Design of a fractal generator for on-the-fly generation of textures for Mali GPU

Per Christian Corneliussen

Master of Science in Electronics
Submission date: June 2011
Supervisor: Per Gunnar Kjeldsberg, IET
Co-supervisor: Øystein Gjermundnes, ARM Norway AS
Problem Description

Abstract
This proposal describes a possible subject for a master thesis for students with background in microelectronics and computer graphics. The main part of the work related to this thesis will go into the design of a fractal generator for on-the-fly generation of textures for a Mali GPU. The fractal generator will be realized in an FPGA. When the fractal generator is finished, the student may participate in one of the regular demo competitions at ARM Norway.

Introduction
A fractal is “a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole,”(1) a property called self-similarity. A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion(2).

One such mathematical fractal is the fractal defined by the Mandelbrot set. The Mandelbrot set is a mathematical set of points in the complex plane, the boundary of which forms a fractal (3). The point c belongs to the Mandelbrot set if and only if $|Z_n| = 2$, for all $n = 0$, where $Z_{n+1} = Z_n^2 + c$ and $Z_0 = 0$ (Eq. 1)

An image can be created from the Mandelbrot set by mapping the (x,y) coordinates of the pixels in the image to the real and imaginary parts of a complex number. For each pixel it is computed how many iterations that is necessary of Eq. 1 before the absolute value of the complex number Z_n exceeds 2. The number of iterations is then used as an index into a colour palette which finally determines the colour of the pixel.

A globe is made by wrapping a map around a sphere. This process is known as texture mapping in the field of computer graphics, and is used for drawing or wrapping an image on to a 3D object. Textures are in many cases generated in advance to running a computer game, but they could also be generated on the fly.

Thesis statement
Give an overview of different fractals with the focus on fractals generated by the Mandelbrot set. Also explain briefly relevant computer graphics terms such as texturing.

Create a OpenGL ES 2.0 program that creates a animated 3D landscape where the height and the colour of the landscape at any given point is determined by the colour of a Texel in a texture.

Design a fractal generator for later implementation in an FPGA. Do computations to find out what kind of frame rate you would expect as well as some coarse size estimates that can tell you early on whether or not the architecture will fit into the provided FPGA.

The fractal generator must have an AXI read interface. The read address should identify the (x,y) coordinates of a pixel in a Mandelbrot fractal and the read data returned should be the colour of that pixel. Library functions for multiplication, addition, division and square root should be used and can be provided by ARM.

Finally implement the fractal generator using Verilog, integrate the fractal
generator into a system together with a Mali-GPU, synthesize the fractal generator for FPGA, set the fractal generator up to feed the OpenGLES application with textures and participate in a demo competition held at ARM Norway.

References
(3) Mandelbrot set http://en.wikipedia.org/wiki/Mandelbrot_set

Supervisors:
Per Gunnar Kjeldsberg, NTNU
Øystein Gjermundnes, ARM Norway AS
Abstract

The Mandelbrot set, shown on the front page of this report, is perhaps the most well-known example of a fractal. Fractals is a certain family of shapes with a very distinctive, interesting shape. The term was coined by Benoit B. Mandelbrot, for whom the Mandelbrot set is named after. The Mandelbrot set and other fractals are traditionally used for aesthetic purposes, such as in art, clothing, computer games, etc. However, there are also several practical applications for fractals, such as image compression[3].

The Mandelbrot set is infinitely complex[9], making it desirable to generate images of arbitrary sections of the set. Several software programs that generate such images exists, but due to the computationally expensive nature of this task, these implementations are typically very slow, even on modern computers. However, the problem can be shown to be highly parallelizable, suggesting that a hardware implementation of such a generator should be able to generate smooth real-time zoom animations, unlike existing software implementations.

A hardware fractal generator for the Mandelbrot set has been designed and implemented in Verilog-2001. The design is very scalable, having a parameter specifying the number of fractal point generators (cores) the synthesis tool should implement. Furthermore, it is designed so that the floating point units in the cores are utilized nearly 100% of the time under normal operation. The design was tested on a Xilinx Virtex-6 FPGA with up to 16 cores, and it was shown that the design was faster than a reference software solution running on a desktop computer when the number of cores was set to 2 or more.

Additionally, a simplified Mandelbrot set algorithm is proposed and studied experimentally. In the simplified algorithm, the break condition in the algorithm loop is (|z_re| > 2) || (|z_im| > 2) as opposed to the standard |z| > 2. The images produced using the simplified algorithm was judged to be nearly indistinguishable from those produced with the standard algorithm, and therefore preferred as it is easier to implement.

Finally some future work is proposed. The integration of the fractal generator with the Mali-400 GPU originally planned as part of this thesis is left as future work. It is also suggested to consider designing a custom fixed-point format for use internally in the fractal generator, as the standard binary32 floating-point format (FP32) is shown to be badly suited for this application.
Preface

The original goal for the work that was carried out as part of this thesis was to integrate the designed hardware fractal generator with the Mali-400 graphics processor from ARM and assemble a working demo on an embedded platform. This demo was to use the designed fractal demo software (presented in Chapter 6) to demonstrate the system.

However, it was decided that this was a complex task, requiring insight in the inner workings of parts of the Mali-400 core, and that time was insufficient. The designed hardware fractal generator is still synthesized for the FPGA planned for this aforementioned demo, and its performance is evaluated and compared with a software implementation. The final integration with the Mali-400 is left for future work.

Per Gunnar Kjeldsberg (Department of Electronics and Telecommunications, NTNU, Trondheim) and Øystein Gjermundnes (ARM Norway AS, Trondheim) supervised the project. Their feedback throughout the semester has been greatly appreciated.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iv</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Fractals</td>
<td>3</td>
</tr>
<tr>
<td>2.1 The Mandelbrot set</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1 Computing the Mandelbrot set</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Low-level implementation</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3 Adding color</td>
<td>6</td>
</tr>
<tr>
<td>3 Landscape generation in OpenGL ES 2.0</td>
<td>9</td>
</tr>
<tr>
<td>3.1 Introduction to 3D computer graphics</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Specifying vertices</td>
<td>10</td>
</tr>
<tr>
<td>3.3 Generating landscapes</td>
<td>11</td>
</tr>
<tr>
<td>4 Representing numbers</td>
<td>13</td>
</tr>
<tr>
<td>4.1 Fixed-point representation</td>
<td>13</td>
</tr>
<tr>
<td>4.2 Floating-point representation</td>
<td>13</td>
</tr>
<tr>
<td>4.3 Comparing fixed-point and floating-point formats</td>
<td>14</td>
</tr>
<tr>
<td>4.3.1 Linear precision of floating-point formats</td>
<td>14</td>
</tr>
<tr>
<td>4.4 IEEE 754</td>
<td>15</td>
</tr>
<tr>
<td>5 Fractal generator</td>
<td>17</td>
</tr>
<tr>
<td>5.1 Overview</td>
<td>17</td>
</tr>
<tr>
<td>5.2 Configuration parameters</td>
<td>18</td>
</tr>
<tr>
<td>5.3 Vertex array format, vertex and fractal coordinates</td>
<td>19</td>
</tr>
<tr>
<td>5.4 Storing z-coordinates</td>
<td>19</td>
</tr>
<tr>
<td>6 Fractal demo and software implementation</td>
<td>23</td>
</tr>
<tr>
<td>6.1 Overview</td>
<td>23</td>
</tr>
<tr>
<td>6.2 Fractal demo design</td>
<td>23</td>
</tr>
<tr>
<td>6.2.1 Coloring</td>
<td>26</td>
</tr>
<tr>
<td>6.3 Software fractal generator</td>
<td>27</td>
</tr>
<tr>
<td>6.3.1 Fractal point generator (FPG)</td>
<td>27</td>
</tr>
<tr>
<td>6.3.2 Vertex array generator (VAG)</td>
<td>27</td>
</tr>
<tr>
<td>6.3.3 Performance</td>
<td>28</td>
</tr>
<tr>
<td>6.4 Discussion</td>
<td>29</td>
</tr>
<tr>
<td>7 Representation of fractal coordinates</td>
<td>31</td>
</tr>
<tr>
<td>7.1 Rounding errors</td>
<td>31</td>
</tr>
<tr>
<td>7.2 Discussion</td>
<td>32</td>
</tr>
<tr>
<td>8 Boundary checking in the Mandelbrot algorithm</td>
<td>35</td>
</tr>
<tr>
<td>8.1 Comparison of boundary check methods</td>
<td>36</td>
</tr>
<tr>
<td>8.2 Discussion</td>
<td>36</td>
</tr>
</tbody>
</table>
9 Hardware implementation

9.1 Floating point arithmetic .. 39
9.2 Fractal point generator (FPG) .. 39
 9.2.1 Design exploration .. 40
 9.2.2 Implementation and verification 41
9.3 Vertex array generator (VAG) .. 43
 9.3.1 Implementation .. 43
9.4 Synthesis .. 46
9.5 Verification and performance analysis 47
 9.5.1 Comparable performance ... 49
9.6 Discussion ... 50

10 Conclusion and future work .. 51

A Source code, fractal demo .. 53
B Source code, fractal generator, software model 57
C Source code, fractal point generator, hardware 58
D Source code, vertex array generator, hardware 63
1 Introduction

The procedures involved in the generation of fractal images such as the one on the front page of this report are typically complex and computationally expensive. Several platforms for doing this exists, such as the Windows software Ultra Fractal by Frederik Slijkerman, which can be used to create fractal zoom animations. However, it is slow and far from able to generate real-time animations. To ease this limitation, this particular software has a feature for distributing the fractal calculations over several computers to accelerate rendering of animations and stills.[20]

Evidently, it would be desirable to speed up the process by doing the fractal calculations in hardware as opposed to in software. It so happens that the pixels in renderings of the Mandelbrot set are independent and processed separately[23], implying that the process of generating these renderings is easily parallelizable and therefore a strong candidate for hardware implementation[25].

Although the traditional use of fractal images are non-practical (i.e., used for aesthetic purposes like art and fashion), recent advances have uncovered several useful applications for fractals. For example, there is a lossy image compression method known as fractal compression which is based on fractals.[3] Another example is the generation of patterns for camouflage clothing, such as the MARPAT pattern used by the United States Marine Corps, which was produced using fractal equations[24].

This first part of this thesis is background. Chapter 2 introduces fractals and the Mandelbrot set, Chapter 3 gives an introduction of 3D computer graphics and the OpenGL ES API, then finally Chapter 4 talks about fixed and floating-point representation of real numbers.

The remaining part of the thesis is own work. Chapter 5 introduces the fractal generator. It gives and overview of how it should work, how it is configured, and some high-level decisions and ideas that have been considered and applied. It will build on the background from Chapter 2 and 3.

Chapter 6 will present the OpenGL ES 2.0 demo and software fractal generator that was developed to gain some insight in design decisions for the hardware implementation and eventually demonstrate the function of the hardware fractal generator. A performance analysis of the software implementation is presented.

Then, Chapter 7 will discuss how to represent coordinates in the Mandelbrot set, the implications of using a floating-point format and some propositions for future work. This chapter builds on the number representation theory from Chapter 4.

Chapter 8 suggests an optimization of the Mandelbrot algorithm presented in Chapter 2, and investigates the implications of this technique. The fractal demo from Chapter 6 is used as part of this investigation.

Finally Chapter 9 will present the implementation of the hardware fractal generator and the design process leading to it. Synthesis results and performance analysis is presented and compared with the software implementation.

The final chapter will present a conclusion of the whole project and suggest some future work on the topic.

The main contribution from this thesis is the design of the hardware fractal generator, which is an elegant and highly scalable design shown to be superior to a reference software model when implemented on an Xilinx Virtex-6 FPGA.
Additionally, a simplified algorithm for generating Mandelbrot set renderings is proposed and shown to produce results nearly indistinguishable from those of the original algorithm. Ideas for future work is also proposed and discussed.
2 Fractals

A fractal is a family of shapes that have an “irregular” and “fractured” appearance. The term was first coined by Benoit B. Mandelbrot (1924-2010) in 1975.[11] There is no precise definition of the word. In his book *The Fractal Geometry of Nature* [17], Mandelbrot writes:

I coined *fractal* from the Latin adjective *fractus*. The corresponding Latin verb *frangere* means “to break:” to create irregular fragments. It is therefore sensible—and how appropriate for our needs!—that, in addition to “fragmented” (as in *fraction* or *refraction*), *fractus* should also mean “irregular,” both meanings being preserved in *fragment*.

Many sources state that fractals are structures with a property known as *self-similarity* [23, 12] (A self-similar object is an object where one or more parts of the object has the same shape as the object as a whole, as illustrated in Figure 1.) However, this definition is imprecise at best. Although some fractals do have this property, there are fractals that are not self-similar.[11, p.113] Even the *Mandelbrot set* is not strictly self-similar.[4]. Furthermore, there are self-similar objects that are not considered fractals, such as a line segment.

![Figure 1: An illustration of the concept of self-similarity.](image)

Although there exists more technical definitions that are somewhat more precise [11, p.ix], we will leave this discussion and focus on established shapes (*fractal sets*) that are considered part of the fractal-family, and do have precise, mathematical definitions. Specifically, the *Mandelbrot set*.

2.1 The Mandelbrot set

The Mandelbrot set, M, is a fractal set named after Benoit B. Mandelbrot by A. Douady and J. H. Hubbard in 1984.[2] It is formally defined as the set of complex numbers $c \in \mathbb{C}$ for which the iterative function $z_0 = 0, z_{n+1} = z_n^2 + c$ remains bounded as
The set is connected (there are no “islands”), its boundary is generally considered a fractal. The Mandelbrot set is plotted in Figure 2, where the black points are in the set and the white are not.

Despite its simple definition, the Mandelbrot set has a very complex appearance. Zooming in on the edges of the black portion of Figure 2 will reveal some highly unusual graphical structures, two of which are depicted in Figure 3 and 4. The nature of the different colors will be explained shortly.

Figure 3: Colored section of the Mandelbrot set, centered at (0.743644786, 0.1318252536) with a diameter of 0.0000029336. Copyright ©Wolfgang Beyer.
2.1.1 Computing the Mandelbrot set

The task of generating the Mandelbrot set comes down to creating an algorithm that determines whether a complex number, \(c \), is in the Mandelbrot set or not. To generate an image like shown in Figure 2, boundaries of the coordinate system are chosen (in the example, (-2, -1) and (1, 1)) and a resolution (i.e., number of pixels in the image.) The algorithm will then be executed for every pixel in the image.

The definition of the Mandelbrot set suggests the algorithm depicted in Listing 1. If the procedure returns \(\text{N_ITERATIONS} \), \(c \) is in the Mandelbrot set. Note that this is pseudocode and assumes a programming language with a data type capable of representing complex numbers.

```plaintext
int mbrot ()
{
    z = 0;
    for (n = 0; n < \text{N\_ITERATIONS}; n++) {
        z = z^2 + c;
        if (abs(z) > \text{BREAK\_VAL})
            break; // c is not in the Mandelbrot set.
    }
    return n;
}
```

Listing 1: Pseudocode for determining whether a complex number, \(c \), is in the Mandelbrot set

According to the mathematical definition, both \(\text{N_ITERATIONS} \) and \(\text{BREAK_VAL} \) will have to be set to infinity for this to work. The problem with doing this, of course, is that then the algorithm would never finish. Some points can be determined
analytically (it can, for example, easily be shown that $c = 1$ will cause z to tend to infinity), but no general method exists. Thus, numerical approximations must be employed; more specifically the algorithm in Listing 1 must be used with the value of N_ITERATIONS and BREAK_VAL restricted.

Fortunately, it can be shown that BREAK_VAL=2 is sufficient. If z at any point exceeds 2, the series is guaranteed to diverge.[4, p. 81] Thus, this is not even an approximation, and so the definition itself can be simplified. It follows that the Mandelbrot set is contained entirely in the disk with radius 2 around the origin of the complex coordinate system.

Unfortunately, there is no corresponding hard limit on the number of iterations of the algorithm. (N_ITERATIONS in Listing 1.) Fractal generators typically zoom in on specific points of interest (e.g., sections with aesthetic shapes), and these areas are typically located somewhere on the border between the black and white area of the graph visible in Figure 2. It can be said generally, from experiments done on the software implementation presented later in this thesis, that the closer one gets to the edge of the set, the more iterations are needed. While the set visible in Figure 2 could be generated with just ≈ 10 iterations for each pixel, some images require thousands of iterations.

2.1.2 Low-level implementation

Typical low-level programming languages (such as C) do not have data types capable of representing complex numbers, although there are extensions/libraries that add support for it. Either way, the hardware module will have to be designed in a more low-level fashion, and so it is beneficial to design the software implementation without utilizing any complex data type.

The heart of the Mandelbrot algorithm presented in Listing 1 on the preceding page is the following equation:

$$z_{n+1} = z_n^2 + c$$

(1a)

$$= (z_{n, re} + iz_{n, im})^2 + c_{re} + ic_{im}$$

(1b)

To separate the real and imaginary parts, the exponentiation is expanded:

$$z_{n+1} = z_{n, re}^2 + i2 \cdot z_{n, re} \cdot z_{n, im} - z_{n, im}^2 + c_{re} + ic_{im}$$

(2)

and thus

$$z_{n+1, re} = z_{n, re}^2 - z_{n, im}^2 + c_{re}$$

(3a)

$$z_{n+1, im} = 2 \cdot z_{n, re} \cdot z_{n, im} + c_{im}$$

(3b)

Using this, a modified implementation is designed in Section 6.3. These calculations are relatively trivial and can be found elsewhere such as on Wikipedia[23].

2.1.3 Adding color

Benoit B. Mandelbrot’s original renderings of the Mandelbrot set were in black and white like in Figure 2.[4, p. 82] Like described so far in this chapter, he colored points
that belonged in the Mandelbrot set (the interior) black, and others (the exterior) white.

More recent renderings are more colorful. This is achieved by coloring points in the exterior based on the number of iterations needed for z to exceed some fixed value ≥ 2 (Usually, 2). Typically, some arbitrary palette that maps the iteration count (n) to a color is chosen. To make renderings more aesthetically pleasing, this color palette should be a gradient. This concept is illustrated in Figure 5. Note that the points in the interior are still colored black (typically.)

![Figure 5: An example of a color palette, where each color is assigned to an iteration count (n). The maximum iteration count is here set to 90.](image)

Why it makes sense to do this goes beyond the scope of this thesis. However, based on experiments, this method works well aesthetically — it produces smooth height curves in the fractal demo presented later. For the mathematics behind, see [4].
3 Landscape generation in OpenGL ES 2.0

OpenGL ES is a subset of the well-known OpenGL graphics library, designed for embedded systems. This chapter will give a general introduction to computer graphics rendering with OpenGL, and more specifically, landscape generation.

3.1 Introduction to 3D computer graphics

The basic idea of traditional 3D computer graphics is to take a number of points in a virtual three-dimensional space and project them onto a two-dimensional space, for viewing on two-dimensional surfaces such as a computer screen. This process is called orthographic projection. (See Figure 6.) The points in space are in computer graphics terms called vertices (singular vertex).[19, chap. 2]

![Figure 6: An orthographic projection of a cube onto a two-dimensional surface.](image-url)

OpenGL handles this task using simple API-calls\(^1\). Furthermore, it allows for a number of transformations to be performed on the vertices prior to projection. For example, the OpenGL `glRotate()` API-call will rotate all the vertices that have been specified with prior API-calls around some specified point in space. (In the abstract three-dimensional space.) This particular transformation involves multiplying each vertex with a rotation matrix [19, chap. 3], which can be a very computational expensive task. Therefore, most modern implementations of OpenGL are accelerated by hardware designed specifically for performing these matrix multiplications; a graphics processing unit (GPU).

The vertices can be considered the “corners” of the geometric figures one desires to model. By drawing lines between the vertices after projecting them on the two-

\(^1\)An API-call (application programming interface) is the calling of a function in a software library that performs some specific task.
dimensional screen (a task OpenGL can perform as well), so-called wireframe models appear. Figure 7 shows an example of a wireframe model. Further processing such as coloring, texturing\(^2\) and lightning is possible, consider the *OpenGL Programming Guide* by Dave Shreider [19] for more information.

![Figure 7: A wireframe model of a landscape.](image)

3.2 Specifying vertices

In OpenGL ES, vertices must be specified (drawn) with the `glDrawArrays()` API-call. (Standard OpenGL has additional ways of drawing vertices.) As the name suggests, the coordinates of all the vertices must be packed into a C array, which are then drawn with `glDrawArrays()`. Figure 8 illustrates an example of such an array.

```
int vertices[n]
x_0 y_0 z_0 x_1 y_1 z_1 \ldots x_{n-1} y_{n-1} z_{n-1}
```

![Figure 8: Illustration of a vertex array.](image)

glDrawArrays() accepts a *mode* parameter that determines how the vertices in the array will be rendered. It can take the following [19, chap. 2] values:

- `GL_POINTS`
- `GL_LINE_STRIP`
- `GL_LINE_LOOP`
- `GL_LINES`
- `GL_TRIANGLE_STRIP`
- `GL_TRIANGLE_FAN`

\(^2\)Applying images to the surface of geometric objects.
• **GL_TRIANGLES**

For what simple wireframe models are concerned, this parameter will determine how lines are drawn between the vertices after any transformations and the 2D projection are done. For example, GL_TRIANGLES will cause every set of three vertices to be connected together, while GL_LINE_LOOP will cause every vertex to be connected to the previous one. The final vertex will be connected to the first so that the vertices form a loop, hence the name. This is illustrated with an example in Figure 9.

![GL_TRIANGLES and GL_LINE_LOOP](image)

Figure 9: Example rendering of six vertices using two different modes.

Going beyond wireframe models, the mode-parameter also has to do with how models are colored or textured. GL_TRIANGLES will for example define every set of three vertices as a triangle primitive, whose interior can be colored, etc.

3.3 Generating landscapes

For various reasons, most objects are in OpenGL modelled with triangles, including landscapes.[18, sec. 3.1] The problem with generating a landscape with triangle primitives is that all the triangles will share some of their vertices with other triangles. In fact, most will share each vertex with as many as five other triangles. This is evident from Figure 7, which was modelled with triangles.

To avoid increasing the amount of vertex data sent to the GPU fivefold, which would happen if GL_TRIANGLES were used, OpenGL/OpenGL ES provides the GL_TRIANGLE_STRIP render mode. This mode is well suited for drawing triangles where each new triangle shares one of the three edges of the previous triangle. To reduce the amount of vertex data, it allows for drawing only one vertex per triangle, except the first one which needs all three.

The concept of triangle strips is illustrated in Figure 10. Here, two triangle strips are drawn; consider it a very coarse-grained landscape. (The height-dimension is not visible.) The orange numbers in circles show the vertex draw order for the lower strip, while the green numbers indicate the order of the upper strip. Note how the middle row of vertices still has to be drawn twice. However, this is a good as it gets without losing the concept of primitives and thus losing the ability to add color to the landscape later. Note that each triangle strip is drawn with a separate call to glDrawArrays().
Figure 10: The order in which vertices must be drawn when using GL_TRIANGLE_STRIP. Viewed from above.
4 Representing numbers

In computing, there are generally two main techniques for representing numbers, fixed point and floating point representation. Both techniques are widely used and have different applications. This chapter will quickly introduce and compare these.

4.1 Fixed-point representation

Fixed point formats are typically used to represent integers. However, by defining some fixed decimal point, they can be used to represent decimals as well.

Consider the example of a fixed point data type in Figure 11. In this 8-bit type, four bits are used for representing an integral part, and the other four represent a fractional part. For example, the bitstring 01110011 (as shown in the figure) represents the decimal number $2^3 + 2^1 + 2^0 + 2^{-3} + 2^{-4} = 7.1875$.

![Figure 11: An example of a fixed-point data type representing the number 7.1875](image)

Fixed-point formats can represent negative numbers using a sign bit, or more commonly, using two's complement.

4.2 Floating-point representation

The other main technique, floating-point representation, is the one more typically used for representing decimals. In the C programming language, the data types float and double are both used to store floating point numbers.[6]

Unlike fixed-point formats, floating point formats do not have a fixed decimal point; instead some bits are reserved for specifying its location. Hence, floating-point representation can be said to be analogous to normalized scientific notation. Figure 12 shows an example of a floating point data type and Equation 4 loosely describes how to interpret the format. Note the implicit 1 to the left of the decimal point. The IEEE 754 standard presented in Section 4.4 uses this convention. The implicit 1 is only used when the exponent is non-zero, however.

$$(-1)^{\text{signbit}} \times 1.\text{fractionbits} \times 2^{\text{exponentbits}-3}$$ (4)

Using this, the bitstring 01011101 shown in the figure represents the decimal number $(-1)^0 \times 2^{5-3} \times (1 + 2^{-1} + 2^{-2} + 2^{-4}) = 7.25$. The reason for the exponent offset (here −3) is that it would otherwise be impossible to represent numbers smaller than 1.

3A decimal is here defined as a real number composed of both an integral and a fractional part.
4.3 Comparing fixed-point and floating-point formats

Generally, fixed-point formats have better precision than floating-point formats, but lower range. This is certainly true for the formats introduced in the last two sections. The bitstring in Figure 12 was chosen to give the best possible approximation of the number represented by the fixed-point format example of Figure 11, and as seen this approximation is not especially good. However, the floating point format can represent a wider range of numbers, as illustrated in Figure 13. The difference would be more radical if the number of exponent bits in the floating-point format were increased, like in more commonly used formats.

![Figure 12: An example of a floating-point data type representing the number 7.25](image)

4.3.1 Linear precision of floating-point formats

On a linear scale, the precision of floating-point formats will increase at small magnitudes. Figure 14 illustrates the precision of the simple floating point format presented in this chapter. The bars are the distinct values the format can represent, on a linear scale. Notice the large gap between 0.130 and 0.250; this happens because the implicit 1 is not used anymore when the exponent is at its minimum.

![Figure 14: Lower range of the example floating-point format](image)

This is usually a good thing, because the high precision desired at low magnitudes usually is unnecessary at high magnitudes. However, it can cause problems when there is some sort of offset involved — like when doing high precision operations around some large number. (I.e., adding small numbers to larger numbers, which causes rounding errors corresponding to the precision at the magnitude of the largest number.) This is a problem that is encountered in this project, as discussed in detail in Section 7.
4.4 IEEE 754

The *IEEE Standard for Floating-Point Arithmetic* (IEEE 754) [13] is a widely used standard for floating-point formats. For example, the Intel Corporation follows the IEEE 754 standard in all their x86 series of microprocessors.[7]

IEEE 754 defines a number of floating-point formats that occupy different number of bytes, most notably the *binary32* (32-bits, “single precision”) and *binary64* (64-bits, “double precision”) formats. These normally correspond to the *float* and *double* data types in the C programming language.[6]

Table 1 summarizes the number of bits used for the sign, exponent and fractional parts in binary32 and binary64, respectively.

<table>
<thead>
<tr>
<th></th>
<th>binary32</th>
<th>binary64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Exponent</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Fractional</td>
<td>23</td>
<td>52</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 1: Summary of the most frequently used floating-point formats of IEEE 754.
5 Fractal generator

The main task in this thesis is the development of a Mandelbrot fractal generator in hardware. A typical approach when designing a hardware module like this is to design a software model first, to be regarded as the specification for the hardware module.[10]

This chapter will present an overview of the fractal generator that was designed, including high-level decisions leading to the final software and hardware designs. The software and hardware implementation will then be presented in Chapter 6 and 9, respectively. Both implementations both perform the same task, although the hardware implementation is designed to be much faster than the software model.

There were some iterations in the design process of the system. First a very basic software implementation of the fractal generator was designed with the fractal demo (presented in Chapter 6), then later during the hardware design process the software model was modified gradually to investigate techniques desired for the hardware module.

5.1 Overview

It was decided early in the process that the fractal generator should generate the vertex arrays for landscape generation directly. An alternative would be to just generate some sort of heightmap (a texture) and assemble the vertex arrays in software or in the vertex shader in the GPU. However, even the latter would yield higher bandwidth usage between the GPU and graphics memory than when generating the whole arrays directly in the fractal generator. The precise reasons for this goes beyond the scope of this thesis; the decision was taken in collaboration with ARM-employees with technical insight in the Mali GPU.

It is a natural approach to divide the design into a module (or C function) that runs the actual Mandelbrot algorithm (i.e., calculates iteration counts from fractal coordinates) and a surrounding module that generates the vertex array. This approach is similar to other (software) implementations.[5] The latter will then interface the aforementioned Mandelbrot module (or call the C function.) From here on, these two modules will be referred to as the fractal point generator (FPG) and the vertex array generator (VAG).

The basic function of the fractal generator is illustrated in Figure 15. As discussed in Chapter 6 the landscape is drawn with a number of triangle strips, each in the form of a vertex array. Note that the hardware implementation will be able to interface several FPGs, while the software implementation can only implement one, provided that the software is written for a single-core CPU.
5.2 Configuration parameters

The idea is that the fractal generator is configured once for each frame, to render a different section of the Mandelbrot set. The configuration parameters must uniquely specify this section. For example, one might want to render the section within the green square in Figure 16.

The chosen setup is to use three configuration parameters. They are the two fractal coordinates of the bottom left corner of the section, as well as the distance (in fractal coordinates) between vertices (heightpoints) in the landscape — the step size. Thus the parameters determine the location in the Mandelbrot set and the zoom-level of the fractal to be rendered.
The parameters were chosen to simplify the hardware implementation. More specifically, simplify the calculation of the sequence of fractal points sent to the fractal point generator by the vertex array generator. An alternative would be to send the center coordinates and width of the coordinate system, but this would be less efficient. In fact, these are the parameters used by the fractal demo, which converts these to the bottom left coordinates and step size when configuring the fractal generator.

A final, static parameter is the number of vertices in the landscape. This parameter cannot be modified at run-time; it is implemented as the C macro definition NUMPOINTS in the fractal demo. The number of vertices in the landscape will always be NUMPOINTS², forming a static grid of (x, y) vertex coordinates. The z coordinates are the only coordinates that vary between frames, each representing the number of Mandelbrot iterations for the corresponding fractal point. See Section 6.3.2.

The interpretation of the parameters are indicated in red on Figure 16.

5.3 Vertex array format, vertex and fractal coordinates

The vertex arrays use fixed-point integers only. All coordinates are represented with the GLshort data type, which is a 16-bit signed integer format.[19, chap. 1] This decision was made to reduce the size of the vertex arrays; the alternative would be to use the 32-bit floating-point format GLfloat, spending twice the bandwidth between the CPU and GPU.

To make this work, the fractal generator must translate x and y vertex coordinates (which are integers) into floating-point fractal coordinates, based on how the fractal generator is configured. For example, the (x, y) coordinates (1, 2) are translated into (left+step_size, bottom+2step_size)⁴ and the iteration count for this fractal point is then used as the z-coordinate of the vertex. Thus, if this iteration count is 10, the vertex coordinates are (1, 2, 10).

From here on, the terms vertex coordinates and fractal coordinates will be used to refer to the integer coordinates of the vertex arrays and the floating-point coordinates in the Mandelbrot set, respectively.

5.4 Storing z-coordinates

An important issue in the design of the fractal generator is how the z vertex coordinates are stored between triangle strips. As discussed in Section 3.3, each triangle strip in the landscape share half their vertices with the adjacent strips. It would be very expensive to calculate all the z-coordinates (Mandelbrot iteration counts) of the vertices twice, which is what would happen in a naively designed implementation.

To avoid generating the same fractal points twice, the z-coordinates of the lower vertex points can be reused from the previous strip. Due to the nature of the triangle strip method of drawing landscapes, one method of achieving this is by storing all the z coordinates each strip, and then shift all the values to the left before the next strip,

⁴See Section 5.2 for an explanation of what left, bottom and step_size represent.
as illustrated in Figure 17. Every second value, namely those corresponding to the upper vertices of the strip, are then updated with new Mandelbrot iteration counts. See Figure 10 on page 12 for insight in why this works. For the first (bottommost) triangle strip, all the values must be generated.

Another method that accomplishes the same thing is to have two buffers, each with the capacity to hold one row of z-coordinates (half a strip.) For the first strip both buffers are filled with the lower and upper coordinates, respectively. For the second strip only the first buffer is filled with the upper coordinates of that strip, for the third strip only the second buffer is filled with the upper coordinates, and so on. This is illustrated in Figure 18. Green indicates the buffer that holds the lower row for the corresponding strip, yellow the upper row.

The second method is probably the better one for the hardware implementation, and the method of choice for this project. When a strip is calculated and ready to be sent out of the module serially, it is easy to make a design that alternates between the two buffers. The first method is a strong candidate as well, because it is probably easy to implement the aforementioned shifting operation in hardware. However, it might be desirable to use a type of memory where this is not the case (such as SDRAM.)
Figure 18: Second method of updating strip memory between triangle strips
6 Fractal demo and software implementation

A software implementation of the fractal generator and an OpenGL ES 2.0 demo application was designed first to gain insight in design matters such as what kind of data structure the hardware module should produce. The end purpose of the demo application was to demonstrate the hardware implementation of the fractal generator, but this will have to be reserved for future work. The designed demo will use the software fractal generator only. This chapter will introduce and describe the fractal demo and the software implementation of the fractal generator.

6.1 Overview

The thesis description states to create an OpenGL ES 2.0 program that creates an animated 3D landscape where the height and the color of the landscape at any given point is determined by the color of a texel in a texture. The idea is that this texture is a fractal image that was produced beforehand, by a fractal generator.

The fractal generator is described in Chapter 5, a quick recap is provided here. The generator will not produce a texture, but rather a set of vertex arrays that represent the landscape as triangle strips. See Chapter 3. The x and y coordinates of all the vertices are constant between frames. The z coordinates are the iteration counts of the Mandelbrot algorithm. The generator is configurable to specify what section/area of the Mandelbrot set to render, as well as the number of vertices (triangles) in the landscape. The number of vertices is not configurable at run-time.

Animated 3D landscape is interpreted as drawing the Mandelbrot set as a 3D-landscape, then create an animation that zooms into the fractal.

6.2 Fractal demo design

The fractal demo was written in the C programming language with the OpenGL ES 2.0 Emulator from ARM.[14] This is essentially a library that translates OpenGL ES 2.0 API calls to desktop OpenGL API calls, allowing applications destined for Mali-accelerated platforms to be written and run on a normal desktop computer running Microsoft Windows or Linux. The emulator also provides an EGL library, which is an interface between the OpenGL ES 2.0 API and the underlying platform window system. That is, it provides an easy way to open a window in the operating system and have the result of OpenGL ES draw calls appear in it.

Some of the code in the demo was taken from the cube-example that comes with the OpenGL ES 2.0 Emulator. In particular, those portions that are concerned with opening the window and setting up the drawing surface. The full source code of the fractal demo can be found in Appendix A, where the portions of code that was borrowed from the cube example are clearly marked. The screenshot in Figure 19 shows the demo in action.
The demo draws a landscape using the vertex arrays produced by the fractal generator directly, using one draw call per vertex array/triangle strip. The vertices are rotated so that the landscape is viewed from an angle rather than from a bird’s-eye perspective. The vertices are then scaled so that the edges of the landscape fall outside the edges of the drawing surface/window. Figure 20 shows a screenshot of the demo without this final scaling.
Figure 20: Fractal demo application without final scaling

The demo as it is in the source code in Appendix A is not interactive, although it could easily be modified to be. Instead it will simply zoom in on a predefined point in the Mandelbrot set (the fractal center), and then at some point return to the original zoom level and repeat.

In the shown screenshots the landscape is drawn using 400 by 400 fractal points/vertices. This corresponds to $399 \cdot 2 \cdot 399 = 318,402$ triangles. A new set of vertex arrays are generated for each frame, where the step size is reduced and the bottom left coordinates are adjusted to keep the desired fractal center in the center of the rendering. This creates a zoom-animation.

A video of the demo in action is attached with this report. The video was created by recording the demo application real-time using the VLC media player from VideoLAN.[21] The video shows the application operating somewhat slower than normally, because the recording process uses resources that would otherwise be available to the fractal demo process.
6.2.1 Coloring

As discussed in Section 2.1.3, coloring of the landscape is done with a color gradient, where the iteration count decides what color (i.e., what position in the gradient) that fractal point will be given. In OpenGL, coloring of pixels is done by a fragment shader, which is a small program that is executed for each pixel in the finished rendering. The fragment shader for the fractal demo is reproduced in Listing 2.

```glsl
precision lowp float;

varying float v_iterations;

void main ()
{
    vec3 v_color;

    const vec3 c1 = vec3(0.165, 0.244, 0.518); // Light blue.
    const vec3 c2 = vec3(1.0, 1.0, 1.0); // White.

    // Assuming max iteration count of 80.
    if (v_iterations > 79.5)
        v_color = vec3(0.0, 0.0, 0.0);
    else
        v_color = mix(c1, c2, v_iterations / 80.0);

    gl_FragColor = vec4(v_color, 1.0);
}
```

Listing 2: Fragment shader for fractal demo

A fragment shader takes one or more type of parameters called varyings, which are interpolated versions of vertex parameters. (Weighted averages of the vertices nearest to the current pixel.) In this case, the only varying is \textit{v_iterations}, which is the number of iterations in the Mandelbrot algorithm for each vertex. For example, a pixel halfway between two vertices with iteration counts 50 and 60 will have the value of the \textit{v_iterations} varying set to 55. This is discussed extensively in the \textit{OpenGL ES 2.0 Programming Guide} [1].

In this case, pixels near vertices corresponding to fractal coordinates with iteration counts of 80 are colored black. Other pixels are colored using a simple blue to white gradient, realized using the \textit{mix()} function in the shader language.
6.3 Software fractal generator

The software implementation of the fractal generator was written to function as similar as possible to the hardware implementation; each C function corresponds to the functionality of a hardware module. As stated earlier, there were some iterations between the design of the software and hardware module. The final software model is contained entirely in *fractal.c*, which can be found in Listing 7 in Appendix B.

6.3.1 Fractal point generator (FPG)

The fractal point generator is a low-level implementation based on Equation 3 on page 6. This function is reproduced below, in Listing 3. The boundary condition check used here (line 11-12) is the simplified method, which will be introduced in Chapter 8.

```
int getFractPoint(float re, float im)
    // Get the number of iterations (n) before |z| exceeds 2.
{
    int n;
    float z_re = 0.0f, z_im = 0.0f;
    for (n = 1; n < 80; n++) {
        float z_re_old = z_re;
        z_re = z_re * z_re - z_im * z_im + re;
        z_im = 2.0f * z_re_old * z_im + im;
        if ((z_re >= 2.0f) || (z_re <= -2.0f) || (z_im >= 2.0f) || (z_im <= -2.0f))
            break;
    }
    return n;
}
```

Listing 3: C model of fractal generator

6.3.2 Vertex array generator (VAG)

Although the fractal point generator is the actual workhorse in the fractal generator, the fractal points must be assembled into an array structure that can be sent directly to the graphics processor for drawing. This is what the `/texttt getNextLandscapeStrip()` function does, corresponding to a vertex array generator hardware module.

The vertex array generator produces a vertex array containing a single triangle strip of the landscape. After `initLandscape()` is called with configuration parameters, `getNextLandscapeStrip()` will return the bottommost triangle strip of the landscape. Subsequent calls will return the whole landscape strip by strip, upwards from the bottommost strip.

The `getNextLandscapeStrip()`-function consists of two loops. The first loop fills an array with iteration counts by calling `getFractPoint()` repeatedly. Since there are only two different y-coordinates per strip and as a result only two different imaginary
parts of the fractal coordinates, these two are calculated before the loop is started. The first real part \((re)\) is always the left configuration parameter because all triangle strips start on the left side of the grid. Subsequent real parts are calculated by adding \(step\) to \(re\) once for every loop iteration. This way a single floating point adder should be sufficient when the hardware module is designed.

The second loop constructs the actual vertex array using values from the array generated by the first loop. The purpose of splitting up these tasks is that it more closely resembles how it will be done in hardware.

6.3.3 Performance

To be able to compare the software solution to the hardware solution presented later, some performance investigations were performed. The execution time required to generate one fractal landscape varies greatly, depending on the section of the Mandelbrot set. However, the worst-case scenario is when all the fractal points in the section are in the Mandelbrot set. (i.e., have an iteration count of 80.) Thus this is the situation that will be considered.

The measurements were carried out using the \texttt{clock()} function of \texttt{time.h} on a desktop computer with a Pentium 4 3.4 GHz CPU. The used method is shown below in Listing 4, as described in the Microsoft MSDN function reference.[8].

```c
#include <time.h>

void display()
{
    clock_t start;
    double duration;
    static int framec = 0;

    // ...
    start = clock();
    // ... (Generate fractal)
    duration = (double)(clock() - start) / CLOCKS_PER_SEC;
    printf("Frame \%d took \%2.3f seconds to generate. \n", framec++,
            duration);
    // ...
}
```

Listing 4: Performance measurement method

Experimental results show that the execution time for a worst-case scenario fractal is between 0.297 and 0.313 seconds on the used computer. This corresponds to a frames-per-second (FPS) rate of around 3.2 - 3.3.
6.4 Discussion

There are a few issues with the fractal demo, related to shortcomings of the fractal generator. The main issue is that the zoom animation appears very “noisy” between frames. For example, some of the spikes in the landscape (See examples in Figure 20) will suddenly disappear in one frame and reappear in the next. This is not very aesthetically pleasing. The reason why it is happening is that there are lots of very narrow black areas in the Mandelbrot set, and it will be somewhat random whether the vertex points will hit these spots, forming a spike in the landscape, or not.

The noise issue can be fixed using certain blending and anti-aliasing techniques.[5] However, these are computationally expensive methods and hard to implement in hardware. Due to limited time it was therefore decided not to do this.

Another issue is that the frame rate of the animation is very varying throughout the animation, and overall not good enough. Typically, the frame rate will be high at first, when most of the fractal points in the landscape have a low iteration count. (I.e., more blue and less white and black.) Later on most of the fractal points will have a high iteration count (when zooming in on the boundary between points that are in the Mandelbrot set and not.) This simply happens because calculation the iteration counts is a computationally expensive task; this problem should go away as soon as the task of generating the fractals is moved to hardware.
7 Representation of fractal coordinates

Choosing the data formats in which fractal coordinates are represented is a very significant decision for this project. Several issues will arise when rendering smaller areas\footnote{I.e., fractals with a small step size. See Section 5.2.} of the Mandelbrot set if the range of the format is too low.

The range and precision of the format is therefore the limiting factor of how far into the Mandelbrot set the system can zoom. This section will present and discuss the background for this and give an overview of the available options.

7.1 Rounding errors

The way in which the fractal generator is implemented is not optimal with regards to utilization of the available range in the floating point format. What will eventually happen is that the step size parameter (\textit{step}) will become zero (or sufficiently smaller than the coordinates of the fractal center, see next two paragraphs), resulting in that the whole landscape will have the same color and height, namely that of the bottom left point.

Before this breaks the system completely, however, another effect will compromise the aesthetic appearance of the zoom animation. When the step size becomes very low, the animation will appear “shaking” — the center of the landscape (the fractal center, the point being zoomed in on) will shift between subsequent frames.

The reason for this effect and other related irregularities is that the coordinates of the bottom left corner generally will be several magnitudes larger than the step size at some point. (The only exception would be if the fractal center was near the origin, but that would not make much sense, as all the points around the origin are part of the Mandelbrot set.) Adding a low-magnitude number to a high-magnitude number will lead to severe rounding errors with floating point numbers. This is exactly what happens when fractal points are calculated in the software fractal generator. At some point the step size will become so small that adding it to either of the bottom left coordinates makes no difference, and thus the whole landscape will have the same height and color. For insight in why this is happens, see Section 4.3.1.

There is a way to reduce the rounding problem, but it is not a perfect solution. Instead of adding \textit{step} to \textit{bottom} for each strip and to \textit{left} for each column of each strip, the fractal coordinates can be calculated each time using the following equations:

\begin{align}
\text{im} &= \text{bottom} + (y \cdot \text{step}) \\
\text{re} &= \text{left} + (x \cdot \text{step})
\end{align}

where (re, im) is the fractal coordinate corresponding to vertex coordinates (x, y). This will help because the rounding error from adding \((y \cdot \text{step})\) to \textit{im} is not as bad as adding \textit{step} directly. This will fix the shaking problem, but it will lead to another undesired effect, apparent in Figure 21. It is also a more computationally expensive solution.
This interesting effect occurs because many of the calculations of Equation 5 will yield the same answer due to rounding errors at this step size. What you are looking at is really the resolution/precision of the used floating point format at the magnitude of the fractal center. (The bottom left point, to be precise.) However, this effect becomes apparent quite a bit later than the shaking. In fact, it happens at about the same time as the animation starts to shake due to rounding errors when calculating the bottom left coordinates from the fractal center.

Interestingly, the step size value is nowhere near the smallest value that the floating point format can represent when these rounding errors break the animation. The demo uses the float C datatype for fractal coordinates, which is the binary32 format of IEEE 754 on the used computer and most other systems that implement the C programming language. In Figure 21, the step size is around 4E-9, or close to 2^{-28}. The smallest value that the binary32 format can represent is 1.4E-45, less than 2^{-127}.

7.2 Discussion

It may be desirable to design a custom fixed-point format for representing fractal coordinates for this project. When designing software that needs to do calculations on real numbers (decimals), one typically has to choose between the float and double data types, both floating-point units, corresponding to binary32 and binary64 in IEEE 754. This is related to how computers are designed. However, as suggested in the previous section, floating-point formats may be a bad choice for this project, because the precision of the necessary calculations will be limited by the precision
of the format around the fractal center anyway. Furthermore, there is no need to represent large numbers in this project; in fact it is sufficient to be able to represent numbers up to 2.0, because the whole Mandelbrot set is located inside a disc of radius 2.0 in the complex coordinate system. Operations on fixed-point formats (such as multiplication and addition) are also simpler to realize in hardware.

However, this will have to be reserved for future work; the binary32 format will be used throughout this project. This is because it is much more convenient to design with floating-point units in software, and thus verify the hardware implementation. Also, units for performing addition and multiplication on the binary32 format are already available from ARM; these are introduced later in Section 9.1.
8 Boundary checking in the Mandelbrot algorithm

As presented in Section 2.1.1, 2 is a sufficient size of the BREAK_VAL-parameter in the Mandelbrot algorithm (Listing 1); when the absolute value of \(z \) exceeds 2 it is guaranteed that \(c \) is not part of the Mandelbrot set.[4, p. 81] However, any value of BREAK_VAL larger than 2 will work.

This opens for a simplification of the Mandelbrot algorithm that will be presented here. As an alternative to calculating \(\sqrt{z_r^2 + z_i^2} > 2 \), or equivalently \(z_r^2 + z_i^2 > 4 \), one can simply check whether either \(|z_i| \) or \(|z_r| \) exceeds 2. This will certainly be much faster — which is important as this check is performed for each iteration of every pixel in the finished image.

The disadvantage with this method is that it might require more iterations of the algorithm to determine that a point is not in the set. If \(z_n \) falls within the blue area in the complex coordinate system in Figure 22, the precise method would catch that the point is not in the set and finish, while the simplified method would need to continue iterating until \(z \) escapes the outer rectangle in Figure 22. In the example in the figure, the precise method will break at \(n = 2 \), while the simplified method will break at \(n = 3 \).

![Figure 22: Illustration of the overhead (blue area) from using the simplified boundary check.](image)

Another problem with the simplified boundary checking method is that it could cause problems with the coloring scheme presented in Section 2.1.3. Even though it will work fine for detecting whether a point is in the interior or not, the number of iterations for points in the exterior will sometimes be altered slightly. The effect of
this is investigated in the next section.

8.1 Comparison of boundary check methods

The simplified boundary check method proposed earlier might cause the colored exterior of the set to appear different than with the precise boundary check. This is because the simplified method may report a slightly higher iteration count than the precise method for a given fractal point.

This was investigated with a modified version of the fractal demo. The demo was modified to display the fractal as a flat surface viewed directly from above. A version of the fractal point generator that uses the precise method was then implemented with the hypotf() C library function. A specific fractal point and zoom level were then chosen and a screenshot was taken for each boundary check method.

Figure 23 shows the screenshots of the modified demo using the precise and simplified boundary check method, respectively.

![Screenshot of fractal demo with different boundary check methods](image)

(a) Precise method (b) Simplified method

Figure 23: The modified demo application with different boundary check methods

The two screenshots were finally compared pixel for pixel. They were stored in a lossless format and compared using the ImageMagick suite of raster image tools.[15]. Figure 24a shows the output of the 'compare'-tool, where red indicates that the corresponding pixel differs between the two images. Figure 24b shows the output of 'composite -compose difference', which is the first image subtracted from the second.

8.2 Discussion

It is relatively difficult to see the difference between the two screenshots in Figure 23. Looking closely, the height-curves in the upper half of Figure 23a are more smooth than those of Figure 23b, however. Furthermore, it can be seen from Figure 24b that some of the pixels colored black (it. count 80) when the simplified algorithm is used, should have been white (it. count 79.)

The simplified method is probably the better choice. It is hard to settle on whether these differences are critical or not, but judging by this simple quantitative
investigation, the difference is hardly noticeable to the naked eye. Furthermore, the precise method is much more complex, requiring two additional multiplications and one additional addition operation per iteration of the Mandelbrot algorithm. This would likely prove to be a huge performance penalty when the system is implemented in hardware. The simplified method is therefore arguably best and is the method of choice for the fractal generator that was developed as part of this thesis.

Figure 24: Outputs from ImageMagick-tools
9 Hardware implementation

The hardware implementation of the Mandelbrot set generator consists of two parts that were designed separately:

- A fractal point generator unit (FPG)
- A vertex array generator that interfaces the fractal point generator(s) (VAG)

9.1 Floating point arithmetic

Library modules from ARM are used for floating point addition and multiplication, respectively. These are confidential and thus not reproduced in this thesis. However, the following information is provided:

- Both units are purely combinatorial
- The units are balanced to have about the same critical path length
- The adder is more complex than the multiplicator, and should thus be used sparingly

The modules use the single-precision format (binary32 of IEEE 754).

9.2 Fractal point generator (FPG)

The core data flow of the fractal point generator (FPG) is depicted in Figure 25, arising from Equation 3 on page 6. The x^2-operator is multiplication with 2, which can be easily implemented as an 11-bit incrementor for FP32. Negating Z_{im}^2 is also a simple operation.

![Dataflow Graph](image)

Figure 25: The dataflow graph of one iteration of the Mandelbrot set algorithm.

Even though this design is not especially area-critical, it has to be designed with area in mind. Generating the whole heightmap requires several thousands of
iterations of the data flow graph in Figure 25, and implementing thousands of FP32adders and multipliers is certainly not viable. It must be assured that all adders and
multipliers are utilized as much as possible.

9.2.1 Design exploration

For each vertex point in the height map, the data flow graph in Figure 25 will have
to be iterated a number of times. That is, the outputs at the bottom must be fed back
to the inputs at the top until one of them exceeds a certain number (such as 2,) or
until a counter reaches the iteration limit (such as 80.) For every new vertex point,
zeros must be injected at the top instead, and the counter must be reset. The simplest
possible design would consist of a number of elements that implement this graph
directly. However, this would yield inefficient utilization of the processing elements,
regardless of whether the design is pipelined or not.

To ensure that all the functional units are being utilized constantly, consider the
option of pipelining the graph in Figure 25 and replicate it downwards as many times
as the iteration limit, connecting the outputs of the first circuit to the inputs on the
next and so on. This system would be able to accept a new vertex point every clock
cycle, and thus utilize all the functional units all the time. This solution would also
be very simple to implement. However, most of the vertex points in a single frame
will normally not be in the Mandelbrot set, meaning that it would be unnecessary
to iterate most points all the way to the iteration limit. Put differently, this design
would perform a lot of unnecessary calculations under normal operating conditions.
Furthermore, it would not be especially flexible and scalable. For example, what if
the iteration limit was 80 and the then minimum of 240 multipliers required more
area than what was available in the target?

Many compromises between these two architectures could have been proposed,
such as having three vertices share pipelined processing units. However, one
additional strategy should be investigated first. The fact that there are exactly
three multiplication operations and three addition operations in this particular data
flow graph suggests that a processing unit consisting of just two constantly utilized
functional units (one adder and one multiplicator) might be a possibility. This would
be advantageous; not only is this solution very easily scalable as each unit is very
small — it is also relatively simple to design, contrary to the aforementioned system
where several vertices share the same pipeline at every given time.

Experiments with the data flow graph reveals that a processing unit with just
two functional units can in fact perform the algorithm while utilizing the functional
units constantly. Figure 26 illustrates the experimentally obtained high-level synthesis
schedule of a single iteration of the algorithm. Note how operation 2 and 3 are
switched (relative to Figure 25) to allow this to work out. The iteration is started with
"n = 1, where \(Z_{n, re} = c_{re} \) and \(Z_{n-1, re} \cdot Z_{n-1, im} = 0 \). A counter must be implemented
to keep track of the value of \(n \), as well as comparators that halts the iteration process
whenever \(Z_{re}, Z_{im} \) or \(n \) exceeds their thresholds.
9.2.2 Implementation and verification

The fractal point generator was implemented in Verilog-2001. It was tested with a simple, dynamic test bench written in SystemVerilog-2005. The design was simulated with Synopsys VCS/DVE.

The design is basically a four-state state machine. Its state diagram is shown in Figure 27. The three S_IT-states correspond to the three stages of the data flow graph in Figure 26.
The two functional units have their input data selected with multiplexers controlled by the state register. This is illustrated in Figure 28. Additionally a counter keeps track of the iteration count, and logic is added for detecting whether the counter has exceeded the iteration limit or whether $|z_{re}|$ or $|z_{im}|$ has exceeded 2. The full source code of the fractal point generator is enclosed in Listing 8 in Appendix C.

Figure 28: The core data flow of the fractal point generator (FPG). The green boxes are registers, where the arrows entering on the right edges are enable-signals.
The test bench defines an array of test vectors that were generated using the software implementation of the design. The DUT is stimulated with each vector, and the n-output (number of iterations) is compared with the correct answer. The test bench makes use of the clocking block functionality in SystemVerilog, as well as (dynamic) assertions and the struct data type. The full source code of the test bench for the fractal point generator is enclosed in Listing 9 in Appendix C.

9.3 Vertex array generator (VAG)

A circuit for generating the vertex array representing the fractal landscape was developed as part of the fractal generator design. This design is mostly concerned with fixed-point arithmetic, but it also has to generate floating point coordinates for the fractal point generators. It interfaces one or more fractal point generators (FPGs).

The vertex array generator (VAG) should have the following two important features:

- It should be area-efficient. This means that the number of floating-point units should be minimized and any storage memory should be as small as possible.
- It should be scalable, i.e., the number of interfaced FPGs should be easily configurable, as well as the number of vertices in the landscape.

The generator should be scalable because factors like the number of vertices in the heightmap and the desired frame rate may require faster fractal generation. There is thus a tradeoff between vertex count/frame rate and area. This tradeoff will be investigated later.

9.3.1 Implementation

The vertex array generator was like the fractal point generator designed in Verilog-2001. The design uses the double-buffer method for storing z coordinates as opposed to the shifting method, as discussed in Section 5.4. Apart from this feature no alternative design solutions have been evaluated. However, the chosen implementation is very compact and simple, easily scalable and have no identified weaknesses.

The vertex array generator implements one floating-point adder only, and no multipliers. (Not counting adders and multipliers in the fractal point generators.) The source code of the vertex array generator can be found in Listing 10 in Appendix D.

This being the top-level module for this project, it was not verified separately. The system-level verifications are presented in Section 9.5.

The system was split into three parts, a control state machine, an FPG arbiter and finally a Z memory. Figure 29 shows the structure of the whole design. The rest of this section will present these three parts.
Figure 29: The structure of the vertex array generator hardware design
Control state machine The control state machine (CSM) is a state machine that calculates fractal coordinates and feeds them to the FPGs. The state diagram of this state machine is shown in Figure 30. The term *fractal point* refers to one set of fractal coordinates.

![State Diagram](image)

Figure 30: State diagram of the control state machine of the vertex array generator

The CSM has a single floating point (FP32) adder. The fractal coordinates are calculated by adding *step* to *bottom* or *left* and fed to all the FPGs in the system. It is the FPG arbiter’s task to decide which FPG that is to start calculating the iteration count for the applied coordinates and tell the CSM when to send a new fractal point to the FPGs.

When all the iteration counts in the current triangle strip has been calculated and stored in the Z memory, the CSM will start sending the assembled vertex array out of the module. The X and Y coordinates will be generated by the CSM using two incrementors, while the Z coordinates come from the Z memory. The CSM will keep track of the memory addresses, however.

FPG arbiter The FPG arbiter is responsible for keeping track of which FPGs are busy and which are free. When one or more FPGs are done with a fractal point,
the arbiter will transmit the result from one of them (the iteration count, \(n \)) to the Z memory. The address to write the result to is generated by the CSM and stored in the FPG while working. (Through \(addr_in \) and \(addr_out \).) Then, any pending fractal point generated by the CSM is accepted by asserting \(en \) on the free FPG. Finally \(ready \) is asserted to let the CSM know that the current fractal point has been accepted and consumed.

When all the fractal points in the current vertex row have been accepted, the CSM will wait for \(flushed \), indicating that all the FPGs are free (i.e., that all the results are in the Z memory.)

Z memory As discussed in Section 5.4, the Z memory is made up of two identical buffers each large enough to store \(NUMPOINTS \) z vertex coordinates (half a triangle strip.) The CSM will keep track of what buffer to use. When the vertex array generator is started with \(start \), the bottommost vertex row is calculated and stored in the first buffer. Then, \(bufno \) is toggled and the second row is calculated and stored in the other buffer. For each strip, \(bufno \) is toggled so that the buffer containing the upper row of the previous strip is preserved. When transmitting the vertex array out of the module, the buffer number is toggled for each vertex so that the correct order of vertices is achieved.

9.4 Synthesis

The design was synthesized using Xilinx ISE 12.4 for a Xilinx Virtex 6 FPGA. The purpose of the synthesis was to get some numbers of the resource usage and speed of the design; the design was not tested in an actual FPGA. Specifically, the design was synthesized for the \(xc6vcx75t-1ff484 \) device. This particular device has 46,560 look-up tables (LUTs) available.[26] The number of LUTs utilized by a design corresponds to the complexity (area) of the design; for details the Virtex-6 FPGA User Guide [27]. The synthesis tool was ran without configuring timing constraints for the design, and with \(NUMPOINTS \) set to 400, corresponding to a full 400 by 400 point landscape as used in the fractal demo.

The number of LUTs and estimated clock frequency as a function of number of FPGs are shown in Table 2. The frequencies are calculated as the inverse of the clock period, which is reported by the synthesis tool.

<table>
<thead>
<tr>
<th>FPGs</th>
<th>LUTs</th>
<th>Clock period</th>
<th>Clock frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,637</td>
<td>13.350 ns</td>
<td>75 MHz</td>
</tr>
<tr>
<td>2</td>
<td>5,350</td>
<td>14.502 ns</td>
<td>69 MHz</td>
</tr>
<tr>
<td>4</td>
<td>9,042</td>
<td>13.883 ns</td>
<td>72 MHz</td>
</tr>
<tr>
<td>8</td>
<td>15,763</td>
<td>16.259 ns</td>
<td>62 MHz</td>
</tr>
<tr>
<td>16</td>
<td>29,577</td>
<td>15.618 ns</td>
<td>64 MHz</td>
</tr>
</tbody>
</table>

Table 2: Synthesis results

It can be observed that the number of LUTs approximately follows the formula

\[
2000 + 1700 \cdot NUMUNITS
\] (6)
where NUMUNITS is the number of FPGs in the design. This implies that the FPGs spend about 1700 LUTs each, while the VAG spends about 2000 LUTs. Note that the FPG arbiter (see Figure 29) is the only component of the VAG that changes when the number of FPGs are increases or decreased. Evidently these changes to the FPG arbiter does not affect the area of the VAG to any significant degree.

The estimated clock frequencies appear to be somewhat uncorrelated to the number of FPGs in the design. There is no clear explanation for this effect — it is assumed that the synthesis tool applies certain strategies on a sporadic basis when routing the design on the FPGA. However, there is a slight tendency for the frequency decreases when the number of FPGs is increased. This would be expected as more FPGs means larger, slower multiplexers in the FPG arbiter and higher fan-out between the state machine and FPG inputs. (i.e., the state machine outputs have to drive more gates.)

9.5 Verification and performance analysis

The hardware fractal generator was verified and analyzed using two dynamic test benches written in SystemVerilog-2005, as when verifying the fractal point generator (FPG) earlier. Simulations were done with Synopsys VCS/DVE.

The purpose of the first test bench is to verify the functionality of the complete system, consisting of the vertex array generator and a number of fractal point generators. The purpose of the second test bench is to assess the performance of the system, and not be concerned about correct functionality.

To ease simulation, the first test bench tests the system with a single 20 by 20 point fractal landscape test case. This differs from the 400 by 400 point fractals used in the fractal demo (see Chapter 6). The test case was chosen to have a wide selection of different iteration counts (heights) across the landscape; it is shown in Figure 31. The software demo was modified to write the output of the fractal generator to a file that was then used to compare the output of the hardware fractal generator in the test bench. The source code of the first test bench can be found in Listing 11 in Appendix D.
The test bench will apply configuration parameters to the device under test (DUT), then request the first triangle strip array and wait for the ready-signal. When the ready-signal arrives, the data-output of the DUT is compared to the “golden” solution from the software implementation, stored in the text file `testcase.txt`. This is done using SystemVerilog assertions [16]. A short excerpt from a typical output of the first test bench is shown in Listing 5 below. Each PASS correspond to one vertex in the generated vertex array from the DUT.

```
1 Chronologic VCS simulator copyright 1991–2011
2 Contains Synopsys proprietary information.
3 Compiler version E–2011.03; Runtime version E–2011.03; Jun 16 14:47 2011
4 Requesting strip 0.
5 Waiting for ready–signal...
6 PASS 0, 0
7 PASS 0, 1
8 PASS 0, 2
9 PASS 0, 3
10 PASS 0, 4
11 PASS 0, 5
12 (...)
```

Listing 5: Sample output from simulation

It is believed that this test bench proves correct behavior of the fractal generator to a satisfying degree. It revealed some design mistakes that were fixed and now runs without any failing assertions. The test case was chosen to provide a wide range of test vectors with different outcomes. It has additionally been verified that the test case runs successfully with several different numbers of FPGs in the system. See next paragraph.
Effect from increasing the number of FPGs The number of clock cycles spent during generation of the fractal arrays were recorded; the results are in Table 3, as a function of the number of fractal point generators the vertex array generator implements. (The NUMUNITS parameter.)

<table>
<thead>
<tr>
<th>FPGs</th>
<th>CCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31,251</td>
</tr>
<tr>
<td>2</td>
<td>16,541</td>
</tr>
<tr>
<td>4</td>
<td>9,297</td>
</tr>
<tr>
<td>8</td>
<td>5,883</td>
</tr>
<tr>
<td>16</td>
<td>4,240</td>
</tr>
</tbody>
</table>

Table 3: Number of clock cycles spent generating the fractal arrays as a function of number of fractal point generators. 20 by 20 point test case.

Note how the number of clock cycles per FPG decreases as more FPGs are added. This happens because there are only 20 new fractal points per triangle strip, and so at the end of each triangle strip most of the FPGs will typically be unused. For example, if the number of FPGs are 16 and all the fractal points in a strip have the same iteration count, the first 16 fractal points will complete at the same time, leaving 12 FPGs unused when the final 4 fractal points are being calculated.

9.5.1 Comparable performance

To be able to compare the performance of the hardware fractal generator with the software fractal generator, the same (all black) landscape as in Section 6.3.3 is requested by the second test bench. Unlike the first test bench, no solution text file is imported; it is simply checked whether the z coordinates in the generated vertex arrays are set to the iteration limit (80). Thus this test bench hardly checks for correct behavior, its purpose is to investigate the performance of the design by recording the number of clock cycles required to generate this worst-case scenario landscape.

Combined with the synthesis results from Section 9.4, generation times in time units can be obtained and compared with the software implementation. The results can be found in Table 4.

<table>
<thead>
<tr>
<th>FPGs</th>
<th>CCs</th>
<th>Est. exec. time</th>
<th>Est. frame rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38,560,397</td>
<td>0.515 s</td>
<td>2 FPS</td>
</tr>
<tr>
<td>2</td>
<td>19,440,797</td>
<td>0.282 s</td>
<td>4 FPS</td>
</tr>
<tr>
<td>4</td>
<td>9,881,597</td>
<td>0.137 s</td>
<td>7 FPS</td>
</tr>
<tr>
<td>8</td>
<td>5,103,197</td>
<td>0.083 s</td>
<td>12 FPS</td>
</tr>
<tr>
<td>16</td>
<td>2,716,397</td>
<td>0.042 s</td>
<td>24 FPS</td>
</tr>
</tbody>
</table>

Table 4: Number of clock cycles spent generating the fractal arrays as a function of number of fractal point generators. 400 by 400 point worst-case scenario.

The estimated execution times were calculated by multiplying the number of clock cycles with the clock period from the synthesis. The frame rates are calculated by
rounding the inverse of the execution times.

9.6 Discussion

Comparing the obtainable frame rates from the software and hardware implementation of the fractal generator, the hardware implementation is faster as soon as the number of fractal point generators (FPGs) is increased to 2 or more. However, the estimated frame rate of 4 FPS with 2 FPGs is hardly impressive — 4 FPS will provide a very “choppy” animation. To obtain a good frame rate of 24 FPS, which is a well established standard in the TV and movie-making business[22], 16 FPGs are needed.

Even with 16 FPGs, the resource usage (area) of the fractal generator is relatively modest. With 16 FPGs it spent 29,577 LUTs during synthesis, which is 64% of the smallest available FPGA in the Virtex 6 family of FPGAs from Xilinx (LX75T) and only 6% of the largest available FPGA in the same family (LX760).[26, tab.1]

The worst-case scenario test case arguably does not represent a typical use of the fractal generator. The fractal demo will mostly have a frame rate of more than 3 FPS (the worst-case scenario frame rate), because most of the points in the fractal landscape typically have iteration counts of less than the maximum (80). However, when zooming in on the edge of the Mandelbrot set, the average iteration count will increase with the zoom level, slowing the demo animation. In fact, the maximum zoom level is limited by the iteration count limit; further zooming would require a higher limit, making the animation even slower than the studied worst-case scenario test case.

As a final comment, the computer used to obtain the estimated frame rate for the software implementation of the fractal generator is much more powerful than the CPU in embedded systems targeted by the Mali family of graphic processors. Thus is would arguably be fairer to compare the performance of the software implementation to an ASIC implementation rather than an FPGA implementation of the hardware fractal generator. Alternatively, the software implementation should have been tested on an embedded platform rather than on a desktop computer.
10 Conclusion and future work

Although the designed fractal generator was not tested on a hardware platform, the work done in this thesis yielded several results. Future work should focus on integrating the fractal generator with the Mali-400 graphics processor on an FPGA and produce a working fractal demo that utilizes this hardware.

The most important contribution from this thesis is the design of an elegant, scalable fractal generator which with few resources was shown to beat the corresponding software implementation running on a desktop computer. With 16 FPGs (fractal point generator cores), the implementation was almost 10 times faster than in software and spent 63 % of the resources in the smallest available Xilinx Virtex-6 FPGA. A OpenGL ES 2.0 demo was written to demonstrate the software fractal generator, planned to eventually be used for demonstrating the hardware implementation as well.

A simplification of the Mandelbrot set algorithm was proposed in Chapter 8, and judged to be superior to the original algorithm. The two algorithms were tested and compared using the fractal demo (presented in Chapter 6). The simplified algorithm is the one implemented in the hardware fractal point generator.

Another area that should be considered for future work is the development of a custom fixed-point format for representing fractal coordinates. Chapter 7 identifies problems with using floating-point formats for this task that in the end will limit how far into the fractal the system can zoom. However, the iteration count limit (which is related to the achievable frame rate, see the discussion in Section 9.6) will also limit the maximum zoom level. This means that to gain any significant benefit from changing to a fixed-point format for fractal coordinates, the number of FPGs in the system must be increased as well, increasing the size of the design.
A Source code, fractal demo

```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "GLES2/gl2.h"
#include "EGL/egl.h"
#include "fractal.h"
#include "window.h"
#include "shader.h"
#include "esUtil.h"

static int xrot = 25, zrot = -30;
static float fractcenter[2] = {-1.786863383, -2.369371475e-06};
// static float fractcenter[2] = {-0.3912647562f, 0.6785442331f};
// static float fractcenter[2] = {0.0f, 0.0f};

static float minwidth = 4.775061513e-09;
static float fractwidth = 50.0;

static GLfloat ls_scale = 2.5;

static const unsigned int uiWidth = 640;
static const unsigned int uiHeight = 480;

#ifdef _WIN32
static HWND hWindow;
static HDC hDisplay;
#else
static Window hWindow;
static Display *hDisplay;
#endif

static EGLDisplay sEGLDisplay;
static EGLContext sEGLContext;
static EGLSurface sEGLSurface;
static GLuint uiProgram, uiFragShader, uiVertShader;
static ESMatrix perspective, modelview, mvp;

static GLshort *landscape;

void init()
{
  // EGL configuration. Adopted from 'cube' application.
  EGLint aEGLAttributes[] = {
      EGL_RED_SIZE, 8,
      EGL_GREEN_SIZE, 8,
      EGL_BLUE_SIZE, 8,
      EGL_DEPTH_SIZE, 16,
      EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
      EGL_NONE
  };

  EGLint aEGLContextAttributes[] = {
      EGL_CONTEXT_CLIENT_VERSION, 2,
      EGL_NONE
  };

  EGLConfig aEGLConfigs[1];
  EGLInt cEGLConfigs;
  GLint iLocPosition = 0;
  GLint iLocColour, iLocTexCoord, iLocNormal, iLocMVP;
  GLint iLocXangle, iLocYangle, iLocZangle;
  GLInt iLocAspect, iLocLightPos, iLocSampler, iLocSampler2;
```
GLenum myTex, myTex2;

int i, linked;

// EGL initialization. Adopted from 'cube' application.
#if defined _WIN32
hWindow = create_window(uiWidth, uiHeight);
#else
hWindow = create_window("OpenGL ES 2.0 Example on a Linux Desktop", uiWidth, uiHeight, hDisplay, sEGLDisplay, aEGLConfigs[0], &colormap, &pVisual);
#endif

#if defined _WIN32
hDisplay = GetDC(hWindow);
#else
hDisplay = XOpenDisplay(NULL);
#endif

if (!hDisplay) {
 printf("Could not open display\n");
 exit(-1);
}

sEGLDisplay = eglGetDisplay(hDisplay);
(eglInitialize(sEGLDisplay, NULL, NULL));
eglChooseConfig(sEGLDisplay, aEGLAttributes, aEGLConfigs, 1, &cEGLConfigs);
if (cEGLConfigs == 0) {
 printf("No EGL configurations were returned.\n");
 exit(-1);
}

sEGLSurface = eglCreateWindowSurface(sEGLDisplay, aEGLConfigs[0], (EGLNativeWindowType)hWindow, NULL);
if (sEGLSurface == EGL_NO_SURFACE) {
 printf("Failed to create EGL surface.\n");
 exit(-1);
}

sEGLContext = eglCreateContext(sEGLDisplay, aEGLConfigs[0], EGL_NO_CONTEXT, aEGLContextAttributes);
if (sEGLContext == EGL_NO_CONTEXT) {
 printf("Failed to create EGL context.\n");
 exit(-1);
}

eglMakeCurrent(sEGLDisplay, sEGLSurface, sEGLSurface, sEGLContext);

// Shader initialization.
process_shader(&uiVertShader, "shaders/shader.vert", GL_VERTEX_SHADER);
process_shader(&uiFragShader, "shaders/shader.frag", GL_FRAGMENT_SHADER);
uiProgram = glCreateProgram();

// Attach shaders and link uiProgram.
glAttachShader(uiProgram, uiVertShader);
glAttachShader(uiProgram, uiFragShader);
glLinkProgram(uiProgram);

// Bind position to attribute 0.
glBindAttribLocation (uiProgram, 0, "a_position");

// Link the program.
glUseProgram(uiProgram);

// Check the link status.
glGetProgramiv(uiProgram, GL_LINK_STATUS, &linked);
if (!linked) {
 printf("Program not linked.\n");
 exit(-1);
}

// Enable depth testing.
glEnable(GL_DEPTH_TEST);

void reshape(GLsizei w, GLsizei h)
{
 // Update perspective matrix.
 const float edge = NUMPOINTS / 2;
esMatrixLoadIdentity(&perspective);
esFrustum(&perspective, -edge, edge, -edge, edge, NUMPOINTS * 1.25, 3 * NUMPOINTS);
 glViewport(0, 0, w, h);
}

void display()
{
 int s;
 GLint mvpLoc;
 float left, bottom, step;
 unsigned int *leftp, *bottomp, *stepp;
 static int framec = 0;
clock_t t_start;
 double duration;

 // Update modelview matrix.
esMatrixLoadIdentity(&modelview);
esTranslate(&modelview, 0, 0, -2.0 * NUMPOINTS);
esRotate(&modelview, xrot, 1, 0, 0);
esRotate(&modelview, zrot, 0, 0, 1);
esScale(&modelview, ls_scale, ls_scale, 1);
esTranslate(&modelview, - (NUMPOINTS-1) / 2, - (NUMPOINTS-1) / 2, 0);
 // Update MVP matrix by multiplying the modelview matrix with the perspective matrix.
esMatrixMultiply(&vp, &modelview, &perspective);

 // Clear buffers.
gColor(0.0, 0.0, 0.0, 0.0);
gClearDepthf(200);
gClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

 // Load the MVP matrix.
mvpLoc = glGetUniformLocation(uiProgram, "u.mvpMatrix");
 glUniformMatrix4fv(mvpLoc, 1, GL_FALSE, (GLfloat*) &vp.m[0][0]);
 glEnableVertex_attrib_pointer(0, 3, GL_SHORT, GL_FALSE, 0, landscape);
 glDrawArrays(GL_TRIANGLE_STRIP, 0, NUMPOINTS+2);
}
Listing 6: C source code for the fractal demo application. Other source files and shaders are generally taken from the cube demo application (discussed earlier) and delivered with the thesis.
B Source code, fractal generator, software model

```c
// fractal.c, by Per Christian Corneliusen, March 2011
// This is the software version of the fractal generator. It is laid out so
// that each C function corresponds to a hardware module. The algorithms should
// also be as similar as possible to how it is planned done in hardware.

#include <stdio.h>
#include <stdlib.h>
#include <math.h> // For hypotf()
#include "GLES2/gl2.h" // Emulator header, for GLshort.
#include "fractal.h" // Defines NUMPOINTS.

static GLshort *stripmem = NULL;
static GLshort *vertexmem = NULL;
static float left, bottom, step;
static int k; // Current strip number.

int getFracPoint(float re, float im)
{
    int n;
    float z_re = 0.0f, z_im = 0.0f;
    for (n = 1; n < 80; n++) {
        float z_re_old = z_re;
        z_re = z_re + z_re - z_im * z_im + re;
        z_im = 2.0f * z_re_old * z_im + im;
    }
    // Simplified boundary check.
    if (((z_re >= 2.0f) || (z_re <= -2.0f)) ||
        (z_im >= 2.0f) || (z_im <= -2.0f))
        break;
    // Precise boundary check. This is the one used for the "comparison of
    // boundary check methods" chapter of the report.
    /* if (_hypotf(z_re, z_im) >= 2.0f)*/
    break;
}
return n;
}

GLshort *initLandscape(float _left, float _bottom, float _step)
{// Allocate memory for landscape generation.
    // Allocate memory for a single triangle strip. If initLandscape() has been
    // called previously, the old chunk of allocated memory is reused.
    if (vertexmem == NULL) {
        vertexmem = malloc(NUMPOINTS * 2 * 3 * sizeof(GLshort));
        stripmem = malloc(NUMPOINTS * 2 * sizeof(GLshort));
        if (stripmem == NULL) {
            fprintf(stderr, "Out of memory.\n");
            exit(-1);
        }
    }
    // Store configuration:
    left = _left;
    bottom = _bottom;
    step = _step;
    // Set current strip number to 0.
    k = 0;
    return vertexmem;
}
```

57
void getNextLandscapeStrip()
{ // Update memory area returned by initLandscape() with next triangle strip.
 // initLandscape() must be called first for each frame. This module corresponds
 // to the vertarray.v hardware module.
 int i = 0, j = 0;
 int x = 0, y = k;
 float re = left;
 float im_upper = bottom + step; // * (y+1);
 float im_lower = bottom; // + step * y;

 // printf("Strip no. %d:\n", k);

 // Generate fractal points for this strip. If on the first strip (k == 0), all
 // the points are generated. Otherwise, only the upper row is generated, and
 // the lower row is reused from the previous (lower) strip.
 while (i < (NUMPOINTS * 2)) {
 // re = left + step * (i/2);
 // Lower row:
 if (k == 0) stripmem[i++] = getFractPoint(re, im_lower);
 else stripmem[i++] = stripmem[i+1]; // printf("%04x%04x%04x\n", vertexmem[j-3], vertexmem[j-2], vertexmem[j-1]);
 // Upper row:
 stripmem[i++] = getFractPoint(re, im_upper);
 re += step;
 }

 // Finally, the vertex array is generated. (This should be easily implemented
 // in hardware, as everything is constant except stripmem[i].)

 for (i = 0; i < (NUMPOINTS+2); i++)
 // For each vertex in the triangle strip.
 vertexmem[j++] = (y == k) ? x : x++;
 vertexmem[j++] = (y == k) ? y++ : y--;
 vertexmem[j++] = stripmem[i];

 // Finally, increment 'bottom' for next strip. Note how this whole thing is
 // made so that strips must be retrieved in order.
 bottom += step;
 k++;
}
Listing 7: C source code for the fractal generator software model

C Source code, fractal point generator, hardware

module fpg(
 input clk, // Clock.
 input reset_n, // Reset.
 input [31:0] c_re, // Real value of point to be calculated. FP32.
)
input [31:0] c_im, // Corresponding imaginary value. FP32.
input [15:0] addr_in, // Will be moved to addr_out whenever started.
output reg [7:0] n, // Number of iterations.
output reg busy, // Except after reset, busy='0' means n is valid.
output reg [15:0] addr_out;
// Configurable parameters:
parameter MAX_ITERATIONS = 80;
// State encoding:
parameter S_IDLE = 0, S_T0 = 1, S_T1 = 2, S_T2 = 3;
parameter M_OFF = 0, M_X2 = 1, M_NEGATE = 2;
reg [1:0] mulsel; // Specifies multiplier post-op.
reg [31:0] mul_a, mul_b, add_a, add_b; // Functional unit inputs.
wire [31:0] mul_out_t, add_out; // Functional unit outputs.
reg [31:0] mul_out; // Multiplier post-op output.
wire [32:0] add_out_t; // Adder temporary output.
reg [31:0] z_re, z_im, c_re_r; // Temporary storage.
// Functional units. The FP32 adders uses a derived 33-bit format internally
// that needs to be converted to and from FP32. Even though the adder
// supports subnormal numbers, the multiplier (and this module) does not,
// thus the FP32c->FP33 conversion is done in a simplified way.
assign add_out = [add_out_t[32:24], add_out_t[22:0]];

// This set of processes supports all the possible cases of
// synchronous start, reset, or edge reset. Note that the
// multiplications by 2 in the Mandelbrot Algorithm are
// simplified by using '2' as the multiplier.
always @(mulsel, mul_out_t)
begin
// To support the data flow graph of the Mandelbrot algorithm, there is
// logic for post-processing the output of the multiplication unit. Note
// that the M_X2 (multiplication by 2) operation is made in the simplest
// possible way -- it does not support NaN or subnormal numbers.
case (mulsel)
 M_X2: mul_out = {mul_out_t[31], mul_out_t[30:23] + 8'b1, mul_out_t[22:0]};
 M_NEGATE: mul_out = {-mul_out_t[31], mul_out_t[30:0]};
 default: mul_out = mul_out_t;
endcase
endalways @ (posedge clk or negedge reset_n)
begin
if (reset_n) begin
 mul_a <= 0;
 mul_b <= 0;
 add_a <= 0;
 add_b <= 0;
 z_re <= 0;
 z_im <= 0;
 c_re_r <= 0;
 addr_out <= 0;
end
89 n <= 0;
90 busy <= 0;
91 state <= S_IDLE;
92 mulsel <= M_OFF;
93 end else begin
94 // The Mandelbrot set is designed as an FSM with three repeating states
95 // for each iteration of the algorithm.
96 z_im <= add_out; // z_im needs to be stored between S_IT1 and S_IT2;
97 // this can be implemented as add_out delayed.
98 case (state)
99 S_IDLE: begin
100 // Unit idle. Send start values into the functional units.
101 mul_a <= c_re;
102 mul_b <= c_re;
103 add_a <= 0;
104 add_b <= c_im;
105 z_re <= c_re;
106 c_re' <= c_re;
107 mulsel <= M_OFF;
108 if (enable) begin
109 // If there is a pending request, initiate the algorithm by
110 // jumping to the next state.
111 state <= S_IT0;
112 busy <= 1'b1;
113 n <= 0;
114 addr_out <= addr_in;
115 end else begin
116 state <= S_IDLE;
117 n <= n;
118 busy <= 0;
119 end
120 end
121 S_IT0: begin
122 // Iteration cycle 0.
123 mul_a <= add_out;
124 mul_b <= add_out;
125 add_a <= mul_out;
126 add_b <= c_re_r;
127 mulsel <= M_NEGATE;
128 n <= n + 8'b1;
129 // The boundary check is done here. This is done by checking whether
130 // z_re or z_im exceeds 2, or whether n exceeds max. it. count.
131 // $display("Boundary check at n=%d: z_re(%x, %x), n, z_re, add_out");
133 begin
134 // Iteration count or z exceeds boundaries. Assert valid−output
135 // and return to idle state.
136 busy <= 0;
137 state <= S_IDLE;
138 end else begin
139 busy <= 1'b1;
140 state <= S_IT1;
141 end
142 end
143 S_IT1: begin
144 // Iteration cycle 1.
145 mul_a <= z_re;
146 mul_b <= z_im;
147 add_a <= mul_out;
148 add_b <= add_out;
149 z_re <= z_re;
150 mulsel <= M_X2;
151 n <= n;
busy <= 1'b1;
state <= S_IT2;
end

S_IT2: begin
// Iteration cycle 2.
mul_a <= add_out;
mul_b <= add_out;
add_a <= mul_out;
add_b <= c_im;
z_re <= add_out;
mulsel <= M_OFF;
n <= n;
baby <= 1'b1;
state <= S_IT0;
end
default: begin
// Undefined state.
mul_a <= 32'bX;
mul_b <= 32'bX;
add_a <= 32'bX;
add_b <= 32'bX;
z_re <= 32'bX;
mulsel <= M_OFF;
n <= 0;
baby <= 0;
state <= S_IDLE;
end
endcase
end
endmodule

Listing 8: Verilog source code for the fractal point generator
module fpg_tb();

// DUT ports:
logic clk, reset_n, enable, busy;
logic [31:0] c_re, c_im;
logic [7:0] n;
logic [15:0] addr_in, addr_out;

// Connect DUT ports:
fpg dut(.);

typedef struct packed {
 bit [31:0] re;
 bit [31:0] im;
 bit [7:0] n;
} test_vector_t;

test_vector_t test_vector[] = '{
 32'h40000000, 32'h40000000, 8'd1,
 32'h3c23d70a, 32'h3f851eb0, 8'd6,
 32'h3ba3d70a, 32'h3f80a3d7, 8'd8,
 32'h3dcccccd, 32'h3f266666, 8'd14,
 32'h3dcccccd, 32'h3f23d70a, 8'd48,
 32'h3dcccccd, 32'h3f1aca58, 8'd65,
 32'h3e0e4a9, 32'h3f1aca9b, 8'd78,
 32'h0, 32'h0, 8'd80
};

assign addr_in = 16'0b0;

// Clock driver:
always @ clk
 clocking cc @ (posedge clk);
 default input #1 output negedge;
 output reset_n;
 output enable, c_re, c_im;
 input busy, n;
endclocking

initial begin
 // Enable dumping:
 $vcdpluson(0, dut);

 // Initiate clock and reset DUT:
 clk = 0;
 reset_n <= 0;
 enable <= 0;
 $display('#1 cc.reset_n <= 1; // Will be asserted on the negative edge.');

 foreach (test_vector[i]) begin
 // Send test vector to DUT:
 cc.c_re <= test_vector[i].re;
 cc.c_im <= test_vector[i].im;
 cc.enable <= 1'b1;
 #1 cc.enable <= 1'b0;
 // Wait for valid--signal:
 @(negedge cc.busy);
 // Assert answer:
 end
end
D Source code, vertex array generator, hardware

module vag(
 output reg ready, // Output data ready. After 'ready' toggles, a new
 output reg [47:0] arrout // set of vertex coordinates will be available each
 // clock cycle on 'arrout'.
);

// Configurable parameters:
parameter NUMPOINTS = 400; // Number of points in each direction. The number of
parameter NUMUNITS = 2; // Number of fractal point generators.

// State encoding:
parameter S_IDLE = 0, S_FILL = 1, S_FLUSH = 2, S_READOUT = 3;

// Variables:

// Adders:
reg [31:0] add_a;
wire [31:0] add_b;
wire [31:0] add_out;
wire [32:0] add_out_t;
wire [15:0] x_inc , y_inc;

// Control state machine (CSM):
reg [31:0] re , im; // The current fractal coordinates. Connected to
 // c_re and c_im inputs on all FPGs.
reg [31:0] re_reg , im_reg; // Registered fractal coordinates.
reg [15:0] x , x_reg; // The current column. (x vertex coordinate)
reg [15:0] y , y_reg; // The current row. (y vertex coordinate)
reg firststrup; // Whether this is the first strip or not.
reg upper; // Whether sending the upper or lower vertex.
reg [1:0] state; // Current state.

// FPGs:
reg [0:NUMUNITS-1] fpg_en;

Listing 9: SystemVerilog source code for the test bench of the fractal point generator
wire [0:NUMUNITS-1] fpg_busy;
wire [7:0] fpg_n [0:NUMUNITS-1];
wire [15:0] fpg_addr_out [0:NUMUNITS-1];

// FPG arbiter:
reg arbt_enable; // Whether to process the fractal point or not.
reg arbt_ready; // Will go high for one cc when the fractal point specified
// by the above variables is received and being processed.
wire arbt_flushed; // Will stay high when no fractal points are being processed.
reg [0:NUMUNITS-1] arbt_fpg wb, arbt_fpg wb_next; // Whether an FPG had its
// result stored yet.

integer i; // Loop counter.

// Z memory:
reg [7:0] zmem0 [0:NUMUNITS-1]; // Ram for one row of z coordinates.
reg [7:0] zmem1 [0:NUMUNITS-1]; // Ram for one row of z coordinates.
reg zmem w en;
reg zmem_bufno;
reg [15:0] zmem w addr;
reg [7:0] zmem w data;
wire [15:0] zmem r addr;
wire [7:0] zmem r data;

//--
//-- Adders:
//--

// Floating point (FP32) adder. The FP32->FP33 conversion is done in a
// simplified way as in the FPGs. (i.e., dropped support for subnormal numbers.)

twian_lib fp32 adder main adder(
 .a([add a[31:23], 1'b1, add a[22:0]]),
 .b([add b[31:23], 1'b1, add b[22:0]]),
 .res(add out t)
);
assign add out = [add out t[32:24], add out t[22:0]];

//-- 16-bit integer incrementors.
assign x inc = x_reg + 16'b1;
assign y inc = y_reg + 16'b1;

//--
//-- Control state machine: (CSM)
//--

assign add b = step; // The second add operand is always 'step'.
assign arrott[47:32] = x_reg; // x coordinate.
assign arrott[31:16] = (upper ? y inc : y_reg); // y coordinate.
assign arrott[15: 0] = zmem r data; // z coordinate.
assign zmem r addr = x_reg;

always @ (*)
// Combinatorial block for controlling feeding of fractal points to FPGs.
begin
 // Default values:
 x <= x_reg;
y <= y_reg;
add a <= 32'bx;
re <= 32'bx;
im <= im_reg;
arbt_enable <= 0;

 case (state)
 S_IDLE: begin
 x <= 0;
 if (start) begin
 // If starting on a new frame, send bottom left coordinates to FPGs.
y <= 0;
re <= left;
im <= bottom;
arbt_enable <= 1'b1;
end
end else if (next) begin
 // If starting on a new strip, increment im with 'step'.
 y <= y_inc;
 add_a <= im_reg;
 re <= left;
 im <= add_out; // im += step
 arbt_enable <= 1'b1;
end
end

S_FILL: begin
 x <= x_inc; // x++
 add_a <= re_reg;
 im <= im_reg; // Within a row, the imaginary value (im) will remain constant.
 arbt_enable <= 1'b1;
 if (arbt_ready) begin
 // The previous fractal point sent to the FPGs was consumed. Calculate
 // next fractal point.
 x <= x_inc; // x++
 re <= add_out; // re += step
 end else begin
 x <= x_reg;
 re <= re_reg; // Keep old value, waiting for a free FPG.
 end
end
endcase
end

always @ (posedge clk or negedge reset_n)
// State control.
begin
if (!reset_n) begin
 state <= S_IDLE;
 re_reg <= 0;
 im_reg <= 0;
 x_reg <= 0;
 y_reg <= 0;
 firststrip <= 0;
 ready <= 0;
 upper <= 0;
 zmem_bufno <= 0;
end else begin
 re_reg <= re;
 im_reg <= im;
 x_reg <= x;
 y_reg <= y;
 // Default values:
 ready <= 0;
 upper <= 0;
endcase

case (state)
 S_IDLE: begin
 // Wait for either 'start' or 'next'.
 if (start) begin
 state <= S_FILL;
 firststrip <= 1'b1;
 zmem_bufno <= 0; // Always start with the first buffer.
 end else if (next) begin

 end
state <= S_FILL;
firststrip <= 0;

zmem_bufno <= ~zmem_bufno; // Change to the other buffer.
end else begin
 state <= S_IDLE;
end
end

S_FILL: begin
 // Calculate the z coordinates for the current vertex row.
 if (x == (NUMPOINTS-1)) begin
 // If at the right end of the row, jump to flush state.
 state <= S_FLUSH;
 end else begin
 state <= S_FILL;
 end
end

S_FLUSH: begin
 // Wait for final fractal points to be calculated.
 if (arbt_flushed) begin
 // Otherwise if started with 'next', jump to readout state.
 if (firststrip) begin
 state <= S_FILL;
 firststrip <= 0;
 zmem_bufno <= ~zmem_bufno;
 end else begin
 state <= S_READOUT;
 ready <= 1'b1;
 end
 end
end
S_READOUT: begin
 // Vertex array generated. Transmit values out of module.
 x_reg <= (upper ? x_inc : x);
 upper <= ~upper;

 if (!upper && (x == (NUMPOINTS-1))) begin
 // If the vertex following this clock cycle is the final one, jump
 // back to the idle state.
 state <= S_IDLE;
 end
end
endcase
end

// FPGs:

// The fractal point generators (FPGs) calculate the iteration counts of
// incoming fractal points. (i.e., the z coordinates of the vertices.)
generate
 // Generate FPGs.
gevar gi;
for (gi = 0; gi < NUMUNITS; gi = gi+1) begin : UNITS
 fp fpgi (.clk(clk), .reset_n(reset_n),
 .c_re(re), .c_im(im), .enable(fpg_en[gi]), .addr_in(x),
 .n(fpg_n[gi]), .busy(fpg_busy[gi]), .addr_out(fpg_addr_out[gi])
);
end
endgenerate

// FPG arbiter:

// The purpose of the FPG arbiter is to keep track of free FPGs and store
// results in the z memory. The variables below are used to interface the
// arbiter by the control state machine (CSM.)
reg arbt_break1, arbt_break2; // Temporary variables.
assign arbt_flushed = & arbt_fpg_wb;
always @ (*)
begin
 // If any of the FPGs are done, write the result to the z memory. If several
 // FPGs are done, only the first one will have its result written this cc.
 zmem_w_en <= 0;
 zmem_waddr <= 0;
 zmem_wdata <= 0;
 arbt_ready <= 0;
arbt_fpg_wb_next <= arbt_fpg_wb;
fpg_en <= 0;
arbt_break1 = 0;
arbt_break2 = 0;
for (i=0; i < NUMUNITS; i=i+1) begin
 // For each FPG.
 if (!fpg_busy[i])
 begin
 // This FPG is free.
 if (!arbt_fpg_wb[i] && !arbt_break1)
 begin
 // The result of the previous operation is not yet written to the
 // z memory. Do it.
 zmem_w_en <= 1'b1;
zmem_waddr <= fpg_addr_out[i];
zmem_wdata <= fpg_n[i];
arbt_fpg_wb_next[i] <= 1'b1;
arbt_break1 = 1'b1;
 end
 end
end
end
always @ (posedge clk or negedge reset_n)
begin
 if (!reset_n)
 begin
 arbt_fpg_wb <= {NUMUNITS[1'b1]};
 end else begin
 if (arbt_fpg_wb != arbt_fpg_wb_next)
arbt_fpg_wb <= arbt_fpg_wb_next;
end
end

// Z memory:

// Readout from the memories. 'zmem_bufno' is the buffer used for the upper row
// of vertices. 'upper' is whether to read a lower or upper row vertex.
assign zmem_rdata = upper ?
 (zmem_bufno ? zmem1[zmem_raddr] : zmem0[zmem_raddr]) :
 (zmem_bufno ? zmem0[zmem_raddr] : zmem1[zmem_raddr]);
always @ (posedge clk)
begin
 if (zmem_w_en) begin
 if (zmem_bufno)
 zmem1[zmem_waddr] <= zmem_wdata;
 else
 zmem0[zmem_waddr] <= zmem_wdata;
Listing 10: Verilog source code for the vertex array generator

```verilog
end
end
endmodule
```
module vag_tb();

// DUT ports:
logic clk, reset_n, start, next, ready;
logic [31:0] left, bottom, step;
logic [47:0] arrout;

// Connect DUT ports:
 vag dut(.);

// Test data:
logic [47:0] vertices [0:759]; // 19 strips * 40 vertices = 760
assign left = 32’hbebf870e;
assign bottom = 32’h3f141b79;
assign step = 32’h3c2c7692;
assign addr_in = 16’b0;

// Loop counters:
integer i, j;

// Clock cycle counter:
integer ccs;
always @ (posedge clk or negedge reset_n)
if (!reset_n) ccs <= 0;
else ccs <= ccs + 1;

// Clock driver:
always #5 clk = !clk;
 default clocking cc @(posedge clk);
 default input #1 output negedge;
 output reset_n;
 output start, next;
 input ready, arrout;
endclocking

initial begin
// Enable dumping:
$vcdpluson(0, dut);

// Load golden solution from testcase.txt:
readmemh("testcase.txt", vertices);

// Initiate clock and reset DUT:
clk = 0;
reset_n <= 0;
start <= 0;
next <= 0;

#1 cc.reset_n <= 1;

for (i=0; i < 19; i += 1) begin
 // For each strip.
 $display("Requesting strip ", i);
 if (i == 0) begin
 cc.start <= 1;
 #1 cc.start <= 0;
 end else begin
 cc.next <= 1;
 end
end

end
#1 cc.next <= 0;
end

// Wait for ready-signal.
$display("Waiting for ready-signal...");
@ (posedge cc.ready);

// Assert answer:
for (j = 0; j < 40; j++) begin
 assert (cc.arrout == vertices[i * 40 + j]) $display("PASS,%d,%d", i, j);
 else $error("FAIL,%d,%d (Expected,%h, got,%h)", i, j, vertices[i * 40 + j], cc.arrout);
end

// Wait one clock cycle.
$display("Test bench completed after %d clock cycles.", ccs);
$finish;
endmodule

Listing 11: SystemVerilog source code for the first test bench of the vertex array generator
module vag_tb();

// DUT ports:
logic clk, reset_n, start, next, ready;
logic [31:0] left, bottom, step;
logic [47:0] arrout;

// Connect DUT ports:
vag dut(*);

// Test data:
assign left = 32’hbe67295c;
assign bottom = 32’hbe67295c;
assign step = 32’h3a94506e;
assign addr_in = 16’h0;

// Loop counters:
integer i, j;

// Clock cycle counter:
integer ccs;
always @(posedge clk or negedge reset_n)
if (!reset_n) ccs <= 0;
else ccs <= ccs + 1;

// Clock driver:
always #5 clk = !clk;
default clocking cc @(posedge clk);
default input #1 output negedge;
output reset_n;
output start, next;
input ready, arrout;
endclocking

initial begin
// Initiate clock and reset DUT:
clk = 0;
reset_n <= 0;
start <= 0;
next <= 0;
#
cc.reset_n <= 1;
for (i=0; i < 399; i=i+1) begin
 // For each strip.
 $display("Requesting_strip_%d_", i);
 if (i == 0) begin
 cc.start <= 1;
 #1 cc.start <= 0;
 end else begin
 cc.next <= 1;
 #1 cc.next <= 0;
 end
 // Wait for ready–signal.
 $display("Waiting_for_ready_signal...\);
end
// Assert answer:
for (j=0; j < 800; j++) begin
 if (cc.arrout[15:0] == 80) $display("PASS_%d,_%d", i, j);
Listing 12: SystemVerilog source code for the second test bench of the vertex array generator

```verilog
    else $error("FAIL,%d,%d (Expected %d, got %d)" , i , j ,
        cc.arrout[15:0]);
        #1; // Wait one clock cycle.
    end
end
$display("Test bench completed after %d clock cycles.", ccs);
$finish;
end
endmodule
```
References

