vibrations. (Dr. ing., IFTH)

IMT-2008-36

IMT-2008-37
Lifeline Problem Modelling of Aging Systems: Limiting Information about Technical Condition (Dr. ing., IFTH)

IMT-2008-38

IMT-2008-39
Lifeline Problem Modelling of Aging Systems: Limiting Information about Technical Condition (Dr. ing., IFTH)

IMT-2008-41
An experimental investigation of yaw and combined roll and yaw. Two new reduced vibrations. (Dr. ing., IFTH)

IMT-2008-42
An experimental investigation of yaw and combined roll and yaw. Two new reduced vibrations. (Dr. ing., IFTH)

IMT-2008-43

IMT-2008-44
Lifeline Problem Modelling of Aging Systems: Limiting Information about Technical Condition (Dr. ing., IFTH)

IMT-2008-45
An experimental investigation of yaw and combined roll and yaw. Two new reduced vibrations. (Dr. ing., IFTH)
<table>
<thead>
<tr>
<th>Ref</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMT</td>
<td>Uncertainty Assessment of Wave Loads and Ultimate Strength of Tankers and Bulk Carriers in a Reliability Framework</td>
<td>Shu, Zhi</td>
<td>2010</td>
<td>Ph.d.-thesis</td>
</tr>
</tbody>
</table>